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ABSTRACT 

Visual motor control involves using visual information about the limb and the target to 

adjust the trajectory of the limb towards the target to improve movement accuracy. The 

primary objective of the thesis was to demonstrate that improvements to the standard 

methods of statistical analysis of movement trajectory data can substantially improve the 

quality of the inferences made about those data. A Bayesian hierarchical gaussian process 

regression (GPR) model was compared to traditional analysis techniques in its ability to 

accurately estimate experimental effects. Analyses were run on experimental data 

collected from a basic vision/no-vision goal-directed reaching task, and simulated data 

from theoretically plausible generative model. Broadly, the expected experimental effects 

of vision were generated. The Bayesian hierarchical GPR method was successfully 

implemented and conferred some substantial benefits in contrast to many of the 

traditional methods. However, given several usability limitations, the Bayesian 

hierarchical GPR method may be best used as a specialty tool for statistically savvy 

researchers seeking to maximize the inferential capacity of their analysis of movement 

trajectories.  
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CHAPTER 1     INTRODUCTION 

 

1.1   VISUAL CONTROL OF MOVEMENT 

 

One focus in the field of motor control is the study of sensorimotor and cognitive 

processes that contribute to goal-directed upper limb movements. In the sensorimotor 

domain, of interest is how the actor uses different types of sensory feedback (e.g. vision, 

proprioception) during the movement to improve movement accuracy. Online control 

refers to processes that occur during the movement. Primarily, online control 

encompasses the use of sensory and proprioceptive feedback regarding the limb, the 

target, and the environment to adapt a given movement trajectory. Conversely, offline 

control refers to the processes that occur before and after the movement. Forms of offline 

control include generating a model to predict how the movement will unfold, 

incorporating terminal feedback to produce future movements (learning), and adapting 

motor control strategies based on knowledge about the task.  

 

Most models of online control have posited two control phases: an early phase during 

which the majority of the distance to the target is covered (i.e. during the primary 

movement), and a later phase during which movement errors are corrected based on 

sensory information (for history and discussion; see Elliott, Helsen, &, Chua, 2001). 

Elliott et al. (2017) define these two online control phases as impulse control and limb-

target control. 
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Impulse control involves the early and continuous comparison of expected and perceived 

sensory consequences (e.g. visual and proprioceptive information). In other words, 

impulse control consists of the rapid trajectory adjustments made on the basis of 

discrepancies between the expectancies of an internal representation of the limb trajectory 

and the actual feedback regarding that trajectory. This corrective process occurs 

throughout the primary (distance-covering) movement that generally encompasses the 

peak acceleration and deceleration kinematic markers. Alternatively, the limb-target 

phase of the movement involves the comparison of the relative spatial positions of the 

target and limb, later in the movement. This form of online control entails trajectory 

adjustments in cases where impulse control was insufficient in minimizing the error 

between the primary movement and target endpoints. 

 

Current models of goal-directed reaching such as the one proposed by Elliott et al. (2017) 

rely on a large literature of motor control research. Experiments focused on visual motor 

control, in particular, tend to be structured in the following way. First, participants rest 

their index finger at the bottom of a touch screen. Upon cue onset, participants reach 

towards a target, which will have appeared on the touch screen, as quickly and as 

accurately as possible. Common experimental manipulations in these sorts of studies 

involve (1) removing vision of limb and/or target at any point during a trial, (2) changing 

the location of the target or perturbing the limb at any point during the movement, (3) 

manipulating the information participants have about the nature of a trial prior to 

movement onset (i.e. changing the feedback schedule). In the following few paragraphs 

we will summarize foundational studies in visual motor control to give the reader 

concrete examples of the way in which experiments are designed to answer specific 
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questions about visual motor control. 

 

Real-time visual information about the movement environment is used to adapt and 

correct the movement when the limb is in flight. A half-century ago (1968), Keele & 

Posner concluded that it takes 190-260 ms to for a human to process visual feedback. 

Their design involved motivating participants to make accurate reaching movements to a 

small target using different movement times. On half the trials, the lighting in the room 

was eliminated upon movement onset. The authors compared the number of target misses 

between the vision and no-vision conditions across all movement time conditions. They 

posited that the movement time condition for which there began to be an accuracy benefit 

of vision compared to no-vision corresponded to the time required for humans to process 

visual feedback. 

 

Knowledge about the availability of visual feedback affects the relative contributions of 

online and offline control processes (Khan, Chua, Elliott, Coull, & Lyons, 2002). Unlike 

Keele & Posner (1968), in which all vision and no-vision trials were randomly ordered, 

Khan et al. (2002) also included some blocked conditions in which all trials within a 

given block were either vision or no-vision trials. When participants knew they were 

going to receive visual feedback, they spent less time planning the movement and more 

time adjusting the movement after peak limb deceleration, compared to the random 

feedback condition where they did not know whether they would receive visual feedback. 

In other words, participants likely prioritized online control, in particular limb-target 

control, over offline control processes when they had knowledge that they would receive 

visual feedback. These results show that motor control strategies differ depending on the 
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nature of the information given about the task. 

 

The visual information near the target is integrated into the movement plan both prior to 

and during the movement. Whitney, Westwood, & Goodale (2003) demonstrated that 

rapid movement trajectories to stationary targets are affected by visual motion in close 

proximity to the target. The authors determined that trajectories to targets were biased in 

the direction of the motion of a nearby task-irrelevant stimulus (i.e. vertically shifting 

patterns). Whitney et al. (2003) concluded that the visuomotor system makes use of 

sensory motion signals, continuously, in both offline and online stages of motor control.  

 

Only a small subset of visual motor control studies has been summarized above. Of 

course, more work has been and continues to be done in this field to determine how 

humans use sensory information to adjust their movements online to produce accurate 

movements. The focus of the thesis, however, was not to directly contribute to this body 

of work, but instead to examine the statistical tools that are currently used to make sense 

of the rich data sets that are commonly gathered in human limb trajectory research. 

Improved statistical techniques will help researchers build on the history of using 

movement trajectories as a metric to examine the use of sensory feedback and the 

influences of cognitive processes on human movement. 

 

 The primary objective of the thesis was to demonstrate that improvements to the 

methods of statistical analysis of trajectory data can confer substantial benefits with 

respect to a researcher’s ability to detect real experimental effects and maximize the 

nuance with which those effects can be described. This objective was pursued in the 
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context of visual motor control research because many competing methods of analysis 

have been proposed in this field, indicating the important role statistical inference plays 

in resolving scientific hypotheses in the domain of visual motor control 

 

1.2   CRITICAL APPRAISAL OF COMMON ANALYSIS METHODS 

 

Although experimental design choices play a large part in determining which 

physiological process of motor control is under investigation, statistical analysis 

decisions also play a substantial role. Human limb movement experiments naturally 

provide rich data sets that include 3 dimensional trajectories through time across multiple 

trials, participants, and conditions. Therefore, the choice of analysis methods can have a 

large impact on the interpretation of the results. 

 

Figure 1 contains sample displacement, velocity, and acceleration profiles for movement 

amplitude (i.e. away from the participant). Commonly, the displacement profiles are 

measured directly by tracking the position of the participant’s limb through time with an 

optoelectronic device. The velocity and acceleration profiles, however, tend to be 

calculated by differentiating (once or twice) the displacement profile. Differentiation can 

amplify the measurement noise present in the displacement profile, but this issue can 

largely be mitigated using proper filtering procedures (for discussion, see Hansen, Elliott, 

& Khan, 2007). 

 

In the figure, the two control phases (as described in subsection 1.1) are labelled as initial 

impulse and error correction instead of impulse control and limb-target control, although 
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they largely represent the same underlying control mechanisms described by Elliott et al. 

(2017). It can be seen that the initial phase constitutes a large portion of the displacement 

profile. The second, error-correcting, phase is made up of discrete changes in 

displacement at the end of the movement and is defined as the time period following 

zero-line crossings in the velocity (positive to negative) or acceleration profile (negative 

to positive), or acute changes in the acceleration profile. Figure 1 showcases kinematic 

profiles corresponding to a single dimension of space (i.e. movement amplitude). 

However, limb position is often recorded in 3D. Therefore, researchers often run analyses 

on the properties of these kinematic profiles in select dimensions, independently. 

Otherwise, they tend to select properties of resultant kinematic profiles. The specifics of 

how and what analyses are commonly run on kinematic profiles to answer scientific 

hypotheses will largely be the focus of this sub-section. 
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Figure 1 Sample displacement, velocity, and acceleration profiles for movement 
amplitude (i.e. the same direction as the limb - typically away from the body). 
The segments, demarcated by vertical lines through the displacement profiles 
and labelled as either II or EC, represent the initial impulse and error 
correction phases of the movement, respectively. These phases map onto the 
impulse control and limb-target control phases posited by Elliott et al. (2017), 
respectively. Adapted from Khan et al. (2006) which was adapted from Khan 
et al. (1998). 

 

Researchers have been hard-pressed to find consensus on the topic of which analyses are 

most appropriate for given research questions. Perhaps one of the most common analyses 

is the use of repeated measures ANOVAs (rANOVAs) on several outcome measures as 

dependent variables (DVs): reaction time (RT), movement time (MT), and movement 

error (for examples, see Heath, Westwood, & Binsted, 2004; Heath, 2005; and Khan et 

al., 2002). RTs are simply the time interval between the onset of the cue indicating the 

that the participant can begin the movement and the onset of the movement itself. MTs 



 
8 

are the time interval between the onset of the movement and the offset of the movement 

(or, when the participant reaches the target on screen). Movement error can be quantified 

in several ways. For instance, one could take the distance between the index finger and 

the center or periphery of the target at the time that the participant makes contact with the 

touch screen. This is commonly referred to as constant error (CE). Alternatively, one can 

compute variable error (VE) which typically involves taking the standard deviation of the 

distance between the target and the index finger of the participant over several trials. 

 

Another popular set of analyses is that of kinematic measures to infer information 

regarding the use of sensory feedback. For instance, authors will often apply rANOVAs 

to the following DVs to evaluate trajectory symmetry across conditions: time after peak 

velocity (TAPV), time to peak velocity (TPV), and time to peak deceleration (TPD; for 

examples, see Heath et al., 2004; and Heath, 2005). The computation of these DVs is 

fairly self-evident. For instance, TAPV would simply be the time interval between the 

sample at which the participant reached peak limb movement velocity and the sample at 

which either the movement terminated or the participant reached the touch screen. An 

increase in TAPV is typically interpreted as an indication that the participant is spending 

more time making online corrections.  

 

Another category of measures attempts to quantify the discrete corrections within 

movement conditions. For instance, researchers may quantify trajectory discontinuities by 

counting the number of substantive changes in the velocity or acceleration profiles of the 

trajectories (for discussion, see Elliott & Hansen, 2010). In other instances, researchers 
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have created online motor control indices such as the index of error correction 

effectiveness (IECE). The IECE is meant to indicate the degree to which a discrete error 

correction submovement was effective in decreasing the actual error of the entire 

movement (for discussion, see Elliott & Hansen, 2010).  

 

Generally, for these types of kinematic measurements, multiple DVs are analyzed. Each 

DV is submitted to a rANOVA, and each rANOVA is followed-up by post-hoc tests. The 

problem with this sort of analysis routine, particularly when the number of DVs (and 

therefore statistical tests) is large, is that of multiple comparisons. Specifically, 

uncorrected multiple comparisons inflate type I error rates, whereas corrected multiple 

comparisons inflate type II error rates. Further, running separate rANOVAs on DVs that 

are potentially related may result in an incomplete understanding of the results. For 

instance, if one fails to assess the relationship among DVs, then one may fail to see the 

way in which their effects are manifestations of an underlying cognitive or perceptual 

mechanism, and may therefore describe the pattern of results in a more fragmented 

manner. In summary, the relationship among DVs should be explicitly modelled and/or 

DVs should be collapsed into parsimonious measures of visual motor control regulation.  

 

Spatial variability profiles are another common method of analysis of movement 

trajectories (for examples, see Khan et al., 2002; and Khan et al., 2006). Spatial 

variability profiles are calculated by taking the standard deviation of the position of the 

limb across trials at several points in time. Typically, these time points are kinematic 

markers (e.g. peak acceleration, peak velocity, peak deceleration, etc.). The computed 
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standard deviations are then submitted to rANOVAs as levels of a time factor, sometimes 

broken down further by experimental conditions. The premise of this method of analysis 

is that online corrections will cause trajectories to deviate from the planned movement 

and therefore result larger amounts of variability in the trajectories across trials (i.e. the 

planned movement trajectory is more stable, less variable, on a trial-by-trial basis). 

 

While spatial variability profiles reduce the issue of performing multiple rANOVAs by 

including timepoints or kinematic marker as a factor in the analysis, a different problem 

arises. Standard deviations are, by definition, bounded by zero and therefore may not 

satisfy the distributional assumptions of rANOVAs. Since the sample size in human limb 

trajectory studies often does not exceed 20, the central limit theorem does not obviously 

apply (i.e. the sampling distribution of standard deviations in this context is not 

necessarily approximately normal).  

 

An even larger problem is that spatial variability profiles fail to make use of the entire 

trajectory and do not account for the temporal variability associated with the kinematic 

markers themselves, as pointed out by Hansen, Elliott, & Khan (2008). The authors 

addressed at least the former shortcoming by developing a 3D variability profile method 

that, after normalizing with respect to time, made use of most of the trajectory 

information. Their method involved specifying an ellipsoid for each normalized time 

point, with the standard deviation of the position of the limb across trials, in each of three 

coordinates, mapping onto the radii of the ellipsoid. The volume of each ellipsoid is 

calculated to obtain a spatial variability profile (i.e. ellipsoid volume as a function of 
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normalized time). It is unclear whether Hansen, Elliott, & Khan (2008) truly solve the 

problem of temporally unstable kinematic markers by getting rid of them all together. To 

the extent that these markers are special in their relation to physiological processes, it 

may at least be useful to indicate where they occur along the normalized time course of 

the 3D spatial variability profiles. More importantly, this novel method does not account 

for the autocorrelation within the spatial variability waveform. Finally, the method 

proposed by Hansen, Elliott, & Khan (2008) does not solve the problem presented above 

regarding the potential violation of the rANOVAs distributional assumptions. 

 

R2 analyses have also been espoused in realm of visual motor control research (for 

examples, see Heath et al., 2004; and Heath, 2005). These involve running a standard 

linear regression on the relationship between the position of the limb at the end of the 

movement and its position at a certain point during the movement, for each participant, 

and then running rANOVA analyses on the R2 values from those linear regression 

analyses. The R2 method is a rather crude method for estimating the degree to which 

online control affects the relationship between the hand’s position early in movement and 

its position later in the movement. The richness of the information garnered from the R2 

method could be greatly improved with modern methods. If the goal is to evaluate the 

degree of autocorrelation in the trajectory, then the level of autocorrelation should be 

explicitly estimated. Alternatively, if the goal is to account for the number of 

discontinuities attributable to online control, then those discontinuities should be 

modelled explicitly. 

 

Out of the more standard methods summarized in the previous section, the variability 
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profile analysis appears to be the best measure of online control (Elliott & Hansen, 2010; 

and Khan et al., 2006). Recently, novel applications of statistical methods have been 

presented. For instance, Grosbois & Tremblay (2016) applied rANOVAs on the fast 

fourier transforms (FFTs) of the residuals of polynomial fits of trajectories, thereby 

conducting an analysis in the frequency domain. This approach introduces experimenter 

degrees of freedom (the set of decisions regarding data collection and analysis that 

researchers possess) in (1) choosing the polynomial order, which may not always be 

particularly obvious in each application, and (2) choosing the frequency bins for 

statistical analyses. Though these decisions could be guided by the research interest of the 

experimenter and prior knowledge, each decision simultaneously and unnecessarily 

reduces model flexibility and parameter estimate uncertainty. Furthermore, reducing a 

power spectrum to bins for the purpose of submitting the data to a rANOVA results in a 

further loss of information. Ideally, the entire power spectrum of the model residuals 

could be modelled directly. 

 

Another novel method is that of Gallivan & Chapman (2014). They applied repeated 

measures (RM) functional ANOVAs (fANOVAs) to spline fitted trajectories. Although 

this method was not presented in the context of visual control paradigms, it does 

generalize to any endeavor to assess differences among trajectories belonging to different 

conditions. Unfortunately, splines lack some flexibility as an arbitrary number of knots 

have to be specified (Gelman et al., 2014). In particular, the issue with this choice of 

model hyperparameters (number of knots) is that it removes the uncertainty associated 

with choosing those very hyperparameters. Also, improperly specifying those 

hyperparameters could result in inaccuracies in the model. 
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Having laid out specific criticisms for most of the standard methods of analysis, some 

limitations applicable to the bulk of these methods will be stated. Generally, the 

hierarchical structure of the data is not considered. One should model the mean trajectory 

information from a given participant as having been sampled from some population 

distribution, and then model trial-wise trajectory information regarding that participant as 

having been sampled from that participant’s unique distribution. A misspecified model 

can result in the failure to adjust estimates based on having multiple trials per participant, 

the failure to account to imbalances in number of trials across participants, and the 

unjustified removal of variation at the participant level (for discussion, see McElreath, 

2015). Furthermore, hierarchical models facilitate the examination of the relationship 

among parameters. For instance, there may be a correlation between the main effect of 

having vision during a movement and the main effect of not having vision during a 

movement. Correlation structures such as these can easily be incorporated into 

hierarchical models. 

 

In summary, many commonplace analysis procedures suffer from some combination of 

the following limitations: they analyze several DVs per experiment without accounting 

for the relationship among them; they run a large number of statistical tests, thereby 

unnecessarily inflating type I and/or type II error rates; they do not use statistical models 

for which the distributional assumptions for a given DV are necessarily met; they do not 

make use of the full trajectory and thus may lose valuable information; and they do not 

account for the natural hierarchical structure of the data. The purpose of this thesis was to 
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propose a method that is largely an antidote to these limitations. A large part of that 

statistical solution will be described in the following subsection. 

 

1.3   GAUSSIAN PROCESSES 

 

Gaussian Processes (GPs) will offer a partial solution to some of the common analysis 

limitations described above. Before describing the way in which GPs will improve 

statistical inference, a brief GP tutorial will be given in theory and in practice. Processes 

are the generalization of probability distributions to functions. Making them Gaussian 

facilitates computations. Specifically, a GP is a collection of random variables for which 

any subset can be described by a multivariate gaussian distribution (for foundational 

introduction to GPs, see Rasmussen & Williams, 2006). GPs can be used to model time 

series data of arbitrary form and shape (unlike polynomial regression techniques which 

require prespecified structure). GPs are almost entirely defined by their covariance 

function (i.e. autocorrelation structure). Commonly, the covariance function is 

determined by two parameters: the volatility parameter controls the ‘wiggliness’ (or, 

conversely, smoothness) of the function, and the amplitude parameter controls the scale 

of the function. These are often referred to as hyperparameters. Figure 2 illustrates the 

effect of these hyperparameters on the shape of the functions that can be sampled from a 

GP with a covariance function defined by these hyperparameters. For now, it is sufficient 

to understand that GPs can be used to generate estimates (with uncertainty) of the 

trajectory itself, and of any of its derivatives. Estimates of the kernel hyperparameters 

(i.e. volatility and amplitude) can also be modelled. 
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Figure 2 Random samples from a GP with an exponentiated quadratic kernel with 
volatility hyperparameters of 5 (left & middle) and 1 (right), and amplitude 
hyperparameters of 5 (left & right) and 1 (middle). The mean function is set 
at zero (i.e. the average of the functions drawn from this GP will tend towards 
zero). Each sampled function is made up of 101 points, which go 1 to 101 
with equal spacing (these details matter for the absolute value of the volatility 
and amplitude hyperparameters to be meaningful). The y-axis is on the same 
scale in all three graphs. 

 

Many of the analysis critiques described in previous subsection can simultaneously be 

addressed by GPs. Generally, GPs allow for the comprehensive analysis of the entire 

trajectory. Comparisons can be made among the population mean trajectories of different 

conditions and their derivatives. Further, one can interpret differences among covariance 

hyperparameters stemming from different conditions. To the extent that the visual control 

information contained in some of the numerous standard DVs are overlapping and/or 

contained in the full trajectories or their derivatives, GPs would provide a more holistic, 

intuitive, and rich method of analysis. For example, if differences in visual control 

between two conditions are manifested in the difference between the displacement, 

velocity, or acceleration profiles of the two conditions, then GP estimates of these 

profiles will indicate when and how many of these profiles differ between conditions. If 

the difference between two experimental conditions is expected to manifest itself more 

abstractly (e.g. one trajectory is expected to be ‘wigglier’ than another) then estimates 

(with uncertainty) of the hyperparameters of the trajectories, and their derivatives, can be 
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compared. 

 

The variability profiles of the trajectories can be modelled continuously using GPs. The 

estimates are also more sensible in principle as they represent the entire variability profile 

as a function, whereas standard spatial variability profile and epsilloid analyses 

breakdown the time into a multi-level factor thereby failing to account for the relationship 

between spatial variability values in temporal proximity. In fact, using the modelling 

software and methods to be described later on, multiple GPs (e.g. trajectories, their 

derivatives, and variability profiles) can be modelled simultaneously. In terms of 

assessing autocorrelation examining covariance function parameters and/or specific 

covariance values would provide information regarding how early movement patterns 

predict later ones. For instance, differences in volatility hyperparameters would indicate 

that early parts of a movement predict later parts of the movement more so in one 

condition over another. One could also determine autocorrelation between two specific 

points in the movement by examining the covariance matrix derived from the covariance 

function and its hyperparameters. These measures of autocorrelation could overlap with 

results from the R2 analysis. Finally, as will be described in the methods section, GPs can 

easily be incorporated into a hierarchical framework. 

 

GPs can also examine frequencies, similarly to the analysis performed Grosbois & 

Tremblay (2016), by decomposing trajectories into sub-components oscillating at certain 

frequencies (for example of such an application, see Gelman et al., 2014). However, that 

is beyond the scope of the current thesis. 
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The other novel method involved using splines to model full limb trajectories (Gallivan & 

Chapman, 2014). The benefit of GPs over splines is that they do not require the 

specification of hyperparameters (number of knots) ahead of time (Gelman et al., 2014). 

Beyond the modelling of the functions themselves, there is also the question of how 

statistical inferences will be made on these functions. In contrast to Gallivan & Chapman 

(2014), who suggested the use of functional data analysis on spline fitted models, fairly 

recent software developments allow for the incorporation of the model fitting procedure 

along with the inference procedure in a flexible manner. Largely, this will be the subject 

of the following section. 

 

1.4   BAYESIAN INFERENCE AND GAUSSIAN PROCESS REGRESSION 

 

In practice, GPs are specified as prior distributions for arbitrary regression functions (for 

concise conceptual summary and application example, see Gelman et al., 2014). The 

process of inferring the form of the regression function, having assumed that function to 

be a GP, is referred to as Gaussian Process Regression (GPR; Cox, Kachergis, & Shiffrin, 

2012). GPR is inherently a Bayesian style of inference as it involves combining 

information about the prior and the data (with respect to the likelihood) to generate a 

posterior distribution. 

 

Estimating model parameters in fully Bayesian models generally cannot be done 

analytically. Instead, computationally intensive approximations need to be used. Since the 
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early applications of GPR, computational limitations have restricted the fully Bayesian 

estimation of the covariance function parameters (Rasmussen & Williams, 2006), the 

consequences of which include the incomplete characterization of the uncertainty in the 

model and inability to make inference at the level of the hyperparameters (Flaxman, 

Gelman, Neill, & Wilson, n.d.). Thankfully, recent advancements in approximation 

methods and software enables researchers to implement fully Bayesian GPR (Flaxman et 

al., n.d.; Stan Development Team, 2017). 

 

Bayesian inference is not just useful for the implementation of GPR, it is arguably a 

preferable method of analysis compared to frequentist methods. Kruschke & Liddell 

(2016) make the case that “the New Statistics” that emphasize parameter estimation 

instead of null-hypothesis significance testing are better served by Bayesian methods than 

they are by frequentist methods. Bayesian parameter estimation provides the richest 

source of information regarding the parameters of interest in the form of posterior 

distributions, which are explicit, continuous representations of the relative credibility of 

parameter values (for a comprehensive introduction to Bayesian parameter estimation, 

see Kruschke, 2014). 

 

In contrast, frequentist methods offer parameter estimates in the form of confidence 

intervals. A confidence interval is the range of values that one must believe contains the 

parameter of interest if one is to be correct about such a statement a given percentage of 

the time (typically, 95% of the time). Unfortunately, these long-run properties are not 

intuitive. Indeed, many researchers struggle to interpret confidence intervals properly (for 
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discussion, see Cumming, & Finch, 2005). Bayesian credible intervals (some interval of 

the posterior distribution) have the property of containing the true parameter value with a 

given probability. Therefore, one could say about a 95% credible interval that one 

believes that there is a 95% probability that the true parameter value is within it. As noted 

above, this intuitive interpretation would not be a proper interpretation of a confidence 

interval. 

 

Confidence intervals also lack distributional information. For example, parameter values 

closer to the center of a confidence interval are not necessarily more probable than values 

at the extremities of the interval. Bayesian posterior distributions, which tend to have an 

approximate normal distribution when not bounded, are continuous representations of the 

relative credibility of parameter values. In other words, if the density at one parameter 

value is greater than that of another parameter value then the former is believed to be 

more probable than the latter. The result of this is that values that tend to be closer to the 

center of a posterior distribution or a credible interval also tend to be more credible 

parameter values. 

 

The reader may have noticed that the terms ‘credibility’ and ‘probability’ are being used 

almost interchangeably. The distinction is a subtle one. Since the prior distribution in 

Bayesian inference is rarely completely empirical (i.e. since the experimenter’s beliefs 

about the parameter values have some influence on the prior distribution selected), it is 

not technically correct to refer to the posterior distribution, which is derived from the 

prior in part, as a probability distribution – although, it does have its properties. Thus, a 



 
20 

credible interval is the interval that represents one’s belief about the probability with 

which the true parameter value lies within the interval. Bayesian posterior distributions 

will henceforth be described with probabilities instead of credibilities to avoid confusion 

even though they are technically representations of relative credibility. 

 

Bayesian inference is a natural antidote to a lot of the problems and limitations that arise 

with frequentist approaches. For instance, null hypothesis significance testing (NHST) 

methods require that the intended number of participants be sampled for the 

p-values to have their desired properties, whereas the Bayesian posterior is not affected 

by such sampling intentions as long as those intentions are not conditional on the 

statistical results (Dienes, 2011; Kruschke, 2012). However, even in the case where one is 

explicitly fishing for positive results, Bayesian and frequentist methods behave rather 

differently. By simulating the most egregious cases of statistical wrongdoing, sequential 

testing leads to 100% type I error rates in the frequentist context. In other words, if one 

runs a statistical test after each incremental increase in sample size until a significant 

finding arises, then one will always attain significant finding given enough time (for 

demonstration, see Kruschke, 2012). In the very same simulation, Kruschke (2012) 

observed sub-10% type I error rates using Bayesian inference. 

 

In the frequentist context, researcher intentions, subsequent to the completion of data 

collection, commonly compromise statistical inference (Dienes, 2011; Kruschke, 2014). 

In particular, multiple comparisons and post-hoc (vs. planned) tests tend to inflate type I 

error rates. These complications ultimately stem from the fact that researcher intentions, 



 
21 

in affecting the scope of things that could have occurred, modify the long-run frequencies 

of test statistics. Imagine that a researcher runs a pairwise test to examine the difference 

between the two groups, among a plethora of groups, that appear to manifest the largest 

effect. The fact that the researcher may not have run that statistical test, had the relevant 

pairwise comparison not constituted the largest mathematical difference between two 

groups among the possible pairwise comparisons, affects the true properties of the test 

statistics involved in the statistical comparisons. In this way, the intentions of the 

researcher must be considered in evaluating all the results that could have materialized 

(i.e. all the tests that could have been run) had a different sample been drawn. Indeed, this 

is why researchers are often encouraged to plan their statistical pipeline ahead of time. 

The practical negative consequences of researchers having access to these experimenter 

degrees of freedom have been substantiated (Simmons, Nelson, & Simonsohn, 20111) 

and are often distilled to type I error rate inflation. The Bayesian posterior is not 

dependent on the researcher’s testing intentions in these ways. 

 

                                                 
1 Though these authors explicitly state that they believe that Bayesian inference is not a solution to the 

problem they highlight, their objections - Bayesian methods themselves and the choice of prior 

distributions contribute to the experimenter degrees of freedom - are cursory and weak. For one, the 

decision to adopt frequentist or Bayesian analysis techniques should occur prior to the presentation of the 

data, on a matter of principle, and is likely to be a lasting decision. Indeed, this is the case herein. Secondly, 

the establishment of norms regarding the specification of prior distributions has occurred (Gelman et al., 

2014; Stan Development Team, 2017) and is a worthwhile endeavor given the positive benefits described in 

this thesis. 
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A narrative example in the context of visual control research of how researcher intentions 

can have differential effects depending on the statistical theory used (frequentist vs. 

Bayesian) follows over the next four paragraphs. Imagine a case where a researcher 

collects limb trajectory data for two experimental conditions using a within-subjects 

design. The experimental conditions are randomly intermixed across four blocks. The 

researcher is interested whether participant trajectories are more variable at a given 

kinematic marker in one condition vs. another. Therefore, the researcher creates a spatial 

variability profile which evaluates the variability at four kinematic markers and compares 

these profiles between conditions. Further, the researcher segments the data into blocks to 

examine the effect of training. Thus, a 4 (block) x 2 (condition) x 4 (kinematic marker) 

rANOVA is required. The researcher is also interested in whether outcome measures 

such as RT, MT, and end-point error differ between conditions and/or among blocks. 

Therefore, a 2 (condition) x 4 (block) rANOVA is required for each of the three DVs. 

 

The researcher runs all four rANOVAs. The researcher had certain expectations about the 

results: greater spatial variability at one kinematic marker in one condition vs. the other 

(i.e. a pairwise test expectation), and a main effect of block on RT (i.e. an omnibus test 

comparison). An interaction between condition and kinematic marker is detected. 

The researcher decides to do pairwise tests, testing the difference between conditions at 

each kinematic marker using Tukey’s correction for multiple comparisons. 

Unfortunately, no effects are detected, not even the predicted effect. The multiple 

comparison correction may have been too conservative - it often is because it does not 

account for structural relationships among comparisons (Kruschke, 2014). The researcher 
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is tempted to just run a single t-test on the predicted difference, with no corrections, as it 

is noticed that this is the largest difference among all possible differences. Is this a 

planned comparison since the researcher was predicting a difference there anyway? Or, is 

the researcher running because it is the larger difference and because the multiple 

comparison approach did not work. Even more importantly, what if another (not 

predicted) pairwise difference was noticeably bigger than the others? Would the 

researcher have run a single test in that instance? If so, the researcher would 

disproportionately be increasing the type I error rate by only testing the biggest 

difference in a post-hoc manner. 

 

Moving on, the initially predicted main effect of block on RT is not detected. However, a 

main effect of block on MT is detected. The researcher reasons that one should have 

expected the effect of block on MT for theoretical reasons. Naturally, the researcher is 

interested in the specific way in which block affects MT. Would testing pairwise 

differences be appropriate? Would the researcher have come up with good theoretical 

reasons to have expected any other unpredicted effect had it been detected? One can see 

how convoluted multiple testing procedures can get in the frequentist context, particularly 

when planned tests are not explicitly laid out. Unfortunately, the more that tests are pre-

planned, the less flexibility the researcher has to explore interesting hypotheses after 

collecting the data. 

 

One final point regarding the imaginary scenario is that the researcher did not correct for 

running multiple ANOVAs. Having not done so, the type I error rate could have been 



 
24 

inflated and the extent to which it may have been is difficult to define without knowing 

the structural relationship among the effects of different DVs. But, what if having done so 

would have eliminated the predicted interaction effect? Ultimately, the space of counter 

factuals make properly running multiple tests in the frequentist context tricky. Upon 

collecting the data and establishing a reasonable statistical model, the Bayesian method of 

inference is not dependent on the researcher’s testing intentions. The model provides a 

single posterior distribution which can be marginalized in as many ways that the 

researcher sees fit (Kruschke, 2014). 

 

Importantly, even with respect to dealing with multiple comparisons, the added value of 

GPR exceeds the intrinsic benefits of the Bayesian analysis summarized in the previous 

paragraph. For instance, modelling the entire trajectory and/or its derivatives will 

naturally minimize the number of (potentially related) DVs that are analyzed in a typical 

online motor control paradigm. Indeed, standard methods of analysis for identifying 

visual control mechanisms often fail to take advantage of richness of the full trajectory 

data set, account for the hierarchical structure of data, and comprehensively estimate all 

parameters of interest (i.e. using a single statistical model). The thoughtful use of GPRs 

in the Rstan framework (Stan Development Team, 2017) is a solution to these problems 

and limitations. The aim of the current thesis was to implement a specific model from the 

family of Bayesian hierarchical GPR models and to demonstrate the extent to which such 

a model would benefit researchers in their endeavor to understand the cognitive and 

perceptual mechanisms underlying human goal-directed reaching. 
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It is important not to overstate the benefits of Bayesian inference over frequentist 

inference. Indeed, there is nothing inherently wrong with frequentist statistics when 

interpreted properly – many of the criticisms brought forth in this section relate to the 

propensity of researchers to misuse and misinterpret frequentist methods. Also, one 

should not falsely attribute all the benefits of GPR and hierarchical modelling to Bayesian 

statistics. For instance, hierarchical models can be implemented quite easily in the 

frequentist context (for examples, see Bates et al., 2014). GPR can also be implemented 

in a framework that is not fully Bayesian by finding the maximum likelihood values for 

the hyperparameters instead of placing priors on them (for foundational work on GPR, 

see Rasmussen & Williams, 2006). 

 

1.5   STUDY PURPOSE 

 

The purpose of this thesis was to compare the validity of Bayesian hierarchical GPR to 

that of the standard methods described thus far in inferring visual control processes from 

human limb trajectory data. Similar methodological endeavors have taken place (for 

examples, see Khan et al., 2006; and Elliott & Hansen, 2010). However, a novel 

statistical application is detailed here and was hypothesized to offer stepwise 

improvements in the validity and comprehensiveness over the standard methods of 

analysis of human goal-directed movement data.  

 

The thesis purpose was actualized by first running a multitude of common analyses on 

data collected in a simple goal-directed reaching paradigm for which participant vision 

was experimentally manipulated. The proposed Bayesian hierarchical GPR analysis was 
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run on the experimental dataset (Chapter 4) and its results were compared to those of the 

traditional methods (Chapters 3). In addition, Chapter 5 summarizes the results of a full-

scale simulation in which both the proposed GPR method and the gambit of traditional 

methods were run on a simulated dataset for which the true generative parameter values 

were known. The purpose of the simulation was to objectively assess the accuracy of the 

various parameter estimates across all the statistical methods. 

 

It should be emphasized that the purpose was not to address a particular research question 

in the realm of visual online motor control. Instead, the objective was to propose and 

evaluate a statistical tool, the benefits of which are applicable to most of the visual online 

motor control research programme. In fact, many of the benefits, in theory, could even be 

extended to the field of human limb trajectory research as a whole. 

 

The statistical methods were compared on the basis of their ability to (1) detect a main 

effect of vision - the existence of which is strongly supported and therefore simply 

needed to be replicated (Elliott & Hansen, 2010) - and (2) recover the real population 

parameters from the generative model that was used to the simulated data. In both cases, 

the depth of information provided about the results (i.e. the parameters of interest) was 

also weighted. The parameters of interest under different analysis schemes were 

necessarily be directly comparable (e.g. standard outcome differences will not necessarily 

be captured by GPR). In many cases, however, the DVs were at least roughly comparable 

(e.g. R2 values as a function of proportion of movement vs. population mean function 

volatility to estimate the extent to which position early on in the movement predicts 
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position later in the movement). Ultimately, the goal was to propose a candidate best-

statistical-tool (GPR) for these purposes and then determine which tool is actually the 

most useful for researchers. 

 

It was hypothesized that effects of visual condition (vision vs. no-vision) would emerge 

in both the novel and standard methods of analysis, as they have in previous experiments. 

In addition, it was hypothesized that the proposed Bayesian hierarchical GPR model 

would be superior to the standard methods in the nuance and accuracy with which it 

detected experimental effects of interest (i.e., vision vs. no-vision). 
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CHAPTER 2     METHODOLOGY 

 

2.1   PARTICIPANTS 

 

After piloting, 33 right-handed participants with normal to corrected vision successfully 

completed the study. They consisted of Dalhousie undergraduate students recruited via 

Dalhousie’s SONA participant pool. This sample size was larger than what is typically 

collected in the motor control literature and therefore ensured a reasonable likelihood of 

observing effects. Indeed, Elliott & Hansen (2010), used a sample size of 17 participants 

and observed effects. After preprocessing, the sample size was reduced to 29 participants. 

The participants in this usable sample ranged in age from 18 to 22 years, with a median 

age of 20 years. There were six male and 23 female participants. Informed consent was 

acquired prior to data collection using the informed consent form presented in Appendix 

A and following the verbal clarification of the consent form presented in Appendix B. 

Prior to commencing the experiment, participants read the instructions presented in 

Appendix C. Participants received 0.5 credits towards one of their university classes for 

every 30 minutes they spent taking part in the study. The study lasted approximately 30 

minutes. 

 

2.2   STUDY DESIGN 

 

Participants completed a single experimental session. There were two within-subject 

conditions - a vision and a no-vision condition. In the no-vision condition, PLATO 
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Visual Occlusion Spectacles (Translucent Technologies Inc.) turned from a transparent to 

translucent state upon movement initiation. Participants completed a total of two 

experimental blocks, one for each condition. Block order was alternated across 

participants to counterbalance potential order effects. Each block consisted of 10 practice 

trials and 20 experimental trials. Although the experiment was self-paced, participants 

typically did not take long breaks between trials, nor did they between trials.  

 

2.3   PROCEDURE 

 

The experimental procedure was purposively largely similar to that of Elliott & Hansen 

(2010). Participants made reaching movements to a target that was a 5 (mm)2 white circle 

placed approximately 31 cm away, along their midline. Each participant had infrared 

emitting diodes (IREDs) attached to their right index finger with standard medical tape - 

one on the distant end of their finger and another on the middle part of their finger. The 

IRED on the distant part of the index finger was the primary marker used for data 

analysis, with the other marker serving as a backup in cases in which the position of the 

primary marker was unavailable for multiple samples at a time. The Optotrak 3020 was 

used to record the position of the IREDs in three dimensions throughout each trial at a 

sampling rate of 200 Hz (5 ms per sample). The Optotrak 3020 recorded 5000 ms of data 

for each trial. The recording was manually initiated by the experimenter upon hearing the 

auditory stimulus signaling that the participant had initiated the trial. 

 

Figure 3 illustrates the sequence of events of a no-vision trial. For both conditions, each 

trial was initiated once the participant’s right index finger touched a square area, the 
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limits of which were defined by a white fixation cross. The fixation cross had 5 mm arms 

from its center and therefore covered a 28 mm square area. The cross was placed at the 

bottom of a 1920 by 1080 pixel HP Pavilion 23tm 23-inch Diagonal Touch Monitor. The 

touch screen was rotated 90 degrees such that the longer dimension ran along the 

participant’s midline. The target was 31 cm away from the fixation cross, along the 

participant’s midline. Upon touching the fixation cross, a brief auditory stimulus 

indicated to the participant that the trial had begun. After a random 1000-2000 ms time 

interval, the target appeared, and participants made reaching movements to it as fast and 

as accurately as possible. Participants heard the same brief auditory stimulus upon 

reaching the target. Participants had 3000 ms to reach the target before text appeared on 

screen indicating that they ‘Too Late!’. Conversely, if participants removed their index 

finger from the fixation cross prior to the presentation of the target, they received a 

feedback message indicating that they were ‘Too Soon!’. In the no-vision condition, 

participant vision was removed at movement initiation and restored at movement end 

(when the target was reached). Therefore, participants received terminal feedback 

regarding the position of the target relative to their limb. They kept their index finger on 

the target until it disappeared, 3000 ms after the participant had touched it. If participants 

removed their index finger prior to the removal of the target, they received a feedback 

message indicating that they needed to keep their finger where it landed. Target 

disappearance indicated the end of the trial. Participants then returned their finger to the 

home button to initiate another trial. 
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Figure 3 Trial procedure for a no-vision trial. The black squares represent the touch 
pad. The small white fixation crosses on the black squares represent the 
fixation cross that needed to be touched to initiate the trial. The small white 
circles on the black squares represent the target. The lines radiating from the 
cartoon hand represent movement. The time interval between trial initiation 
and target presentation varied randomly from trial to trial, between 1000 and 
2000 ms. Upon movement initiation, vision was removed using occlusion 
goggles. This loss of vision is symbolized by the closed cartoon eyes. 
Participant vision was recovered upon reaching the target. In the full vision 
condition the only difference was that the participant would not lose their 
vision upon movement initiation. 

 

2.4   PREPROCESSING 

 

The preprocessing procedure in this section were implemented on the experimental 

trajectories in each of three dimensions, independently, unless otherwise specified. 

Section 5.1 describes the way in which the simulated dataset was generated and 

processed prior to analysis. 

 

2.4.1 Equipment/Experimenter Errors 
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A custom-made programming script was used to eliminate bad samples (i.e. lost marker) 

and bad trials (i.e. the participant did not follow instructions or marker was not properly 

detected throughout the trial). First, trials in which the participant performed the task 

properly, but in which the touch screen was overly-sensitive or malfunctioned in some 

other way, were removed. Afterwards, trials in which the Optotrak malfunctioned or was 

improperly operated by the experimenter were removed. Trials in which the occlusion 

goggles malfunctioned (likely due to experimenter error) were also removed.  

 

2.4.2 Outlying Samples 

 

For both primary and secondary markers, outlying trajectory samples were identified in 

order to characterize bad trials for removal from the data set. Outlying samples were 

defined as those for which the position value in any of three dimensions exceeded upper 

and lower bound thresholds determined for each dimension via visual inspection. When 

the Optotrak loses track of a given IRED, the position values for the corresponding 

samples tend to be unreasonably large and/or variable. If the majority (four or more) of 

the samples in a 35 ms (seven samples) centered moving average window was outlying, 

then the data from the corresponding trial was replaced with those of the secondary 

marker. If secondary marker data also contained a moving average window for which the 

majority of samples were outlying, then the corresponding trial was removed. There were 

no trials in which either the primary or the secondary marker had a majority of outlying 

samples in any moving average window. For certain participants, the preprocessed 

secondary marker data were used instead of the primary marker data because it was 

determined via visual inspection prior to preprocessing that the secondary marker data 
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were definitively cleaner (i.e. there were fewer missing data points). After the completion 

of the preprocessing steps summarized in this paragraph, each participant had at least 10 

trials remaining in each condition (vision and no-vision) suitable for subsequent analysis.  

 

The preprocessing sequence of the previous paragraph did not actually replace any 

outlying samples – it merely identified bad trials. Therefore, missing value imputation by 

last observation carried forward was performed to replace the outlying samples. This 

method replaces each missing value with the most recent present value prior to it. Despite 

the preprocessing steps explained thus far, four participants still had unusable datasets 

based on visual inspection of their trajectories and were thus removed. Their trajectories 

tended to be overly noisy prior to movement onset. It was suspected that when certain 

participants ‘wiggled’ their index fingers over the fixation cross to initiate each trial, the 

Optotrak lost the IRED markers with a greater frequency than usual, therefore resulting in 

overly noisy data prior to movement initiation.  

 

2.4.3 Filtering 

 

For each of three dimensions, the median position value of the first 500 ms (100 samples) 

of each trial was subtracted from the entire trial in order to center movement start position 

at zero. In keeping with the preprocessing methods used by Elliott & Hansen (2010), 

which are largely in line with what is done in the field (for examples, see Khan et al, 

2002; Heath et al., 2004; and Grosbois & Tremblay, 2016), a sixth order low pass 

forward and reverse butterworth filter with a 8 Hz cutoff was applied to each trial, in each 

of three dimensions. To get rid of edge effects from the filter, the first 50 ms and last 500 
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ms of each 5000 ms trial recording were removed.  

 

2.4.4 Differentiation 

 

For each of three dimensions, velocity and acceleration profiles were obtained using 

forward difference differentiation which involves subtracting the previous value from the 

current value and dividing that difference by the time interval between samples (5 ms). 

Subsequently, the first 5 ms (one sample) of each trial recording were removed to 

eliminate the artifacts of differentiation.  

 

2.4.5 Movement Onset and Offset 

 

For each trial, the custom script identified all the 25 ms (five samples) time intervals for 

which each sample in a given interval had a corresponding movement amplitude position 

value greater than 30 mm and a corresponding movement amplitude velocity value 

greater than 10 mm/s. The first sample in each of those time intervals was considered a 

potential movement onset sample. The earliest potential movement onset sample was 

then selected. The sample preceding it and for which the velocity value for movement 

amplitude changed from negative to positive was identified as the actual movement onset 

sample. Further, for each trial, the script identified all the 25 ms time intervals for which 

each sample in a given interval had a corresponding position value greater 270 mm and a 

corresponding velocity value less than 100 mm/s. The first sample in each of those time 

intervals was considered a potential movement offset sample. The earliest potential 

movement offset sample was then selected. The sample which succeeded it and for which 
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the velocity value changed from positive to negative (i.e. at which the movement 

stopped) was identified as the actual movement offset sample. Trials for which either 

movement onset or offset was unidentified were discarded. A total of 18 trials, spread 

across five participants, were discarded during this procedure. Importantly, each 

participant still had at least 10 usable trials (out of 20 completed trials) for each 

experimental condition after this preprocessing step for subsequent analysis. The 

trajectory data were then trimmed so that each trial started at movement onset and ended 

at movement offset.  

 

2.4.6 Normalization 

 

Trial-by-trial data were normalized with respect to time such that the time points ranged 

from zero to one and were equally spaced. The trajectory data were then downsampled to 

allow for the estimation of sensible participant-wise (averaging over trials) and 

population-level (averaging over participants) trajectories, as not all reaching movements 

lasted the exact same amount of time. In principle, downsampling had no effect on the 

proportional TAPV results since this DV was naturally normalized with respect to time. 

For the discontinuity, R2, spatial variability profile, and epsilloid analyses, time points 

were broken down into 21 equally spaced bins so that the normalize time length of each 

bin was 0.05. For each of the three dimensions and for each trial, the mean position value 

in each time bin was then obtained. 

 

2.4.7 Scaling 
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The following preprocessing procedure was only applied for the Bayesian analysis. The 

trajectories were scaled with respect to both position and time. In the former case, all the 

position data were simultaneously scaled to have a mean of zero and a standard deviation 

of one (this was not done on a condition-, trial-, or participant-wise basis). The time 

dimension was scaled so as to range from zero to one (this was done on a trial-wise 

basis). These normalization steps will be taken to facilitate the specification of 

uninformative priors and the mean function of the GPs (a vector of zeros). The parameter 

estimates of the Bayesian hierarchical GPR model were interpreted in the scaled space 

(i.e. they were not back-transformed to their original scales). In principle, this did not 

impact the interpretation of the results as the focus was on the differences between the 

estimates of the two experimental conditions and the timing of those differences along the 

proportion of movement axis. 

 

2.5   DEFINING VARIOUS MEASURES OF VARIABILITY 

 

The present thesis introduces multiple terms that relate to some sort of movement 

variability measurement. For clarity, these terms will be explicitly defined. The spatial 

variability profile of a given participant is simply a measure of the variability (SD) of the 

trajectory across trials at each normalized time point of the movement. As such, the 

spatial variability profile represents the trial-by-trial or trial-wise variability of a set of 

movement trajectories for a particular participant. An average of participant spatial 

variability profiles is obtained to make inferences about the population spatial variability 

profile, for each condition. Likewise, in the context of the Bayesian hierarchical GPR 

model, the participant and population noise functions correspond to the participant and 
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population spatial variability profiles. The term “function” was used to highlight that 

these estimates of trial-by-trial variability are modelled as functions, sampled from GPs. 

The term “noise” refers to the fact the functions are measures of variability and thus 

represent noise either among trials (participant noise functions) or among participants 

(population noise functions).  

 

The hyperparameters of the Bayesian hierarchical GPR model also include certain 

measures of variability. Namely, both the population noise and mean functions have 

corresponding amplitude and volatility variability hyperparameters. These variability 

hyperparameters correspond to the variability (SD) of the amplitude and volatility 

hyperparameters across participants, for both the population noise and mean functions. 

For example, if the population volatility variability is large, it means that there is a lot of 

variability among the volatilities of the participant mean functions (i.e. some participants 

have very ‘wiggly’ mean functions whereas others have more linear mean functions).  
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CHAPTER 3     TRADIONAL ANALYSES 

 

3.1   METHODS 

 

The statistical analyses presented in this chapter were performed in R (2016) and were 

run on experimental data (collected from the experiment described in subsection 2.3). 

The following statistical analyses were run: rANOVAs2 on proportional TAPV, 

discontinuities, R2, and standard outcome differences (RT, MT, CE, VE) (for comparison 

among these methods and subsequent discussion, see Elliott & Hansen, 2010). The focus 

was on the R2, variability profile, and spline fitting analyses as these were most stringent 

comparisons to the proposed Bayesian method, but the remaining rANOVA analyses 

were run to compare the results to previous work (e.g. Elliott & Hansen, 2010). Only 

significant effects are reported. In order to compare effect sizes among the measures 

listed above within the current study, generalized eta squared (𝜂𝐺
2 ) effect sizes were 

reported (for discussion regarding effect sizes, see Olejnik & Algina, 2003). The ez 

package in R was used to run the rANOVA and effect size analyses, and to generate the 

corresponding graphs. Fisher’s Least Significant Differences (FLSDs) were plotted to 

evaluate the variability associated with within-subject effects.  

 

Table 1 summarizes the predicted experimental effect of vision (vision minus no-vision 

                                                 
2 Some of the rANOVA analyses, as will be described later in the chapter, were one-way 
rANOVAs and therefore effectively t-tests. In these cases the only factor was vision condition with 
two levels: vision and no-vision.  
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condition) for each DV. These predictions were based on the results obtained from Elliott 

& Hansen (2010). Also, these predictions could have largely been derived from the 

literature cited throughout Chapter 1.  

 

DV 

Analysis method 

Expected effect (vision minus no-vision) 

Proportional TAPV Positive: greater proportional amount of time spent after peak 

velocity with vision 

Discontinuities Positive: more discontinuities in kinematic profiles with vision 

R2 Negative: less variability explained at PV and PD with vision 

RT Negative: shorter reaction time when vision is expected 

MT Null 

CE Negative: movements are more accurate with vision 

VE Negative: movement error is less variable with vision 

Variability profile Positive: greater amount of trial-wise variability with vision 

around PD 

Epsilloid method Positive: greater amount of trial-wise variability with vision 

mid-way through the movement 

fANOVA Unknown 
 

 

Table 1 Expected experimental effects (the value of the DV in the no-vision condition 
subtracted from the value of the DV in the vision condition) for each DV 
under investigation. Expected interaction effects between vision condition 
and proportion of movement are also stated for the variability profile and 
epsilloid methods (DV: trial-wise variability), and the fANOVA analysis.  
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3.1.1 Proportional TAPV 

 

For each of three dimensions, for each participant, and for each trial, the time point 

corresponding to the peak velocity value was obtained. The mean of those time points 

over all trials was then calculated for each condition to obtain participant-wise time 

before peak velocity values. These values were then subtracted from one to obtain TAPV 

values for each participant and each condition. A one-way rANOVA, with vision 

condition as a factor, was run on the TAPV values for movement amplitude. 

 

3.1.2 Discontinuities 

 

For each of three dimensions, for each participant, the trials in which there were either 

negative velocity or negative acceleration values were identified as trials with 

discontinuities. The number of trials in which there was a discontinuity was then 

calculated for each condition to obtain participant-wise discontinuity counts. A one-way 

rANOVA, with vision condition as a factor, was run on the discontinuity counts for 

movement amplitude. 

 

3.1.3 R2 

 

For each of three dimensions, the position value at the time of peak acceleration (PA), 
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time of peak velocity (PV), time of peak deceleration (PD), and end of movement (END) 

for each trial was obtained. Univariate linear regression was performed for each 

participant and each condition by predicting the position value at the end of movement 

from the position values at each kinematic marker across trials. Condition-wise R2 values 

for each participant were then obtained from the linear regression results. A 2 (vision 

condition) by 4 (kinematic marker: PA, PV, PD, END) rANOVA was run on the R2 

values for movement amplitude. 

 

3.1.4 Outcome Measures 

 

RTs, MTs, and response positions with respect to the touch screen for each trial were 

computed in real time via the experiment Matlab script. RT was the time between the 

target appearing and the participant lifting their figure from the touch screen. MT was the 

time between the participant lifting their finger from the start button and contacting the 

target.  

 

Target error was defined simply as the absolute distance between the response position 

and the target position. CE (amplitude) was defined as the distance between the response 

position and the target position for movement amplitude, whereas CE (direction) was 

defined similarly but for movement direction. The participant-wise CEs (amplitude and 

direction) were calculated by taking the mean over the CEs (amplitude and direction, 

respectively) for all trials in each condition. Participant-wise VEs (amplitude and 
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direction) were calculated by taking the standard deviation of CEs over all trials in each 

condition. A one-way rANOVA, with vision condition as a factor, was run on each 

outcome measure. 

 

3.1.5 Spatial Variability Profile 

 

For each of three dimensions, the participant-wise and trial-wise standard deviations of 

the position values at each sample of the normalized trajectory data were obtained. The 

mean of the standard deviations at each sample over all trials was calculated for each 

condition to obtain participant-wise spatial variability profiles. For each of three 

dimensions, the spatial variability at the time of PA, time of PV, time of PD, and END 

for each trial was obtained. A 2 (vision condition) by 4 (kinematic marker: PA, PV, PD, 

END) rANOVA was run on the spatial variability values for movement amplitude. 

FLSDs were plotted to evaluate the variability associated with within-subject effects. 

 

3.1.6 Epsilloid Method 

 

The product of the spatial variability profiles (see subsection 3.1.5) for each participant in 

each dimension at each time point was taken and multiplied by four thirds of pi to obtain 

epsilloid volumes. These values were subject to a 2 (vision condition) by 21 (proportion 

of movement) rANOVA.  FLSDs were plotted to evaluate the variability associated with 

within-subject effects. 
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3.1.7 fANOVA 

 

The partially preprocessed trajectory data (see preprocessing steps leading up to 

subsection 2.4.6) were normalized according to the procedures described by Gallivan & 

Chapman (2014). Their custom MATLAB scripts were used to normalize the trajectory 

data with respect to time and run the fANOVAs3. Specifically, order six splines were fit 

to the position values of each of the three dimensions, with a spline for every sample. The 

trajectory data were then smoothed using a roughness penalty on the fourth derivative. 

The result was a mathematical definition of each the trajectory data in each dimension 

across time. The position values in each dimension were sampled from 200 normalized 

time points, equally-spaced within each trial. Participant mean trajectories were then 

obtained for each dimension by taking the mean of the position values over all trials for 

each time point and for each condition. Since there were only two within-subject 

conditions, the fANOVAs were reduced to a functional-t-tests. A functional-t-test 

amounts to running pairwise t-tests on the condition mean trajectories at each time point, 

for each dimension. FLSDs were plotted to evaluate the pair-wise differences between the 

two vision conditions at each time point.  

 

3.2   RESULTS & DISCUSSION 

 

                                                 
3 For MATLAB scripts, see http://www.per.ualberta.ca/acelab/. 
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3.2.1 Proportional TAPV 

 

The estimates of proportional TAPV as a function of vision condition are presented in 

Figure 4. The TAPV analysis revealed a main effect of vision condition [F(1,28) = 13.5, 

p = 0.001, 𝜂𝐺
2  = 0.079]. TAPV was greater in the vision condition than it was in the no-

vision condition. The direction of the effect was consistent with what was observed by 

Elliott & Hansen (2010). Along these lines, Hansen et al. (2006) observed greater 

absolute TAPVs when participants had knowledge, prior to movement onset, that vision 

would be available during the movement4. In line with the model proposed by Elliott et 

al. (2017), participants may have adopted a strategy of maximizing the potential for 

online visual control when they knew that vision would be available.  

 

 

                                                 
4 The authors also observed greater MTs when participants had prior knowledge of vision 
availability. Therefore, in their case, participants seemed to have compromised overall movement 
speed in order to make greater use of vision during the latter phase of the movement.  
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Figure 4 Proportional TAPV plotted as a function of vision condition (x-axis). The no-
vision and vision conditions are represented by “NV” and “V”, respectively. 
Error bars represent FLSDs.  

 

3.2.2 Discontinuities 

 

The estimates of discontinuity count as a function of vision condition are presented in 

Figure 5. The discontinuity analysis revealed a main effect of vision condition [F(1,28) = 

6.08, p = 0.020, 𝜂𝐺
2  = 0.055]. The discontinuity count was greater in the vision condition 

than it was in the no-vision condition. The main effect of vision was consistent with what 

was observed by Elliott & Hansen (2010). With access to visual feedback regarding their 

limb and the target throughout the movement and with prior knowledge about that access, 

participants appeared to have made more discrete corrections in the vision condition (for 

discussion regarding limb-target phase of movement, see Elliott et al., 2017).  
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Figure 5 Discontinuity counts plotted as a function of vision condition (x-axis). The 
no-vision and vision conditions are represented by “NV” and “V”, 
respectively. Error bars represent FLSDs. 

 

3.2.3 R2 

 

The estimates of R2 as a function of vision condition and kinematic marker are presented 

in Figure 6. The R2 analysis revealed a main effect of vision condition [F(1,28) = 6.44, p 

= 0.017, 𝜂𝐺
2  = 0.037]. The R2 values were greater in the no-vision condition than they 

were in the vision condition. Overall, the R2 values were low (between 0.05 and 0.15) 

which is consistent with the grand mean of 0.13 observed by Elliott & Hansen (2010)5. 

Although the interaction effect was not significant [F(2,56) = 1.93, p = 0.15, 𝜂𝐺
2  = 0.024], 

                                                 
5 These authors did not observe an effect of vision on R2 however. 
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the overall trend of the data in which the R2 values were greater in the no-vision 

condition, particularly at PD, was consistent with the findings of Heath et al. (2004)6. The 

reduction in the linear relationship, in the vision condition, between the position of the 

limb later in the movement and at the end of the movement may have resulted from 

participants making a greater number of online corrections later in the movement when 

vision was available. There is no way to discriminate, however, whether the online 

corrections corresponded to the impulse control or limb-target (discrete corrections) 

phase of the movements (Elliott et al., 2017). 

 

 

 

Figure 6 R2 values plotted as a function of kinematic marker (x-axis) and vision 
condition (line/point color and type). The vision and no-vision conditions are 
represented by “V” and “NV”, respectively. Error bars represent FLSDs. 

 

                                                 
6 Although the trend was similar, these authors observed much larger R2 values overall. 
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3.2.4 Outcome Measures 

 

The estimates of each outcome measure as a function of vision condition are presented in 

Figure 7. The RT analysis revealed a main effect of vision condition [F(1,28) = 24.1, p < 

0.001, 𝜂𝐺
2  = 0.121]. RTs were greater in the no-vision condition than they were in the 

vision condition, a finding consistent with that of Hansen et al. (2006). There were no 

significant effects of MT, a finding consistent with that of Elliott & Hansen (2010). The 

target error analysis revealed a main effect of vision condition [F(1,28) = 56.0, p < 

0.001, 𝜂𝐺
2  = 0.424].  

 

Target error was greater in the no-vision condition than it was in the vision condition 

[F(1,28) = 56.0, p < 0.001, 𝜂𝐺
2  = 0.424], a finding consistent with the notion that 

movement accuracy should be greater with vision. The VE (amplitude) analysis revealed 

a main effect of vision condition [F(1,28) = 114.9, p < 0.001, 𝜂𝐺
2  = 0.583]. The VE 

(amplitude) values were greater in the no-vision condition than they were in the vision 

condition. This effect was consistent with that of Elliott & Hansen (2010) in both 

directionality and magnitude: the authors observed an average VE (amplitude) error of 

8.04 mm for the no-vision condition, and of 4.06 mm for the vision condition. The VE 

(direction) analysis revealed a main effect of vision condition [F(1,28) = 93.4, p < 

0.001, 𝜂𝐺
2  = 0.536]. The VE (direction) values were greater in the no-vision condition 

than they were in the vision condition, a finding consistent with that of Elliott & Hansen 

(2010).  
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The CE (amplitude and direction) analyses failed to reveal any significant effects. The 

null effect of CE (amplitude) was not predicted as one would have expected participants 

to undershoot the target more so in the no-vision condition (i.e. participants should have 

been more accurate in the vision condition). Indeed, the model posited by Elliott et al. 

(2017) predicts that there would be less undershooting in the vision condition as there 

was less spatial variability at the end of the movement in this condition (see Figures 9, 

10, and 19, to be discussed later). Perhaps the difference in spatial variability at the end of 

the movement was not sufficiently pronounced (as might be inferred by Figure 8) to 

generate the corresponding CE (amplitude) effect. 
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Figure 7 RT (ms; A), MT (ms; B), target error (mm; C), CE (amplitude (D) and 
direction (E) in mm), and VE (amplitude (F) and direction (G) in mm) are 
plotted as a function of vision condition (x-axis). The no-vision and vision 
conditions are represented by “NV” and “V”, respectively. Error bars 
represent FLSDs. 
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3.2.5 Spatial Variability Profile 

 

The estimates of spatial variability as a function of vision condition and kinematic marker 

are presented in Figure 8. The spatial variability profile analysis revealed a main effect of 

kinematic marker [F(3,84) = 99.2, p < 0.001, 𝜂𝐺
2  = 0.476]. The analysis also revealed a 

vision condition by kinematic marker interaction effect [F(3,84) = 7.03, p < 0.001, 𝜂𝐺
2  = 

0.024]. The interaction effect was characterized by greater spatial variability in the vision 

condition compared to the no-vision condition early in the movement, with a reversal in 

that trend at the end of the movement. However, Macuhly’s test for sphericity was 

violated for both the main effect of kinematic marker [W = 0.273, p < 0.001] and the 

interaction effect [W = 0.368, p < 0.001]. Using Greenhouse-Geisser corrections, the 

main effect of kinematic marker [𝜀 = 0.543, p < 0.001] and the interaction effect [𝜀 = 

0.606, p = 0.003] remained.  

 

The interaction effect was consistent with what was observed by Elliott & Hansen (2010). 

The early increase in spatial variability with vision may be attributable the inherent 

increase in movement variability associated with guiding the limb more rapidly to the 

target under full vision conditions (see proportional TAPV results in subsection 3.2.1). It 

could also be a consequence of online corrections made during the impulse control phase 

of the movement (Elliott et al., 2017). Conversely, the decrease in spatial variability at 

the end of the movement is likely a manifestation of the advantage of having the 

availability of visual feedback during the movement with respect to movement accuracy, 
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perhaps attributable to both the impulse control and the limb-target regulation phases of 

the movement.  

 

 

 

Figure 8 Spatial variability (SD) values plotted as a function of kinematic marker (x-
axis) and vision condition (line/point color and type). The vision and no-
vision conditions are represented by “V” and “NV”, respectively. Error bars 
represent FLSDs. 

 

3.2.6 Ellipsoid Method 

 

The estimates of epsilloid volume (3D spatial variability) as a function of vision 

condition and proportion of movement are presented in Figure 9. The ellipsoid volume 

analysis revealed a main effect of proportion of movement [F(20,560) = 36.7, p < 

0.001, 𝜂𝐺
2  = 0.374]. The analysis also revealed a vision condition by proportion of 

movement effect [F(20,560) = 5.06, p < 0.001, 𝜂𝐺
2  = 0.030]. The interaction effect was 
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characterized by greater ellipsoid volumes (spatial variability) in the vision condition 

compared to the no-vision condition early in the movement, with a reversal in that trend 

at the end of the movement. However, Macuhly’s test for sphericity was violated for both 

the main effect of proportion of movement [W < 0.001, p < 0.001] and the interaction 

effect [W < 0.001, p < 0.001]. Using Greenhouse-Geisser corrections, the main effect of 

kinematic marker [𝜀 = 0.072, p < 0.001] and the interaction effect [𝜀 = 0.097, p = 0.013] 

remained.  

 

The interaction effect was consistent with what was observed by Elliott & Hansen (2010). 

It can be seen that the epsilloid method and the standard spatial variability profile 

analysis offer similar insights into the nature of the movement trajectories (see Figure 8 

above). Ultimately, both analysis methods measure the variability of the movement 

across trials and through time. However, the epsilloid method provides a more nuanced 

and complete (3D vs. 1D) perspective of the trial-wise variability of the movements than 

does the standard spatial variability profile analysis. Conversely, the standard spatial 

variability profile analysis may offer the benefit of explicitly evaluating the trial-wise 

variability of movements at specific, theoretically meaningful kinematic markers.  
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Figure 9 Epsilloid volume ((mm)3) values plotted as a function of proportion of 
movement (x-axis) and vision condition (line/point color and type). The 
vision and no-vision conditions are represented by “V” and “NV”, 
respectively. Error bars represent FLSDs. 

 

3.2.7  Overall rANOVA Results 

 

The expected experimental effects largely matched the actual main effects of vision 

condition (Table 2). The only DV for which the actual main effect of vision was not 

accurately predicted was CE (amplitude and direction). The main effects on CE were 

null. The largest effect sizes (greater than 0.5) were attributable to VE (amplitude and 

direction). The directionality of the effects was largely consistent with that observed by 

Elliott & Hansen (2010). Further, in terms of evaluating the main effect of vision, the 

present study and that of Elliott & Hansen (2010) both observed that VE (amplitude and 

direction) generated the largest effect sizes. Overall, these results suggest that prior 

knowledge regarding the access to vision (1) permits participants to take less time to plan 
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their movements, (2) incentivizes participants to maximize their access to visual feedback 

by getting their limb in the vicinity of the target more rapidly, and (3) results in a greater 

number of online corrections (discrete or continuous) (for broader discussion on these 

phenomenon, see Elliott et al, 2017).  

 

DV Expected effect  

(vision minus no-vision) 

𝜼𝑮
𝟐  Main effect of vision 

Proportional TAPV Positive 0.079 

Discontinuities Positive 0.055 

R2 Negative 0.037 

RT Negative 0.121 

MT Null Null 

Target Error Negative 0.424 

CE (amplitude, 

direction) 

Negative Null 

VE (amplitude) Negative 0.583 

VE (direction) Negative 0.536 

 

Table 2 Expected experimental effects (the value of the DV in the no-vision condition 
subtracted from the value of the DV in the vision condition) for several DVs. 
The actual effect sizes of the main effects of vision are listed. If the direction 
of the expected and actual effects were consistent with one another, the 
corresponding rows were highlighted in green. If the predicted and actual 
effects did not match each other, the corresponding rows were highlighted in 
red. 
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Both the variability profile analysis and the epsilloid analysis produced the expected 

results (Table 3). The effect size of the interaction between vision condition and 

proportion of movement was slightly greater for the epsilloid method. Both variability 

analyses were sufficiently powerful to detect effects of vision condition over the course 

of the movement trajectories thereby allowing the researcher to determine where the 

vision condition effects emerged temporally. Overall, the trial-by-trial variability analyses 

appear useful in detecting the early effects of vision on the frequency of online 

corrections and/or movement planning (faster movements tend to generate more 

variability), and the latter effects of vision on movement accuracy and precision (to put 

results in context of multiple process model of goal-directed reaching, see Elliott et al., 

2017).  
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Analysis method Expected effect  

(vision minus no-vision 

mid-movement) 

𝜼𝑮
𝟐  Interaction effect 

(vision condition by 

proportion of movement) 

Variability profile Positive 0.024 

Epsilloid method Positive 0.030 

 

Table 3 Expected experimental interaction effects (the spatial variability values in the 
no-vision condition subtracted from the spatial variability values in the vision 
condition as a function of proportion of movement) for two analysis methods. 
The actual effect sizes of the interaction effects of vision condition by 
proportion of movement are listed. If the expected and actual effects were 
consistent with one another the corresponding rows were highlighted in 
green. If the predicted and actual effects did not match with one another, the 
corresponding rows were highlighted in red. 

 

3.2.8 fANOVA 

 

The population mean trajectories for movement amplitude differed substantially between 

conditions such that participants covered the distance required to reach the target earlier 

in their proportional movements in the vision condition than they did in the no-vision 

condition (Figure 10A). The population mean trajectories for movement direction also 

differed substantially between conditions (Figure 10B). The pattern of results is less clear 

in this case, but it appears as though in the vision condition participants deviated from 

their midline earlier in their proportional movements than they did in the no-vision 

condition. The population mean trajectories along the vertical movement axis also 

differed substantially between conditions such that, midway in their movements, 
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participants brought their hands further up in the no-vision condition than they did in the 

vision condition (Figure 10).  

 

The findings for movement amplitude are consistent with those of the proportional TAPV 

analysis. Participants covered more ground for a given proportion of movement if they 

were aware that vision would be available (Figure 10A). Consequently, participants spent 

more time after peak velocity in the vision condition. These findings are consistent with 

the notion that knowledge regarding the availability of vision increases the speed at 

which participants move their limb within the vicinity of the target in order to maximize 

the benefit of online visual feedback (Elliott et al., 2017). The results of movement 

direction corroborated this argument as the no-vision condition mean trajectory appears 

to be slightly phase-shifted to the right of the vision condition mean trajectory (i.e. in the 

early phases of the movement, the natural movement path for movement direction is 

traversed more rapidly in the vision condition). This finding appears to simply 

corroborate the result for movement amplitude. It should be emphasized that although the 

fANOVA technique was not explicitly designed to compare trajectories between vision 

conditions, it does capture the results from TAPV analysis while providing a more 

nuanced representation of the results.  
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Figure 10 Position values (mm) plotted as a function of proportion of movement (x-
axis) and vision condition (line/point color and type) for movement amplitude 
(y coordinate; A), movement direction (x coordinate; B), and along the 
vertical (z coordinate) movement axis (C). The vision and no-vision 
conditions are represented by “V” and “NV”, respectively. The gray shaded 
areas represent the time intervals in which the differences between vision 
conditions were statistically significant. Error bands represent FLSDs, one for 
each time point. If the error bands failed to overlap at any time point, then the 
difference at that time point was statistically significant according to an 
uncorrected t-test. 
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CHAPTER 4     BAYESIAN HIERARCHICAL GPR 

 

4.1   METHODS 

 

The statistical analyses presented in this chapter were performed in R (2016) and were 

run on experimental data (collected from the experiment described in subsection 2.3). 

GPR was directly compared to the R2 analysis, the variability profile analysis described 

in Elliott & Hansen (2010), and the spine fitting method described in Gallivan & 

Chapman (2014).  

 

The trajectory data for the Bayesian hierarchical GPR analysis were subjected to the 

preprocessing steps described in subsection 2.4, except for the normalization procedure 

presented in subsection 2.4.6. For the GPR analysis, the time points were broken down 

into 15 equally spaced bins so that the normalize time length of each bin was 

approximately 0.071. The GPR analysis required greater downsampling than the R2 or 

spatial variability profile analyses in order to make the estimates of the trajectories 

computationally tractable7. For each of the three dimensions and for each trial, the mean 

position value in each time bin was then obtained. 

 

                                                 
7 The number of samples that go into the trajectories that are modelled determines the size of the 
autocorrelation matrix, which is the primary computational bottleneck of the analysis described 
in the subsection 4.1. 
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A technical description of the GPR model that was used is described below. Limb 

positions for a given trial were sampled from a normal distribution with a mean and 

standard deviation, a measure of trial-wise variability, specified by participant-specific 

functions. The participant-specific mean and trial-wise variability functions were 

calculated as the sum of two GPs: a population GP and a participant-level deviation GP 

with hyperparameters specific to a given participant. The participant-level deviation 

functions represented the deviation of a particular participant’s function from the 

population-level function. The participant-level deviation mean and trial-wise variability 

hyperparameters were sampled from cauchy (volatility hyperparameter) and normal 

(amplitude hyperparameter) distributions that were centered at zero and had standard 

deviations with weakly informative weibull priors. The population mean and trial-wise 

variability GPs were defined by volatility and amplitude hyperparameters with weakly 

informative cauchy and weibull priors respectively. All GPs in the model were specified 

by uniform zero mean functions and a exponentiated quadratic function covariance 

functions. The posterior distribution was sampled using Markov Chain Monte Carlo 

(MCMC) methods outlined in RStan (Stan Development Team, 2017). The model 

structure described in this paragraph was applied to each condition, with the parameters 

estimated simultaneously. The structure of the model is represented schematically in 

Figure 11. Finally, the model was run for the trajectory data for movement amplitude. 
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Figure 11 Diagram of Bayesian hierarchical GPR model structure. From the bottom to 
the top, the raw data were modelled as having been generated from a function 
with a GP prior. The covariance kernel was an exponentiated quadratic for 
which the hyperparameters were given priors. Broadly, arrows indicate that a 
particular parameter or data point was modelled as having been sampled from 
the distribution from which the arrow originates, with the exception of priors 
which did not exactly have this interpretation. Dotted lines represent 
mathematical equality between different representations of the same 
parameter. The subscripts of the parameters have the following meanings: 
‘part’ = participant; ‘pop’ = population; ‘dev’ participant-level deviation. The 
double-bars, which appear once at the end of a dashed line originating from 
the bottom normal distribution’s sigma parameter, indicate that the logarithm 
of the standard deviation represented by the sigma symbol had the same 
model structure as the mean represented by the mu symbol. In other words 
the participant-specific mean and trial-wise variability functions (in log-
space) were modelled identically. 

 

The following validation procedures were run on the model for both the real and the 

simulated datasets. The model was validated with respect to the convergence its Markov 
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chains (for discussion, see Gelman et al., 2014; and Stan Development Team, 2017). The 

potential scale reduction statistic (Rhat) was intended to be as close as possible to 1.00. 

The number of effective samples for each parameter estimate was intended to exceed 

1000. These metrics indicated the extent to which the posterior distribution was properly 

sampled. The procedure of running a full-scale simulation by generating data from the 

Bayesian hierarchical GPR model and then running the model on those simulated data by 

its very nature constitutes a method of validating the analytical model.  

 

Before presenting the results of the Bayesian analysis, it is important to clarify how these 

results are to be properly interpreted. Bayesian parameter estimates indicate the 

probability that the value of true population parameter under examination falls within the 

estimate. The proper interpretation of Bayesian parameter estimates is often erroneously 

applied to frequentist parameter estimates (for discussion regarding proper interpretation 

of CIs, see Cumming & Finch, 2005; also, for discussion regarding distinction between 

Bayesian and frequentist interpretations of uncertainty, refer to section 1.4).  

 

Specifically, the primary inferential tool of the Bayesian method, the posterior 

distribution, indicates the relative credibility of parameter values among an infinite set of 

possible values (Kruschke, 2014). The information contained in the posteriors are 

summarized by highest density intervals (HDIs), a particular type of credible interval (for 

introduction to credible intervals, refer to section 1.4). An HDI is defined as the interval 

that captures 95% of the posterior distribution density and the bounds of which 
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correspond to the greatest probability density values. One can state about a 95% credible 

interval that there is 95% probability that the true population parameter value falls within 

the range of values bounded by the credible interval.  

 

Ultimately, the Bayesian model presented herein provided posterior distributions for each 

parameter mean. The median value of these posterior distributions was selected as the 

point estimates for the means of each parameter. The median value was taken to be a 

better measure of the central tendency of the posterior distributions in cases where these 

distributions were asymmetrical.  

 

The empirical data will be presented along with the Bayesian estimates. The empirical 

data for the participant-level data simply constitute the mean (or log SD in the case of the 

noise functions) of the dependent variable across trials and the mean of the dependent 

variable across participants in the case of the group-level data. The purpose of presenting 

the empirical data along with the estimates is to understand the extent to which the model 

overcomes (1) the inherent noisiness of the data to generate smooth and accurate 

estimates, and (2) the adverse impact of outliers in estimating the population-level 

functions. Also, the presentation of the empirical data allows the reader to examine the 

extent to which the other methods of analysis, presented in the previous chapter, were 

adversely impacted by these two factors. 
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4.2   RESULTS & DISCUSSION 

 

Sixteen chains were run, with 1000 iterations per chain. Half the iterations for each chain 

were warm-up samples. The analysis took approximately 120 hours to run. The 

population hyperparameter estimates, the participant-to-participant variability estimates, 

and the population noise functions were sampled effectively all estimates achieving at 

least 1000 effective samples and having a corresponding Rhat of 1. The participant mean 

functions were largely properly sampled with all estimates having a corresponding Rhat 

of 1. However, some estimates had fewer than 1000 effective samples, the minimum 

being 400. The participant noise functions were also largely properly sampled with nearly 

all estimates having a corresponding Rhat of 1. The most deviant Rhat was 1.02. Further, 

virtually all estimates had at least 1000 effective samples, the minimum being 927. 

Finally, the population functions were moderately well sampled. The Rhat values ranged 

from 1.01 to 1.06. Further, the effective samples ranged from 277 to 1137.  

 

4.2.1 Hyperparameters for Mean Functions 

 

The hyperparameter estimates for the population and participant mean functions are 

displayed in Figure 12. Population volatility was slightly greater in the vision condition 

than it was in the no-vision condition. The effect of vision condition excluded the 50% 

credible interval. Although the strength of the effect was weak, the direction of the effect 

was consistent with the expectation that the population mean function would be more 
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volatile in the vision condition due to the propensity of this condition to generate a 

greater number of online corrections – either continuous (impulse control) or discrete 

(limb-target; Elliott et al, 2017). However, as seen in Figure 16, the population mean 

functions overall were not particularly volatile (i.e. they were simple and smooth 

functions). Therefore, the value of examining the hyperparameter values in this context is 

unclear. Another consideration is whether the downsampling of the trajectories prior to 

subjecting them to the GPR analysis obfuscates the true volatility effects (for discussion, 

see subsection 6.5). 

 

There was decidedly no effect of vision condition on population amplitude. This null 

effect is not surprising given that participants started and ended their movements at the 

same points in space and generally did not overshoot the target because of the simplicity 

of the task. Population amplitude variability was slightly greater in the no-vision 

condition than it was in the vision condition. The effect of vision excluded the 50% 

credible interval. Although the effect was small, it may be explained in the context of the 

effect of vision condition on VE (amplitude). Finally, there was no effect of vision 

condition on population volatility variability. No particular prediction had been made 

with respect to this hyperparameter measure. 
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Figure 12 Violin plots of population volatility (A & B) and amplitude (C & D) 
estimates, and of participant volatility (E & F) and amplitude (G & H) 
variability estimates. Posterior distributions are mirrored along the vertical 
axis for each estimate. For each row, the left graph displays the estimates as a 
function of vision condition whereas the right graph displays the effect of 
vision condition (vision minus no-vision). The dotted black line on the right 
graph represents a null effect (zero). The large black dot of each estimate 
represents the median of the posterior distribution. The thick black lines 
represent 50% credible intervals and the thin black lines represent 95% 
credible intervals. The no-vision and vision conditions are represented by 
“NV” and “V”, respectively. 

 

4.2.1 Hyperparameters for Noise Functions 

 

The hyperparameter estimates for the population and participant noise functions are 

displayed in Figure 13. There were no effects of vision condition on population noise 

volatility and noise amplitude. There were also no effects of vision on participant noise 

volatility and amplitude variability. One could have expected an effect of vision condition 

on population noise amplitude because trial-wise movement variability was greater in the 

vision condition in the early parts of the movement (see Figures 8, 9, and 19). 
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Figure 13 Violin plots of population noise volatility (A & B) and noise amplitude (C & 
D) estimates, and of participant noise volatility (E & F) and noise amplitude 
(G & H) variability estimates. Posterior distributions are mirrored along the 
vertical axis for each estimate. For each row, the left graph displays the 
estimates as a function of vision condition whereas the right graph displays 
the effect of vision condition (vision minus no-vision). The dashed black lines 
on the graphs on the right represents a null effect (zero). The large black dot 
of each estimate represents the median of the posterior distribution. The thick 
black lines represent 50% credible intervals and the thin black lines represent 
95% credible intervals. The no-vision and vision conditions are represented 
by “NV” and “V”, respectively. 

 

4.2.3 Participant Mean Functions 

 

The participant mean trajectory estimates are presented in Figure 14. The participant-wise 

mean trajectory estimates captured the empirical means of the normalized participant-

wise trajectories. This observation indicates, albeit in a crude manner, that the participant-

wise estimates represent the raw data reasonably well. Figure 15 displays the median 

values of the posterior estimates across participants for each condition to facilitate the 

detection of outliers. There appears to be an outlying participant in the no-vision 

condition (pink trajectory). This participant covers most of the distance to the target in the 

early portion of their movement. Upon reviewing the trial-by-trial data, it appears as 

though the outlying trajectory is a result of the outlying participant overshooting the 

target substantially more often than the other participants.  
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Figure 14 The mean function estimates for each participant, for vision (turquoise) and 
no-vision (red) conditions, with scaled position (y-axis) as a function of 
proportion of movement (x-axis). The solid colored lines represent the 
median of the posterior estimates of the participant mean functions. The 
dashed colored lines, surrounding the solid colored lines, make up the 95% 
credible intervals of the participant mean function estimates. The solid light 
gray lines represent the empirical means of the normalized data.  
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Figure 15 The mean function estimates for each participant, for the vision and no-vision 
conditions, with scaled position (y-axis) as a function of proportion of 
movement (x-axis). The solid colored lines represent the median of the 
posterior estimates of the participant mean functions.  

 

4.2.4 Participant Noise Functions 

 

The participant noise trajectory estimates are presented in Figure 16. The participant-wise 

noise function estimates captured the empirical noise functions of the normalized 

participant-wise trajectories. As with the participant mean trajectory estimates, the match 

between the empirical and estimated noise functions indicates that the model is largely 

basing its estimates on the data and not being overly influenced by priors and a complex 

model structure. Figure 17 displays the median values of the posterior estimates across 

participants for each condition to facilitate the detection of outliers. Unlike with the 
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participant mean trajectory estimates, there were no notably deviant participant-wise 

noise functions.  
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Figure 16 The mean noise function estimates for each participant, for vision (turquoise) 
and no-vision (red) conditions, with log standard deviation (y-axis) as a 
function of proportion of movement (x-axis). The solid colored lines 
represent the median of the posterior estimates of the participant noise 
functions. The dashed colored lines, surrounding the solid colored lines, make 
up the 95% credible intervals of the participant noise function estimates. The 
solid light gray lines represent the empirical means of the normalized data.  
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Figure 17 The noise function estimates for each participant, for the vision and no-vision 

conditions, with log standard deviation (y-axis) as a function of proportion of 
movement (x-axis). The solid colored lines represent the median of the 
posterior estimates of the participant noise functions.  

 

4.2.5 Population Mean Functions 

 

The population mean trajectory estimates are presented in Figure 18. There was large 

effect of vision condition on the population mean functions such that participants covered 

the distance required to reach the target earlier in their proportional movements in the 

vision condition than they did in the no-vision condition. The effect was greatest around 

the time of PV. This result is consistent with what was observed with the fANOVA 

analysis (see Figure 10). Indeed, it is difficult to compare the estimates of the fANOVA 

analysis method with those of the Bayesian method because both sets of estimates 

contained little uncertainty (i.e. both analysis methods, in this case, produced precise 
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estimates of the population mean trajectories). Further, the error bars for each analysis are 

not directly comparable to each other as the fANOVA error bars were FLSDs and thus 

appropriate for detection of significant differences between conditions, whereas the GPR 

error bars simply indicate the credible range of values for each condition which is why a 

separate effect function is plotted for the explicit determination of the effects of vision. 

Bayesian estimates largely captured the empirical means of the normalized trajectories 

thereby providing a partial confirmation that the raw data are appropriately represented 

by the model. 

 

 

 

Figure 18 The population mean function estimates for the vision and no-vision 
conditions (A), and the effect of vision condition (vision minus no-vision; B), 
with scaled position (y-axis) as a function of proportion of movement (x-
axis). The solid colored lines represent the median of the posterior estimates. 
The error bands surrounding the solid colored lines make up the 95% credible 
intervals of the posterior estimates. The solid light gray lines represent the 
empirical means of the normalized data. The dots along the bottom (A) or top 
(B) of the graphs correspond to the mean kinematic marker estimates (from 
left to right: PA, PV, PD). The no-vision and vision conditions are 
represented by “NV” and “V”, respectively. 
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4.2.6 Population Noise Functions 

 

The population noise trajectory estimates are presented in Figure 19. There was large 

effect of vision condition on the population noise functions. Trial-by-trial variability was 

greater in the vision condition in the early portion of the movement and greater in the no-

vision condition in the later portion of the movement. The effect in the early portion of 

the movement was greatest around the time of PA.  

 

These results are consistent with those observed with the spatial variability profile and 

epsilloid methods. Of course, one difference is that the population noise functions from 

the Bayesian model are estimated in log space. One advantage of this representation is 

that the uncertainty associated with the estimates is more consistent throughout the 

movement, facilitating the visual interpretation of effect sizes. In addition, the Bayesian 

estimates appear to have been more sensitive in detecting spatial variability at towards the 

end of the movement, compared to the spatial variability profile and epsilloid methods. 

The Bayesian estimates largely captured the empirical variability of the normalized 

trajectories. However, the estimate in the vision condition had greater trial-wise 

variability values early in the movement relative to the empirical data. This discrepancy 

may have been a result of the mildly outlying participant noise function that has less trial-

wise variability than the rest of the functions (see Figure 17). Bayesian hierarchical 

model estimates tend to be less-so pulled by outlying data than empirical means and 
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traditional model estimates (for discussion, see Kruchke, 2014). 

 

 

 

Figure 19 The population noise function estimates for the vision and no-vision 
conditions (A) and the effect of vision condition (vision minus no-vision; B), 
with log standard deviation (y-axis) as a function of proportion of movement 
(x-axis). The solid colored lines represent the median of the posterior 
estimates. The error bands surrounding the solid colored lines make up the 
95% credible intervals of the posterior estimates. The solid light gray lines 
represent the empirical variability (log SDs) of the normalized data. The dots 
along the bottom (A) or top (B) of the graphs correspond to the mean 
kinematic marker estimates (from left to right: PA, PV, PD). The no-vision 
and vision conditions are represented by “NV” and “V”, respectively. 

 

4.3   CONCLUSION 

 

The hyperparameter estimates did not indicate any substantial effects of vision. Perhaps 

the one perhaps noteworthy hyperparameter result was a moderately credible effect of 

vision on population mean function volatility such that the function in the vision 
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condition was more volatile than the one in the no-vision condition.  

 

The participant mean and noise function estimates tracked the empirical data closely. 

Therefore, the model appeared to represent to participant-level data accurately. The 

population mean function estimates tracked the empirical data well and indicated a large 

effect of vision that was maximized around the time of PV: the participants covered the 

distance required to reach the target earlier in their proportional movements in the vision 

condition than they did in the no-vision condition. This result was consistent with the 

result of the fANOVA analysis of Chapter 3. Both analysis methods generated precise 

estimates, making difficult to identify an advantage of one over the other.  

 

The population noise function estimates tracked to empirical data reasonably well and 

demonstrated that participant trajectories had greater trial-wise variability in the vision 

condition in the early phase of the movement, and less trial-wise variability in the later 

phase of the movement. This result was consistent those of the spatial variability and 

epsilloid analyses of Chapter 3. However, the GPR estimates were more precise and 

nuanced, and therefore detected effects of vision that were not identified by the other two 

methods.  
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CHAPTER 5     SIMULATION 

 

5.1   METHODS 

 

Before presenting the results of the simulated dataset, it is worth clarifying the purpose of 

the simulation. First, the simulation provided a method of validating the Bayesian 

hierarchical GPR model. The Bayesian model is complex and dependent on MCMC 

sampling methods for its implementation. Its complexity makes researchers prone to 

model misspecifications, whereas the lack of an analytical solution entails the potential 

for bad approximations of the posterior distributions. A large-scale simulation, whereby 

data are generated from a known generative model and then estimated by an analytical 

model of interest, allows the researcher to validate that the analytical model can properly 

estimate the true parameter values from the sample data. The second purpose of the 

simulation was to compare the ability of different statistical methods to estimate the true 

underlying effects of a population or a subject from the sample data. In an experimental 

setting, it is difficult to compare the validity of statistical methods since one does not 

have access to the value of the real effects being estimated. In a simulation setting, one 

has access to and ultimately determines that information. 

 

The simulated data was sampled from the generative model that was most theoretically 

plausible. It had the same form as the analytical model (for a detailed description of the 

model, see subsection 4.1). The simulated dataset resembled the experimental dataset in 

its structure: 29 participants, each split into two conditions with 20 trials per condition. 
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The simulated trajectory data from either condition were sets of arbitrary functions. The 

generative model allowed for participant-wise deviations in these functions. It also 

allowed for participant-wise deviations in the variability of the measurement across trials. 

Finally, the variability across trials itself will be allowed to vary along with the time 

course of the trajectory. Each trial consisted of a trajectory was made up of 15 samples. 

The population parameters of the generative model were selected so that the trajectories 

at least broadly resembled typical movement trajectories: fairly smooth and not too 

volatile.  

 

The population mean and trial-wise variability functions of the two hypothetical 

experimental conditions were sampled from GPs with set hyperparameters. Most of these 

hyperparameters were set to differ slightly. The other model parameters were also set to 

differ mildly between the two conditions. The true parameter values will be presented 

graphically along with their model estimates subsection 5.2. This will allow the reader to 

visualize the effects that were built into the generative model. Data were only simulated 

in one dimension because computational limitations precluded the modelling of multiple 

dimensions simultaneously. As such, the simulated trajectories were one-dimensional.  

 

Importantly, the two conditions were not meant to represent vision and no-vision 

conditions from a standard goal-directed reaching experiment. As stated, the shape of the 

simulated trajectories were arbitrary. Simulating functions from a GP prior involves 

setting the hyperparameter values (volatility, amplitude, and the extent to which these 

vary across participants), then randomly sampling functions from the corresponding GP. 

The randomness involved in sampling these functions makes it difficult to readily 



 
88 

simulate trajectories with specific characteristics. For the purposes of the present study, 

datasets were simulated until one in which there were reasonable differences between 

conditions and reasonable levels of trial-wise variability was identified.  

 

The data analysis methods for the simulated dataset were virtually identical to those 

applied to the experimental dataset. The primary difference between the analyses of the 

experimental and simulated datasets was that fewer analysis methods were applied to the 

latter. In particular, the outcome variables – RT, MT, VE, CE, and target error – were 

omitted from the following analysis because the simulation did not generate these DVs. 

Further, the TAPV and discontinuity analyses were omitted because the former was not 

explicitly manipulated in generating the simulated trajectories, whereas the latter was 

obsolete since the simulated trajectories had no discontinuities. Another difference 

between the analyses of the experimental and simulated datasets was that, for the 

simulated data, it was not meaningful to extract kinematic markers such as PA, PV, and 

PD for the R2 and spatial variability profile analyses. Instead, the position at END was 

predicted from the positions at each time point. Finally, for the fANOVA analysis, since 

the simulated data were made up of trajectories with 15 samples, the position values for 

movement amplitude were sampled from 15 (instead of 200) normalized time points, 

equally-spaced within each trial. The results of these analyses, the fANOVA analysis, and 

the Bayesian hierarchical GPR analysis are presented in the following subsection.   
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5.2   RESULTS & DISCUSSION 

 

5.2.1 R2 

 

The R2 estimates as a function of condition and proportion of movement are presented in 

Figure 20. The R2 analysis did not reveal any significant effects. Therefore, the R2 

analysis could not detect the population volatility effect that was instantiated in the 

generative model. This may have been a result of the R2 values being low across all time 

points. Alternatively, this may have been due to the fact that the R2 analysis does not 

measure the same thing as the volatility hyperparameter. 
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Figure 20 R2 values plotted as a function of proportion of movement (x-axis) and 
condition (line/point color and type). Error bars represent FLSDs. 

 

5.2.2 Spatial Variability Profile 

 

The spatial variability estimates as a function of condition and proportion of movement 

are presented in Figure 21. The spatial variability profile estimates captured the true 

population spatial variability profiles fairly well. The spatial variability profile analysis 

revealed a main effect of condition [F(1,28) = 70.3, p < 0.001, 𝜂𝐺
2  = 0.436] and a main 

effect of proportion of movement [F(14,392) = 55.3, p < 0.001, 𝜂𝐺
2  = 0.240]. The analysis 

also revealed a condition by proportion of movement interaction effect [F(14,392) = 80.9, 

p < 0.001, 𝜂𝐺
2  = 0.375]. The interaction effect was characterized by greater spatial 

variability in condition 2 compared to condition 1 later in the movement. However, 
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Macuhly’s test for sphericity was violated for both the main effect of proportion of 

movement [W < 0.001, p < 0.001] and the interaction effect [W < 0.001, p < 0.001]. 

Using Greenhouse-Geisser corrections, the main effect of proportion of movement [𝜀 = 

0.202, p < 0.001] and the interaction effect [𝜀 = 0.165, p < 0.001] remained.  

 

 

 

Figure 21 Spatial variability (SD) values plotted as a function of proportion of 
movement (x-axis) and condition (line/point color and type). Error bars 
represent FLSDs. The black dashed lines represent the real, latent, population 
spatial variability profiles.  

 

5.2.3 fANOVA 

 

The fANOVA results are displayed in Figure 22. The fANOVA estimates captured the 
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true mean population functions fairly well. The condition 2 estimate mildly 

underestimated the true mean population function. This observation may be explained by 

the mildly outlying participant presented in Figure 23. The position values of condition 1 

were larger than those of condition 2 early in the movement. This difference subsided 

later in the movement. The spline fitting method appeared to smooth the data – the raw 

data were notably noisier.  

 

 

 

Figure 22 Position values plotted as a function of proportion of movement (x-axis) and 
condition (line/point color and type) for movement amplitude (y coordinate). 
Graph A represents the fANOVA. The gray shaded areas represent the time 
intervals in which the differences between vision conditions were statistically 
significant. Error bands represent FLSDs, one for each time point. If the error 
bands failed to overlap at any time point, then the difference at that time point 
was statistically significant according to an uncorrected t-test. Graph B 
represents the raw data, which have not undergone smoothing via spline 
fitting. The black dashed lines represent the real, latent, population mean 
functions.  
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93 

5.2.4 Bayesian Hierarchical Gaussian Process Regression 

 

Sixteen chains were run, with 1000 iterations per chain. Half the iterations for each chain 

were warm-up samples. The analysis took approximately 10 hours to run. The population 

hyperparameter estimates, the participant-to-participant variability estimates, and the 

population mean and noise functions were sampled effectively with all estimates 

achieving at least 1000 effective samples and having a corresponding Rhat of 1. The 

participant mean functions were largely properly sampled with all estimates having a 

corresponding Rhat close to 1. The most deviant estimate had a Rhat of 1.02. Further, 

some participant mean function estimates had fewer than 1000 effective samples, the 

minimum being 751. The participant noise functions were also largely properly sampled 

with nearly all estimates having a corresponding Rhat of 1. The most deviant Rhat was 

1.03. Further, virtually all estimates had at least 1000 effective samples, the minimum 

being 617. 1.01 to 1.06.  

 

5.2.4.1 Hyperparameters for Mean Functions 

 

The hyperparameter estimates of the population and participant mean functions are 

displayed in Figure 23. To compliment the figure, Table 4 summarizes the extent to 

which the hyperparameter estimates captured the true population hyperparameter values. 

The hyperparameter estimates largely captured the true hyperparameter values. However, 

the population volatility variability 95% credible interval failed to capture the true 
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hyperparameter value in condition 2. In the current simulation, a reasonable researcher 

would have properly assessed there to be effects of condition on population amplitude 

and volatility but failed to identify the existent effects of condition on participant 

volatility and amplitude variability. Overall, it appeared that the model estimates were 

more accurate at estimating the population mean hyperparameters than it was at 

estimating their participant-wise variability (SD). In the author’s experience with 

Bayesian hierarchical modelling, variability (SD) parameters tend to be more difficult to 

estimate accurately. Fortunately, the latter was not of particular interest in the context of 

the present experimental research question regarding the effects generated by the vision 

condition. 
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Figure 23 Violin plots of population volatility (A & B) and amplitude (C & D) 
estimates, and of population volatility (E & F) and amplitude (G & H) 
variability estimates. Posterior distributions are mirrored along the vertical 
axis for each estimate. For each row, the left graph displays the estimates as a 
function of condition whereas the right graph displays the effect of condition 
(condition 1 minus condition 2). The dashed black lines on the graphs on the 
right represents a null effect (zero). The horizontal dotted lines are the real 
hyperparameter values that were used to generate the simulated data. The 
large black dot of each estimate represents the median of the posterior 
distribution. The thick black lines represent 50% credible intervals and the 
thin black lines represent 95% credible intervals. Condition 1 and condition 2 
are represented by “C1” and “C2”, respectively. 
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 Volatility Amplitude Volatility (SD) Amplitude (SD) 

C1 95% 50% 95% 95% 

C2 50% 50% Excluded 95% 

Effect 50% 50% 95% 95% 

Zero Excluded 95% 50% 50% 

 

Table 4 Summary of degree to which population hyperparameter estimates – 
volatility, amplitude, population volatility variability, and population 
amplitude variability - for condition 1 (C1), condition 2 (C2), and the effect 
(C1 minus C2) captured the true population hyperparameter values. If the true 
hyperparameter value was captured by the 50% credible interval, “50%” was 
entered into the corresponding box and the box was highlighted as green to 
convey that the population hyperparameter had been accurately estimated. If 
the true hyperparameter value was captured by only the 95% credible 
interval, “95%” was entered into the corresponding box and the box was 
highlighted as light green to convey that the population hyperparameter had 
been somewhat accurately estimated. Finally, if the true hyperparameter value 
was not captured by the 95% credible interval, “Excluded” was entered into 
the corresponding box and the box was highlighted as red to convey that the 
population hyperparameter had not been accurately estimated. Further, the 
bottom row of the table was added to indicate the degree to which the 
estimate of the effect of condition excluded zero (a null effect) in order to 
gauge the sort of conclusion that would have been drawn regarding the 
probability of the effect having had no knowledge of the true population 
effect (i.e. in an experimental setting). The coloring and entry scheme was 
reversed for this row of the table since the exclusion of zero from the estimate 
would have corresponded to an accurate assessment of the effect being 
present with a high degree of probability. Conversely, the inclusion of zero by 
the 50% credible interval would have corresponded to the erroneous 
assessment of there probably not being an effect when an effect was indeed 
present.  
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5.2.4.2 Hyperparameters for Noise Functions 

 

The hyperparameter estimates of the population and participant noise functions are 

displayed in Figure 24. To compliment the figure, Table 5 summarizes the extent to 

which the hyperparameter estimates captured the true population hyperparameter values. 

The hyperparameter estimates largely captured the true hyperparameter values. However, 

the population noise volatility variability 95% credible interval failed to capture the true 

hyperparameter value in condition 1. In the current simulation, a reasonable researcher 

would have properly assessed there to be an effect of condition on population noise 

volatility and participant noise amplitude volatility, and no effect of condition on 

population noise amplitude. However, this hypothetical researcher would have failed to 

identify the existent effect of condition on population noise volatility variability. Overall, 

it appeared that the model estimates were more accurate at estimating the population 

mean hyperparameters than it was at estimating their participant-wise variability (SD). 

Fortunately, the latter is not of particular interest in the context of the present 

experimental research question regarding the effects generated by vision condition. 
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Figure 24 Violin plots of population noise volatility (A & B) and noise amplitude (C & 
D) estimates, and of population noise volatility (E & F) and noise amplitude 
(G & H) variability estimates. Posterior distributions are mirrored along the 
vertical axis for each estimate. For each row, the left graph displays the 
estimates as a function of condition whereas the right graph displays the 
effect of condition (condition 1 minus condition 2). The dashed black lines on 
the graphs on the right represents a null effect (zero). The horizontal dotted 
lines are the real hyperparameter values that were used to generate the 
simulated data. The large black dot of each estimate represents the median of 
the posterior distribution. The thick black lines represent 50% credible 
intervals and the thin black lines represent 95% credible intervals. Condition 
1 and condition 2 are represented by “C1” and “C2”, respectively. 
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Noise: Volatility Amplitude Volatility (SD) Amplitude (SD) 

C1 50% 95% Excluded 95% 

C2 50% 95% 95% 50% 

Effect 50% 50% 95% 95% 

Zero 95% 50% 50% 95% 

 

Table 5 Summary of degree to which population noise hyperparameter estimates – 
noise volatility, noise amplitude, population noise volatility variability, and 
population noise amplitude variability - for condition 1 (C1), condition 2 
(C2), and the effect (C1 minus C2) captured the true population 
hyperparameter values. If the true hyperparameter value was captured by the 
50% credible interval, “50%” was entered into the corresponding box and the 
box was highlighted as green to convey that the population hyperparameter 
had been accurately estimated. If the true hyperparameter value was captured 
by only the 95% credible interval, “95%” was entered into the corresponding 
box and the box was highlighted as light green to convey that the population 
hyperparameter had been somewhat accurately estimated. Finally, if the true 
hyperparameter value was not captured by the 95% credible interval, 
“Excluded” was entered into the corresponding box and the box was 
highlighted as red to convey that the population hyperparameter had not been 
accurately estimated. Further, the bottom row of the table was added to 
indicate the degree to which the estimate of the effect of condition excluded 
zero (a null effect) in order to gauge the sort of conclusion that would have 
been drawn regarding the probability of the effect having had no knowledge 
of the true population effect (i.e. in an experimental setting). The coloring and 
entry scheme was reversed for this row of the table except in cases where 
there was truly no effect of condition (noise amplitude; see Figure 24, graphs 
C & D).  

 

5.2.4.3 Participant Mean Functions 
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The participant mean function estimates are displayed in Figure 25. The participant-wise 

mean trajectory estimates captured the real participant mean functions. The estimates did 

not capture the empirical participant means particularly well (see participant 24, 

condition 2). However, the empirical participant means were noisy. Thus, the model 

managed to capture the true participant mean functions despite particularly noisy 

empirical data. Figure 26 displays the median values of the posterior estimates across 

participants for each condition to facilitate the detection of outliers. There were no 

notable outliers among the participant mean functions for either condition. 
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Figure 25 The mean function estimates for each participant, for conditions 1 (turquoise) 
and 2 (red), with scaled position (y-axis) as a function of proportion of 
movement (x-axis). The solid colored lines represent the median of the 
posterior estimates of the participant mean functions. The dashed colored 
lines, surrounding the solid colored lines, make up the 95% credible intervals 
of the participant mean function estimates. The solid light gray lines represent 
the empirical means of the normalized data. The black dashed lines represent 
the real, latent, participant mean functions.  

 

 

 

Figure 26 The mean function estimates for each participant, for conditions 1 and 2, with 
scaled position (y-axis) as a function of proportion of movement (x-axis). The 
solid colored lines represent the median of the posterior estimates of the 
participant mean functions.  

 

5.2.4.4 Hyperparameters for Noise Functions 

 

The participant noise function estimates are displayed in Figure 27. The participant-wise 

noise function estimates captured the real participant mean functions. As with the 

participant mean functions, the estimates did not capture the empirical participant noise 
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functions particularly well because the empirical data were noisy. Again, the model 

managed to estimate the true participant functions despite noisy empirical data. Figure 28 

displays the median values of the posterior estimates across participants for each 

condition to facilitate the detection of outliers. There was one notable outlier among the 

participant noise functions for condition 2. This participant had relatively little trial-by-

trial variability early in their movement for condition 2.   
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Figure 27 The noise function estimates for each participant, for conditions 1 (turquoise) 
and 2 (red) conditions, with log standard deviation (y-axis) as a function of 
proportion of movement (x-axis). The solid colored lines represent the 
median of the posterior estimates of the participant noise functions. The 
dashed colored lines, surrounding the solid colored lines, make up the 95% 
credible intervals of the participant noise function estimates. The solid light 
gray lines represent the empirical variability (log SDs) of the normalized data. 
The black dashed lines represent the real, latent, participant noise functions. 

 

 

 

Figure 28 The noise function estimates for each participant, for conditions 1 and 
condition 2, with log standard deviation (y-axis) as a function of proportion 
of movement (x-axis). The solid colored lines represent the median of the 
posterior estimates of the participant noise functions.  

 

5.2.4.5 Population Mean Functions 

 

The population mean function estimates are displayed in Figure 29. The population mean 

function estimates captured the true population mean functions. The estimates also 

tracked the empirical population mean functions fairly well, however these were noisy as 
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a result of the noisy participant-wise functions. There was large effect of condition on the 

population mean functions such that condition 1 had much greater position than condition 

2 for the first half of the movement. This trend was reversed around three quarters way 

through the movement. These results were similar to those obtained from the fANOVA 

analysis. However, there was less uncertainty associated with the Bayesian estimates 

which allowed for the detection of an effect of condition around the 0.75 mark of the 

proportion of movement – an effect not detected by the fANOVA analysis. Furthermore, 

the fANOVA estimates slightly underestimated the population mean functions for 

condition 2, whereas the Bayesian estimates captured the true population mean function 

very well.  
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Figure 29 The population mean function estimates for condition 1 and condition 2 (A), 
and the effect of condition (condition 1 minus condition 2; B), with scaled 
position (y-axis) as a function of proportion of movement (x-axis). The solid 
colored lines represent the median of the posterior. The error bands 
surrounding the solid colored lines make up the 95% credible intervals of the 
posterior estimates. The solid light gray lines represent the empirical means 
of the normalized data. The black dashed lines represent the real, latent, 
population mean functions. Condition 1 and condition 2 are represented by 
“C1” and “C2”, respectively. 

 

5.2.4.6 Population Noise Functions 

 

The population noise function estimates are displayed in Figure 30. The population noise 

function estimate for condition 2 captured the true population mean function. However, 

the population noise function estimate underestimated the trial-wise variability for 
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condition 1. Unfortunately, it is unclear what the cause of this underestimation was since 

the other Bayesian model estimates were quite accurate. The estimate for condition 1 

tracked the empirical population noise function fairly well. However, the estimate for 

condition 2 overestimated the variability compared to the empirical population noise 

function. The empirical population noise function for condition 2 was likely negatively 

biased by the outlying participant which had substantially smaller trial-wise variability 

values across the trajectory than the bulk of the participants (see Figure 24).  

 

The estimate of the effect of condition slightly underestimated the true effect of 

condition. This was due to the underestimation of the true population noise function for 

condition 1. There was large effect of condition on the population noise functions such 

that condition 2 had much greater variability than condition 1 for the second half of the 

movement. The opposite trend was present to a lesser extent early in the movement. 

These results are largely consistent with those of the spatial variability profile analysis. 

However, the latter failed to capture the nuanced effect of condition on population noise 

very early in the movement (0.00 of proportion of time), whereas the Bayesian analysis 

detected this effect. 
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Figure 30 The population noise function estimates for condition 1 and condition 2 (A), 
and the effect of condition (condition 1 minus condition 2; B), with log 
standard deviation (y-axis) as a function of proportion of movement (x-axis). 
The solid colored lines represent the median of the posterior estimates. The 
error bands surrounding the solid colored lines make up the 95% credible 
intervals of the posterior estimates. The solid light gray lines represent the 
empirical variability (log SDs) of the normalized data. The black dashed lines 
represent the real, latent, population noise functions. Condition 1 and 
condition 2 are represented by “C1” and “C2”, respectively. 

 

5.3   CONCLUSION 

 

R2 analysis did not reveal any significant effects. The spatial variability profile analysis 

detected an interaction effect that was characterized by greater spatial variability in the 

condition 2 compared to condition 1, later in the movement. Further, the parameter 

estimates captured the true population noise function fairly well, although the series of 

estimates for condition 2 failed to discount the inherent noise in the simulated data and 
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therefore lacked some smoothness. The fANOVA estimates indicated that the position 

values of condition 1 were larger than those of condition 2, early in the movement. The 

estimates captured the true population mean functions well.  

 

For the Bayesian hierarchical GPR analysis, broadly, the hyperparameter estimates for 

the population mean and noise functions captured the true hyperparameter values. The 

participant noise and mean function estimates captured the true participant functions 

despite substantial noisiness in the simulated dataset. The population mean function 

estimates captured the true functions well. Further, the estimates appropriately indicated 

an effect of condition later in the movement – this effect was not detected by the 

fANOVA analysis because of less precision in the estimates. The population noise 

function estimates captured the true functions well for condition 2, but not as well for 

condition 1. The cause of this inaccuracy is unclear. Regardless, the estimate of the effect 

of condition on population noise function captured the true function reasonably well and 

detected an early effect of vision. This early effect was not detected by the spatial 

variability profile analysis. Furthermore, it is unclear that it would be appropriate to make 

specific pairwise comparisons in this manner when interpreting the spatial variability 

profile results, without accounting for multiple comparisons. 
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CHAPTER 6     DISCUSSION 

 

6.1   OBJECTIVES 

 

The primary objective of the present thesis was to propose and assess a new method of 

analyzing trajectory data in the context of goal-directed reaching. The proposed method, 

Bayesian hierarchical GPR, was compared to statistical methods that have been 

traditionally used in the field, and more novel methods that have been proposed in the 

past few years. The authors believe this to be the first comprehensive application of 

Bayesian hierarchical GPR to movement trajectories in the context of online motor 

control and goal-directed reaching tasks.  

 

The secondary objective was to partially replicate the results from the basic goal-directed 

reaching task implemented by Elliott & Hansen (2010), which involved removing vision 

during movement for some trials. Elliot & Hansen (2010) compared multiple traditional 

analysis methods with respect to their ability to detect the effect of vision. In the current 

study, the relative effect sizes and the magnitude of the effects from the traditional 

analyses were compared to those of Elliott & Hansen (2010).  

 

6.2   METHODS 
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Several statistical analyses were applied to a dataset derived from a basic goal-directed 

reaching task. Participants reached towards a target as quickly and accurately as possible. 

In a blocked design, in half the trials, participant vision was removed upon movement 

onset and only regained upon movement offset. A gamut of statistical analyses was 

performed on the corresponding trajectory data. Among these analysis methods, was the 

proposed Bayesian hierarchical GPR method which primarily estimated the population 

mean function and noise functions for the trajectory amplitudes. For the cases in which it 

was meaningful to do so, the traditional statistical methods were compared to the 

proposed Bayesian method with respect to their ability to detect effects generated by the 

experimental manipulation (vision vs. no-vision) and the nuance with which the estimates 

captured these effects.  

 

In addition, several of the statistical methods that were applied to the experimental 

dataset were also applied to simulated dataset. Arbitrary functions were simulated from a 

hierarchical generative model identical to the analytical GPR model. Due to their 

arbitrary nature, the simulated functions were not necessarily representative of actual 

movement trajectories that one would expect to collect from a goal-directed reaching 

task. However, since the data were simulated, the population mean and noise functions 

(and the other parameters of the generative model) were known and could therefore be 

compared to the estimates generated by the list of applicable statistical methods. This 

allowed the authors to directly assess the accuracy of the estimates across statistical 

methods.  
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6.3   SUMMARY OF RESULTS 

 

Largely, the expected experimental effects were generated. The experimental 

manipulation of participant vision affected the nature of the movement trajectories. As 

expected, with access to vision, participants initiated their movements more rapidly and 

achieved peak velocity proportionally earlier in their movements. Further, participants 

were more accurate when vision was available during their movements. Finally, early in 

the movement, trial-by-trial movement variability was greater when vision was available. 

Similar to what was discovered by Elliot & Hansen (2010), the analysis of the spatial 

variability profile method detected the largest vision condition effects and were therefore 

purported to be among the more sensitive traditional analysis methods. Both the 

fANOVA (Gallivan & Chapman, 2014) and the Bayesian hierarchical GPR analyses 

detected notable differences in the movement trajectory amplitudes. The latter also 

detected notable differences between the population noise functions of the two vision 

conditions, mirroring the spatial variability profile results.  

 

Although several traditional methods successfully detected vision condition effects, many 

of them lacked severable desirable properties, both in isolation and in combination. For 

instance, the outcome DVs – RT, MT, Target Error, VE, CE – were analyzed separately. 

However, it is reasonable to assume that RT and MT may covary across participants, in 

the same way that the error-related DVs may well covary. The statistical tests applied to 
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the outcome variables in the current thesis, which were made to be similar to those that 

are commonly applied in the field, did not account for this covariance structure. This 

omission may have negatively affected proper estimation of effect parameters and failed 

to give the researchers the opportunity to examine meaningful correlation among the 

outcome variables. Another serious issue with the application of separate rANOVAs 

across the outcome variables is the inflation of Type I error rates. If one were studying a 

new phenomenon and had no a priori expectations for each the outcome variables, then 

would one conclude that just one significant result among all the possible significant 

results indicates the success of the experimental manipulation? Further, if one applied 

multiple comparison corrections across tests, would one fail to detect meaningful effects 

(i.e. inflation of type II error)? The issue, ultimately, is that the series of rANOVAs 

applied in the current thesis do not comprehensively model the group of outcome 

variables. 

 

The proportional TAPV analysis detected a small effect of vision. However, it did not 

provide substantial information and nuance about the nature of the effect under 

examination. Although it is useful to know that the kinematic structure of two sets of 

trajectories differ between experimental conditions, it is more useful to understand the 

way in which they differ. Indeed, the fANOVA and GPR methods provided normalized 

estimates of the population mean functions. The information regarding TAPV was 

embedded in these results. Further, the function estimates provided more detailed 

accounts of how the trajectories were affected by the experimental manipulation.  
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The discontinuity analysis measured a relatively small effect size for the effect of vision. 

Indeed, although this method may have been useful in the current experimental paradigm 

in which discontinuity counts differed between conditions, it has the inherent 

shortcoming of not providing any detail about differences between the shapes of 

trajectories across conditions and cannot detect adjustments that may be made in a more 

continuous or smooth manner. The R2 analysis suffered from the same issue in principle: 

it only provided a crude measure of auto-correlation at certain points in the movement. In 

the present thesis, the R2 analysis also failed to detect the expected interaction effect.  

 

The spatial variability and epsilloid methods both illustrated the manner in which trial-

wise variability differed between conditions in reasonable details. The epsilloid method 

offered the comparative advantage of having greater temporal resolution and accounting 

for all three dimensions of the movement. The issue with both these methods, however, is 

that they only examine movement variability across trials and do not account for 

differences in the actual trajectories. Furthermore, for both methods, it is unclear how 

inferences are to be made regarding trial-wise variability differences at specific 

normalized time points along the spatial variability profile. The multiple comparison 

issues that have been addressed throughout the current thesis come up again when trying 

to make inferences beyond the trend-based interpretation of the rANOVAs for these 

spatial variability methods.  
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The fANOVA analysis provided a nuanced representation of the manner in which the 

trajectory amplitudes differed between conditions. Unfortunately, the fANOVA method 

comes with its own interpretive issues. For instance, in the current thesis, the fANOVA 

analysis effectively consisted of a series of t-tests, one for each time point. Gallivan & 

Chapman (2014) argue that the fANOVA ought to be interpreted as a single data object, 

thereby making inference statements regarding trajectory differences at any particular 

point in time verboten. It then becomes unclear what inferential value is added by the 

fANOVA. Does the fANOVA reduce itself to a descriptive statistical tool as opposed to 

an inferential one? How precisely is one meant to comment on a series of t-tests results in 

a holistic manner? Ultimately, the precise inference statements one ought to make about 

an fANOVA object are unclear. Furthermore, the fANOVA analysis suffers from a 

shortcoming that is shared among the other traditional analysis methods: it does not 

model the data hierarchically and therefore fails to account for the uncertainty in the data 

at the participant level. The following section will discuss the ways in which the Bayesian 

hierarchical GPR method addresses these and other issues discussed in this subsection.  

 

6.4   GPR vs. Traditional Analyses 

 

The GPR analysis outperformed the other analysis methods in several respects. For one, 

the GPR analysis provided a more comprehensive account of the results. This was largely 

a result of the nature of the model itself. The Bayesian hierarchical GPR model provided 

estimates for participant mean and noise functions, and for population mean and noise 

functions and their hyperparameters. Therefore, whereas the fANOVA method provided 
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estimates for population movement amplitude and the spatial variability profile analysis 

provided estimates for the population noise function, the GPR model did both under a 

single cohesive statistical framework.  

 

Another advantage to the GPR method is that it tended to produce estimates with less 

uncertainty (i.e. tighter error bars). Indeed, the error bars of the GPR population mean 

function estimates for the simulated dataset were notably tighter than those for of the 

fANOVA estimates. For the experimental dataset, the population noise function estimates 

of the GPR model captured difference between conditions later in the movement that 

were not detected by the epsilloid or spatial variability profile methods.  

 

More broadly, it is not even clear whether the error bars that were selected for the 

epsilloid method were appropriate for evaluating differences between the conditions 

along the movement trajectory. The epsilloid method primarily provided an interaction 

term which does not provide inferential nuance regarding the manner in which the 

interaction effect instantiated itself in the trial-wise variability data. The interpretation of 

the GPR method is much more explicit: if the estimate of the effect of condition on 

population noise function excludes zero at given time points, then the conditions credibly 

differ at those time points in terms of variability. Furthermore, the spatial variability 

profile analysis, although it provides estimates at key points throughout the movement 

(kinematic markers), lacks a certain degree of temporal resolution and therefore nuance 

regarding the nature of the underlying population noise functions. In contrast, the GPR 
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method allows the researcher to examine differences in trial-wise variability between 

conditions at multiple (normalized) time points throughout the movement.  

 

The GPR analysis was not directly comparable to all the traditional analyses. For 

instance, looking at DVs such as RT, MT, and Target Error still offers some unique 

insights about how participants performed the task. The GPR estimates convey inferential 

information about the nature of the trajectories themselves – the shape of the trajectories 

and how the trajectories vary across trials. The GPR model does not, however, confer any 

insights regarding the absolute time it took participants to complete their movements or 

the accuracy with which the participants reached the target. In theory, DVs such as MT 

and Target Error could be incorporated into the Bayesian hierarchical GPR model. 

However, in practice, such a model would not be computationally tractable (for 

discussion, see subsection 6.5). One could design a separate Bayesian hierarchical model 

to deal specifically for DVs such as MT and Target Error, and to evaluate the extent to 

which these covary. However, such an endeavor is beyond the scope of the current thesis, 

which is centered on the application of GPRs to trajectory data.  

 

6.5   LIMITATIONS 

 

Although it is believed that the Bayesian hierarchical GPR model proposed herein 

provided substantial benefits to the analysis of limb trajectory data in the context of 

visual control, the model was far from ideal. For instance, the model only assessed one of 
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the three dimensions of space (i.e. movement amplitude). Ideally, the model would 

account for all three dimensions of space and relate them through time. With the 

proposed model, the model would have to be run separately in each of three dimensions.  

 

Another noteworthy limitation of the proposed GPR model is that it fails to fully account 

for trial-by-trial deviations in a participant’s trajectory. Indeed, the model lacks a trial-

level hierarchy in its structure. One consequence of this shortcoming is that when the 

model is used to generate samples (for a simulation), trial-wise trajectories are not 

represented as smooth continuous functions that are slightly altered in shape and position. 

Instead, trial-wise trajectories are represented as noisy (caterpillar-looking) functions. 

The failure to model each trial appropriately may result in loss precision in the 

participant-wise trajectory estimates. 

 

There are also general concerns about the normalization procedure implemented herein. 

Gallivan & Chapman (2014) argued that normalization with respect to a dimension (time 

or space) that varies across conditions can introduce misleading artifacts. In this 

particular case, these concerns are assuaged: as with Elliott & Hansen (2010), MT 

differences between the two vision conditions were not observed, suggesting that the 

trajectories did not differ substantially with respect to the dimension of time. Therefore, it 

is assessed that the normalization procedure likely did not introduce misleading artifacts. 

The current analysis involved a time normalization because the shape of the trajectory as 

a function of time was of interest. Future analyses, however, could be normalized to 
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space. 

 

Some of the standard model validation procedures for Bayesian models were not 

implemented. Indeed, there are multiple ways to validate Bayesian models beyond basic 

checks of Rhat and effective sample size (for discussion, see Gelman et al., 2014; and 

Stan Development Team, 2017). For instance, one can use posterior predictive checks 

(PPCs), which involve simulating data from the posterior distribution and evaluating the 

extent to which those simulated values match the raw data. If the model is misspecified, 

then the simulated values will not adequately resemble the raw data. Although, PPCs 

were not conducted for the proposed Bayesian model, the raw data were plotted along 

with the Bayesian estimates throughout the thesis to give the reader a visualization of 

how the model estimates matched the raw data. The results were deemed to be 

satisfactory because model estimates matched the raw data in most cases.  

 

Sensitivity analyses, which involve running the model with various plausible probability 

models (in the prior or the likelihood) to evaluate the extent to which the resulting 

posterior distribution is sensitive to the choice of probability models, constitute another 

validation method. This method of validation was run informally during the model 

building stage of the current thesis. Multiple prior distributions were tested, and they did 

not appear to have a substantial impact on the resulting posterior estimates. Indeed, this 

finding was not surprising given that the priors were selected to be uninformative, 

thereby giving more weight to the actual data in determining the posterior distributions. 

Importantly, a full-scale simulation was run demonstrating that the Bayesian estimates 

reliably captured the true underlying population and participant parameters of the 
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generative model, providing a strong validation of the model.  

 

Unfortunately, no quantitative method for evaluating the results of the simulation were 

used. Instead, the extent to which the estimates from the various statistical methods 

captured the underlying population and participant parameters was assessed via visual 

inspection. Therefore, the assessment of the relative accuracy of the various statistical 

methods was inherently subjective. The statistical outputs for the experimental dataset 

also lacked an objective evaluative framework. Indeed, although effect sizes were used to 

compare model sensitivity among basic frequentist methods, they cannot be compared 

with more complex frequentist methods or with the Bayesian method introduced in the 

current thesis.  

 

Ideally, a single parameter would be used to compare the quality (‘goodness of fit’ and 

predictive ability) of several models. In the frequentist realm, when the generative model 

is unknown, AIC scores are often used to compare the quality of different models (for 

discussion, see Burnham, Anderson, and Huyvaert, 2011). In the Bayesian realm, Bayes 

Factors are often used to compare the quality of different models (for discussion, see 

Kruschke, 2014). Unfortunately, it is unclear what metric could be used to evaluate the 

quality of statistical models across frequentist and Bayesian lines. Moreover, it is unclear 

that it would make sense to directly compare results from these two statistical paradigms. 

Finally, it is unknown which metric would be appropriate for evaluating accuracy of 

estimates from different models when the true parameter values are known (i.e. in the 

case of a simulation study).  
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Another limitation was alluded to in subsection 4.1: the trajectories must be 

downsampled in order to make the analysis computationally tractable. In theory, the 

negative consequence of this limitation should only substantively manifest itself if the 

trajectories are reasonably complicated. The experimental design presented herein 

generated simple movement trajectories. Therefore, downsampling should not have had a 

substantial negative impact on the analysis. Indeed, comparisons between the GPR results 

and those of the fANOVA and spatial variability analyses did not indicate that 

downsampling had an adverse effect on the results. Of course, issues stemming from 

downsampling would potentially arise if the GPR analysis were used to model trajectory 

estimates with multiple discrete, rapid, and subtle error-corrections.  

 

Ultimately, the downsampling issue discussed above is a consequence of a broader issue 

of computational capacity. As stated in subsection 4.2, the Bayesian hierarchical analysis 

of the experimental data took approximately 120 hours to run. Ideally, even reasonably 

sophisticated analyses should be implementable overnight. The requirement for several 

days of processing has serious practical implications. For example, it limits the 

researcher’s ability to make minor changes to the model structure and get results in a 

reasonable amount of time, thereby hampering the iterative process of model fine-tuning. 

The time constraint would also surely discourage many researchers from even attempting 

to implement the model in the first place. The computational demands of the Bayesian 

hierarchical GPR model necessitates not only time but also access to reasonably powerful 

computers that can run the model on several cores and can be left running for several 

days.  
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The Bayesian hierarchical GPR model presents other usability issues. Namely, although 

the model estimates are straightforward and intuitive to interpret, the model structure 

itself is reasonably complex. A researcher would have to be familiar with prior 

distributions, hierarchical model structures, and GPs more broadly to intelligently 

construct a Bayesian hierarchical GPR model. These statistical concepts are not part of 

the typical researcher’s knowledge base in the field of goal-directed reaching. Thus, most 

researchers would have to spend time getting familiar with these statistical concepts to 

implement the statistical model proposed in the current thesis. Luckily, Bayesian methods 

are gaining traction (Kruschke & Liddell, 2015), and therefore will become more 

accessible to those researchers that are interested in implementing Bayesian statistics in 

their work. 

 

6.6   CONCLUSION 

 

The Bayesian hierarchical GPR model was successfully implemented and conferred some 

substantial benefits with respect to its ability to generate a comprehensive set of accurate, 

precise, and relevant posterior estimates. Furthermore, the experimental manipulation 

largely produced the expected results, thereby partially replicating the results of Elliot & 

Hansen (2010). Despite these positive outcomes, the typical researcher may be hesitant to 

consider using this method because of the limitations listed in subsection 6.5. Ultimately, 

the complexity of the Bayesian hierarchical GPR model and its computational limitations 

may not outweigh its stated benefits. On the other hand, researchers with unique 

statistical backgrounds should endeavor to use the method because many of the stated 
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limitations would naturally become obsolete. Therefore, Bayesian hierarchical GPR 

should be considered a specialized tool until steps are taken to facilitate the 

implementation of the method. 
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APPENDIX A     Consent Form 
 

 
 
Project title: Measurement of Reach Trajectories with and without Visual Feedback 
Lead researcher:  
Mr. Ghislain d’Entremont 
Master of Science Candidate 
School of Health and Human Performance 
Phone: (902) 802-5671 
Email: gh679509@dal.ca 
Supervisor:  
Dr. Heather Neyedli 
School of Health and Human Performance 
Email: hneyedli@dal.ca 
Phone: 902 494 6786 
Funding provided by: National Science and Engineering Research Counsel of Canada (NSERC) 
Introduction 
We invite you to take part in a research study being conducted by Ghislain d’Entremont at 
Dalhousie University  
The Health Sciences Research Ethics Board of Dalhousie University has reviewed the project and 
found it to conform to current ethical guidelines. It is the responsibility of us, the researchers, to 
adhere to these guidelines. These guidelines require:  

1) That you be informed of the purpose of the research project and any attendant 
inconvenience, risk or benefits. 

2) That the character of the task required be explained to you 
That you be made aware that participation is entirely your choice and that you may 
decline to continue at any point during the course of the research project, without loss of 
expected compensation. Further, if you are a student at Dalhousie University, there will 
not be any academic impact based on your decision of whether or not to participate 
and/or a decision to withdraw from the study at any point.  

Please ask as many questions as you like. If you have questions later, please contact the lead 
researcher. 
Purpose and Outline of the Research Study 
Our study serves to characterize the movement pattern of the hand when reaching to targets with 
and without visual feedback. You will be asked to attend a single session lasting approximately 
30 minutes.  
Who Can Take Part in the Research Study 
You can take part in this study if you are between 18-34 years of age, are right handed and have 
normal or corrected-to-normal vision. You have normal vision, as far as we are concerned, if you 
can read this sentence while holding this paper at arm’s length.  
What You Will Be Asked to Do 
You will use a touch-screen computer screen, similar to that of a tablet. Infra-red emitting diodes 
(IREDs), which are small sensors about the size of a lentil, will be placed on your index finger, 
and the Optotrak Certus system will be used to collect positional data of your movement. (Note 
that the camera system only measures infra-red light, thus it only measures the position of the 
IRED and does not record images of you.) The position of the your index finger in 3D space will 

mailto:gh679509@dal.ca
mailto:hneyedli@dal.ca
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be recorded in each trial. 
There will be a ‘home’ location where you will be asked to keep their (right index) finger. Upon 
the onset of the trial the target will be appear after a variable period of time, signaling that you 
may begin your movement to it. You will be asked to reach and touch the target, which will 
appear as a small shape on the touch screen, as quickly and accurately as possible.  
You will be asked to wear occlusion goggles throughout the duration of the experiment. 
Occlusion goggles are simply goggles that can be programmed to go from a see-through to an 
opaque state, thus eliminating your vision. On some trials, the occlusion goggles will shift to their 
opaque state upon movement initiation. Therefore, you will sometimes be making reaching 
movements to targets without being able to see your limb or the target. 
The entire experiment will be broken up into blocks. You will complete 20 to 40 trials in each 
block. 
Possible Benefits, Risks and Discomforts 
There are no direct benefits to participating in this study. Participating in the study might not 
benefit you, but we may gain insight into the cognitive processes that are responsible for the 
online control of limb trajectories.  
Risks: There are minimal risks for participating in this study and they are similar to working with 
a tablet or iPad. You may experience some mental fatigue while completing the response 
selection task. Breaks will be provided in order to combat mental fatigue. 
Compensation / Reimbursement 
To thank you for your time compensation will be awarded in the form of 0.5 credits per half hour 
(if recruited through SONA).  
How your information will be protected: 
All consent forms from the study will be kept in the Cognitive Motor Performance Lab (Dr. 
Heather Neyedli). The lab will remain locked when no other lab members are within it. 
Therefore, only lab members will have access to the consent forms.  
We will describe and share our findings in papers and/or presentations.  We will be very careful 
that no one will be identified. This means that you will not be identified in any way in our 
reports. The people who work with us have an obligation to keep all research information private. 
Also, we will use a participant number (not your name) in our written and computer records so 
that the information we have about you contains no names. The data we recorded from your 
movements may be made available to the public, in which case your participant number will be 
randomized so that your order of participation (e.g. were you the first participant?) cannot be 
inferred. In particular, your data will be made available via a software sharing service such as 
GitHub and/or via an R package. The basic demographic information we collect at the beginning 
of the experiment (age and sex) will not be made available. 
If You Decide to Stop Participating 
You are free to leave the study at any time. If you decide to stop participating at any point in the 
study, you can also decide whether you want any of the information that you have contributed up 
to that point to be removed or you will allow us to use that information. You can also ask for your 
data to be removed immediately after the completion of the study. However, once you leave 
research laboratory following the completion of the study, you will no longer be able to remove 
your data. The reason for this limitation is that we want the ability to publish participant data 
online for the sake shared analysis and storage throughout the course of the data collection 
process.  
It is important to make the data publically available given that this is an analysis based project. 
This will allow other researchers to replicate our analyses and compare the results obtained from 
other analysis techniques beyond the techniques used in the present study. 
How to Obtain Results 
If you would like a copy of the study results please contact Ghislain d’Entremont (902-802-5671 
or ghislaindentremont@gmail.com)   

mailto:ghislaindentremont@gmail.com
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Questions   
If you have questions or concerns about your participation in this research study please contact 
Ghislain d’Entremont at any time with questions, comments, or concerns about the research 
study.  
If you have any ethical concerns about your participation in this research, you may also contact 
Research Ethics, Dalhousie University at (902) 494-1462, or email: ethics@dal.ca (and reference 
REB file # 2017-4239). 
 

 
Signature Page 

 
Project title: Measurement of Reach Trajectories with and without Visual Feedback 
Lead researcher:  
Mr. Ghislain d’Entremont 
Master of Science Candidate 
School of Health and Human Performance 
Phone: (902) 802-5671 
Email: ghislaindentremont@gmail.com 
 
I have read the explanation about this study. I have been given the opportunity to discuss it and 
my questions have been answered to my satisfaction. I understand that I have been asked to take 
part in one session in the Cognitive and Motor Performance Lab at Dalhousie University. I agree 
to take part in this study. My participation is voluntary and I understand that I am free to 
withdraw from the study at any time, and my data can be withdrawn up until the time I leave the 
research laboratory. I understand that my data may be made available to the public, but that a 
participant number will be used instead of my name to maintain the anonymity of my data.  
 
 
 
____________________________  __________________________ 
 ___________ 
Name         Signature  Date 
  
 

 
 

 
 
 
 
 

 

For SONA participants, please check this box if you wish to participate as an 
observer. As an observer, your data will not be used in the study as discarded upon 
completion of your participation. 

mailto:ethics@dal.ca
mailto:hneyedli@dal.ca
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APPENDIX B     Verbal Consent Form Clarification 
 
 
You have just read through the consent form. Now, I would like to clarify a few things about the 
study before you give your written consent. First, I will briefly explain the design. You will make 
speeded reaching movements towards visual targets as they appear on a touch screen. Sometimes, 
you will lose your vision during your movement because the goggles you will be wearing will 
become opaque.  
 
Now, I will clarify what we will do with your data after data collection. Information about your 
movements trajectories and responses will be made publicly available. However, your identify 
will in not be associated with the data. Only a randomized participant ID will be associated with 
your data.  

 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 

 
 



 
142 

APPENDIX C     Participant Instructions 
 

 

You will complete two experimental blocks. Each block will consist of 20 trials. Before each 
block there will be a practice block of 10 trials. You will be wearing goggles that will sometimes 
block your vision during your movement. 
 
In each trial, you will be required to make a reaching movement towards a visual target. The trial 
will begin once you press the cross at the bottom of the touch screen, at which point you will hear 
a brief ‘beep’ sound. Shortly after, a target (a small white square) will appear on the screen. You 
will be required to touch the target with your right index finger as quickly and as accurately as 
possible.  
 
In one of the two experimental blocks, the goggles you will be wearing will turn from a 
transparent to an opaque state upon movement onset, thereby blocking your vision. Therefore, in 
these trials you will not be able to see the target during your movement. Once you have touched 
the screen in the vicinity of the target, you will hear a ‘beep’ sound, identical to the one described 
earlier. Almost immediately afterwards, the goggles will turn back to their transparent state, 
allowing you to see how close you were to the target. In the other block, the goggles will remain 
transparent for the entire duration of the trial. In both conditions, please leave your finger where it 
landed until the target disappears.  
 
Importantly, the touch screen sometimes fails to register touch responses. A specific angle and 
strength of finger press is required for the screen to register responses. In cases where the touch 
screen fails to register a response, wiggle your finger slightly - this should help with response 
detection. Please take advantage of the practice trials to familiarize yourself with the touch 
screen’s sensitivity. Let me know if you have any questions. 
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