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Abstract 

As multivariate data sets have become commonplace in chemical analysis, the need 

for new data analysis methods to extract different kinds of information has increased 

dramatically. Often methods are adopted and adapted from other fields of science to suit 

the needs of chemical data analysis. Two examples that have begun to gain interest for 

chemical applications are projection pursuit analysis (PPA) and independent component 

analysis (ICA). 

PPA and ICA are both linear projection methods, but with seemingly different 

goals. PPA aims to locate “interesting” projections of the data to explore natural clusters 

that may exist among the samples. Since Gaussian distributions of the data are usually 

considered the least interesting, PPA often employs metrics which are able to measure 

deviations from Gaussian behaviour, such as the fourth statistical moment, kurtosis. In 

contrast, ICA methods aim to extract statistically independent source signals from mixtures 

of multiple components. Since statistical independence is difficult to measure, ICA often 

uses non-Gaussian behaviour as a surrogate for independence, establishing a relationship 

between these two methods. 

This work presents a critical evaluation of key algorithms for PPA and ICA in 

applications related to clustering and signal extraction for chemical data. The relationship 

between PPA and ICA, which has been alluded to in the literature, is firmly established 

through theory and application. It is demonstrated through application to selected data sets 

that, while useful for certain kinds of problems, these methods are likely to have limited 

utility for signal extraction in chemistry, where the source signals are rarely statistically 

independent and have unpredictable distributions. In contrast, both methods are shown to 

be useful for clustering applications, but PPA is generally more powerful because of its 

ability to explore the full variable space. This is demonstrated through a case study where 

traditional exploratory data analysis methods fail due to a complex error structure in the 

data.  
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Chapter 1 – Introduction 

1.1 Introduction 

Multivariate measurements are now commonplace in scientific data analysis and as 

the ability to acquire large amounts of data becomes more feasible, newer and more 

inventive methods are required to extract useful information. The increasing abundance 

and diversity of multivariate chemical measurements has been a constant motivation within 

the field of chemometrics to develop new tools to enhance the ability to extract information, 

often leveraging the unique characteristics of the measurement systems employed or the 

information target to improve on existing methods. Certain tools that were once foreign to 

chemistry, such as principal components analysis (PCA) and partial least squares 

regression (PLS), are now routinely applied to large data sets [1]. However, the quest 

continues for new and more powerful tools, especially to address evolving and challenging 

problems in areas such as hyperspectral imaging and metabolomics. New methods may 

involve an adaptation of existing techniques (e.g. improved data preprocessing), the 

adoption of strategies developed in other fields and transplanted to chemistry (such as 

support vector machines), or the rebirth of a previously little-used method due to relevant 
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changes in implementation or application requirements. In some cases, the novelty of these 

approaches sustains them only temporarily or for niche applications in chemistry, while 

other methods become part of the mainstream of chemometrics and can even be 

transformative. In all cases, however, it is important to understand at a fundamental level 

how these methods work, how they differ from existing tools, and what particular 

advantages they bring to the analysis of chemical data, which often differs from other areas 

of application. 

It is the goal of this work to investigate two multivariate data analysis methods that 

have recently been proposed as promising alternatives for the treatment of chemical data: 

projection pursuit analysis (PPA) [2] and independent component analysis (ICA) [3]. In 

particular, the objectives are: (1) to describe the underlying theory of these methods and 

the various algorithms used for their implementation, (2) to describe the relationships of 

these methods with more traditional approaches and with each other, (3) to provide an 

assessment of these methods for applications in exploratory data analysis (EDA) and 

multivariate curve resolution (MCR) using a variety of data sets, and (4) to provide a 

critical evaluation of PPA and ICA for chemical data analysis, emphasizing their strengths 

and limitations in the context of the selected applications. 

This chapter begins with a brief overview of exploratory data analysis and 

multivariate curve resolution as important general problems in chemistry. This is followed 

by a short discussion of PPA and ICA as alternative approaches. 

1.2 Exploratory Data Analysis 

To understand the complex relationships among different sets of measurements (e.g. 

samples), simplification is often sought through visualization of high-dimensional data in 
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low-dimensional spaces, sometimes referred to as exploratory data analysis (EDA) [1]. The 

goal of EDA is often to identify or confirm naturally occurring classes or groups within the 

data, so it is often closely associated with problems in classification, where the goal is to 

develop a rule or mathematical methods to classify unknown samples (e.g. healthy vs. 

diseased). Classification methods are typically divided into two categories: supervised and 

unsupervised [1]. Supervised methods use a priori knowledge of class membership to build 

classification models of the data, while unsupervised methods (which encompass EDA) 

look for naturally occurring clusters of the data without being told the classes. Supervised 

methods require caution and careful cross-validation to prevent cases of overfitting, 

particularly with high-dimensional data such as that often collected for chemical analysis. 

Unsupervised (EDA) methods can be used to explore data for naturally occurring 

separations to ensure sufficient information is present prior to building a classification 

model. This can be done completely blind for exploratory purposes or can be done under 

“semi-supervised” conditions where the algorithm is not given class information, but the 

user is able to evaluate the validity of the clustering using their knowledge of the classes 

present, often by visually inspecting the results. 

Two unsupervised methods that are widely used for clustering are hierarchical cluster 

analysis (HCA) [1,4,5] and principal components analysis (PCA) [1,4–7]. HCA is a 

nonlinear mapping technique that renders the information about the distance among objects 

(samples) in a high-dimensional space into a two-dimensional representation known as a 

dendrogram. Figure 1.1 shows an example of a dendrogram from results that will be 

discussed in Chapter 3. Each terminal point on the x-axis represents a different sample, in 
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this case samples of obsidian (a volcanic rock), where the colour coding represents different 

locations where it was collected. The length of vertical connections between samples 

indicates their proximity in a multidimensional space, in this case the space of metallic 

element abundance. In this way groupings of samples are easily visualized. Often 

dendrograms are used in conjunction with so-called heat maps to display the characteristics 

of variables, such as the expression levels of genes or proteins. Ideally the connections at 

higher levels in the dendrogram will be associated with the terminal nodes at the bottom to 

indicate that the samples closest to one another belong to the same group. While some 

groupings are evident in this example, in other cases a clear class separation may not be 

observed. This could be because such a separation is not possible or because the constraints 

 

Figure 1.1 An example of a dendrogram. Each terminal end at the bottom corresponds to a 
sample and the colours indicate the class membership. (Data explained in Chapter 3) 
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of the data analysis method do not permit it to be observed. Alternative methods may be 

able to provide a different perspective. 

PCA [1] is a linear projection technique expressed by the bilinear model given in 

Equation 1.1, where  (  samples by  variables) is the data matrix,  ( , if ) 

is a matrix containing what are commonly known as the scores for each sample and the 

row vectors in the matrix  ( , if ) are often referred to as the loadings or 

projection vectors.  

 

(Note: Throughout this thesis, uppercase bold symbols will be used to represent matrices, 

while lowercase bold symbols will be used to represent row or column vectors, unless 

otherwise specified. Scalars will be represented by italics.) PCA carries out an orthogonal 

rotation of the original variables (e.g. wavelength channels) to maximize the information 

contained in the lowest dimensions of the new space (i.e. the scores). Scatter plots of the 

first two or three columns of  represent a projection of the multivariate data into a two- 

or three-dimensional space while preserving the maximum amount of information about 

the relationships among objects. These plots, commonly known as scores plots, are often 

used to determine which samples group together and can therefore be considered to 

represent a cluster or class. As an example, Figure 1.2 shows a scores plot for the same 

data used in Figure 1.1, where the data matrix  consists of concentrations of metallic 

elements collected from  channels for  samples. Ideally, we would see a separation of 

objects in this space according to their class (different symbols, colours) which is seen here, 

though this is not always the case. PCA provides an alternative visualization of the data 

from HCA but may be subject to the same problems. The lack of a clear separation may be 
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the result of deficiencies in the data (insufficient information) or in the analysis method 

(insufficient criteria). Knowing which of these is the case is a critical question in 

chemometrics. 

Both HCA and PCA are extensively used in chemical applications that include 

proteomics [8,9], metabolomics [10–12], food science [13,14], forensics [15–17], medical 

diagnostics [18,19], and threat detection [20]. An important goal of both techniques in these 

and other applications is to either identify or confirm groupings of samples that are 

consistent with external classifications that are based on other factors, such as disease state 

(medicine), geographic origin (food analysis), provenance (forensics) and biological 

 

Figure 1.2 An example of a PCA scores plot. Each point represents a sample in the new 2-
dimensional PCA space. The colours and symbols distinguish between the different classes (see 
legend) and are consistent with the colour coding in Figure 1.1. 
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species (chemotaxonomy). The widespread use of these tools is based, in part, on the fact 

that they are unsupervised methods, which means that the visualization uses no prior 

knowledge of the class structure. This is in contrast to supervised methods, such as partial 

least squares discriminant analysis (PLS-DA) [21,22], which actively employ class 

information to build a model and therefore require careful validation to avoid overfitting. 

Because no class information is employed in HCA and PCA, they have gained acceptance 

as suitable methods for hypothesis confirmation where the key question is whether the data 

contain sufficient information to distinguish different groups of samples, especially when 

the number of samples is small and the number of variables is large. This is often a critical 

question in research and can determine whether a line of inquiry continues or is abandoned. 

This accounts for the pervasive application of these methods across all areas of chemistry. 

While HCA and PCA are powerful and useful techniques, they can be subject to 

serious limitations when applied to problems where the data do not meet certain criteria. 

HCA is based on the calculation of Euclidean distances among objects in higher 

dimensions, while PCA creates a subspace that maximizes the amount of variance retained 

in the data. Both of these methods are sensitive to the scale of the data, which means that 

variables which have a larger range will be weighted more heavily when mapping the high-

dimensional data to lower dimensions, even if the information content is greater for 

variables with a smaller range. For example, a small mass spectral or nuclear magnetic 

resonance (NMR) peak that contains important information for the separation of classes 

may be eclipsed by larger peaks with a variability that does not correlate with class 

separation, resulting in a projection that does not reveal the critical relationships. In some 

cases, this problem may be mitigated by appropriate pretreatment of the data (e.g. variable 
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scaling, log transformation) but this may give rise to other problems [4,23,24]. For 

example, scaling of variables that are predominately associated with noise (e.g. baseline 

regions) increases their influence in the mapping process even though they have no 

relevance in classification. This problem is further exacerbated by complex measurement 

noise structures which may include non-uniform error variance among variables (referred 

to as heteroscedastic noise) or correlated errors [25]. 

The principal weaknesses of HCA and PCA for unsupervised clustering with 

multivariate chemical data are: (1) lack of a criterion to distinguish meaningful chemical 

variance in a data set from the noise variance, and (2) a reliance on variance and distance 

metrics to develop interesting and useful projections of the data. A number of methods 

have been proposed as alternatives to HCA and PCA which use metrics that are less 

susceptible to the error structure of the data. A few of these methods will be demonstrated 

and discussed in the following chapters. 

1.3 Multivariate Curve Resolution 

Aside from projections and clustering, another common goal in chemical data 

analysis involves extracting underlying chemical profiles from samples containing 

mixtures of compounds through multivariate curve resolution (MCR). Such problems in 

mixture analysis are commonplace in chemistry. For example, one may obtain mixture 

spectra throughout the course of a chemical reaction and may be interested in obtaining the 

spectra of pure components, especially intermediates. Other examples include 

chromatography (where the goal is to extract the profiles of unresolved peaks) and 

environmental analysis (with the aim of identifying the profiles of individual pollution 

sources). More recently MCR has been applied to hyperspectral imaging where the goal is 
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to use spectral data at each pixel to locate particular objects (e.g. tumours, physical 

boundaries) within the image. Like PCA, multivariate curve resolution (MCR) can be 

expressed using a bilinear model (Equation 1.2), breaking the data,  ( ), into 

matrices representative of the concentrations (contributions), , where  is the 

number of components), and profiles (e.g. pure component spectra),  ( ), of the 

chemical components while also taking into account the errors present in the data,  

( ).  

 

An example of this type of data is shown in Figure 1.3, where the objective would be to 

use the mixture spectra on the left ( ) to extract the pure component spectra shown on the 

right ( ) and the mixture concentrations (  - not shown). To obtain a unique solution (or a 

limited range of “feasible” solutions) for  and , it is necessary to impose constraints on 

the solution, such as non-negativity and unimodality. Thus, instead of being solely based 

on variance like PCA, MCR methods are able to incorporate knowledge of the desired 

profiles into the optimization process. Although initially applied to UV-vis spectroscopy, 

 

Figure 1.3 An example of the objective of multivariate curve resolution. a) Mixtures of signals. 
b) Pure compound spectra. (Data explained in Chapter 3) 
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MCR methods have since successfully been applied to a wide range of methods including 

chromatography [26], IR [27], NMR [28], hyperspectral imaging [29] and voltammetry 

[30].  

Lawton and Sylvestre [31] have been credited as the first to look into fundamental 

MCR constraints, starting with simple non-negativity. Since then there have been many 

algorithms developed to perform MCR based on slightly different principles. The 

algorithm that has arguably become the most popular is multivariate curve resolution by 

alternating least squares (MCR-ALS) [32] which allows for a wide range of customizability 

in terms of profile constraints. This flexibility in functionality allows for the user to 

incorporate everything that is known about the data into the analysis such as non-negativity, 

unimodality and closure in the concentrations or profiles. Given the nature of the 

experimental system, many of these characteristics are known about the data and allow the 

algorithm to apply these restrictions to obtain more stable and reliable results. Due to this, 

the advantages of MCR-ALS for chemical data analysis are abundant and obvious. 

1.4 Alternative Methods 

Despite how well pre-existing methods may or may not perform, there is always 

interest in alternative methods. Since the nature of relying on variance alone is often a 

pitfall of PCA, there have been a number of suggestions made which aim to overcome this. 

One such method is maximum likelihood principal components analysis (MLPCA) which 

incorporates known error structures into the optimization in an effort to capture only the 

variance between samples rather than those due to other sources (e.g. sample preparation, 

instrumental error) [33]. The advantages of MLPCA have been demonstrated for a number 

of data analysis strategies, including clustering [34] and curve resolution [35], which are 
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the principal focus of this work. However, MLPCA requires a reliable knowledge of the 

measurement error covariance matrix (ECM), which is often not available, so it is only 

included as a peripheral method in this work, appearing to demonstrate context in Chapter 

4. 

When clustering through exploratory data analysis is of interest, one alternative 

method that has been proposed is projection pursuit analysis (PPA) [36], which is similar 

to PCA in the sense that they are both projection methods based on bilinear decomposition 

of the data. However, instead of variance, PPA implements other metrics to evaluate the 

projected patterns of interest. Unlike PCA, which has a single mathematical description, 

PPA encompasses a philosophical approach of finding “interesting” projections of the data. 

This means that a variety of criteria and algorithms have been used, making comparisons 

more difficult. In addition to clustering, PPA has also been applied to other problems, such 

as regression. The present work will focus on kurtosis-based PPA (kPPA) applied to 

problems in clustering. 

Another method that has generated a lot of interest recently is independent 

component analysis (ICA) [3]. Given its similarity in name to PCA it is not surprising that 

there are some relationships between the two methods. ICA (like PCA, MCR and PPA) 

also consists of a bilinear decomposition of the data, though instead of variance (PCA) or 

interesting projections (PPA) being the focus, the development of ICA was based around 

extracting independent signals from the data. Put another way, the application of PPA 

typically focuses on the relationships among the samples, while ICA normally emphasizes 

the characteristics of the source signals (e.g. pure component spectra). In this sense, ICA 
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can be considered to be somewhat analogous to MCR, although it has also been used for 

other applications, such as clustering and regression. 

The focal point of the current work will be to present a description of PPA and ICA 

through the context of their applications to chemical problems. The reader may wonder, 

given the many new methods developed in the field of chemometrics, why these two 

seemingly unconnected methods have been selected. In addition to being linear projection 

methods, there are several elements that connect these two techniques. While these 

techniques cannot be considered new (PPA was first proposed almost 50 years ago), their 

application to chemical systems has been intermittent, often originating from a few 

research groups, and their role in the analysis of chemical data is still not well-defined. The 

strengths and weaknesses of these techniques are often not fully appreciated, and the 

underlying mathematics is sometimes obscured by treatments that are overly anecdotal or, 

conversely, excessively theoretical. To further complicate matters, a variety of algorithms 

are employed for many aforementioned methods, making comparisons and discussions 

confusing. This work will attempt to clarify the algorithms most commonly applied to 

chemistry and illustrate their strengths and limitations through applications to chemical 

data, supporting or refuting some of the claims made in the literature. Finally, the 

relationship between these two methods, which has been implied but never fully elucidated 

in the literature, will be explored. 

Chapter 2 aims to clarify some confusion surrounding PPA and ICA by starting with 

a general discussion of some of the theory behind these methods and a review of their 

applications in the analytical literature. To illustrate the strengths and weaknesses of each 

method, a few of the commonly used algorithms are applied to a number of selected data 
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sets, both real and simulated in Chapter 3. Application to both exploratory data analysis 

(clustering) and curve resolution are considered. Chapter 4 then presents a comparison of 

PPA and ICA with traditional methods in a case where the measurement error structure of 

the data is a confounding issue. Finally, Chapter 5 draws some conclusions on the role and 

future of these methods in the analysis of chemical data.  
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Chapter 2 – Overview of Projection Pursuit Analysis 

and Independent Component Analysis 

2.1 Introduction 

In this chapter, the main goal is to provide some background for PPA and ICA in 

terms of their historical evolution, underlying theoretical principles, algorithms, 

implementations, and applications in chemistry to date. It is important to recognize that 

these are general methods with applications across all areas of science, so the treatment 

here will be necessarily limited in scope. Likewise, a comprehensive treatment of the 

theoretical foundations will be sacrificed for a more descriptive one which highlights only 

those algorithms which are most prominent in chemistry. The two methods are first 

discussed individually, with the connections between them described at the end of the 

chapter. 
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2.2 Projection Pursuit Analysis (PPA) 

2.2.1 Background 

Like PCA, PPA is an exploratory projection method that can be expressed by a 

bilinear model as given in Equation 2.1. 

 

In this equation,  ( ) is the data matrix consisting of  responses (variables) for  

objects (samples). For example, the rows of  may contain spectra measured at  

channels for  different samples of, say, wine or blood plasma. For projection into a -

dimensional space (where  is normally 1, 2 or 3),  ( ) represents the scores for 

each sample,  ( ) is the matrix of ( ) loading vectors, and ( ) is the 

matrix of residuals. In practice, PPA attempts to find a projection matrix ( ) where 

 

The matrix  contains the “projection vectors” in the columns and it is easily shown that 

. The projection vectors (or projection directions) are typically 

orthogonal (although this is not required) and are often found sequentially by “deflating” 

the data (i.e. removing the variance associated with preceding vectors). 

Rather than using variance like PCA, PPA searches for projection directions by 

optimizing a projection index which describes the inhomogeneity, or “interestingness”, of 

the data such as the presence of clusters [36]. There have been a variety of projection 

indices developed which target certain distributions and groupings of interest within the 

data. Initially these projection indices tended to measure spread or local density of the 

points in the projected space, but more recently developed algorithms have moved more 

towards optimizing continuous functions.  
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In 1969 Kruskal was the first to suggest using lower-dimension projections to explore 

the structure of data [2] but the first successful application of PPA for clustering was by 

Friedman and Tukey [36] who coined the term “projection pursuit”. The sought projections 

were those that tended to produce many very small inter-point distances while maintaining 

the spread of the points, characteristic to the presence of clusters. This included manual 

projections and observations of results, followed by successive projections of clusters 

found in initial projections to evaluate further cluster breakdown. Friedman and Stuetzle 

later proposed projection pursuit regression (PPR) [37], a non-parametric regression 

method that searches for lower-dimensional regression surfaces containing a majority of 

data points and displaying underlying structures. 

The key challenges in the implementation of PPA have been the identification of a 

suitable projection index to reflect “interestingness” and then finding ways to extract 

projection vectors to optimize that index. Huber [38], and Jones and Sibson [39] 

investigated aspects of PPA in the following years and came to a few key conclusions and 

generalizations. Friedman considered these generalizations and built upon his initial 

projection pursuit concept, specifically considering that normally distributed data is 

uninteresting and that projection indices should be “affine invariant”, or uninfluenced by 

the covariance structure of the data [40]. These conclusions point to projection indices that 

measure how data distributions stray from normality, rather than indicating a specific 

structure. This ties into the affine invariance criterion since normal distributions are 

characterized by the mean and standard deviation, or covariance, of the data. 

With non-Gaussianity as the goal, entropy (more specifically information entropy) 

became a commonly discussed concept. The general equation for calculating the 
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differential entropy of a population, x, is shown below in Equation 2.3, where  

represents the probability density function. 

 

According to information theory, a Gaussian distribution has the highest entropy for a given 

variance, so minimizing entropy should serve as a way to find non-Gaussian distributions. 

The optimization of entropy as a projection index has been explored in several works. 

Huber [38] and Friedman [40] performed PPA by minimizing entropy and used the least-

normal projections to find clusters. Deflation by each subsequent projection resulted in 

orthogonal latent variables from PPA. In 1987 Jones and Sibson [39] developed a 

computationally efficient approach to implement an entropy-based PPA algorithm by first 

sphering the data and extracting interesting latent variables simultaneously. PPA in their 

approach was still limited to projections onto a one-, two-, or at most three-dimensional 

space, though three-dimensional plotting lacked the convenience it has today and could be 

time consuming and required specific software. High-dimensional data at the time 

consisted of fewer than 20 variables which made it impractical for many chemical 

applications (which can have thousands of variables), so projection pursuit was rarely used 

on chemical data until the early nineties. 

2.2.2 PPA Algorithms 

2.2.2.1 Sequential Projection Pursuit (SPP) 

In 2000 Guo et al developed an entropy-based algorithm called sequential projections 

pursuit (SPP) which implements a genetic algorithm to sequentially search for projections 

[41]. The idea of information entropy has been mentioned already, however values of 
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differential entropy are difficult to calculate. Instead of true entropy, Guo et al optimize 

Shannon entropy, expressed by Equation 2.4, for a discrete distribution. 

 

 A kernel density function is applied for the estimation of Shannon entropy and the data is 

deflated by each sequential latent variable, resulting in orthogonal projection vectors. 

These authors later proposed a feature selection method to select a subset of variables from 

the SPP solutions to preserve as much sample clustering information as possible [42]. 

Subsets of variables with retained inhomogeneous information (optimal consensus between 

the subsets and complete data set) could be selected using a genetic algorithm based on a 

Procrustes analysis algorithm. 

2.2.2.2 Kurtosis-based Projection Pursuit Analysis 

Another projection index suggested as a measure of non-Gaussian behaviour in the 

early days of PPA was kurtosis, the fourth statistical moment. Whereas the second moment 

(variance) measures the dispersion (spread) of a distribution and the third moment (skew) 

indicates symmetry, kurtosis is described as associated with the “tailedness” of a 

distribution, i.e. how much of the distribution resides in the tails [1]. For univariate data, 

the sample kurtosis, , is described by Equation 2.5, where  represents a measurement 

and  is the number of points. 

 

For a Gaussian distribution, . In PPA, the kurtosis of the scores projected onto each 

projection vector can be maximized or minimized to seek out non-Gaussian distributions. 
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Alternatively, the absolute value of the excess kurtosis ( ) can be maximized, although 

this will likely favour a maximization of , which has a lower limit of unity. 

A critical problem with the use of kurtosis-based PPA (kPPA) was the availability of 

an efficient algorithm to optimize the projection index. In 2011, Hou and Wentzell [43] 

presented a simple, efficient and fast “quasi-power” algorithm to perform exploratory PPA 

based on the optimization of kurtosis as a projection index with options for both univariate 

and multivariate kurtosis. The univariate kurtosis method optimizes the kurtosis of the 

scores on the projection vector ( , where  is column mean centered) according to 

Equation 2.6. 

 

Note that  represents a row vector from . For projections into spaces of dimensionality 

greater than 1, the optimization is applied sequentially after deflation of . For the 

simultaneous extraction of multiple dimensions, the multivariate kurtosis (for projection 

matrix ) was defined as  

 

 Using this quasi-power method, kurtosis can be either maximized or minimized. 

Maximization of kurtosis is used to find sharp distributions with long tails (leptokurtic or 

super-Gaussian distributions) and can identify the presence of outliers in the data. 

Minimization is more commonly applied to clustering applications and is suited for finding 

flat or bimodal distributions (platykurtic or sub-Gaussian) which are useful for identifying 

clusters. This bimodal separation makes the algorithm ideally suited for binary separation 

of evenly populated groups in multiple dimensions. Additional notes and improvements 
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have been made to the algorithm, including the implementation of a recentering approach 

which can improve results in cases where the classes are not evenly populated [44] or there 

is a small sample to variable ratio [45], as well as an algorithm that is able to handle 

complex-valued data [46]. 

The heart of the kPPA approach is the quasi-power method (qpkPPA), which is 

adopted from the power method used to estimate eigenvalues. The method is based on an 

iterative approach to finding the projection vectors which incorporates a learning 

algorithm. While the full details will not be presented here, the key equation for univariate 

kurtosis minimization is presented below as an example. 

 

In this equation,  indicates the iteration number. Although is has only been available for 

a relatively short period, the kPPA algorithm has been shown to be a useful tool in 

exploratory data analysis. 

2.2.3 Applications 

2.2.3.1 Clustering 

Given that PPA was developed with the purpose of finding “interesting” projections 

of the data, clustering has been the most common application. Exploratory applications of 

SPP have been sparse and have covered a variety of applications. Molecular similarity and 

diversity of chemical structures has been assessed by clustering and detecting 

inhomogeneities in FTIR spectra using SPP [47]. SPP has also been applied for 

characterization of the similarities of synthetic substances using electrospray ionization 

mass spectrometry data, and for the detection of outlying objects [48]. Other reports on 



 21 

applications of SPP include clustering of paracetamol formulations with the same synthesis 

pathway based on their trace-enriched chromatographic impurity profiles [49]. The most 

recent applications of SPP was by Alaerts in 2010, where it was applied to visualize the 

distinction of rhizomes from two Chinese herbs by analyzing chromatographic fingerprints 

under different extraction conditions [50].  

In the search for appropriate chromatographic conditions to separate enantiomeric 

pharmaceuticals, Klerck et al [51] applied quasi-power kPPA for clustering of different 

enantioselective patterns of chiral polysaccharides based on supercritical fluid 

chromatographic systems. In the study, chromatographic systems with different chiral 

stationary and mobile phases were characterized by the enantioresolution of 29 racemates 

[51]. The quasi-power PPA algorithm has also been applied for unsupervised clustering for 

the forensic investigation of fraudulent documents by analyzing near and mid infrared 

hyperspectral images [52]. The authors were able to discriminate between different black 

pen inks on white and bank papers. A similar study was performed by Wentzell et al using 

FTIR spectra of blue pen inks on white paper [53]. The quasi-power PPA algorithm was 

able to clearly discriminate between multiple classes in both 2 and 3 dimensions. 

2.2.3.2 Regression 

Although the applications of PPA in analytical chemistry have been relatively sparse, 

the PPR algorithm has been used a number of times, primarily for applications to 

quantitative structure-activity relationship (QSAR) type problems. In 1996 Nguyen-Cong 

and Rode [54] applied PPR for quantitative electronic structure-activity relationship 

(QESAR) analysis of antibiotics and concluded that PPR could be a useful method for 

QSAR analysis when nonlinear relationships exist, which is not uncommon for these data 
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types. Hassanzadeh et al [55] used the quasi-power kPPA algorithm as a compression 

method prior to applying radial basis function neural networks of solvatochromic 

descriptors for the prediction of gas chromatography retention behaviour of 

polychlorinated biphenyls. The compression was done by performing PPA and then 

applying the neural network on the scores obtained by PPA instead of the entire data set. 

PCA is often used for this purpose as well. 

2.3 Independent Component Analysis (ICA) 

2.3.1 Background 

Though the origins of ICA have been disputed in the literature, a work by Herault 

and Ans [3] from 1984 is often credited with the first proposed concepts, while 

clarifications of these concepts were made by Comon in the early 1990s [56]. ICA was 

initially developed for the decomposition of temporal signals such as audio records with 

the main assumption being that the contribution signals were independent. Though many 

are familiar with the idea of independence there are many definitions of independence in 

varying scientific fields, many of which are relevant to data analysis. 

The earliest references of ICA being applied in the chemical literature appears in 

2000 when De Lathauwer et al provided an introduction to the method for use in signal 

processing [57]. Since then there have been approximately 156 publications applying ICA 

for chemical analysis, though De Lathauwer’s paper has been cited fewer than 100 times. 

More than 30 ICA algorithms have been reported in the literature [58] and they can 

generally be categorized into two groups based on their interpretation of independence: (1) 

methods that maximize the non-Gaussianity of the components and (2) methods that 

minimize the mutual information [58]. FastICA [59], joint approximate diagonalization of 
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eigenmatrices (JADE) [60], and mutual information least-dependent component analysis 

(MILCA) [61] are examples of some of the algorithms most commonly used in the 

analytical chemistry literature. 

2.3.2 Theory 

The traditional ICA model used for blind source separation (BSS) can be represented 

as shown in Equation 2.9. 

 

In this equation, the matrix  ( ) consists of  different mixture signals of length , 

 ( ) is the matrix of  pure source signals that contribute to each measured signal in 

,  ( ) is the mixing matrix which determines how the pure signals are mixed for 

each mixture in , and  ( ) is the residual matrix. The goal of ICA is to determine 

the pure signals, , given only the information in . ICA is often formulated in terms of 

finding an unmixing matrix,  ( ), which can be related to the pseudo-inverse of  as 

given in Equation 2.10. 

 

The similarities between the ICA and MCR models are immediately obvious. In fact, with 

the substitution of the contribution (concentration) matrix for  and the pure response 

(spectral) matrix for , the two models are equivalent. In both cases, unique solutions are 

not possible without additional constraints, and it is here that the two approaches differ. In 

MCR, constraints are consistent with chemical measurements (non-negativity, 

unimodality, etc.). In ICA, solutions are based on the independence of signals in . 

ICA is often described in terms of a cocktail party scenario in which a number of 

digital audio recorders are placed around a room in which multiple conversations (the pure 
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source signals) are taking place. Each device records a mixture of audio signal (determined 

by its distance from each conversation) over a period of time (determining the signal length, 

). The  recordings make up the matrix  and the goal of ICA is to extract the individual 

conversations, . To accomplish this goal, the assumption is made that the distributions are 

statistically independent from one another. 

Statistical independence implies that knowing the value of one random variable does 

not convey information about the value of another. In the example above, it is reasonable 

to assume that knowing the magnitude of the audio signal from one conversation at a point 

in time tells us nothing about the signal from a separate conversation, so the variables can 

be considered independent. Independence can apply to both discrete and continuous 

variables, but the continuous case is more relevant for this discussion. 

The definition of statistical independence between two continuous random variables 

involves the probability density functions (PDFs) of the variables. Considering two signals 

as random variables x and y with respective marginal PDFs  and , then  and  

are independent if and only if Equation 2.11 holds. 

 

That is, their joint PDF is equivalent to the product of their respective individual PDFs. 

This principle extends to more random variables as well and the goal of ICA is to find 

source vectors in  that satisfy the model equation (Equation 2.9) while simultaneously 

maximizing the statistical independence of said vectors. 

In practice, PDFs are difficult to calculate from finite populations such as measured 

signals, so often the independence of the signals is assessed using a variety of surrogate 

methods. Given that more than 30 algorithms have been reported for ICA [58], assessing 
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them all is beyond the scope of this study. However, they can generally be divided into two 

categories based on their approach to estimating independence:  

(i) methods that minimize the mutual information 

(ii) methods that maximize the non-Gaussianity of components 

Independent signals have defined values for other statistics as well, such as 

correlation. Independent random variables will have a correlation coefficient of zero 

(linearly independent), but it is important to note that this is a required but not sufficient 

condition to prove statistical independence. For this study, correlation has been used to 

illustrate when signals are not statistically independent, not to show their true 

independence. 

2.3.2.1 Mutual information  

Mutual information (MI) originates from information theory and is more closely 

related to the idea of statistical independence than to non-Gaussianity. Considering only 

two random variables,  and , with marginal probability density function  and , 

and a joint PDF, , the mutual information (MI) is given as 

 

The MI indicates how much information one random variable conveys about the other and 

has a value of zero for independent variables. Another related quantity that can be used is 

Shannon entropy, which is referred to as differential entropy for continuous random 

variables. For a variable  with probability density given by , this is given by 
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The joint differential entropy of  and  is expressed by Equation 2.14 and is related to the 

MI by Equation 2.15 [61].  

 

 

Joint entropy, , is always larger than either of the individual entropies (  and ) and 

smaller than their sum [61]. For the larger values of joint entropy, the value of MI gets 

closer to zero, which means more independence of the variables [62]. The relationship 

between MI and individual and joint entropies can be extended to more than two 

dimensions [61]. 

Both the mutual information and joint entropy can be reliable ways to evaluate 

independence of signals, but their calculation is slow and relies on estimation of the PDF 

from local densities of point measurements. For this reason, alternative methods have been 

sought, as described in the next section. 

2.3.2.2 Non-Gaussianity 

The idea of using non-Gaussianity as a measure of independence comes from an 

interpretation of the Central Limit Theorem which states that the summation of independent 

random variables converges upon a normal distribution, regardless of the distributions of 

the initial random variables. Although the converse of this theorem is not necessarily true, 

it is a common generalization that the distributions of measured signals are often non-

Gaussian in nature, which holds true for some data types (e.g. sound recordings) but not 

for others. By pairing this generalization with the central limit theorem, some researchers 

have concluded that non-Gaussianity can be used as a criterion for independence. This 
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conjecture is made more ambiguous since Gaussian distributions are very well defined, but 

there are many ways in which a distribution can be non-Gaussian. The solution to this 

problem is often related to statistical moments such as kurtosis, or other non-linear 

functions for which Gaussian distributions have a defined value such as negentropy [59]. 

Examples of these statistical measures will be discussed when explaining the specific 

algorithms used. 

It is important to note that ICA methods are based solely on the distribution of values 

within a signal sequence and do not consider the shapes of the signals themselves. 

Therefore, constraints such as unimodality (e.g. for chromatographic peaks) cannot be 

incorporated. Moreover, although using non-Gaussianity has become an important element 

in many ICA algorithms, it has a tenuous relation to statistical independence. Two Gaussian 

distributed signals can be independent as easily as two non-Gaussian signals. In addition, 

it is impossible to assess independence using a single distribution. The principle advantages 

of this type of algorithm are speed and simplicity.  

2.3.3 ICA Algorithms 

2.3.3.1 FastICA 

There are many ICA algorithms readily available online to the public with the main 

difference between them being in the way they calculate or estimate the independence of 

the extracted components. Though there is a large selection of available algorithms, there 

are only a few which have been commonly used in the chemical literature. The algorithm 

seemingly used most often is FastICA which was developed by Hyvarïnen and Oja [59]. 

The algorithm estimates negentropy as a measure of independence and has been the 

algorithm of choice for problems of process monitoring. 
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Negentropy, like entropy, is a method of measuring non-Gaussianity and is defined 

as the difference between the entropy of a sample PDF, , and that of a variable following 

a Gaussian distribution with the same variance, . It is always non-negative and is 

defined by Equation 2.16, where  represents the differential entropy and  is the 

negentropy. 

 

The more non-Gaussian a distribution is the higher the value of negentropy. Negentropy 

values are difficult to calculate, so Hyvarïnen suggested a method of estimation shown in 

Equation 2.17 below. 

 

In this equation,  signifies the expectation,  can be any non-quadratic function,  is a 

constant,  is a variable following a Gaussian distribution with zero mean and unit 

variance, and  is a random variable assumed to have zero mean and unit variance. 

Although it is proposed that  could be any non-quadratic function, Hyvarïnen suggests 

three options expressed in Equations 2.18-2.20. 

 

In the above,  is a constant between 1 and 2,  is a constant approximately equal to 1 

and  is a random variable. The default method used in the FastICA algorithm is , which 

is based on kurtosis. Tong et al [63,64] developed a method of incorporating all three 

functions into their model to create a more optimal, robust solution. Rashid et al [65] have 
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also explored improving the application of FastICA by incorporating a genetic algorithm 

to prevent the issue of getting stuck on local maxima which causes the algorithm to be 

inconsistent in its calculations.  

2.3.3.2 JADE 

The joint approximate diagonalization of eigenmatrices (JADE) algorithm [60] is 

another widely-used algorithm in the chemical literature and has been popularized, in 

particular, by Rutledge and colleagues [66–77]. The JADE algorithm estimates 

independence using the fourth order cumulants of the extracted signals, which differs from 

FastICA, but not drastically since the auto-cumulants are equivalent to the kurtosis. The 

cross-cumulants however provide insight about the relationship among multiple source 

signals, which is not something that FastICA measures. JADE also differs from FastICA 

in the spaces they search. While FastICA searches the entire given space for the 

components, JADE only considers rotations of the PCA loading vectors. Both approaches 

have their implications which the users should be aware of. 

The JADE algorithm [60] has been applied to a variety of data types for curve 

resolution, including 3D front face fluorescence [68,71], Raman [72,78] and GC-MS [79–

81] and has also been used to reduce dimensionality prior to regression [82]. JADE is a 

BSS algorithm that provides the most consistently reproducible and reasonable ICA 

solutions of all the available algorithms. Prior to ICA the JADE algorithm row-mean 

centers the data and whitens it, e.g. compresses the data to as many principal components 

(PCs) as there are requested independent components (ICs). The estimation of 

independence is then based on the construction of a fourth-order cumulant tensor from the 

whitened data. 
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Utilizing higher order statistics (HOS) in ICA, one can search for components that 

are as non-Gaussian as possible. JADE calculates a fourth-order cumulant tensor, which is 

a generalization of the variance-covariance matrix from second order statistics. The fourth 

order cumulants defines the fourth-order relationships among possible source signal 

vectors. For example, suppose we wish to evaluate three source vectors, ,  and  for 

non-Gaussian behaviour. The fourth-order cumulant tensor is created by taking all 

combinations of four vectors, , ,  and  such that , ,  and  are varied between 1 

and 3. Thus, the fourth-order cumulant tensor would have dimensions ( ) and, 

assuming that the ’s are row vectors of length , the elements are calculated by Equation 

2.21. 

 

Here  is the element in position of the cumulant tensor , “ ” indicates 

the Hadamard, or element-wise, product and the σxx terms are the covariances between the 

corresponding vectors. Since JADE whitens the data before searching for independent 

components, the extracted vectors will be orthogonal and uncorrelated, making the 

covariance terms in Equation 2.21 equal to zero. When all four vectors are the same the 

result is called the auto-cumulant which is directly related to kurtosis and is contained in 

the superdiagonal elements of the fourth order tensor. When the vectors include at least 

two different vectors the results are cross-cumulants and are contained in the off-

superdiagonal elements of the cumulant tensor. 

The objective of the JADE algorithm is to find source vectors that maximize non-

Gaussian behaviour. To do this, the original vectors (the principal components) are rotated 

in such a way as to diagonalize the fourth order cumulant tensor. This tends to maximize 
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the auto-cumulants (super-diagonal elements) and minimize the cross-cumulants (off 

diagonal elements). Because the auto-cumulants represent the kurtosis values, JADE is 

essentially using kurtosis as a criterion to extract non-Gaussian vectors. In this way, JADE 

has similarities to kPPA and FastICA when a fourth-order contrast function is used. Unlike 

FastICA, however, JADE extracts the source vectors simultaneously rather than one at a 

time and does so very efficiently. In terms of kPPA, the relationship between the 

multivariate kurtosis and the fourth-order cumulant tensor has been derived as: 

 

Here,  is the fourth order cumulant calculated between the corresponding 

vectors as described in Equation 2.21 and  is the dimensionality of the multivariate space 

for which the multivariate kurtosis is being calculated. This draws direct lines between the 

cumulants employed by JADE and the multivariate kurtosis that can be used in kPPA, but 

it can be seen that the multivariate kurtosis only considers the auto-cumulants and even 

cross-cumulants, meaning the algorithms are still not identical.  

2.3.3.3 MILCA 

Another algorithm used frequently in the literature is mutual information least 

dependent components analysis (MILCA) [61]. MILCA calculates mutual information 

based on a complex nearest-neighbour algorithm and acknowledges that the extracted 

signals may not be completely independent, but rather as independent as possible while 

providing the lowest mutual information. This interpretation of statistical independence is 

more definitive than the non-Gaussian conjectures that FastICA and JADE are based on. 
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Mutual information (MI) is related to the joint probability density function of a set 

of random variables which can be calculated via a relationship with the joint entropy. If the 

joint entropy of continuous variables  and  is written as in Equation 2.14 then the mutual 

information of  and  can be expressed as is shown in Equation 2.15 [61]. Although these 

equations are relatively straightforward, there are two main complicating factors. First, 

because functional forms for the individual and joint PDFs are not available, MI (or 

entropy) must be estimated from the discrete data points available. A discussion of this 

methodology is beyond the scope of this thesis, but it can be appreciated that it is time 

consuming procedure since local densities must be estimated. Second, once an algorithm 

for calculating MI has been worked out, a procedure for minimizing MI through rotation 

of the source signals must be carried out. As a consequence, execution of the MILCA code 

can be quite slow. Nevertheless, it is the only one of the three commonly used algorithms 

that assesses true independence. 

2.3.4 Applications 

2.3.4.1 Clustering 

Despite ICA being developed for the purpose of signal extraction, there have been 

many studies which feature ICA used as a clustering method. ICA has been applied for 

clustering and classification, or as a precursor step to other classification methods. Since 

ICA is often compared to PCA due to their bilinear matrix decomposition, it would seem 

appropriate to treat the ICA contributions in the same manner as the PCA scores by 

analyzing them visually or using them as input for other classification methods. Pereira et 

al [83] compared ICA to PCA and partial least squares (PLS) as a dimension reduction tool 

prior to linear discriminant analysis (LDA) and k-nearest neighbours (KNN) for the 
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classification of wines using concentration profiles measure by HPLC with a photodiode 

array detector. The scores of the three compression methods were not analyzed beforehand, 

but the authors provided the rate of correct classification (%) for each method which 

showed that PCA and PLS produced more stable models when fewer components were 

retained, whereas ICA required many more components to attain adequate classification 

rates. Monakhova et al have also done studies involving the classification of wines (NMR) 

[76,84,85] as well as paints (XRF and IR) [84] and rice (NMR) [77]. For all studies, the 

authors provide PCA and ICA scores plots to illustrate the degree of separation between 

clusters. They have compared the classification abilities of ICA to LDA, PLS-DA and 

Fisher’s discriminant analysis (FDA) [84,85] as well as comparing ICA to PCA for 

dimension reduction prior to LDA and FDA [76]. The results in these studies vary, with 

ICA often being on par with the other methods and no conclusive results showing it as 

superior. Aside from these studies, ICA has been applied for clustering electronic nose 

[86,87], laser induced breakdown spectroscopy (LIBS) [88] and proteomics [89] data and 

has been paired with other classification algorithms such as neural networks (NN) [90,91] 

and support vector machines (SVM) [87]. MILCA has been the most commonly used ICA 

algorithm for clustering [76,77,84,85] but FastICA [83,87–89] has also been applied. 

2.3.4.2 Regression 

ICA has often been applied for regression in the same way that PCA and PPA are 

used to reduce the dimensionality of data. ICA has been applied for variables compression 

prior to a variety of regression techniques. Wang et al [90,91] have applied NN to ion 

selective electrode (ISE) array data to create calibration models of multi-ion solutions. Both 

of their studies showed that using ICA prior to NN improved the prediction abilities of the 
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models, though only one of the studies compared ICA as an alternative to PCA for this 

purpose [91]. Other regression methods that have been partnered with ICA include least 

squares-support vector machines (LS-SVM) [92], Elman recurrent neural networks 

(ERNN) [82], multiple linear regression (MLR) [93,94] and PLS [95]. 

2.3.4.3 Signal Extraction 

There were no studies found where PPA was used for signal extraction. ICA however 

is often used for analyzing chemical data for pure signal extraction, analogous to 

multivariate curve resolution (MCR). ICA and MCR are similar methods in their goals but 

with ICA there is no information given to the algorithm about the types of signals that 

should be extracted (e.g. non-negative, unimodal). Another commonality of ICA and MCR 

is that the number of components must be decided before applying either method to ensure 

a reliable and accurate model. Although many publications report good results, the 

extracted signals are not frequently shown; instead researchers rely on statistical 

parameters to display their results, such as correlation to the known pure profiles or the 

Amari index which measures the amount of information remaining in the residuals when 

the data is reconstructed from the extracted signals [96,97]. There have been many studies 

comparing ICA to MCR methods with varying results being reported [72,78–81,96,98–

100]. A study by Gaubert et al [72] concluded that ICA outperforms MCR, though the two 

methods were not treated equivalently. The number of components were calculated by 

different methods depending on which method was being used. Since the number of 

chemical components, or chemical rank, is fixed within a system and independent of the 

data analysis method, this should not be considered a fair evaluation and comparison of the 

two methods. There are multiple other studies which show MCR outperforming ICA, or 
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ICA being on par with MCR at best [72,78–81,96,98,100,101]. It has also been 

acknowledged that MCR is a more appropriate method for chemical data analysis since it 

has been designed to extract chemically meaningful information rather than independent 

signals [72,96]. ICA has been applied to many data types for this purpose including gas 

chromatography mass spectrometry (GC-MS) [74,79–81,102,103], voltammetry [102], 

NMR [67,76,104–106], Raman [72,78,107] and fluorescence [67,68,70,71,73,82]. 

JADE [68,71,72,78–82], FastICA [95,99–102,108–114] and MILCA 

[78,81,96,100,104] have all been applied for curve resolution type problems. Parastar et al 

[115] published a study in 2014 where they critically investigated whether ICA was 

appropriate for MCR and looked at MILCA specifically due to the MI criterion used rather 

than being based on non-Gaussianity. They concluded that ICA has a very limited range of 

applicability because chemical signals are not necessarily independent, but MILCA can 

produce equivalent results to MCR methods within the range of applicability. 

2.3.4.4 Process Monitoring 

Process monitoring is an area where ICA seems to have been applied often and 

involves building models based on data measured periodically by various sensors at 

multiple steps in a process. Some sensor responses follow a Gaussian distribution and are 

effectively modeled using PCA. However, many sensor responses do not behave in a 

Gaussian fashion so modeling the data with PCA may not be appropriate or effective. In 

these cases, ICA has been applied to better model the non-Gaussian behavior, and in many 

cases it has been shown to improve the resulting models [63–65,116–122]. The first studies 

demonstrating the use of ICA for process monitoring seem to have occurred around 2004 

[122]. Since then there have been many methods suggested for improving this application 
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of ICA including combining ICA models with PCA models [116,117], improving the 

optimization process using a genetic algorithm [65] and combining multiple ICA models 

that use different objective functions [63]. FastICA is often the algorithm used for process 

monitoring since it searches the multidimensional space to find sources that are non-

Gaussian. This approach is appropriate for process monitoring for reasons discussed above 

but FastICA often has optimization issues which result in the algorithm reporting local 

maxima and providing inconsistent results. 

2.4 Synopsis and Analysis of Methods 

It is clear from the preceding discussion that, while PPA and ICA have not 

established themselves as mainstream methods, they have seen numerous applications in 

chemistry (perhaps just enough to confuse practitioners of their real utility). Moreover, it 

is apparent that neither PPA nor ICA refers to a single method, so broad statements about 

their applicability must be made with caution. This section attempts to summarize, based 

on the fundamental principles of each method, some of the key relationships. These will be 

further illustrated through applications in the following chapters.  

A good starting point is a comparison of PPA, in particular kurtosis-based PPA 

(kPPA), with ICA, since it is evident that both FastICA and JADE employ kurtosis-based 

functions to extract “independent” signals. The similarities and differences between ICA 

and PPA have been mentioned briefly in many sources, but the comparisons have largely 

been vague and of dubious merit. Stone [123] states that PPA methods extract the 

projections one at a time while focusing only on maximizing the non-Gaussianity of the 

signals, contrasting with ICA which “typically” extracts all signals simultaneously. While 

the point that PPA focuses only on non-Gaussianity is fundamentally correct (since PPA 
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only aims to find “interesting” projections of the data, where “interesting is often 

synonymous to “non-Gaussian”) there is no constraint on how many signals can be 

extracted at once. Hou et al [43] have even developed a multivariate kurtosis-based PPA 

algorithm which extracts multiple signals simultaneously. Additionally, FastICA is a 

popular ICA algorithm that gives the option to extract signals sequentially or 

simultaneously, with sequential extraction being the default option. Yet, despite FastICA 

having ICA in the name, Stone refers to it as a PPA method [123]. Hyvarïnen et al [124], 

the developers of the FastICA algorithm, describe how ICA algorithms can use non-

Gaussianity as a measure of independence by (erroneous) relation to the central limit 

theorem. They state that, since PPA is “usually performed by finding the most non-

Gaussian projections of the data” then PPA is the same as their explanation of estimating 

ICA models using measures of non-Gaussianity, therefore all the non-Gaussianity 

measures (e.g. kurtosis) and their corresponding ICA algorithms could also be referred to 

as PPA “indices” and algorithms. 

One fundamental difference between ICA and PPA is quite straightforward. If we 

recall the relationship between scores and loadings, a critical distinction between ICA and 

PPA is simply that the non-Gaussianity measures are enforced on the scores for PPA and 

on the loadings for ICA. Although the PPA scores are not required to be uncorrelated there 

is a deflation step that normally performed during sequential extraction to ensure that 

subsequent projection vectors are not incorporating dimensions (and information) that have 

already been accounted for. Since the resulting vectors do not contain the same 

information, they tend to be uncorrelated as a result. Since these two characteristics 

(uncorrelated and non-Gaussian vectors) are the basis of many PPA and ICA algorithms, 
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it is not hard to see why some believe PPA and ICA are the same. The definition of 

independence has many branches which allows for ambiguity among ICA algorithms. 

Algorithms based solely on the implied relationship between independence and the central 

limit theorem, optimizing non-Gaussianity rather than other estimates such as MI or joint 

PDFs, can be considered the same as PPA algorithms since PPA algorithms are concerned 

only with non-Gaussian distributions. ICA algorithms based on MI are unique from PPA 

algorithms since they are actually taking the information relationship into account rather 

than solely distributions. 

Another important consideration in the application of these methods which is often 

overlooked is their relationship with PCA. For some ICA methods (JADE, MILCA), PCA 

is applied prior to the application of the procedure, with the PCA solution truncated to the 

number of factors corresponding to the number of independent components (source 

signals) to be extracted. This pretreatment, sometimes referred to as whitening or sphering, 

serves a number of purposes: (1) it reduces the size of the space to be examined, (2) it 

generates an initial set of source vectors that are orthogonal, but not necessarily statistically 

independent, and (3) it normalizes the variance of the data. However, this means that the 

source vectors produced by JADE and MILCA are simply rotations of the original set of 

PCA loadings and provide no new information. In other words, when these ICA methods 

are used for clustering or regression, they provide equivalent information as PCA carried 

out in the same space. Technically, FastICA does not have this constraint, although its 

application in the original variable space without PCA compression will generally produce 

unreliable results. On the other hand, kPPA extracts information which is often entirely 
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different from what is obtained by PCA and is able to search a much larger space since it 

uses more limited variable compression or none at all. 

Of the ICA algorithms described, only MILCA assesses true independence, but it is 

also generally the slowest. JADE is generally quite fast and produces more reproducible 

results than FastICA, which can be subject to local minima. The kPPA algorithm can also 

be fairly slow, depending on the size of the data set, and can also be prone to local minima. 

When it comes to signal extraction, the applicability of ICA is arguable. Chemical 

signal distributions are not as stochastic in nature like the temporal signals that the 

algorithms were developed for and can be much shorter in length. Examples of these 

chemical distributions will be presented in the following chapters. More importantly, 

chemical signals are generally not independent, but often highly correlated (e.g. overlapped 

spectra). While their distributions are often non-Gaussian, this is usually not a good 

criterion for their extraction. Since MCR methods are specifically developed to find 

chemically meaningful information, it is often better to trust their results when extracting 

pure signals, while ICA should be used more as an exploratory tool. No matter the method 

it is always important to understand what is being done to the data and whether or not it is 

practical and appropriate.  
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Chapter 3 – Application and Analysis of PPA and ICA 

for Selected Data Sets  

3.1 Introduction 

In the previous chapter, the underlying principles of PPA and ICA, as well as their 

variants and relationships, were presented with the goal of highlighting their potential 

strengths and weaknesses in the analysis of chemical data. In this chapter, results are 

presented from the analysis of several data sets to support some of these assertions. The 

data sets have been carefully selected to represent a variety of situations and illustrate the 

characteristics of methods applied. 

Both of the main applications of PPA and ICA, clustering and signal extraction, are 

considered in this chapter, with different data sets employed for each application category. 

The algorithms applied are those which have been most widely applied or appear to be the 

most useful in chemistry: kPPA (quasi-power method), JADE, FastICA and MILCA. In 

addition, PCA is also applied for clustering as a traditional method. For signal extraction, 

kPPA is applied to the columns of the data (i.e. ) rather than in the row direction as for 
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clustering. This makes the application consistent with ICA methods. Likewise, for 

clustering, JADE is applied to the transpose of . 

3.2 Data sets 

3.2.1 Signal Extraction Data sets 

3.2.1.1 Acoustic Signals 

To illustrate how ICA performs on the types of signals it was designed to handle, 

three open-sourced music files were selected as source signals and mixed together with 

simulated contributions. “Kalimba”, “Maid with the Flaxen Hair” and “Sleep away” were 

the three digital music files chosen. Each file contained a matrix with 8 to 15 million 

variables and two audio vectors (stereo recordings). Only the first of the two audio vectors 

and the first 500,000 variables were used, corresponding to roughly 11 seconds of the 

recordings. The three resulting  source signals are shown in Figure 3.1 along 

 

Figure 3.1 The original audio signals used with their distributions, correlations and mutual 
information estimation. a) “Kalimba” signal. b) Histogram for (a). c) “Maid with the flaxen hair” 
signal. d) Histogram for (c). e) “Sleep away” signal. f) Histogram for (e). g) Matrix showing the 
correlatations among the three source signals. h) Matrix showing the mutual information 
relationship among the three source signals, calculated using the mutual information estimation 
from the MILCA algorithm. 
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with their histograms and calculated excess kurtosis (excess kurtosis is the kurtosis 

calculated by Equation 2.5 adjusted by subtracting 3 to give a value of zero for a normal 

distribution). Note that all of the acoustic signals are super-Gaussian (leptokurtic) which 

reflects the dynamic character of musical sequences. Also shown are the correlations of the 

source signals (Figure 3.1g) and the mutual information as calculated by MILCA (Figure 

3.1h), presented as  matrices, with the off-diagonal elements representing the 

correlations and MI between different signals. It is clear that the signals are both linearly 

independent (uncorrelated) and statistically independent (low MI). 

The source signals were normalized to unit variance prior to being mixed using 

contributions generated from a uniform random distribution with range from zero to one, 

 

Figure 3.2 Examples of the data mixtures used for signal extraction. a) One of the acoustic signal 
mixtures. b) Distribution of the mixture in (a) with kurtosis displayed.  c) The 100 mixtures used 
for the Rutledge simulation. d) Distribution of a Rutledge simulation mixture shown in (c). 
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creating 20 mixed audio signals. Noise was subsequently added, generated from a normal 

distribution with mean zero and standard deviation 0.01. The resulting data matrix was 

, containing the mixtures along the rows. Figure 3.2a shows a typical mixture 

signal and its histogram (Figure 3.2b). Note that the histogram displayed indicates that the 

mixture is still super-Gaussian. Although the mixture of non-Gaussian signals will tend 

towards Gaussian by the central limit theorem, the limited number of super-Gaussian 

signals considered here does not reach this limit. 

3.2.1.2 Rutledge Simulation 

Rutledge et al [69] used a simulated data set to show the utility of the JADE 

algorithm, so a similar data set was reproduced here for the purpose of comparing ICA 

methods and PPA. Although the parameters for Rutledge simulation were not clearly 

specified in the original work, the data were reconstructed as closely as possible. The data 

set was created using the Equation 3.1, where  is the simulated data,  is a matrix of 

contributions,  is a matrix of source signals and  is a matrix of white noise. 

 

The source signals consist of two each of sawtooth, square and cosine waves calculated by 

Equations 3.2-3.4 where  is the amplitude and  is the period of each wave and  spans 

from 1 to 800.  
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Equation 3.2 was used to calculate square waves with an amplitude of 1.00 and periods of 

20 and 50, and Equation 3.3 was used to calculate cosine waves with an amplitude of 1.50 

and periods of 160 and 320. Equation 3.4 was used to calculate two sawtooth waves with 

an amplitude of 1.75 and periods of 80 and 400. The resulting six pure sources were each 

contained in a row of  and are shown in Figure 3.3. 

The contribution matrix, , was a   matrix calculated by taking values from 

a uniform random distribution ranging from 0 to 1. The noise matrix, , was a  

matrix generated from a normal distribution with mean 0 and standard deviation 0.015 to 

resemble the signals shown by Rutledge [69]. The result was a  data matrix with 

the samples contained in the rows and maximum signal intensity around 6. The 100 

mixtures are shown in Figure 3.2c. Figure 3.4 shows the distribution of source signals for 

the Rutledge simulation (a-f) and Figure 3.2d shows the distribution for a typical mixed 

signal. Note that, unlike the acoustic data, the source signals here are all sub-Gaussian 

 

Figure 3.3 Source signals used for the Rutledge simulation. a)-b) Square waves. c)-d) Cosine 
waves. e)-f) Sawtooth waves. 
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(platykurtic; excess kurtosis ), but the mixed signal is closer to Gaussian. Figure 3.4g 

and 3.4h show the correlation and MI maps, which show that the signals are neither 

uncorrelated nor statistically independent. 

3.2.1.3 Spectral Simulation 

To illustrate a more chemically meaningful situation, three overlapping Gaussian 

curves were created to simulate the kind of shapes and overlap that are often seen in 

chemical data sets such as those derived from chromatographic and spectroscopic 

measurements. The Gaussian profile defined by Equation 3.5 was used, where  was a 

vector of integers from 1 to 100,  was the standard deviation (set to 10 for all three curves), 

and  was the mean (chosen to be 40, 50 and 60). 

 

 

Figure 3.4 Distributions, mixtures and correlations of the source signals used in the Rutledge 
simulation. The excess kurtosis values of each source is displayed on each histogram. a) Histogram 
of square wave with amlpitude 1 and period 50. b) Histogram of square wave with amlpitude 1 and 
period 20. c) Histogram of cosine wave with amlpitude 1.5 and period 160. d) Histogram of cosine 
wave with amlpitude 1.5 and period 320. e) Histogram of sawtooth wave with amlpitude 1.75 and 
period 80. f) Histogram of sawtooth wave with amlpitude 1.75 and period 400. g) Matrix showing 
the correlation between the source signals. h) Matrix showing the MI between the source signals 
(calculated from the MILCA algorithm). 
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A random concentration matrix,  ( ), was generated from a uniform random 

distribution of values from 0 to 1 to simulate 100 random mixtures of the source signals. 

The source signals,  ( ), were multiplied by  to generate the pure data matrix. 

White noise,  ( ), was subsequently added with mean zero and standard 

deviation 0.015. The resulting data matrix, , had dimension , containing 

sample mixtures along the rows with maximum signal intensity around 2. The source 

signals and 50 of the mixtures are shown in Figure 3.5a and 3.5b respectively. The 

distribution of the source signals are very similar (since they are simply translated in time) 

 

Figure 3.5 Source signals, distribution, mixtures and correlation of Gaussian simulated data. a) 
Source signals with mean 40 (solid blue), 50 (dashed red) and 60 (dashed-dotted green). b) 50 of 
the mixture spectra c) Matrix showing the correlations among the source signals. d) Histogram of 
the source signal distribution with excess kurtosis displayed. 
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and a typical histogram is shown in Figure 3.5d. The distributions are asymmetric (due to 

baseline regions) and exhibit sub-Gaussian characteristics. The correlation map in Figure 

3.5c indicates that the source signals are not uncorrelated and (by implication) not 

statistically independent. 

3.2.1.4 Fluorescence Data 

The fluorescence data used here were used to represent an experimental chemical 

data set and were collected by Bro et al [125]. These consist of fluorescence emission 

spectra from mixtures of six different fluorophores: catechol, hydroquinone, indole, 

tryptophan, tyrosine and resorcinol. There are five replicate data sets with 405 samples per 

data set. The 405 samples can be divided into 12 separate data sets with specific design 

structures present for each one. The samples vary from blank samples to mixtures of the 

six fluorophores, with the maximum number of fluorophores per mixture being four. For 

this study, only samples containing at least two fluorophores were of interest, which 

encompassed 277 of the 405 samples. Using two of the replicate sets to maintain a high 

sample-to-variable ratio resulted in a total of 554 sample mixtures used. To simplify the 

problem to two dimensions, only emission spectra were selected from the original 

emission-excitation matrices, using an excitation wavelength of 275 nm since most 

samples reached a maximum emission intensity in that region. Once the emission spectra 

were selected, the region from 230-284 nm was removed to omit effects of scattering, 

consistent with one of the regions identified by the original authors and removed for the 

same reason. The result was a  data matrix. The pure spectrum for each 

fluorophore was calculated by taking the mean of each group of samples containing the 

individual fluorophore for the two replicate sets used. These mean pure spectra are shown 
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in Figure 3.6a alongside 50 of the mixtures used (Figure 3.6b). The correlation map in 

Figure 3.6c shows a significant correlation (and therefore lack of independence) among all 

of the pure component spectra. Figure 3.6d shows the distributions of two (extreme) 

spectra, which are similar to the spectral simulations in the previous section in that they are 

asymmetric and sub-Gaussian. 

 

Figure 3.6 Pure emission profiles, mixture spectra, correlations and distributions of the 
fluorescence data. a) Pure emission spectra of the six fluorophores. b) Spectra of 50 of the mixtures 
used. c) A matrix showing the correlation among the pure source spectra. d) Histograms showing 
the distributions of tryptophan (top) and tyrosine (bottom) which have the lowest and highest 
kurtosis values of the sources respectively. 

 

In
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3.2.2 Clustering Data sets 

3.2.2.1 Obsidian Data 

The obsidian data set relates to a study by Stevenson et al which aimed to track the 

movement of ancient native peoples in northern California [126]. A total of 63 samples of 

obsidian, a type of volcanic glass, were collected from four quarries at different locations. 

These were analyzed by x-ray fluorescence (XRF) for the content of ten metallic elements 

(Fe, Ti, Ba, Ca, K, Mn, Rb, Sr, Y and Zr) with mean concentrations ranging from about 30 

 

Figure 3.7 Examples of data used for clustering. a) Measured concentrations of 10 metallic elements 
for 63 samples of obsidian rock (no preprocessing). b) Histogram showing the distribution of data 
points for the data in (a) after mean centering. c) FTIR spectra of 239 ink samples (preprocessed by 
SNV). d) Histogram showing the distribution of one sample spectrum from (c). 
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to 1200 ppm. The goal for this data was to be able to apply exploratory data analysis 

methods to cluster samples based on geographical location. Prior to analysis, the data were 

column mean-centered. Figure 3.7a shows the distribution of the raw (non-preprocessed) 

elemental concentrations for the 63 samples and the distribution of the centered data is 

shown in Figure 3.7b. Note that all the data were used for this histogram to provide a better 

visual representation since there are fewer variables in this case than in the others presented 

in this chapter. 

3.2.2.2 Ink Data 

The ink data set [127] also relates to a classification problem but is larger than the 

obsidian data in terms of the number of samples and variables. The data were obtained as 

part of a study by Silva et al for the detection of fraudulent documents and consist of FTIR 

spectra of blue ink on paper taken over 3351 wavenumbers from 4000 to 650 cm-1. The full 

data set contains 60 samples from each of 10 pen brands, resulting in 598 samples after 

outlier removal. For this study only four brands were selected (brands 6, 7, 8 and 9), 

resulting in 239 samples. Only four brands (classes) were selected because PPA methods 

are best suited to data that can be separated sequentially in a binary fashion. The spectra 

were preprocessed by the standard normal variate (SNV) to minimize multiplicative offset 

noise. The 239 preprocessed spectra are shown in Figure 3.7c accompanied by a histogram 

for one of the signals (following preprocessing) in Figure 3.7d. 
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3.3 Results and Discussion 

3.3.1 Signal Extraction 

The purpose of this section is to compare the PPA and ICA methods for their abilities 

to extract signals from bilinear data and thereby assess their value as alternatives to other 

curve resolution methods such as MCR-ALS. The range of data sets used are intended to 

span a variety of conditions, starting with acoustic data where the conditions of 

independence are clearly satisfied and progressing to a real chemical data set where such 

criteria are not met. Note that, since the intent is simply to establish if signal extraction can 

be successful, no comparisons with MCR-ALS are done. 

3.3.1.1 Acoustic Signals 

The acoustic data is an example of signals that should be statistically independent. 

The large number of data points and stochastic oscillations are features that contribute to 

the mutual independence among source signals. Figure 3.1g shows that these signals are 

uncorrelated which is not enough to prove independence but is a required condition. Figure 

3.1h shows the mutual information calculated with the procedure used by the MILCA 

algorithm [61]. The mutual information estimation is a better indication of the signal 

independence and, since the MI among the signals is approximately zero, it is an indication 

that the signals are independent. Although independent, it is also commonly observed that 

sound data distributions tend to be leptokurtic given the oscillation and periods of silence. 

This is seen to be true for these signals by the distributions shown in Figure 3.1b, d and f. 

Due to this characteristic, when PPA was applied the kurtosis optimization was selected to 

maximize. There was no additional preprocessing performed before applying any of the 

methods. 
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The results of applying JADE, PPA, FastICA and MILCA to the sound mixtures are 

shown in Figure 3.8. In this instance, PPA was applied to the transpose of the matrix and 

kurtosis was maximized. The results of all methods appear to be consistent with the original 

signals and are indeed highly correlated with the original signals (correlation ). 

A number of points are worth noting about these results. First, as regards the extraction of 

signals with any bilinear method, there is an ambiguity of scale since the same 

reconstructed data can be obtained by reciprocal scaling of the signal and mixing matrices, 

so the results shown have been scaled to match the original signals for easy comparison. 

Second, there is a directional ambiguity, which means that an inversion (change in sign) of 

the extracted signal is an equally valid solution. Consequently, it is not unusual for the 

extracted signals to be “flipped” compared to the original (unless constraints are placed on 

the mixing matrix). Although this is hard to detect here due to the symmetry of the signals, 

close inspection of Figure 3.8i reveals that it is such a case. Finally, although the large 

number of points makes a detailed comparison of the actual signal profiles difficult (e.g. 

by overlay or visual comparison), they have been compared on an expanded scale. Very 

small differences in the signals are apparent as a consequence of noise, different 

optimization criteria and convergence criteria, but they are remarkably consistent, as 

evidenced by the high degree of correlation. 

It is not surprising that the signal extraction is successful in this case given that the 

source signals meet the criteria for statistical independence and non-Gaussian behaviour. 

It is remarkable, however, that all of the methods were successful even though they were 

based on different objective functions and only one (MILCA) directly uses statistical 

independence as a criterion. Based on this success, it is easy to appreciate why JADE and 
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Figure 3.8 Results of applying PPA and ICA methods to the audio signal data a)-c) Results from 
applying JADE. d)-f) Results of applying PPA with kurtosis maximization. g)-i) Results of 
applying FastICA. j)-l) Results of applying MILCA. 
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FastICA are classified as ICA methods even though they do not directly use statistical 

independence as a criterion. 

It is also worth commenting on the success of PPA, which was applied to the 

transpose of the matrix in this application. This clearly demonstrates a connection between 

ICA and PPA, which has been alluded to in the literature but never fully elucidated. This 

connection will become more apparent in the cases that follow. 

3.3.1.2 Rutledge Simulation  

The simulated data that were originally presented by Rutledge [69] were intended to 

facilitate a simple demonstration of the capabilities of the JADE algorithm using familiar 

and easily visualized functions. The choice of function is not entirely arbitrary, however. 

Although not completely uncorrelated, Figure 3.4g shows that certain pairs of signals are 

orthogonal or nearly so. Likewise, conditions for complete statistical independence are not 

met, but the definition is dubious in this case as the signals are not stochastic. In any case, 

JADE does not directly employ statistical independence, so this was not relevant in the 

original work. However, an important feature of these source signals is that they are all 

sub-Gaussian, which can be seen from the source histograms in Figure 3.4a-f which have 

their respective excess kurtosis values displayed.  

Prior to applying any of the analysis methods the data were column mean centered, 

but no other processing was performed. When the data were analyzed by ICA methods 

(JADE, FastICA and MILCA),  was given as the data matrix and six ICs were requested 

from the algorithm since, for this case, we know exactly how many underlying sources 

there are. When applying PPA, the transpose of the data matrix, , was used as the input 

to accommodate for the fact that JADE and PPA optimize kurtosis in opposite directions 
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(e.g. scores vs. loadings). In addition, PPA was set to minimize kurtosis given our prior 

knowledge of the source signal distributions. The results of applying PPA to the mean 

centered data can be seen in the third column of Figure 3.9(m-r). The results from applying 

JADE can be seen in the second column of Figure 3.9(g-l). The results of applying MILCA 

and FastICA are shown in Figure 3.10g-l and 3.10m-r respectively. Correlation to the 

original signals is displayed in the figures as a numerical measure of similarity.  

It can be seen in Figure 3.9g-l that JADE extracts signals very similar to the originals 

(a-f) (correlation displayed in the frames) although in many cases the signals are inverted 

(negative correlation). Since the inversion is a mathematical artifact related to the sign of 

the mixing matrix, it is not considered to reflect the quality of the extracted signals. The 

jaggedness observed in the signals, especially in signals j-l, is in part due to the fact that 

JADE forces the extracted signals to be orthogonal, even though all of the original signals 

were not. This is a consequence of the initial application of PCA and subsequent orthogonal 

rotation of the eigenvectors by JADE to diagonalize the fourth-order cumulant tensor. The 

success of JADE for this data set is due in large part to the non-Gaussian distributions of 

the source signals. 

Because JADE and PPA are both kurtosis-based algorithms, one might expect to see 

similar results from the two. The PPA results in Figure 3.9m-r show some similar results 

to JADE (note the small differences in correlation) for some signals but become 

progressively more noisy as the signals become more Gaussian, to the point where the last 

signal is unrecognizable. The likely reason for this is that, unlike JADE, PPA does not 

apply PCA compression (also known as whitening of the data) prior to data analysis. As a 

consequence, it searches the entire data space (instead of only six dimensions) and is much 
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Figure 3.9 Original source signals and results of applying kPPA and ICA to the Rutledge 
simulation mixtures. Correlation to source signals displayed in lower right corner of each frame. 
a)-f) Original source signal. g)-l) Sources extracted by the JADE algorithm. m)-r) Sources 
extracted by kPPA using univariate kurtosis minimization on non-whitened, non-compressed 
data. s)-x) Sources extracted by kPPA using univariate kurtosis minimization on whitened, 
compressed data. 
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Figure 3.10 Original sources and results of applying ICA methods to the Rutledge simulation 
mixtures. Correlation to source signals displayed in lower right corner of each frame. a)-
f) Original source signal. g)-l) Signals extracted by MILCA m)-r) Signals extracted by FastICA 
on non-whitened, non-compressed data. s)-x) Signals extracted by FastICA on whitened, 
compressed data. 
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more likely to be affected by random noise variation. To test this, the data were whitened 

in the same manner used by JADE followed by compression to six PCs prior to applying 

PPA. It should be noted that when JADE whitens the data it compresses the data down to 

as many signals as there are requested ICs (in this case six), however the PPA algorithm 

requires at least n+1 input signals in order to output n vectors, so to combat this issue a 

vector of zeros was appended to the six whitened vectors. The results of PPA on the 

whitened data are shown in the fourth column of Figure 3.9(s-x) and clearly bare 

resemblance to the results obtained by JADE (except for inversion) which can be seen by 

comparing the correlation coefficients displayed in the figure. This once again establishes 

the close connection between JADE and kPPA. 

Figure 3.10g-l shows the source signals extracted by MILCA. Although some 

similarities to the original signals (a-f) are apparent (some correlations greater than 0.9) 

there are particular problems with the sinusoidal signals extracted, which are linear 

combinations of the original signals. The reason for this is that MILCA applies very 

different criteria than the other methods. In addition to forcing signal orthogonality (again 

facilitated by pre-whitening by PCA) MILCA seeks rotations that minimize the mutual 

information, regardless of the distribution of the signals. These differences reinforce the 

idea that not all ICA methods are the same, even though the results with acoustic signals 

seemed to indicate otherwise. 

The initial results with FastICA, shown in Figure 3.10m-r, indicate a complete failure 

of this method to extract meaningful signals. However, like PPA, the default application of 

FastICA searches the entire space, making convergence unreliable and subject to random 

noise. To combat this, the same approach was taken as with PPA and the data where 
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whitened prior to applying FastICA. The results of FastICA on the whitened data are shown 

in Figure 3.10s-x and are strikingly similar to those extracted by PPA with comparable 

correlation coefficient for many of the signals. Both square waves extracted by PPA and 

FastICA on the whitened data resemble the original signals more closely than those 

extracted by JADE or MILCA (though the correlation coefficients do not reflect this) while 

the other four signals are nearly identical to JADE, with the larger sawtooth (bottom row 

of Figures 3.9 and 3.10) extracted by PPA and FastICA containing more contributions of 

the square waves than that extracted by JADE. 

A number of conclusions can be drawn on the basis of these results. First, as one 

might expect, the kurtosis-based methods (kPPA, JADE, FastICA) produced similar, 

although not identical, results. The differences can be attributed to distinct variation in the 

algorithms; while all of the methods are founded on the idea of kurtosis, each approaches 

the problem somewhat differently. Second, it is clear that MILCA uses different criteria 

and therefore produced some results that were distinctly different. Third, it is clear that, for 

kPPA and FastICA, compression/whitening by PCA may be necessary for successful 

results. This is not inconsequential, since it limits the solutions to the PCA space, and this 

can have important implications for the clustering applications discussed later. Finally, it 

appears from these simulated data that these methods are a viable alternative for extracting 

signals from chemical data. However, the design of this data set was not arbitrary, and the 

true test requires data more typical of a chemical system. 

3.3.1.3 Spectral Simulation 

The high degree of signal overlap generated here results in sources that are not 

uncorrelated which is shown by the correlation map in Figure 3.5d. The yellow regions in 
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the off-diagonal illustrates high correlation among adjacent signals. Since these signals are 

simply shifted versions of each other, they all have the same distribution and kurtosis which 

is shown in Figure 3.5b. The kurtosis values are much higher than those in the previous 

simulation, though still platykurtic, which is not always the case with chemical signals, 

especially those with a considerable amount of baseline signal which skews the data 

towards zero and hence creates leptokurtic distribution.  

Given the results shown in the first two data sets, only one ICA method (JADE) will 

be applied going forward in this work. JADE was selected based on its performance in the 

other cases, as well as its overwhelming popularity in the literature and the fact that it is 

kurtosis based. Before applying JADE the data were mean centered, and prior to PPA the 

data were whitened according to the process described in the previous section since it has 

already been shown that whitening is an important factor when comparing these two 

 

Figure 3.11 Results of applying JADE and PPA to simulated spectral data. a)-c) Signals extracted 
by JADE. d)-f) Signals extracted by PPA using univariate kurtosis minimization on whitened and 
compressed data. 
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methods. As was the case with the previous data sets, the data were transposed prior to the 

application of PPA and three components were requested from both algorithms. The results 

of both JADE and PPA on the simulated spectral data can be seen in Figure 3.11. 

It is clear from inspection of Figure 3.11 that the extracted signals bear little 

resemblance to the original Gaussian-shaped spectra. Instead, the results are linear 

combinations of the original spectra. This could have been anticipated since the constraints 

of the algorithm force the extracted vectors to be rotations of the original PCA 

eigenvectors, which are orthogonal. Since the original source signals were not orthogonal, 

it is impossible for this approach to reproduce them. Although the results are not shown for 

FastICA or MILCA, they are similarly restricted. The JADE and PPA algorithms are also 

based on finding non-Gaussian distributions (note that it is important to distinguish the 

Gaussian shape of the source signals from the distribution of signal amplitudes). 

Notwithstanding the failure of the orthogonality constraint, there is no reason to anticipate 

if or how the distribution of source signals in chemical data will deviate from Gaussian 

behaviour. This is a second reason to question the successful application of ICA for the 

extraction of chemical signals. However, the similarity of the results for JADE and PPA in 

Figure 3.11 once again points to the close connection between these algorithms. 

Based on the successful application of ICA for the acoustic data and Rutledge data, 

it is easy to see why it has been proposed as an alternative to MCR-ALS for the analysis of 

chemical data. However, this simulation clearly shows the limitations of this approach. 

This will be reinforced in the next section, which considers experimental data. 
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3.3.1.4 Fluorescence Data 

The data presented so far have been the result of simulations which, while useful, 

have certain limitations. This section employs experimental data to further examine the 

capabilities of ICA and PPA for signal extraction. 

The degree of overlap between the pure fluorescence emission spectra in this data set 

is even higher than that of the simulated data in the previous section. The correlation map 

in Figure 3.6c shows that the correlation among the source signals which is very high for 

combinations. This illustrates that the signals are neither uncorrelated nor statistically 

independent, which is not unusual for chemical data. The distributions of the source signals 

vary slightly with excess kurtosis values ranging from -0.87 to 1.5, which are not drastically 

different from the kurtosis of the normal distribution. The histograms of the spectra with 

the lowest and highest kurtosis values are shown in Figure 3.6d displaying the similarities 

between the two. 

Prior to applying JADE and PPA, the data were column mean-centered. Additionally, 

prior to PPA the data were whitened and compressed using the method implemented by 

JADE. Since the kurtosis values of the source signals are a mix of both lepto- and 

platykurtic, both maximization and minimization approaches of PPA were applied. 

The results of the methods applied are shown in Figure 3.12. It can be seen that none 

of the methods were able to extract accurate representations of the source signals. 

Something interesting to note is that the PPA results from kurtosis maximization very 

closely resemble the JADE results. The source signals are highly correlated with one 

another, again violating the assumptions of linear independence required for ICA. Further 

analysis of results shows that none of the results from JADE or PPA are highly correlated 



 63 

with the source signals, but the results of PPA using kurtosis maximization are highly 

correlated with the JADE results (correlation 0.9883-0.9998). Overall, none of these 

approaches have proven to be appropriate techniques for source signal extraction for this 

experimental chemical data. This reinforces the conclusions from the previous 

applications. 

3.3.2 Clustering 

In this section, the utility of ICA and PPA for clustering applications are investigated. 

In particular, the JADE and quasi-power PPA algorithms are explored because of the 

similar characteristics that have been observed in the earlier sections. PCA is also applied 

as a standard reference method for exploratory analysis. 

3.3.2.1 Obsidian Data 

The data were preprocessed by column mean-centering prior to all analysis methods. 

For both PCA and PPA the samples were contained along the rows of the data matrix since 

their objective functions (variance and kurtosis respectively) optimize in the scores space, 

but for JADE the transpose of the matrix was used to maintain an equivalent direction of 

optimization. 

 

Figure 3.12 Results of applying JADE and kPPA to fluorescence data. a) Signals extracted by 
JADE. b) Signals extracted from kPPA using univariate kurtosis maximization. c) Signals extracted 
from kPPA using univariate kurtosis minimization. 
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Since the objective here is to observe the presence of any clusters, PCA was applied 

as well as PPA and ICA and the resulting scores are shown in Figure 3.13. The PCA results 

seen in Figure 3.13a show the presence of some clusters, with samples from quarries 1 and 

2 overlapping. The result of PPA using stepwise univariate kurtosis is shown in Figure 

3.13b which show quarries 1 and 4 overlapping as well as quarries 2 and 3, which is 

different than the overlap present in the PCA results. Given the relationship between 

 

Figure 3.13 Results of applying different exploratory methods to the obsidian data. a) Scores plot 
obtained from applying PCA to the obsidian data. b) Scores plot obtained from applying kPPA 
with univariate kurtosis to the obsidian data. c) Scores plot obtained from applying kPPA with 
multivariate kurtosis to the obsidian data. d) IC plot obtained by applying JADE to the obsidian 
data and extracting two components. 

 



 65 

multivariate kurtosis and fourth order cumulants given in Chapter 2, multivariate PPA was 

also applied to these data and the results are shown in Figure 3.13c. The results from 

multivariate PPA more closely resemble the PCA results than the univariate PPA, though 

the spread of samples from quarry 2 differs between PCA and PPA. 

When applying JADE there were two ICs requested and those results are shown in 

Figure 3.13d. Looking at those results it can be seen that the JADE IC plot is merely a 

geometric transformation of the PCA scores, specifically a reflection and small rotation. 

This is to be expected given that JADE uses a PCA compression of the data and simply 

performs an orthogonal rotation of the PCA vectors. To try to achieve more interesting 

results than those acquired through PCA, JADE was applied and three ICs were extracted 

with all possible combinations displayed in Figure 3.14. The plot of IC 1 vs IC2 is similar 

but not identical to the results from when two ICs were extracted, but the other two plots 

show very different information, and both show a better separation of the four quarries than 

the initial results. What this shows is that, due to the simultaneous nature of IC extraction 

by JADE, the results will likely differ when different numbers of ICs are extracted, which 

is not the case with PCA or PPA. Additionally, requesting fewer ICs (2 or 3) will result in 

little to no extra information than what would be present through PCA since those PCA 

spaces are already easily analyzed. 

In this example, none of the methods were able to completely resolve the four 

quarries, although the best results were perhaps those with JADE with three components 

(IC2 vs IC3). However, there are some subtle points that should be clarified. First, PPA 

searches the entire space available, so its results can be quite different from PCA, since it 

uses different criteria. In this case, the limited success of PPA is likely due to the 
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unbalanced data, since the algorithm favours groups with equal numbers of samples. Some 

evidence of this is apparent from Figure 3.13b. On the other hand, ICA is limited to the 

PCA subspace used and simply rotates the data in that space. In other words, ICA does not 

provide more information than is available in the PCA subspace used, although the 

rotations may provide useful visual perspectives. From a practical point of view, the use of 

a large number of PCs with ICA can lead to a degradation in the quality of results. In 

summary, despite the similarities in the two algorithms demonstrated in the context of 

signal extraction, they can yield very different results when applied to problems in 

clustering. 

3.3.2.2. Ink Data 

Because PPA is applied to the entire space, it can encounter problems if the sample-

to-variable ratio is low, so compression by PCA is often used to reduce the number of 

variables. This is different from the compression used by ICA, since it is unrelated to the 

number of projection vectors extracted. 

In a previous study by Wentzell et al [53] involving the data used here, it was shown 

that variable compression by PCA prior to applying PPA can significantly improve results. 

For this data set in particular there were many regions of PCA compression that resulted in 

 

Figure 3.14 Results of requesting more components from JADE. a) IC1 vs IC2 b) IC1 vs IC3 d) 
IC2 vs IC3 
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the clustering of the four classes. Based on those results, the data were compressed to 24 

PCs for this study. In other words, PCA was performed on the data and the first 24 scores 

were retained and used as the input for both PPA and JADE. For PPA the 239x24 scores 

matrix was used while for JADE this matrix was transposed to ensure the proper 

dimensionality of optimization.  

The previous study displayed the ability of univariate PPA to separate the four classes 

and those results have been recreated here in Figure 3.15c. A better comparison to JADE 

 

Figure 3.15 Results of applying PCA, JADE and kPPA to the ink data. a) Scores plot obtained 
by PCA. b) Result of applying JADE and requesting 2 ICs. c) Scores plot obtained from kPPA 
using univariate kurtosis minimization. d) Scores plot obtained from kPPA using multivariate 
kurtosis minimization. 

 



 68 

for this application might be the multivariate kurtosis approach of PPA which extracts 

vectors simultaneously. The results of this approach are shown in Figure 3.15d. 

Unlike the obsidian data, PCA is not able to find clusters present in the ink samples 

(Figure 3.15a), but univariate PPA is able to separate them clearly. The multivariate PPA 

is able to push the classes in separate directions but there is a lot of overlap among classes. 

The result of extracting two ICs only is presented in Figure 3.15b which appears to simply 

be a mirror image of the adjacent PCA results. As before, this is a direct consequence of 

the two-dimension PCA compression prior to ICA. The results of extracting three ICs are 

shown in Figure 3.16 and it can be seen that, in this more complex example, two of the 

results resemble those of two ICs but the arrangement of samples has clearly changed. This 

illustrates an important property of the JADE method: that the solutions are not nested. In 

other words, the components extracted will not be the same if a different number of 

components is extracted. This is not true with univariate PPA. 

Although JADE may have some advantages when applied to cluster analysis, its 

principle drawback is that it is constrained to the dimensions of the PCA subspace used. If 

projected into two or three dimensions, this means that the same results can be visualized 

with PCA. The use of more components may produce informative rotations, but this is a 

 

Figure 3.16 Result of requesting more components from JADE for the ink data. a) IC1 vs IC2 b) 
IC1 vs IC3 d) IC2 vs IC3 
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trial and error process which could require picking different numbers of components and 

visualizing the results pair-wise. In contrast, PPA explores the entire available space and 

seeks the most interesting subspace projections on the first pass. The success of this 

strategy is clearly illustrated in this example. 

3.4 Summary 

PPA and ICA are both exploratory tools that have existed for decades and have 

recently been incorporated into chemical analysis. While the exploratory goals of PPA are 

quite general and many projection indices can be used depending on the desired projection, 

ICA was developed with very specific goals in mind, namely extracting independent 

signals. The main hurdle when it comes to ICA methods is the way in which independence 

is estimated. Since many ICA algorithms make the leap to non-Gaussianity to estimate 

independence the distinction between PPA and ICA becomes blurred. It has been shown 

here that when kurtosis is used as the measure of non-Gaussianity, both PPA and ICA 

algorithms achieve similar results. This fact is true despite that the sequential extraction 

used by PPA differs from the simultaneous extraction used by JADE. 

The similarities between PPA and JADE regarding signal extraction are immediately 

obvious, but the criteria used are not sufficient for chemical signals. The data explored here 

had varying results, with success achieved only for non-chemically meaningful data. The 

main issues with the application of ICA methods to the extraction of chemical source 

signals (e.g. spectra, chromatograms) is that such signals (where application is warranted) 

are usually neither uncorrelated nor statistically independent, and assumptions about non-

Gaussianity are normally dubious or ambiguous. Thus, this method can be expected to fail 

in the general case. Moreover, incorporating non-negativity is a problem with chemical 
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signals among other things. There has been a study exploring the effects of preprocessing 

on ICA results [108], specifically derivatization of the signals, which concluded that higher 

derivatives provide better results. However, it is doubtful that these would fully resolve the 

limitations of ICA for signal extraction. 

With regard to clustering, the target number of components is not as clear as with 

signal extraction. PPA has the flexibility of being able to extract the same results 

independently of the number of components requested, as well as being able to select 

minimization or maximization of your projection index which provides more control over 

the desired results. The JADE algorithm lacks the ability to explore the full space and is 

limited to the selected PCA subspace, making it difficult to obtain consistent and useful 

results. Despite this, it can still provide interesting results, but the variability requires a 

varying number of components to be extracted during multiple runs of the algorithm in 

order to explore the possibilities of interesting projections.  
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Chapter 4 – The Role of Measurement Errors in 

Exploratory Data Analysis: A Case Study1  

4.1 Introduction 

The central theme of this thesis up to this point has been an examination of the 

fundamental and applied aspects of PPA and ICA in the context of chemical data, with a 

particular emphasis on clustering and signal extraction. In addition to a critical evaluation 

of the methods themselves, an attempt has been made to show the relationship between 

kPPA and some forms of ICA, especially JADE. A question at this point is whether or not 

these methods are useful alternatives to existing methods such as PCA, HCA and MCR-

ALS. This question can be considered in two parts: (1) do the methods achieve their goals?, 

and (2) do they solve problems that cannot be addressed by traditional methods? 

In terms of curve resolution (signal extraction), it is clear from Chapter 3 that ICA 

and PPA as applied do not meet the basic threshold of providing a correct answer except 

                                                
1 This chapter is based on a published article [149] for which the thesis author was a main 
contributor, performing the data analysis, interpretation and discussion of the results. The 
thesis author did not participate in sample collection or recording measurements. 
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in special cases. Despite a considerable volume of literature on this topic, this outcome 

could have been anticipated. Chemical signals are not, in general, statistically independent, 

and so they fail to meet the basic criterion for ICA. Ironically, however, two of the three 

ICA algorithms examined, as well as PPA, do not look for statistical independence, but 

rather non-Gaussian distributions with an orthogonality constraint. These methods are still 

(generally) not useful for chemical signals which do not adhere to distributional 

characterization and are not (usually) linearly independent (orthogonal). Therefore, the 

utility of these methods for curve resolution can be readily dismissed.  

The case of clustering is another matter, however. It was shown in Chapter 3 that 

PPA can provide information not available from PCA because it uses different projection 

criteria. PCA is based on variance and assumes that the largest source of variance in the 

data is the between class variance. When this is not the case PCA may fail to reveal the 

anticipated class structure. The same is true for HCA, which is based on similar metrics. 

Although preprocessing of the data may help, in many cases another method may be 

required. 

The motivation for this study is the discrimination of different wood species for the 

purpose of fraud detection which has been explored in a few other studies [128,129]. The 

goal of this chapter is to examine in more detail a particular case where traditional methods 

(PCA, HCA) fail and alternative methods are more effective. For the NIR spectral data 

presented here, the problem arises (at least in part) from the structure of the measurement 

errors, which are both heteroscedastic and correlated. This is demonstrated through an 

examination of the error structure and application of MLPCA, which results in better 
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clustering. The application of kPPA and ICA (JADE) are then examined as alternatives 

that do not require a knowledge of the error structure. 

The chapter begins with a brief review of PCA and HCA as traditional methods that 

are applied to clustering problems. The concept of MLPCA is then introduced, with a 

discussion of measurement error structure as a necessary prerequisite. These methods are 

then applied to a problem in the classification of wood species using NIR spectra and the 

performance of PPA and ICA as alternatives is assessed. 

4.2 Background 

4.2.1 PCA and HCA 

Since PCA and HCA are widely used techniques, and were introduced in Chapter 1, 

only a brief overview will be provided here to place them in the context of the other 

methods to be applied, and the reader is referred to more detailed treatments in standard 

texts [1,4,6]. Recall that if the measurement data are represented by the matrix X (m  n) 

consisting of n variables (measurement channels) for m objects (samples), then the PCA 

decomposition results in an orthogonal rotation of the original variable space such that the 

data matrix can be represented as: 

 

where T (m  p) is the scores matrix, giving the coordinates of the objects in the new space, 

and the rows of P (p  n) represent the eigenvectors (or loadings), which define the rotation 

directions of the original space (i.e. the linear combinations of the original variables giving 

rise to the new variables). The dimension p will be the smaller of m or n, and defines the 

mathematical rank of X. There are an infinite number of possible rotations of the original 

space, but PCA provides the solution which maximizes the variance accounted for by each 
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subsequent dimension (principal component or factor). The q-dimensional estimation of 

the data is given by: 

 

where q ≤ p, and Tq (m  q) and Pq (q  n) are the truncated scores and loadings matrices, 

consisting of the first q columns of T and the first q rows of P (this truncation is the process 

performed by the JADE and MILCA algorithms). For a given q, the decomposition 

minimizes the sum of squared residuals, SSRq: 

 

Equivalently, this maximizes the amount of total variance retained in . If q is chosen to 

be 2 or 3, plotting the columns of Tq against one another is a scores plot. Ideally, this yields 

an optimal visualization of the relationships among objects. 

In HCA, the concept is to measure the distances among objects in the data set and 

group the objects (rows of X) that are closest together. Starting with the same matrix, X, 

the Euclidean distance between each pair of objects, i and j, is first calculated according to: 

 

This leads to a symmetric distance matrix, D (m  m) with diagonal elements of zero. In 

the next step, the two objects with the shortest distance are identified and combined to form 

a new object which replaces the former objects, and a new distance matrix is calculated. 

Because the new object is a combination of the original objects, there are a variety of 

options (called linkage methods) to represent the new distance, such as using the average 

distance to the group or the distance to the nearest original object, but these will not be 

X̂
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discussed in detail here. This process is then repeated, incrementally reducing the number 

of objects present at each iteration until only a single connection remains to be made. The 

hierarchy of these connections is finally displayed as a tree structure (a dendrogram) with 

the relationships between objects represented as a chain of branch points where the vertical 

height of each branch point represents the distance between the connected objects (a 

measure of “dissimilarity”). Those objects (most often samples) emanating from a common 

branch point are considered to be most closely related (a cluster) with their similarity 

related to the height of the branch point. 

While they are different approaches, both PCA and HCA are based on measuring 

the squared differences among objects. These differences include both chemical variations 

and measurement noise. Both methods are designed to provide an optimal representation 

of the chemical variance when the measurement noise is independent and identically 

distributed with a normal distribution, often referred to as iid normal noise. This means that 

it is assumed that all of the measurements in the data set have the same error variance and 

there are no relationships among the errors for different variables (i.e. they are 

uncorrelated). While this is an implicit assumption in many data analysis methods (e.g. 

univariate regression), it is violated more often than not and can lead to suboptimal results 

[25,130–132]. 

4.2.2 Measurement Error Structures 

For univariate measurements, the uncertainty can be fully described by the error 

variance, , of the measurement. For multivariate measurements, it is necessary not only 

to provide the measurement variance for each variable, , but also the covariance between 

measurement channels, . Chemical measurement vectors are often heteroscedastic, 
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meaning that different elements of the vector can exhibit different error variance. This non-

uniform variance arises naturally from the measurement system [130–133]. For example, 

fundamental counting statistics, governed by the Poisson distribution, give rise to what is 

often referred to as shot noise, where the error standard deviation is proportional to the 

square root of the signal intensity. Such noise may be limiting in spectroscopic or mass 

spectrometric measurements where the signal amplitude is low. Proportional noise, where 

σ is proportional to the magnitude of the signal, is also commonly observed and typically 

associated with variations in a light source or ion source. Likewise, many measurement 

systems exhibit noise that is highly correlated. This includes baseline offset noise and 

multiplicative offset noise, the latter of which is typically the limiting noise source in NIR 

reflectance spectroscopy [vide infra], arising from variations in path length due to sample 

heterogeneity. Low frequency noise, also known as pink noise or 1/f noise, also falls into 

this category and is sometimes referred to as source flicker noise or drift noise in the context 

of analytical measurements [133–139]. 

A common method to characterize multivariate measurement errors is the error 

covariance matrix (ECM) [25,33,130,131]. If we consider a measurement vector,  ( ), 

which is an observation of a true (error-free) vector, xo, the error vector, e, is defined as the 

difference between these vectors, . The error covariance between measurement 

channels  and  of the vector is defined as the expectation of the product of the 

corresponding errors: 

 

Here the summation is over multiple realizations of measurement vector  and  and  

are elements of that measurement vector. When , the corresponding quantity is the 
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error variance, signified as  rather than . The collection of all of these error 

covariances is described by the ECM ( ) defined as the outer product of the expectation of 

the error vectors: 

 

The ECM is a symmetric ( ) matrix, where the diagonal elements represent the error 

variance of each of the n variables and the off-diagonal represents the error covariances of 

the corresponding elements. The ECM is one of the most complete ways to describe the 

errors in a vectorial measurement with stationary characteristics. A related method is the 

error correlation matrix, , which normalizes the off-diagonal elements by their 

corresponding standard deviations such that: 

 

This removes the effects of scale (diagonal elements are unity) and allows more direct 

visualization of correlation. Errors with ρij = 1 are perfectly correlated. 

In practice, the true measurement vector is unknown, so the experimental ECM is 

normally estimated by making replicate observations of the measurement vector and 

subtracting the sample mean vector ( ). If  experimental replicates of the measurement 

vector (e.g. a spectrum) are made, the ECM is estimated as: 

 

It should be noted that the definition of the replicate is very important in this context, since 

it needs to capture all of the sources of variation one wishes to consider as measurement 

errors. Consequently, the ECM can be quite different depending on whether it is to include, 

for example, only technical replication or also sampling variability. 
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The ECM estimated by the replication procedure above is likely to be quite noisy 

itself when the number of replicates is relatively small [25,130] and therefore of limited 

practical utility. Two approaches are commonly used to improve the quality of the ECM. 

The first is to pool (average) the ECMs obtained for different measurement vectors, each 

with a limited number of replicates[130]. This results in an averaging effect that leads to a 

smoother ECM but makes the implicit assumption that measurement vectors for different 

samples have the same ECM. While not strictly valid, this assumption is reasonable where 

measurements exhibit similar characteristics. The second approach is to develop an 

empirical model of the ECM [130,131,140]. For many kinds of measurements, the ECM 

can be represented using a model characteristic of that particular technique using a limited 

number of parameters. Where this can be done, the result is a smoother, more reliable ECM 

that can be calculated separately for each measurement vector. 

Knowledge of the measurement error characteristics through the ECM is key to 

improving data analysis methods since it allows better extraction of the chemical variance 

from the associated noise variance. By implicitly describing the information associated 

with each measurement, the ECM allows more optimal results to be obtained. 

4.2.3 Maximum Likelihood Principal Components Analysis (MLPCA) 

MLPCA was developed as a tool to provide better subspace estimation for 

multivariate data when assumptions of iid normal errors are no longer valid [25,33,141]. It 

can be viewed as a more generalized form of PCA in which the ECM is incorporated into 

the decomposition procedure to yield a more optimal solution. Rather than simply 

minimizing the residual variance of the truncated q-dimensional solution, MLPCA uses a 

weighted objective function that attempts to match the residual variance to the 
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characteristics of the ECM for each measurement vector. The approach is analogous to 

using weighted least squares in univariate regression. The specific objective function used 

depends on the complexity of the error structure and there are six general categories, 

ranging in complexity from the trivial case of iid normal errors (where MLPCA and PCA 

are equivalent) to general error heteroscedasticity and correlation that can exist within both 

the rows and columns of a data matrix. One of the most common implementations is where 

error correlation exists only within the rows of a data matrix. Under these conditions, the 

objective function to be minimized is defined as: 

 

Here, xi represents measurement vector i (row i of X),  is the estimate of the vector based 

on the MLPCA decomposition, and Σi is the ECM for the vector. In the general case, this 

objective function is optimized by an alternating least squares (ALS) algorithm, but in the 

special case where Σi is the same for all row vectors, a direct solution can be obtained 

through rotation and scaling of the original data. Another difference between MLPCA and 

PCA is that, where PCA uses an orthogonal projection of the measurement vector onto the 

subspace to obtain the scores vector (tq = (Pq xT)T), MLPCA employs a maximum 

likelihood projection: 

 

This oblique projection uses the information in the error covariance matrix to ensure that 

the projection uses the measurements in x that minimize the uncertainty in the low 

dimensional projection. 

ˆ ix
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In principle, MLPCA should result in the optimal subspace estimation assuming that 

the intrinsic dimensionality of the data (also called the pseudorank, q) and the ECM are 

exactly known. In practice, q is often uncertain and only an estimated ECM is available, so 

this can limit the optimality of the solution. There can also be complications from rank 

deficiency of the ECM (which needs to be inverted) when it is estimated from a limited 

number of replicates, although there are strategies to address this [141,142]. Despite these 

limitations, however, MLPCA has demonstrated superior performance to PCA in a variety 

of applications ranging from multivariate calibration [143,144] to curve resolution 

[35,145]. 

4.2.4 Projection Pursuit Analysis (PPA) 

An inherent limitation of PCA and HCA is an assumption that the largest source of 

chemical variation in a data set is associated with the characteristic we are interested in, 

specifically, in the current context, the classification of samples into two or more groups. 

For example, in the detection of a disease state, it is hoped that the dominant source of 

difference is in a set of chemical compounds that are associated with the presentation of 

the disease, often referred to as biomarkers. However, the differences among these 

compounds may be obscured by other natural variations in the data set, resulting in an 

exploratory visualization that does not reveal clustering according to the anticipated 

characteristics. To overcome these limitations, it is necessary to use visualization methods 

that do not rely solely on variance metrics. 

As discussed in previous chapters, the concept of projection pursuit was first 

advanced nearly five decades ago and is based on the idea of looking for linear projections 

of the multivariate data that are interesting based on a measure of “interestingness” as 
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quantified by a projection index. The historical evolution and fundamental principles of 

PPA have been outlined in Chapter 2, with some applications presented in Chapter 3. In 

particular, kPPA based on the quasi-power algorithm has been shown to be an effective 

clustering tool when other methods fail [43–46,52,53]. In this chapter, kPPA is applied to 

a data set for which replicate measurements are available, allowing its direct comparison 

to MLPCA and providing evidence that kPPA can address circumstances where 

measurement error structure is the complicating factor. 

4.2.5 Independent Component Analysis (ICA) 

Like PPA and PCA, ICA is a projection method which decomposes the data into a 

bilinear model. Where PCA and PPA commonly use the terms “scores” and “loadings” to 

describe the two matrices, ICA models are instead described as “contributions” and 

“signals”, respectively. Despite the terminology difference, the contributions and signals 

represent the same information as scores and loadings and will be compared as such. 

Although ICA was initially developed for signal extraction, it has since been used in other 

applications including cluster analysis [77,100,146]. Considering the relationship between 

kurtosis and cumulants, PPA and ICA will be applied equivalently for this study. 

For this application, only the JADE algorithm was evaluated as an ICA technique 

since it has been widely applied for clustering applications and is the most closely related 

to PPA. The algorithm is applied in the way it was applied for clustering in Chapter 3, that 

is applying it to , in order to target independent scores rather than independent loadings. 
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4.3 Experimental 

4.3.1 Computational Aspects 

All calculations were carried out within the MatLab programming environment 

(Mathworks, Natick, MA). Programs for carrying out MLPCA and PPA were written in-

house and are available from the corresponding author, as are the data.  

4.3.2 Data set 

The data set which was employed for this part of the research involves the 

classification of four different types of tropical wood species by near-infrared (NIR) 

reflectance spectroscopy. The data were obtained from a study by Brazilian researchers 

whose aim was to develop classification models to allow the rapid discrimination of 

mahogany from other similar species. Exploratory data analysis with clustering was 

undertaken to validate the hypothesis that the data contained sufficient information to build 

a classification model. 

There are several characteristics of this data set that made it ideal for a more focused 

study. First, traditional exploratory methods (PCA, HCA) had limited success at revealing 

the anticipated class structure. Second, the acquired data was well-suited to sequential 

binary classification by kPPA since it consisted of four balanced classes. Finally, the 

availability of replicate data allowed calculation of the ECM, which opened the possibility 

of making comparisons with MLPCA and establishing the error structure as a complicating 

factor in the exploratory analysis. 
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4.3.3 Species Selection 

The broad objective of this research, of which this study is a part, is the development 

of instrumental methods to distinguish wood species, with a particular emphasis on 

discriminating high value species such as mahogany [128,129]. Species were selected 

based on the book “Similar woods to mahogany (Swietenia macrophylla King): An 

illustrated key for anatomical field identification” [147], edited by the Brazilian Forest 

Service. From the 15 species listed, the three species that were the most difficult to 

distinguish, based on the appearance and macroscopic wood characteristics, were chosen 

for this study. These were Carapa guianensis, Cedrela odorata, and Micropholis 

melinoniana, along with mahogany itself, Swietenia macrophylla. 

4.3.4 Sampling and Sample Preparation 

Each sample of crabwood (C. guianensis), cedar (C. odorata) and curupixa (M. 

melinoniana) was obtained from an individual disk located at the base of a tree trunk. These 

species (S. macrophylla) were collected in authorized forestry exploitation areas in Para 

state, Brazil. Mahogany samples were obtained from tips of seized boards coming from the 

state of Mato Grosso, Brazil. Altogether, 108 solid samples were measured, 26 being of 

crabwood, 28 of cedar, 29 of curupixa and 25 of mahogany. Besides alleged species, all 

samples were identified by a wood anatomist of the Forest Products Laboratory in Brasilia, 

registered as FPBw in the Index Xylariorum [148]. 

Samples were dried in open air conditions and cut into blocks of approximately 2 

cm3 with oriented faces according to wood growth directions. Surfaces were made uniform 

with 80 grit sandpaper. 
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4.3.5 Acquisition of Spectra 

Samples were measured by coauthors on a handheld spectrometer, Phazir RX 

(Polychromix). Four replicate spectra were obtained for each sample, two on each radial 

face, measured on distinct spots, resulting in a total of 432 spectra. Spectra were measured 

in the diffuse reflectance mode between 939.5 and 1796.6 nm with 9 nm of resolution. 

Resultant spectra, shown in Figure 4.1, consisted of 100 data points per spectrum and were 

converted to log(1/R) scale (where R is the response) for the data analysis. Figure 4.1(a) 

 

Figure 4.1 Near-infrared (NIR) reflectance spectra of wood samples. a) Mean spectra of four 
species, as indicated in the legend. b) Full set of 432 spectra. 
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shows the mean spectrum for each of the four species, while Figure 4.1(b) shows all 432 

spectra, with each of the replicates displayed individually. 

4.4 Results and Discussion 

4.4.1 PCA and HCA of NIR Spectra 

It is clear from Figure 4.1 that spectra of the four species exhibit a strong similarity 

and that the variation between individual samples is quite large, making the discrimination 

of the four classes a challenging problem. To determine if the usual data visualization 

methods would be able to distinguish the classes, PCA and HCA were applied to the NIR 

spectra. To improve the quality of the measurements and simplify the visualization, the 

mean of the four replicate spectra were used for each sample, resulting in a data matrix of 

108 samples by 100 wavelength channels. Initially, only column mean centering was 

applied to the data. The paired scores plots for the first four principal components from 

PCA are presented in Figure 4.2, where the different species are represented by different 

symbols as indicated in the legend. Based on the distribution of samples in the scores plots, 

there is no apparent separation of the species based on the NIR spectra. While there is some 

suggestion of separation of classes 2 and 4 (C. odorata and S. macrophylla) using the third 

and fourth PCs, there is still strong overlap and no clear clustering is evident. Higher PCs 

did not improve separation. 

In many cases of multivariate analysis, it is necessary to preprocess data to obtain 

satisfactory results, so a variety of common preprocessing methods were employed here to 

see if the class separation could be improved. These included autoscaling, multiplicative 

signal correction (MSC) and the standard normal variate (SNV). MSC and SNV are widely 
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used in NIR spectroscopy to account for multiplicative offset noise [19,23]. None of the 

methods implemented resulted in any improvement of the PCA results. 

The application of HCA did not improve on these results. HCA was implemented 

through algorithms in the Statistics and Machine Learning Toolbox of MatLab. A variety 

of linkage and preprocessing options were applied to both the full set of 432 spectra and 

the set of 108 sample mean spectra. Results for the latter are shown in Figure 4.3, with the 

symbols and the color of the bottom branches representing the species. The results shown 

are for an average distance calculation and mean-centering as the only preprocessing. 

While some local groupings are evident in the tree structure, no consistent clusters are 

 

Figure 4.2 Paired scores plots from principal components analysis of sample mean spectra after 
column mean-centering, with species identified as in the legend. 
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observed that would strongly support the hypothesis that the species can be distinguished 

on the basis of their NIR spectra. Although different preprocessing and linkage options 

produced changes in the tree structure, similar irregular class distributions were observed 

in all cases with no strong evidence of clusters related to species. 

4.4.2 Error Structure of NIR Spectra 

A central premise of this work is that exploratory analysis by HCA and PCA can 

be adversely affected by non-iid error structures. It is therefore necessary to examine the 

measurement error characteristics of the NIR spectra which are the focus of this study. For 

each of the 108 samples examined, replicate spectra were obtained from four different 

physical locations and should reflect the within-sample error variance. On the basis of these 

four replicates, an ECM can be calculated for each sample using Equation 4.8, leading to 

108 individual ECMs. 

 

Figure 4.3 Dendrogram resulting from hierarchical clustering of sample mean spectra after mean-
centering. Species are color coded in the same manner as Figures 4.1 and 4.2. Average distance 
was used in the clustering algorithm. 
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Unfortunately, ECMs calculated on the basis of a small number of replicates are 

very noisy and unreliable [140]. For example, an error variance estimated from four 

replicates is expected to have a relative standard deviation (RSD) of about 82%. This high 

level of noise in the individual ECMs makes their visual interpretation difficult and 

precludes their use in any advanced data analysis strategy. One solution to this problem, as 

noted earlier, is to pool (average) individual sample ECMs. This is valid in cases where the 

spectral characteristics of the samples are very similar, and therefore the improved 

precision gained by pooling outweighs any between-sample differences. The similarity of 

the spectra in this study is evident from Figure 4.1, so pooling was a viable option. 

Initial pooling of the ECMs was carried out within each of the four species 

investigated. This was done as a preliminary evaluation to confirm the similarity of the 

ECMs within each group prior to global pooling, which is normally done. It was anticipated 

that the four ECMs would show very similar characteristics which were consistent with 

NIR spectra. While this was true for three of the groups (classes 1, 2 and 4), the remaining 

group (class 3) was distinctly different from the others, as shown in Figure 4.4. For classes 

1, 2 and 4 (Figures 4.4(a), (b) and (d)), the ECMs are typical for NIR spectra [25,130] 

showing heteroscedastic noise (non-uniform variance) along the diagonal and, more 

importantly, structured covariance (off-diagonal elements) that is consistent with offset and 

multiplicative offset noise. The latter is a dominant noise source in NIR reflectance 

measurements, arising from differences in the effective path length of scattered photons 

caused by changes in the scattering characteristics of the sampled region. The result is a 

shift in the spectral intensity proportional to its magnitude (hence the term multiplicative 

offset noise). The direction of the shift from the mean is random, but is consistent within a 
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spectrum, leading to highly correlated noise in which variance and covariance are directly 

related to the signal magnitude, as is evident in Figures 4.4(a), (b), and (d). Figure 4.4(c) is 

anomalous in this regard, however. While the correlated and heteroscedastic noise is still 

evident, the magnitude of the measurement errors is largest in the shorter wavelength 

regions, where the signal is the lowest. This is confirmed through an examination of Figure 

4.1(b), which shows a substantially greater variation of M. melinoniana in this region. The 

reason for the anomalous behavior of the third class is unclear, but it may be due to different 

physical properties that lead to different scattering characteristics by these samples. 

 

Figure 4.4 Pooled error covariance matrices (ECMs) of the NIR spectra for each of the four 
species examined: a) Class 1: Carapa guianensis, b) Class 2: Cedrela odorata, c) Class 3: 
Micropholis melinoniana, d) Class 4: Swietenia macrophylla. 
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Although the differences observed above suggest that a global pooling of ECMs from 

each class may not be representative of all samples, global pooling was nevertheless carried 

out and the results are shown in Figure 4.5(a). As anticipated, the globally pooled ECM 

(calculated using a weighted average reflecting the number of samples in each group) 

reflects the characteristics of the dominant classes (1, 2 and 4) but with a higher 

variance/covariance in the short wavelength region due to the contribution of class 3. 

Despite its inaccuracy in its universal representation of all errors, the globally pooled ECM 

can still give improved results because it is still superior to the assumption of iid normal 

errors which is made in the usual applications of HCA and PCA. This is further explored 

in the section that follows. Also shown in Figure 4.5(b) is the error correlation matrix (R) 

corresponding to the ECM (Σ) in Figure 4.5(a), calculated using Equation 4.7. The error 

correlation matrix removes the effects of the magnitude of the error which are evident in 

the ECM, showing only how they are related. Figure 4.5(b) shows almost perfect 

correlation (same direction and relative magnitude change in the errors) within three 

regions (<1148 nm, 1166-1343 nm, >1395 nm), but a smaller degree of correlation between 

these regions. This is typical for offset/multiplicative offset noise in NIR spectra and shows 

a strong interdependence of measurement errors. 

4.4.3 MLPCA of NIR Spectra 

For a matrix of chemical measurements, the intrinsic rank (pseudorank, chemical 

rank) is defined as the dimensionality of the space needed to account for all of the chemical 

variation in the absence of measurement error, and for linear systems this is typically equal 

to the number of independently observable chemical components. When the intrinsic rank 

is well-defined and the ECMs of the measurement vectors are accurately known, MLPCA 
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should yield the optimal estimate of the chemical subspace. For exploratory data analysis, 

however, decomposition by MLPCA is only guaranteed to provide an optimal visualization 

of the data when the intrinsic rank is equal to the dimensionality of the space into which 

the data are projected (called the projection rank), which can only be realized when the 

intrinsic rank is less than or equal to three [34]. In cases where the intrinsic rank exceeds 

the projection dimensionality, the advantages of MLPCA are less certain, but its application 

may provide a more useful visual projection of the data than PCA. In general, a definitive 

 

Figure 4.5 Pooled error structure of NIR spectra based on 108 samples: a) Pooled error covariance 
matrix. b) Pooled error correlation matrix. 
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determination of the intrinsic rank (q) is difficult, so the application of MLPCA is typically 

carried out using different values to assess the projections empirically. 

The application of MLPCA requires a specification of the data matrix, the 

corresponding ECMs, and the dimensionality of the subspace to be estimated. Based on the 

results of the previous section, which showed that the ECMs were not homogeneous among 

the different sample classes, it was decided to assign the ECM for each measurement vector 

based on its class membership (species), using the pooled ECM for the corresponding class. 

This error structure is representative of Case E for the MLPCA algorithms [25,141] for 

general row-correlated errors. The objective function in this case is given by Equation 4.9 

and is minimized through the ALS method. The data matrix consisted of 108 rows 

corresponding to the sample mean spectra (column mean-centered) and an initial rank of 

two was selected. Although the ALS algorithm is slower than the direct solution which can 

be obtained when all of the ECMs can be assumed to be the same, it is considered to be 

more reliable when this assumption is violated, and the execution time was only about 20 

s in this case. 

The scores plot obtained through the application of MLPCA(E) (with a specified rank 

of 2) in this manner is shown in Figure 4.6(a). The results show a clear clustering of the 

samples into separate groups corresponding to the individual species, with the exception 

of one point from class 3 (M. melinoniana; it is noted that this does not correspond to the 

extreme point in the upper left panel of Figure 4.2). This supports the hypothesis that there 

is sufficient information in the NIR spectra to distinguish among the four species. More 

importantly, in the context of the current work, it supports the broader hypothesis that the 

visualization of data by PCA can be impeded by non-iid measurement error structures and 
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that this problem can be mitigated through the application of MLPCA. By incorporating 

information about the measurement error variance and covariance into the decomposition 

of the data, MLPCA can more effectively separate the variability originating from chemical 

differences from that arising from measurement noise, thereby giving a more useful picture 

of the relationships among samples. 

 

Figure 4.6 Scores plots from maximum likelihood principal components analysis (MLPCA) of 
NIR spectra. a) Rank 2 MLPCA results using class-specific ECMs. b) Rank 2 MLPCA results 
using a global average ECM. c) Rank 3 MLPCA results using a global average ECM.  Symbols 
correspond to the legend in Figure 4.2. 
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A potential argument that can be made to counter the conclusions drawn above is 

that, by defining the ECM according to class membership, indirect information related to 

class membership is being provided to the MLPCA algorithm and therefore biasing the 

outcome. This is a legitimate argument, since a truly unsupervised method should not 

include any information that could indirectly be associated with class membership. While 

it cannot be concluded that the results in Figure 4.6(a) are biased, this possibility cannot be 

excluded, so further evidence is needed. There are three possible ways to exclude bias. The 

first would be to provide an individual ECM for each sample based on its replicates. 

However, since there are only four replicates measured for each sample, the ECMs would 

be unreliable, as well as rank deficient due to the small number of replicates (rank = 3). 

Under these circumstances, anomalously small variances (due to limited replication) tend 

to drive the optimization, giving excessive weight to a few samples. This was confirmed 

by using the individual ECMs, resulting in a scores plot with a tight central cluster and a 

few dispersed samples (results not shown). A second possibility is to use a parameterized 

model for the ECM developed from multiple samples [130,140]. This can then be 

employed to calculate individual ECMs with greater reliability. In this case, however, it is 

clear that the same model could not be applied to all samples due to the differing 

characteristics of one of the classes. The third option would be to employ the globally 

pooled ECM, shown in Figure 4.5(a), to all of the samples. Although it is expected that the 

MLPCA solution obtained in this way would be suboptimal, it eliminates the possibility of 

bias and may produce projections superior to PCA. 

To implement this third option, MLPCA (Case D, common row covariance) was 

applied to the 108 sample mean spectra (column mean-centered) using the global pooled 
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ECM with a specified rank of two and three. The scores plot for the rank two solution is 

shown in Figure 4.6(b). This result shows a clear separation of classes 2 and 3 (C. odorata 

and M. melinoniana) but strong overlap of the other two classes. However, the three-

dimensional projection, presented in Figure 4.6(c), shows a distinct separation of all four 

classes. As might be expected, the separation observed here is not as clear as for Figure 

4.6(a) since a common ECM is erroneously assumed for all samples, but the results are far 

more informative than PCA. These results also exclude the possibility of an unintended 

bias and support the premise that class information can be more clearly extracted by 

incorporating measurement error information into the data analysis. 

It should be noted that, in all of these cases, higher rank MLPCA solutions were 

also investigated. Separation of classes was still observed with increasing dimension, 

although the quality was diminished in the case of MLPCA(E), and slightly improved in 

the case of MLPCA(D) (results not shown). 

4.4.4 PPA of NIR Spectra 

A weakness of both methods investigated so far (HCA, PCA) is that they rely on an 

assumption that the dominant sources of chemical variance are associated with the classes 

of interest, but even when error variance is altered by preprocessing in an effort to reduce 

it, other sources of chemical variance may eclipse the factors of interest. For example, in 

biological samples, variation in chemical species among individuals in a population or due 

to diurnal rhythms may mask smaller effects of interest. Projection pursuit approaches can 

avoid this problem by examining other criteria to obtain the optimal low dimensional 

projection. 
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In this work, kurtosis-based PPA was implemented using a stepwise univariate 

algorithm and orthogonal scores, with a two-dimensional projection space. This algorithm 

uses a stepwise procedure that first minimizes the univariate kurtosis along one projection 

dimension, optimally resulting in a binary separation of the data. After “deflation” of the 

data to remove the extracted dimension, the process is repeated in an attempt to provide a 

binary separation in subsequent dimensions, ultimately resulting in scores and loadings of 

selected dimensions analogous to PCA (although the loadings are not required to be 

orthogonal in this case). In this application, all 432 spectra (mean centered) were employed, 

since PPA works best when the ratio of samples to variables is high. The algorithm uses a 

nonlinear optimization method that is significantly slower than PCA, and random initial 

starting points are used to ensure a global optimum. In this implementation, 1000 initial 

guesses were used and the execution time was about 20 min. 

The scores plot resulting from PPA of the raw data is shown in Figure 4.7(a) and 

shows clear clustering of the four species, although there are a few samples that are grouped 

incorrectly. For a more direct comparison with earlier figures (Figure 4.2 and 4.6), the 108 

sample mean spectra have been projected into the same subspace and exhibit no overlap, 

as might be expected due to the smaller error variance. It is important to note that no class 

information was provided implicitly or explicitly to the algorithm, so the natural clustering 

on the basis of species was discovered solely on the basis of the observed spectra, 

supporting the hypothesis that the multivariate information available in the NIR spectra 

can be used to distinguish among the classes. No preprocessing of the data was necessary 

other than column mean-centering, and no measurement error information was provided to 

the algorithm. 
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Although PPA is an extremely powerful tool for exploratory studies, it is not without 

its limitations. Current algorithms are best suited for balanced data sets (approximately 

equal numbers of samples in each class) with more samples than variables, and are most 

effective for 2, 4 or 8 classes. Ongoing work is directed at removing some of these 

limitations. 

4.4.5 ICA of NIR Spectra 

To illustrate another alternative method to traditional PCA and HCA, ICA was 

applied to the data using the JADE algorithm. JADE searches for a rotation that optimizes 

the set of all fourth order cumulants to minimize information shared in each direction. The 

relationship between fourth order cumulants and kurtosis is clear which draws lines 

 

Figure 4.7 Scores plots for the projection pursuit analysis (PPA) of NIR spectra. a) Scores plot from 
the analysis of all 432 spectra. b) Scores plot resulting from the projection of sample means into the 
same space. Symbols correspond to the legend in Figure 4.2. 
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between JADE and PPA, however JADE also has strong ties to PCA since PCA 

compression is done prior to optimization within the algorithm. This compression step 

results in a very fast algorithm, but also creates its own set of complications, as discussed 

in earlier chapters. Due to these connections to both PPA and PCA it was unclear which 

set of the data would be most appropriate for a valid comparison so both data subsets were 

analyzed. That is, the full set of all 432 mean centered spectra, and alternatively the 108 

mean-centered mean spectra. There was little variation in the results so for simplicity only 

the results of the 108 mean spectra are shown.  

Unlike PCA and PPA, the rank selection is integral to the results obtained by JADE 

(i.e. the results for 2 components are not consistent with those for 3 components). To 

maintain consistency with the PCA analysis, a 4 component models was calculated. The 

scores plots resulting from these analyses are shown in Figure 4.8. Figure 4.8 shows all 

paired scores plots obtained from a 4 component model where it can be seen in some 

combinations that class 4 (S. macrophylla) partially separates from the other groups, and 

in other cases class 1 (C. guianensis) partially separates as well. Despite this, there are no 

combinations lacking high levels of overlap between the classes. 

Despite the connections drawn between PPA and ICA it is clear from these results 

that the algorithms produce very different results and the ICA results resemble more closely 

the results of PCA. This is not surprising, since ICA solutions generated in this manner are 

constrained to orthogonal rotations of the PCA subspace and therefore do not provide new 

information. 
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4.5 Summary 

The results of this study can be summarized by five main conclusions. First, even 

when chemical information related to classification is present in a data set, traditional 

exploratory methods such as HCA and PCA may be incapable of revealing it. This is 

demonstrated by juxtaposing Figures 4.2, 4.3 and 4.8, which show no clear organization of 

the samples, with Figures 4.6 and 4.7, which clearly show division of the samples based 

on biological species. A second conclusion, derived from the results shown in Figure 4.6, 

is that inclusion of measurement error information into the data analysis, in this case 

through the application of MLPCA, can greatly improve the visualization of chemical 

information by more effectively separating the chemical variation from the noise variance. 

It can be further inferred from this that the limiting factor in the effective implementation 

 

Figure 4.8 Paired IC plots from applying JADE to sample mean spectra after column mean-
centering, with species identified as in the legend. 
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of PCA (and likely HCA) was the presence of heteroscedastic and correlated errors (i.e. a 

non-iid error structure), suggesting that a better understanding of measurement errors 

should be a key component in the analysis of any multivariate data set. Fourth, it was 

clearly demonstrated through Figure 4.7 that the implementation of data visualization 

methods such as PPA that do not rely strictly on variance as a criterion for low dimensional 

projection could be extremely beneficial in studies involving multivariate data. Although 

PPA was able to separate the classes, ICA (Figure 4.8) was not able to cluster the points 

for reasons that have been discussed in earlier chapters. Finally, with regard to the specific 

experimental data employed in this work, there is clear evidence that NIR spectroscopy has 

the capability to distinguish similar species of wood using the procedures described. 

Many areas of modern scientific discovery are initiated by testing an initial 

hypothesis that a complex multivariate data set contains information relevant to a desired 

goal, such as disease detection or forensic classification. Such studies often involve a 

limited number of samples and a large number of variables. While supervised classification 

methods (by design) are well-suited to building classification models, they are poorly 

suited to test an initial hypothesis based on limited samples due to their need for extensive 

validation. Unsupervised (exploratory) methods play a key role in this workflow, since they 

do not have such strict validation requirements, but are currently limited to two dominant 

techniques, HCA and PCA. As demonstrated here, these methods can fail to reveal 

important information in certain circumstances, and failure to support an initial hypothesis 

can impede the advance of research. Therefore, it is important to expand the toolbox 

available to researchers for exploratory analysis, and the alternative methods described 

here, ICA and PPA, are two approaches that can contribute in this regard. Although 
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expanding the toolbox is a key component to moving forward with data analysis, 

understanding these methods in order to apply them optimally also plays a key role in the 

future success of data analysis. 
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Chapter 5 – Conclusion  

As the complexity and abundance of multivariate chemical data increases, so does 

the demand for new methods capable of handling and extracting the relevant information 

from the data. As convenient as it may seem to explore (and exploit) the application of 

methods developed in other scientific fields, the characteristics of chemical signals are not 

always consistent with the types of data for which these methods are equipped to handle. 

This does not mean that alternative methods should not be tested, but rather that their 

fundamentals should be understood before broad application occurs. Sometimes there are 

ways to adjust or alter these methods to better suit the properties and structure of chemical 

data. 

One major application area in chemometrics is in the extraction of source signals, 

better known as curve resolution, from mixture data. These applications, which include the 

analysis of mixtures in chromatography, chemical reaction studies, and environmental 

monitoring, have matured with the development of MCR-ALS, which incorporates known 

characteristics of the chemical data, such as non-negativity and unimodality to constrain 

the range of linear solutions. On the surface, ICA presents an attractive alternative for 

source signal extraction, since (depending on the algorithm) it uses only statistical 
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independence or non-Gaussian point distributions as a criterion. However, the point 

distribution of the underlying source signals is highly variable (and nearly impossible to 

predict in most cases), making it an impractical criterion to use when attempting to extract 

source signals. Another common feature of chemical signals, which drives the motivation 

for curve resolution methods, is that chemical signals often overlap one another. As it has 

been shown, high degrees of overlap in chemical signals results in high correlation between 

these signals, meaning they are not orthogonal and certainly not statistically independent. 

Given these features, it is not practical to apply ICA methods to curve resolution problems 

based on the assumption that certain properties, (such as non-Gaussian point distributions, 

orthogonality or statistical independence), are present. ICA methods encompass a wide 

variety of algorithms built around these same properties and should not be applied blindly 

in cases where they are not valid. 

Exploratory data analysis for clustering is another area where methods developed 

in other fields are often applied to chemical data. PCA is perhaps the most widely applied 

method and is based on a fundamental matrix decomposition developed in mathematics 

and adopted by statisticians for visualizing and exploring data. Despite its success, it is a 

variance-based method which can result in sub-optimal extraction of information in cases 

where the between class variance does not dominate, such as when error structures in 

chemical data breach the iid noise assumptions made by PCA. Alternatives to PCA can 

succeed in cases where PCA fails often by taking a different approach to finding underlying 

data structures. Two such methods described in this work are MLPCA (which compensates 

for known data error structure) and PPA (which seeks interesting point distributions). Both 

MLPCA and PPA also have drawbacks (which have been outlined in this work), but 
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perform exceedingly well in cases where their assumptions are valid and required 

conditions are met. The principal advantage of PPA, however, is that it requires no prior 

information about the measurement error structure. 

In this work, ICA (specifically the JADE algorithm) was compared to both MLPCA 

and PPA in clustering applications, with the latter comparison being of greatest interest 

because of the common underlying principles. One reason MLPCA and PPA are able to 

outperform PCA in some cases, is that they are not constrained to a low-dimensional PCA 

subspace. Though it has been shown that PPA can benefit from PCA compression when 

the number of variables greatly exceeds the number of samples, the size of the subspace 

remains large and it is not a forced constraint on the algorithms. Since JADE forces a low 

dimensional compression from the start, the resulting p ICs extracted are restricted to the 

PCA subspace alone, which leaves little to no potential for discovering new structures or 

information beyond what would be seen from the original PCA results. Even if a larger 

number of ICs are extracted (>3), an exhaustive search of every pair-wise scores plot would 

have to be investigated. Though this is not to say that interesting results could not be found, 

it is a tedious approach for exploration when other methods exist with potentially more 

straightforward ways of measuring the quality of results. However, current ICA algorithms 

may serve as a starting point to develop modified techniques that would overcome this 

weakness. 

In summary, a number of primary conclusions can be drawn on the basis of this 

work. First, the close relationship between kurtosis-based PPA and distribution-based ICA 

algorithms, particularly JADE, has been established. This connection has been vague in the 

past, but the methods have been shown to be tied together through the kurtosis criterion 
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and a simple transposition of the input matrices. Although there are subtle differences, 

establishing this link helps to simplify our understanding of the multitude of methods 

currently applied. A second major assertion of this study is that, despite a number of claims 

to the contrary, there is no basis to believe that ICA is a suitable method for signal 

extraction (curve resolution) for chemical data. Although the main ICA algorithms are 

based on different principles (independence, non-normality), there is no reason to believe 

that any of the criteria are consistent with the nature of most chemical signals. This does 

not exclude the possibility of niche applications, but the fundamental lack of mutual 

orthogonality would preclude the application of ICA (and, by implication PPA) on first 

principles. Finally, kurtosis-based PPA has once again been demonstrated to be a valuable 

addition to the toolkit for cluster analysis, often succeeding where traditional methods fail. 

Based on the fundamental similarities to PPA, it was anticipated that some of the ICA 

methods might also show potential for clustering, but basic constraints on current 

algorithms limit their ability to effectively search the full variable space. Despite the recent 

appeal of ICA for chemical applications, a better understanding of these tools is needed to 

develop them into useful tools for chemistry. 

Given the amount of time and consideration put into the process of collecting 

chemical data, from experimental design and sample preparation to making the 

measurements themselves, it is essential that the right tools are applied for data analysis. 

Knowledge of the underlying processes and chemical properties is essential to interpreting 

the results of an experiment, and there should be an equivalent amount of understanding 

incorporated when selecting the appropriate analysis methods. This work has attempted to 
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extend such an understanding to new analysis tools in a way that will allow chemists to use 

them more effectively. 
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