
AUTOMATIC TERM EXTRACTION IN TECHNICAL DOMAIN
USING PART-OF-SPEECH AND COMMON-WORD FEATURES

by

Nisha Ingrid Simon

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

May 2018

c⃝ Copyright by Nisha Ingrid Simon, 2018

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

List of Abbreviations and Symbols Used vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Research Objective . 2

1.2 Contributions . 2

1.3 Outline of the Thesis . 3

Chapter 2 Background and Related Work 4

2.1 Background . 4

2.2 Related Work . 5

Chapter 3 Methodology . 9

3.1 Methodology Overview . 9

3.2 Data Pre-processing . 14

3.3 POS Tagging . 14
3.3.1 Index Terms Flipping . 18

3.4 Candidate Detection . 18

3.5 Stop Words and Common Words . 20

3.6 Keyword Selection . 23

3.7 Additional Data Sets . 23

3.8 System Comparison . 25

3.9 Methodology Summary . 26

ii

Chapter 4 Experimental Results . 28

4.1 Experiments Overview . 28
4.1.1 Rationale for Data Set Selection 28

4.2 Implementation Tools . 28

4.3 Experiment set A — Data set 1 . 29
4.3.1 Experiment set A Summary 31

4.4 Additional Data Set . 32

4.5 Experiment Set B — Comparison with Data set 2 32
4.5.1 Experiment set B Summary 35

4.6 Experiment Set C — System Comparison 36

4.7 Overall Experiments Summary . 37

Chapter 5 Discussion and Evaluation 38

5.1 Evaluation Summary . 47

Chapter 6 Conclusion . 49

6.1 Future Work . 51

Bibliography . 52

Appendix A Sample Code . 58

Appendix B Data Sets . 70

Appendix C Algorithms . 75

iii

List of Tables

3.1 POS Tags and their Descriptions 12

3.2 Frequency of POS Tags in the C Standards Document 15

3.3 Frequency of POS Tags in the C Standards Index 17

3.4 Frequency of “flipped” sequences of POS Tags in the C Stan-
dards Index . 19

3.5 Effect of stopword removal on C Standards document 20

3.6 Effect of stopword removal on Aircraft Manual document . . . 20

3.7 Operator terms for C Standards document 23

4.1 Experimental Results — Counts of C Standards Data 32

4.2 Experimental Results — Counts of Aircraft Manual data 36

4.3 Experimental Results — TBXTools 37

4.4 ATE Overall Experimental Results — Counts 37

5.1 Experimental Results — C Standards Data Performance 40

5.2 Experimental Results — Aircraft Manual Data Performance . . 44

5.3 Experimental Results — Performance with TBXTools 44

5.4 Experimental Results Summary 45

5.5 Odds Ratio Test . 47

5.6 Overall Experimental Results 47

B.1 Frequency of sequences of POS Tags in the Aircraft Maintenance
Guidelines manual . 71

B.2 Partial list of Custom Stop Words 72

B.3 Frequency of Unedited sequences of POS Tags in the C Stan-
dards Index . 73

B.4 NLTK Stop Words List . 74

iv

List of Figures

3.1 Architectural Overview of the System 10

3.2 Noun Phrases based on POS Tags 11

3.3 Frequencies of each type of POS Tag in the C Standards document 16

3.4 Frequencies of each type of POS Tag in the C Standards Index 17

3.5 Tags in C Standards sample text 25

3.6 Tokens in C Standards sample text 26

4.1 Frequencies of each type of POS Tag in the Aircraft Mainte-
nance Guidelines manual . 33

5.1 Evaluation Diagram . 39

5.2 Performance Measures Comparison on C Standards Data . . . 41

5.3 Performance Measures — Precision and Recall on C Standards
Data . 42

5.4 Performance Measures Comparison on Aircraft Manual Data . 43

5.5 Performance Measures — Precision and Recall on Aircraft Man-
ual Data . 46

v

Abstract

Extracting key terms from technical documents allows us to write effective documen-

tation that is specific and clear, with minimum ambiguity and confusion caused by

nearly synonymous but different terms. For instance, in order to avoid confusion,

the same object should not be referred to by two different names. In the modern

world of commerce, clear terminology is the hallmark of successful RFPs (Requests

for Proposal) and is therefore a key to the growth of competitive organizations. While

Automatic Term Extraction (ATE) is a well-developed area of study, its applications

in the technical domain have been sparse and limited to certain narrow areas such as

the biomedical research domain. We present a method for Automatic Term Extrac-

tion (ATE) for the technical domain based on the use of part-of-speech features and

common words information.

The novelty of this thesis lies in the domain to which ATE is applied. Our method

is evaluated on a C programming language reference manual as well as a manual of

aircraft maintenance guidelines, and has shown comparable or better results to the

reported state of the art results. In addition, we also compared our system to another

method (TBXTools statistical) and obtained favorable results.

vi

List of Abbreviations and Symbols Used

Collocation An expression of two or more words that represent
a conventional way of stating an idea

F-measure A weighted harmonic mean between precision and
recall

False Negatives Items that are not returned but are relevant

False Positives Items that are returned (identified) but not relevant

NLTK Natural Language Toolkit

POS Part of Speech

POS Tagging Assigning grammatical identifiers to words

Precision The percentage of true positives out of all returned
items

Recall The percentage of true positives out of all relevant
items in the dataset

Tokenizaton Refers to the removal of punctuation and the split-
ting of a sentence into individual words

True Positives Items that are both returned (identified) and rele-
vant

vii

Acknowledgements

Thank you to all the people without whom it would not have been possible to complete

this thesis. I would especially like to thank my supervisor, Professor Vlado Kešelj,

for his continuing support, patience, and guidance throughout my graduate degree

program. I greatly appreciate his taking the time away from his many other respon-

sibilities to meet with me regularly, provide suggestions and discuss various research

approaches and ideas. Thank you to my committee members, Professor Evangelos E.

Milios and Dr. Abidalrahman Mohammad, for their advice and suggestions. Thank

you to everyone at the Faculty of Computer Science for creating a stimulating and

welcoming research environment. I would like to express my thanks to numerous

Dalhousie University faculty and staff members for their assistance and advice during

my graduate studies; Dr. Carolyn Watters, Professor Norbert Zeh, Dr. Alex Brodsky

and many others. Special mention to Sittichai Jiampojamarn, Heather Sutherland

and Anne Bartlett for their support and advice. Thank you to my colleagues in the

Dalhousie Natural Language Processing group for sparking many thought-provoking

research discussions. And last but not least, to my family, thank you for all your

encouragement, advice, patience, and love. Thank you for believing in me.

viii

Chapter 1

Introduction

Automated Term Extraction (ATE) from technical documents has become an impor-

tant problem since extracting key terms from technical documents allows us to write

high-quality documentation that is specific and clear, with minimum ambiguity. For

instance, in order to avoid confusion, the same object should not be referred to by two

different names. In the world of business, clear terminology is the hallmark of suc-

cessful RFPs (Requests for Proposal). ATE in general is an important area of study

because it has applications in IR (Information Retrieval) such as text summarization,

text categorization, opinion mining and document indexing.

While in the sphere of general or creative writing, such as various literary works

which could include prose and poetry and even journalism, the authors tend to make

their writing more vivid and interesting by choosing different synonymous words for

the same concept. This would generally be a weakness and a source of confusion in

technical writing. For example, if a technician is following some assembly instructions,

referring to the same part with different names in different parts of the documents

could be confusing and would increase the chance of error in assembly. This is one of

the reasons why a more uniform and standardized terminology is highly regarded in

the technical domain. Therefore a tool that can detect terminology and help a writer

to create a better document would be beneficial. A similar service would also be

useful to reviewers and other assessors of technical proposals and similar documents.

The number of technical terms is constantly growing, especially in specialized areas

such as computer science, engineering and medicine [FAM00]. Manually assigning key

terms is both tedious and time consuming [FPW+99]. With the pace of knowledge

acquisition that is required to maintain currency in modern technical fields, it is

helpful for a user to have access to a method of quickly extracting part of an index

that is comprised of the key terms of a document [DGBPL00].

Although much work has been done on ATE, the state of the art performance is

1

2

still low as found by Hasan et al. [HN14]. Major factors that affect ATE performance

measures are the length of documents, a lack of structural consistency (for instance,

a lack of a defined index or abstract), topic changes, and the presence of uncorrelated

topics in the same text.

1.1 Research Objective

Our main hypothesis is that the Automatic Term Extraction (ATE) can be success-

fully performed in a (novel) technical domain to extract key phrases using Part-of-

Speech information with additional information about commonality and frequency of

domain-specific words. We achieve this research objective by building and evaluating

a system for automated term extraction based on Part-of-Speech and common-word

feature information, and evaluating it on the C programming language standards. To

be more specific, we use a C Reference Library that incorporates the C Standards

(henceforth merely referred to as C Program Language Standards or C Standards).

As a gold standard we use the manually prepared indexes of terms found at the end

of these standards. In addition, we apply our methods on a manual of aircraft main-

tenance guidelines [Hig90] (referred to in the thesis as the aircraft manual data set),

and compare our results to that obtained from the C programming language stan-

dards document. Results are then compared to those obtained from the TBXTools

system [OGVG15].

1.2 Contributions

The novelty of this thesis lies in the domain to which ATE is applied. While ATE

has been used in extremely specific areas such as the biological or biomedical domain

[AFT15, LVJRT16], Archaeology or Chemistry [BBR+16], or general areas such as

newspapers [CD16], to the best of our knowledge, ATE has not been used earlier in the

technical domain on documents such as C programming language reference manuals

or aircraft maintenance guidelines manuals. The previously published methodology

[DSD05] had to be adapted since a new domain was used. While Da Sylva produced

a hierarchical index where secondary terms were listed under primary terms, e.g.

“planet” would be a primary term and “earth” and “moon” would be secondary terms

3

that were nested below it, we aim to create a list of stand-alone, non-hierarchical key

terms.

Another original part of our methodology is that while the majority of earlier

research focuses on extracting only a limited set of the most important keywords by

rank; i.e., cutoffs are used [FPW+99, Tur00, MI04], while our research is aimed at

generating all valid index terms from a document for the purpose of replicating a

back-of-the-book index.

1.3 Outline of the Thesis

The thesis is structured as follows: Chapter 2 presents the background of ATE and

an overview of related work. We present relevant published research and provide an

overview of automatic term extraction. Chapter 3 describes the system and method-

ology: tools and equipment used, data pre-processing, POS tagging, candidate detec-

tion and keyword selection. We describe our method of stop word and common word

selection and usage. Chapter 4 explains the experiment design and the experimen-

tal results obtained, while Chapter 5 contains a discussion of performance measures

used, and the evaluation of the results. The conclusion is presented in Chapter 6,

summarizing the contributions and outlining directions for future work.

Chapter 2

Background and Related Work

2.1 Background

Automatic keyphrase extraction is the identification of phrases in a document that to-

gether summarize the contents and major ideas contained within that document. The

key phrases can be any terms that appear in the document. This is contrasted with

keyphrase assignment or text categorization, where a pre-defined list of constrained

key words is assigned to a document based on the document’s contents, and the key

words may not directly appear in the particular document [Tur00]. Applications and

related areas of use of ATE include:

• Information Retrieval. The retrieval of documents based on the keywords they

contain can be improved if ATE is used [PL01, DGBPL00].

• Glossary creation. Creating a glossary can involve building dictionaries, the-

sauruses or translation memories using ATE [OGVG15].

• Named Entity Recognition. Some examples of Named Entity Recognition are

extracting company names, locations or industry specific terms from newspaper

articles [TKSDM03], both of which can be made more accurate by the use of

ATE.

• Document Clustering. Grouping documents by their shared features is another

area where the use of ATE can provide improvements in efficiency by using

keywords as features [KMKB13].

• Text Summarization. Summarizing long documents into shorter pieces of text

can be improved using ATE, since the key terms can be extracted and then used

to create a precis of the document. Keyphrases can therefore provide “semantic

metadata indicating the significance of sentences and paragraphs in which they

appear” [KMKB13].

4

5

While ATE is a well developed area of study, its applications in the technical

domain have been sparse. The Related Work section which follows will provide a

summary of prior related literature.

2.2 Related Work

There has been much work on Automatic Term Extraction based on document fea-

tures and statistical approaches [KK09, SS15]. As early as 1987 the use of “phrase

relationships”, or a sequence of words that “occur together in a document” in a given

delimited piece of text such as a sentence or paragraph was reported on by Fagan

[Fag89]. These are not dependent on the meaning of the individual words that com-

prise a phrase, but rather can be seen as a form of using collocations, such as “text

analysis” and “book review”. He noted that a problem which needs to be considered is

“the structural ambiguity of many complex noun phrases”. Collocations are also dis-

cussed in [PPZ05] where they determine unithood, which is described as the “strength

or stability of syntagmatic collocations”. Syntagmatic words are those that form

some sort of relationship. Unithood is contrasted with termhood which is the degree

to which “a linguistic unit is related to domain-specific concepts”[PPZ05]. Unithood

and termhood were also discussed in [KU96]. Therefore, finding collocations in the

text takes us further in compiling a list of potential key terms.

In the course of comparing the performance of the C4.5 decision tree algorithm

and the GenEx algorithm on email messages and web pages, Turney [Tur00] de-

fined automatic keyphrase extraction as “the automatic selection of important topical

phrases from within the body of the document”. A human-generated keyphrase was

considered to be the same as a machine-generated keyphrase if they had the same

sequence of stems. A stem of a word is what remains of the word when its suffix is

removed.

KEA was presented by Witten et al. [WPF+99], as an “algorithm for automatically

extracting key phrases from text” using a Naive Bayes classifier that is trained on

documents from the New Zealand Digital library, to extract features from text and

apply them to other documents. The researchers evaluated their system by comparing

the number of matches between their system’s output and the number of author-

assigned keyphrases. They concede that KEA found “less than half the author’s

6

phrases”, but recognize that even different human evaluators will vary on the set of

key phrases that they select from the same document.

A method to create a back-of-the-book index for Stargazers text using lexical

classes was described by Da Sylva [DSD05]. This work involved the main steps of

noun phrase extraction (including lemmatization and part-of-speech tagging), text

segmentation, candidate term weighting and index compilation. Da Sylva also dif-

ferentiated between SSTV (specialized scientific and technical vocabulary) which is

“specific to each discipline, science or trade” and “contains the perfect candidates

for indexing”, and BSV (Basic Scientific Vocabulary) that consists of nouns that are

“general words used in all scientific domains” [DS09]. She contrasted this with CV

(common vocabulary) which is made up of everyday words normally learned in pri-

mary grades and is not generally a good source of index words. Identifying these three

groups of words is a key part of building an index. However she notes that these three

groups, rather than having well-delineated boundaries, can in fact overlap and merge

with one another. For instance the word application can have either a BSV meaning

or a SSTV meaning, such as when it is used in the sense of computer program [DS09].

Other related work includes Ferrari et al. [FdSG14]. TBXTools which is a tool

built in Python to extract key terms from controlled corpora, was presented by Oliver

and Vàzquez [OGVG15]. The term controlled in this sense means that the key terms

are known in advance. Statistical and linguistic methods are combined to extract

multiword terms. A general corpus of news articles and a specialized corpus of

telecommunications documents were used by Drouin [Dro03] to extract key terms

based solely on nouns and adjectives.

While some prior research chose to use a large number of documents, smaller

datasets have also been used. There is an instance where ATE has been used on

only the abstracts of scientific articles, as opposed to the entire documents [Hul03].

Shorter text data sets were also used in [MI04] where a co-occurrence matrix was

used to extract the top ranked fifteen keyterms from a single document (a paper by

Alan Turing) without the benefit of a corpus. It has been noted in the literature that

the size of the corpus is less important than its design and representativeness of the

domain, especially in the case of specialized domains [PPMM15].

An overview of the advances in Natural Language Processing was presented by

7

Hirschberg and Manning [HM15] where it is observed that “simple methods using

words, part-of-speech (POS) sequences. . . or simple templates can often achieve no-

table results when trained on large quantities of data.”

Named Entity Recognition has been done using machine learning techniques [JCK05].

The goal of the paper was to find biological terms in scientific publications using n-

grams. Feature attributes such as upper and lowercase, prefix and suffix characters

were used. N-grams were used instead of searching for noun phrases since “some

biological terms are partial noun phrases”. Named Entity Recognition was also the

subject of the CoNLL 2003 shared task [TKSDM03] where data from English and Ger-

man newspapers was used, after “a tokenizer, a part-of-speech tagger, and a chunker

were applied to the raw data”.

ATE systems are generally categorized into statistical, linguistic and hybrid sys-

tems [PPMM15]. Statistical systems use purely statistical techniques such as mea-

sures of frequency. Linguistic systems rely on analyzing the linguistic characteristic

of the corpora such as its part of speech tags. While linguistic systems generally give

better performance than statistical systems, linguistic systems are heavily dependent

on the language of the corpus to be analyzed. It was observed by Castellví that

statistically based systems tend to “produce too much silence” while linguistically

based systems tend to “produce a great deal of noise” [CBP01] “Noise [refers to] the

rate between discarded candidates and accepted ones. Silence [refers to] those terms

contained in an analyzed text that are not detected by the system” [CBP01]. The

problem of “silence” in statistically based ATE systems and “noise” in linguistic sys-

tems have also been commented in Conrado et al. [dSCDFPR14] . Hybrid systems

use a combination of statistical and linguistic techniques, such as the C value and NC

value.

The C/NC method was described by Frantzi et al. [FAM00] for the purposes of

analyzing eye pathology medical records. The C value was used to assign termhood

and the NC value provided context information. Strings that matched a linguistic

filter and a certain threshold were extracted. The C/NC method has also been used

by Milios et al. to extract key terms from a neural network corpus consisting of 100

papers. The first 820 words of each paper were used and the C-value and NC-value

were calculated. The C-value “is a domain specific method used to automatically

8

extract multi-word terms. . . [It] combined linguistic knowledge (which consists of

part-of-speech tagging, linguistic filters [POS sequences], stop list etc.) and statistical

information to obtain a termhood value.” [MZHD03] They also observed that using

different filters will produce varying levels of precision and recall. The NC value uses

“context words” which are “nouns, verbs and adjectives that either precede or follow”

real terms (from the top 10 candidate terms) that have been manually labeled by

domain experts [MZHD03] and are dependent on the domain. NC values are used to

re-rank the candidate terms found by the C-value method.

In summary, although much work has been done on ATE, to the best of our

knowledge there has been little work on technical documents such as C programming

language standards or aircraft manual maintenance guidelines. We believe that these

data sets provide a unique opportunity to study ATE in the technical domain, using

carefully selected domain-specific stop words and POS information. We have focused

our experiments on retrieving all relevant key phrases, in contrast to much of the pre-

vious literature which focused on retrieving only a selected list of ranked key phrases.

After having considered an overview and a summary of the related work in the area

of ATE in this chapter, we now move on to discussing our specific methodology in

the next chapter.

Chapter 3

Methodology

3.1 Methodology Overview

This chapter presents our methodology and the rationale for our experiment design.

Our overall methodology and system architecture is represented in Figure 3.1 and

corresponding sections of the thesis are shown in brackets. The main components of

our system are Data Pre-processing, POS Tagging, Candidate Detection, Stop words

and Common words and Keyword Selection. Data pre-processing forms an important

part of the process as described in Figure 3.1 . Both Document and Index data

needed to be modified and cleaned. In order to perform the POS tagging, the data

must then be split into sentences and also tokenized (tokenizaton refers to the removal

of punctuation and the splitting of a sentence into individual words). POS tagging

is then performed in order to obtain candidate terms. A list of stop words (common

words) and calculation of the frequency of word occurrence are then used to find likely

keywords. Stop words and common words selection is explained in greater detail in

section 3.4.

The design of our methodology was driven by the nature of ATE. ATE can be

considered to be a supervised learning task [Tur00]. A part of ATE can also be

seen as a search for collocations [MS+99]. A collocation is an expression of two or

more words that represent a conventional way of stating an idea; e.g., “strong tea”,

“broad daylight”. Collocations are characterized by three main features as discussed

by Manning and Schütze [MS+99]:

• non-compositionality, i.e. the meaning of the whole collocation does not corre-

spond to the meaning of its parts.

• non-substitutability, i.e. other words cannot be substituted for the components

of a collocation. For example the phrase powerful tea would sound odd to the

ear of a native speaker of the English language, when what is actually meant is

9

10

Start

Raw Text (string)

Data Pre-
processing (3.2)

Sentence
Segmentation

Tokenization

POS Tag-
ging (3.3)

Candidate
Detection (3.5)

Keyword
Selection (3.6)

Output

Stop

Document and Index pre-processing

Pre-processed data

Sentences (list of strings)

Tokenized sentences (list of lists of strings)

POS Tagged sentences (list of lists of tuples)

POS Sequences and sets of Common and Stop words

Likely keywords

Figure 3.1: Architectural Overview of the System

strong tea.

• non-modifiability, i.e. a collocation cannot be modified with additional lexical

material or grammatical transformations. For instance declaring union variables

is a suitable index term that makes logical sense, while declaring the union of

variables is not.

One way of identifying collocations and key terms is by using part-of-speech tags.

In order to perform part of speech tagging, a grammatical tag is given to each word

of the text [FAM00]. A method of selecting the most frequent bigrams (consisting

11

of taking two consecutive words at a time from the text) and passing them through

a POS (Part of Speech) filter of “likely phrase” sequence patterns was proposed by

Justeson [JK95] . For example, if some likely part-of-speech patterns for selecting

terms are adjective-noun or noun-noun, the filter would search for patterns JJ NN

or NN NN in the text, such as “real number” or “certification requirement”. A list of

Penn Treebank POS tags that were used in this project is provided in table 3.1.

Noun phrases (NPs) are especially useful for identifying key words [dSCDFPR14].

An earlier review of the ATE landscape [CBP01] showed that a number of systems fo-

cused on extracting NPs since “there is a high rate of terminological NPs in specialised

texts”. On the other hand, it was also recognized that “all specialised languages have

their own verbs ... no matter how low the ratio is in comparison with nouns” [CBP01].

An example of POS tagging that can be used on a sentence to extract features such

as noun phrases is shown in Figure 3.2. The given sentence is “The real number types

provided in C are of finite precision”.

S

NP
NP VP VP

NP NP PP PP

The real number types provided in

C

NP are

of

NP

finite

DT JJ NN NNS

VBN

IN

NNP

VBP

JJ NN

IN

precision

Figure 3.2: Noun Phrases based on POS Tags

The corresponding sentence tree is given as:

(S (NP (NP The/DT real/JJ number/NN) (NP types/NNS))

(VP provided/VBN (PP in/IN (NP C/NNP)))

(VP are/VBP (PP of/IN (NP finite/JJ precision/NN))))

12

Table 3.1: POS Tags and their Descriptions

Tag Description

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal Verb
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO Infinitive to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

13

The above approach was followed as well by Hulth [Hul03]. “Fifty-six POS patterns

based on tag sequences of manually assigned keywords, [. . .] that occurred ten or

more times” were used on 2000 abstracts from the Inspec database. Manually assigned

keywords were treated as the gold standard. In terms of evaluating results, it was

observed by Hulth [Hul03] that this is “the most severe way to evaluate a keyword

extractor, as many terms might be just as good, although . . . not chosen by a human

indexer”.

In our research we use C programming language standards as our first dataset.

The index of each C programming document was used as the gold standard to measure

how well the system performed. The original C programming standards document

was converted to plain text from HTML. It was then split into a text file (body of the

document) and an index file. The index file, which consisted of the index terms as well

as page numbers and the section of the document in which the index terms appeared,

underwent further processing to remove the page numbers and section headers. This

left a plain text file consisting only of index terms, with one term per line. The Table

of Contents and section headings were removed from the text file. An initial count of

POS tags based on sentences and words was performed. After individual words were

tagged, POS sequences were then extracted.

A second data set that was used was a manual of aircraft maintenance guidelines,

referred to in this thesis as aircraft manual data. This was a set of PDF documents

that were converted to plain text format. As a gold standard, the glossary at the end

of this document was used to validate candidate terms. A major difference between

the aircraft manual data and the C Programming Standards data was that the former

contained a large number of acronyms.

Once our system generated candidate terms, we evaluated our performance mea-

sures when compared to that of the TBXTools system. The Odds Ratio test provided

a value of greater than one in favour of our system when compared with TBXTools

statistical. Further details are provided in the Experimental Results section.

The sub-steps of the Methodology are presented in greater detail in the follow-

ing sections. These sub-steps cover Data Pre-processing, POS Tagging, Candidate

Detection, Stop words and Common words and Keyword Selection.

14

3.2 Data Pre-processing

The first set of data used in the experiments were C programming language stan-

dards specifications [LSM+89]. Wherever possible, the HTML format of the file was

used and this file was then converted to a plain text format. Where this was not

the case, PDF files were used and then converted to plain text. The text was con-

verted completely to lowercase to remove duplicates that were based solely on case

differences.

In initial trials, the resulting plain text file was filtered to remove anything other

than alphanumeric characters. In later trials, the “words” that were composed solely

of numbers were also excluded, as it was observed that the index of each document

contained only key terms that were purely alphabetic in nature; i.e., contained only

letters. The above technique of filtering out of non-alphanumeric characters and

stand-alone numbers was used in [Hul03]. The pre-processing method is illustrated

in Appendix A Listing A.2. See code A.2. The pseudocode for data pre-processing is

described in Algorithm 1.

The document Index contained both the index (keyword) and also the section

name, within the document, in which the particular keyword was found. Therefore in

order to produce an index document consisting of only the index terms themselves,

a Python script was run on the Index file to remove the section names. The relevant

script can be found in Appendix A as Listing A.3. See code A.3.

The aircraft manual data consisted of multiple PDF files that were combined into

one large plain text file. Extraneous material such as acknowledgments and publisher

information had to be removed from the document since otherwise, a search for POS

tags of the form <NN> <NN> would find invalid terms such as “McGraw Hill” or

proper names of authors.

3.3 POS Tagging

POS or Part of Speech tagging was performed using the default Maximum Entropy

Penn Treebank POS tagger that is available with the NLTK toolkit. POS tagging

uses POS tag sequences as a “within collection” (as opposed to external) syntactic

feature, in order to identify candidate key phrases.

15

Algorithm 1 Algorithm for Data pre-processing
Require: Input text file

Ensure: Pre-processed Input text file

textlines←text file

for all non-alphanumeric characters do

remove character and replace with space character

textlines←remaining characters

end for

while code snippet tagged for removal do

textlines←textlines without code snippet

end while{Use the above WHILE statement if code snippets are to be removed

from text}

outputfile←text lines

return Filtered output text file

Table 3.2: Frequency of POS Tags in the C Standards Document

POS Tag Example Word Frequency

NN bit 8435
NNS arrays 2456
JJ manual 1431
RB commonly 710
VBP are 637
VBG declaring 483
VBD wrote 476
VBN based 456
IN of 325
VB include 212
VBZ describes 208
CD five 193
MD can 167
JJR less 62
DT a 40
JJS smallest 23
RBR earlier 9
WP$ what 9
CC and 5
PRP it 2
RP up 1

16

NN (noun) is the most frequently used tag in the C standards document as can

be seen from Table 3.2 and also from the figure 3.3. This is followed by NNS (noun

plural) and then JJ (adjective), RB (adverb), VBP (verb singular present) and VBG

(verb gerund or present participle).

Figure 3.3: Frequencies of each type of POS Tag in the C Standards document

NN (noun) is the most frequently used tag in the C standards index as revealed

by Table 3.3 and also Figure 3.4. This tag is followed by NNS (noun plural) and then

VBG (verb gerund or present participle) followed by JJ (adjective) and VBP (verb

singular present). The frequency of each type of POS tag in the C standards index

are listed in Table 3.3. The frequency of each sequence of POS tag in the Index are

shown in Table 3.4. The sequences of POS tags in the index were used to find the

most appropriate expressions to use as filters on the body of the document.

While the frequency of nouns appears prominent among the index terms (as ex-

pected and discussed above) e.g. arithmetic operators, operator precedence, program

structure, one must also consider the presence of verbs, which come a close second

17

Table 3.3: Frequency of POS Tags in the C Standards Index

POS Tag Frequency

NN 244
NNS 213
VBG 61
JJ 40
VBP 31
VBD 14
RB 4
JJR 4
VBN 3
VBZ 3
IN 2
PRP$ 1
RBR 1

Figure 3.4: Frequencies of each type of POS Tag in the C Standards Index

18

e.g. accessing array elements, initializing arrays, declaring pointers.

3.3.1 Index Terms Flipping

In order to ensure consistent matching between terms as they appeared in the text of

the document and terms that appeared in the index, index terms which used commas

to alter the order of words were pre-processed by having their commas removed, and

the order of words “flipped” so as to make them grammatically correct. “Grammat-

ically” correct in this instance is taken to represent a meaningful, coherent phrase

that can be inserted as it is into a full sentence. For instance, “array elements, ac-

cessing” was converted to “accessing array elements” or in POS terms, NNS NNS

comma VBP would have been changed to VBP NNS NNS. It was commented

by Da Sylva that “human indexers often reword phrases in a document” [DS13]. The

frequency of some of the most common of these modified (flipped) terms can be

seen in Table 3.4. The POS sequences in the unedited index are shown in Table B.3

.

3.4 Candidate Detection

Candidate words were selected based on POS patterns. Candidate terms of one char-

acter length as well as non-alphanumeric terms were removed from consideration.

The goal of this step is to avoid “incorrect” keyphrases while using pruning to create

the smallest possible number of candidates [HN14]. This pruning is necessary be-

cause reducing the number of candidates increases the value of the precision measure.

Automatic term extraction can therefore be considered a classification task. Each

candidate term is either a key term or not [FPW+99].

Regular Expressions Rules for Candidate Detection

Regular Expressions based on patterns in the Index terms were used to find POS

sequences. For instance, <N*> <N*> would match <NN> <NN> or <N N> etc. <VB[DGP]

<N.*>? was used to find sequences of the form <VBD> <NN>, <VBGD> <NN> and so on.

19

Table 3.4: Frequency of “flipped” sequences of POS Tags in the C Standards Index

POS Tag Frequency
NN NNS 31
NN NN 26
VBG NNS 22
VBG NN NNS 21
JJ NNS 18
NNS 17
VBG NN NNS IN NN 8
NN 7
VBD JJR NN 6
NNS IN NNS 6
NN NNS NNS 6
IN NN 5
NN NN NNS 5
NN NN NN NN 4
VBD NNS 4
NNS TO NNS 4
JJ NN NNS 4
NN IN NNS 4
NN VBD 3
NN JJ 3
NN JJ NNS 2
JJ NNS NNS 2
JJ NN 2
NNS VBP NNS 2
NN NNS NN 2
VBD NN NNS NN 2
JJ NN NNS NNS 2
RB VBZ 1
JJ NNS NN 1
RB VBP NNS NN 1

POS Tag Frequency
JJ NN NN NN 1
VBG 1
JJ NN NN 1
VBD PRP$ 1
VBD RB RB JJ NNS NN 1
VBG NN NNS NNS 1
RB JJ NNS NN 1
VBD VBN NNS NN 1
NNS NNS 1
JJ NN NN NNS 1
NNS IN JJ NNS 1
IN NN NN 1
NN VBG NN NNS 1
VBD RB JJ NNS NN 1
NNS VBG NNS 1
IN NNS NN 1
VBG IN NN NNS 1
IN NNS 1
NNS IN NNS NNS 1
NN VBZ IN NNS 1
JJ NN NNS NN 1
RB RB JJ NNS NN 1
NN NN NNS NNS 1
NN VBG 1
VBP NN 1
NN NN IN JJ 1
JJ NN NN NN NNS 1
NN VBD NN NNS 1
VBD JJ NN NNS NN 1

20

3.5 Stop Words and Common Words

When identifying key terms in technical documents, it must be remembered that

general, yet very frequent words such as “looks” or “for” cannot be considered key-

words. It has been observed by Church [CGHH91] that “the most common words

cause the most trouble”. These common words must therefore be filtered out of the

list of technical key words. To accomplish this, the text is compared to a list of

common words called “stopwords” and any terms from the text that also appear in

the list of stopwords are excluded. The NLTK toolkit provides such a list in the

form of the stopwords corpus. In addition, the least frequent terms from the text

document (occurrence of three times or less) as well as word bigrams from the Brown

Corpus in the editorial category, were added to the set of stopwords to refine the

list of candidate terms. This list of custom stop words was also manually edited to

include other selected words based on the C dataset. For the aircraft manual data

set, we used both this C data custom list with no modifications and in turn, a custom

list built specifically for the aircraft manual data for the sake of comparison. The

Brown Corpus is an electronic corpus of English, which was created in 1961 at Brown

University. It contains text from 500 sources and is categorized by genre. A method

of selecting and using high frequency words from a sample of their corpus as stop

words was used by Frantzi et al. [FAM00]. The effect of stopword removal (number

of tokens) can be seen in Table 3.5 and this table also shows that a significant number

of words in the document were in fact stopwords.

Table 3.5: Effect of stopword removal on C Standards document

Process Without filtering Stopwords removed

Number of Tokens 29171 17510

Table 3.6: Effect of stopword removal on Aircraft Manual document

Process Without filtering Stopwords removed

Number of Tokens 114948 113872

Five different types of these stopwords and common words were used. Their

21

sources are listed below:

1. NLTK

2. Brown Corpus

3. Technical terms (custom list)

4. Operator terms

5. Least frequent words in the given text

The first set was a basic list of stopwords provided by NLTK. The second was a

list of stopwords from the Brown corpus. Next a custom list that consisted of a set of

common technical words that were prevalent in the technical domain (one for the C

data and one for the aircraft manual data) was manually created. The aircraft manual

data was processed using its own custom list, and then it was also processed using

the unmodified C custom list for comparison. In addition, a list of words that could

be considered stopwords but were actually valid key terms was also created. The

Operators list shown in table 3.7 is a list of common words that could be considered

stopwords in a generic domain, but were in fact specialized terms and therefore valid

key words in the technical domain.

Domain specific stop words, which are stop words that were based solely on the

frequency of words in the particular document, were also used. The Least frequent

words list was found by calculating the number of occurrences of each word in the

document. Then NLTK stopwords were removed from the resulting list. Following

this step, a threshold was set at a particular value e.g. 3 or 10, and all words of that

frequency or less were added to the stop words list. For the aircraft manual data, one

list was created for words that appeared in the aircraft manual text with a frequency

of three or less and another for words that appeared in the aircraft manual text with

a frequency of ten or less. Numbers were excluded from these “frequency” stop word

lists. The pseudocode for the construction of the list is shown in Algorithm 2.

These modifications such as custom stop words and common words are necessary

because the prior research indicates that “performance can be boosted by exploiting

22

domain specific information about the likelihood of keyphrases” . . . [and] “the modi-

fication significantly improves the quality of keyphrases extracted” [FPW+99]. Thus

domain knowledge increases the effectiveness of keyword selection [Tur00].

Algorithm 2 Algorithm for Construction of Least Frequency words Stop Words List
Require: Input text file and threshold value

Ensure: Pre-processed Input text file

textlines←text file

textwords←textlines

textwords←textwords in lowercase

for all punctuation characters do

remove character and replace with space character

textwords←remaining characters

end for

if word in NLTK Stop Words list then

textwords←textwords without word

end if{Use the above IF statement to remove NLTK Stopwords from the text}

for all words in textwords do

if frequency of word in text file <= threshold value then

leastfreqentwordsstopwordlist←word

end if

end for

outputfile←leastfreqentwordsstopwordlist

return Stop words list of Least Frequent words

Stop words were extracted after candidate terms were found, so as not to prema-

turely exclude valid key terms. Stop words lists could also include stop word phrases

i.e. stop words of more than one word in length. Candidate terms that were exclu-

sively made up of stopwords or that contained stopwords as part of their structure

were removed from consideration. For instance, if the phrase “spot check” was in-

cluded in a stop word list, then the candidate terms “spot”, “check”, “spot check”,

“spot clean”, “check mate” and “routine check” would be removed from the final list of

terms.

23

Table 3.7: Operator terms for C Standards document

Term

and
or
not
structure
character
array
assignment
type
comparison

Term

union
type
functions
cast
casts
field
fields
operators
bit

3.6 Keyword Selection

In preliminary trials, a small sample of the text was used as a proof of concept. The

relevant script can be found in Appendix A as Listing A.1. See code A.1. Tokens

that were extracted from this sample text are shown in Figure 3.6. The POS tags

that were extracted from this sample text appear in Figure 3.5.

In Experiment set A, the focus was on finding exact matches, which has been

noted in the literature to be quite a harsh rule for evaluation of the system. In certain

experiments of Experiment set B, the above restriction was relaxed, as variations in

candidate terms were also allowed as matches. The pseudocode for Keyword Selection

is described in Algorithm 3. Note that when “word” is used in the algorithm this can

also refer to “terms” i.e. stop words, common words and operators can consist of more

than one word per term.

3.7 Additional Data Sets

The second dataset that was used was a manual of aircraft maintenance guidelines.

This new dataset provided a contrast to the C Programming Language Standards.

The same methods described above were implemented on this second dataset to de-

termine the degree of transfer learning that may occur and whether the methodology

had to be modified to accommodate this new data set.

24

Algorithm 3 Algorithm for Keyword selection
Require: Set of text candidate terms one term per line

Ensure: Set of key terms one term per line

stopwords←NLTK stopwords list

operators←operator terms list

commonwords←common words list

bigramslist←bigrams from Brown corpus

stopwords ←stopwords and commonwords {Use this step if needed by the partic-

ular experiment}

stopwords←stopwords and bigrams list {Use this step if needed by the particular

experiment}

stopwords←stopwords without Operators {Use this step if needed by the particular

experiment}

for all terms in candidate terms list do

tokenize line

remove non-alphanumeric characters from candidate term

convert candidate term to lowercase

if term exists in stopwords then

candidatelist←candidate list without candidate term

end if

end for

keywords←candidate list

return Set of keywords and Statistics for calculation of P, R, F values

25

NN DT NNS IN JJ VBG VBN VBP VB MD TO VBZ RB VBD CC WRBPRP$ JJR WDT PRP CD
POS Tag

20

40

60

80

100

120

140

160

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
cy

POS Tag Frequencies in Sample Text

Figure 3.5: Tags in C Standards sample text

3.8 System Comparison

In order to further evaluate our system’s performance, we compared our results to

those of the TBXTools system [OGVG15]. TBXTools is a “free automatic terminology

extraction tool that implements linguistic and statistical methods for multiword term

extraction”. TBXTools is implemented in Python and allows statistical methods of

term extraction while providing a basic list of stopwords.

26

st
ri

n
g

th
e o
f

ch
a
ra

ct
e
r a

co
n
st

a
n
ts

q
u
o
ta

ti
o
n a
s

d
o
u
b
le

a
re

n
u
ll to

m
a
rk

s
ch

a
ra

ct
e
rs

e
sc

a
p
e

ca
n

te
rm

in
a
ti

o
n

co
n
st

a
n
t

se
q
u
e
n
ce is

u
se

d
se

q
u
e
n
ce

s in
co

n
ca

te
n
a
te

d
co

n
ta

in
u
se

w
it

h
st

ri
n
g
s

a
n
d a
ll

fi
n
a
l

a
tt

ri
b
u
te

w
it

h
in

so
m

e
o
n
e

ze
ro

st
o
re

d
e
n
cl

o
se

e
n
cl

o
se

d
a
rr

a
y

a
n
y

si
ze

fu
n
ct

io
n
s

e
n
d

n
o

m
a
rk

th
e
ir

le
ts

co
m

b
in

e
d

a
d
ja

ce
n
t

y
o
u

in
cl

u
d
e

ty
p
e

in
to

m
o
re

d
ig

it
s

e
n
d
s

p
ro

ce
ss

in
g

th
a
t

h
e
re

e
x
a
m

p
le

kn
o
w

in
h
e
re

n
t

n
o
t

b
e

la
st

a
rr

a
y
s

w
h
e
re o
r

a
d
d
e
d

Word

0

20

40

60

80

100

120

140

160

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
cy

Word Frequencies in Sample Text

Figure 3.6: Tokens in C Standards sample text

3.9 Methodology Summary

In this chapter we present our methodology and describe our system architecture.

Our overall methodology and system architecture is represented in Figure 3.1. The

main components are Data Pre-processing, POS Tagging, Candidate Detection, Stop

words and Common words and Keyword Selection. We have explained the rationale

behind the methods used while considering ATE as both a search for collocations

as well as a supervised learning task. The use of POS Sequences, especially the

importance of noun phrases in recognizing candidate terms, was emphasized. The

evaluation method used was to compare the list of generated keywords to the list of

all the index terms or “gold standard”, which has been recognized in the literature as

27

being a severe performance measure. Data pre-processing was described for both data

sets and differences between the characteristics of both data sets were mentioned. It

was noted that Index terms flipping was used to ensure data consistency between the

index and text terms. The use of custom Stop words lists were explained and their

value in pruning candidate terms was recognized. Finally our system was compared

with a different system (TBXTools), to produce another evaluation measure. In the

next chapter we lay out our experimental set-up and results. In the conducting of our

experiments we used the NLTK Toolkit, a basic text editor, and Python to manipulate

text files and create statistics of performance measures.

Chapter 4

Experimental Results

4.1 Experiments Overview

This chapter presents our experiments. Experiments were divided into sets A, B and

C as described below. The C Standards document was designated as Data Set 1 while

the Aircraft maintenance guidelines manual (aircraft manual data) was designated as

Data Set 2. Experiment Set A was focused on the C standards document and on

attempting to replicate the back-of-the-book index that had been provided with this

document. Experiment Set B was designed to measure transfer learning i.e. how

much of the information learned from manipulation of the previous data set could

also be applied to this new data set. In Experiment Set C, in order to compare the

performance of our system with that of another, we used the TBXTools system to

evaluate the resulting candidate terms when compared to our results .

4.1.1 Rationale for Data Set Selection

The C Standards are a venerable, curated, important and well established dataset

that has been in existence for a long period of time. The C data set was used to

establish and refine our methodology. The aircraft manual data set is a newer, more

specialized dataset that was used to validate our system performance by transferring

our methodology to a different text.

4.2 Implementation Tools

The NLTK toolkit (Natural Language Toolkit) described by Bird et al. [BKL09]

was used to process the data. This toolkit provides modules to study and manip-

ulate a corpus of data. The research used NLTK version 2.0.4 and Python version

2.7.13./2.7.5. The experiments were run using a Windows 8.1, 64-bit Intel i7 2.40 GHz

processor with 8 GB RAM, and on an Intel i5 3GHz 64 bit Linux machine running

28

29

Fedora 20.

4.3 Experiment set A — Data set 1

The C data set was used in preliminary trials and to refine our methodology. The

original C standards document was manually split into a text file and an index file.

The C programming language standards text file consisted of 28,288 distinct alphanu-

meric words and 1,81,407 tokens overall. The details of the individual experiments

are discussed below.

Experiment A1 (POS pattern: <NN> <NN>) The WordNetLemmatizer was

used on the index file. The observed performance is indicated in Table 4.1.

Experiment A2 (POS pattern: <N*> <N*.>?) The WordNetLemmatizer was

used on the index file.

Experiment A3 (POS pattern: <VB[DGP] <N.*>?) The WordNetLemmatizer

was used on the index file. The observed performance is indicated in Table 4.1.

Experiment A4 (POS patterns: <N*> <N*.>? and <VB[DGP] <N.*>?

together) The WordNetLemmatizer was used on the index file. The observed per-

formance is shown in Table 4.1.

Experiment A5 (POS pattern: <N*> <N*.>?) The WordNetLemmatizer was

used on the index file. Also, C language code examples which contained irrelevant

words that were used merely for illustration, such as rye bread, pumpernickel, and tutti

frutti ice cream, were manually filtered out of the document. This pre-processing task

of removing irrelevant code snippets can be considered the “removal of noisy symbols”

as mentioned in [MFO16]. Experiment 5 was conducted using a small portion of the

full C programming standards document. The observed performance is indicated in

Table 4.1.

For instance, as indicated in the following segment of text:

Here is an example of defining a simple union for holding an

integer value and a floating point value: <code union numbers {

30

int i; float f; };> That defines a union named numbers, which

contains two

members, i and f, which are of type int and float, respectively.

was converted to

Here is an example of defining a simple union for holding an

integer value and a floating point value: That defines a union

named numbers, which contains two members,i and f,which are of

type int and float, respectively.

Experiment A6 (POS pattern: <N*> <N*.>?) The WordNetLemmatizer was

used on the index file. Also, code examples were filtered out of the document. The

observed performance is shown in Table 4.1 .

Experiment A7 (POS pattern: <NN> <NN>) The pattern is applied on both

the index and text file. Duplicates in each file were removed using the set command.

Also, code examples were manually filtered out of the document.

Experiment A8 (POS pattern: <NN> <NN>) The pattern is applied on both

the index and text file. Duplicates in each file were removed using the set command.

Also, terms in both files were converted to lowercase and code examples were manually

filtered out of the document.

Experiment A9 (POS pattern: <NN> <NNS>) The pattern is applied on both

the index and text file. Duplicates in each file were removed using the set command.

Also, terms in both files were converted to lowercase and code examples were manually

filtered out of the document.

Experiment A10 (POS pattern: <VBG> <NNS>) The pattern is applied on

both the index and text file. Duplicates in each file were removed using the set

command. Also, terms in both files were converted to lowercase and code examples

were manually filtered out of the document.

31

Experiment A11 (POS pattern: <VBG> <NN> <NNS>) The pattern is applied

on both the index and text file. Duplicates in each file were removed using the set

command. Also, terms in both files were converted to lowercase and code examples

were manually filtered out of the document.

Experiment A12 (POS pattern : <NN> <NNS>) The pattern is applied on

both the index and text file. Duplicates in each file were removed using the set

command. Also, terms in both files were converted to lowercase and code examples

were manually filtered out of the document. An expanded list of stopwords was used.

Terms that occurred the least frequently in the document (three times or less), were

also added to the stopwords list.

Experiment A13 (POS pattern: <NN> <NNS>) The pattern is applied on

both the index and text file. Duplicates in each file were removed using the set

command. Also, terms in both files were converted to lowercase and code examples

were manually filtered out of the document. An expanded list of stopwords was used.

An extended list of “operator” words which consisted of words that were incorrectly

regarded as stopwords and therefore had to be removed from the stopwords list, was

used.

4.3.1 Experiment set A Summary

A summary of the experimental results in terms of counts is presented in Table 4.1.

The column labeled Tokens indicates the number of unique words (reflecting the

approximate text length) that were used in the particular experiment. It can be

seen that Experiment number A5 was run on a smaller text sample while using the

same POS sequence as Experiment A3. The Index Terms refers to the number of

index terms that corresponded to the particular POS sequence of that row, and the

Candidates are the number of candidate terms which were found by using that POS

sequence. Matched refers to the number of candidates of that particular POS sequence

which matched actual index terms. As a larger number of appropriate stopwords

(common words) were used, the performance measures improved. Also stopwords

that were actually valid index terms and which had been incorrectly removed by the

32

Table 4.1: Experimental Results — Counts of C Standards Data
Exp.# Tokens POS Index Terms Candidates Matched

A1 28288 <NN> <NN> 251 1134 76
A2 28288 <N*> <N*.>? 251 5157 83
A3 28288 <VB[DGP] <N.*>? 251 1087 18
A4 28288 Exp.# 2 and 3 together 251 6244 84
A5 3031 <N*> <N*.>? 181 210 18
A6 28288 <N*> <N*.>? 181 1065 62
A7 28288 <NN> <NN> 20 352 15
A8 28288 <NN> <NN> 20 352 16
A9 28288 <NN> <NNS> 20 178 16

A10 28288 <VBG> <NNS> 12 18 3
A11 28288 <VBG> <NN> <NNS> 12 13 1
A12 28288 <NN> <NNS> 20 108 13
A13 28288 <NN> <NNS> 20 71 13

common words filter, later needed to be added back into the list of candidate terms

in order to improve the performance measures. Examples of such terms are addition,

custom and option.

4.4 Additional Data Set

We then used a second data set to see if our methodology would transfer to this new

data set. The second data set that was used was a manual of aircraft maintenance

guidelines. The frequency of individual POS tags in the index of the document are

shown in Figure 4.1. The frequency of POS sequences in the index of the document

are shown in Table B.1. It can be seen that noun phrases form a large majority (about

50%) of the index terms. The occurrence of other types of terms declines sharply after

the noun phrases have been accounted for. This is dissimilar to the C Programming

Standards document where there were also a large number of verb-based index terms.

4.5 Experiment Set B — Comparison with Data set 2

Experiment B1 (Acronyms) Acronyms were extracted from both the index file

and the text file using a regex expression to detect sequences of capital letters that

may also be interspersed with lower case letters, periods, slashes and ampersands

e.g. PP&C, ETOPS, IATA. It should be noted that to facilitate the retrieval of

33

Figure 4.1: Frequencies of each type of POS Tag in the Aircraft Maintenance Guide-
lines manual

acronyms, in this case, unlike the C Programming Standards document, the text was

not converted to lowercase.

Previously, candidates of one character length were excluded as they were unlikely

to be key terms in the C Programming Standards document. However for the aircraft

manual data, the candidate terms that contained words of one character length could

not be excluded, as some of these candidate terms were valid key terms e.g. “C check”.

This necessitated a modification to the list of valid stop words that were used to prune

the set of candidate terms.

Experiment B2 (POS pattern: <NN> <NN>) When the pattern <NN>

<NN> was used on the aircraft manual data (similar to experiment A1 on the C

Programming Standards data), the results indicated high recall but low precision due

to a large number of valid candidate terms being rejected as they contained what

34

were incorrectly determined to be stopwords.

Experiment B3 (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the stopwords list was not used, and

so a larger number of matches were found. Recall improved dramatically, and there

were also improvements in precision and f-measure values as well. This demonstrates

that proper stop word selection plays a vital role in key term extraction.

Experiment B3b (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the stopwords list was not used, and

so a larger number of matches were found. Recall improved greatly from Experiment

B2, and there were also improvements in precision and f-measure values as well.

This indicates that proper stop word selection plays a vital role in accurate key

term extraction. In addition, variations in matched terms were allowed. “on-the-job-

training” was considered equivalent to “job training” and “failure effect” was considered

to be the same as “failure effects”. These variations were found by manual inspection

of the text candidate terms and the index terms.

Experiment B3c (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the same custom stopwords list as was

used for the C data was used for the aircraft maintenance guidelines manual data.

The NLTK stop words list and the operators list were used, but the Brown corpus

editorial stop words were not used. Recall improved greatly from Experiment B2, and

there were also improvements in precision and f-measure values as well. This shows

that proper stop word selection plays a vital role in accurate key term extraction. In

addition variations in matched terms were allowed. “on-the-job-training” was consid-

ered equivalent to “job training”. These variations were found by manual inspection

of the text candidate terms and the index terms.

Experiment B3d (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the same custom stopwords list as was

used for the C data was used for the aircraft maintenance guidelines manual data.

The NLTK stop words list and the operators list were used, and the Brown corpus

35

editorial stop words were used. Recall improved greatly from Experiment B2, and

there were also improvements in precision and f-measure values as well. This indicates

that proper stop word selection plays a vital role in accurate key term extraction.

Experiment B3e (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the stopwords list consisting of words

of frequency less than three (excluding numbers) from the aircraft manual text were

used on the aircraft manual data. The NLTK stop words list and the operators list

were used, but the Brown corpus editorial stop words were not used. Variations

were not allowed. Recall improved greatly from Experiment B2, and there were also

improvements in precision and f-measure values as well. This indicates that proper

stop word selection plays a vital role in accurate key term extraction.

Experiment B3f (POS pattern: <NN> <NN>) While the pattern <NN>

<NN> was used on the aircraft manual data, the stopwords list consisting of words

of frequency less than ten (excluding numbers) from the aircraft manual text was

used on the aircraft manual data. The NLTK stop words list and the operators list

were used, but the Brown corpus editorial stop words were not used. Variations

were not allowed. Recall improved greatly from Experiment B2, and there were also

improvements in precision and f-measure values as well. This indicates that proper

stop word selection plays a vital role in accurate key term extraction.

4.5.1 Experiment set B Summary

A summary of the experimental results in terms of counts is presented in Table 4.2.

The column labeled Tokens indicates the number of unique words (reflecting the

approximate text length) that were used in the particular experiment. The Index

Terms refers to the number of index terms that corresponded to the particular POS

sequence or Method of that row, and the Candidates are the number of candidate

terms which were found by using that POS sequence. Matched refers to the number of

candidates of that particular POS sequence which matched actual index terms. Using

the same Common words and Operator words from the C Standards data proved to be

less effective in extracting terms from the aircraft manual data than the C Standards

36

Table 4.2: Experimental Results — Counts of Aircraft Manual data
Exp.# Tokens POS Sequence

or Method
Index Terms Candidates Matched

B1 67735 Acronyms 91 267 77
B2 67735 <NN> <NN> 8 802 1
B3 67735 <NN> <NN> 8 2787 5
B3b 67735 <NN> <NN> 8 2787 7
B3c 67735 <NN> <NN> 8 2352 6
B3d 67735 <NN> <NN> 8 776 1
B3e 67735 <NN> <NN> 8 1892 5
B3f 67735 <NN> <NN> 8 1377 5

data did. Allowing for variations greatly improved recall. Only one index term was

missed (not matched) in experiment B3b as shown in Table 4.2. This is a result of

permitting variations.

4.6 Experiment Set C — System Comparison

The TBXTools software was used to extract key terms and the performance was com-

pared with our methodology. By default the TBXTools statistical package produces

bigrams, so longer candidate expressions were not considered in initial trials.

Experiment C1 (TBXTools) Candidate bigrams were extracted from the C Stan-

dards document (unfiltered), using statistical analysis provided by the TBXTools

software. The unfiltered text was not pre-processed to remove code snippets, there-

fore irrelevant terms such as “pumpernickel bread” and “fruit” when used in code

examples, were allowed to remain in the text.

Experiment C2 (TBXTools) Candidate bigrams were extracted from the C Stan-

dards document (filtered), using statistical analysis provided by the TBXTools soft-

ware. The filtered text was pre-processed to remove code snippets, therefore irrel-

evant terms such as “pumpernickel bread” and “fruit” when used in code examples,

were removed from the text. This is analogous to experiment A5 and later Set A

experiments.

37

Experiment C3 (TBXTools) Candidate bigrams were extracted from the aircraft

manual document (filtered), using statistical analysis provided by the TBXTools soft-

ware.

Table 4.3: Experimental Results — TBXTools
Exp.# Tokens Method Index Terms Candidates Matched

C1 28288 TBXTools sta-
tistical unfiltered

179 1087 49

C2 28288 TBXTools sta-
tistical filtered

179 779 52

C3 67735 TBXTools sta-
tistical filtered

157 6100 42

4.7 Overall Experiments Summary

The above experiments considered specific POS sequences and characteristics. How-

ever we also studied the overall performance of our system in order to give a high level

view of its efficiency. For the overall experiment with C Standards data, the POS

sequences used were: <NN> <NN> , <VGB> <NNS>, <VGB> <NN> <NNS>, <N*> <N*.>?,

<JJ> <NNS> and <NNS>, which cover the most frequent sequences of POS Tags in the

index. For the overall experiment with aircraft manual data the POS sequences used

were <NN> <NN> and Acronyms which cover the most frequent sequences of POS Tags

or index term characteristics in the index.

Overall experiment counts for the C data and aircraft manual data using our

method (denoted by ATE) are presented in Table 4.4.

Table 4.4: ATE Overall Experimental Results — Counts
Exp.# Tokens Index Candidates Matched

C data 28288 178 325 64
Aircraft Manual data 67735 99 3054 84

Basic statistics about the experiments that were conducted are presented in this

section. Evaluation measures are presented in the next chapter. In the next chapter

we discuss the significance of our results and present a method to evaluate those

results.

Chapter 5

Discussion and Evaluation

The C programming standards documents included an index, which was used as the

gold standard to measure how well the system performed. The aircraft maintenance

guidelines manual contained a glossary which served the same purpose. A standard

approach to the calculation of evaluation metrics for ATE was laid out by Kim et

al. [KMKB10, KMKB13] and Hasan et al. [HN14] as well as Tjong Kim Sang et al

for the CoNL-2003 shared task (named entity recognition) [TKSDM03] and [KU96].

This approach involves mapping the key phrases in the “gold standard” document

(i.e. the index file) to the key phrases that are output by the system, using an exact

match. The mapping is then scored using precision, recall and F-measure values. The

“gold standard” is a pre-built list of reference terms that provides “reproducibility of

results, tunability of parameters, and comparison between different methods on one

dataset” according to Astrakhansev [AFT15].

Therefore the methods of evaluation used in the experiments were:

• precision,

• recall, and

• F-measure

Precision is the measure of correctness or the percentage of positives out of all

returned keywords:

P =
TP

TP + FP
(5.1)

Recall is the percentage of true positives out of all relevant keywords:

R =
TP

TP + FN
(5.2)

F-measure is a weighted harmonic mean between precision and recall:

F =
(β2 + 1)PR

β2P +R
(5.3)

38

39

TN

FP FNTP

Figure 5.1: Evaluation Diagram

In general, we set

β = 1

in order to make precision and recall have equal weights, and thus we obtain:

F =
2PR

P +R
(5.4)

where TP = True Positives, FP = False Positives and FN = False Negatives.

TP refers to True Positives, which are items that are both returned (identified) and

relevant, FP stands for False Positives, which are items that are returned (identified)

but not relevant and FN represents False Negatives which are items that are not

returned but are still relevant. A description of the elements of each of these sets is

shown in graphical form in the Venn Diagram of Figure 5.1

The question of how to calculate recall must be considered. Milios et al. calculated

recall in the following manner: First, the terms above a frequency threshold of 3 are

taken as candidate terms. Second, the number of real terms in this list are counted

and thirdly, a C-value threshold of 0 is used to filter the terms further. “Recall is

then taken to be the ratio of terms after step 2 to the number of terms after step 1.”

[MZHD03] Hulth calculated recall by considering the number of manually created

key phrases [Hul03]. While recall can be calculated based on a set of given gold

standard index terms, when the document has no index this calculation becomes

more problematic.

40

The experimental performance measures are presented in Table 5.1. The use of

more relaxed POS sequences e.g. <N.> <N.>* resulted in a greater number of

candidates being identified, but only a small number of these candidates were actual

index terms. Using more restrictive POS sequences e.g. <NN> <NN> provided better

matches between the text and index terms. The values are presented in decimal form

i.e. 0.3347 refers to 33.47%

Table 5.1: Experimental Results — C Standards Data Performance
Exp.# Precision Recall F-measure

A1 0.0670 0.3028 0.1097
A2 0.0161 0.3307 0.0307
A3 0.0166 0.0717 0.0269
A4 0.0135 0.3347 0.0259
A5 0.0857 0.0994 0.0921
A6 0.0582 0.3425 0.0995
A7 0.0426 0.7500 0.0806
A8 0.0455 0.8000 0.0860
A9 0.0899 0.8000 0.1616
A10 0.1667 0.2500 0.2000
A11 0.0769 0.0833 0.0800
A12 0.1204 0.6500 0.2031
A13 0.1831 0.6500 0.2857

A difficulty arises in POS tagging when words have ambiguous meanings. For

instance, book can be both a verb (as in book a train ticket) as well as a noun (the

book was on the table). The built-in POS tagger that was available with the NLTK

software was therefore lacking in accuracy when it came to certain terms in our

domain. Also, there was a discrepancy between tags in the text file and in the index

file due to ambiguity of word usage in various sentences as opposed to the index file.

It should be noted that the text file consisted of whole paragraphs while the index

file comprised of index terms that were listed one term per line, which may indicate

that the POS tagger had less information on which to base its tagging decision when

tagging the index file as compared to the text file.

It has been discussed earlier that the state of the art performance in ATE is

still low. State of the art values for Precision in general vary between 0.27 and

0.35, Recall varies between 0.28 and 0.66, while F-measure (which decreases as the

41

Precision Recall F-measure
0

5

10

15

20

25

30

35

40

V
a
lu

e
s

Comparison of Performance Measures
SemEval2010
TBXTools
ATE Experiments

Figure 5.2: Performance Measures Comparison on C Standards Data

document length increases) falls between 0.27 and 0.45, as explained by Hasan et

al. [HN14] . For performance measures on scientific papers in particular (SemEval

2010) [KMKB13], which corresponds most closely to our dataset, the correspond-

ing values are 0.27, 0.28 and 0.28 respectively. The highest obtained performance

measures for our experiments (in percentage values) are shown in Figure 5.2, which

shows that our results are comparable to the previously mentioned state of the art

performance values.

The fact that “keyphrase extraction is a subjective task” was observed by Kim et

al. and it was noted that even “the top performing systems return F-scores in the

upper twenties” [KMKB10, KMKB13]. Indeed it has been remarked that the actual

42
N

N
 N

N

N
*

N
*.

V
B

[D
G

P
]

N
.*

E
x
p
 #

 2
 a

n
d
 3

N
*

N
*.

N
*

N
*.

N
N

 N
N

N
N

 N
N

N
N

 N
N

S

V
B

G
 N

N
S

V
B

G
 N

N

N
N

 N
N

S

N
N

 N
N

S

POS Sequence Used

0.00

0.05

0.10

0.15

0.20

0.25

V
a
lu

e

Precision
N

N
 N

N

N
*

N
*.

V
B

[D
G

P
]

N
.*

E
x
p
 #

 2
 a

n
d
 3

N
*

N
*.

N
*

N
*.

N
N

 N
N

N
N

 N
N

N
N

 N
N

S

V
B

G
 N

N
S

V
B

G
 N

N

N
N

 N
N

S

N
N

 N
N

S

POS Sequence Used

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lu

e

Recall

Figure 5.3: Performance Measures — Precision and Recall on C Standards Data

precision value has no real meaning, but instead we should ask “what percentage of

keyphrases ... are acceptable to a human reader” [Tur00]. Thus Turney emphasizes

that the actual precision and recall values are less important than what they represent.

Although precision, recall and F-measure are standard evaluation measures, As-

trakhansev et al. [AFT15] note that:

“The formulation of the term recognition problem is [itself]...far from

being entirely formal, which makes it quite difficult to compare term recog-

nition methods and to evaluate their efficiency. As a result there are

currently no commonly-accepted datasets and methodologies for efficiency

evaluation, and developed methods are often domain- and application-

specific.”

As expected, precision varies inversely with recall as shown in Figure 5.3. This

trade-off becomes inevitable as returning more candidates improves recall but lowers

43

Precision Recall F-measure
0

10

20

30

40

50

60

70

80

90

V
a
lu

e
s

Comparison of Performance Measures
SemEval2010
TBXTools
ATE Experiments

Figure 5.4: Performance Measures Comparison on Aircraft Manual Data

precision, while pruning the number of candidate terms improves precision while

lowering recall.

The values for Precision, Recall and F-measure for the aircraft manual data are

shown in Table 5.2. The values are presented in decimal form i.e. 0.8462 refers to

84.62%

Precision and recall are improved by removing code snippets and pre-processing

the data as illustrated in Table 5.3. However, it should be noted that by default

the TBXTools system only produces word bigrams as a set of candidate terms, thus

its results will overlook matches with longer index terms such as “accessing array

elements”, leading to a drop in recall and precision when compared to a system that

44

Table 5.2: Experimental Results — Aircraft Manual Data Performance
Exp.# Precision Recall F-measure

B1 0.2884 0.8462 0.4302
B2 0.0012 0.1250 0.0025
B3 0.0018 0.6250 0.0036
B3b 0.0025 0.8750 0.0050
B3c 0.0026 0.7500 0.0051
B3d 0.0013 0.1250 0.0026
B3e 0.0026 0.6250 0.0053
B3f 0.0036 0.6250 0.0072

accounts for these longer candidate terms.

Table 5.3: Experimental Results — Performance with TBXTools
Exp.# Precision Recall F-measure

C1 0.0451 0.2737 0.0774
C2 0.0668 0.2905 0.1086
C3 0.0069 0.2675 0.0134

A summary of the observed performance is illustrated in Table 5.4. Exp. is the

number of the particular experiment. The Process column describes some additional

changes to each experiment. WL stands for the use of the WordNetLemmatizer. CS

indicates the removal of code snippets. S shows that only a sample of the whole text

was used. D denotes that duplicates were removed using a Python set command.

P in the Process column shows that an expanded list of stopwords was used. F

shows that words of low frequency were added to the stopwords list. The Experiment

numbers are prefixed with “A”, “B” or “C” with “A” showing data for the C Language

document, “B” showing data for the aircraft maintenance guidelines manual, and “C”

describing the values when the TBXTools software [OGVG15] was used on the C

language document and on the aircraft manual data. “P”, “R” and “F” in the table

header stand for Precision, Recall and F-Measure respectively. Note that figures are

presented in decimal format i.e. 0.8765 represents 87.65%

For the overall experiment with C Standards data, the POS sequences used

were: <NN> <NN> , <VGB> <NNS>, <VGB> <NN> <NNS>, <N*> <N*.>?, <JJ> <NNS>

and <NNS>, which covered the most frequent sequences of POS Tags in the index.

For the overall experiment with aircraft manual data the POS sequences used were

45

Table 5.4: Experimental Results Summary
WL - WordNetLemmatizer, CS - Code Snippets removed, S - Sample text, D -

Duplicates removed, P- Expanded Stopwords list, F - Low Frequency words, A - C
Language data, B - Aircraft data, C - TBXTools

Exp Process Method Matches P R F
A1 WL <NN> <NN> 76 0.0670 0.3028 0.1097
A2 WL <N*> <N*.>? 83 0.0161 0.3307 0.0307
A3 WL <VB[DGP]

<N.*>?
18 0.0166 0.0717 0.0269

A4 WL Exp.# 2 and 3
together

84 0.0135 0.3347 0.0259

A5 WL
CS S

<N*> <N*.>? 18 0.0857 0.0994 0.0921

A6 WL
CS

<N*> <N*.>? 62 0.0582 0.3425 0.0995

A7 D CS <NN> <NN> 15 0.0426 0.7500 0.0806
A8 D CS <NN> <NN> 16 0.0455 0.8000 0.0860
A9 D CS <NN>

<NNS>
16 0.0899 0.800 0.1616

A10 D CS <VBG>
<NNS>

3 0.1667 0.2500 0.2000

A11 D CS <VBG>
<NN>
<NNS>

1 0.0769 0.0833 0.0800

A12 D CS
P F

<NN>
<NNS>

13 0.1204 0.6500 0.2031

A13 D CS
P F

<NN>
<NNS>

13 0.1831 0.6500 0.2857

B1 D CS
P

Acronyms 77 0.2884 0.8462 0.4302

B2 D CS <NN> <NN> 1 0.0012 0.1250 0.0025
B3 D CS <NN> <NN> 5 0.0018 0.6250 0.0036
B3b D CS <NN> <NN> 7 0.0018 0.89 0.005
B3c D CS <NN> <NN> 6 0.0026 0.7500 0.0051
B3d D CS <NN> <NN> 1 0.0013 0.1250 0.0026
C1 P TBXTools

statistical
unfiltered

49 0.0451 0.2737 0.0774

C2 CS P TBXTools sta-
tistical filtered

52 0.0668 0.2905 0.1086

C3 CS P TBXTools sta-
tistical filtered

42 0.0069 0.2675 0.0134

46

A
cr

o
n
y
m

s

N
N

 N
N

N
N

 N
N

N
N

 N
N

POS Sequence Used

0.00

0.05

0.10

0.15

0.20

0.25

0.30
V

a
lu

e
Precision

A
cr

o
n
y
m

s

N
N

 N
N

N
N

 N
N

N
N

 N
N

POS Sequence Used

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lu

e

Recall

Figure 5.5: Performance Measures — Precision and Recall on Aircraft Manual Data

<NN> <NN> and Acronyms which covered the most frequent sequences of POS Tags

or index term characteristics in the index.

The Odds Ratio test was used to compare our performance to that of TBXTools

statistical.

Odds =
P1/(1− P1)

P2/(1− P2)
(5.5)

where

P1 = Group 1 = Probability of a match between candidate term and index term

using ATE

and

47

P2 = Group 2 = Probability of a match between candidate term and index term

using TBXTools

Obtaining a value of Odds > 1 implies that a match is more likely to occur in

Group 1 (ATE).

Table 5.5: Odds Ratio Test

Value C data Aircraft Manual Data
P1 0.36 0.85
P2 0.27 0.27
Odds 1.51 15.32

5.1 Evaluation Summary

The data in Table 5.6 are presented in decimal form i.e. 0.8485 represents 84.85%

Table 5.6: Overall Experimental Results

Exp.# Precision Recall F-measure

ATE C data overall 0.1969 0.3596 0.2545
TBXTools C data overall 0.0668 0.2905 0.1086
ATE Aircraft Manual data overall 0.0275 0.8485 0.0533
TBXTools Aircraft Manual data overall 0.0069 0.2675 0.0134

Hulth [Hul03] has observed that using “POS tag patterns gives a higher recall

compared to extracting n-grams”, and this is reflected in the difference in recall values

when using our system as compared to TBXTools as can be seen in Table 5.3.

While examining the results obtained by our system we found that some candidate

terms were in fact valid key terms that a human evaluator would consider suitable for

inclusion in the index. However, the given documents’ index did not contain these

keywords. This means that our obtained precision values are lower than they should

be.

As expected, nouns and noun phrases played a dominant role in candidate detec-

tion in the aircraft manual data set. Noun phrases also were a key factor in the C

dataset, but they had to be balanced by accounting for verbs as well. This has to

48

do with the manner in which the indices of these documents are structured. For in-

stance, the C data set contained terms such as “accessing array elements”, “declaring

pointers” and “defining structures”, while the aircraft manual data set consisted of

terms such as “system element” and “airworthiness certificate”.

As illustrated in the data of Table 5.6, ATE (our methodology) outperforms TBX-

Tools (statistical) in terms of both recall and precision. ATE on the C Standards data

produces a precision of alomst 20%, which is close to state of the art as measured by

the SemEval 2010 exercise [KMKB10]. Recall and F-measure for the C data using

ATE were better than the reported SemEval values. The difference in recall between

ATE and TBXTools is much larger on the aircraft manual data set, where a recall

rate of close to 85% was achieved by ATE. This serves to indicate that our results

exceed those of the TBXTools system and also approach or exceed the state of the

art as measured by SemEval values.

The following chapter presents our conclusions and directions for future research

endeavors.

Chapter 6

Conclusion

In the preceding sections we have shown that Automatic Term Extraction (ATE)

can be successfully performed, as indicated by the Odds Ratio test, in the technical

domain to extract key phrases using Part-of-Speech information with additional in-

formation about commonality of some words. We have evaluated and demonstrated

a method for the automatic creation of a list of the most relevant key terms from a

C programming standards document and a manual of guidelines for aircraft mainte-

nance. The results compare favorably to the state of the art, although the state of

the art performance itself is still relatively low in terms of precision and recall.

There are some key points to note about our study. As described in the Discussion

and Evaluation section, the default NLTK POS Tagger did not provide the required

level of accuracy in tagging. For instance “string” was identified as a verb instead of

a noun in the phrase “string constants”. Indeed it is difficult to accurately tag words

such as bit, compound, or string as either nouns or verbs without also obtaining

further background knowledge of the domain of the document, as well as a more in-

depth analysis of the sentence in which these words appear. For instance, the word

compound might appear as a noun in an article whose subject matter is Chemistry,

or in a Mathematical journal, or both as a noun and as a verb in an article devoted

to the study of English Grammar. It has been noted in the literature that “POS

disambiguation is one of the most important error sources” [CBP01] in ATE. However,

it must be pointed out that the POS tags from the text were based on complete

sentences, while the POS tags from the Index were based on index terms that appeared

by themselves in the index terms file, one term per line. This may have altered the

observed efficiency of the tagger.

While most indexers tend to focus largely on noun phrases [NM02, KU96], we

have endeavored to include verb phrases as well, since it has been noted that index

terms are more complex than mere sequences of nouns [KK09, PBB02].

49

50

Term extraction techniques are found to be highly domain- and genre- specific

[MZHD03], which implies that a method that is used on one corpus may not neces-

sarily produce equal levels of precision and recall when used on another.

In our calculation of performance measures, we used all the keyphrases that

were generated, unlike experiments that placed a cutoff on the number of generated

keyphrases. Using an exact match between gold standard terms and the resulting can-

didate terms has been recognized as quite a harsh method of evaluating the precision

and recall of an ATE system. Despite this restriction we were able to achieve recall

values of 62%, which improved to 89% when variants were allowed, which exceeds the

values obtained by state of the art. Prior research was focused more on either using

stemming to find matches, or on accepting variants of index terms.

We included variant terms in our candidate detection since, as Bougouin et al.

state, “exact matches between extracted keyphrases and human assigned reference

keyphrases ... leads to overly pessimistic scores since variations in the extracted key

phrases that might be judged as correct cannot be taken into account” [BBR+16]. As

noted by Kim et al. [KMKB10], when we “use a strict matching metric for evalua-

tion,... semantically equivalent keyphrases are not counted as correct”.

Some candidate terms found by our system were in fact valid key terms that

a different human evaluator would have seen fit to be added to a generated index.

However, they were not included as a part of the documents’ original gold standard

index. It has been noted by Drouin that “different terminologists will identify different

terms in the same document and that the same phenomenon could be observed with

one terminologist looking at the same corpus over a period of time” [Dro03]. This

factor affects our evaluation measures by artificially lowering both our obtained recall

and precision values and therefore also the F-measure.

It has been recognized that using “manually assigned keywords as the gold stan-

dard ... is the most severe way to evaluate a keyword extractor, as many terms might

be just as good, although ... not chosen by the [original] human indexer” [Hul03]. It

is also acknowledged by Witten et al. [WPF+99] that “it is highly unlikely that even

another human would select the same set of key phrases as the original author”. The

issue of valid terms being found by the system but not being present in the set of

gold standard terms was also recognized by Pazienza et al. [PPZ05] and by Pantel

51

et al. who noted that “experts often disagree on the correctness of a term list for

a corpus” [PL01]. The recognition of key terms is therefore still a subjective task

[dSCDFPR14].

6.1 Future Work

Future work will include the addition of external features e.g. data from Wikipedia

article titles or other sources, in order to provide more domain-specific background

information.

An alternate POS tagger will be used to find POS sequences, and the results will

be compared with that of the default POS tagger provided by NLTK, in order to

determine if this new tagger will increase the accuracy of POS tagging.

To extend the research further, keyword generation of key terms based on con-

cepts in the document, but where the key terms are not explicitly contained in the

document, could also be explored.

Bibliography

[AFT15] NA Astrakhantsev, Denis G Fedorenko, and D Yu Turdakov. Methods
for Automatic Term Recognition in Domain-specific Text Collections:
A Survey. Programming and Computer Software, 41(6):336–349, 2015.

[BBR+16] Adrien Bougouin, Sabine Barreaux, Laurent Romary, Florian Boudin,
and Béatrice Daille. Termith-eval: a French Standard-based Resource
for Keyphrase Extraction Evaluation. In Language Resources and
Evaluation Conference (LREC), 2016.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python: Analyzing Text with the Natural Language
Toolkit. O’Reilly Media, Inc., 2009.

[BMMI15] Slobodan Beliga, Ana Meštrović, and Sanda Martinčić-Ipšić. An
Overview of Graph-based Keyword Extraction Methods and Ap-
proaches. Journal of Information and Organizational Sciences,
39(1):1–20, 2015.

[CBP01] M Teresa Cabré Castellví, Rosa Estopa Bagot, and Jordi Vivaldi Pala-
tresi. Automatic Term Detection: A Review of Current Systems.
Recent Advances in Computational Terminology, 2:53–88, 2001.

[CD16] Damien Cram and Béatrice Daille. Termsuite: Terminology Extrac-
tion with Term Variant Detection. ACL 2016, page 13, 2016.

[CGHH91] Kenneth Church, William Gale, Patrick Hanks, and Donald Hindle.
Using Statistics in Lexical Analysis. Lexical acquisition: Exploiting
On-line Resources to Build a Lexicon, 115:164, 1991.

[CW14] Erik Cambria and Bebo White. Jumping NLP Curves: a Review of
Natural Language Processing Research [review article]. IEEE Com-
putational Intelligence Magazine, 9(2):48–57, 2014.

[DGBPL00] Gaël Dias, Sylvie Guilloré, Jean-Claude Bassano, and José Gabriel
Pereira Lopes. Combining Linguistics with Statistics for Multiword
Term Extraction: A Fruitful Association? In Content-Based Multi-
media Information Access-Volume 2, pages 1473–1491. Le Centre De
Hautes Etudes Internationales D’informatique Documentaire, 2000.

[Dro03] Patrick Drouin. Term Extraction using Non-Technical Corpora as a
Point of Leverage. Terminology, 9(1):99–115, 2003.

52

53

[DRS13] Anurag Dwarakanath, Roshni R Ramnani, and Shubhashis Sengupta.
Automatic Extraction of Glossary Terms from Natural Language Re-
quirements. In Requirements Engineering Conference (RE), 2013 21st
IEEE International, pages 314–319. IEEE, 2013.

[DS04a] Lyne Da Sylva. A Document Browsing Tool based on Book Indexes.
2004.

[DS04b] Lyne Da Sylva. A Document Browsing Tool based on Book Indexes.
2004.

[DS09] Lyne Da Sylva. Corpus-based Derivation of a Basic Scientific Vocab-
ulary for Indexing Purposes. Journal of Linguistics, 45(1):167–201,
2009.

[DS13] Lyne Da Sylva. Integrating Knowledge from Different Sources for
Automatic Back-of-the-book Indexing. In Proceedings of the Annual
Conference of CAIS/Actes du congrès annuel de l’ACSI, 2013.

[dSCDFPR14] Merley da Silva Conrado, Ariani Di Felippo, Thiago Alexan-
dre Salgueiro Pardo, and Solange Oliveira Rezende. A Survey of Au-
tomatic Term Extraction for Brazilian Portuguese. Journal of the
Brazilian Computer Society, 20(1):12, 2014.

[DSD05] Lyne Da Sylva and Frédéric Doll. A Document Browsing Tool: using
Lexical Classes to Convey Information. In Conference of the Cana-
dian Society for Computational Studies of Intelligence, pages 307–318.
Springer, 2005.

[Fag89] Joel L Fagan. The Effectiveness of a Nonsyntactic Approach to Auto-
matic Phrase Indexing for Document Retrieval. Journal of the Amer-
ican Society for Information Science, 40(2):115, 1989.

[FAM00] Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. Automatic
Recognition of Multi-word Terms:. the C-value/NC-value Method. In-
ternational Journal on Digital Libraries, 3(2):115–130, 2000.

[FdSG14] Alessio Ferrari, Felice dell’Orletta, Giorgio Oronzo Spagnolo, and Ste-
fania Gnesi. Measuring and Improving the Completeness of Natural
Language Requirements. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 23–
38. Springer, 2014.

[FPW+99] Eibe Frank, Gordon W Paynter, Ian H Witten, Carl Gutwin, and
Craig G Nevill-Manning. Domain-Specific Keyphrase Extraction. In
16th International Joint Conference on Artificial Intelligence (IJCAI
99), volume 2, pages 668–673. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

54

[Gan01] Aryya Gangopadhyay. Conceptual Modeling from Natural Lan-
guage Functional Specifications. Artificial Intelligence in Engineering,
15(2):207–218, 2001.

[GEL+14] Shalini Ghosh, Daniel Elenius, Wenchao Li, Patrick Lincoln, Natara-
jan Shankar, and Wilfried Steiner. Automatically Extracting Require-
ments Specifications from Natural Language. CoRR, abs/1403.3142,
2014.

[Gro11] International Standardization Working Group. C11 Standards WG14
N1570. GNU, 2011.

[Hea97] Marti A Hearst. Texttiling: Segmenting Text into Multi-paragraph
Subtopic Passages. Computational Linguistics, 23(1):33–64, 1997.

[Hig90] Lindley R. Higgins. Maintenance Engineering Handbook. McGraw-
Hill, 1990.

[HM15] Julia Hirschberg and Christopher D Manning. Advances in Natural
Language Processing. Science, 349(6245):261–266, 2015.

[HN14] Kazi Saidul Hasan and Vincent Ng. Automatic Keyphrase Extraction:
A Survey of the State of the Art. In ACL (1), pages 1262–1273, 2014.

[Hos06] Mark Hoske. Functional Specifications. In Control Engineering, pages
69–73. Peer Reviewed Journal, 2006.

[Hul03] Anette Hulth. Improved Automatic Keyword Extraction given more
Linguistic Knowledge. In Proceedings of the 2003 Conference on Em-
pirical Methods in Natural Language Processing, pages 216–223. As-
sociation for Computational Linguistics, 2003.

[JCK05] Sittichai Jiampojamarn, Nick Cercone, and Vlado Keselj. Biological
Named Entity Recognition using N-grams and Classification Meth-
ods. In Proceedings of the Conference Pacific Association for Compu-
tational Linguistics, PACLING‘05, Meisei University, Hino Campus,
Hino-shi, Tokyo, 191-8506 Japan, August 2005.

[Jia05] Sittichai Jiampojamarn. Automatic Biological Term Annotation us-
ing N-gram and Classification Models. Master’s thesis, Faculty of
Computer Science, Dalhousie University, 2005.

[JK95] John S Justeson and Slava M Katz. Technical Terminology: Some Lin-
guistic Properties and an Algorithm for Identification in Text. Natural
Language Engineering, 1(01):9–27, 1995.

[JM09] Daniel Jurafsky and James H Martin. Speech and Language Process-
ing an Introduction to Natural Language Processing, Computational
Linguistics, and Speech 2nd ed. Pearson Education, 2009.

55

[KK09] Su Nam Kim and Min-Yen Kan. Re-examining Automatic Keyphrase
Extraction Approaches in Scientific Articles. In Proceedings of the
Workshop on Multiword Expressions: Identification, Interpretation,
Disambiguation and Applications, pages 9–16. Association for Com-
putational Linguistics, 2009.

[KMKB10] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Bald-
win. Semeval-2010 Task 5: Automatic Keyphrase Extraction from
Scientific Articles. In Proceedings of the 5th International Workshop
on Semantic Evaluation, pages 21–26. Association for Computational
Linguistics, 2010.

[KMKB13] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin.
Automatic Keyphrase Extraction from Scientific Articles. Language
Resources and Evaluation, 47(3):723–742, 2013.

[KU96] Kyo Kageura and Bin Umino. Methods of Automatic Term Recog-
nition: A Review. Terminology. International Journal of Theoretical
and Applied Issues in Specialized Communication, 3(2):259–289, 1996.

[LFV16] Lucelene Lopes, Paulo Fernandes, and Renata Vieira. Estimating
Term Domain Relevance through Term Frequency, Disjoint Corpora
Frequency-Tf-Dcf. Knowledge-Based Systems, 97:237–249, 2016.

[LL08] Marina Litvak and Mark Last. Graph-based Keyword Extraction for
Single-document Summarization. In Proceedings of the Workshop on
Multi-source Multilingual Information Extraction and Summarization,
pages 17–24. Association for Computational Linguistics, 2008.

[LSM+89] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew
Oram, and Ulrich Drepper. The GNU C Library Reference Manual.
GNU, 1989.

[LVJRT16] Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, and
Maguelonne Teisseire. Biomedical Term Extraction: Overview and
a New Methodology. Information Retrieval Journal, 19(1-2):59–99,
2016.

[MFO16] Zakariae Alami Merrouni, Bouchra Frikh, and Brahim Ouhbi. Auto-
matic Keyphrase Extraction: An Overview of the State of the Art. In
Information Science and Technology (CiSt), 2016 4th IEEE Interna-
tional Colloquium on, pages 306–313. IEEE, 2016.

[MI04] Yutaka Matsuo and Mitsuru Ishizuka. Keyword Extraction from a
Single Document using Word Co-occurrence Statistical Information.
International Journal on Artificial Intelligence Tools, 13(01):157–169,
2004.

56

[MMC14] Stephen G MacDonell, Kyongho Min, and Andy M Connor. Au-
tonomous Requirements Specification Processing using Natural Lan-
guage Processing. arXiv preprint arXiv:1407.6099, 2014.

[MS+99] Christopher D Manning, Hinrich Schütze, et al. Foundations of Sta-
tistical Natural Language Processing, volume 999. MIT Press, 1999.

[MZ10] Indrit Myderrizi and Ali Zeki. Current-steering Digital-to-Analog
Converters: Functional Specifications, Design Basics, and Behavioral
Modeling. IEEE Antennas and Propagation Magazine, 52(4):197–208,
2010.

[MZHD03] E Milios, Y Zhang, B He, and L Dong. Automatic Term Extraction
and Document Similarity in Special Text Corpora. In Proceedings
of the Sixth Conference of the Pacific Association for Computational
Linguistics, pages 275–284. Citeseer, 2003.

[NKLB12] David Newman, Nagendra Koilada, Jey Han Lau, and Timothy Bald-
win. Bayesian Text Segmentation for Index Term Identification and
Keyphrase Extraction. In COLING, pages 2077–2092, 2012.

[NM02] Hiroshi Nakagawa and Tatsunori Mori. A Simple but Powerful Auto-
matic Term Extraction Method. In COLING-02 on COMPUTERM
2002: Second International Workshop on Computational Terminology-
Volume 14, pages 1–7. Association for Computational Linguistics,
2002.

[OGVG15] Antonio Oliver González and Mercè Vàzquez Garcia. Tbxtools: A
Free Fast and Flexible Tool for Automatic Terminology Extraction.
Association for Computational Linguistics (ACL), 2015.

[PBB02] Youngja Park, Roy J Byrd, and Branimir K Boguraev. Auto-
matic Glossary Extraction: beyond Terminology Identification. In
Proceedings of the 19th International Conference on Computational
Linguistics-Volume 1, pages 1–7. Association for Computational Lin-
guistics, 2002.

[PL01] Patrick Pantel and Dekang Lin. A Statistical Corpus-based Term
Extractor. In Conference of the Canadian Society for Computational
Studies of Intelligence, pages 36–46. Springer, 2001.

[PPMM15] Carlos Periñán-Pascual and Eva M Mestre-Mestre. DEXTER: Auto-
matic Extraction of Domain-specific Glossaries for Language Teach-
ing. Procedia-Social and Behavioral Sciences, 198:377–385, 2015.

[PPZ05] Maria Teresa Pazienza, Marco Pennacchiotti, and Fabio Massimo Zan-
zotto. Terminology Extraction: an Analysis of Linguistic and Statisti-
cal Approaches. In Knowledge Mining, pages 255–279. Springer, 2005.

57

[Rai48] Victor C Raimy. Functional Specifications for a Sound Recorder for
the psychological Clinic. American Psychologist, 3(11):513, 1948.

[RY07] Trevis Rothwell and James Youngman. C99 Standards WG14 N1256.
GNU, 2007.

[SS15] Sifatullah Siddiqi and Aditi Sharan. Keyword and Keyphrase Ex-
traction Techniques: A Literature Review. International Journal of
Computer Applications, 109(2), 2015.

[TKSDM03] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to
the CoNLL-2003 Shared task: Language-independent Named Entity
Recognition. In Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003-Volume 4, pages 142–147.
Association for Computational Linguistics, 2003.

[Tur00] Peter D Turney. Learning Algorithms for Keyphrase Extraction. In-
formation Retrieval, 2(4):303–336, 2000.

[Wid07] Henry Widdowson. Jr firth, 1957, Papers in Linguistics 1934–51. In-
ternational Journal of Applied Linguistics, 17(3):402–413, 2007.

[WPF+99] Ian H Witten, Gordon W Paynter, Eibe Frank, Carl Gutwin, and
Craig G Nevill-Manning. KEA: Practical Automatic Keyphrase Ex-
traction. In Proceedings of the fourth ACM conference on Digital
libraries, pages 254–255. ACM, 1999.

Appendix A

Sample Code

POS Tagging:

1 import n l tk

2 import re

3 from c o l l e c t i o n s import Counter

4

5 import numpy as np

6 import matp lo t l i b . pyplot as p l t

7 from operator import i t emge t t e r

8

9 #POS Tags from a smal l t e s t sample o f the C programmng language

standards

10

11 t ex t = """A s t r i n g constant i s a sequence o f ze ro or more charac te r s ,

12 d i g i t s , and escape sequences enc l o s ed with in double quotat ion marks . A

s t r i n g constant i s

13 o f type ‘ ‘ array o f cha ra c t e r s ’ ’ . A l l s t r i n g cons tant s conta in a nu l l

t e rminat ion charac t e r

14 (\0) as t h e i r l a s t cha rac t e r . S t r i ng s are s to r ed as ar rays o f charac te r s

, with no inhe rent

15 s i z e a t t r i b u t e . The nu l l t e rminat ion charac t e r l e t s s t r i ng−pro c e s s i ng

f unc t i on s know

16 where the s t r i n g ends .

17

18 Adjacent s t r i n g cons tant s are concatenated (combined) in to one s t r i ng ,

with the nu l l

19 te rminat ion charac t e r added to the end o f the f i n a l concatenated s t r i n g .

20

21 A s t r i n g cannot conta in double quotat ion marks , as double quotat ion

marks are used

22 to en c l o s e the s t r i n g . To inc lude the double quotat ion mark charac t e r in

a s t r i ng ,

58

59

23 use the \" escape sequence . You can use any o f the escape sequences that

can be used

24 as cha rac t e r cons tant s in s t r i n g s . Here are some example o f s t r i n g

cons tant s : """

25

26 #convert t ex t to lowercase

27 t ex t = text . lower ()

28

29 #remove non−alphanumeric cha ra c t e r s

30 t ex t = re . sub (’ [^0−9a−zA−Z]+ ’ , ’ ’ , t ex t)

31 t ex t = re . sub (’ [\ s ∗\d+\s+] ’ , ’ ’ , t ex t)

32

33 #token i z e

34 t ex t = n l tk . word_tokenize (t ex t)

35

36

37

38 #apply POS tags

39 tagged = nl tk . pos_tag (t ext)

40

41 pr in t tagged

42

43

44 with open (’ output_test_tags1 . txt ’ , ’w ’) as f :

45 f o r l i n e in tagged :

46 s t r s=" " . j o i n (s t r (x) f o r x in l i n e)

47 f . wr i t e (s t r s+"\n")

48

49 counts = Counter (tag f o r word , tag in tagged)

50 pr in t counts .most_common()

51

52 countswords = Counter (word f o r word , tag in tagged)

53 pr in t countswords .most_common()

54

55

56 p l t . f i g u r e ()

57 counts = counts . i tems ()

60

58 counts . s o r t (key=i t emge t t e r (1) , r e v e r s e=True)

59 l a b e l s , va lue s = z ip (∗ counts)

60 i ndexes = np . arange (l en (l a b e l s))

61 width = 1

62

63 p l t . x t i c k s (indexes , l a b e l s)

64 p l t . t i t l e ("POS Tag Frequenc ie s in Sample Text" , f o n t s i z e =20)

65 p l t . x l ab e l ("POS Tag " , f o n t s i z e =20)

66 p l t . y l ab e l ("Cumulative Frequency" , f o n t s i z e =20)

67 p l t . tick_params (ax i s=’ x ’ , l a b e l s i z e =18)

68 p l t . tick_params (ax i s=’ y ’ , l a b e l s i z e =18)

69 cumulat ive = np . cumsum(va lue s)

70 p l t . p l o t (cumulative , c=’ green ’)

71

72 #pl t . show ()

73

74 p l t . f i g u r e ()

75 countswords = countswords . i tems ()

76 countswords . s o r t (key=i t emge t t e r (1) , r e v e r s e=True)

77 l a b e l s , va lue s = z ip (∗ countswords)

78 i ndexes = np . arange (l en (l a b e l s))

79 width = 1

80

81 p l t . x t i c k s (indexes , l a b e l s)

82 p l t . t i t l e ("Word Frequenc ie s in Sample Text" , f o n t s i z e =20)

83 p l t . x l ab e l ("Word" , f o n t s i z e =20)

84 p l t . y l ab e l ("Cumulative Frequency" , f o n t s i z e =20)

85 p l t . x t i c k s (r o t a t i on =90)

86 cumulat ive1 = np . cumsum(va lues)

87 p l t . t ight_layout ()

88 p l t . p l o t (cumulative1 , c=’ green ’)

89 p l t . tick_params (ax i s=’ x ’ , l a b e l s i z e =18)

90 p l t . tick_params (ax i s=’ y ’ , l a b e l s i z e =18)

91 p l t . show ()

Listing A.1: POS tagging with small sample text - premilinary trials

The above code produces the following output:

61

a DT

string NN

constant NN

is VBZ

a DT

sequence NN

of IN

zero NN

or CC

more JJR

characters NNS

digits NNS

and CC

escape NN

sequences NNS

enclosed VBD

within IN

double JJ

quotation NN

marks NNS

a DT

string VBG

constant NN

is VBZ

of IN

type NN

array NN

of IN

characters NNS

all DT

string VBG

62

constants NNS

contain VBP

a DT

null NN

termination NN

character NN

as IN

their PRP$

last JJ

character NN

strings NNS

are VBP

stored VBN

as IN

arrays NNS

of IN

characters NNS

with IN

no DT

inherent JJ

size NN

attribute NN

the DT

null NN

termination NN

character NN

lets NNS

string VBG

processing NN

functions NNS

know VBP

63

where WRB

the DT

string NN

ends VBZ

adjacent NN

string VBG

constants NNS

are VBP

concatenated VBN

combined VBN

into IN

one CD

string VBG

with IN

the DT

null JJ

termination NN

character NN

added VBD

to TO

the DT

end NN

of IN

the DT

final JJ

concatenated VBN

string VBG

a DT

string NN

can MD

not RB

64

contain VB

double JJ

quotation NN

marks NNS

as IN

double JJ

quotation NN

marks NNS

are VBP

used VBN

to TO

enclose VB

the DT

string NN

to TO

include VB

the DT

double JJ

quotation NN

mark NN

character NN

in IN

a DT

string NN

use NN

the DT

escape NN

sequence NN

you PRP

can MD

use VB

65

any DT

of IN

the DT

escape NN

sequences NNS

that WDT

can MD

be VB

used VBN

as IN

character NN

constants NNS

in IN

strings NNS

here RB

are VBP

some DT

example NN

of IN

string NN

constants NNS

66

POS Tagging of C89 text:

1 import n l tk

2 import re

3 from c o l l e c t i o n s import Counter

4

5 import numpy as np

6 import matp lo t l i b . pyplot as p l t

7 from operator import i t emge t t e r

8

9 #POS Tags from text f i l e o f C programmng language standards

10

11 # Open data f i l e

12 with open (’C89fromHTMLnoindex . txt ’ , ’ r ’) as my f i l e :

13 t ex t=myf i l e . read () . r ep l a c e (’ \n ’ , ’ ’)

14

15 # Close opened f i l e

16 myf i l e . c l o s e ()

17

18 #convert t ex t to lowercase

19 t ex t = text . lower ()

20

21 #remove non−alphanumeric cha ra c t e r s and i nd i v i dua l numbers

22 #as a l l index terms c on s i s t only o f l e t t e r s

23 t ex t = re . sub (’ [^0−9a−zA−Z]+ ’ , ’ ’ , t ex t)

24 t ex t = re . sub (’ [\ s ∗\d+\s+] ’ , ’ ’ , t ex t)

25

26 #token i z e

27 t ex t = n l tk . word_tokenize (t ex t)

28

29 #remove stopwords

30 stopwords = n l tk . corpus . stopwords . words (’ e n g l i s h ’)

31 content = [w f o r w in text i f w. lower () not in stopwords]

32

33

34 #apply POS tags

35 tagged = nl tk . pos_tag (content)

36

67

37 #pr in t tagged

38

39 with open (’ output_test_tags3 . txt ’ , ’w ’) as f :

40 f o r l i n e in tagged :

41 s t r s=" " . j o i n (s t r (x) f o r x in l i n e)

42 f . wr i t e (s t r s+"\n")

43

44 f . c l o s e ()

45 pr in t "Completed POS tagg ing \n"

46

47 counts = Counter (tag f o r word , tag in tagged)

48

49 pr in t counts .most_common()

50

51

52 counts = counts . i tems ()

53 counts . s o r t (key=i t emge t t e r (1) , r e v e r s e=True)

54 l a b e l s , va lue s = z ip (∗ counts)

55 i ndexes = np . arange (l en (l a b e l s))

56 width = 1

57

58 #pl t . bar (indexes , values , width , a l i g n =’ cente r ’ , c o l o r =’ skyblue ’)

59 p l t . bar (indexes , values , width , c o l o r=’ skyblue ’ , a l i g n=’ cente r ’)

60 p l t . x t i c k s (indexes , l a b e l s)

61 p l t . t i t l e ("POS Tag Frequenc ie s in Document" , f o n t s i z e =25)

62 p l t . x l ab e l ("POS Tag" , f o n t s i z e =22)

63 p l t . y l ab e l ("Frequency" , f o n t s i z e =22)

64 p l t . tick_params (ax i s=’ x ’ , l a b e l s i z e =22)

65 p l t . tick_params (ax i s=’ y ’ , l a b e l s i z e =22)

66 p l t . x t i c k s (r o t a t i on =90)

67 p l t . t ight_layout ()

68 #cumulat ive = np . cumsum(va lue s)

69 #pl t . p l o t (cumulative , c=’ green ’)

70 p l t . ax i s (’ t i g h t ’)

71 p l t . margins (0 . 0 1 , 0 . 01)

68

72 p l t . show ()

Listing A.2: POS tagging with C89 text - Ths code illustrates the pre-processing

method

1 import re

2

3 indexdata=""

4

5 # Open data f i l e

6 with open (’C89fromHTML_index . txt ’ , ’ r ’) as my f i l e :

7 f o r l i n e in myf i l e :

8 sep = ’ : ’

9 indexdata+= l i n e . s p l i t (sep , 1) [0]

10 indexdata+="\n"

11

12 with open (’ output_index1 . txt ’ , ’w ’) as f :

13 f . wr i t e (indexdata+"\n")

14

15 # Close opened f i l e s

16 myf i l e . c l o s e ()

17 f . c l o s e ()

18

19 pr in t "Completed index f i l t e r i n g \n"

Listing A.3: Index filtering

1 import re

2 import n l tk

3 import ppr int

4

5 # Open data f i l e

6 with open (’C89fromHTMLnoindex . txt ’ , ’ r ’) as my f i l e :

7 t ex t=myf i l e . read () . r ep l a c e (’ \n ’ , ’ ’)

8

9 # Close opened f i l e

10 myf i l e . c l o s e ()

11

12 #convert t ex t to lowercase

69

13 t ex t = text . lower ()

14

15 #remove non−alphanumeric cha ra c t e r s and i nd i v i dua l numbers

16 #as a l l index terms c on s i s t only o f l e t t e r s

17 t ex t = re . sub (’ [^0−9a−zA−Z]+ ’ , ’ ’ , t ex t)

18 t ex t = re . sub (’ [\ s ∗\d+\s+] ’ , ’ ’ , t ex t)

19

20 s en t ence s = n l tk . sent_tokenize (t ex t)

21 s en t ence s = [n l tk . word_tokenize (sent) f o r sent in s en t ence s]

22 s en t ence s = [n l tk . pos_tag (sent) f o r sent in s en t ence s]

23

24 #pr in t s en t ence s

25

26 with open (’ output_test_tags5 . txt ’ , ’w ’) as f :

27 f o r l i n e in s en t ence s [0] :

28 s t r s=" " . j o i n (s t r (x) f o r x in l i n e)

29 f . wr i t e (s t r s+"\n")

30

31 f . c l o s e ()

32 pr in t "Completed POS tagg ing \n"

Listing A.4: POS Tagging of Sentences in preparation for Chunking

Appendix B

Data Sets

The following section shows some more detailed information about the data sets that

were used in the experiments.

70

71

Table B.1: Frequency of sequences of POS Tags in the Aircraft Maintenance Guide-
lines manual

POS Tag Frequency
NNP NNP 20
NNP NN NN 11
NN 9
NN NN 8
NNP 7
NNP NN 7
NN NN NN 7
NN NNP 6
JJ NN 6
NNP NNP NNP NNP 3
NNP NNS NN 3
NNP NNP NNP 3
NNP NNP IN NNP 3
JJ NN TO VB 2
NNP NNS 2
NN CC NN 2
NNP VBP NN 2
NNP VBD NN 2
NN VBD 2
VBG 2
NNP NN JJ 2
JJ NN NNS VBP 1
JJ NN NNP NNP 1
NN IN NN 1
JJ NN NNS IN JJ NN 1
NNP NNP IN NNP CC NNPS 1
NNP IN NN 1
IN NN 1
VBN NNP 1
RB NNP 1
JJ NN NN 1
NN VBG NNS NN 1
NN VBG CC NN 1
VBG NN 1
JJ VBN NNP 1

POS Tag Frequency
NNP NN NN NN 1
NNS 1
VBG NN CC NN NN 1
VBG NNP NNP NNP 1
NNP NNP NNP IN NNP 1
NNP CC NN 1
NNP NNP NNP NNP IN DT NNP 1
JJ NNP 1
NNS VBP 1
NNP IN NNP NNPS 1
JJ 1
NNP NNP NNPS 1
NN NNS 1
NNP CC NN NN 1
NN NN CC NN NN 1
RB JJ NN 1
DT NNP 1
JJ NN IN VBN NNS 1
NNS VBG 1
JJ NN NN NN 1
NN NNP NNP 1
DT NN VBD 1
NN VBG NN 1
NN VBG 1
NNS NNS 1
NN JJ NN 1
NNP NNP CC NNP NNP 1
NN NN NNP NNP 1
NNP VBP 1
NN VBD NN 1
JJ NN CC NN 1
VBG NNP 1
NNP NNS IN NN 1
NNP IN JJ NNS 1

72

Table B.2: Partial list of Custom Stop Words

Term

occurs
discards
redirects
custom
outermost
lets
enum
derived
dollar
project
addresses
month
wraps
looks
consists
line
issues
indirect
impact
special
group
innermost
available
represents
produces
methods
day
examples
gives
seen

Term

constrain
wont
easier
common
natural
crash
performs
basics
sizet
consist
earlier
third
returned
underscore
mark
furthermore
year
chapter
wont
produced
executing
whatever
bar
sample
rectangle
causes
apply
actions
yields
nine

Term

truth
ie
termination
making
everyone
safe
continues
fish
library
anywhere
deduce
adjacent
nonstandard
year
duration
decrementing
declarator
nonstandard
therefore
handler
precede
subsequent
ensures
date
digit
handler
posix
use
month
extract

Term

foo
thus
either
body
built
slight
doubt
machine
equals
prepend
enclose
step
containing
exist
method
depends
purpose
whether
assumptions
provide
bar
starts
likewise
counter
go
check
error
subscript
added
plus

Term

appendix
uses
support
modifies
token
maintainer
dereferencing
structures
referred
whatever
recommend
squares
invalid
done
right
difference
similar
output
prefix
nowadays
braces
serves
concatenated
silent
source
addition
evaluate
lets
mark
handles

73

Table B.3: Frequency of Unedited sequences of POS Tags in the C Standards Index

POS Tag Frequency
NN NN 19
NNS 17
NNP 16
NN NNS 15
NNS comma NN 15
VBG NNS 12
VBG NN NNS 11
NNS comma JJ 10
NNS comma VBG 10
NN 9
JJ NNS 8
NN NNS comma VBG 7
IN NN 5
NNS NNS comma NN 5
NN comma NN 5
VBG NN NNS IN NN 4
NN NN NN NN 4
NN NNS comma VBG IN NN 4
VBD JJR NN 3
NN comma VBD NN 3
NN VBD 3
NNS NNS comma JJ NN 3
NNS comma JJ NN 3
NNS IN NNS 3
NNS comma NNS IN 3
NN NN NNS 3
NN JJ 3
VBD NNS 2
NN IN NNS 2
NNS comma VBD 2
NN comma JJ 2
NNS VBP NNS 2
NNS comma VBP IN 2
NN NNS NN 2
space 2
VBG NNS comma VBG 2
VBD NN NNS NN 2
NNS comma VBG NN 2
JJ NN 2
JJ NN NNS 2
JJ 2
NNS TO NNS 2

POS Tag Frequency
NNS comma NNS TO 2
DT 1
NNS comma NNS IN NNS 1
VBD JJ NN NNS NN 1
NNS NNS comma JJ 1
RB VBZ 1
NNS comma NN NN 1
VBD PRP$ 1
NNS NNS comma VBP 1
RB JJ NNS NN 1
NN VBG 1
NNS IN JJ NNS 1
JJ NNS NN 1
JJ NNS NNS 1
VBD RB JJ NNS NN 1
NN NNP NNP 1
NNS NNS comma VBG NN 1
PRP 1
NNS NNS 1
NN NNS comma NN NN 1
NN JJ NNS 1
VBD VBN NNS NN 1
JJ NN NN NN 1
VBG 1
NN VBZ comma IN NNS 1
RB RB JJ NNS NN 1
NNS VBG NNS 1
NNS comma VBP 1
NN NN IN JJ 1
VBP NN 1
LS 1
JJ NN NN 1
IN NNS NN 1
NN NNS comma VBG IN 1
JJ NN NNS NN 1
JJ NNS comma VBP 1
VBD RB RB JJ NNS NN 1
NN NN NNS comma JJ NN 1
IN NN NN 1
RB VBP NNS NN 1
IN NNS 1
JJ NN NN NNS 1

74

Table B.4: NLTK Stop Words List

Term

i
me
my
myself
we
our
ours
ourselves
you
your
yours
yourself
yourselves
he
him
his
himself
she
her
hers
herself
it
its
itself
they
weren

Term

them
their
theirs
themselves
what
which
who
whom
this
that
these
those
am
is
are
was
were
be
been
being
have
has
had
having
do
won

Term

does
did
doing
a
an
the
and
but
if
or
because
as
until
while
of
at
by
for
with
about
against
between
into
through
during
wouldn

Term

before
after
above
below
to
from
up
down
in
out
on
off
over
under
again
further
then
once
here
there
when
where
why
how
all
any

Term

both
each
few
more
most
other
some
such
no
nor
not
only
own
same
so
than
too
very
s
t
can
will
just
don
should
now

Term

d
ll
m
o
re
ve
y
ain
aren
couldn
didn
doesn
hadn
hasn
haven
isn
ma
mightn
mustn
needn
shan
shouldn
wasn

Appendix C

Algorithms

A list of algorithms that were used is found on the next page.

75

List of Algorithms

1 Algorithm for Data pre-processing . 15

2 Algorithm for Construction of Least Frequency words Stop Words List 22

3 Algorithm for Keyword selection . 24

76

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Research Objective
	Contributions
	Outline of the Thesis

	Background and Related Work
	Background
	Related Work

	Methodology
	Methodology Overview
	Data Pre-processing
	POS Tagging
	Index Terms Flipping

	Candidate Detection
	Stop Words and Common Words
	Keyword Selection
	Additional Data Sets
	System Comparison
	Methodology Summary

	Experimental Results
	Experiments Overview
	Rationale for Data Set Selection

	Implementation Tools
	Experiment set A — Data set 1
	Experiment set A Summary

	Additional Data Set
	Experiment Set B — Comparison with Data set 2
	Experiment set B Summary

	Experiment Set C — System Comparison
	Overall Experiments Summary

	Discussion and Evaluation
	Evaluation Summary

	Conclusion
	Future Work

	Bibliography
	Sample Code
	Data Sets
	Algorithms

