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Abstract

We study the problem of centralized allocation of children to public daycares, illustrated by

the case of Denmark. Our framework applies more broadly to problems of dynamic matching

in which there is entry and exit of agents over time; for example, it can be used to study the

school choice problem once student mobility is taken into account. First, we show that the

Gale-Shapley deferred acceptance mechanism adapted to the dynamic problem always yields

a stable matching. However, we show that there does not exist any mechanism that is both

stable and strategy-proof. We also show that the well-known Top Trading Cycles mechanism is

neither Pareto efficient nor strategy-proof. Finally, a mechanism in which parents sequentially

choose menus of schools is both strategy-proof and Pareto efficient.

JEL classification: C78, D61, D78, I20.
KEYWORDS: dynamic assignment, matching, stability, efficiency.
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1 Introduction

The decision of which daycare center to enroll a child is an important and difficult one, justified
by mounting evidence that early childhood care facilities are crucial to the development of critical
noncognitive skills.1 The decision is further complicated by the heterogeneity of these facilities
and the fact that there are important risks associated with opting out of a daycare facility in favor
of home care.2

Many public daycare systems are centrally administered, particularly in European countries.
A centralized public daycare system attempts to balance parents’ reported preferences for the dif-
ferent daycare centers with the priorities of these daycare centers regarding the various children.
These priorities are set by local governments and vary across municipalities. The assignment sys-
tem currently in place in Denmark, which is our main example, is such that the oldest unassigned
child is given high priority in a daycare where no current capacity restriction exists– a concept
called “child care guarantee.” Another important feature of the Danish system, which is common
to other dynamic matching problems, is that children currently allocated to a daycare center have
the highest priority in those places in the subsequent period. That is, children currently allocated
to a daycare center will not be displaced from that center involuntarily.

In the current paper, we study this problem of centralized assignment of children to daycare
centers. Our problem can be seen as a dynamic version of the well-known school choice problem,
in which children of a specific cohort are assigned to different public schools.3 Specifically, our
problem extends the school choice problem in two fundamental ways. First, we consider a dynamic
structure: in our model, each child may attend daycare for two periods, but not necessarily in the
same facility. Moreover, in any given period, children of different ages may be allocated to the
same daycare. In Denmark, for example, children attending the same daycare range in age from
six months to three years. Every month, a new group of young children start daycare while those
children who have turned three leave for the next level of preschool. The second defining feature of
our problem is that the schools’ priorities are history-dependent: a school gives the highest priority
to the children allocated to it in the previous period.

In practice, the school choice itself also has dynamic features and it has been documented that
there is considerable mobility of children across schools. To illustrate, consider the example of
New York City primary schools, where Schwartz et al. (2009) report that students move consid-
erably both within year and across years. In their sample, only 3.4% of 8th graders had attended
the same school in the entire period from 1996-97 to 2000-01, while 22.75% of the students had

1For example, see Chetty et al. (2011) and Heckman (2008).
2See, for example, Goldin (1994).
3See Abdulkadiroğlu and Sönmez (2003) for an important paper in the area, and also Pathak (2011) for a recent

survey.
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had at least one “moving year” (a year in which the student switched schools within the year).
This is consistent with a study conducted in 2010 by the U.S. General Accounting Office, where
it is reported that “nearly all students change schools at some point before reaching high school.”4

Hence, while it is true that students from different cohorts do not compete for the same spots, there
is considerable entry and exit of students in each school. Many of the students who start, say 9th
grade, this year move out of their school district/city and many new students move into. Theoret-
ically, one could allocate the new students and the old students who want to change their school
through a centralized mechanism before these students start 10th grade. Thus, we believe that our
results could have implications on the school choice problem if mobility is taken into account.

One of the main objectives in the school choice literature has been to identify mechanisms that
implement allocations that satisfy one or more well-defined positive properties, such as stability
and Pareto efficiency. A stable mechanism is one that leads to an allocation in which no child
would (i) prefer a different school to her current one, or rather, prefer to be left unassigned, and
(ii) find a student in that preferred school with a lower priority than hers–or an empty seat in that
school. Pareto efficiency, on the other hand, is a welfare criterion which considers only the well-
being of the students. Abdulkadiroğlu and Sönmez (2003) discuss two important mechanisms that
could be used in this allocation problem: the Gale-Shapley Deferred Acceptance (DA) mechanism,
which is both stable and strategy-proof; and the Top-Trading Cycles (TTC) mechanism, which is
both efficient and strategy-proof. Here, we extend the concepts of stability and Pareto efficiency
to our problem and study whether these concepts are compatible with one another in a dynamic
environment.

In our model, we show that a stable matching always exists. To find such matching, one can
treat our problem as a sequence of separate school choice problems and use the DA mechanism in
each period.5 We also show that this matching is not Pareto dominated by any other stable match-
ing, and that if there exists an efficient and stable matching, it must be the DA one. Importantly,
though, the DA mechanism is not strategy-proof: parents might have incentives to misreport their
true preferences.

The manipulability of the DA in our dynamic environment raises the question of whether there
is any mechanism that is both stable and strategy-proof.6 Here we prove an impossibility result:
no mechanism is both stable and strategy-proof.

For most of the paper, we assume that priorities of schools are history-dependent in only a

4U.S. General Accounting Office (2010).
5Precisely, we use an adaptation of the DA mechanism to our dynamic setting, which we denote by DA-IP (see

section 4).
6In the school choice framework much attention has been given to stability, and the DA mechanism has since been

adopted in the New York and Boston public school systems. (See Abdulkadiroğlu et al. (2009) and Abdulkadiroğlu
et al. (2005) for a discussion of the practical considerations in the student assignment mechanisms in these two cities).
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rather weak sense: the priority ranking of each school will change only for children previously
allocated to it, while for all other children, the priorities will remain the same. We call this con-
dition independence of previous assignment. We also consider a restriction on preferences, which
we call rankability, and a stronger version of it, denoted strong rankability. The rankability re-
striction implies that preferences over schools are stable and consistent over time.7 In this way, we
make our model as close as possible to the static problem. Nevertheless even with only this weak
link between periods, our problem is substantially different from the static case, in which the DA
mechanism is strategy-proof.

Next we turn the focus to studying Pareto efficiency and strategy-proofness. Unlike the case of
stability, extending the concept of efficiency in the dynamic assignment problem is straightforward–
at least conceptually. However, although in static settings it is impossible to find a Pareto improving
matching in which a child trades her placement for a worse one, in a dynamic setting this may be
possible as long as the child obtains a better placement in the other period. Hence, as long as there
are two or more “willing” participants in such a trade, there is room for Pareto improvement even
if none exists by changing only one-period matchings. This possibility of Pareto improving in-
tertemporal trade is the main reason behind our result that the TTC mechanism is not efficient.We
also show that TTC is not strategy-proof, and that even a variation of this mechanism, which we
call “TTC by cohort,” is not strategy-proof. The reason why strategy-proofness is more difficult to
achieve in the dynamic environment that we consider here is that there is an additional potential
benefit for a player to gain from misreporting her true preferences: the player can affect the priority
rankings of schools in the subsequent period.

Finally, the serial dictatorship mechanism adapted to our environment is shown to be strategy-
proof and efficient.8 In this mechanism, children are exogenously ordered by the planner and they
choose a menu of schools over time according to their position in the queue. This means that in a
dynamic environment like ours, there are mechanisms that are both efficient and strategy-proof.

We should highlight the fact that although our problem is motivated by the assignment of chil-
dren to daycare centers, it has many other potential applications. The school choice problem itself
has dynamic features, as mentioned previously. Other interesting applications are the assignment
of teachers to public schools, diplomats to different embassies, or high-level bureaucrats to dif-

7Our strong rankability assumption does not rule out preferences with switching costs, i.e., costs for switching
schools across periods. However, if these costs are prohibitively large, any student would rather stay in whichever
school she is allocated to in the first period, and would not consider moving to other schools. The problem would be
very close to the static school choice problem.

8Our problem is not part of the literature on multi-unit allocation. Pápai (2001) and Ehlers and Klaus (2003), for
example, have obtained negative results concerning strategy-proofness and efficiency; however, the problem here is
substantially different and their results do not apply to our setting. Many of the results in that literature depend on the
feature that the agents’ preferences over bundles of objects vary in a permissive way. In contrast, in our problem the
preferences of the agents are restrictive because the children’s preferences are rankable.
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ferent regions.9 Another problem related to ours is the market for new physicians in the United
Kingdom, where each doctor is allocated to two six-month positions, a medical post and a surgical
post.10

The theory of market design in dynamic settings is very recent.11,12 Kurino (2013) studies the
centralized housing allocation problem with overlapping generations of agents. The school choice
problem differs from the housing allocation problem in the sense that the objects have priorities in
the former but not in the latter. Hence, stability – a central issue in our paper– is not considered
in Kurino (2013). The second part of our paper, where we consider the compatibility of efficiency
and strategy-proofness, is related to Kurino’s but with the important difference that the domain of
possible mechanisms in our study contains the priorities of the schools.13

Bloch and Cantala (2011) study a dynamic matching problem focusing on the long-run prop-
erties of different assignment rules. Pereyra (2013) studies the allocation of teachers to public
schools, restricting his attention to rankable preferences and seniority-based priorities and shows
that the DA is strategy-proof in his setting. In this sense, the first part of our paper, where we con-
sider the compatibility of stability and strategy-proofness, and Pereyra (2013) complement each
other. In the second part of our paper, we investigate efficiency and strategy-proofness, which
is not studied by Pereyra. Dur (2011) considers a dynamic school choice problem in which the
incentives for placing siblings are taken into account. He shows that there is no fair (stable) and
strategy-proof mechanism.

Abdulkadiroğlu and Leortscher (2007) study a dynamic house allocation problem in which the
set of agents is common in all periods. With a focus on efficiency, they propose a random mecha-
nism that is superior in terms of efficiency to the random serial dictatorship. Finally, Ünver (2010)
extends the literature on centralized matching for kidney exchanges to a dynamic environment in
which the pool of agents evolves over time.

The structure of this paper is as follows. In Section 2 we present a brief description of the
Danish Daycare system. In Section 3, we describe the model in detail. In Section 4, we study stable
matchings and their properties. In Section 5, we prove an impossibility result relating stability and

9See Bloch and Cantala (2011).
10See Roth (1991) and Irving (1998).
11Abdulkadiroğlu and Sönmez (1999) and Guillen and Kesten (2012) study the house allocation problem with

existing tenants. In their models, the existing tenants have the highest priority for the house (room) they occupied in
the preceding period. In this aspect these papers are related to ours, but their models are static while ours is dynamic.

12Blum et al. (1997) study two-sided matching in labor markets in which there are vacancy openings over time.
In their model, however, preferences are essentially static and their focus is on the decentralized (re)-equilibration of
stable matchings.

13Thus, the version of TTC used in our paper is Abdulkadiroğlu and Sönmez (2003)’s TTC mechanism for the
school choice problem, while Kurino (2013) focuses on Abdulkadiroğlu and Sönmez (1999)’s TTC mechanism for
the housing market problem with existing tenants. Because of this, Kurino (2013) obtains that the constant TTC
mechanism favoring existing tenants is both strategy-proof and efficient when the agents’ preferences are rankable.
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strategy-proofness. In Section 6, we discuss a strategy-proof and efficient mechanism. In Section
7, we provide a brief conclusion. Longer proofs are collected in the Appendix.

2 The Danish Daycare System

In Denmark, children are allocated at the different daycare centers by the local municipalities.
Below, we highlight the essential features of the allocation rules at Aarhus, which are also common
to most municipalities in Denmark, including Copenhagen.

Children can start a daycare at the age of 6 months and when she turns 3 years she must exit,
moving to the next level of pre-schooling. The assignment takes place once a month and each
parent reports their top 3 choices among all daycare centers. They also report whether they want
the option for what is called as a “guaranteed spot,” in case the child is currently unassigned.14 The
parents can enroll their child any time after birth. Even if a child has a spot in some daycare she
can participate in the assignment algorithm without having to give up her spot, i.e., she may sign
up for two different daycare centers and will be placed in a waiting list for these two facilities. It
is important to highlight that children currently allocated to a daycare, will not be displaced from
that daycare involuntarily.

For specificity, below we present the “placement assignment rules,” as stated by the Aarhus
municipality.15 Children are assigned according to the following order.

1. Children with special needs, e.g., children with disabilities.

2. Children with siblings in the same daycare.

3. Immigrant children who after expert evaluations are considered in need of special assistance
in daycare.

4. The oldest child who is listed for a guaranteed place in his or her own district i.e., not at a
particular daycare.

14“You can choose a guaranteed place and also a desired place with one or more specific institutions. These requests
will be taken into account when we find a place for you. However, we cannot guarantee your desired institution. If
your desired institutions does not have an opening, you will be offered a “guaranteed place. A guaranteed place is a
place within the district you live in, or at a distance from your home which involves no more than half an hour of extra
transport each way to and from work. The municipal placement guarantee is satisfied when you have been offered a
place. To be assigned a guaranteed seat at a desired time, the application must be received by the placement guarantee
office no later than 3 months before the place is desired.” (Translated from https://www.borger.dk)

15For the original document see: https://www.borger.dk/
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5. The oldest child who is listed for a guaranteed place in the local warranty district. Aarhus
Municipality is divided into 8 major warranty districts. A warranty district consists of one
to several districts.

6. The oldest child listed for a guaranteed place from a different warranty district.

7. The oldest child from the waiting list of a particular daycare. This offer is also made to a
child already in a daycare.

In Section 3.4, after we have adapted the concepts of efficiency and stability to our setting, we
show that this assignment mechanism is manipulable, fails efficiency and stability.

3 Model

In Section 3.1 we build our model. Specifically, we define matching for our setting, and we discuss
the preference relation of the children over the different profiles of daycare centers and the priority
orderings of the daycare centers over the set of children. In Section 3.2 we define the concepts of
Pareto efficiency and stability. In Section 3.3 we define a mechanism and its properties, and, in
particular, we define strategy-proofness.

3.1 Setup

Time is discrete and t = 1, · · · ,∞. There are a finite number of infinitely lived schools. Let S =

{s1, · · · ,sm} be the set of schools. Each school s ∈ S has a maximal capacity rs which we assume
is constant.16 Children can attend school when they are 1 and 2 years old. School attendance is not
mandatory. Let h stand for the option of staying home. For technical convenience, we treat h as a
school with unbounded capacity. Let S̄ = S∪{h} and r = (rs)s∈S̄. In each period t ≥ 1, a new set of
1-year old children It (which is possibly empty) arrives. We use the notation I0 to denote the set of
two year old children in period 1. Consequently, at any period t ≥ 1 the set of school-age children
is It−1∪ It . As time passes the set of school-age children evolves in the “overlapping generations”
(OLG) fashion. The set of all children is I = ∪t=0,··· ,∞It .

Matching

A period t matching is a correspondence indicating which school-age child in period t attends
which school, and a matching is a collection of all period t matchings. First, we define the period
0 matching, µ0, as a correspondence µ0 : I0∪ S̄→ I0∪ S̄ satisfying the following properties: (i) For

16One can relax this assumption to allow the possibility that the schools’ capacities increase over time.
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all i ∈ I0, µ0(i) ⊂ S̄ and |µ0(i)| = 1; (ii) For all s ∈ S̄, |µ0(s)| ≤ rs and µ0(s) ⊂ I0; and (iii) For all
i ∈ I0, i ∈ µ0(s) iff {s}= µ0(i).

Definition 1 (Matching). A period t matching µt (where t ≥ 1) is a correspondence

µt : It−1∪ It ∪ S̄→ It−1∪ It ∪ S̄

such that

1. For all i ∈ It−1∪ It , µt(i)⊂ S̄ and |µt(i)|= 1

2. For all s ∈ S̄, |µt(s)| ≤ rs and µt(s)⊂ It−1∪ It

3. For all i ∈ It−1∪ It and all s ∈ S̄, i ∈ µt(s) iff {s}= µt(i).

A matching µ is a collection of period matchings: µ = (µ0,µ1, · · · ,µt , · · ·). We use the notation

µ(i) to denote (µt(i),µt+1(i)) where t is the period in which i is one year old.

Requirement (1) ensures that each child is placed at most at one school, while requirement (2)
ensures that each school does not house more children than its capacity. Due to requirement (3), a
child is matched to a school if and only if the school is matched to the child.

Children’s Preferences

Each child is characterized by a strict preference relation �i over S̄2. The notation (s,s′) de-
notes the allocation in which a child is placed at school s at age 1 and at school s′ at age 2. We
write (s,s′)�i (s̄, s̄′) if either (s,s′)�i (s̄, s̄′) or (s,s′) = (s̄, s̄′). Throughout the paper, we maintain
the following assumption on preferences:

Assumption 1 (Rankability). Each child i’s preferences satisfy the following assumption which we

call rankability: if (s,s)�i (s′,s′) for some s,s′ ∈ S̄, then (s,s′′)�i (s′,s′′) and (s′′,s)�i (s′′,s′) for

any s′′ 6= s′.

A direct consequence of the rankability assumption is the following: whenever (s,s)�i (s′,s′)

for some s 6= s′ ∈ S̄, then it must be that (s,s)�i (s,s′) and (s,s)�i (s′,s). In addition, if (s′,s′)�i

(s′′,s′′), then (s,s) �i (s′,s′′). However, it is possible that (s′,s′) �i (s,s′) (and (s′,s′) �i (s′,s)).
Here also note that for each child there must exist some school such that attending this school for
two consecutive periods is the most preferred option for the child.

The reasonings behind the rankability assumption is that i) each parent has rankings of the
schools (not the pairs of schools) that is stable over time and that derive her preferences over the
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pairs of schools, and ii) there is a constant switching cost of schools that parents care about. Based
on these reasonings, we think that if a parent ranks school s ahead of s′, then she should prefer
(s,s′′) to (s′,s′′) for all s′′ 6= s′. However, a parent could prefer (s′,s′) to (s,s) in order to save
switching costs. These properties are captured in Assumption 1.

Below we present a stronger version of the rankability assumption.

Definition 2 (Strong Rankability). Child i’s preferences satisfy strong rankability if, for any s,s′ ∈ S̄

(s,s)�i (s′,s′)⇐⇒ (s,s′′)�i (s′,s′′) and (s′′,s)�i (s′′,s′) for all s′′ ∈ S̄.

Under strongly rankable preferences a child always prefers attending two (weakly) superior
schools to attending an inferior school for two periods. Here we note that for all of our positive
results we always assume that the preferences are rankable. On the other hand, for our negative
results we assume that the preferences are strongly rankable because doing so strengthens these
negative results.17

Schools’ Priorities

At any period t ≥ 1, each school ranks all the school-age children by priority. Priorities do
not represent school preferences but rather, they are imposed by local municipality. For example,
children with special needs might be given higher priority by the schools tailored to meet those
needs, moreover, in the existing assignment mechanism in Denmark, all schools give priority to
their currently enrolled children.

Henceforth, we assume that each institution gives the highest priority to its currently enrolled
children, which is a feature of the assignment mechanism currently in place in Denmark. A ra-
tionale behind this priority is that no school forces its current enrollee out in order to free a spot
for some other child. Because of this assumption, the priority ranking of each school is history
dependent, i.e., a school’s priority ranking depends on its attendees of the previous period.

One can argue that even in the school choice problem, the schools’ priorities are history de-
pendent because a typical school (for example, in Boston) gives priority to children whose siblings
are in it. In other words, the matchings of the previous periods affect how the schools rank the
new applicants. However, in the school choice literature, this history dependence of the schools’
priorities is not modelled explicitly.18 This omission is justified if the older siblings make decision

17Kurino (2013) considers two types of preferences: time-separable and time-invariant. We note here that our
assumption of rankable preferences is neither weaker nor stronger than his assumption of time-separable preferences.
His time-invariability assumption is equivalent to our strong rankability assumption. Also, strong rankability is closely
related to the responsiveness assumption used in many-to-one matching settings.

18With the exception of one recent working paper (Dur, 2011) that consider the sibling priorities explicitly (and
thus, history-dependence) in the school choice problem.
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without caring about the younger ones, i.e., one sibling’s well-being is not dependent on another’s.
However, in our model, the children participate in the assignment mechanism twice and of course,
any child’s well being depends on the schools she attends in different periods. Therefore, in our
model, we have to take the history dependence of the schools’ priorities seriously.

We will denote the binary relation which generates the priority ranking of school s at period
t ≥ 1 by Bt

s(µ
t−1). That is, if at period t child i has a higher priority than child j at school s given

the period t−1 matching µt−1, then we denote iBt
s
(
µt−1) j. We will assume throughout the paper

that priorities are strict. In practice, whenever the school system outlines coarse priorities, as in
the Danish system that we described in section 2, the system often designs a tie-breaking rule, so
that, effectively priorities are indeed strict. In the Danish case, the tie-breaking rule is based on a
first-come first-served basis.

We write iDt
s
(
µt−1) j if either iBt

s
(
µt−1) j or i = j.

We assume that each school ranks the children in a lexicographical manner in which children’s
past attendance matters the most and then some criterion based on exogenous characteristics of the
child (e.g., proximity to school, medical condition, immigration status and age). Let us now state
formally the assumptions we impose on the priorities.

Assumption 2 (Priorities). For all i ∈ I and all t = 1,2, ..., each school’s priorities satisfy:

1. (Priority for currently enrolled children) If i ∈ It−1 and i ∈ µt−1(s) for some s ∈ S, then

iBt
s (µ

t−1) j for all j /∈ µt−1(s).

2. (Weak consistency of different period rankings) If iBt−1
s (µt−2) j for some i, j ∈ It−1, s ∈ S

and µ, then iBt
s
(
µt−1) j in any of the following cases:

• µt−1(i) = µt−1( j) = s

• µt−1(i) = s,h and µt−1( j) = h

• µt−1( j) 6= s,h

3. (Weak irrelevance of previous assignment) If iBt
s (µ

t−1) j for some i, j ∈ It−1, s ∈ S, and

µ with µt−1(i) 6= s,h and µt−1( j) 6= s,h, then iBt
s
(
µ̄t−1) j for any µ̄ satisfying one of the

following conditions.

• µ̄t−1(i) = µ̄t−1( j) = s

• µ̄t−1(i) = s,h and µ̄t−1( j) = h

• µ̄t−1( j) 6= s,h

10



4. (Weak irrelevance of difference in age) If iBt
s (µ

t−1) j for some i ∈ It−1, j ∈ It , s ∈ S, and µ

with µt−1(i) 6= s,h, then iBt
s
(
µ̄t−1) j for all µ̄. In addition, if jBt

s (µ
t−1)i for some i ∈ It−1,

j ∈ It , s ∈ S, and µ with µt−1(i) 6= s,h, then jBt
s
(
µ̄t−1) i for all µ̄ with µ̄t−1(i) 6= s,h.

Loosely speaking, the last three assumptions mean that the priorities of any school do not
depend on the attendees of other schools (excluding staying home). Specifically, the second one
says that if child i has higher priority than child j at school s in period t−1, then child i keeps her
advantage over child j in the following period unless child j attends school s (h) while child i does
not attend s (s or h). The third one says that at any period, school s’s relative ranking of any two
children is not affected by the fact that one child has attended school s′ 6= s and the other s′′ 6= s.
The fourth assumption says that at any period school s’s relative ranking of any two children is not
affected by the fact that one child has attended school s′ 6= s at period t−1 while the other is one
year old at period t.

Assumption 2 resembles the priorities in the Danish daycare system. For instance, in the Danish
system a child’s priority at some school can be improved from one period to the next one if (i) she
attends the school in the first period or (ii) she stays home in the first period and asks for guaranteed
spot in the next period.

Here we remark that Assumption 2 does not rule out the possibility that a school s gives priori-
ties to the children who have not attended any school over the ones who have attended some school
other than s in the previous period. This possibility is ruled out if the schools’ priorities satisfy the
Independence of Past Attendance property which we define below.

Definition 3 (Independence of Past Attendance). School s’s priorities satisfy the Independence of
Past Attendance (IPA) property if the conditions below are satisfied:

1a. (Consistency of different period rankings) If iBt−1
s (µt−2) j for some i, j ∈ It−1, s ∈ S and µ,

then iBt
s
(
µt−1) j in any of the following cases:

– µt−1(i) = µt−1( j) = s

– µt−1( j) 6= s

2a. (Irrelevance of previous assignment) If iBt
s (µ

t−1) j for some i, j ∈ It−1, s ∈ S, and µ with

µt−1(i) 6= s and µt−1( j) 6= s, then i Bt
s
(
µ̄t−1) j for any µ̄ satisfying one of the following

conditions.

– µ̄t−1(i) = µ̄t−1( j) = s

– µ̄t−1( j) 6= s
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3a. (Irrelevance of difference in age) If iBt
s (µ

t−1) j for some i ∈ It−1, j ∈ It , s ∈ S, and µ with

µt−1(i) 6= s, then iBt
s
(
µ̄t−1) j for all µ̄. In addition, if jBt

s (µ
t−1)i for some i ∈ It−1, j ∈ It ,

s ∈ S, and µ with µt−1(i) 6= s, then jBt
s
(
µ̄t−1) i for all µ̄ with µ̄t−1(i) 6= s.

In practice, IPA is often not satisfied: many schools give priority to two year old children who
have not attended any school in the previous period over one year old children and the two year
old children who have attended school in the previous period. In particular, given a concept called
“guaranteed spots,” IPA is not satisfied in the current Danish daycare assignment mechanism.

3.2 Properties of a Matching: Efficiency and Stability

We first define the concept of a market, which will be used in our other definitions.

Definition 4 (Market). A market M is M = (I, S̄,r,µ0,�,.) where µ0 is a period 0 matching, �=
(�i)i∈I is a preference profile of the children, and B= (Bs)s∈S is a priority function of the schools.

The set of markets is M .

Here, observe that the period 0 matching is included in the definition of market explicitly. Since
our model starts at period 1, the period 0 matching cannot be changed. Thus, all the matchings in
a given market M = (I, S̄,r,µ0,�,.) must have the common period 0 matching, µ0.

In this section we define the properties of a matching for a fixed market M. The matching
literature has identified Pareto efficiency and stability as the two main desirable properties. The
main goal of this subsection is to adapt these concepts to our dynamic assignment problem.

For both Pareto efficiency and stability, we start defining a weaker concepts because they will
be useful later in our analysis. First, let us define autarkic-efficiency which requires to eliminate
all one period “trades” that improve at least one child without hurting others.

Definition 5 (Autarkic Efficiency). Matching µ is autarkic efficient if for any t ≥ 1, there does not

exist period t matching µ̄t such that (µ0, · · · ,µt−1, µ̄t ,µt+1, · · ·) Pareto dominates µ.

For autarkic efficiency, one considers the possibilities to improve everyone by altering one
period matchings. However, even when this possibility does not exist, one maybe able to (weakly)
improve every agent by changing matchings of several periods. Below we present an example
in which two children from the same cohort (or generation) improve over an autarkic efficient
matching by trading their allocations.

Example 1 (Pareto Improving Trade Within Cohort). Suppose that I = {i1, i2, j1, j2} and in period

1, i1 and i2 are two years old and j1 and j2 are one year old. There are 4 schools s1,s2,s3

and s4 and each school has a capacity of 1 child. The schools’ priorities satisfy IPA and the

12



children’s preferences satisfy strong rankability. The schools’ priorities are given as follows under

the assumption that the children have not attended any school in the previous period:

i1 Bs1 i2 Bs1 j1 Bs1 j2

i2 Bs2 i1 Bs2 j2 Bs2 j1

i1 Bs3 i2 Bs3 j1 Bs3 j2

i1 Bs4 i2 Bs4 j2 Bs4 j1

Child i1’s top choice is s1 while child i2’s is s2. The other two children’s preferences satisfy the

following conditions:

(s2,s2)� j1 (s1,s1)� j1 (s4,s2)� j1 (s3,s1)� j1 (s3,s3)� j1 (s4,s4)

(s2,s2)� j2 (s1,s1)� j2 (s3,s1)� j2 (s4,s2)� j2 (s3,s3)� j2 (s4,s4)

Now consider the following matching µ: µ1(i1) = s1, µ1(i2) = s2, µ1( j1) = s3, µ1( j2) = s4, µ2( j1) =

s1, µ2( j2) = s2. Matching µ satisfies autarkic efficiency. However, observe that children j1 and j2
strictly improves over µ if they trade their matchings.

Loosely speaking, in Example 1, children j1 and j2 are assigned “extreme” allocations under
matching µ. Hence, these children j1 and j2 improve over the extreme allocations by “trading”
their allocations.

In the example above the children from the same cohort strictly improve over an autarkic-
efficient matching by trading their matchings. The example illustrates the need to strengthen the
Autarkic efficiency concept. We say a matching µ is Pareto efficient if no other matching strictly
improves at least one child without hurting the others.

Definition 6 (Pareto Efficiency). A matching µ̄ Pareto dominates µ if

µ̄(i)�i µ(i) ∀i ∈ I and µ̄( j)� j µ( j) f or some j ∈ I.

A matching µ is Pareto efficient if no matching µ̄ Pareto dominates µ.

Note here that any Pareto efficient matching is also autarkic efficient.
Now let us consider stability. Adapting the definition of stable matching in our setting is not

straightforward as the dynamic nature of our setting presents some challenges, which are absent
in the school choice problem. We propose a stability concept based on the idea of justified envy

13



freeness.19 As in the case of efficiency, we first define the concept of autarkic stability, which we
perceive as a naive version of our main stability concept. A matching is said to satisfy autarkic
stability if no child can justify her envy of another child at some period t, without considering the
effects that her alternative placement would have on the priorities of the schools. That is, if child
i improves by moving to school s from her currently matched school only at t while keeping her
past/future allocation fixed, then s must not have assigned a seat to any child who has lower priority
than i. In a way, for autarkic stability, we are analyzing the problem at fixed period t, assuming
that the matching of every other period t ′ 6= t is fixed.

Definition 7 (Autarkic Stability). A matching µ satisfies autarkic stability if at any period t ≥ 1,

there does not exist a school-child pair (s, i) such that (1) and (2) below hold at the same time

1. (a) (s,µt+1(i))�i (µt(i),µt+1(i)), or

(b) (µt−1(i),s)�i (µt−1(i),µt(i)),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Condition (1) above refers to the fact that child i would be strictly better off by switching to
some school s rather than the school specified by the matching µ. On top of that, condition (2)
implies that either there are unfilled spots at the preferred school s of child i, or the school is in full
capacity but some child j placed at this school under the matching µ has lower priority than child
i.

In the notion of autarkic stability, each child ignores that switching her school at age 1 could
lead to a different matching at the period when she is two. In this sense, justified envy is towards
the status quo matching (not against potential matchings that form as a result of some child’s school
switch). In a marriage market with externality studied in Sasaki and Toda (1996) any pair who is
contemplating to form a new match together considers the other agents’ potential responses to the
pair’s action. These potential responses could include the status quo, i.e., the ones in which the
agents who were not matched to the blocking pair in the original matching remains matched to the
same agent. In this sense, in the autarkic stability concept we consider a fixed potential response,
which is the status quo.

In the definition of autarkic stability, one considers only the one period potential deviations,
therefore there are two shortcomings in this stability notion: (1) because the children can attend
school for two periods, a child could imagine situations in which she changes her match in both
periods and (2) the schools’ priorities, which have to be considered for stability, evolve depending

19In static settings in which one side of the market has priorities but not preferences, stable matchings have been
interpreted as matchings that are free of justified envy (see Balinski and Sönmez (1999) and Abdulkadiroğlu and
Sönmez (2003)).
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on the past matchings. These shortcomings are magnified if strong rankability or IPA are not
satisfied. To illustrate this let us consider the following two examples of matchings that might
satisfy autarkic stability, but that nevertheless present a case for justified envy.

Example 2 (Justified Envy under Failure of Strong Rankability). Consider a matching that places

child i at school s′ when she is both 1 and 2 years old. However, there is another school s such that

child i improves only if she switches to school s in both periods. Observe that child i’s preferences

are not strongly rankable. Moreover, suppose that when child i is 1 year old, at school s she

has priority over another child i′ who is placed at school s at that time. In addition, suppose

that when child i is two years old, there is no child at school s with lower priority than i. With this

information, we cannot rule out the possibility that the matching satisfies autarkic stability because

child i prefers (s′,s′) to (s,s′).

However, one can argue that child i’s envy of i′ is justified: she has the right to attend school

s ahead of i′ at age 1. Then, in the following period, she will be in the highest priority group at

school s. This would give her the right to attend school s when she is 2. �

Example 3 (Justified Envy under Failure of IPA). Suppose that there are 2 schools, s and s′, with

respective capacities of 1 and 2 children. Children i and i′ are born at the same period and their

preferences satisfy the following property: (s,s) � (s′,s) � (h,s) � (s′,s′). Suppose that school s

gives higher priority to child i than i′ at period t when the children are 1 year old. However, i′ is

given higher priority over child i by school s at period t + 1 if at period t, i′ does not attend any

school while i attends s′. Observe that school s’s priorities do not satisfy IPA.

Consider a matching which places both children at school s′ in period t but places child i at

school s and child i′ at school s′ in period t +1. Implicitly, the period t spot of school s is assigned

to some other child who has higher priority at school s over both children. With this information

only, we cannot prove that the matching does not satisfy autarkic stability.

However, one can argue that child i′ envies i in a justified manner: if she stays home at period

t and attends school s at period t + 1, then she would definitely improve. In addition, she would

have had priority over i at school s in period t +1. �

To account for the issues raised in Examples 2 and 3, we strengthen the concept of autarkic sta-
bility. Mainly, for our stability concept we will consider children who take into consideration that
priorities are history-dependent, so that justified envy is not simply based on the current period’s
matching. Before formally defining the concept, we need to define the following notation.

For any i, j ∈ It , s ∈ S̄ and µ such that µ(i) 6= µ( j) and µ( j) ∈ S, let

M̄t(i, j,µ)≡
{

µ̄t : µ̄t(i) = µt( j), µ̄t( j) 6= µt( j)& µ̄t(i′) = µt(i′)∀ i′ 6= i, j ∈ It−1∪ It
}
.
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That is, the set M̄t(i, j,µ) is a set of matchings at period t such that j is replaced by i in the
allocation specified by the matching µt , j is placed at a different school and all other children’s
placements remain unchanged. One may think of this as the set of all hypothetical matchings at
time t such that i replaces j who then finds a school somewhere else — perhaps home, or some
other school — and all other children remain in the same school. Under this view, an allocation of a
particular period is considered “unfair” (or subject to justified envy) if the child takes the matching
of all other children at all other periods as given. In particular, when the child “feels” that she has
justified envy over some child in a particular school, for the following period, she imagines that
this child over whom she had priority will either stay at home, or be placed in some other school
that will not affect the next period’s matching and all other children remain matched as originally.

Definition 8 (Stability). Matching µ is stable if it satisfies autarkic stability and at any period t ≥ 1,

there does not exist a triplet (s,s′, i) such that

(s,s′)�i (µt(i),µt+1(i)),

for s 6= µt(i), s′ 6= µt+1(i) and one of the following conditions holds:

1. |µt(s)|< rs and
∣∣µt+1(s′)

∣∣< rs′,

2. |µt(s)|< rs,
∣∣µt+1(s′)

∣∣= rs′ , and, for some j′ ∈ µt+1(s′), iBt+1
s′ (µ̄t) j′ where µ̄t is the period

t matching with µ̄t(i) = s and µ̄t(i′) = µt(i′) for all i′ 6= i ∈ It−1∪ It ,

3. |µt(s)|= rs,
∣∣µt+1(s′)

∣∣< rs′ , and, for some j ∈ µt(s), iBt
s (µ

t−1) j,

4. |µt(s)| = rs,
∣∣µt+1(s′)

∣∣ = rs′ , for some j ∈ µt(s), j′ ∈ µt+1(s′) and for any µ̄t ∈ M̄(i, j,µ),

iBt
s (µ

t−1) j and iBt+1
s′ (µ̄t) j′.20

We interpret justified envy in the dynamic context as the existence of a pair of schools for which
a child prefers to its current match and such that in some “reasonable” way it would be “fair” for
her to go to the preferred schools. Specifically, a reasonable way may mean one of the following
four cases: (1) both of these schools have unassigned spots; (2) in the first period a preferred
school has an unassigned spot and in the second, the child has a higher priority over another child
allocated at a preferred school; (3) a preferred school in the second period is operating with less
than full capacity and in the first period the child is placed on a higher priority in that preferred
school than some other child already allocated there, and finally (4) in the first year the child has
a higher priority than some other child in a particular school and in the second year, the child has
a higher priority than some other child even if there had been a reallocation in the first period,

20Observe that µt( j) = s 6= h as h has an unlimited capacity. Hence, Mt(i, j,µ) is well defined.
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in which she replaced some child in year 1, as long as in this new allocation all other children
remained in the same school.

In the definition of stability each child ignores the fact that switching her school at age 1 could
change the matching at the period when she is two. In fact, the history dependence of the schools’
priorities is considered for justified envy carefully but it is always towards the status quo matching.

In static settings it is well known that the stability notion based on the idea of blocking is
equivalent to the one based on the idea of elimination of justified envy. However, this is not true in
our setting because the schools’ priorities are history-dependent in our setting. If one considered
a notion of stability based on the idea of blocking groups, it would have been necessary to define
“preferences” for schools. Then, due to the history-dependence of the schools’ priorities, a school
could “prefer” a matching in which it matches to the same child for two periods to another matching
in which the child is replaced with another in one period only. In such cases, the stability notions
based on the idea of blocking may not be equivalent to ours, which we illustrate through the
example below.

Consider a market M and a matching in this market in which school s with a capacity of one
child is matched to child i in periods 1 and 2. Suppose that there is a two-year-old child j in period
1 who improves if she attends s at period 1. In addition, let school s give a higher priority to j

than to i at period 1. According to our definition of stability, child j has a justified envy; thus, the
matching above is not stable. However, this matching could be stable according to the notions of
stability based upon the idea of blocking pairs. For instance, s’s preferences can be such that it
prefers the original matching to the matching in which it matches with j in period 1 and with i in
period 2, due to the history-dependence of its priorities. If this is the case, school s will not be a
part of a coalition that blocks the original matching.21

Stability is a refinement of autarkic stability and we believe that it is a natural concept that
captures the meaning of justified envy in our setting. We must remark that the definition of stability
is stronger than what Examples 2 and 3 call for. In other words, one can slightly weaken Definition
8 so that a matching is stable if it satisfies autarkic stability and is free of justified envy, as discussed
in Examples 2 and 3. However, this does not change any of the results in the next section. Given
this, weakening the definition of stability is not beneficial from a technical perspective.

Examples 2 and 3 show that our stability concept is not equivalent to the autarkic stability
notion if either strong rankability or IPA are not satisfied. But what if both of them are satisfied?
In this case, it turns out that the two concepts of stability are equivalent. Since this is a lengthy
result, we refer the interested readers to Appendix A.

21Thus, our stability notion is not equivalent to Kurino (2009)’s notion of dynamic pairwise-stability. There are also
other notions of stability in two sided dynamic marriage models, such as Kurino (2009)’s dynamic pairwise-stability
or Damiano and Lam (2005)’s self-sustaining stability. In these notions agents are farsighted, which is not the case for
our notions of stability.
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3.3 Mechanism and Its Properties

A mechanism ϕ is a systematic process that assigns a matching for each market. Here we con-
sider direct mechanisms i.e., each child reports her full preferences and based on these reports the
mechanism returns a matching. In each market, no mechanism modifies the period 0 matching cor-
responding to this market. In other words, a mechanism returns period matchings in periods t ≥ 1
for each market. Let ϕi(M) be the pair of schools to which child i is matched under mechanism
ϕ. We will focus mainly on the strategy-proof mechanisms: i.e., the ones in which reporting a
true preference is a weakly dominant strategy for each agent in its associated preference revelation
game.

Definition 9 (Strategy-Proofness). A mechanism ϕ is strategy-proof if the following condition is

satisfied for all M =
(
I, S̄,µ0,�,r,B

)
∈M , i ∈ I, and �′i

ϕi
(
I, S̄,µ0,�,r,B

)
�i ϕi

(
I, S̄,µ0,�′i,�−i,r,B

)
where �−i is the preferences of the players except i.

The mechanisms we study in this paper collect the preference reports of one year old children in
each period t ≥ 1 and they produce a period matching for period t based on the reports accumulated
in periods t ′ ≤ t. For such a mechanism, a child’s matching in the period when she is two depends
on the reports of the children who are born in that period. This implies that the child must worry
about the actions of all the children born in the future periods. In this sense, it is very difficult for
children to choose their optimal strategies. For this reason, the class of strategy-proof mechanisms
is very important in our setting for practical reasons.

One may worry that reporting preference profiles over pairs of schools is a big burden on the
children. However, we will later define the notion of isolated preferences which ranks the schools
(not the pairs of schools) depending on the past matchings. Then all the mechanisms we consider
in this paper can be adjusted so that each child reports her isolated preferences in each period.

Definition 10 (Stability and Efficiency). A mechanism ϕ is efficient (stable), if it yields an efficient

(stable) matching in each market M ∈M .

3.4 Danish Mechanism Revisited

In this subsection, we revisit the Danish mechanism. For specificity, we focus on the Aarhus mech-
anism presented in Section 2 and show that the mechanism does not satisfy any of the desirable
properties discussed in the previous subsection.
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Example 4 (Aarhus Mechanism). Suppose there are 2 schools, {s1,s2} and each school has a

capacity of one child. In each period, 1 child is born. Their preferences satisfy the following

property: (s1,s1) � (s2,s1) � (h,s1) � (s2,s2). Denote the child born in period t by it . If all

children report truthfully, their allocation in the Aarhus mechanism will be µ(i1)= (s1,s1) ; µ(i2)=

(s2,s2) ;µ(i3) = (s1,s1) ;...µ(ik) = (s1,s1);and µ(ik+1) = (s2,s2), for k odd.22

Consider the following strategy: each child participates in the Aarhus mechanism when she

is 2. Each child also participates in the Aarhus mechanism when she is one if and only if the

child from the previous generation attended school s2 in the previous period. Whenever a child

participates her reported preferences rank the schools as follows: s1,h,s2.

The resulting matching from the strategy described above is that (h,s1) for each child. It is

easy to see that this strategy profile is an (subgame perfect) equilibrium: no child wants to deviate

because she cannot attend school s1 when she is 1. If she attends school s2 when she is 1, then

she cannot attend s1 when she is 2 because she will lose her priority over the younger child in that

period.

Clearly, the Aarhus mechanism is not efficient as each child matching with (s2,s1) Pareto

dominates (h,s1). Furthermore, in each period, the younger child can attend school s2 as it has

an unfilled spot. Consequently, the Aarhus allocation mechanism is not weakly stable. Finally,

in the Aarhus mechanism, each child reports that h is preferred to s2. Thus, the mechanism fails

strategy-proofness too.

4 Stable Matchings

Now we turn our attention to the question of whether stable matchings exist. We first show that
if the schools’ priority rankings do not satisfy IPA, then the existence of a stable matching is not
guaranteed. Later, we show that IPA is a sufficient condition for the existence of stable matchings.

Example 5. Consider the following market in which IPA is violated. There are 2 schools, s and

s′ with respective capacities of 1 and 3. In each period, there are two identical one-year old

children. Their preferences are strongly rankable and satisfy the following property: (s,s) �
(h,s)� (s′,s′)� (h,h).

Each period, the schools rank the children in which the highest priority groups are: (1) the

previous period’s attendees (2) two year old children who have not attended any school in the

previous period. (Note that condition (2) violates IPA).

Now we show that stable matchings do not exist in this example. By contradiction, suppose

that µ is a stable matching.
22In any given period t, if child i ∈ It−1 is allocated to s2 and child j ∈ It asks for a guaranteed place (see section

2), then, when a spot opens at school s1 in period t, j will have a higher priority at s1 than child i.
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1. Suppose there exist i and t such that µt(i) = h. Then because there are 4 school age children

and 4 spots at the two schools, at least one unassigned spot must exist at period t. Let s̄ ∈
{s,s′} be a school with an unassigned at period t. If i ∈ It , then (s̄,µt+1(i))�i (h,µt+1(i)) =

µ(i) due to strong rankability. This means that µ is not stable, leading to a contradiction. If

i ∈ It−1, then we reach a contradiction in a similar fashion.

2. Suppose for some i and t, (µt(i),µt+1(i)) = (s,s′). Clearly, i has the highest priority at school

s in period t +1. In addition, as (s,s)�i (s,s′) by strong rankability, child i can be improved

in a justified manner. This is a contradiction.

3. Suppose for i ∈ It , µt+1(i) = s. Then one of the following happens: (1) µt+2(s) = j for some

j ∈ It+1 or (2) µt+2(s) 6= j for all j ∈ It+1. In the former case, the matching of j is (s′,s);

otherwise, we are back to case 1. Consequently, the matching of j̄ 6= j ∈ It+1 is (s′,s′). If j̄

stays home at t +1, at t +2 she has priority over any one-year old or j (who attended s′ at

t +1). In addition, j̄ prefers (h,s) to (s′,s′). Hence, j̄ can be improved in a justified manner.

In case (2), either we are back to case 1 or both children born at It+1 match with (s′,s′). At

t+2 both of these children have priority over any one year old at school s. In addition, (s′,s)

is preferred to (s′,s′). Hence, both children child can be improved in a justified manner.

In example 5 the chldren’s preferences are strongly rankable preferences. However, one can
construct a similar example in which no stable matching exists and the children’s preferences are

not strongly rankable. Hence, we conclude that the existence of stable matchings is not guaranteed
without IPA regardless of whether strong rankability is satisfied or not. But with IPA, is the exis-
tence guaranteed? The answer to this question is positive, but first let us introduce the algorithm
used for the existence result.

The Gale-Shapley Deferred Acceptance Mechanism and Its Properties

The Gale and Shapley deferred acceptance algorithm (DA algorithm) was originally designed
to deal with static two-sided matching problems. To run this algorithm at a certain period t, one
needs to know the schools’ priorities over all school-age children as well as the children’s prefer-
ences over schools. In our setting, the schools’ priorities are well defined given the previous pe-
riod’s matching. However, the children’s preferences are defined over the pairs of schools. Hence,
we propose a version of the DA algorithm, in which we use “one period preferences” for each child
at a given period, based on the past matchings and the original preferences of the children over the
pairs of schools (we do not want to derive one period preferences based on the future matchings as
the current matchings affect next period’s priority rankings of the schools).

For now, let us assume that at period t ≥ 1, we have derived the one period preference relation
Pi(µt−1) for each i ∈ It−1 ∪ It depending on µt−1 matchings. Let P (µt−1) =

{
Pi(µt−1)

}
i∈It−1∪It

.
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Thus, sPi(µt−1)s′ means that at time t, player i prefers school s to s′ given the period t−1 matching
µt−1. Now we define stability in a static context, which we will use in some of our proofs.

Definition 11 (Static Stability). Period t matching µt is statically stable under preferences P (µt−1)

and µt−1, if there exists no school-child pair (s, i) such that

1. sPi(µt−1)µt(i),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s)

Now we will define the one-period preferences, called isolated preferences, that will be used
in the algorithms we consider in the paper. We construct the concept of isolated preferences with
the purpose of having a meaningful one-period preference ranking of the children. It is perhaps
not controversial how a two year old child who was matched to some school in the previous period
would rank the schools. Specifically, if child i was matched to school s in the previous period, then
she ranks school s′ ahead of s′′ only if (s,s′)�i (s,s′′). The answer to the question of how one year
old children rank the schools is not clear. In our opinion, a one year old child i would rank school
s ahead of school s′ if (s,s) �i (s′,s′). Indeed, recall that if (s,s) �i (s′,s′) then (s,s′′) �i (s′,s′′)

for all s′′ 6= s′. Therefore, as long as a mechanism does not match i with s and s′ when she is one
and two, respectively, it seems like one year old child i should rank s ahead of s′ in this situation.
Below we define the isolated preferences formally.

Definition 12 (Isolated Preference Relation). For given µt−1,

1. the isolated preference relation for i ∈ It is the preference relation �1
i such that s′ �1

i s′′ if

and only if (s′,s′)�i (s′′,s′′) for any s′ 6= s′′ ∈ S̄,

2. the isolated preference relation for i ∈ It−1 is the preference relation �2
i (µt−1) depending

on previous period’s matching and such that s′ �2
i (µt−1)s′′ if and only if (µt−1(i),s′) �i

(µt−1(i),s′′) for any s′ 6= s′′ ∈ S̄.

Here, we remark that for any child whose preferences satisfy strong rankability, the isolated
preferences are independent of the previous period’s matching. Furthermore, the isolated prefer-
ences for one year old child is identical to the ones for the two year old self of the same child.

We stress that in a world in which preferences do not satisfy rankability, the concept of isolated
preferences is not useful: it is not plausible to assume that one year old-children rank the schools
according to her isolated preferences if there are complementarities between some schools. Fur-
thermore, in such cases it can be shown that a stable matching might not exist.23 Thus, our as-
sumption that the preferences are rankable is key for our results.

23Proof upon request.
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Now we will state the formal definition of the Gale and Shapley deferred acceptance algorithm
(henceforth, we will refer to it as the DA-IP algorithm). The algorithm is the same in each period,
and it only uses the matching of the preceding period. Recall that the matching of period t = 0
is fixed, and will not be altered by the algorithm. In any period t ≥ 1, assume that the previous
period’s matching is given (if t 6= 0, then the previous period’s matching was obtained by the DA-IP
algorithm). At period t, the schools assign their spots to the all school-age children in finite rounds
as follows:

Round 1: Each child proposes to her first choice according to her isolated preferences. Each school
tentatively assigns its spots to the proposers according to its priority ranking. If the number of
proposers to school s is greater than the number of available spots rs, then the remaining proposers
are rejected.

In general, at:
Round k: Each child who was rejected in the previous round proposes to her next choice according
to her isolated preferences. Each school considers the pool of children who it had been holding
plus the current proposers. Then it tentatively assigns its spots to this pool of children according
to its priority ranking. The remaining proposers are rejected.

The algorithm terminates when no proposal is rejected and each child is assigned her final tentative
assignment.

Given that the children’s preferences as well as schools’ priority rankings are strict, it is easy
to see that the DA-IP algorithm yields a unique matching. We refer to this matching as the DA-IP
matching and use the notation µDA for it.

We denote by deferred acceptance with isolated preferences mechanism (DA-IP) the revelation
mechanism which maps each market M to the matching produced by the DA algorithm for market
M, using isolated preferences.

With the next result we show that, when assuming IPA, stability is equivalent to static stability
under isolated preferences.

Lemma 1. If µ is stable then for all t ≥ 1, µt is statically stable under isolated preferences and

µt−1. Conversely, if for all t ≥ 1, µt is statically stable under isolated preferences and µt−1, then

µ = (µ0, · · · ,µt , · · ·) satisfies:

1. autarkic stability;

2. stability if each school’s priorities satisfy IPA.

Proof. See Appendix C.
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Lemma 1 implies that to find a stable matching, it suffices to find a stable matching under
isolated preferences in each period, sequentially starting from period 1. In other words, for the
purpose of finding a stable matching, one can view the dynamic problem of assigning children
to daycare centers as separate school choice problems in different periods. Consequently, the
matching obtained from the DA-IP mechanism is stable (Gale and Shapley (1962) shows that the
DA algorithm yields a stable matching in static settings). We state the result below.

Theorem 1 (Existence of Stable Matching). The DA-IP matching satisfies autarkic stability. Fur-

thermore, if the schools’ priorities satisfy IPA, then the DA-IP matching is stable.

As we already mentioned, examples 2 and 3 illustrate the need of strengthening the (autarkic)
stability concept if strong rankability or IPA are not satisfied. However, Theorem 1 demonstrates
that IPA is a sufficient condition for the existence of stable matchings even if strong rankability is
not satisfied (but assuming rankability). In addition, Theorem 5 shows that with or without strong

rankability, the existence of stable matchings is not guaranteed without IPA.

Remark 1 (Special Case). An interesting special case of our problem is one in which all the

children are born in period 0. Then this problem is a static allocation problem in which two year

old children are assigned to schools only once. In addition, the schools’ priorities are well defined

at period 1. Furthermore, each child’s preferences can be set to her isolated preferences at period

1. Then one can see that this special case of our dynamic problem is a school choice problem.24

One of the most important results in the matching literature is that the DA-IP matching Pareto
dominates all other stable matchings.25 We study how the DA-IP matching compares to the other
stable matchings in a dynamic environment. Our results are presented in detail in Appendix B. We
summarize our findings in the following proposition.

Proposition 1. The DA-IP matching does not necessarily Pareto dominate all other stable match-

ings. However, it is not Pareto dominated by any stable matching in any market. Moreover, if there

exists a stable and efficient matching in some market, then it must be the DA-IP matching.

5 Strategy-Proofness and Stability

It is well known that in static settings, the DA mechanism is strategy-proof. We show below, that
in our dynamic setting this result no longer holds for our version of DA-IP. In fact, the result below
is much stronger: there is no mechanism that is strategy-proof and stable.

24Recall that the school choice problem is a static allocation problem in which each student has preferences over
the schools (not over the pairs of schools), each school prioritizes all the children, and each student obtains at most
one seat at some school.

25See Gale and Shapley (1962).
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Theorem 2 (Impossibility Result). No mechanism satisfies both autarkic stability and strategy-

proofness.

Proof. Consider the following example: there are 4 schools {s, s̄,s1,s2} and each school has a
capacity of one child. There is no school-age child until period t− 1 ≥ 1. Suppose It−1 = {i, ı̄},
It = {i1, i2}, It+1 = {i′} and Iτ = /0 for all τ≥ t +2. The schools’ priorities satisfy IPA. In addition,
any school s′ ∈ {s, s̄,s1,s2} prioritizes the children as follows under the assumption that no child
attended s′ in the previous period:

i Bs i′ Bs i1 Bs i2 Bs ı̄

i Bs1 i1 Bs1 i2 Bs1 i′ Bs1 ı̄

i Bs2 i1 Bs2 i′ Bs2 i2 Bs2 ı̄

ı̄ Bs̄ i1 Bs̄ i′ Bs̄ i2 Bs̄ i

We consider two preference profiles which differ from each other in child i1’s preferences.
Each child’s preferences are strongly rankable. Child i’s top choice is (s,s) while child ı̄’s is (s̄, s̄).
The preferences of children i2 and i′ satisfy the following conditions:

(s2,s2) �i2 (s1,s1) �i2 (s,s) �i2 (s̄, s̄)

(s2,s2) �i′ (s,s) �i′ (s1,s1) �i2 (s̄, s̄)

Child i1’s preference ordering is �1
i1 under preference profile 1 and is �2

i1 under profile 2. These
preferences are given as follows:

(s,s) �1
i1 (s1,s1) �1

i1 (s2,s2) �1
i1 (s̄, s̄)

(s,s) �2
i1 (s̄, s̄) �2

i1 (s2,s2) �2
i1 (s1,s1)

In addition, suppose (s2,s)�1
i1 (s1,s1).

Step 1. Under profile 1, the only matching µ that satisfies autarkic stability is: µt−1(i) = µt(i) = s,
µt−1(ı̄) = µt(ı̄) = s̄, µt(i1) = µt+1(i1) = s1, µt(i2) = µt+1(i2) = s2, µt+1(i′) = s and µt+2(i′) = s2.
Proof of Step 1. Under profile 1, the DA-IP matching is as follows: µt−1(i) = µt(i) = s, µt−1(ı̄) =

µt(ı̄) = s̄, µt(i1) = µt+1(i1) = s1, µt(i2) = µt+1(i2) = s2, µt+1(i′) = s and µt+2(i′) = s2. We know
that DA-IP matching satisfies autarkic stability. We now show that it is the unique matching that
satisfies autarkic stability.

Let µ̂ be a matching that satisfies autarkic stability. It is clear that µ̂t−1(i) = µ̂t(i) = s, µ̂t−1(ı̄) =

µ̂t(ı̄) = s̄ and µ̂t+2(i′) = s2. Consequently, we obtain that µ̂t(i1) = s1 because child i1 has higher
priority in school s1 at period t than anyone but i. However, i must match with s at period t. Hence,
µ̂t(i1) = s1. This implies that µ̂t(i2) = s2. Then i2 has the highest priority at school s2 at period
t + 1. Since s2 is the top choice for i2, µ̂t+1(i2) = s2. Consequently, µ̂t+1(i′) = s which means
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µ̂t+1(i1) = s1. Now we have shown that µ̂ = µ.
Step 2. Under profile 2, the only matching that satisfies autarkic stability, µ̄, is as follows: µ̄t−1(i) =

µ̄t(i) = s, µ̄t−1(ı̄) = µ̄t(ı̄) = s̄, µ̄t(i1) = s2, µ̄t(i2) = s1, µ̄t+1(i1) = s, µ̄t+1(i2) = s1, µ̄t+1(i′) = s2 and
µ̄t+2(i′) = s2.
Proof of Step 2. Under profile 2, the DA-IP matching µ̄ is as follows: µ̄t−1(i) = µ̄t(i) = s, µ̄t−1(ı̄) =

µ̄t(ı̄) = s̄, µ̄t(i1) = s2, µ̄t(i2) = s1, µ̄t+1(i1) = s, µ̄t+1(i2) = s1, µ̄t+1(i′) = s2 and µ̄t+2(i′) = s2. We
know that the DA-IP matching µ̄ is a matching that satisfies autarkic stability. We now show that µ̄

is the only one.
Let µ̂ be matching that satisfies autarkic stability. It is clear that µ̂t−1(i) = µ̂t(i) = s, µ̂t−1(ı̄) =

µ̂t(ı̄) = s̄ and µ̂t+2(i′) = s2. Consequently, we obtain that µ̂t(i1) = s2 because child i1 has higher
priority in school s2 at period t than i2. This means that µ̂t(i2) = s1.

Now let us argue that µ̂t+1(i′) = s2. If not, µ̂t+1(i1) = s2; otherwise, child i′ has higher priority
than child i2 at school s2 and s2 is the top choice of child i′. Hence, this contradicts with µ̂ being
a matching that satisfies autarkic stability. Thus, µ̂t+1(i1) = s2. But because (s2, s̄)�2

i1 (s2,s2) and
child i1 has higher priority at school s̄ than anyone but ı̄, µ̂ satisfies autarkic stability. This is a
contradiction. Hence, µ̂t+1(i′) = s2.

Because µ̂t+1(i′) = s2, µ̂t+1(i1) = s as i1 has higher priority at school s than i2. Consequently,
µ̂t+1(i2) = s1. This means µ̂ = µ̄.
Step 3. If a mechanism yields a matching that satisfies autarkic stability, then this mechanism is
not strategy proof.
Proof of Step 3. If a mechanism yields a matching that satisfies autarkic stability, then it must
allocate (s1,s1) to i1 under profile 1 and (s2,s) under profile 2. Now one can easily see that under
profile 1 child i1 has incentive to misreports her preference as if under profile 2.

Theorem 2 has two important, direct consequences which we present next.

Corollary 1. 1. No mechanism satisfies both strategy-proofness and stability.

2. The DA-IP mechanism is not strategy-proof.

Proof. Recall that each stable matching satisfies autarkic stability. This and Theorem 2 prove item
1 of the corollary.

Even when strong rankability and IPA are satisfied, strategy-proofness is hard to achieve in our
dynamic assignment problem. In static problems, a child has a motive to misreport her preferences
only if she can obtain a better placement. This motive is also present in our dynamic assignment
problem. To be specific, a child will misreport her preferences if she can improve her present
placement without hurting her placement in the other period. This motive, as known from the
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school choice literature, is eliminated if the mechanism is the DA or Top Trading Cycles mecha-
nism. However, in our setting, there is an extra motive absent in the school choice problem: one
might misrepresent her preferences to affect the schools’ priorities in the subsequent period. This
way, she could obtain a better future placement by (weakly) sacrificing her current one.

In the example used for the proof of Theorem 2, type 1 child i1 likes school s better than any
other school, but attending s in period t is impossible for her. Again, in period t + 1, she cannot
attend s because child i′ attends s. But observe that child i′ wants to attend school s2 but cannot do
so because child i2 attends s2. The most important aspect is that child i2 has higher priority over
child i′ at school s2 in period t + 1 only because she attends school s2 in period t. Child i1 can
eliminate child i2’s advantage over i′ if she attends school s2 in period t. By doing this, i1 enables
i′ to attend s2 at t +1. Ultimately, she frees a spot at school s for herself at t +1. This is the reason
why type 1 child i1 has an incentive to misreport her preferences.

Remark 2 (OLG Structure). For Theorem 2, the OLG structure of our model plays a key role.

To illustrate this point, let us consider the following dynamic model in which all the children are

born at period 1 and attend school for two periods. Lemma 1 is valid in this modified model;

thus, the DA-IP algorithm produces a stable matching in each market. Furthermore, the DA-IP

algorithm matches each child to the same school in periods 1 and 2 because the preferences satisfy

rankability. Thus, in the modified model, by running the DA-IP algorithm only once in period 1 and

then by replicating period 1 matching in period 2, one obtains a stable matching in each market.

Observe here that the mechanism corresponding to this process only uses the period 1 isolated

preferences of the children. Consequently, the new mechanism is essentially a static mechanism;

thus, no child can improve by misreporting her isolated preferences.

Remark 3 (History-Dependent-Priorities). The assumption of history-dependent priorities of the

schools is indispensable in Theorem 2 if the children’s preferences are strongly rankable. To see

this point, suppose that the children’s preferences are strongly rankable and that the schools’ pri-

orities are independent of the previous period’s matching–in particular, a child who did not attend

a school in the previous period can have higher priority over some other child who did attend that

school. In this case, the DA-IP mechanism must be strategy-proof. Let us discuss why this is the

case. For the DA-IP mechanism, one has to report her preferences over the pairs of schools. But

this, in fact, is equivalent to the case in which the school-age children report their isolated prefer-

ences in each period and the algorithm is run sequentially because the DA-IP algorithm uses the

isolated preference. As the preferences satisfy strong rankability and the schools’ preferences are

independent of history, any child’s reported isolated preferences in one period do not affect her

placement in the other period. Now recall that the DA-IP mechanism is strategy-proof in the static

settings. Hence, by misreporting one’s isolated preferences in some period, she is worse off in that
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period without affecting her placement in the other period. Accordingly, no one misreports her

isolated preferences. Thus, the DA-IP mechanism is strategy-proof.

Remark 4 (Rankable Preferences). If the children’s preferences satisfy rankability but do not sat-

isfy strong rankability, then an impossibility result similar to Theorem 2 arises even if the schools’

priorities are independent of history. To see this consider a market in which there are 3 schools

and two one-year old children i, j in period t. Each school has a capacity of one child and the

preferences of i and j satisfy that (s1,s1) �i (s3,s1) �i (s2,s2) and (s1,s1) � j (s2,s2) � j (s2,s1).

Suppose there is another child who is two at period t. Let this child’s most preferred option be s1

and suppose s1 gives its highest priority to this child. Furthermore, assume that school s2 gives

priority to i over j. Then the DA-IP mechanism matches i with (s2,s2) and j with (s3,s1) if both

children reports their preferences truthfully. However, i can obtain (s3,s1) by reporting s2 as her

least preferred school. Hence, the DA-IP mechanism is not strategy-proof if the children’s prefer-

ences do not satisfy strong rankability even if the schools’ priorities are independent of history.

Remark 5 (Property-Rights). We argued above that history-dependent priorities of the schools are

crucial for Theorem 2. If schools’ priorities are not history-dependent, then a strategy-proof and

stable mechanism implies that there are markets in which some children will be forced out of the

schools that they attended in the previous period. For example, in the example used in the proof of

Theorem 2, child i2 is forced out of school s2 at period t +1. Therefore, under the restriction that

no 2-year old child can be forced out of the school she attended in the previous period, Theorem 2

is valid even when the schools’ priorities are independent of the previous period’s matching.

Remark 6 (DA-IP mechanism and Strategy-Proofness). The DA-IP mechanism is strategy-proof

under some restrictive set of markets M , i.e., under some restrictive sets of the preferences and

priorities. We consider three possibilities here. The first case is when the cost of switching schools

is very large for the children, i.e., (s,s) �i (s′,s′′) for all i ∈ I, s ∈ S̄ and s′ 6= s′′ ∈ S̄. In this case,

each child’s goal is to obtain the best possible school when she is one and to stay in the same

school when she is two. When the DA-IP is the implementation mechanism, each child achieves

this goal by truthfully reporting her preferences. In practice, schools are heterogenous in quality

and switching costs might not play such a decisive role in parents’ choices: the switching costs

might not be prohibitively large. Second, if the preferences are strongly rankable and the priorities

of the schools favor the older cohort (or generation). The latter means that whenever i ∈ It−1 and

j ∈ It , it must be that iBt
s j for every s. This result, which is proven in Pereyra (2013), is not valid

if the preferences are not strongly rankable (see the example used in Remark 1). Finally, the DA-

IP mechanism is strategy-proof if not only the schools’ priorities favor the older cohort but also

each school ranks the younger children in the exact same way. In this case, the DA-IP mechanism

is equivalent to the DA-IP mechanism done by cohorts: in each period the DA-IP mechanism is
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run first among the two year old children only, and after allocating the two year old children and

adjusting the schools’ capacities accordingly the DA-IP is run among the one year old children.

Consequently, in each period the whole set of schools is available for the old children, but only

some schools are available for the young children. Since the old cohort in period 1 stays in the

system only for one period no child from this cohort has incentive to misreport. Now let us focus

on the period 1 young child who has the highest priority in all schools in period 1. In period 2 this

child will have the highest priority in the schools that had no open spots for the young children

in period 1. As a result, the DA-IP assigns this child to her most preferred pair of schools among

those that are available to her cohort if the child reports her preferences truthfully. Hence, this

child has no incentive to misreport. Then the second highest ranked child has no incentive to

misreport, and so on.

6 Efficiency and Strategy-Proofness

In this section, we start pointing out that some mechanisms that are known to be efficient in static
settings are not efficient in our setting. Then, in Section 6.2 we study the Top-Trading Cycles
in detail, and we propose a version of it using isolated preferences (TTC-IP). We show that it is
neither Pareto efficient nor strategy-proof. Finally, in Section 6.3 we study a variation of the serial
dictatorship mechanism, which is both strategy-proof and efficient.

6.1 Efficient Matchings

We have shown that stability and strategy-proofness may be incompatible for the dynamic assign-
ment problem. In the remaining sections of this paper, we investigate whether strategy-proofness is
compatible with efficiency. However, before doing so, let us consider some properties of efficient
matchings.

From the school choice literature, we know that the Top Trading Cycles (TTC) or the Serial
Dictatorship (SD) mechanisms yield efficient matchings. Hence, one might expect that these mech-
anisms when run using the isolated preferences of the children yield efficient matchings. In other
words, one may expect that a result analogous to the result of Lemma 1 will hold for efficiency
as well. However, let us show that this is not the case using Example 1 in which an autarkic effi-
cient matching is not Pareto efficient. However, this autarkic efficient matching is produced by the
TTC-IP mechanism using isolated preferences which we will consider in the next subsection.
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6.2 The Top Trading Cycles Mechanism

The TTC mechanism was introduced by Abdulkadiroğlu and Sönmez (2003) for the context of the
school choice problem.26 Next we will state the formal definition of the TTC-IP mechanism.

In each period t ≥ 2, we assume that the preceding period’s matching is produced by the TTC-
IP mechanism according to the isolated preferences of children. Recall that in period t = 0, the
matching is exogenously given and is not affected by the TTC-IP mechanism. In period t ≥ 1:

Round 1: Each child points to her preferred school. Each school s ∈ S points to its highest
ranked child. Then we look for cycles: a cycle is either (i) a set {i,h} where h is i’s preferred
school, or (ii) an ordered set {i1,s1, i2,s2, · · · , ik,sk} such that h is not in this set, and s j is child
i j’s preferred school, whereas child il is the highest ranked child in school sl−1, for l = 2, ...,k;
and child i1 is the highest ranked child at school sk. There always must be at least one cycle and
each child and school can be a part of only one cycle. Each child in any cycle is allocated to her
preferred school.

In general, at:
Round k: All children allocated in the previous rounds as well as all the schools which have filled
their capacity in the previous rounds do not participate in step k. Each remaining child points to
its preferred school, among the set of schools with remaining spots. Each remaining school s ∈ S

points to the highest priority child among the remaining children. Then we look for cycles and
each child in any cycle is allocated to the school that she pointed to.

The process continues until all children are allocated.27

As we already hinted, the TTC-IP mechanism is not efficient. Given the importance of the TTC
mechanism in the school choice problem, let us state this result in the following proposition.

Proposition 2 (TTC-IP is not Pareto Efficient). The TTC-IP mechanism is not Pareto efficient.

Proof. Consider Example 1 and observe that µ is the matching from the TTC-IP mechanism. As
we mentioned µ is not efficient.

26TTC mechanism, which is attributed to David Gale, is first considered in Shapley and Scarf (1974).
27We point out that the version of the TTC-IP that we use is similar to the one Abdulkadiroğlu and Sönmez (1999)

use in the housing allocation problem with existing tenants. In both versions, the object to be assigned will point to
its current owner, unless she already obtained another object. In the case of Abdulkadiroğlu and Sönmez (1999), each
house points to its current tenant unless she is already assigned a house while in our model, due to the fact that the
schools give their highest priorities to its current enrollees, each school points to one of these children unless all of
them are assigned to a school. However, the two versions of TTC are different in the sense that in Abdulkadiroğlu and
Sönmez (1999), no house prioritizes the (non existing) tenants but in our model, different schools can prioritize the
children differently.
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Note that in Example 1, not only the TTC-IP mechanism is not efficient, but also a variation of
it, done by cohorts. Precisely, consider the following mechanism. At any period t ≥ 1, the children
born in period t − 1 are allocated according to the TTC-IP mechanism (see Abdulkadiroğlu and
Sönmez (2003)). Once every children i ∈ It−1 is allocated, most schools will have less, if any,
spots available. Consider only the schools with open spots and use the TTC-IP mechanism for
the generation born in period t, where from the initial number of spots for each school, we have
subtracted the number of 2-year-old children already allocated. For this round, consider only the
priority of schools over the children of generation t. i.e., a young child cannot replace an already
allocated 2-year-old child. This variation of the TTC-IP mechanism is also not Pareto efficient.

In the example below, we show that the TTC-IP mechanism is not strategy-proof.

Example 6 (TTC-IP is not Strategy-Proof). Assume that there are 4 schools {s,s1,s2,s3}, and

4 children: {i, i1, i2, i3}, with i ∈ I−1 and {i1, i2, i3} ∈ I0. Assume also that It = ∅ for all t ≥ 1.

The schools’ priorities satisfy IPA and the children’s preferences are strongly rankable. School

s̄ = s,s1,s2,s3 prioritizes the children as follows assuming that these children has not attended s̄ in

the previous period:
i Bs i2 Bs i1
i1 Bs1 j, ∀ j 6= i1
i2 Bs2 j, ∀ j 6= i2
i1 Bs3 i3 Bs3 j, ∀ j 6= i1, i3

The children’s preferences are:

(s,s) �i (s1,s1) �i (s2,s2) �i (s3,s3)

(s,s) �i1 (s1,s1) �i1 (s2,s2) �i1 (s3,s3)

(s3,s3) �i2 (s,s) �i2 (s2,s2) �i2 (s1,s1)

(s3,s3) �i3 (s1,s1) �i3 (s2,s2) �i3 (s,s)

In addition, child i1 prefers (s′,s) to (s1,s1).

The matching resulting from the TTC-IP is: µ0 (i) = s, µ0 (i1) = s1, µ0(i2) = s2, µ0 (i3) = s3,

µ1 (i1) = s1, µ1 (i2) = s and µ1 (i3) = s3. However, if i1 misreports its preferences as s �i1 s2 �i1

s1 �i1 s3, while all others report truthfully. The resulting matching is: µ̄0 (i) = s, µ̄0 (i1) = s2 ,

µ̄0 (i2) = s3, µ̄0 (i3) = s1, µ̄1 (i1) = s, µ̄1 (i2) = s3 and µ̄1 (i3) = s1.

Note that under truth-telling, i1’s allocation was: (s1,s1), while after misreporting it is (s2,s).

Thus, i1 has improved herself by misreporting. �

Observe that the example above shows that a variation of the TTC-IP which is done by cohorts
is not strategy-proof.28

28Kurino (2013) shows that under strongly rankable preferences, the constant TTC mechanism favoring existing
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Remark 7 (TTC-IP: Strategy-Proofness and Efficiency). One may ask if there is any restriction on

the priorities and preferences that would restore the efficiency and strategy-proofness for TTC-IP.

One such case is the one in which the switching the schools is prohibitively large for the chil-

dren i.e., if attending the same school for two periods is preferred by each child to attending any

two different schools. Again, in practice schools are heterogenous and switching costs might not

be prohibitively large. On the other hand, priorities favoring older generation (cohort) is not a

solution as long as the switching cost is “reasonable” because the TTC-IP by cohort is neither

strategy-proof nor efficient. Another case in which TTC-IP is both efficient and strategy-proof oc-

curs when the priorities are such that (i) they favors the older generation and (ii) the young children

in each period are ranked in the exact same way in each school. In this case, even under rankable

preferences our TTC-IP mechanism is both efficient and strategy-proof. To see this, first observe

that because each school gives higher priority to the older children, the TTC-IP mechanism is

equivalent to the TTC-IP mechanism by cohort: as long as an old child is not assigned under TTC-

IP, all schools with open spots point to some old child. Then because TTC-IP is strategy-proof in

the static school choice problem, in period 1, no old child has incentive to manipulate the TTC-IP.

Now let us focus on the period 1 young child who has the highest priority in all schools in period

1. In period 2 this child will have the highest priority in the schools that had no open spots for

the young children in period 1. As a result, the TTC-IP assigns this child to her most preferred

pair of schools among those that are available to her cohort if the child reports her preferences

truthfully. Hence, this child has no incentive to misreport. Then the second highest ranked child

has no incentive to misreport, and so on. This shows that TTC-IP is strategy-proof in this case,

and in a similar way one can argue that the TTC-IP is Pareto efficient.

6.3 Serial Dictatorship Mechanism

To answer the question of whether any mechanism is efficient and strategy-proof we will adopt the
well-known SD mechanism in our setting. In our version of the SD mechanism we will utilize the
feature of our model that the old children of the current period do not participate in the system next
period. This allows us to let each young child choose two schools (one for the period in which she
is one and one for the period in which she is two).

Formally, in each period t ≥ 0 children are exogenously ordered. First, recall that the match-
ing of period t = 0 is exogenous. The serial dictatorship algorithm runs as follows: at period 1,

tenants, which is based on Abdulkadiroğlu and Sönmez (1999)’s TTC mechanism in the housing allocation model
with existing tenants, is Pareto efficient and strategy-proof. Because the houses do not have priorities Kurino’s model,
the constant TTC mechanism favoring existing tenants is not dependent on the priorities, but it respects the property
rights’ of the older generation. Our version of TTC is based Abdulkadiroğlu and Sönmez (2003)’s TTC mechanism
in the school choice problem, and it depends on the schools’ priorities. In other words, the reason why Kurino (2013)
and we obtain seemingly different results for TTC is because these papers consider different versions of TTC.
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following the ordering for the period 0 children, the 2-year-old children are allocated sequentially
to their preferred schools from the set of schools that have not yet filled their capacity. Once all
2-year-old children are allocated, following the ordering of the period 1 children, each 1-year-old
child is allocated sequentially to their most preferred pairs of schools – one for each period– which
have not filled their capacities. Here, observe that each 1 year old child finds out her allocation for
two periods in period 1. Thus, in period 2, all the two year old children are already matched to
schools. Consequently, in period 2, following the ordering of the period 2 children, each 1-year-old
child is allocated sequentially to their most preferred pairs of schools which have not filled their
capacities. This process is replicated in each period.

At any given period there is a finite number of school-age children, therefore this is a well-
defined algorithm that always converges to a unique matching. The serial dictatorship mechanism
is the revelation mechanism that implements this algorithm. It is easy to see that the serial dic-
tatorship mechanism is efficient and strategy-proof.29 It is strategy-proof since each child can be
allocated to the best available menu. Moreover, it is efficient since the first child to choose in a
given cohort can only improve if there is a school chosen by another child in the previous cohort
that would make her better off. No child in the previous cohort would engage in such a trade, since
all open schools were available to the older cohort and not chosen by them. The child with an
index 2 of the young cohort cannot improve by trading with the first child, since the first child is
already choosing the best available option for her. A similar argument holds for any other indexed
child.

There is a shortcoming of our SD mechanism: in period 1 some two year old child could
be forced out of the school she has attended in period 0.30 To overcome this, we can modify
the SD mechanism so that it differs from the previously considered SD mechanism only in how
the two year old children in period 1 are allocated. Specifically, to determine the allocations of
the two year old children in period 1 we first run the TTC-IP mechanism among these children.
Afterwards, starting with the young children in period 1, we run the SD mechanism. This modified
SD mechanism is strategy-proof and efficient.

29Kurino (2013) considers the constant serial dictatorship favoring the existing tenants (the older cohorts in our
language), and he shows that it is a strategy-proof and efficient mechanism. In this mechanism, all the agents are
placed on an ordering in which the older agents appear ahead of the younger agents. Then in each period, following
this ordering, the mechanism matches sequentially each agent (who are in the alive in that period) to the house that is
available and that is the agent’s most preferred according to her period preferences. In our setting, period preferences
are not well defined when the preferences are not strongly rankable. Thus, to use Kurino (2013)’s constant serial
dictatorship mechanism favoring the existing tenants in our setting, one has to modify it so that it uses the isolated
preferences of the children. Now it is not complicated to see that Kurino’s and our version of the serial dictatorships
produce the same matching in each market. However, if the preferences are neither rankable and nor time-separable, it
is not clear how one can run the constant serial dictatorship. On the other hand, ours can be run without any adjustment,
and it will be Pareto efficient and strategy-proof.

30This problem does not arise for the children who are 1 in any period other than 0.
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7 Conclusion

In this paper we introduced the daycare assignment problem. This problem is a dynamic ver-
sion of the school choice problem in which there is entry and exit of students over time and in
which the daycare centers’ priorities are history-dependent. We showed that the Gale-Shapley
deferred-acceptance mechanism and the Top-Trading Cycles mechanism– both commonly used in
the school choice problem– are not strategy-proof in the dynamic problem.

In general, we study two main questions in the paper: (i) whether stability and strategy-
proofness are compatible with one another in our model, and (ii) whether Pareto efficiency and
strategy-proofness are compatible. For the first question, we proved an impossibility result: no sta-
ble and strategy-proof mechanism exists for this class of dynamic matching problems. This result
is particularly important in the context of the school choice problem, in which much attention has
been given to stability and, in particular, to the DA mechanism (which has been adopted in the New
York and Boston public school systems). For the second question, we show that a version of the
TTC adapted to a dynamic problem is not strategy-proof nor efficient, but that the SD mechanism
is both Pareto efficient and strategy-proof.

We offer two practical suggestions for the problem of assigning children to public daycare
centers. First, the education authorities might use the DA mechanism period-by-period. We have
shown that, under truth-telling, this mechanism is stable and not Pareto dominated by any other
stable mechanism. Moreover, it is often the case that non-strategy-proof mechanisms are im-
plemented successfully, provided that the strategic issues are not severe (see Kojima and Pathak
(2009) and Budish and Cantillon (2012), for example). When IPA is satisfied, the sophistication
level needed for a successful manipulation of the DA mechanism is rather high.31 In addition, one
would need to have information about the preference profile of the children born in the succeeding
period. All this leads to an important practical question of how the DA-IP mechanism performs in
practice. We are planning to explore this question in a laboratory setting. Another approach is to
study the performance of the DA-IP mechanism in large markets which is the main concern of a
follow-up paper by Monte and Tumennasan (2012a). Our preliminary results indicate that if IPA

is satisfied, the incentives for manipulation disappear as the market becomes large. This seems to
suggest that the DA-IP mechanism could be implemented in practice, successfully.

The second suggestion for the practical problem of designing a centralized allocation in day-
care centers is to use the SD mechanism. This mechanism has disadvantages, since it disregards
the schools’ priorities. However, in addition to being efficient and strategy-proof, in our dynamic
problem there is an important, but less obvious, advantage of the SD mechanism which is a no-

31When IPA is not satisfied (which is the case for the current Danish system), then there may be a simpler manip-
ulation of the DA mechanism: by staying at home at age 1, a child improves her priority ranking in all schools in the
next period. This ultimately enables the child to go to her favorite school in the next period.
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tion of “fairness.” In the standard school choice problem, the SD mechanism is considered unfair
because parents listed last are at a clear disadvantage to parents listed first. This problem with se-
rial dictatorship is somewhat mitigated in a dynamic assignment problem. To illustrate this point,
consider the case in which the number of children born at every period is the same. The child who
chooses last in her cohort will have at least half of the daycare-spots available to her in period 2,
whereas in the static problem, the last child to choose in the serial dictatorship mechanism might
have only one option.32 In fact, if each period has only 1 child (or if the number of periods that
children attend increases so that there is at most one child born in each period), then the option sets
of the children are somewhat similar.

Finally, Monte and Tumennasan (2012b) show in a follow-up paper that for the multi-market
allocation problem, the set of nonbossy and strategy-proof rules that implement a Pareto efficient
outcome is the set of sequential dictatorships — a slight generalization of the serial dictatorship.
This result provides further support for the use of the serial dictatorship mechanism in this dynamic
environment.
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Appendix A: The Relation between Stability and Autarkic Sta-
bility

Now we will explore under what conditions, the stability concepts will coincide. From examples 2
and 3, one could conjecture that stable matchings may be equivalent to matchings that satisfy au-
tarkic stability if the children’s preferences are strongly rankable and the schools’ priority rankings
satisfy IPA. Indeed this is the case, as we will show in the next two lemmas.

Lemma 2. Suppose that all schools’ priorities satisfy IPA. If µ satisfies autarkic stability but is not

stable, then for some period t ≥ 1 and some school-child pair (s, i),

1. µt(i) = µt+1(i),

2. (s,s)�i (µt(i),µt+1(i)),

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Proof. Since µ is not but satisfies autarkic stability, for some t ≥ 1, there must exist (s,s′, i) such
that (s,s′)�i (µt(i),µt+1(i)), s 6= µt(i), s′ 6= µt+1(i) and one of the following conditions are satisfied:

1. |µt(s)|< rs and
∣∣µt+1(s′)

∣∣< rs′ ,

2. |µt(s)| < rs,
∣∣µt+1(s′)

∣∣ = rs′ , and, for some j′ ∈ µt+1(s′), iBt+1
s′ (µ̄t) j′ where µ̄t is the period

t matching with µ̄t(i) = s and µ̄t(i′) = µt(i′) for all i′ 6= i ∈ It−1∪ It ,

3. |µt(s)|= rs,
∣∣µt+1(s′)

∣∣< rs′ , and, for some j ∈ µt(s), iBt
s (µ

t−1) j,

4. |µt(s)| = rs,
∣∣µt+1(s′)

∣∣ = rs′ , for some j ∈ µt(s), j′ ∈ µt+1(s′) and for any µ̄t ∈ M(i, j,µ),
iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′.

Case 1. s = s′. Consequently, (s,s)�i (µt(i),µt+1(i)). In addition, |µt(s)|< rs (conditions 1 or 2)
or/and iBt

s (µ
t−1) j for some j ∈ µt(s) (conditions 3 or 4). Combining this with µ being such that it

satisfies autarkic stability, one obtains that (µt(i),µt+1(i)) �i (s,µt+1(i)). Given weak rankability,
this, in turn, implies that if µt(i) 6= µt+1(i) then (µt(i),µt(i)) �i (s,s). Then, by transitivity of
preferences, (µt(i),µt(i)) �i (µt(i),µt+1(i)). This implies that µ does not satisfy autarkic stability
because child i has the highest priority at school s at period t +1, hence, at t +1, she has a right to
attend school s ahead of any other child. Therefore, µt(i) = µt+1(i). This is the condition we seek.
Case 2. s 6= s′ and µt(i) = µt+1(i). Consequently, (s,s′) �i (µt(i),µt(i)). In addition, |µt(s)| < rs

or/and iBt
s (µ

t−1) j for some j∈ µt(s). Combining this with the fact that µ satisfies autarkic stability,
one obtains (µt(i),µt(i)) �i (s,µt(i)). Recall that (s,s′) �i (µt(i),µt(i)). Hence, by transitivity,
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(s,s′) �i (s,µt(i)). Then, by rankability, (s′,s′) �i (µt(i),µt(i)). Suppose (s,s) �i (s′,s′). Then
(s,s)�i (µt(i),µt(i))and, by assumption, |µt(s)|< rs or/and iBt

s (µ
t−1) j for some j ∈ µt(s). Hence,

we have identified a pair (s, i) asked in the lemma.
Now suppose (s′,s′) �i (s,s). Since µ satisfies autarkic stability, at least one of the two con-

ditions must hold: (a) (µt(i),µt(i)) �i (µt(i),s′) or/and (b) |µt+1(s′)| = rs′ and there exists no
j′ ∈ µt+1(s′) such that iBt+1

s′ (µt) j′.
Suppose (a) occurs. Recall (s,s′) �i (µt(i),µt(i)), hence, (s,s′) �i (µt(i),s′). Then rankability

implies that (s,s) �i (µt(i),µt(i)) because s 6= s′. Observe that the pair (s, i) is the pair asked in
the lemma as we already pointed out that (s,s)�i (µt(i),µt(i)), |µt(s)|< rs or/and iBt

s (µ
t−1) j for

some j ∈ µt(s).
Suppose now (b) occurs but not (a). Recall that one of the 4 conditions listed in the beginning

of the proof must be satisfied. Since |µt+1(s′)| = rs′ , 1 and 3 are ruled out. If condition 2 is satis-
fied, then iBt+1

s′ (µ̄t) j′ for some j′ ∈ µt+1(s′). Furthermore, µ̄t differs from µt only in that µ̄t(i) = s.
Then, by IPA, iBt+1

s′ (µt) j′. This a contradiction with b occurring. If condition 4 is satisfied, then
there must exist j, j′ such that, for any µ̄t ∈M(i, j,µ), iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′. In particular,
it must be true for µ̄t such that µ̄t( j) = h. Observe that µ̄t differs from µt only in that µ̄t(i) = s and
µ̄t( j) = h. By IPA, iBt+1

s′ (µt) j′. This a contradiction with b occurring.
Case 3. s 6= s′ and µt(i) 6= µt+1(i). Consequently, (s,s′) �i (µt(i),µt+1(i)). Since µ satisfies au-
tarkic stability, one of the two conditions must hold: (a) (µt(i),µt+1(i)) �i (µt(i),s′) or/and (b)
|µt+1(s′)|= rs′ and no j′ ∈ µt+1(s′) with iBt+1

s′ (µt) j′ exists.
Suppose (a) occurs. Recall that by assumption, in case 3, (s,s′)�i (µt(i),µt+1(i)), hence, (s,s′)�i

(µt(i),s′). rankability and this imply (s,s)�i (µt(i),µt(i)). Then,
(
s,µt+1(i)

)
�i

(
µt(i),µt+1(i)

)
by

rankability. Consider the pair (s, i). As pointed out earlier, |µt(s)|< rs or/and iBt
s (µ

t−1) j for some
j ∈ µt(s). This means that µ does not satisfy autarkic stability which is a contradiction.

Suppose now (b) occurs but not (a), therefore (µt (i) ,s′)�i (µt(i),µt+1(i)). Recall that (s,s′)�i

(µt(i),µt+1(i)). In addition, one of the 4 conditions listed in the beginning of the proof must be
satisfied. Since |µt+1(s′)| = rs′ , 1 and 3 are ruled out. If condition 2 is satisfied, then iBt+1

s′ (µ̄t) j′

for some j′ ∈ µt+1(s′). Furthermore, µ̄t differs from µt only in that µ̄t(i) = s. By IPA, iBt+1
s′ (µt) j′.

This is a contradiction with (b) occurring. If condition 4 is satisfied, then there must exist j, j′ such
that, for any µ̄t ∈M(i, j,µ), iBt

s (µ
t−1) j and iBt+1

s′ (µ̄t) j′. Fix µ̄t such that µ̄t( j) = h. Observe that
µ̄t differs from µt only in that µ̄t(i) = s and µ̄t( j) = h. By IPA, iBt+1

s′ (µt) j′. This is a contradiction
with (b) occurring.

Next we show that the stability concept for the our dynamic problem is in fact equivalent to the
static concept of stability for a large class of problems. Precisely, if the children’s preferences are
strongly rankable and the schools’ priorities satisfy IPA, the two concepts are equivalent.

38



Theorem 3 (Equivalence of Autarkic Stability and Stability). Suppose every child’s preferences

satisfy strong rankability and every school’s priorities satisfy IPA. Then matching µ is stable if and

only if it satisfies autarkic stability..

Proof. By definition, any stable matching satisfies autarkic stability. Hence, we need to show
that any matching that satisfies autarkic stability is stable. Suppose otherwise, i.e., there exists a
matching µ which satisfies autarkic stability but is not stable. By Lemma 2, if µ satisfies autarkic
stability but is not stable, then for some period t ≥ 1 and some school-child pair (s, i),

1. µt(i) = µt+1(i),

2. (s,s)�i (µt(i),µt+1(i)),

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Clearly, (s,s)�i (µt(i),µt(i)). Moreover, each child’s preferences are strongly rankable, hence,
(s,µt(i))�i (µt(i),µt(i)). By combining this with the 3rd condition above, one obtains that µ does
not satisfy autarkic stability.

Appendix B: Properties of the Gale and Shapley Matching

First, we show that, in contrast to static problems, there could be multiple stable matchings that do
not Pareto dominate one another. The following example illustrates this point.

Example 7 (The DA-IP matching does not Pareto dominate other stable matchings in some mar-
kets.). There are 3 schools {s,s1,s2}. All schools have a capacity of one child. There is no school-

age child until period t−1≥ 1. At period t−1, only one child i is 1 year old. At period t, there are

2 one-year old children {i1, i2}. At period t+1, child i′ is 1 year old. If children ı̄ 6= ı̄′ ∈ {i, i1, i2, i′}
have not attended school s̄ = s,s1,s2 in the previous period, then school s̄ ranks child ı̄ and child ı̄′

according to the following rankings.

i Bs i1 Bs i2 Bs i′

i Bs1 i′ Bs1 i2 Bs1 i1
i Bs2 i1 Bs2 i2 Bs2 i′
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Each child’s preferences are strongly rankable. Child i’s top choice is (s,s). The preferences

of children i1, i2 and i′ satisfy the following conditions:

(s1,s1) �i1 (s2,s2) �i1 (s,s),

(s,s) �i2 (s2,s2) �i2 (s1,s1),

(s1,s1) �i′ (s2,s2) �i′ (s,s).

The DA-IP matching µDA is as follows: µt−1
DA (i)= µt

DA(i)= s, µt
DA(i1)= µt+1

DA (i1)= s1, µt
DA(i2)=

s2, µt+1
DA (i2) = s, µt+1

DA (i′) = s2 and µt+2
DA (i′) = s1. Thanks to Theorem 1, µDA satisfies autarkic

stability.

Now let us consider the following matching µ̄: µ̄t−1(i) = µ̄t(i) = s, µ̄t(i1) = µ̄t+1(i1) = s2,

µ̄t(i2) = s1, µ̄t+1(i2) = s, µ̄t+1(i′) = s1 and µ̄t+2(i′) = s1. It easy to check µ̄ is stable.

Now observe that matching µDA does not Pareto dominate matching µ̄ because child i′ prefers

µ̄ to µ. In fact, µ̄ is not Pareto dominated by any stable matching. To see this, observe that the

only matching that Pareto dominates µ̄ is the one in which children 1 and 2 switch their matches in

period t. But this is not stable because child i1 justifiably envies child i′ at t +1. �

First observe that in Example 7 both IPA and strong rankability are satisfied. Hence, stability
coincides with autarkic stability. The example above shows that there may exist mechanisms that
produce stable matchings not Pareto dominated by the DA-IP matching. This is the first main
distinction between the matching produced by the DA-IP algorithm in the school choice prob-
lem versus the matching produced by the DA-IP algorithm in the dynamic problem of assigning
children to daycare centers.

Given the importance of this result when compared to the static case, we state the result below.

Theorem 4. The DA-IP matching does not necessarily Pareto dominate all stable matchings.

In light of Theorem 4, one must explore whether any stable matching Pareto dominates the
DA-IP matching. This, indeed, is impossible which we show in the following proposition.

Proposition 3 (The DA-IP matching is not Pareto dominated by any stable matching). If each

school’s priority rankings satisfy IPA, then the DA-IP matching is not Pareto dominated by any

other stable matchings.

Proof of Proposition 3. Fix a market M = (I, S̄,µ0,�,B), and recall each matching in this market
has the common period 0 matching, µ0.

On contrary to the proposition, suppose that some stable matching µ Pareto dominates matching
µDA.
Step 1. If i ∈ I0, then µ1

DA(i) = µ1(i).
Proof of Step 1. For any 2 year old child, her isolated preference is �2

i (µ
0). From Lemma 1, we
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have that µ1
DA and µ1 are stable period 1 matchings under isolated preferences and µ0. Gale and

Shapley (1962) show that µ1
DA Pareto dominates every other statically stable period 1 matchings

under isolated preferences and µ0 in terms of isolated preferences. This means µ1
DA(i)�2

i (µ
0)µ1(i)

if µ1
DA(i) 6= µ1(i). By definition of�2

i (µ
0), (µ0(i),µ1

DA(i))�i (µ0(i),µ1(i)) if µ1
DA(i) 6= µ1(i). Hence,

if µ Pareto dominates µDA, then µ1
DA(i) = µ1(i).

Step 2. If i ∈ I1, then µ1
DA(i) = µ1(i).

Proof of Step 2. Suppose µ1
DA(i) 6= µ1(i) for some i ∈ I1. Then, as in the proof of step 1, we obtain

that µ1
DA(i)�1

i µ1(i) or equivalently,

(µ1
DA(i),µ

1
DA(i))�i (µ1(i),µ1(i)). (1)

The stability of µDA implies (µ1
DA(i),µ

2
DA(i)) �i (µ1

DA(i),µ
1
DA(i)); otherwise, µDA does not satisfy

autarkic stability as child i is in the highest priority group in period 2. Now weak rankability yields
(µ2

DA(i),µ
2
DA(i))�i (µ1

DA(i),µ
1
DA(i)). Now it is easy to see that

(µ2
DA(i),µ

2
DA(i))�i (µ1

DA(i),µ
2
DA(i))�i (µ1

DA(i),µ
1
DA(i)). (2)

Similarly, as µ is stable, we obtain

(µ2(i),µ2(i))�i (µ1(i),µ2(i))�i (µ1(i),µ1(i)). (3)

Now let us show that µ1(i) 6= µ2(i). Suppose otherwise. Then relations 1 and 2 yield that
(µ1

DA(i),µ
2
DA(i)) �i (µ1(i),µ1(i)). This contradicts with µ Pareto dominating µDA. Hence, µ1(i) 6=

µ2(i). Consequently, the preference relations in 3 must be strict. Also observe that µ1(i) 6= µ2
DA(i)

thanks to relations 1 and 3.
Now let us show that (µ2(i),µ2(i)) �i (µ2

DA(i),µ
2
DA(i)). If not, rankability and relation 1 yield

that (µ1
DA(i),µ

2
DA(i)) �i (µ1(i),µ2

DA(i)) and (µ1(i),µ2
DA(i)) �i (µ1(i),µ2(i)) as µ1(i) 6= µ2

DA(i) and
µ1(i) 6= µ2(i). Consequently, (µ1

DA(i),µ
2
DA(i))�i (µ1(i),µ2(i)) which contradicts that µ Pareto dom-

inates µDA. Now let us summarize the preference relation we found so far.

(µ2(i),µ2(i))�i (µ2
DA(i),µ

2
DA(i))�i (µ1

DA(i),µ
1
DA(i))�i (µ1(i)),µ1(i)) (4)

From Lemma 1, we know that µ2 is statically stable under isolated preferences and µ1. Now
suppose we ran the DA-IP algorithm at period 1 under isolated preferences and µ1. Let us denote
the resulting matching µ̄2. From Gale and Shapley (1962), we know that if µ̄2(i) 6= µ2(i), then
µ̄2(i) �2

i (µ
1)µ2(i). In other words, (µ1(i), µ̄2(i)) �i (µ1(i),µ2(i)). This along with relation 1 and

µ1(i) 6= µ2(i) implies that µ̄2(i) 6= µ1(i). Then by rankability, (µ1(i), µ̄2(i))�i (µ1(i),µ2(i)) implies
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(µ̄2(i), µ̄2(i))�i (µ2(i),µ2(i)). Now let us update relation 4.

(µ̄2(i), µ̄2(i))�i (µ2(i),µ2(i))

�i (µ2
DA(i),µ

2
DA(i))�i (µ1

DA(i),µ
1
DA(i))�i (µ1(i)),µ1(i)) (5)

Next we will proceed to show that µ̄2 is statically stable under isolated preferences and µ1
DA.

Let us postpone the proof momentarily to discuss its implications. From Lemma 1, we know
that µ2

DA is a stable matching under isolated preferences and µ1
DA. In addition, it must Pareto

dominate µ̄2 in terms of the isolated preferences, since µ̄2 is statically stable and the µ2
DA must

Pareto dominate all stable matchings (see Gale and Shapley (1962)). Hence, if µ2
DA(i) 6= µ̄2(i),

then µ2
DA(i) �2

i (µ1
DA)µ̄

2(i). By the definition of �2
i (µ1

DA) , (µ1
DA(i),µ

2
DA(i)) �i (µ1

DA(i), µ̄
2(i)).

Recalling that (µ1
DA(i),µ

1
DA(i))�i (µ1(i),µ1(i)), we find that (µ1

DA(i), µ̄
2(i))�i (µ1(i), µ̄2(i)). Weak

rankability and (µ̄2(i), µ̄2(i)) �i (µ2(i),µ2(i)) yield (µ1(i), µ̄2(i)) �i (µ1(i),µ2(i)). The previous
three relations yield (µ1

DA(i),µ
2
DA(i)) �i (µ1(i),µ2(i)). However, recall that µ Pareto dominates

µDA. This is the contradiction we are looking for. Thus, to complete the proof, it is left to show
that µ̄2 is statically stable under isolated preferences and µ1

DA.
We now proceed to show that µ̄2 is indeed a stable matching under isolated preferences and µ1

DA.
We already know from Assumption 1 and (5) that, for all i ∈ I1, µ̄2(i)�2

i (µ
1)µ2(i) if µ̄2(i) 6= µ2(i).

Also, from Gale and Shapley (1962), we know that, for all i ∈ I2, µ̄2(i) �1
i µ2(i) if µ̄2(i) 6= µ2(i).

Recall that µ̄2 is statically stable matching under isolated preferences and µ1. Now consider the
isolated preferences in period 1 from µ1

DA and suppose, under these isolated preferences, µ̄2 is not
stable. Therefore, there must exist a school-child pair (s, i) such that both conditions are satisfied:

I. – if i ∈ I1, then s�2
i (µ

1
DA)µ̄

2(i), or

– if i ∈ I2, then s�2
i µ̄2(i);

II. |µ̄2(s)|< |rs| or/and iB2
s (µ

1
DA) j for some j ∈ µ̄2(s).

Because µ̄2 statically stable under the isolated preferences and µ1, the conditions 1 and 2 below
cannot be satisfied at the same time.

1. (a) if i ∈ I1, then s�2
i (µ

1)µ̄2(i), or

(b) if i ∈ I2, then s�1
i µ̄2(i).

2. |µ̄2(s)|< rs or/and iB2
s (µ

1) j for some j ∈ µ̄2(s).

Suppose i ∈ I1. Then s�2
i (µ

1
DA)µ̄

2(i). We show that in this case condition 1(a) is satisfied. By
the definition of �2

i (µ
1
DA),

(µ1
DA(i),s)�i (µ1

DA(i), µ̄
2(i)).
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If µ1(i) = µ1
DA, then

(µ1(i),s)�i (µ1(i), µ̄2(i)).

This means that condition 1a is satisfied. Let µ1(i) 6= µ1
DA. Then preference relations given in (5),

Assumption 1,
(µ1

DA(i),s)�i (µ1
DA(i), µ̄

2(i))

and the fact that
(s,s)�i

(
µ̄2 (i) , µ̄2 (i)

)
imply that

(µ1(i),s)�i (µ1(i), µ̄2(i)).

Hence, condition 1(a) is satisfied. Suppose i ∈ I2. Then s�1
i µ̄2(i). Since �1 does not depend on

the last period’s matching, condition 1(b) is satisfied. Therefore, we find that either 1(a) or 1(b)
is satisfied. This means that 2 cannot be satisfied. Clearly, it must be that |µ̄2(s)|= rs. This implies
that school s’s priority ranking must satisfy iB2

s (µ
1
DA) j and jB2

s (µ
1)i, for at least some j ∈ µ̄2 (s).

There are 2 cases consider:

(i) i /∈ µ1
DA(s), or

(ii) i ∈ µ1
DA(s) and i ∈ I1.

If case (i) happens, this implies that j /∈ µ1
DA(s); otherwise, j would have the highest priority

at school s, hence, we reach a contradiction with iB2
s (µ

1
DA) j. Therefore, j /∈ µ1

DA(s). Since school
s’s priority ranking satisfies IPA, given that iB2

s (µ
1
DA) j it must be that j ∈ µ1(s) and j ∈ I1 to have

the required reversal of school s’s priority ranking. Then µ1
DA( j) 6= µ1( j). This, as argued earlier in

step 1, implies that (µ1
DA( j),µ1

DA( j))� j (µ1( j),µ1( j)) = (s,s), where the last equality comes from
the fact above, that if j /∈ µ1

DA(s), it must be that j ∈ µ1(s). Now recall that j ∈ µ̄2(s). Therefore,

(µ1
DA( j),µ1

DA( j))� j (µ1( j), µ̄2( j))

which is a contradiction (see preference relation 5).
Suppose (ii) happens, i ∈ µ1

DA(s), i.e., s = µ1
DA(i). We know s�2

i (µ
1
DA)µ̄

2(i). These conditions
yield

(µ1
DA(i),µ

1
DA(i))�i (µ1

DA(i), µ̄
2(i)).

This is a contradiction which we are looking for.
This completes the proof of step 2.

Step 3. The DA-IP algorithm yields a stable matching that is not Pareto dominated by any other
stable matchings.
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Proof of Step 3. Proving step 3 is just a matter of reiterating the arguments of steps 1 and 2 assuming
previous periods’ matchings are identical with the ones resulted from the DA-IP algorithm.

Now we study if any stable matching is efficient. The next proposition yields that unless one
follows the DA-IP algorithm, then any stable matching is not efficient.

Proposition 4. Consider any market in which the schools’ priorities satisfy IPA. Then any stable

matching different from the DA-IP matching is not efficient.

Proof of Proposition 4. Consider any stable matching µ with some period t ≥ 1 matching that
is different from the one that the DA-IP algorithm under isolated preferences and µt−1 yields.
Consider any i ∈ It . Then µt(i) = µt+1(i) or

(µt+1(i),µt+1(i))�i (µt(i),µt(i));

otherwise, µ is not stable because, in this case, child i would have the higher priority at school µt(i)

and
(µt(i),µt(i))�i (µt(i),µt+1(i))

by Assumption 1.
For each child i ∈ It−1∪ It , define her preference relation to be P t

i such that sP t
i s′ if and only if

(µt−1(i),s)�i (µt−1(i),s′) whenever i ∈ It−1

(s,µt+1(i))�i (s′,µt+1(i)) whenever i ∈ It

Because µ is stable, there cannot exist any school-child pair (s, i) such that

1. (µt−1(i),s)�i (µt−1(i),µt(i)) or (s,µt+1(i))�i (µt(i),µt+1(i)),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

In terms of P , these conditions mean that there is no school-child pair (s, i) such that

1. sP t
i µt(i),

2. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

In other words, µt is a statically stable matching under P and µt−1.
Consider matching µ̄ such that µ̄τ = µτ for all τ 6= t but µ̄t is the resulting matching from the

DA-IP algorithm under P and µt−1.
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From Gale and Shapley (1962), we know that µ̄t must Pareto dominate every other stable
matching under P and µt−1. This and that µt is a statically stable matching under P and µt−1 imply
that µ̄t(i)Piµt(i) for all i ∈ It−1∪ It if µ̄t(i) 6= µt(i). Consequently, if µ̄t(i) 6= µt(i) for some i ∈ It−1,
then (µt−1(i), µ̄t(i))�i (µt−1(i),µt(i)). Similarly, if µ̄t(i) 6= µt(i) for some i ∈ It then

(µ̄t(i),µt+1(i))�i (µt(i),µt+1(i)).

Now consider µ̄ and µ. Clearly, µ̄ Pareto dominates µ if µ̄t(i) 6= µt(i) for some i ∈ It−1∪ It . Hence,
it must be that µ̄t(i) = µt(i) for all i ∈ It−1∪ It .

Consider µ̂ such that µ̂τ = µτ for all τ 6= t but µ̂t is the resulting matching from the DA-IP
algorithm under isolated preferences and µ̂t−1. Clearly, µ̄t−1 = µ̂t−1, hence, the priority rankings
of the schools are the same under both µ̄ and µ̂. In addition, for each j∈ It−1, the isolated preference
relation �2

j (µ
t−1) is equivalent to P j. Now consider any child j ∈ It . Then under P , the relative

ranking of µt+1( j) weakly improves from the one under �1
j . In all other aspects, P j and �1

j are the
same. Now recall that µ̄t(i) = µt(i) for all i ∈ It−1∪ It . In addition, recall that µt(i) = µt+1(i) or

(µt+1(i),µt+1(i))�i (µt(i),µt(i)).

Therefore, under both P j and �1
j , the set of schools that are strictly preferred to µt( j) is the

same. Consequently, we obtain that under P and isolated preferences, for each j ∈ It−1∪ It , the set
of schools that are strictly preferred to µt( j) is the same. In addition, because the DA-IP algorithm
is used for both cases and µ̄t( j) = µt( j) for all j ∈ It−1∪ It , it must be µ̄t = µ̂t thanks to Theorem 9
in Dubins and Freedman (1981). Consequently, µt = µ̂t , which contradicts that µt differs from the
matching that the DA-IP algorithm yields.

Proposition 4 means that if any stable matching is efficient, then it must be the DA-IP matching.
However, from Roth (1982), it is well known that the DA-IP matching (in static settings) is not
necessarily Pareto efficient. This is still the case in our setting.

Appendix C: Proofs

Proof of Lemma 1. Necessity. Assume µ is stable. We need to show that for all t ≥ 1, µt is statically
stable under isolated preferences and µt−1. Suppose otherwise. Then there must exist t ≥ 1 and a
school-child pair (s, i) such that

1. if i ∈ It , then s �1
i µt(i) and at least one of the following is satisfied: |µt(s)| < rs or/and

iBt
s (µ

t−1) j for some j ∈ µt(s),
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2. if i ∈ It−1, then s �2
i
(
µt−1)µt(i) and at least one of the following is satisfied: |µt(s)| < rs

or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Suppose i ∈ It . Then we are in case 1. Since µ satisfies autarkic stability, the following 2
conditions cannot be satisfied at the same time: (a) (s,µt+1(i))�i (µt(i),µt+1(i)) and (b) |µt(s)|< rs

and/or iBt
s (µ

t−1) j for some j ∈ µt(s). If (b) is not true, then this is a contradiction because (s, i)

must satisfy the conditions given in case 1. Hence, assume that (b) is satisfied but (a) is not, i.e.,
(µt(i),µt+1(i)) �i (s,µt+1(i)). If µt(i) 6= µt+1(i), Assumption 1 implies that (µt(i),µt(i)) �i (s,s).
By the definition of �1, µt(i)�1

i s which contradicts with the assumption that s�1
i µt(i). Suppose

µt(i) = µt+1(i). Recall that s �1
i µt(i), hence, (s,s) �i (µt(i),µt+1(i)). Recall that (b) is satisfied.

Thus, by moving to school s in period t, child i would have the highest priority at school s at time
t +1. Hence, µ is not stable. Hence, i /∈ It .

Suppose i ∈ It−1. Then we are in case 2. Because µ satisfies autarkic stability, the following 2
conditions cannot be satisfied at the same time: (a) (µt−1(i),s)�i (µt−1(i),µt(i)) and (b) |µt(s)|< rs

and/or i Bt
s (µ

t−1) j for some j ∈ µt(s). If (b) is not true, then this is a contradiction because
(s, i) must satisfy the conditions given in case 2. Hence, (b) must be satisfied but (a) is not, i.e.,
(µt−1(i),µt(i))�i (µt−1(i),s). By the definition of �2

i (µ
t−1), we have that µt(i)�2

i (µ
t−1)s which

contradicts with the assumption that s �2
i
(
µt−1)µt(i). Hence, i /∈ It−1. Therefore, for all t, µt is

statically stable under isolated preferences and µt−1.
Sufficiency. For any t ≥ 1, µt is statically stable under isolated preferences and µt−1. First let us
show that µ satisfies autarkic stability. Suppose otherwise. Then, at some period t ≥ 1, there must
exist a pair (s, i) such that one of the two conditions below is satisfied:

1. (a) (s,µt+1(i))�i (µt(i),µt+1(i)), and

(b) |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

or

2. (a) (µt−1(i),s)�i (µt−1(i),µt(i)), and

(b) |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s).

Suppose case 1 occurs. If s 6= µt+1(i), then rankability and

(s,µt+1(i))�i
(
µt(i),µt+1(i)

)
yield (s,s)�i (µt(i),µt(i)). By definition of �1

i , we have that s�1
i µt(i). This and 1b mean that µt

is not statically stable under isolated preferences and µt−1. This is a contradiction. Suppose, on the
other hand, that s = µt+1(i). If

(µt+1(i),µt+1(i))�i (µt(i),µt(i)),
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then the definition of �1
i yields µt+1(i) �1

i µt(i). This and 1b mean that µt is not statically stable
under isolated preferences and µt−1.

Suppose (µt(i),µt(i))�i (µt+1(i),µt+1(i)). This and Assumption 1 yield

(µt(i),µt(i))�i
(
µt(i),µt+1(i)

)
.

Consider period t + 1. Then by the definition of �2
i (µt), we have that µt(i) �2

i (µt)µt+1(i). In
addition, observe that child i has the highest priority at school µt(i). The last 2 conditions contradict
that µt+1 is statically stable under isolated preferences and µt .

Suppose case 2 occurs. By the definition of �2
i (µt−1), we have that s �2

i (µt−1)µt(i) since
(µt−1(i),s) �i (µt−1(i),µt(i)). But this and 2b directly imply that µt is not statically stable under
isolated preferences and µt−1. This is a contradiction.

We have shown that µ satisfies autarkic stability. Now we are left to show that µ is stable if IPA

is satisfied. Suppose otherwise. Then by Lemma 2, for some period t and some school-child pair
(s, i),

1. µt(i) = µt+1(i)

2. (s,s)�i (µt(i),µt+1(i))

3. |µt(s)|< rs or/and iBt
s (µ

t−1) j for some j ∈ µt(s)

The first 2 conditions and the definition of �1
i yield s �1

i µt(i). This and the third condition
imply that µt is not statically stable under isolated preferences and µt−1.
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