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Implications of measurement error structure on the visualization
of multivariate chemical data: hazards and alternatives

Peter D. Wentzell, Chelsi C. Wicks, Jez W.B. Braga, Liz F. Soares, Tereza C.M. Pastore, Vera T.R. Coradin,
and Fabrice Davrieux

Abstract: The analysis of multivariate chemical data is commonplace in fields ranging from metabolomics to forensic classifi-
cation. Many of these studies rely on exploratory visualization methods that represent the multidimensional data in spaces of
lower dimensionality, such as hierarchical cluster analysis or principal components analysis. However, such methods rely on
assumptions of independent measurement errors with uniform variance and can fail to reveal important information when
these assumptions are violated, as they often are for chemical data. This work demonstrates how two alternative methods,
maximum likelihood principal components analysis (MLPCA) and projection pursuit analysis (PPA), can reveal chemical infor-
mation hidden from more traditional techniques. Experimental data to compare different methods consists of near-infrared
reflectance spectra from 108 samples of wood that are derived from four different species of Brazilian trees. The measurement
error characteristics of the spectra are examined and it is shown that, by incorporating measurement error information into the
data analysis (through MLPCA) or using alternative projection criteria (i.e., PPA), samples can be separated by species. These
techniques are proposed as powerful tools for multivariate data analysis in chemistry.

Key words: chemometrics, exploratory data analysis, near-infrared spectroscopy, measurement errors, projection pursuit.

Résumé : L’analyse de données chimiques a plusieurs variables est couramment employée dans divers domaines allant de la
métabolomique a la classification criminalistique. Bon nombre de ces études reposent sur des méthodes exploratoires de
représentation des données multidimensionnelles dans des espaces de faible dimensionnalité, comme la classification hiérar-
chique ou I’analyse en composantes principales. Cependant, de telles méthodes ne sont fiables que si ’on admet que les erreurs
de mesure sont indépendantes et que la variance est uniforme. Elles peuvent donc faillir a mettre en lumiére d’importantes
informations si ces suppositions devaient étre erronées, ce qui est souvent le cas des données en chimie. Ces travaux démontrent
comment deux autres méthodes, I’analyse en composantes principales a probabilité maximale (ACPPM) et la poursuite de
projection (PP), permettent révéler des informations chimiques omises par des techniques plus traditionnelles. Afin de comparer
expérimentalement les différentes méthodes, nous avons recueilli les spectres de réflectance dans le proche infrarouge de
108 échantillons de bois provenant de quatre especes d’arbres brésiliens. Nous avons examiné les caractéristiques des erreurs de
mesure des spectres et nous avons observé que, en incorporant ces informations d’erreur de mesure dans I’analyse des données
(par ACPPM) ou en utilisant d’autres criteres de projection (c.-a-d. la PP), nous pouvons distinguer les échantillons selon I’espece
d’arbre. Ces techniques peuvent constituer de puissant outils pour ’analyse multidimensionnelle de données en chimie. [Traduit
par la Rédaction]

Mots-clés : chimiométrie, analyse exploratoire des données, spectroscopie proche infrarouge, erreurs de mesure, poursuite de
projection.

Introduction are hierarchical cluster analysis (HCA)'-® and principal compo-
nents analysis (PCA)."-> HCA is a nonlinear mapping technique
that renders the information about the distance among objects

h ¢ lists of protein abund tri (samples) in a high-dimensional space into a two-dimensional rep-
chromatograms, lists of protein abundances), matrices (€.g., two- resentation known as a dendrogram. Often these are used in con-

dimensional NMR spectra, LC-MS data, hyperspectral images), of  jynctjon with so-called heat maps to display the characteristics of
higher order tensors. To understand the complex relationships variables, such as the expression levels of genes or proteins. PCA is
among different sets of measurements (e.g., samples), simplifica- a linear projection technique that projects the multivariate data
tion is often sought through visualization of the high-dimensionaldata  into a two- or three-dimensional space while preserving informa-
in low-dimensional spaces, sometimes referred to as exploratory tion about the relationships among objects. These projections,
data analysis. Two methods that are widely used for this purpose commonly known as scores plots, are often used to determine

Modern chemical measurements are often multivariate in na-
ture, taking the form of vectors (e.g., mass spectra, NMR spectra,
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which samples group together and can therefore be considered to
represent a cluster or class.

Both HCA and PCA are extensively used in chemical applica-
tions that include proteomics,®” metabolomics,®1° food science,-1?
forensics,'>> medical diagnostics,'®-1”7 and threat detection.’® An
important goal of both techniques in these and other applications
is to either identify or confirm groupings of samples that are
consistent with external classifications that are based on other
factors, such as disease state (medicine), geographic origin (food
analysis), provenance (forensics), and biological species (chemo-
taxonomy). The widespread use of these tools is based, in part, on
the fact that they are unsupervised methods, which means that
the visualization uses no prior knowledge of the class structure.
This is in contrast to supervised methods, such as partial least
squares discriminant analysis (PLSDA),'°-20 that actively employ
class information to build a model and therefore require careful
validation to avoid overfitting. Because no class information is
employed in HCA and PCA, they have gained acceptance as suit-
able methods for hypothesis confirmation where the key question
is whether the data contain sufficient information to distinguish
different groups of samples, especially when the number of sam-
ples is small and the number of variables is large. This is often a
critical question in research and can determine whether a line of
inquiry continues or is abandoned. This accounts for the pervasive
application of these methods across all areas of chemistry.

Although HCA and PCA are powerful and useful techniques,
they can be subject to serious limitations when applied to prob-
lems where the data do not meet certain criteria. HCA is based on
the calculation of Euclidean distances among objects in higher
dimensions, whereas PCA creates a subspace that maximizes the
amount of variance retained in the data. Both of these methods
are sensitive to the scale of the data, which means that variables
that have a larger range will be weighted more heavily in mapping
the high-dimensional data to lower dimensions, even if the infor-
mation content is greater for variables with a smaller range. For
example, a small mass spectral or NMR peak that contains impor-
tant information for the separation of classes may be eclipsed by
larger peaks with a variability that does not correlate with class
separation, resulting in a projection that does not reveal the crit-
ical relationships. In some cases, this problem may be mitigated
by appropriate pretreatment of the data (e.g., variable scaling, log
transformation); however, this may give rise to other problems.?21-22
For example, scaling of variables that are predominately associated
with noise (e.g., baseline regions) increases their influence in the
mapping process even though they have no relevance in classifica-
tion. This problem is further exacerbated by complex measurement
noise structures that may include non-uniform error variance
among variables (referred to as heteroscedastic noise) or corre-
lated errors.2?

The principal weaknesses of HCA and PCA for unsupervised
clustering with multivariate chemical data are (i) lack of a crite-
rion to distinguish meaningful chemical variance in a data set
from the noise variance, and (ii) a reliance on variance and dis-
tance metrics to develop interesting and useful projections of the
data. In this paper, two alternative approaches are presented to
address these shortcomings. The first approach is the use of max-
imum likelihood principal components analysis (MLPCA), which
directly incorporates prior information about the measure-
ment error variance into the decomposition process, thereby
more effectively distinguishing the chemical variance from the
noise variance.?3-25 The second approach employs a new imple-
mentation of an old idea known as projection pursuit analysis
(PPA), which is not based on variance or distance metrics.2¢-3! To
demonstrate these methods, near-infrared (NIR) reflectance spec-
tra, which exhibit a heteroscedastic and correlated noise struc-
ture, are employed to show how the new approaches provide
superior clustering information.

Can. J. Chem. Vol. 00, 0000

Background

PCA and HCA

Because PCA and HCA are widely used techniques, only a brief
description will be provided here to place them in the context of
the lesser known methods, and the reader is referred to more
detailed treatments in standard texts.-># If the measurement data
are represented by the matrix X (m x n) consisting of n variables
(measurement channels) for m objects (samples), then the PCA
decomposition results in an orthogonal rotation of the original
variable space such that the data matrix can be represented as

1 X=TP

where T (m x p) is the scores matrix, which gives the coordinates of
the objects in the new space, and the rows of P (p x n) represent the
eigenvectors (or loadings), which define the rotation of the origi-
nal space (i.e., the linear combinations of the original variables
giving rise to the new variables). The dimension p will be the
smaller of m or n and defines the mathematical rank of X. There
are an infinite number of possible rotations of the original space;
however, PCA provides the solution that maximizes the variance
accounted for by each subsequent dimension (principal component
or factor). The g-dimensional estimation of the data is given by

where q < p, and T, (m x q) and P, (q x n) are the truncated scores
and loadings matrices, respectively, consisting of the first q col-
umns of T and the first q rows of P. For a given g, the decomposi-
tion minimizes the sum of squared residuals, SSR;:

(3) SSR, = i i (% — ﬁij)z

=1 j=1

where the notation “ij” indicates the measurement at row i and
column j. Equivalently, this maximizes the amount of total vari-
ance retained in X. If g is chosen to be 2 or 3, the columns of T, can
be plotted against one another as a scores plot. Ideally, this yields
an optimal visualization of the relationships among objects.

In HCA, the concept is to measure the distances among objects
in the data set and group the objects (rows of X) that are closest
together. Starting with the same matrix, X, the Euclidean distance
between each pair of objects, i and j, is first calculated according to

k=1

This leads to a symmetric distance matrix, D (m x m) with diag-
onal elements of zero. In the next step, the two objects with the
shortest distance are identified and combined to form a new ob-
ject that replaces the former objects, and a new distance matrix is
calculated. Because the new object is a combination of the origi-
nal objects, there is a variety of options (called linkage methods)
to represent the new distance, such as using the average distance
to the group or the distance to the nearest original object, but
these will not be discussed in detail here. This process is then
repeated, incrementally reducing the number of objects present
at each iteration until only a single connection remains to be
made. The hierarchy of these connections is finally displayed as a
tree structure (a dendrogram) with the relationships between ob-
jects represented as a chain of branch points where the vertical
height of each branch point represents the distance between the
connected objects (a measure of “dissimilarity”). Those objects
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(most often samples) emanating from a common branch point are
considered to be most closely related (a cluster) with their simi-
larity related to the height of the branch point.

Although they are different approaches, both PCA and HCA are
based on measuring the squared differences among objects. These
differences include both chemical variations and measurement
noise. Both methods are designed to provide an optimal represen-
tation of the chemical variance when the measurement noise is
independent and identically distributed with a normal distribu-
tion, often referred to as iid normal noise. This means that it is
assumed that all of the measurements in the data set have the
same error variance and there is no relationship among the errors
for different variables (i.e., they are uncorrelated). While this is an
implicit assumption in many data analysis methods (e.g., univar-
iate regression), it is violated more often than not and can lead to
suboptimal results.?3.32-34

Measurement error structures

For univariate measurements, the uncertainty can be fully de-
scribed by the error variance, o2, of the measurement. For multi-
variate measurements, it is necessary not only to provide the
measurement variance for each variable, ¢7, but also to provide
the covariance between measurement channels, o;. Chemical
measurement vectors are often heteroscedastic, meaning that dif-
ferent elements of the vector can exhibit different error variance.
This non-uniform variance arises naturally from the measure-
ment system.32-35 For example, fundamental counting statistics,
governed by the Poisson distribution, give rise to what is often
referred to as shot noise, where the error standard deviation is
proportional to the square root of the signal intensity. Such noise
may be limiting in spectroscopic or mass spectrometric measure-
ments where the signal amplitude is low. Proportional noise,
where o is proportional to the magnitude of the signal, is also
commonly observed and typically associated with variations in a
light source or ion source. Likewise, many measurement systems
exhibit noise that is highly correlated. This includes baseline off-
set noise and multiplicative offset noise, the latter of which is
typically the limiting noise source in NIR reflectance spectroscopy
(vide infra), arising from variations in path length due to sample
heterogeneity. Low frequency noise, also known as pink noise or
1/f noise, also falls into this category and is sometimes referred to
as source flicker noise or drift noise in the context of analytical
measurements.35-41

A common method to characterize multivariate measurement
errors is the error covariance matrix (ECM).23:24.32.33 If we con-
sider a measurement vector, x (1 x n), which is an observation of a
true (error-free) vector, x°, the error vector, e, is defined as the
difference between these vectors, e = X — x°. The error covariance
between measurement channels i and j of the vector is defined as
the expectation of the product of the corresponding errors:

E (% - x?)(xj - "10)

N

(5) o; = Ele;-e) = II%LIL

Here the summation is over multiple realizations of measure-
ment vector x and x; and x; are elements of that measurement
vector. When i = j, the corresponding quantity is the error vari-
ance, signified as o7 rather than o;,. The collection of all of these
error covariances is described by the ECM (X) defined as the outer
product of the expectation of the error vectors:

(6) X =Ee"e) = Ex — x)'(x — x°)]

The ECM is a symmetric (n x n) matrix, where the diagonal ele-
ments represent the error variance of each of the n variables and

the off-diagonal represents the error covariances of the corre-
sponding elements. The ECM is one of the most complete ways to
describe the errors in a vectorial measurement with stationary
characteristics. A related method is the error correlation matrix,
R, which normalizes the off-diagonal elements by their corre-
sponding standard deviations such that:

This removes the effects of scale (diagonal elements are unity) and
allows more direct visualization of correlation. Errors with p; =1
are perfectly correlated.

In practice, the true measurement vector is unknown, so the
experimental ECM is normally estimated by making replicate ob-
servations of the measurement vector and subtracting the sample
mean vector (X). If r experimental replicates of the measurement
vector (e.g., a spectrum) are made, the ECM is estimated as

®)  Top= g X Bl - B

k=1

It should be noted that the definition of the replicate is very
important in this context, as it needs to capture all of the sources
of variation one wishes to consider as measurement errors. Con-
sequently, the ECM can be quite different depending on whether
it is to include, for example, only technical replication or also
sampling variability.

The ECM estimated by the replication procedure above is likely
to be quite noisy itself when the number of replicates is relatively
small?3-32 and therefore of limited practical utility. Two ap-
proaches are commonly used to improve the quality of the ECM.
The first is to pool (average) the ECMs obtained for different mea-
surement vectors, each with a limited number of replicates.?? This
results in an averaging effect that leads to a smoother ECM but
makes the implicit assumption that measurement vectors for dif-
ferent samples have the same ECM. Although not strictly valid,
this assumption is reasonable where measurements exhibit simi-
lar characteristics. The second approach is to develop an empirical
model of the ECM.32:33:42 For many kinds of measurements, the
ECM can be represented using a model characteristic of that par-
ticular technique using a limited number of parameters. Where
this can be done, the result is a smoother, more reliable ECM that
can be calculated separately for each measurement vector.

Knowledge of the measurement error characteristics through
the ECM is key to improving data analysis methods, because it
allows better extraction of the chemical variance from the associ-
ated noise variance. By implicitly describing the information as-
sociated with each measurement, the ECM allows more optimal
results to be obtained.

Maximum likelihood principal components analysis (MLPCA)
MLPCA was developed as a tool to provide better subspace esti-
mation for multivariate data when assumptions of iid normal
errors are no longer valid.?3-25 It can be viewed as a more gener-
alized form of PCA in which the ECM is incorporated into the
decomposition procedure to yield a more optimal solution. Rather
than simply minimizing the residual variance of the truncated
g-dimensional solution, MLPCA uses a weighted objective func-
tion that attempts to match the residual variance to the charac-
teristics of the ECM for each measurement vector. The approach is
analogous to using weighted least squares in univariate regres-
sion. The specific objective function used depends on the com-
plexity of the error structure and there are six general categories,
ranging in complexity from the trivial case of iid normal errors
(where MLPCA and PCA are equivalent) to general error heterosce-
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dasticity and correlation that can exist within both the rows and
the columns of a data matrix. One of the most common imple-
mentations is where error correlation exists only within the rows
of a data matrix. Under these conditions, the objective function to
be minimized is defined as

m

O Shy= D~ &) - &)

i=1

where, x; represents measurement vector i (row i of X), &, is the
estimate of the vector based on the MLPCA decomposition, and 3,
is the ECM for the vector. In the general case, this objective func-
tion is optimized by an alternating least squares algorithm, but in
the special case where 3, is the same for all row vectors, a direct
solution can be obtained through rotation and scaling of the orig-
inal data. Another difference between MLPCA and PCA is that,
where PCA uses an orthogonal projection of the measurement
vector onto the subspace to obtain the scores vector (t, = (P, x")7),
MLPCA employs a maximum likelihood projection:

(10)  t,=x3"P(PE 7P

This oblique projection uses the information in the error covari-
ance matrix to ensure that the projection uses the measurements
in x that minimize the uncertainty in the low dimensional projec-
tion.

In principle, MLPCA should result in the optimal subspace esti-
mation assuming that the intrinsic dimensionality of the data
(also called the pseudorank, q) and the ECM are exactly known. In
practice, q is often uncertain and only an estimated ECM is avail-
able, so this can limit the optimality of the solution. There can
also be complications from rank deficiency of the ECM (which
needs to be inverted) when it is estimated from a limited number
of replicates, although there are strategies to address this.?>43
Despite these limitations, however, MLPCA has demonstrated su-
perior performance to PCA in a variety of applications ranging
from multivariate calibration*#4> to curve resolution.#6-47

Projection pursuit analysis (PPA)

An inherent limitation of PCA and HCA is an assumption that
the largest source of chemical variation in a data set is associated
with the characteristic we are interested in, specifically, in the
current context, the classification of samples into two or more
groups. For example, in the detection of a disease state, itis hoped
that the dominant source of difference is in a set of chemical
compounds that are associated with the presentation of the dis-
ease, often referred to as biomarkers. However, the differences
among these compounds may be obscured by other natural vari-
ations in the data set, resulting in an exploratory visualization
that does not reveal clustering according to the anticipated char-
acteristics. To overcome these limitations, it is necessary to use
visualization methods that do not rely solely on variance metrics.

The concept of projection pursuit was first advanced nearly
five decades ago, originally proposed by Kruskal?¢ and named
by Friedman and Tukey,?” who further developed the idea. The
strategy proposed is simply to look for linear projections of the
multivariate data that are interesting based on a measure of
“interestingness” as quantified by a projection index. Although
the concept is simple, implementation has been complicated by
(i) how to define “interesting”, (ii) how to quantify a projection
index consistent with this definition, and (iii) how to optimize the
projection index once it is defined. A common criterion for inter-
esting projections is those that exhibit non-Gaussian behavior,
but this can be difficult to quantify, especially in chemical appli-

Can. J. Chem. Vol. 00, 0000

cations where the number of samples tends to be small. Conse-
quently, PPA has not gained much traction in chemical research.
Recently, however, PPA algorithms have been developed that are
both effective and efficient for chemical data?®-3! and have been
applied to problems that include forensics, metabolomics, and
provenance.?8-3048 These algorithms are based on the use of kur-
tosis, the fourth statistical moment, as the projection index. For
univariate measurements, including projections into a one-
dimensional space, the kurtosis can be defined as

N (v —

1) k=

[N >~ %7

where « is used to represent the kurtosis and the summations are
over N measurements. Alternative definitions are also employed
for multivariate kurtosis and the reader is referred to the original
reference for a more complete description.?® Kurtosis is a simple
and useful measure for assessing the normality of data, taking on
a value of 3 for a normal distribution, with higher values for
heavily tailed distributions and lower values for flatter distribu-
tions. In particular, minimizing the kurtosis of projected data will
emphasize naturally occurring clusters. Minimization of the pro-
jection index is a nonlinear optimization problem but can be
performed efficiently through the use of a quasi-power method.?®

Although a variety of PPA algorithms have been developed
based on these principles, the most effective for clustering is often
the stepwise univariate kurtosis PPA algorithm, which succes-
sively partitions the data into binary groups. Because it is not
based on variance, PPA can often reveal clusters in the data that
are not apparent with PCA and HCA, as will be demonstrated in
this work.

Experimental

Computational aspects

All calculations were carried out within the MatLab program-
ming environment (Mathworks, Natick, MA). Programs for carry-
ing out MLPCA and PPA were written in-house and are available
from the corresponding author, as are the data.

Species selection

The broad objective of this research, of which this study is a
part, is the development of instrumental methods to distinguish
wood species, with a particular emphasis on discriminating high
value species such as mahogany. Species were selected based on
the book “Similar woods to mahogany (Swietenia macrophylla
King.): An illustrated key for anatomical field identification”,*°
edited by the Brazilian Forest Service. From the 15 species listed,
the three species that were the most difficult to distinguish, based
on the appearance and macroscopic wood characteristics, were
chosen for this study. These were Carapa guianensis Aubl., Cedrela
odorata L., and Micropholis melinoniana Pierre, along with mahog-
any itself, Swietenia macrophylla King.

Sampling and sample preparation

Each sample of crabwood (C. guianensis), cedar (C. odorata), and
curupixa (M. melinoniana) was obtained from an individual disk
located at the base of a tree trunk. The samples of S. macrophylla
were collected in authorized forestry exploitation areas in Para
state, Brazil. Mahogany samples were obtained from tips of seized
boards coming from the state of Mato Grosso, Brazil. Altogether,
108 solid samples were measured, 26 of crabwood, 28 of cedar,
29 of curupixa, and 25 of mahogany. Besides alleged species, all
samples were identified by a wood anatomist of the Forest Products
Laboratory in Brasilia, registered as FPBw in the Index Xylariorum.>°
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Fig. 1. Near-infrared reflectance spectra of wood samples. (@) Mean
spectra of four species, as indicated in the legend. (b) Full set of
432 spectra. [Colour online.|
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Samples were dried in open air conditions and cut into blocks
of approximately 2 cm?® with oriented faces according to wood
growth directions. Surfaces were made uniform with 80 grit sand-

paper.

Acquisition of spectra

Samples were measured on a handheld spectrometer, Phazir RX
(Polychromix). Four replicate spectra were obtained for each sam-
ple, two on each radial face, measured on distinct spots, resulting
in a total of 432 spectra. Spectra were measured in the diffuse
reflectance mode between 939.5 and 1796.6 nm with 9 nm of
resolution. Resultant spectra (Fig. 1) consisted of 100 data points
per spectrum and were converted to log(1/R) scale for the data
analysis. Figure 1a shows the mean spectrum for each of the four
species, and Fig. 1b shows all 432 spectra, with each of the repli-
cates displayed individually. The data used in this study are pro-
vided in the Supplementary data.

Results and discussion

PCA and HCA of NIR spectra

It is clear from Fig. 1 that spectra of the four species exhibit a
strong similarity and that the variation between individual sam-
ples is quite large, making the discrimination of the four classes a
challenging problem. To determine if the usual data visualization
methods would be able to distinguish the classes, PCA and HCA
were applied to the NIR spectra. To improve the quality of the
measurements and simplify the visualization, the mean of the

Fig. 2. Paired scores plots from principal components analysis of
sample mean spectra after column mean-centering, with species
identified as in the legend. [Colour online.]
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four replicate spectra were used for each sample, resulting in a
data matrix of 108 samples by 100 wavelength channels. Initially,
only column mean centering was applied to the data. The paired
scores plots for the first four principal components from PCA are
presented in Fig. 2, where the different species are represented by
different symbols as indicated in the legend. Based on the distri-
bution of samples in the scores plots, there is no apparent sepa-
ration of the species based on the NIR spectra. Although there is
some suggestion of separation of classes 2 and 4 (C. odorata and
S. macrophylla) using the third and fourth PCs, there is still strong
overlap and no clear clustering is evident. Higher PCs did not
improve separation.

In many cases of multivariate analysis, it is necessary to prepro-
cess data to obtain satisfactory results, so a variety of common
preprocessing methods were employed here to see if the class
separation could be improved. These included autoscaling, multi-
plicative signal correction, and the standard normal variate. Mul-
tiplicative signal correction and the standard normal variate are
widely used in NIR spectroscopy to account for multiplicative
offset noise.'”->! None of the methods implemented resulted in
any improvement of the PCA results.

The application of HCA did not improve on these results. HCA
was implemented through algorithms in the Statistics and Ma-
chine Learning Toolbox of MatLab. A variety of linkage (average,
complete, median, etc.) and preprocessing (autoscaling, multipli-
cative signal correction, standard normal variate) options were
applied to both the full set 0f 432 spectra and the set 0108 sample
mean spectra. Results for the latter are shown in Fig. 3, with the
symbols and the colour of the bottom branches representing the
species. The results shown are for an average distance calculation
and mean-centering as the only preprocessing. Although some
local groupings are evident in the tree structure, no consistent
clusters are observed that would strongly support the hypothesis
that the species can be distinguished on the basis of their NIR
spectra. Although different preprocessing and linkage options
produced changes in the tree structure, similar irregular class
distributions were observed in all cases with no strong evidence of
clusters related to species.

Error structure of NIR spectra

A central premise of this work is that exploratory analysis by
HCA and PCA can be adversely affected by non-iid error struc-
tures. It is therefore necessary to examine the measurement error
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Fig. 3. Dendrogram resulting from hierarchical clustering of sample
mean spectra after mean-centering. Species are colour coded in the
same manner as Figs. 1and 2. Mean distance was used in the clustering
algorithm. [Colour online.]
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characteristics of the NIR spectra that are the focus of this study.
For each of the 108 samples examined, replicate spectra were
obtained from four different physical locations and should reflect
the within-sample error variance. On the basis of these four rep-
licates, an ECM can be calculated for each sample using eq. 8,
leading to 108 individual ECMs.

Unfortunately, ECMs calculated on the basis of a small number
of replicates are very noisy and unreliable.*? For example, an error
variance estimated from four replicates is expected to have a rel-
ative standard deviation of about 82%. This high level of noise in
the individual ECMs makes their visual interpretation difficult
and precludes their use in any advanced data analysis strategy.
One solution to this problem, as noted earlier, is to pool (average)
individual sample ECMs. This is valid in cases where the spectral
characteristics of the samples are very similar, and therefore, the
improved precision gained by pooling outweighs any between-
sample differences. The similarity of the spectra in this study is
evident from Fig. 1, so pooling was a viable option.

Initial pooling of the ECMs was carried out within each of the
four species investigated. This was done as a preliminary evalua-
tion to confirm the similarity of the ECMs within each group prior
to global pooling, which is normally done. It was anticipated that
the four ECMs would show very similar characteristics, which
were consistent with NIR spectra. Although this was true for three
of the groups (classes 1, 2, and 4), the remaining group (class 3) was
distinctly different from the others, as shown in Fig. 4. For
classes 1, 2, and 4 (Figs. 4a, 4b, and 4d), the ECMs are typical for NIR
spectra,?3-32 showing heteroscedastic noise (non-uniform vari-
ance) along the diagonal and, more importantly, structured cova-
riance (off-diagonal elements) that is consistent with offset and
multiplicative offset noise. The latter is a dominant noise source
in NIR reflectance measurements, arising from differences in the
effective path length of scattered photons caused by changes in
the scattering characteristics of the sampled region. The result is
a shift in the spectral intensity proportional to its magnitude
(hence the term multiplicative offset noise). The direction of the
shift from the mean is random but is consistent within a spec-
trum, leading to highly correlated noise in which variance and
covariance are directly related to the signal magnitude, as is evi-
dent in Figs. 4a, 4b, and 4d. Figure 4c is anomalous in this regard,
however. Although the correlated and heteroscedastic noise is
still evident, the magnitude of the measurement errors is largest
in the shorter wavelength regions, where the signal is the lowest.
This is confirmed through an examination of Fig. 1b, which shows
a substantially greater variation of M. melinoniana in this region.
The reason for the anomalous behavior of the third class is un-
clear, but it may be due to different physical properties that lead
to different scattering characteristics by these samples.

Although the differences observed above suggest that a global
pooling of ECMs from each class may not be representative of all
samples, global pooling was nevertheless carried out and the re-
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sults are shown in Fig. 5a. As anticipated, the globally pooled ECM
(calculated using a weighted average reflecting the number of
samples in each group) reflects the characteristics of the domi-
nant classes (1, 2, and 4) but with a higher variance and (or) cova-
riance in the short wavelength region due to the contribution of
class 3. Despite its inaccuracy in its universal representation of all
errors, the globally pooled ECM can still give improved results,
because it is still superior to the assumption of iid normal errors,
which is made in the usual applications of HCA and PCA. This is
further explored in the section that follows. Also shown in Fig. 5b
is the error correlation matrix (R) corresponding to the ECM (2) in
Fig. 5a, calculated using eq. 7. The error correlation matrix re-
moves the effects of the magnitude of the error that are evident in
the ECM, showing only how they are related. Figure 5b shows
almost perfect correlation (same direction and relative magnitude
change in the errors) within three regions (<1148 nm, 1166-
1343 nm, >1395 nm) but a smaller degree of correlation between
these regions. This is typical for offset and (or) multiplicative off-
set noise in NIR spectra and shows a strong interdependence of
measurement errors.

MLPCA of NIR spectra

For a matrix of chemical measurements, the intrinsic rank
(pseudorank, chemical rank) is defined as the dimensionality of
the space needed to account for all of the chemical variation in the
absence of measurement error, and for linear systems, this is
typically equal to the number of independently observable chem-
ical components. When the intrinsic rank is well-defined and the
ECMs of the measurement vectors are accurately known, MLPCA
should yield the optimal estimate of the chemical subspace. For
exploratory data analysis, however, decomposition by MLPCA is
only guaranteed to provide an optimal visualization of the data
when the intrinsic rank is equal to the dimensionality of the space
into which the data are projected (called the projection rank),
which can only be realized when the intrinsic rank is less than or
equal to three.>! In cases where the intrinsic rank exceeds the
projection dimensionality, the advantages of MLPCA are less cer-
tain, but its application may provide a more useful visual projec-
tion of the data than PCA. In general, a definitive determination
of the intrinsic rank (q) is difficult, so the application of MLPCA is
typically carried out using different values to assess the projec-
tions empirically.

The application of MLPCA requires a specification of the data
matrix, the corresponding ECMs, and the dimensionality of the
subspace to be estimated. Based on the results of the previous
section, which showed that the ECMs were not homogeneous
among the different sample classes, it was decided to assign the
ECM for each measurement vector based on its class membership
(species), using the pooled ECM for the corresponding class. This
error structure is representative of case E for the MLPCA algo-
rithms?3-25 for general row-correlated errors. The objective func-
tion in this case is given by eq. 9 and is minimized through the
alternating least squares method. The data matrix consisted of
108 rows corresponding to the sample mean spectra (column
mean-centered) and an initial rank of two was selected. Although
the alternating least squares algorithm is slower than the direct
solution, which can be obtained when all of the ECMs can be
assumed to be the same, it is considered to be more reliable when
this assumption is violated, and the execution time was only
about 20 s in this case.

The scores plot obtained through the application of MLPCA(E)
(with a specified rank of 2) in this manner is shown in Fig. 6a. The
results show a clear clustering of the samples into separate groups
corresponding to the individual species, with the exception of one
point from class 3 (M. melinoniana; it is noted that this does not
correspond to the extreme point in the upper left panel of Fig. 2).
This supports the hypothesis that there is sufficient information
in the NIR spectra to distinguish among the four species. More
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Fig. 4. Pooled error covariance matrices of the near-infrared spectra for each of the four species examined: (a) class 1: C. guianensis, (b) class 2:
C. odorata, (c) class 3: M. melinoniana, (d) class 4: S. macrophylla. [Colour online.]
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Fig. 5. Pooled error structure of near-infrared spectra based on importantly, in the context of the current work, it supports the
108 samples: (a) pooled error covariance matrix and (b) pooled error broader hypothesis that the visualization of data by PCA can be
correlation matrix. [Colour online.| impeded by non-iid measurement error structures and that this

problem can be mitigated through the application of MLPCA. By
incorporating information about the measurement error vari-
ance and covariance into the decomposition of the data, MLPCA
can more effectively separate the variability originating from
chemical differences from that arising from measurement noise,
thereby giving a more useful picture of the relationships among
samples.

A potential argument that can be made to counter the conclu-
sions drawn above is that, by defining the ECM according to class
membership, indirect information related to class membership is
being provided to the MLPCA algorithm and therefore biasing the
outcome. This is a legitimate argument, as a truly unsupervised
method should not include any information that could indirectly
be associated with class membership. Although it cannot be con-
cluded that the results in Fig. 6a are biased, this possibility cannot
be excluded, so further evidence is needed. There are three possi-
ble ways to exclude bias. The first would be to provide an individ-
ual ECM for each sample based on its replicates. However, because
there are only four replicates measured for each sample, the ECMs
would be unreliable, as well as rank deficient due to the small
number of replicates (rank = 3). Under these circumstances, anom-
alously small variances (due to limited replication) tend to drive
the optimization, giving excessive weight to a few samples. This
was confirmed by using the individual ECMs, resulting in a scores
plot with a tight central cluster and a few dispersed samples (re-
sults not shown). A second possibility is to use a parameterized
model for the ECM developed from multiple samples.3?4? This
can then be employed to calculate individual ECMs with greater
reliability. In this case, however, it is clear that the same model
could not be applied to all samples due to the differing character-
istics of one of the classes. The third option would be to employ
the globally pooled ECM, shown in Fig. 5a, to all of the samples.
Although it is expected that the MLPCA solution obtained in this
way would be suboptimal, it eliminates the possibility of bias and
may produce projections superior to PCA.
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Fig. 6. Scores plots from maximum likelihood principal components
analysis (MLPCA) of near-infrared spectra. (a) Rank 2 MLPCA results
using class-specific error covariance matrices (ECMs). (b) Rank 2 MLPCA
results using a global average ECM. (c) Rank 3 MLPCA results using a
global average ECM. Symbols correspond to the legend in Fig. 2. [Colour

online.]
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To implement this third option, MLPCA (case D, common row
covariance) was applied to the 108 sample mean spectra (column
mean-centered) using the globally pooled ECM with a specified
rank of two and three. The scores plot for the rank two solution is
shown in Fig. 6b. This result shows a clear separation of classes 2
and 3 (C. odorata and M. melinoniana) but strong overlap of the
other two classes. However, the three-dimensional projection,

Can. J. Chem. Vol. 00, 0000

Fig. 7. Scores plots for the projection pursuit analysis of near-infrared
spectra. (a) Scores plot from the analysis of all 432 spectra. (b) Scores
plot resulting from the projection of sample means into the same
space. Symbols correspond to the legend in Fig. 2. [Colour online.|
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presented in Fig. 6¢, shows a distinct separation of all four classes.
As might be expected, the separation observed here is not as clear
as for Fig. 6a, as a common ECM is erroneously assumed for all
samples, but the results are far more informative than PCA. These
results also exclude the possibility of an unintended bias and
support the premise that class information can be more clearly
extracted by incorporating measurement error information into
the data analysis.

It should be noted that, in all of these cases, higher rank MLPCA
solutions were also investigated. Separation of classes was still
observed with increasing dimension, although the quality was
diminished in the case of MLPCA(E) and slightly improved in the
case of MLPCA(D) (results not shown).

PPA of NIR spectra

A weakness of all three methods investigated so far (HCA, PCA,
and MLPCA) is that they rely on an assumption that the dominant
sources of chemical variance are associated with the classes of
interest; however, even when error variance is removed, other
sources of chemical variance may eclipse the factors of interest.
For example, in biological samples, variation in chemical species
among individuals in a population or due to diurnal rhythms may
mask smaller effects of interest. In principle, some of these vari-
ations can be built in to the description of measurement errors;
however, in practice, this can be difficult to do. Projection pursuit
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Fig. 8. Loadings plots for the various methods employed in this work, as labeled. [Colour online.]
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obtain the optimal low dimensional projection.

In this work, kurtosis-based PPA was implemented using a step-
wise univariate algorithm and orthogonal scores, with a two-
dimensional projection space. This algorithm uses a stepwise
procedure that first minimizes the univariate kurtosis along one
projection dimension, optimally resulting in a binary separation
of the data. After “deflation” of the data to remove the extracted
dimension, the process is repeated in an attempt to provide a
binary separation in subsequent dimensions, ultimately resulting
in scores and loadings of selected dimensions analogous to PCA
(although the loadings are not required to be orthogonal in this
case). In this application, all 432 spectra (mean centered) were
employed, as PPA works best when the ratio of samples to vari-
ables is high. The algorithm uses a nonlinear optimization
method that is significantly slower than PCA, and random initial
starting points are used to ensure a global optimum. In this im-
plementation, 1000 initial guesses were used and the execution
time was about 20 min.

The scores plot resulting from PPA of the raw data are shown in
Fig. 7a and shows clear clustering of the four species, although
there are a few samples that are grouped incorrectly. For a more
direct comparison with earlier figures (Figs. 2 and 6), the 108 sam-
ple mean spectra have been projected into the same subspace in
Fig. 7b and exhibit no overlap, as might be expected due to the
smaller error variance. It is important to note that no class infor-
mation was provided implicitly or explicitly to the algorithm, so
the natural clustering on the basis of species was discovered solely
on the basis of the observed spectra, supporting the hypothesis
that the multivariate information available in the NIR spectra can
be used to distinguish among the classes. No preprocessing of the
data was necessary other than column mean-centering, and no
measurement error information was provided to the algorithm.

Although PPA is an extremely powerful tool for exploratory
studies, it is not without its limitations. Current algorithms are
best suited for balanced data sets (approximately equal numbers
of samples in each class) with more samples than variables and are
most effective for 2, 4, or 8 classes. Ongoing work is directed at
removing some of these limitations.

Although it is sometimes asserted that loading vectors associ-
ated with scores plots can be interpreted to provide information
on which variables are most important for classification or regres-
sion, such interpretation has been shown to be dubious at best
because of the complexity of the linear relationships embodied in
the loading vectors.>2 In the current work, comparisons are fur-
ther limited by the nature of the methods used, as MLPCA does
not use orthogonal projections of the data to generate scores and
PPA does not result in orthogonal loading vectors. Nevertheless,
for the sake of completeness, the loading vectors generated by the
various methods are presented for qualitative comparison in
Fig. 8. Although differences are readily apparent, the most note-
worthy contrast is in the low wavelength regions (<1000 nm) for
PPA and MLPCA(E) (Figs. 8b and 8c) when compared with the other
cases. These were the most effective techniques for separation of
the species in two dimensions, implying that these methods are
able to effectively exploit information in this region. However,
further attempts at interpretation would be purely speculative.

Conclusions

The results of this study can be summarized by five main con-
clusions. First, even when chemical information related to classi-
fication is present in a data set, traditional exploratory methods
such as HCA and PCA may be incapable of revealing it. This is
demonstrated by juxtaposing Figs. 2 and 3, which show no clear
organization of the samples, with Figs. 6 and 7, which clearly
show division of the samples based on biological species. A second
conclusion, derived from the results shown in Fig. 6, is that inclu-
sion of measurement error information into the data analysis, in
this case through the application of MLPCA, can greatly improve
the visualization of chemical information by more effectively sep-
arating the chemical variation from the noise variance. Thirdly, it
can be further inferred from this that the limiting factor in the
effective implementation of PCA (and likely HCA) was the pres-
ence of heteroscedastic and correlated errors (i.e., a non-iid error
structure), suggesting that a better understanding of measure-
ment errors should be a key component in the analysis of any
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multivariate data set. Fourth, it was clearly demonstrated through
Fig. 7 that the implementation of data visualization methods such
as PPA that do not rely strictly on variance as a criterion for low
dimensional projection could be extremely beneficial in studies
involving multivariate data. Finally, with regard to the specific
experimental data employed in this work, there is clear evidence
that NIR spectroscopy has the capability to distinguish similar
species of wood using the procedures described.

The alternative methods described here are not without their
limitations. The application of MLPCA requires the availability of
information on the measurement error structure, which may be
difficult to obtain in certain studies where extensive replication is
challenging. However, recent work has demonstrated that it is
possible to develop measurement error models for analytical sys-
tems that minimize or eliminate the need for replication.32-3442 A
better understanding of measurement error structures will cer-
tainly be advantageous in developing improved multivariate tools.
In contrast, PPA does not require measurement error information
but is less susceptible to non-iid error structures than PCA or HCA
because it is not variance based. Nevertheless, PPA can be chal-
lenged by data sets that have a low sample to variable ratio or have
unbalanced classes. The former problem has been addressed
through variable compression, selection, and regularization,?8-30-31
and a re-centering strategy can mitigate the latter issue.?° Further
algorithmic developments will no doubt extend the applications of
PPA to exploratory analysis.

Many areas of modern scientific discovery are initiated by test-
ing an initial hypothesis that a complex multivariate data set
contains information relevant to a desired goal such as disease
detection or forensic classification. Such studies often involve a
limited number of samples and a large number of variables. Al-
though supervised classification methods (by design) are well
suited to building classification models, they are poorly suited to
test an initial hypothesis based on limited samples due to their
need for extensive validation. Unsupervised (exploratory) meth-
ods play a key role in this workflow, because they do not have such
strict validation requirements, but they are currently limited to
two dominant techniques, HCA and PCA. As demonstrated here,
these methods can fail to reveal important information in certain
circumstances, and failure to support an initial hypothesis can
impede the advance of research. Therefore, it is important to
expand the toolbox available to researchers for exploratory anal-
ysis, and the alternative methods described here, MLPCA and PPA,
are two approaches that can contribute in this regard.

Supplementary data

Supplementary data are available with the article through the
journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/
¢jc-2017-0730.
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