

ACCESSIBLE TOOLS ON TOUCHSCREEN DEVICES FOR

BLIND AND VISUALLY IMPAIRED PEOPLE

by

Mrim Alnfiai

Submitted in partial fulfilment of the requirements
for the degree of PhD

at

Dalhousie University
Halifax, Nova Scotia

June 2018

© Copyright by Mrim Alnfiai, 2018

ii

TABLE OF CONTENTS

TABLE OF CONTENTS...……………………………………………………………….ii

List OF TABLES ….……………..……………………………………………...…...…viii

LIST OF FIGURES...…………………………...………………......................................ix

ABSTRACT ……………………..…………………………...………………………....xii

LIST OF ABBREVIATIONS USED………………………………………………...…xiii

CHAPTER 1: INTRODUCTION .. 1

1.1 RESEARCH OBJECTIVE ... 4

1.2 RESEARCH QUESTIONS .. 5

1.3 OVERVIEW OF THE THESIS CONTRIBUTIONS .. 6

1.4 THESIS OUTLINE ... 7

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 10

2.1 BRAILLE PATTERNS ... 10

2.2 RELATED WORK ... 14

2.2.1 EXISTING CALCULATORS FOR BLIND PEOPLE 14

2.2.2 EXISTING TEXT INPUT METHODS FOR BLIND ... 16

2.2.3 EXISTING AUTHENTICATION METHODS FOR BLIND 25

CHAPTER 3: FRAMEWORK FOR ASSISTIVE TECHNOLOGY 36

3.1 OVERVIEW OF THE FRAMEWORK FOR THE PROPOSED ASSISTIVE

TOOLS ... 36

3.2 FRAMEWORK OVERVIEW ... 37

3.3 FRAMEWORK COMPONENTS ... 38

CHAPTER 4: TEXT INPUT METHODS .. 43

4.1THE SINGLETAPBRAILLE TEXT ENTRY METHOD 43

4.1.1 TYPING AND EDITING ON A TOUCHSCREEN .. 43

4.1.1.1 GRADE 1 ... 44

4.1.1.2 GRADE 2 ... 45

4.1.2 ALGORITHM ADVANTAGES ... 48

4.1.3 TYPING AND EDITING OPERATIONS ... 49

4.2 SINGLETAPBRAILLE IMPLEMENTATION ... 51

iii

4.2.1 EXPERIMENTAL TOOLS .. 51

4.2.1.1 ANDROID OS .. 51

4.2.1.2 ANDROID STUDIO ... 52

4.2.1.3 MICROSOFT EXCEL .. 53

4.2.2 EXPERIMENTAL SERVICES .. 53

4.2.2.1 TALKBACK SERVICE ... 53

4.2.3 EXPERIMENTAL MODEL ... 55

4.2.4 SINGLETAPBRAILLE INTERFACE .. 69

4.3 EVALUATION METHODOLOGY ... 69

4.3.1 RECRUITMENT OF PARTICIPANTS .. 70

4.3.2 METHODOLOGY .. 71

4.3.2.1 STUDY PROCEDURE ... 71

4.3.3 RESULTS AND DISCUSSION ... 73

4.3.3.1 RESULTS .. 73

4.3.3.1.1 QUANTITATIVE RESULTS .. 73

1. SPEED... 73

2. ACCURACY .. 74

4.3.3.2 QUALITATIVE FEEDBACK ... 75

4.3.3.2.1 PRE-QUESTIONNAIRE .. 75

4.3.3.2.2 USABILITY QUESTIONNAIRE ... 77

4.3.3.2.3 INTERVIEW ... 77

4.3.3.2.4 EVALUATION OF GRADE 2 ENCODING IN SINGLETAPBRAILLE……..79

4.3.3.3 DISCUSSION .. 81

4.3.3.3.1 SPEED AND ACCURACY ... 82

4.3.3.3.2 KEYBOARD FEATURES... 83

4.4 BRAILLEENTER INPUT METHOD .. 84

4.4.1THE FRAMEWORK OF BRAILLEENTER TEXT ENTRY METHOD 84

4.4.1.1 TYPING FUNCTION ... 85

4.4.1.2 BRAILLEENTER ALGORITHM .. 85

4.4.1.3 TYPING NUMBERS .. 87

4.4.1.4 TYPING PUNCTUATION .. 88

iv

4.4.1.5 EDITING FUNCTION ... 88

4.4.1.6 USING VOICE FEEDBACK ... 89

4.4.1.7 KEYBOARD ADVANTAGES ... 89

4.5 BRAILLEENTER KEYBOARD IMPLEMENTATION 89

4.5.1 EXPERIMENTAL MODEL ... 90

4.5.1.2 BRAILLEENTER KEYBOARD INTERFACE .. 96

4.6 PRELIMINARY EVALUATION .. 97

4.6.1 PARTICIPANTS .. 98

4.6.2 APPARATUS.. 99

4.6.2.1 SWIFT BRAILLE KEYBOARD ... 100

4.6.2.2 TEXT PHRASES ... 101

4.6.3 EXPERIMENTAL DESIGN ... 103

4.6.3.1 PROCEDURE ... 104

4.6.4 EVALUATION METRICS ... 106

4.6.5 RESULTS AND DISCUSSION ... 108

4.6.5.1 QUANTITATIVE RESULTS .. 109

4.6.5.1.1 SPEED ... 109

4.6.5.1.1.1 KEYBOARDS’ SPEED ACROSS TEXT TYPES 109

4.6.5.2 ACCURACY .. 110

4.6.5.2.1 ERROR RATE ... 110

4.6.5.2.2 CORRECTED ERROR RATE ... 112

4.6.5.2.3 UNCORRECTED ERROR RATE ... 112

4.6.5.2.4 ERROR RATE ACROSS TEXT TYPES ... 113

4.6.5.2.5 LEWIS’ RATING QUESTIONNAIRE RESULTS 114

4.6.5.2 QUALITATIVE RESULTS ... 116

4.6.5.2.1 PRE-QUESTIONNAIRE .. 116

4.6.5.2.2 INTERVIEW .. 116

4.6.5.2.2.1 BRAILLEENTER STRENGTHS AND LIMITATIONS 116

4.6.5.2.2.2 BRAILLEENTER SUGGESTIONS ... 118

4.6.5.2.2.3 SWIFT BRAILLE STRENGTHS AND LIMITATIONS 118

4.6.5.2.2.4 SWIFT BRAILLE SUGGESTIONS .. 119

v

4.6.5.2.2.5 OBSERVATION ... 120

4.6.5.2.2.6 PREFERENCE .. 121

4.6.6 DISCUSSION ... 122

4.6.6.1 SPEED AND ACCURACY .. 122

4.6.6.2 USABILITY AND PREFERENCE ... 124

4.6.6.3 COMPARATIVE ANALYSIS WITH OTHER INPUT METHODS FOR

VISUALLY IMPAIRED .. 127

4.7 CONCLUSIONS ... 131

CHAPTER 5: NUMB ERINPUT METHOD………..………........………………….133

5 .1 THE DESIGN OF THE BRAILLETAP CALCULATOR 133

5.1.1 REPRESENTING BRAILLE NUMBERS USING BRAILLETAP 136

5.2 BRAILLETAP CALCULATOR IMPLEMENTATION 137

5.2.1 USER INTERACTION MODULE………..…..…………………………..…...138

5.3 PILOT STUDY .. 145

5.4 CONCLUSION .. 147

CHAPTER 6: BRAILLEPASSWORD METHOD .. 149

6.1 RESEARCH CHALLENGES .. 149

6.2 BRAILLEPASSWORD AUTHENTICATION TECHNIQUE 150

6.2.1 DESIGN PRINCIPLES ... 151

6.2.2 THE BRAILLEPASSWORD DESIGN .. 151

6.2.3 BRAILLEPASSWORD INTERFACES .. 154

6.2.3.1 REGISTRATION INTERFACE ... 155

6.2.3.2 LOGIN INTERFACE ... 156

6.2.3.3 PASSWORD RECOVERY .. 157

6.2.4 INTERACTION TECHNIQUES .. 158

6.3 BRAILLEPASSWORD IMPLEMENTATION ... 159

6.3.1 BRAILLEPASSWORD AUTHENTICATION MODULE 159

6.4 BRAILLEPASSWORD ENTROPY .. 170

6.5 USER STUDY ... 171

6.5.1 APPARATUS.. 172

6.5.2 PARTICIPANTS .. 173

vi

6.5.3 EXPERIMENTAL DESIGN ... 174

6.5.3.1 STUDY PROCEDURE ... 175

6.5.4 RESULTS ... 178

6.5.4.1 QUANTITATIVE RESULTS .. 178

6.5.4.1.1 REGISTRATION TIME ... 178

6.5.4.1.2 LOGIN TIME ... 179

6.5.4.1.3 PASSWORD ENTRY SPEED ... 179

6.5.4.1.4 FAILURE RATE .. 180

6.5.4.1.5 PASSWORD ACCURACY AND MEMORABILITY 180

6.5.4.1.6 PASSWORD STRENGTH .. 181

6.5.4.1.7 GUESSING OF PASSWORDS FROM CAMERA VIDEOS 182

6.5.4.2 QUALITATIVE RESULT ... 183

6.5.4.2.1 PRE-QUESTIONNAIRE ... 183

6.5.4.2.2 INTERVIEW .. 183

6.5.5 DISCUSSION ... 191

6.5.6 STUDY LIMITATION .. 197

6.6 CONCLUSION AND FUTURE WORK ... 198

CHAPTER 7: DISCUSSION AND CONCLUSION ... 200

7.1 DISCUSSION ... 200

7.2 CONCLUSION ... 202

7.3 FUTURE WORK .. 205

APPENDICES……….………………………………………………………………...208

APPENDIX A: BACKGROUND QUESTIONNAIRE.....…………………………….208

APPENDIX B: POST QUESTIONNAIRE OF SINGLETAPBRAILLE ……...…..… 210

APPENDIX C: INTERVIEW OF SINGLETAPBRAILLE……..………..…………... 211

APPENDIX D: LETTERS OF APPROVAL FOR THE SINGLETAPBRAILLE ST...212

APPENDIX E: BACKGROUND QUESTIONNAIRE OF BRAILLEENTER………..215

APPENDIX F: LETTERS OF APPROVAL FOR THE BRAILLEENTER ST.…..... 216

APPENDIX G: POST QUESTIONNAIRE (LEWIS QUESTIONNAIRE) …………...219

 APPENDIX H: INTERVIEW OF BRAILLEENTER KEYBOARD …………...…... 220

APPENDIX I: BACKGROUND QUESTIONNAIRE OF BRAILLEPASSWORD 221

vii

APPENDIX J: INTERVIEW OF BRAILLEPASSWORD ………………....................223

APPENDIX K: LETTERS OF APPROVAL FOR THE BRAILLEPASSWORD...… 224

REFERENCES .. 208

viii

LIST OF TABLES

TABLE 1. PREFIXES AND SUFFIXES FORMS IN GRADE 2…………….…….…..13

TABLE 2. CONTRACTION AND SHORTEN WORDS FORMS IN GRADE 2….…..13

TABLE 3. REMOVING THE VOWELS IN WORDS IN GRADE 2 BRAILLE …..….13

TABLE 4. BRAILLE KEYBOARD INTERACTION TECHNIQUES ……………..…50

TABLE 5: PARTICIPANTS’ DEMOGRAPHIC DATA……………….………………70

TABLE 6. BRAILLEENTER KEYBOARD INTERACTION TECHNIQUES………...87

TABLE 7. EDITING INTERACTION METHODS IN BRAILLEENTER………….....88

TABLE 8: PARTICIPANTS’ DEMOGRAPHIC DATA …………………..……......…98

TABLE 9. TOUCHSCREEN KEYBOARDS DESIGNED FOR BLIND .…….……….99

TABLE 10: THE TWELVE TEST PHRASES USED ……………………………...….102

TABLE 11: AVERAGE TYPING SPEED OF BOTH KEYBOARDS ……………….110

TABLE 12: RESULTS OF LEWIS’ RATING QUESTIONNAIRE …………….……115

TABLE 13: RESULT SUMMARY ……………………………………..…………..…125

TABLE 14. AN OVERVIEW OF INPUT METHOD PERFORMANCE …………….128

TABLE 15. AN OVERVIEW OF METHODS’ QUALITATIVE FEATURES ………129

TABLE 16. CATEGORIZATION OF BRAILLE NUMBERS ……...………………..134

TABLE 17. BRAILLE KEYBOARD INTERACTION TECHNIQUES…….. …...…..137

TABLE 18: THE TIME SPENT TO USE THE BUTTON CALCULATOR………….146

TABLE 19: EDITING INTERACTION TECHNIQUES IN BRAILLEPASSWORD .158

TABLE 20: SWITCHING BETWEEN AUTHENTICATION INTERFACES ..….….159

TABLE 21. PARTICIPANTS’ DEMOGRAPHIC DATA …………………..……..…174

TABLE 22. REGISTRATION INFORMATION FOR THE TRAINING PHASE …...176

TABLE 23. STUDY SESSIONS’ TASKS FOR AUTHENTICATION METHODS ...178

ix

LIST OF FIGURES

FIGURE 1: AN OVERVIEW OF THESIS CONTRIBUTIONS ……………………...…7

FIGURE 2. THE BRAILLE CODE...………………….… …………………………..…10

FIGURE 3. THE ALPHABET PATTERNS IN BRAILLE ………………………….…11

FIGURE 4. PATTERNS OF COMMON PUNCTUATION MARKS IN BRAILLE .…11

FIGURE 5. PATTERNS OF NUMBERS IN BRAILLE …………………………….…11

FIGURE 6. FRAMEWORK FOR ASSISTIVE TOOLS ……….................................…37

FIGURE 7. SAMPLE OF CATEGORIZATION OF BRAILLE CHARACTERS ….…45

FIGURE 8. EXAMPLE OF WHOLE WORDS ABBREVIATIONS IN GRADE 2…....46

FIGURE 9. SAMPLE OF TYPING SHORTEN WORDS FORMS IN GRADE 2……..47

FIGURE 10. ALGORITHM FLOWCHART…………………..………….………....….47

FIGURE 11. TALKBACK SERVICE…………………………….………………….….54

FIGURE 12. THE DESCRIPTION OF GESTURES RECOGNITION ALGORITHM...60

FIGURE 13. SNAPSHOT OF SWIPING GESTURE RECOGNITION …………….…60

FIGURE 14. THE DESCRIPTION OF BRAILLE CHARACTERS ALGORITHM …..63

FIGURE 15. SNAPSHOT OF BRAILLE CHARACTERS ALGORITHM…………….64

FIGURE 16. SNAPSHOT CODE OF GRADE 2 ABBREVIATION METHOD………65

FIGURE 17. SWITCHING BETWEEN THE KEYBOARD LAYOUT ALGORITHM.65

FIGURE 18. SNAPSHOT OF SWITCHING BETWEEN THE KEYBOARD CODE....66

FIGURE 19. ADD SPACE METHOD………………….…………….…………………66

FIGURE 20. SNAPSHOT OF ADD SPACE CODE……………………………………66

FIGURE 21. BACKSPACE METHOD…………………………………………..……..67

FIGURE 22. SNAPSHOT OF BACKSPACE METHOD CODE …………………...….67

FIGURE 23. TYPING METHOD ………………………………………………………67

FIGURE 24. SNAPSHOT OF WRITE TEXT METHOD CODE………………………68

FIGURE 25. SPEAK METHOD ……………………………….……………………….68

FIGURE 26. SNAPSHOT OF SPEAK METHOD CODE………………….……….…..68

FIGURE 27. SINGLETAPBRAILLE INTERFACE …………………………….……..69

FIGURE 28. ENTRY SPEEDS FOR SINGLETAPBRAILLE AND QWERTY……….74

FIGURE 29. AVERAGE ERROR RATE FOR SINGLETAP AND QWERTY …...…..75

FIGURE 30. TYPING THE LETTER “B” IN BRAILLEENTER ………………….…..86

x

FIGURE 31. AN EXAMPLE OF TYPING A NUMBER IN BRAILLEENTER……….87

FIGURE 32. TYPE SYMBOL “,” IN BRAILLEENTER …………………..…………..88

FIGURE 33. BRAILLE CHARACTERS RECOGNITION ALGORITHM……………95

FIGURE 34. SNAPSHOT OF BRAILLE CHARACTERS RECOGNITION CODE…..95

FIGURE 35. SNAPSHOT OF BRAILLE PUNCTUATIONS RECOGNITION ……....96

FIGURE 36. TIME HANDLER……………………………………………………....…96

FIGURE 37. BRAILLEENTER INTERFACE……………………….…………………97

FIGURE 38. SWIFT BRAILLE KEYBOARD……..…………………………….....…101

FIGURE 39: EXPERIMENTAL SETUP…………………………………………...….104

FIGURE 40: TYPING SPEED FOR BOTH KEYBOARDS……………………...…...109

FIGURE 41: AVERAGE TYPING SPEED OF BOTH KEYBOARDS………………109

FIGURE 42: AVERAGE ERROR RATE OF BOTH KEYBOARDS…………...….…111

FIGURE 43: AVERAGE TOTAL ERROR RATE FOR BRAILLEENTER ….….…..111

FIGURE 44. AVERAGE CORRECTED ERROR RATE FOR BRAILLE ENTER......112

FIGURE 45. UNCORRECTED ERROR RATE FOR BRAILLE ENTER……………113

FIGURE 46: KEYSTROKES PER CHARACTER RATE FOR BRAILLEENTER.....113

FIGURE 47. TOTAL ERROR RATE BASED ON PHRASES TYPE……………...…114

FIGURE 48: SUGGESTION FOR IMPROVEMENTS OF SWITCH BRAILLE….…126

FIGURE 49. ALGORITHM FLOWCHART …………………………...…………..…136

FIGURE 50. GESTURE RECOGNITION ALGORITHM …………………………..140

FIGURE 51. CODE OF GESTURE RECOGNITION ALGORITHM ………………140

FIGURE 52. NUMBER RECOGNITION ALGORITHM ……………………...….…142

FIGURE 53: SNAPSHOT OF NUMBER RECOGNITION ALGORITHM CODE .…142

FIGURE 54. CHANGE THE CALCULATOR OPERATIONS …………………...….143

FIGURE 55. SNAPSHOT OF SWITCHING BETWEEN CALCULATOR CODE143

FIGURE 56. CLEAR METHOD …………………………...………………………….144

FIGURE 57. SNAPSHOT OF CLEAR METHOD CODE………………..…….……..144

FIGURE 58. BRAILLETAP USER INTERFACE ……………………….……….…..145

FIGURE 59: SAMPLE OF BRAILLE LOWERCASE LETTERS …………….…...…152

FIGURE 60. EXAMPLE OF INSERTING CAPITAL A IN BRAILLEPASSWORD .153

FIGURE 61. EXAMPLE OF TYPING IN THE BRAILLEPASSWORD ……………154

xi

FIGURE 62: TYPING PUNCTUATION IN BRAILLEPASSWORD ………..………154

FIGURE 63: REGISTRATION PAGES ……..………………………………………..156

FIGURE 64. PASSWORD RECOVERY PAGES …….…………..…………….…….158

FIGURE 65. REGISTER STEPS IN THE BRAILLEPASSWORD.……………...…...160

FIGURE 66. REGISTRATION AND LOGIN ALGORITHM ……………..…………162

FIGURE 67. XML CODES OF REGISTER AND LOGIN INTERFACES …...……..162

FIGURE 68. THE JAVA CODE OF THE SIGNUP FUNCTION ….…………….…..163

FIGURE 69. SNAPSHOTS OF LOGIN IN FUNCTION CODE ……………………..165

FIGURE 70. VIBRATION FUNCTION ……………………………………...…..…...165

FIGURE 71. XML CODE OF WELCOME INTERFACE ……………...………...…..165

FIGURE 72. A SNAPSHOT OF REGISTER DATABASE ……………………….….166

FIGURE 73. LOGIN PHP CODE….………………………………………….……….166

FIGURE 74. REGISTER PHP CODE …………………...…………………...………..166

FIGURE 75. CONNECTING PHP FILES TO ANDROID APP CODE …….….…….167

FIGURE 76. CONNECTING PHP FILE TO MYSQL DATABASE …………..……..168

FIGURE 77. THE JAVA CODE OF VALIDATION FUNCTION …………………...168

FIGURE 78. THE CODE OF BRAILLE CAPITAL SIGN …………….………...…...169

FIGURE 79. THE CODE OF BRAILLE NUMBER SIGN …………………………...169

FIGURE 80. MOVING BETWEEN FIELDS ………….………………………….......170

FIGURE 81. THE TRADITIONAL AUTHENTICATION APPLICATION………….173

FIGURE 82. REGISTRATION TIME FOR AUTHENTICATION METHODS……...179

xii

ABSTRACT

Input methods on touchscreen devices are often developed without taking into account the

needs of people with no or low vision. Because of this, there has been a strong research

interest in the development of techniques for touchscreen accessibility for blind people,

such as integrating the screen reader in smartphone devices. However, the QWERTY

keyboard and the button calculator with VoiceOver and many other proposed touchscreen

keyboards are in many ways inaccessible to blind and visually impaired people because

they primarily require finding key locations on a touchscreen and both hands are needed to

interact with keyboard interfaces. The primary objective of this research is to create, design

and evaluate button-free user interfaces that allow blind users to overcome the limitations

of button-based input methods, as well as mitigate privacy and security concerns. This

research presents a model of designing accessible button-free input methods on smartphone

devices that assist blind and visually impaired users. This thesis outlines the progressive

development and evaluation of button-free user interfaces designed to make touchscreen

devices on mobile phones more accessible for blind and visually impaired individuals. The

first of these, SingleTapBraille, makes inputting text faster and more accurate than with the

most common standard option, QWERTY keyboard with VoiceOver. Similarly, BrailleTap

makes the entry of numbers and arithmetic symbols easier than with the standard

smartphone calculator. We also introduce BrailleEnter, which further improves the

functionality of SingleTapBraille and BrailleTap. Lastly, we address the security concerns

associated with systems that increase accessibility for visually impaired individuals,

specifically the password vulnerability associated with the auditory feedback provided by

the VoiceOver service. We address this with BraillePassword, which provides input

feedback to the user via haptic feedback that only the user can access. Four user studies are

conducted with blind and visually impaired people. Data is generated through qualitative

and quantitative methods. Findings indicate that the developed Braille tools significantly

enhance accessibility, and has the potential to be valuable to blind users. The proposed

model allows users to overcome outstanding accessibility challenges as well as mitigate

privacy and security risks they face when interacting with smartphone devices.

xiii

LIST OF ABBREVIATIONS USED

CNIB Canadian National Institute for Blind

PIN Personal Identification Number

IDE Integrated Development Environment

ADT Android Development Tools

APK Android application package

OS Operating system

XML eXtensible Markup Language

1

CHAPTER 1: INTRODUCTION

The touchscreen on smartphone devices allows users to interact naturally and manipulate

data on the screen without other tools. Touchscreens also provide a high degree of

flexibility that allows designers to create interfaces uniquely developed based on users’

requirements and preferences. Another great advantage of smartphone devices is that it

offers both computer and telephone features including camera, Internet access, calendar,

notes and contact list. The advantages and capabilities of touchscreen smartphone devices

have led many people with different abilities and needs to choose a touchscreen device

over mobile phones with physical buttons. The visually impaired constitute a growing

smartphone consumer group. A 2015 National Health interview survey reported that 23.7

million American adults age 18 and older are living with vision loss (American Foundation

for the Blind, 2017). People with no or low vision, like the rest of the population, are

increasingly using smartphone devices.

 Despite all these advantages, touchscreens pose significant challenges with regard

to input methods for blind people. Vision impairment makes it difficult for blind people to

type characters via the QWERTY keyboard, which is the standard keyboard on touchscreen

devices (Alnfiai, Sampalli, 2016; Azenkot et al., 2014). One of these difficulties is requiring

users to locate a particular key on a touchscreen. This requires users to spend a long time

memorizing the location of keys. Another limitation is the time and focus required for blind

users to listen to all the letters while VoiceOver speaks them out as his/her finger passes

over the screen. This situation becomes more challenging when a user wants to type text in

a public space (Alnfiai, Sampalli, 2016).

 In addition to being time consuming and error prone, inserting text with Talkback

2

poses privacy and security threats. When the TalkBack service reads aloud a character

under the users’ fingers while logging into an online account, it increases the threat of

eavesdropping on users’ private information including user names and passwords. In this

case, the assistive technology (TalkBack) allows a person who is nearby to hear a blind

user’s password. If a blind person wears a headphone to prevent others from listening to

their private information, the earplugs might prevent blind persons from knowing if there

is someone nearby. This leads to a harmful security threat referred to as a shoulder attack.

Another security issue arises when a blind user attempts to overcome the slowness of the

input method by selecting short, easy to insert passwords (Azenkot et al., 2014). Some

blind users rely on trusted sighted persons to help them access authentication mechanisms

by giving them their private information (Sauer et al., 2010).

 Indeed, input methods on touchscreen smartphone devices present major

challenges for blind people. Most blind people want to use smartphone devices to complete

a variety of tasks such as browsing the Internet, sending messages, emailing, accessing

online banking, and storing contact information. Most of these tasks require users to

interact with a touchscreen keyboard. Unfortunately, the most widespread input methods

can exclude this population from the numerous advantages of performing tasks on

touchscreen devices. Therefore, many researchers have developed various text entry

methods for blind people (Alnfiai, Sampalli, 2016; Azenkot et al., 2014; Mattheiss et al.,

2015; Frey et al., 2011; Mascetti et al., 2011). However, many of these developed input

methods require users to visually locate an object location or are designed mainly based on

button interaction (Frey et al., 2011; AlBanna, 2016). Other input methods require users to

use both hands to interact with keyboard interfaces because they are designed based on the

3

multi-touch approach (Frey et al., 2011; Mascetti et al., 2011). Hence, developing an

accessible input method is still one of the biggest issues facing blind users of touchscreen

devices. In short, there is a clear need for an accessible input method for blind people on

touchscreen devices.

 In response to these limitations, we proposed novel button-free input methods

specifically designed for blind users that aim to overcome both usability and accessibility

challenges. The core idea is to permit users to type on a touchscreen using Braille, which

is the fundamental writing system used by visually impaired people. These input methods

eliminate the need to visually locate buttons on a screen, and are mainly designed based on

touch which is a sense that blind people can use very well. The new input methods

significantly reduce the challenges that blind users face by eliminating annoying sounds,

as well as the need to locate a specific location, requiring both hands to interact with the

screen, and reducing security and privacy threats. The proposed input methods allow users

to type letters, numbers, punctuation, lower case and capital letters, and includes an editing

function.

 The input methods rely on gesture patterns, as opposed to tap locations, allowing

visually impaired users to type anywhere on a screen without taking into account the

position of any interaction made on the input method interface.

The goal of this research is to support the following thesis statement:

Touchscreen input methods that use a gesture on a button-free user interface allow blind

users to overcome the limitations of button-based input methods as well as reduce privacy

and security concerns.

4

1.1 Research Objective

 The primary objective of this research is reducing the accessibility challenges that

blind people face when interacting with touchscreen devices. One of these challenges is

locating a specific key position on a touchscreen. Thus, our aim is to create button-free

input methods to allow blind users to interact anywhere on a screen without needing to

locate any object on a screen to insert numbers or text. Another objective of this research

is to enable blind users to use only one hand (index finger) while interacting with a screen

because it is the most accessible way for them, as explained in a previous study (Paisios,

2012).

 This research also aims to overcome the limitations of the current input methods on

touchscreen devices such as the QWERTY keyboard and the standard calculator. These

input methods require users to visually locate a key on the screen, which is a time-

consuming task for blind users. They move their fingers over a screen sequentially

searching for the desired character, while moving their fingers over a screen, which might

cause them to press the wrong key. This means these methods are prone to typing errors

even if blind users use an assistive technology such as a TalkBack service to navigate

through an input method. On the contrary, some of the serious difficulties that face blind

users cause by assistive technology. The TalkBack service poses harmful privacy and

security threats.

 The primary objective of this research is to overcome the abovementioned

limitations by designing input methods that meet blind users’ abilities. It also aims to fully

understand how blind users interact with the proposed methods to specify the design

principles of the most accessible input interface for people with visual impairment. To do

5

so, an evaluation study was conducted to allow users to use both the proposed methods as

well as current input methods. These steps helped us present an insightful guideline for

developers who need to develop accessible interfaces on a touchscreen device for this

population.

 By designing the input methods and analyzing them, we will be able to tackle the

most serious risk, which is password problems. Our goal is to carefully improve the

proposed input method based on the evaluation findings. Then, we designed a security

solution keeping in mind the disability of blind users as well as the limitations of both

touchscreen and assistive technologies. We aimed to design a novel authentication method

for web applications using the proposed input method as an entry pad after eliminating

aural feedback. After that, we conducted a usability study for the proposed authentication

method to determine how effective the new authentication method is in preventing

“shoulder-surfing” attacks.

1.2 RESEARCH QUESTIONS

1. Does a button-free interface based on Braille patterns with a single touch interaction

technique improve the accessibility of number and text input method for people

with visual impairment?

2. How do blind users experience a single touch interaction technique based on Braille

patterns with voice feedback to enter numbers or texts? Do the proposed input

methods allow users to input text faster and more accurately than the button-based

keyboard e.g soft QWERTY keyboard?

6

3. Does a button- and location- free input method on a touchscreen overcome the

limitation of button-based input methods like QWERTY keyboard or Swift Braille

keyboard?

4. How do people with visual impairment experience a single touch interaction

technique with haptic feedback to enter their credentials?

5. Does the single touch interaction with vibration feedback on a button-free interface

with non-visual text entry method reduce the risk of observation attacks (shoulder

attack) for people with visual impairment? Can gestural interaction method with

haptic feedback reduce observation attacks including audio and visual attacks?

1.3 Overview of the thesis contributions

This research is motivated by the belief that it addresses the accessibility and security

challenges that blind and visually impaired face using smartphone devices. Such challenges

include, for example, typing text, calculating a simple equation, or securely logging into

an online account. Visually impaired individuals struggle to do these basic activities due

to the need to visually locate objects on a touchscreen layout.

To overcome these challenges, these individuals must invest additional time and

energy into memorizing the input method layout. There is currently no application that

overcomes the current input methods’ limitations for individuals with limited or no vision.

To fill this void, this research presents accessible input methods for touchscreen devices

that utilizes tap and swipe gestures to type characters based on Braille patterns. This

research also presents user studies with blind and visually impaired participants to fully

understand the end users’ requirements and figure out the feasibility of the button-free input

7

methods.

Figure 1. An overview of thesis contributions

Figure 1 shows the research components that have been completed and where have been

published.

1.4 Thesis outline

The remainder of the dissertation is organized as follows. In Chapter 2 we provide

a review on the background of Braille. Then, we provide the related works and the past

research that has been published on touchscreen input methods, calculators and

authentication methods that have been developed for blind and visually impaired people.

8

Chapter 3 introduces the framework of the assistive tools that proposed to improve the

accessibility for visually impaired people. Chapter 4 presents SingleTapBraille, a new

single touch technique for text entry on touchscreen devices that allows users to type each

character by tapping the screen with one finger. The system translates the user’s taps into

their corresponding character based on Braille character patterns. We evaluated

SingleTapBraille with eight blind people at the Canadian National Institute for Blind

(CNIB) by comparing the performance of SingleTapBraille to that of the standard

QWERTY keyboard in combination with VoiceOver. This chapter also presents

BrailleEnter, which was designed to allow users to type letters, numbers, and punctuation

by pressing the screen to represent raised Braille dots and by briefly tapping to represent

unraised dots anywhere using one finger, with input translated based on Braille coding. In

an initial comparison of BrailleEnter and SingleTapBraille with two blind users,

participants typed sets of phrases using both keyboards. BrailleEnter was more accurate

than SingleTapBraille, and it has the potential to make smartphone devices fully accessible

for blind people. We again utilized a comparative evaluation methodology to evaluate

BrailleEnter’s usability and performance, including speed and accuracy. Following this

evaluation, we conducted a user study, which compared the usability and performance of

BrailleEnter with that of Swift Braille, a button-based input method that represents Braille

dots as six buttons on a touchscreen. The research presented in Chapter 4 has been

published in four papers (Alnfiai & Sampalli 2016a; Alnfiai & Sampalli, 2016b; Alnfiai &

Sampalli 2017b; Alnfiai & Sampalli 2017c).

Chapter 5 discusses the design and initial evaluation of BrailleTap, a new number

input method for touchscreen devices. To insert a number with BrailleTap, a blind user

9

taps a number based on the Braille number codes. The system interprets the Braille code

and returns its corresponding numerical value. To insert an operation, a user swipes

vertically to select the desired arithmetic operations. In addition to enabling the entry of

numbers and mathematical symbols, the system computes equation and reads the results

using audio feedback. During an initial evaluation, participants typed sets of equations

using both BrailleTap and the standard calculator available on touchscreen devices. Results

indicate that BrailleTap is faster and more accessible for blind users than the standard

calculator. The research presented in Chapter 5 has recently been published (Alnfiai &

Sampalli, 2017a).

Following our previous evaluation study, we realized that there is a need to improve

the web application touchscreen authentication process to better meet the needs of blind

and visually impaired people. In Chapter 6 we present BraillePassword, a new web

application authentication technique for touchscreens that is accessible and protected

against visual and oral threats. A user performs long taps and brief taps anywhere on a

screen based on Braille character patterns, with no visual or audio feedback. Instead, it

provides haptic feedback that facilitates error correction without the security risks

associated with auditory or visual feedback. This chapter shows the results of our

evaluation study to examine the performance of this new authentication method. Chapter

7 includes the thesis’ discussion and conclusion.

10

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Braille patterns

 Braille is the writing system that permits blind and visually impaired people to do

both writing and reading tasks. Blind people use their fingertips to touch the raised dots of

Braille characters. Each character in Braille is represented as a cell that contains six dots

and are organized in two columns and are ordered from one to six, the first column contains

dots one, two, and three, and the second column contains dots four, five, and six (American

Foundation for the Blind, 2017), (as shown on Figure 2). Thus, there are 64 unique Braille

patterns codes. Since blind readers’ needs vary, three different Braille Grades were

developed, which are Grade 1, 2 and 3. In this paper, we will only describe and implement

Grade 1 and 2 because they are the most commonly used.

Figure 2. The Braille code

2.1.1 Grade 1

In Grade 1, Characters consist of some combination of these six dots. Each Braille pattern

in Grade 1 represents only one character. Grade 1 is used by novice blind users who are

just starting to learn basic Braille. Grade 1 is used to print some books and magazines, but

these documents are very large because Grade 1 requires a fair amount of space. Each

character contains a combination of raised and unraised dots. Figure 3 illustrates the Braille

11

code that represents each letter, with small dots showing the unraised dots and the large

black dots showing the raised dots in Braille code.

Figure 3. The Alphabet patterns in Braille

 Figure 4. Patterns of Common Punctuation Marks in Braille

Punctuation marks in Braille are also represented by a combination of raised and unraised

dots (American Foundation for the Blind, 2017). Figure 4 illustrates the Braille code that

represents the punctuation marks, with small dots showing the unraised dots and the large

black dots showing the raised dots in Braille code.

Figure 5. Patterns of numbers in Braille

 Braille numbers 0-9 are made using the same patterns as the first ten letters of the

alphabet in Braille, “a” through “j” (Figure 5). Distinguishing between Braille letters and

numbers is done by placing a prefix before the alphabet pattern “a” through “j”. A number

prefix is an activation of dots 3, 4, 5, and 6 (American Foundation for the Blind, 2017).

12

Here, number 1 is represented by typing number sign plus Braille code for letter “a” and

number 2 is represented by typing the number sign plus Braille code for the letter “b”. If

users want to type larger numbers, they can type the number sign once. For example, typing

375 is represented by placing number sign plus Braille codes for “c” “g” “e” letters.

 Decimal numbers are represented by using the comma (American Foundation for

the Blind, 2017). The comma in Braille is the activation of dot 2 in numbers, for example,

375.53 is represented by placing number sign plus Braille codes for “c” “g” “e” “,” “e” “c”.

2.1.2 Grade 2

Grade 2 Braille is used as an alternative to Grade 1 Braille to save space in large documents

(Royal National Institute of Blind People, 2016), and is used by people who are experts in

Braille. The main purpose of Grade 2 Braille is to save space in printed Braille documents

because it allows for a shortened form of a word, for example letter “c” indicates the word

“can”. It is also faster to read and write using Grade 2 Braille than Grade 1 Braille, thus

most printed materials like books and magazines are written with Grade 2 Braille. There

are many Braille code combinations that have been used to represent the shortened form of

common words (2016).

1. Grade 2 represents a group of common letters in particular Braille patterns, for example,

it includes common suffixes or prefixes in individual Braille signs (as shown in Table

1).

13

Table 1. Prefixes and suffixes forms in Grade 2

Words code Words code Words code

ar ⠜

ing ⠬

ow ⠪
 dis ⠲

ed ⠫

sh ⠩

2. It represents entire commonly used words into single Braille character contractions (as

shown in Table 2).

Table 2. Contraction and shorten words forms in Grade 2

Words code Words code Word

s

code

 but b it x peopl
e

p
can c just j quite q
do d knowledge k rather r
every e like l for ⠿
from f more m so s
go g not n still ⠌
have h this ⠹

that t

in ⠔

out ⠳

will w
us u you y the ⠮

3. It shortens words by removing most or all of the vowels in them (as shown in

Table 3)

Table 3. Removing the vowels in words in Grade 2 Braille

Words Contractions Words Contractions

about ab after af
above abv afternoon afn
according ac afterward afw
across acr again ag
always alw Braille brl
blind bl deceive dcv
either ei good gd
friend fr great grt

The abbreviations of words in Grade 2 Braille are not restricted to semantics, and can be

used for nouns or verbs (Royal National Institute of Blind People, 2016). For example, in

14

Grade 2, the abbreviation of (can) is (c) and it can be typed as a verb or a noun. Sometimes,

users should spell words to avoid confusion.

2.2 Related work

2.2.1 Existing calculators for blind people

Apple and Android have applied screen readers to smartphone devices to improve

accessibility for blind people. Users can move their finger over the screen and the TalkBack

service speaks the object name under the user’s finger. Despite this improvement, inserting

numbers or mathematics operations using the standard calculator with the TalkBack service

is challenging (Alnfiai, Sampalli, 2016 a; Alnfiai, Sampalli, 2016 b; Ruamviboonsuk et al.,

2012). The basic TalkBack calculator has one layer, with four operations on the right of

side and the numbers 0-9 on the left side. The result of each calculation is displayed on the

top of the screen. The user has to move his finger over the calculator screen and TalkBack

reads out numbers or operations that are located under the user’s finger. Thus, the user has

to move his finger over the screen until he finds the desired number. If the user enters a

wrong number, the user is required to find a clear button to delete the error. Thus, the main

drawback of this method is that it is time consuming. This technique also consumes time

when the user makes mistakes since she has to reenter the numbers and operations from

the beginning. The main strength of the TalkBack calculator is that it provides audio

feedback that helps users ensure they enter the correct number.

 In addition to the standard keyboard with TalkBack, researchers have proposed

several other text entry techniques (Hesselmann et al., 2011; Mattheiss et al., 2015;

Mascetti et al., 2011; Frey et al., 2011; Oliveira et al., 2011; Azenkot et al., 2014), which

15

also predominantly require users to find a specific object location. Several developers have

also introduced accessible text entry methods to overcome navigation problems, but they

require users to remember particular gestures to enter text or numbers (Ruamviboonsuk et

al., 2012; Shabnam et al., 2014).

 Limited research has been done in the field of accessible number entry for blind

users, and only one method has been integrated with an application for a particular aim, in

this case an accessible calculator mainly for this population (Ruamviboonsuk et al., 2012).

Previous work by Hesselman et al. (2011) developed a number entry method on a large

screen, where a blind user taps on the screen with the number of fingers of the entry

number. Thus, in this application, users need to use two hands to interact with a

touchscreen. It also allows audio feedback to help users confirm they have entered the

intended number. Drawbacks of this technique are that it is limited to entering numbers

only from 1 to 10 and requires users to use two hands to interact with a screen. Another

input method was proposed by Azenkot (2013), which is called DigiTaps. This method was

designed mainly for small screens where a user only needs three fingers to interact with

the screen, but this application requires several steps to just input one digit. After inserting

a digit, the app provides haptic and optional audio feedback.

 The H4-writer is a text and number entry method introduced by MacKenzie et al.

(2011), which uses optimal prefix-free codes based on Huffman codes to insert numbers as

well as text (Huffman, 1952). The H4-writer user interface has four buttons and the user

need only use one thumb. Thus, it creates navigation issues and requires users to memorize

the defined prefix codes. This is similar to Tapulator, a non-visual calculator, which was

designed mainly for blind people. It uses prefix-free codes to enter numbers on a

16

touchscreen; users tap on touchscreens using one to three fingers and swipe the screen to

insert a number. It requires users to perform specific gestures to perform operations, such

as two consecutive swipes up to down to represent addition. The clearest advantages of this

calculator are that it overcomes navigation problems by allowing users to tap anywhere on

the screen and it provides voice feedback. Like BrailleTap, there are no numbers

represented on the user interface; users can enter numbers on a screen based on Braille

patterns. However, the major limitations of this method are that it is not easy to learn

because users are required to memorize the defined prefix codes to enter a number or

operation. It is also time consuming because users are required to complete more than three

steps to enter a number.

2.2.2 Existing text input methods for blind people

 There have been several text input methods that have been developed or improved

to meet blind people’s needs. Identifying an optimal accessible input method is one of the

challenges that face developers of touchscreen keyboards. Interaction with touchscreens is

difficult for people with no vision due to several factors (Alnfiai, Sampalli, 2016). One of

these factors is the absence of physical keys, so blind people cannot locate a key by

touching or feeling. Another factor is that the communication of touchscreen devices is

mainly based on visual feedback. The last factor is that the size of the touchscreen on

smartphone devices is small and the keys are close to each other, thus the chance of tapping

the wrong key is high. Thus, there have been many attempts to create accessible text input

methods on touchscreens (Frey et al., 2011; Alnfiai, Sampalli, 2016; Mascetti et al., 2011;

Jalaliniya et al., 2015; Oliveira et al., 2011). From 2005 until 2017, several text entry

17

methods on smartphone devices have been proposed in order to allow blind people to

perform text entry more efficiently (Siqueira et al., 2016). Nevertheless, entering text on

touchscreen devices is still a challenging task for blind people. Most of the developed text

entry methods present accessibility and usability barriers for blind users. Most of these

difficulties are caused by assistive technology limitations; keyboard interface limitations;

and interaction technique limitations.

 Some of these keyboards have suffered from assistive technology limitations, such

as screen readers, sound recognition software and tactile QWERTY overlay. One of the

biggest improvements is integrating screen readers in both iOS and Android smartphone

devices. Blind users can therefore use the normal (QWERTY) keyboard with VoiceOver

to be able to type text. Users can move their finger over the screen to find a particular

character and perform a double tap to insert it. However, it is still inaccessible because of

the time required for users to identify the location of a button by going through and listening

to all the letters until they find the desired one. The voice reading out each character name

as the user moves their finger over the screen can also be annoying.

 Another significant improvement in accessibility for blind people is improving

speech recognition services, such as Siri that allows users with no or low vision to insert

text quickly and easily. Users can simply speak to their devices; however, blind people

tend not to prefer these services because they find it awkward to speak their message aloud

in a public place (Alnfiai, Sampalli, 2016). Also, most speech recognition applications are

not adequately accurate and require the users to be in a quiet place to insert text (Nicolau

et al., 2010).

18

 Some companies provide a tactile overlay for the QWERTY keyboard on

smartphone devices. The tactile QWERTY overlay is an added physical guide over the

touchscreen that is recognized by the underlying application in order to provide tactile

feedback for the users. Integrating tactile overlay with touchscreen can improve their

accessibility to blind users and allow them to locate the keyboard keys easily as the overlay

provides small bumps that can be touchable (Kane et al., 2015). However, this overlay

provides limited functionality and requires extensive labor to customize an overlay for a

particular application interface. It is also typically expensive, for example, the cost of the

tactical overlay for the standard qwerty keyboard for an iPhone device is $100 (Orf, 2015).

To overcome this, some developers use plastics to create a tactile overlay that suit the

requirements of individual users and applications. Even still, creating an overlay for a

single interface is a laborious process.

 Another contribution in the field of accessibility for blind people is the creation of

refreshable Braille displays, which are electro-mechanical devices. They are used to

display Braille characters and provide tactile feedback of the visual information that is

displayed on a computer screen or smartphone device. The refreshable Braille device is

connected to the computer or smartphone device via USB cable or via Bluetooth. The main

usage of this device is that it produces Braille output on the Braille display using metal pins

that raise and lower different combinations of pins in Braille cells to display the Braille

characters. The key advantage of the refreshable Braille display is that it provides direct

access to information that enables the users to check format, spacing, and spelling. Another

advantage of this device is that it is quiet, as it provides only tactile feedback. However,

these devices are extremely expensive. The price of Braille displays ranges from $3,500 to

19

$15,000, depending on the number of characters displayed. Braille displays vary in terms

of how many cells are available, some of them provide 40, 70 or 80 characters. A 40-

character display is sufficient for most jobs. Examples of jobs that could require a 70- or

80-character display are computer programmer and customer service representative.

Another limitation associated with these devices is that it is bulky and users need to go

through the installation stage.

 Most of the available and proposed keyboards for blind people suffer from

requiring users to locate an object on a touchscreen device such as keys on the QWERTY

keyboard. There are also other keyboard interfaces such as BrailleType that are designed

based on Braille, but they inherit the QWERTY keyboard limitations by requiring users to

locate Braille dot positions on a screen (Oliveira et al., 2011). Another problem with the

QWERTY keyboard interface is that the keyboard keys are located so close to one another

due to the small size of a smartphone screen, which causes frequent errors (Nicolau et

al.,2010).

 Other proposed keyboards for blind people use different types of interaction

methods with touchscreens, for example, using the multi-touch approach. Some of the

interaction methods are not accessible for blind people and these methods require them to

use both hands to interact with a screen, which is a difficult task because they usually carry

something with the other hand (Alnfiai, Sampalli, 2016; Paisios, 2012). Although often

more accessible than the QWERTY keyboard, most of the available text entries for blind

people suffer from one or more of these limitations.

 Azenkot (2014) developed the Perkinput, a multi-touch text-entry method for

touchscreen devices based on Braille coding. For large touchscreens, the Perkinput requires

20

the blind user to use two hands and three fingers from each hand to enter a character in one

step. For small touchscreens, the user can use one hand to enter a character using three

fingers in two steps. The first step inserts the dot 1, 2 and 3, and the second step 4, 5 and 6,

as each finger represents a dot in the Braille pattern. The Perkinput interface eliminates the

fixed button; thus, it is more accessible because it does not require the user to locate an

object position on a screen. However, this keyboard does not completely overcome the

navigation problem because a user has to calibrate their fingers over a screen registering

his fingers’ positions. This calibration is used to detect which fingers were used to touch

the screen.

 Mascetti, Bernareggi, and Belotti (2011) developed the TypeInBraille Keyboard, a

touch and audio based text entry following Braille patterns. The keyboard interface has left

and right sections. It requires at least three gestures (touches on the screen) to enter a

character. Users insert Braille dots based on rows from the top to the bottom. Users touch

the left or right section using a single finger to activate the Braille dot on the tapped section.

Two taps on the screen using two fingers activates both dots in the right and left sections

and three taps inactivate both left and right dots in a row. This keyboard supports voice

feedback to enable users to confirm they entered the desired character. However, it requires

users to memorize multiple gestures to insert Braille dots and perform other functions.

These gestures are not easy to learn and it is difficult for blind people to perform because

it requires users to insert dots in rows, unlike the typical way, which is in columns. Another

weakness is that it requires users to use multiple fingers to make some of the gestures that

require three fingers, which is somewhat difficult for blind people to perform (Paisios,

2012).

21

 Another keyboard that follows the same interaction method approach is the

GBraille keyboard (Maria et al., 2016). It uses both tap and swipe gestures to perform the

keyboard functions and it requires at least three gestures to insert a letter. One tap on the

left is used to insert a left dot and on the right to insert a right dot. Two taps using two

fingers are used to insert both dots in a row. Swiping to the right inactivates both left and

right dots in a row and swiping to the left removes the last character. It has the same

strengths and limitations of the TypeInBraille keyboard.

 The Eyedroid keyboard is similar to the TypeInBraille and GBraille keyboards

(Jalaliniya et al., 2015). It is a swipe and audio based text entry, which follows Braille

patterns. Users can swipe in different directions to activate and inactivate Braille dots to

enter a character. The main advantage of this keyboard is that it does not require users to

tap or swipe on a particular location and it supports audio feedback. However, it requires

users to learn and memorize the defined gestures to insert Braille dots based on rows, which

can be confusing for blind users because it does not follow conventional Braille coding and

might be error prone.

 Some of the keyboards suffer from both inaccessible user interfaces and

inappropriate interaction methods. BrailleTouch (Frey et al., 2011) uses six keys to

represent the Braille code and it uses a multi-touch interaction based on Braille shapes and

it requires users to use two hands and three fingers from each to enter text on a screen. It

also requires users to hold the smartphone device in landscape mode with the screen facing

away from them, which is inconvenient and leads to privacy issues where others can see

written text on a screen. This keyboard provides audio feedback of the inserted character.

The main limitation of the keyboard is that it requires users to tap precisely on Braille dot

22

locations to insert a character. Apple’s Braille screen input is similar to the MBraille and

Braille Touch keyboards. It requires using two hands (multi-touch approach). The main

advantage of this keyboard is that it allows users to type based on Braille, and it enables

quick typing. However, It only works on landscape mode in small touchscreen devices.

Another limitation is that users need to calibrate Braille dots each time they used the

keyboard. A user stated that “I have found that I've had to recalibrate the dot positions a

few times while practicing to get the hang of things” (AppleVis, 2014). Users need to place

the first three fingers of first left hand, then right hand, on the screen. When users move

their finger away from the previous calibration, they make typing errors. Another

restriction addressed by the blind users is that they find the way of holding the device to be

odd. Some of the users introduce the problem they face when they accidently rotate their

device and usually the dots are reversed (AppleVis, 2014).

 Other existing keyboards require users to find the exact location of each object on

a touchscreen. Most of these keyboards’ interfaces are designed based on buttons. These

keyboards are differentiated from each other based on the number of buttons presented on

a screen, or the location of these buttons. Oliveira et al. (2011) developed a BrailleType

keyboard that uses the location based approach. Its interface also uses six buttons that are

organized in two columns representing Braille code. Audio feedback is used to read out

the number of dots that have been touched or selected. A blind user must find the location

of each Braille dot to activate it because the user interface is mainly designed based on

buttons. Thus, finding the exact location of each dot is one of this keyboard’s drawbacks.

 Mattheiss et al. (2015) developed EdgeBraille, which is another input method that

uses six buttons to represent the Braille code. The Braille dots are located on the corners

23

and edges of a screen. EdgeBraille allows users to swipe one finger along the screen’s

edges to draw a continuous line of Braille dots, selecting a combination of them in order to

enter a character. Vibrio-tactile feedback notifies users about the activation and

deactivation of Braille dots while the user slides his finger over the screen. Audio feedback

has also been used to speak out the typed text. This keyboard is not accurate because it

requires users to draw a line that connects the dots of each character. Blind users can not

identify the exact positions of Braille dots which makes it harder to draw a line between

them. Moreover, it only allows users to type letters, with no numbers or punctuation, and

it does not allow users to edit their typing. Similarly, Li, Fan, and Truong (2017) proposed

a gesture based text input method, which is called BrailleSketch. To input a character, a

user draws a gesture of any size anywhere on the screen representing Braille code. Li et al.

evaluated BrailleSketch without immediate letter-level audio feedback and showed that

participants achieved 14.53 wpm with 10.6% total error rate. They also evaluated the

BrailleSketch with immediate letter-level audio feedback and showed that typing speed

was 8.37 wpm and the error rate was 11.3%. In addition, they found that typing some

characters is not easy, such as N, V and Z where the user needs to draw the exact shape of

the Braille character to differentiate it from other characters.

 A very recent text entry method proposed for blind people is BrailleÉcran that uses

a fixed layout and a tactile interface as a cover of a touchscreen (Siqueira et al., 2016). The

BrailleÉcran interface represents Braille dots as six buttons and includes additional buttons

for editing. Each button on the layout is represented by a tangible dot on the tactile interface

that allows blind users to locate and press the exact location of a button. The main

advantage of this keyboard is that it provides both vibration and audio feedback. It has not

24

been evaluated yet, but a possible disadvantage is that it requires users to purchase special

equipment like a tactile cover. Another limitation is that some buttons have two functions,

which might cause confusion. For example, when a user taps the buttons for volume, he/she

obtains audio feedback, while when a user presses the buttons for volume, he/she closes

the application. In addition, the buttons are close to each other, thus the chance of error is

high. Similarly, Heni el at. designed MoonTouch, which is a text input method based on

gestures (2016). It uses an enhanced version of the moon alphabet and it provides vocal

and tactile feedbacks. The empirical evaluation result showed an average speed of 10.14

WPM and the error rate was not measured. Another keyboard that uses tactile interface is

slate Master (Lee et al., 2017). It uses a tangible slate, stylus and an application uses a

custom input interface, which mimics the use of the Braille Slate. The conducted a

preliminary study with six Braille teachers to examine the design of the method and found

that it can be a good application for learning how to write in Braille, but participants found

it confusing where they do not know where they tap Braille dot as they are not able to

receive tangible feeling as they do when they tap on a slate and a paper (old way) they can

feel the embossed Braille dots on the paper. The speed and error rate were not measured.

 BrailleKey was developed to overcome BrailleTouch’s main limitation, which

involves holding the mobile device upside-down (Subash et al., 2012). It uses four large

keys, which are located on the corner of a screen. The two upper buttons are used for

entering text based on the Braille code and the two lower buttons are used for editing. For

the upper buttons, the one located on the left is used to insert the first column of Braille

code (dots 1, 2 and 3); the one on the right is used to insert the second column of Braille

code. For the upper left button, users can perform one touch to select the first dot, two

25

touches to select the second dot, and a long touch to select the third dot; this technique is

applied for the second button as well. The main drawback of this keyboard is that it is

designed based on buttons, thus it requires users to tap accurately on button locations.

 Most of the existing Braille keyboards only support Grade 1 and not Grade 2, except

the AccessBraille keyboard (Ludi, Timbrook, Chester, 2014), which uses a multi-touch

approach and presents Braille dots as six columns on a touchscreen to allow blind users to

use both hands to type on a small screen. This keyboard has the same drawbacks as the

BrailleTouch keyboard (Frey, Southern, Romero, 2011).

 Our main goal is to develop an accessible and usable number and text input methods

for blind people, which allows interacting anywhere on a screen to enter a character.

Following the same principle of our previous research and Paisios (2012), this app was

designed to be used with one finger, as this is the most convenient and accessible way for

a blind person to interact with a touchscreen. In addition, we allow users to interact with a

touchscreen based on Braille.

2.2.3 Existing authentication methods for blind people

The Internet and social media have become an essential part of most people’s daily lives.

People use the Internet for various purposes including socializing, sharing information,

entertainment, education and shopping. The Internet presents its contents on websites for

a desktop software application and on web applications for touchscreen platforms. Web

applications require users to login to obtain access to online accounts such as emails,

banking, healthcare or shopping applications. Logging into a web application by providing

26

a name and password is called an authentication process. Authentication is a process of

ensuring the provided identification of a user matches the stored information in a database

file of authorized users’ information that is located in a local operating system or within an

authentication server. It also can be defined as the procedure of verifying that only the

authorized user can access to his/her accounts. The most common and widely used

authentication methods are Personal Identification Numbers (PINs) and textual passwords.

 Authentication with touch-based smartphones is a very challenging task for blind

people due to usability, accessibility and security issues. Apple and Android have improved

the accessibility of touchscreen devices by integrating screen reader service in both iOS

and Android platforms and it works well with both the built-in apps and third-party apps

(Accessibility, 2016; Android Accessibility, 2016). Using the PIN or textual passwords

with the accessibility service are extremely difficult where users have to type the password

sequences using the QWERTY keyboard. Thus, these authentication methods have posed

security and usability issues for blind people (D’Arcy & Feng, 2006; Holman et al., 2008;

Ma et al., 2012). Blind people used these methods with the support of TalkBack or

VoiceOver services which pose serious security issues. For example, in these

authentication techniques, a user moves his/her finger over the screen trying to locate a

specific key on a screen. At the same time, the VoiceOver service reads aloud the name of

the key under the user’s finger. When the user locates the intended key, the user can double

tap on the screen to insert it. In case someone is around the blind user, they can hear the

user’s private information including user name and password. Another security threat

occurs when a user wears headphones to prevent people around him from listening to what

has been typed on a screen. The earplugs reduce awareness of surroundings by preventing

27

a blind user from hearing or knowing if there is someone (specifically a shoulder surfer)

around him/her. In this case, people might be able to see what keys the blind user pressed

to insert the password (shoulder attack or video attack). Clearly, the PIN and textual

passwords and VoiceOver are susceptible to observation, and thus security threats.

 Furthermore, most existing authentication systems are inaccessible, for example,

typing special characters increases time and difficulty for blind users, since they have to

press a combination of keys to type such things as capital letters. This difficulty negatively

impacts on the strength of password where blind users will tend to choose simple

passwords, which are easier to crack and guess.

 In short, current web authentication systems including PINs and textual passwords

are not accessible for blind people because they require users to visually select the keys on

a touchscreen. The limitations of PIN and textual passwords are due to the lack of

accessibility and usability of touchscreen technology, and the inappropriate design of web

application authentication interfaces and assistive technology. Thus, there is a need to

consider usability and accessibility issues to overcome the security challenges that blind

people encounter.

 Numerous types of authentication methods for mobile phones have been proposed

to make access to private information more secure. Fritsch, Fuglerud, and Solheim (2010)

classified authentication methods into three types, which are knowledge-based, token-

based and biometric authentication methods. Each of these authentication methods has its

own pros and cons and none of them meet all users’ needs and satisfaction. This is

especially true for people who have disabilities. Graphical passwords are authentication

methods that have been widely studied and many different ways have been proposed on

28

how to use this technique including choosing a sequence of images on a screen or images

from a group for password, drawing a secret pattern or shape, and selecting a sequence of

points in presented images (Sangore, Patil, Ramani, Pasare, 2014; Suo, Zhu, and Owen,

2005; Oorschot and Thorpe, 2008; Dhamija and Perrig, 2000). All of these graphical

password techniques are inaccessible to individuals with no vision because it requires users

to visually recognize and select number of images.

 Alphanumeric passwords, which are defined as the traditional authentication

method, such as PIN and textual passwords have been commonly studied on smartphone

devices, but as mentioned, they are not accessible for blind people because it requires users

to navigate and locate a specific character on the screen using TalkBack or VoiceOver

service to help them select the intended character. Screen reader service broadcasts their

private information while aiding them to navigate through the keyboard layout. As Cassidy

et al. (2013) found, using the screen reader system to aid blind users while using the ATM

interface reduces blind users’ awareness of surrounding environment, meaning a blind user

cannot hear if someone is nearby or behind him/her. This definitely increases the risk of

observation attacks on this population. Similarly, using the Braille labels on the ATM

interface to assist users to identify keys does not prevent the vulnerability to observation

attacks where a bystander is able to see which key has been pressed (Helkala, 2012). Eiband

et al. conducted a survey about shoulder attack, with 174 participants. The survey results

indicate the existing of shoulder attacks in the real world and the results also show the

serious need to improve password systems to reduce the risk of shoulder surfing.

 Biometric authentication is an alternative method recently adopted on smartphone

devices. Different types of biometric techniques including iris scans, hand, face, voice and

29

fingerprint recognition have been used for verification, eliminating the need to enter a

password (Mudholkar, Shende, Sarode, 2012; Poh et al., 2016). However, biometric

authentication methods might lead to unsolved security issues. The major security problem

associated with the fingerprint service is that blind users might provide their fingerprints’

scans to a system or a website when they are not able to see the system’s or website’s

information (Fritsch, Fuglerud, Solheim, 2010). Blind users may not be able to use the iris

scan because it mainly relies on visual cues and amputees cannot perform fingerprint scans

(2010). Keane (2016) reported that facial biometrics for logging in are not an accessible

method for blind people. Poh et al. (2016) conducted an experimental study and found that

blind people struggle with taking selfies. Most of the face images were taken during the

experiment were blurry or off-center due to the poor positioning of the camera. Voice

authentication methods also suffer from distinct limitations in that they do not work when

there is background noise or if the user has a throat infection. The voice authentication also

leads to major privacy issues when people around user hear the user’s private information

(Fritsch, Fuglerud, Solheim, 2010).

 There are other limitations that are associated with biometrics in general. Most

people are not willing to provide their biometric data through a web application

(Authentication technologies, 2009). Once the biometric information is hacked or stolen

there is an insurmountable problem for the user. Passwords in other authentication methods

can be reset or changed, but biometric information cannot be reset and this might lead to

criminal activity (2009). Most available web applications do not rely completely on a

biometric authentication method. Sometimes, these methods require users to insert

alphanumeric passwords instead.

30

 Therefore, in most cases, creating other authentication methods to meet blind

people abilities is necessary. A lot of research discusses the importance of developing an

accessible authentication method for blind people. Saxena and Watt (2009) highlighted that

potential privacy and security threats remain largely unaddressed for blind people. They

also addressed the serious need for an accessible authentication method for blind people.

Similarly, Azenkot et al. (2012) also reported that most blind people are unaware of

potential security threats based on a study with 13 blind participants. Furthermore, Dosono

et al. (2015) conducted empirical studies exploring challenges and difficulties in

authentication for users with no vison. Entering passwords correctly or verifying successful

authentication are the major challenges that blind people face when logging in to a website.

 However, there is little research that has proposed accessibility authentication

method for people with no vision. Most of the proposed authentication methods for blind

people are designed to thwart shoulder attacks for desktop software (Ali et al., 2016; Kuber,

and Sharma, 2010; Wobbrock, 2009; Sae-Bae et al., 2012).

 There is only one authentication method proposed on smartphone devices for blind

people, which is called PassCords (Azenkot et al., 2012). It is a non-visual authentication

method for touchscreen devices that uses a multi-touch approach where a user taps several

times on a screen with one or more fingers. The algorithm used in this technique analyzes

the number of finger contacts with the screen and determines which set of fingers touched

the screen in order to define the password. At the beginning of each session, a user

calibrates a set of reference points of the user’s fingers anywhere on the screen. The

reference points are used to identify the proximate position of the user’s fingers on a screen.

Azenkot et al. compared PassCords to the VoiceOverPINs in one study session for each

31

method with 16 blind people. The study findings were that the PassCords speed was faster

than the VoiceOver PINs method and there was no significant difference in the failure rate

of either method. The main causes of error in this method is that requiring users to calibrate

without identifying the exact position of the user’s fingers on a screen.

 A very recent authentication method proposed for blind people is H4Plock (Ali,

Kuber

and Aviv, 2016) that uses a gestural and tactile mobile interface. Initially, the

H4Plock requires users to select two passcodes including a primary and secondary

passcode where a user can choose 1 to 4 gestures for each passcode. The H4Plock mobile

interface is divided into four parts and the passcode can be inserted in one quadrant, some

quadrants, and all the quadrants. A user will receive a vibration indicates which passcode

should be inserted. This step will be repeated four times until the user inserts all gestures

of a passcode. In each access attempt, the passcode is different due to the changes of the

gestural sequence with the various vibration cues that are presented by algorithm. This

makes observing or guessing the passcode sequence very difficult. The main advantage of

this technique is that it provides vibration cues and allows users to use gestures instead of

locating buttons. The evaluation findings with 17 sighted participants indicate that the

H4Plock speed was 11 seconds to insert four-gesture passcodes and failure rate of this

method was not calculated.

 Kuber and Sharma (2010) designed a web-based tactile authentication method for

desktop computers by displaying a grid of tactile stimuli through a tactile mouse. It allows

blind users to authenticate access using their sense of touch. This method’s interface has

four grids of nine squares where a square has a unique pattern of raised pins presented via

cells on top of the tactile mouse. A user chooses and memorizes four different pin patterns

32

from a set of thirty-six tactile stimuli. The chosen four patterns are used to form the user’s

password. An evaluation of this technique shows that most blind users are unfamiliar with

using a mouse, Blind people are unfamiliar with how to navigate or perceive tactile

feedback from a mouse. They depend heavily on using screen reader and keyboard keys.

This indicates that using a mouse to navigate on the password interface is inaccessible for

blind users. Therefore, in 2012, the authors improved this method by presenting tactile

icons at one fixed point on the interface, each tactile icon is played for a short time. They

used the VT Player device to display tactile feedback underneath the user’s fingertips

instead of tactile mouse. The main objective was to reduce the need to navigate using a

mouse. The evaluation result shows that the accuracy rate was 81.8% and they spent 141.6s

to authenticate access to the system and the navigation issue with the tactile icon still exists.

The main limitation of this method is that users need training time to learn the tactile

scanning process. Another limitation is that it was not implemented and tested on

smartphone devices. It also requires extra equipment such as The VT Player device.

Recently, Wolf, Kuber and Aviv (2017) described a preliminary study evaluating the

accessibility and usability of using tactile feedback to help blind individuals enter their

credentials using a PIN or 3*3 pattern locks on a mobile authentication system. The study

is still under progress but they found that tactile feedback is useful where it helps blind

users to easily navigate the authentication interface. They also found that the tactile cues

might improve privacy for blind users in some circumstances, in case they forgot their

headphones or the phone is located in a pocket or bag and they want to interact with their

phone privately. However, it requires blind users to carry extra equipment which is not

preferable.

33

 Wobbrock (2009) developed a rhythm-based authentication method, which is

called TapSongs. TapSongs uses a single sensor such as button to enable users to tap a

rhythm which is used as a password to verify the user. This method compares the inserted

rhythm with a timing model already stored on a device. An evaluation of this technique

shows that approximately 6-8 seconds is needed to authenticate a user and the strength of

entropy was not evaluated. In a similar manner, Ali (2015) used Google Glass, which is a

wearable device to help individuals with no vision to access online accounts on desktop

computers where a user performs a sequence of directional gestures on a Google Glass’s

multi-touch pad and these inserted sequential gestures on Google glass will be stored and

used to authenticate the user. The user study shows that TapSongs is not easy to crack, but

the memorability of this method has not been measured. Similarly, Saulynas and Kuber

conducted an exploratory study to evaluate the usability of using Brain-Computer Interface

(BCI) and gestural headset to allow blind and visually impaired users to enter their

passwords (2017). They found that using BCI and gestural technologies is slower and less

accurate than entering four digit PINs even though it provides higher level of security

against observation attacks.

 In 2012, Sae-Bae et al. proposed an authentication method that used behavioral-

biometric information gathered from multi-touch gestures of users’ fingertips and their

palms. It classifies movements and attributes of fingertips’ and palms using a pattern

recognition method. A user performs a multi-touch gesture using five fingers on a screen

to create different gesture samples as passwords such as a pinch or zoom gesture. This

technique will capture all x-y coordinates and time-stamps of five fingertips, then it

compares the inserted multi-touch gesture with the registered patterns of the user in order

34

to verify the user. This method shows an improvement in the accuracy of interpreting

multiple gestures.

 Said, Kuber, and Murphy (2015) developed a sound-based user authentication

interface, which is called AudioAuth. The AudioAuth Interface has 9 icons presented in

3x3 grids where the location of sounds on a grid is randomized. A user selects a sequence

of sounds through a mouse. However, the main limitation of the AudioAuth method is that

it is time consuming where users need quite a long period of time to scan over all the sounds

in a grid and to distinguish the stored password sounds. The evaluation result shows that

the accuracy rate was 80%. However, it has the same limitation as the tactile authentication,

proposed by Kuber and Sharma (2010), where blind users are unfamiliar with using a

mouse to select a sound icon.

 In 2017, Balaji, Kuppusamy and Afzal proposed a screen locker based on Braille.

The system interface presents the Braille dots as six large buttons located at the edges of

the screen. Users select the Braille dots that form the desired character. It provides visual,

oral and vibration feedbacks. This system has not been evaluated against security attacks.

However, it seems this method has the same limitation as the QWERTY keyboard.

 Several studies addressed the difficulties that blind people face logging in to an

online account or while entering the credentials (Saxena and Watt, 2009; Azenkot et al.,

2012; Kane et al., 2011). These include:

1. They were unable to find the location or box on a screen to type a username or a

password. Blind users may be less precise in targeting specific areas of the screen.

2. They are unable to locate specific objects on a screen, for example, the link to “I

forgot the password” or the help icon.

35

3. They are vulnerable to observation and audio attacks

4. They tend to ask for help from strangers or friends

5. The QWERTY keyboard digits are close to each other and that causes them to

make errors.

Usability, accessibility, and security are closely linked and must be carefully considered to

design a secure and usable user interface for authentication. In this work, our primary goal

is to develop an accessible authentication method on touchscreen devices that overcomes

most of the abovementioned difficulties for blind people. It will use gestures representing

Braille code and allow users to type anywhere on a screen.

36

CHAPTER 3: FRAMEWORK FOR ASSISTIVE TECHNOLOGY

This chapter explains the framework for the proposed assistive tools to improve the

accessibility of touchscreen devices for people with visual impairment.

3.1 Overview of the framework for the proposed assistive tools

Recently, assistive software for visually impaired individuals has been developed for

smartphones. This has increased accessibility and provided users with a rich unifying

platform. For example, the integration of Text-to-Speech service into smartphone devices

has enabled accessibility solution. However, visually impaired people still face some

challenges and technical obstacles when using their smartphone devices. These obstacles

include the touchable buttons, small screen size, and inconvenient interaction techniques.

For these reasons, visually impaired people have difficulty finding keys easily on

touchscreen devices. Additional assistive tools are needed to address both this issue and

associated security risks.

 In this research, we aim to remove these issues through the development of assistive

applications. These applications enable users to type and calculate on touchscreens

efficiently, with less effort and the ability to authenticate themselves securely. This

research uses simple gestures on a button free user interface. This eliminates the limitations

of button-based input methods and reduces privacy and security concerns. The goal of this

research is to provide a conceptual framework that explain the research problems and the

proposed solutions.

37

3.2 Framework overview

Figure 6. Framework for assistive tools for visually impaired

Figure 6 shows the framework that was utilized in this research in order to develop

applications that allow blind and visually impaired users to overcome existing accessibility

challenges. These include navigation, smartphone screen size, carrying extra equipment,

and social barriers. These barriers result in reduced application performance, lack of

accessibility, higher learning curve, and security threats. Recognizing these barriers and

their associated impacts, this research developed a framework. These applications were

designed in collaboration with the target population. This approach resulted in assistive

tools that offer a more accessible and secure user experience.

38

3.3 Framework components

There are many text input methods using different approaches that have been researched

and developed for visually impaired people. Some of these input methods use a location

based, multi-touch, or tactile based approach. Each approach has unique limitations that

make typing on a touchscreen inconvenient and error prone for blind users. The existing

location based keyboards require users to find a specific object location on a screen. Not

only time consuming, it poses a navigation issue because the user has to move their finger

over the keyboard layout trying to locate a particular key. Once the user has located the

desired key, error is common because of the close proximity of keys on the keyboard

layout. This issue particularly affects visually impaired people who need to move their

fingers slowly over the keyboard layout with the support of the screen reader until they

find the wanted letter. Then, users have to double tap to enter the desired character, but

sometimes their fingers drift and hit the wrong key. As the keys are organized close to each

other, it is very easy to accidently hit the nearby key instead of the wanted one. Similarly,

visually impaired people face the same difficulties while using the regular calculator to

perform basic calculations in their daily life.

 To compensate for the above problems, researchers have developed keyboards that

use a multi-touch approach. Multi-touch keyboards require users to use two hands to type

on the screen, but it is also inconvenient for blind users where one hand is usually occupied

holding the smartphone and cannot be used for typing at the same time. In addition, the

most accessible way for blind users is using one finger to interact with a touchscreen

(Paisios, 2012). Another limitation associated with the multi-touch keyboards is that users

39

need to use three fingers of each hand to type Braille dots where the smartphone screen is

small and does not suit interaction with two hands.

 Other proposed keyboards require blind users to carry extra equipment like a tactile

overlay to help them locate keys on the keyboard layout; this is not preferable for most

blind users (Fard, Chuangjun, & Helgeson, 2011). The tactile overlay limits application

functionality or users’ abilities to interact with the screen or identify all the application

buttons. Another reason blind people may not like this technique is that the tactile overlay

for a particular touchscreen device requires extensive customization of the hardware. Thus,

it is very expensive and complex to create an overlay as it requires intensive labour (He et

al., 2017).

 Due to the above-mentioned problems, more intuitive input methods of entering

text and numbers is therefore essential in order to overcome the above obstacles that blind

users have experienced.

 A possible solution to the above problems is the design of novel entry methods

based on Braille patterns that use a single touch approach to encode Braille patterns

anywhere on a screen without any concern about location or buttons using only one finger.

This input method has thus far been shown to be the most important tool for accessing

applications on touchscreen devices. Therefore, we first developed a new text entry method

called SingleTapBraille, a keyboard that eliminates the need to find a specific key location

to input a letter, allowing information to be entered in a way that is fast and effective using

a single thumb or finger based on Braille shapes. To improve the speed of the

SingleTapBraille keyboard, we improved it by implementing grade 2 Braille, which

employs shorten word forms. However, the SingleTapBraille utilizes algorithms based on

40

the relationships between dot positions on a screen. The user study revealed that blind users

are not able to represent the Braille shapes correctly for some letters that have similarity in

their Braille codes. Therefore, we proposed and developed BrailleEnter, another non-visual

Braille input method that requires a user to utilize two gestures to encode Braille patterns

of each character. This keyboard enables users to enter Braille dots anywhere on a screen

using a single finger, and since the keyboard algorithm is not based on where a user taps,

it eliminates the need for locating an object on the screen. Users can interact with the screen

in one spot or any spot that is convenient for them that can allow people with vision loss

to easily access different smartphone applications.

 We evaluated the performance, strengths and weaknesses of the entry methods

through user studies with seven to ten participants in each study. User studies’ results

indicate that typing anywhere using a single finger based on Braille patterns was preferred

by blind users as it balances simplicity with accuracy. Insights from our user studies helped

us further refine and improve the preferred entry method for visually impaired people.

 The user studies also highlighted the need to create a calculator that meets blind

people’s requirements. We learned they faced the same problems when using the regular

calculator that they have faced while using the QWERTY keyboards. Thus, we used the

single touch approach based on Braille pattern to build an accessible calculator that

overcomes navigation issues.

 Location based input methods do not only pose efficiency and error challenges to

visually impaired users; they also cause security threats by displaying or speaking out what

keys the blind user pressed to enter the password. Thus, most web authentication methods

that use these keyboards with VoiceOver are susceptible to observation attacks.

41

Furthermore, most existing authentication systems are inaccessible, for example, typing

special characters increases time and difficulty for blind users, since they have to press a

combination of keys to type such things as capital letters. This difficulty negatively impacts

the strength of password where blind users will tend to choose simple passwords, which

are easier to crack and guess.

 Current web authentication systems including PINs and textual passwords are not

accessible for blind people because they require users to visually select the keys on a

touchscreen. The limitations of PIN and textual passwords are due to the lack of

accessibility and usability of touchscreen technology, and the inappropriate design of web

application authentication interfaces and assistive technology. Thus, there is a need to

consider usability and accessibility issues to overcome the security challenges that blind

people encounter.

 Designing a web authentication method that protects against shoulder attacks is

therefore essential in order to significantly reduce the security risk that blind and visually

impaired people encounter while using smartphone devices. We therefore developed

BraillePassword, a novel web authentication method on smartphone devices for blind users

that cope with shoulder attack using the single touch approach and haptic feedback.

BraillePassword proved to be more resilient to observation attacks. All the developed input

methods are compared to commonly used input methods, and the developed web

authentication method is compared to the PIN and textual password on touchscreens.

 We designed entry methods that use a single touch approach based on Braille

patterns where users are not restricted to locate an object on touchscreens. Our entry

methods rely on the ability to type using their mother language (Braille) which does not

42

require time for them to learn. These methods, which employ a set of accessible gestures

that can be easily performed by end users, lower the rate of errors that occur when users

need to switch between layers or do editing. Additionally, entry methods which allow for

exploration of the touchscreen that allows people with no vision to interact anywhere on

the touchscreen without any concern about hitting undesired objects or opening up another

screen enables them to learn the methods in a short time, and allows them to use the

methods more easily. Ultimately, the interaction approach that uses a single touch approach

based on Braille with haptic feedback provides an accessible and secure web authentication

method that is resistant to observation attacks and allows for simple gestures and relatively

effortless screen exploration. This research introduces a new interaction technique for input

and a secure user interface for web authentication applications. This research allows future

researchers to conceptualize the design of input and authentication methods in this manner.

43

CHAPTER 4: TEXT INPUT METHODS

4.1 The SINGLETAPBRAILLE TEXT ENTRY METHOD1

 The proposed research seeks to overcome the limitations of existing input methods

based on Braille. Our main goal is to develop a new text entry method that eliminates the

requirement that users find specific locations in order to input letters, allowing information

to be entered in a way that is fast and effective using a single thumb or finger. This is in

accordance with Paisios (2012), who found that using one finger to interact with a

touchscreen is the best, most accessible way for blind users. Similarly, a previous study on

travelers conducted by Karlson, Bederson, Contreras-Vidal (1988) found that they usually

hold bags with one hand and hold the mobile phone using the other hand. This situation is

similar to the usual scenario for blind and visually impaired people who hold a cane or a

guide dog with one hand and use the other hand to interact with a mobile phone.

The main objective of the present study is to identify the best features for users who

are restricted to using only one hand to perform tasks on their mobile device. The design

of our keyboard was guided by preliminary findings showing that that the majority of users

would prefer to use the thumb to interact with touchscreens. The description of our input

method is detailed in the following section.

4.1.1 Typing and editing on a touchscreen

 The SingleTapBraille system is based on Braille patterns, each with two columns

and three rows. Our input method allows users to enter dots from left to right,

1 Research Aptitude Work

44

corresponding to the way in which blind users read Braille. The first tap means a dot in the

left column. Each Braille dot is activated individually using a single tap on a touchscreen.

For example, if the user taps on any part of the screen once, this will represent the letter

“a” and it means the user activated the first dot in Braille. When the user stops touching

the screen for a short interval, the Braille pattern is interpreted and the resulting letter is

typed and the software reads out the letter. With SingleTapBraille, users can hold the

mobile phone with one hand because they need only one finger to enter Braille dots on the

touchscreen. Users can also use their thumbs to enter Braille dots on the touchscreen.

4.1.1.1 Grade 1

 In our approach, the SingleTapBraille system analyze the relationship between

active dots in each Braille character based on their coordinates and the distance between

each dot and the following one(s). For example, if the user taps two taps below each other

on a screen, this will represent the letter “b” and it means the user activated the first dot

and second dot in Braille. The software will analyze the relationship between these two

taps, and based on our algorithm, will identify the intended letter, number or punctuation

mark and show it on the screen. The main concept behind our new input method is the

clustering of activated Braille dots for each character. When the user stops touching the

screen for a short interval, our algorithm clusters the entered taps and interprets them based

on the number of dots. The algorithm processes each dot’s coordinates, as well as the space

between each dot and the following one. Figure 7 illustrates how the algorithm works; the

relationship between Braille dots is determined on the basis of the following values:

1. The value of coordinates (X, Y) for each dot.

45

2. The distance between dots, D, which means a defined value representing the

distance between two dots.

3. The number of dots in each character

Here are some examples that explain how the proposed algorithm works:

Categorization of Braille characters based on number of dots
Character has one

dot

Characters have two

dots

Characters have

three dots
Characters have four

dots
Character has

five dots
Letter A, number 1

One tap anywhere in
a mobile screen

Letter b, number 2

|X1-X2|<error; D <= a
specific value

Letter f, number 6

|X1-X2|<error; |Y1-
Y3|<0; D <= a specific
value

Letter g, number 7

|X1-X2|<error; |X3-
X4|<error; X2<X3; |Y1-
Y3|<error; |Y2-
Y4|<error; Y3<Y2, D
<= a specific value

Letter q

|X1-X2|<error; |X3-
X2|< error; |X4-
X5|<error; |Y1-
Y4|<error; |Y2-
Y5|<error; D < a
specific value

Figure 7. Sample of categorization of Braille characters based on number of dots

The error parameter is a specific value that is used as a threshold for determining whether

two floating point numbers are in a vertical or horizontal line. If the difference between x

values of two taps is smaller than the error value, the algorithm will accept it because it's

very likely that the user's taps are intended to be in the same vertical line.

4.1.1.2 Grade 2

 The main purpose for implementing Grade 2 Braille is to improve the keyboard

speed. As indicated, when using Grade 2 Braille, contractions and abbreviations can be

typed instead of whole words.

 The implementation of Grade 2 follows the same approach of Grade 1 algorithm.

0
1
2
3
4
5
6
Y

0 1 2 3 4 5 X
0
1
2
3
4
5
Y

0 1 2 3 4 5 6 X

0
1
2
3
4
5
Y

0 1 2 3 4 X
0
1
2
3
4
5
Y
7

0 1 2 3 4 X
0
1
2
3
4
5
6
Y
8

0 1 2 3 4 5 X
7

46

The algorithm will analyze the Braille sign of each contraction based on number of dots

and the relationship between these dots in a single Braille sign.

 Users select the Grade 2 Braille mode and they type the Braille sign of a word that

they want to type. Our algorithm will check which word this Braille sign indicates and will

spell out the complete word. At the same time, our application’s speak function will speak

out the intended word. For example, if a user inserts the letter k Braille sign in Grade 2

mode, our keyboard will type out “knowledge” and it will speak out “knowledge” (see

Figure 8).

you can do Knowledge

Letter y

|X1-X2|< error; |X3-X4|< error;
|X4 X5|< error; |X3-X5|<error;
Y2-Y1>gap;Y5>Y1; Y5>Y3;
Y5>Y4; |Y5-Y2|<error

Letter c

|Y1-Y2|<error

Letter d

|Y1-Y2|<error; |X2-
X3|<error

Letter K

|X1-X2|< error; D > gap

Figure 8. Example of entire words abbreviations in Grade 2

 However, the algorithm follows other steps to type words that their abbreviations

have two letters or more (see Figure 9). Users tap the letters’ Braille codes and after

inserting the abbreviation, our algorithm will find out the corresponding words and insert

the complete words. At the same time, the speak function will read out the interpreted word.

For example, a user types letter “a” and “b” and then adds space, the algorithm will check

a corresponding word for the abbreviation “ab” and it will insert and speak “about”.

0
1
2
3
4
5
6
Y

 1 2 3 4 5 6 X
0
1
2
3
4
5
6
Y

8

 1 2 3 4 5 6 X
0
1
2
3
4
5
Y
8

1 2 3 4 5 6 X
0
1
2
3
4
5
Y
8

 1 2 3 4 5 6 X

47

about

 Letters “a” “b”

Figure 9. Sample of typing shorten words forms in Grade 2

Typing steps for Grade 2 abbreviations that contain two letters or more in the

SingleTapBraille:

1. Typing the letters based on the Braille shape of each letter

2. Finding out the corresponding word

3. Replacing the abbreviation with the entire words

4. Reading out the inserted word

 Figure 10. Algorithm flowchart

0
1
2
3
4
5
Y

0 1 2 3 4 5 6 X

1

0
1
2
3
4
Y

0 1 2 3 4 5 6 X

48

Figure 10 shows how the SingleTapBraille algorithm will check the number of taps on a

screen and then it will analyze the relationship between each tap and the following one,

and based on our algorithm, will identify the intended letter, number or punctuation mark

and show it on the screen.

4.1.2 Algorithm advantages

 The main advantage of our algorithm is that it does not restrict users by requiring

them to find a specific object location on a screen, instead allowing them to tap the Braille

dots anywhere on the screen based on Braille patterns. It does not have a button or other

type of control that requires the user to precisely tap or click specific spots; it is gesture

driven and has a corresponding voice output. Users do not have to tap on a specific location

to activate a particular Braille dot. After the user taps using one finger (or thumb) to activate

Braille dots, the software will analyze the relationship between those dots and represent

the interpreted characters. The application uses audio feedback after a short interval,

allowing the user to confirm that he/she entered the intended letter and understands the

gestures being performed. As a result of letting users confirm what they are doing, the error

rate will be significantly reduced. Furthermore, users can use one hand to hold the mobile

phone and tap on the screen using only a thumb. Users can also operate our input method

on a tablet using one hand to hold the tablet and another hand to enter text. Importantly,

our application can be used both by stationary people and those on the move.

49

4.1.3 Typing and editing operations

 There are some typing operations, such as space and backspace, that the Braille

keyboard does not present using Braille dots, because they have specific buttons on the

Braille machine that perform these functions. The SingleTapBraille method uses an

assortment of flicking motions on the mobile screen in order to carry out certain functions,

as detailed in Table 4.

 The main advantage of this approach is that when the user performs a gesture, the

software will speak out the gesture function’s name. The SingleTapBraille method

activates the Text-to-Speech function to speak out the registered interaction gestures that

are used to facilitate typing, as shown in Table 4.

 In order to change the keyboard mode, users can swipe vertically in a loop to

activate a particular mode including lower case, upper case, numbers, symbols and Grade-

2 modes. The first swipe will activate the first keyboard mode and TalkBack service will

read out the keyboard mode. Then, if the users swipe vertically twice, they will obtain the

second keyboard mode. For example, when the user performs the first vertically swipe

from bottom to top, the app will speak “Upper case”. In case the user does not want the

upper-case mode, he/she can swipe again vertically to select the lower-case mode instead.

Performing a vertical swipe from top to bottom will open the symbols mode. A second

swipe from top to bottom will open the Grade 2 Braille mode. They can also swipe

horizontally to edit their typing (see Table 4).

50

Table 4. Braille keyboard interaction techniques and their purposes

Interaction techniques purposes

Swipe from bottom to top Upper case, number mode
Swipe from top to bottom Lower case, symbols mode, Grade 2

Braille
Swipe from left to right Add space
Swipe from right to left Backspace

In Braille, there are no special characters that represent capital or small letters (Pierce,

1995). In order to enter a capital letter using Braille, the user should activate dot number

6 in the pattern just before the letter that is meant to be capitalized (Paisios, 2012). None

of the existing input methods have been able to help blind and visually impaired

individuals type capital letters. In our method, users can simply swipe their finger from

top to bottom to type capital letters. When the user swipes from top to bottom, the

software will speak out the gesture function. The software also begins any sentence with

a capital letter and then automatically shifts back to small letters. Swiping from the top

down will allow the user to write a small letter.

 As mentioned above, numbers follow the same order and have the same shapes as

the first ten letters of the alphabet in Braille (Pierce, 1995). Consequently, the letter “a”

sign represents number 1, letter “b” sign represents number 2, and letters “a-j-c” signs

represents the number 193.

 Using our input method, users can perform a defined gesture (a swipe from top to

bottom) in order to enter numbers on a touchscreen.

 Grade 2 Braille also follows the same Braille patterns order and shapes. A single

Braille sign in Grade 2 indicates a word. Users can insert a Braille sign and the algorithm

will replace it with the matched word.

51

 The SingleTapBraille application interface enables the users to type based on

Braille coding using a thumb or one finger. Visually impaired individuals can use the

TalkBack accessibility service to listen to the entered letter after tapping on the screen. The

SingleTapBraille interface has an edit text on the top of the screen, where the written text

shows up. Users have the ability to tap anywhere under the edit text. The first time the user

enters a given letter, it shows up as a capital letter automatically. User can switch between

layers by swiping their fingers from top to down or vice versa. Users can also edit written

text by swiping from right to left to remove the last typed letter.

4.2 SingleTapBraille implementation

This section presents an overview of the major technologies being used within the

SingleTapBraille keyboard. In the following sections, we describe the various experimental

tools, the experimental services, and the experimental model for the developed application.

4.2.1 EXPERIMENTAL TOOLS

In this section, we describe the experimental tools used in the SingleTapBraille application.

The ways in which these technical tools were used is discussed in the ‘Experimental

Model’ section.

4.2.1.1 Android OS

The Android smartphone operating system is open sourced and provides effective tools for

developers to build high quality applications for all android device types. It allows users to

edit, debug, build and deploy applications; thus the android operating system is considered

52

an appropriate environment for implementing our proposed applications for blind and

visually impaired people. First, Android provides an informative document, tutorial and

several websites share valuable knowledge about design and building such an application.

Second, most available libraries for the android operating system are developed in the Java

language. Third, most available android devices are offered to end users with a reasonable

price thus there is many Android users. This means that any new application can quickly

get published and downloaded by many users, resulting in abundant feedback (Vodička,

2011).

 We implemented the SMS application in the Android platform because it is flexible

by offering developers a low barrier to entry and allowing them to play with features and

functionalities with their applications. The developed Braille applications can be

implemented in any mobile platform, including iOS, Android, and Windows phones. The

components of designing the user interface of this approach are available across all

platform versions. In the implemented approach, we used only essential gestures to create

a simple interface including short tap, long tap and swipe gestures that are easy to

implement in other platforms. This approach does not require any element that is restricted

to any specific platform release, and can be easily implemented across platform versions.

4.2.1.2 Android Studio

 It is the formal Integrated Development Environment (IDE) for android operating

system. It includes a workspace and a plug-in system for the development environment. It

is a replacement for the Eclipse Android Development Tools (ADT) as the main IDE for

native Android application development. The Java language is used to write numerous

53

functions involving Java editing, incremental compilation, code assist and an XML Editor

(Android studio blog, 2017).

 Android studio enables developers to design applications’ interfaces and to build

applications in the Android environment by offering the necessary API libraries like

building, testing, and debugging tools. The distributed application extension is Android

application package “.apk”. in addition, Android studio provides an emulator and source

code for debugging sample applications to simplify testing build applications (Android

studio blog, 2017).

4.2.1.3 Microsoft Excel

Microsoft Excel is a spreadsheet program used to process large amounts of collected data.

The common usage of this program is to store and process commercial data using different

functions, including basic mathematical operations (e.g., sums, averages, etc.). Microsoft

Excel allows users to visualize the processed data in a graph, chart, diagrams in order to

provide a brief knowledge about a trend of treated data. In this research, we used Excel to

process the collected data from the conducted studies and provide an overview about the

collected data.

4.2.2 Experimental services

4.2.2.1 TalkBack service

Google’s Android Accessibility Service provided TalkBack service, which is a screen

reader pre-installed in the android devices. The main objective of this application is to

provide oral feedback for the end users while moving their finger over the screen device.

It also helps blind and visually impaired users by informing them of the result of any action

54

they make on the screen, such as (opening an application) and events (e.g. notifications)

through verbal feedback. It also informs the users about which button they have touched

and/or selected. In addition, it enables users to navigate through pages and menus on a

screen by reading out the name of each object under their finger on the screen (Nuñal,

2012; Google, 2013). To enable TalkBack application, end users can go to Settings >

Accessibility and enable the TalkBack service (see Figure 11). Google’s Android

Accessibility developers improve and update the TalkBack application regularly (Nuñal,

2012).

Figure 11. TalkBack service

Blind users can use TalkBack service to open up the proposed tools. Users can move their

fingers over the screen. Each time they touch a button the TalkBack service will read out

the name of the button. If the touched button is what the users were looking for, users can

double tap on the button in order to activate the function of this button. If the button is not

what users were looking for, they can move their fingers to the next button until they find

the target button.

55

4.2.2.2 TYPING AND EDITING USING THE SINGLETAPBRAILLE KEYBOARD

We follow the “iOS Human Interface Guidelines”, while creating the application interface.

The interface guidelines outline design principles for mobile devices for blind and visually

impaired people. Based on these guidelines, the Text-to-Speech function is used to read

out the content of the screen to end users (Russell-Minda, Jutai, & Strong, 2006; iOS

Human Interface Guidelines, 2014; Designing for Screen Reader Compatibility, 2014).

4.2.3 Experimental model

In this section, we describe the implementation of the SingleTapBraille keyboard to enable

blind users to type on a touchscreen using Braille as well as to overcome the navigation

problems of the common used keyboard. We explain the SingleTapBraille interface, typing

and editing functions. This section presents the SingleTapBraille architecture of the user

interaction module, which includes:

1. Gesture pattern recognition module

2. Braille character pattern recognition module

3. Grade 2 abbreviation module

4. Keyboard modes or layout module

5. Editing module

6. Text to speech module

To enter a character on a touchscreen using the SingleTapBraille, one to six gestures are

required to recognize a character. The SingleTapBraille keyboard algorithm contains five

modules: the first detects the gesture pattern; the second recognizes Braille characters; the

third is the Grade 2 abbreviation module; the fourth determines the keyboard mode; and

56

the fifth is an editing module, which includes gestures for special keys such as adding a

space or backspace. The sixth element is the Text-to-Speech module used to speak out each

input entered or removed from the screen.

4.2.3.1 Gesture Recognition Algorithm

The gestures of tapping, pressing, and swiping vertically/horizontally occur when a user

places one finger on the smartphone screen until the time the user lifts the finger from the

screen. The entire pattern of finger movements is interpreted as a particular gesture by the

Android application. First, all the relevant data of touch events are gathered and then they

are interpreted to see which gestures they match and whether the pertaining actions are

executed as specified in the code.

We used onTouchEvent, which is ith MotionEvent class to detect common gestures such

as tap, press and swipe on a screen.

a. Using MotionEvent to Detect Gestures

MotionEvent class is used to define an action movements and its axis values. To identify a

gesture on a touchscreen, the MotionEvent class has been used to send the entered gestures

to Views via the onTouchEvent() method. The MotionEvent class has all the information

that are related to a touch or a gesture on the screen, for example, the number of pointers

(ID), the (X, Y) coordinates and size and pressure of each touch. It identifies the action

status such as a pointer going down or up or using the constants Action_up and

Action_down. The main goal of these constants is to determine the action performed on a

screen. Once the pointer touches the screen, each pointer has a unique ID that is assigned

57

when the finger goes down that identified by Action_down. The ID of each pointer is valid

until the pointer lifted off from the screen that identified by Action_up.

b. Using onTouchEvent() to Detect Gestures

We used the onTouchEvent() method to capture the touch events on a screen. This

method gets called each time the size, direction and position of the touch event changes

or when the user places a new finger on the touch screen.

c. Overriding the Activity onTouchEvent()

To detect the touch events, we override the onTouchEvent() method of the activity. One of

the touch events class is MotionEvent class, which is used to capture and identify the action

that being performed on a screen. This class has a method called getAction() method that

used to determine the type of action and return an integer that represents the action code,

such as ACTION_UP or ACTION_DOWN. Under this class, there are the getX() and getY()

methods that are used to return the current X/Y coordinates of any interaction on the screen.

 To detect the common gestures like tap, long tap, and swipe vertically and

horizontally, we used the GestureDectector class. This class performs all the complicated

procedures to handle the common gestures by itself. The input variables Xdown, Ydown,

Xup, and Yup coordinates of each touch events happens on the smartphone screen. The

Minimum swipe distance SWIPETHRESHOLD is set as 100 pixels. The variable Xdown

is value of X coordinates when the finger touches the screen. Ydown is value of Y

coordinates when the finger touches. Similarly, the variable Xup is the value of X

coordinate when the finger goes up, Yup is the value of Y coordinate when the finger goes

up.

58

d. The logic of gesture pattern identification is that

 Step 1 reads the input values of Xdown, Ydown coordinates values in an ActionDown

event

Step 2 reads the input values of Xup, Yup coordinates values in an ActionUp event.

Step 3 checks if the subtracted value of Xup from Xdown is greater than

SWIPETHRESHOLD; Xdown is the x coordinate when finger touches the screen and Xup

is the x coordinate when the finger goes up of the screen. The outcome is swipe vertically

to change the keyboard modes between letters, numbers and punctuations.

Step 4 checks if the subtracted value of Yup from Ydown is greater than

SWIPETHRESHOLD; Ydown is the y coordinate when finger touches the screen and Yup

is the Y coordinate when the finger goes up of the screen. The action is swipe horizontally

to do editing features in the keyboard.

Step 5 check if the value of Xup is greater than Xdown; perform right swiping to add a

space.

Step 6 check if the value of Xup is smaller than Xdown; perform left swiping to do a

backspace.

Step-5 or Step-6 will be executed when Xup is greater than Xdown (Swiping Horizontally).

4.2.3.1.1 Explanation of Gestures

The gestures that have been used to implement the SingleTapBraille keyboard are:

1. Short Tap

2. Long Tap

3. Swiping horizontally

59

4. Swiping vertically

The algorithm is implemented in Java language in an Android studio platform. The

implemented algorithm is designed mainly based on the interaction techniques that users

perform on the mobile phone screen.

 Tapping gestures are used to form the Braille patterns of each character. Swiping

gestures have been used to perform editing. The input values are one to six combination of

tapping gestures that are taken from the smartphone screen. The algorithm produces

expected outputs (letters, number or punctuations) based on the relationship between the

position of the entered taps and their orders.

/* Gesture Recognition Algorithm */

Comment: gestures used are swipe left, swipe right, swipe up and swipe down
Comment: SWIPETHRESHOLD 100px. // Required minimum distance traveled
to be considered swipe
Step1. Read input details from the touch screen including events where the touch
position changed using MotionEvent
Step2. Detect gestures’ type
On ActionUp event: read Xup, Yup coordinates values
On ActionDown event: read Xdown, Ydown coordinates values
Step 3. If (|Xup-Xdown|> SWIPETHRESHOLD) then
 return “Swipe Horizontally”

 Step 4. If (Xup > Xdown) then
 return “Swipe right”
 do “add space”
 end if

Step 5. If (Xup < Xdown) then
 return “Swipe left”
 do “Backspace”
 end if

 end if

Step 4. If (|Yup –Ydown|> SWIPETHRESHOLD) then
 return “Swipe Vertically”
Step 5. If (Ydown < Yup) then
 return “Swipe down”
 do “Change the keyboard mode”
 end if

Step 6. If (Xdown > Yup) then

60

 return “Swipe up”
 do “Change the keyboard mode”
 end if

 end if

End Gesture Recognition Algorithm

Figure 12. The description of gestures recognition algorithm

Figure 13. Snapshot of swiping gesture recognition

4.2.3.2 Braille character pattern recognition module

The input variables are the touching events that users perform on the screen. This algorithm

requires one to six inputs (taps) to produce one character. It processes these touches or

gestures (input variables) by analyzing the number of touches being performed on the

screen; the position of theses touches (the shape or the relationship between taps by

determining the coordinates of each tap); and the gestures’ type, and orders. The active

dots in each Braille character are represented by short tap gestures and the inactive dots are

61

ignored in this algorithm.

/* Braille Character Recognition Algorithm */

Comment: Tapping gesture is used to present Braille pattern
Comment: variables: minimum distance 100px, error 50, gap 150
Step1. Tap on the screen representing Braille character
Step2. Start the time count once a user touches the screen
//Timer == 0 and the size of array list is zero (Taps’ list [])
Step3. Detect the gesture type (Gesture recognition algorithm)
Step4. Add tap gestures on a screen, its coordinates, order into the array list (Taps’
list []) and the number of tap gestures that have been performed on the screen in the
specified time.
Step5. DO step 1, 3 and 4 as many as the number of active dots in the Braille

code of a character (representing Braille dots in each character)
Step6. Stop the timer == 3 seconds

Step7. If (array list has more than six gestures)
 return “more than six dots”
 speak “couldn’t recognize letter”
 end if

Step8. If (array list has six gestures or less)
// 4 cases: one tap case, two taps case, three taps case, four taps case and five taps case

// 4 modes. mode 0: small letter, mode 1: capital letter, mode 2: numbers, mode 3: symbols

 Switch (the number of taps stored in the array list)
 case 1: // (one tap)

if (the keyboard is in uppercase mode)
 Enter “Letter A”

 end if
else if (the keyboard in lowercase mode)
 Enter “Letter a”

 end if
else if (the keyboard in number mode)
 Enter “number 1”
end if

 break;

case 2: (Two Taps)
If ((|X1-X2| < error) && (|Y1-Y2| < = gap))
 if (the keyboard in uppercase mode)
 Enter “Letter B”

 end if
else if (the keyboard in lowercase mode)
 Enter “Letter b”

 end if
else if (the keyboard in number mode)
 Enter “number 2”

 else if (|Y1-Y2|<error)

if (the keyboard in uppercase mode)

62

 Enter “Letter C”
else if (the keyboard in lowercase mode)
 Enter “Letter c”
else if (the keyboard in number mode)
 Enter “number 3”

 else if ((X1-X2<0) &&(Y1-Y2<0))

 if (the keyboard in uppercase mode)
 Enter “Letter E”
 else if (the keyboard in lowercase mode)
 Enter “Letter e”
 else if (the keyboard in number mode)
 Enter “number 5”

 else if ((X1-X2) <0) && ((Y1-Y2)>0)
 if (the keyboard in uppercase mode)
 Enter “Letter I”
 else if (the keyboard in lowercase mode)
 Enter “Letter i”
 else if (the keyboard in number mode)
 Enter “number 9”

 else
 speak “Could not recognize letter”
 end if
 break;
 case 3: (Three Taps)

If ((|Y1-Y2| < error) && (|X2-X3| < error))
 if (the keyboard in uppercase mode)
 Enter “Letter D”
 else if (the keyboard in lowercase mode)
 Enter “Letter d”
 else if (the keyboard in number mode)
 Enter “number 4”

 else If ((|X1-X2| < error) && (|Y1-X3| < error)&&(|Y1-Y2|)< gap)
 if (the keyboard in uppercase mode)

 Enter “Letter F”
 else if (the keyboard in lowercase mode)
 Enter “Letter f”
 else if (the keyboard in number mode)
 Enter “number 6”

 else If ((|X1-X2| < error) && (|Y1-X3| < error)&&(|Y1-Y2|))
 if (the keyboard in uppercase mode)

 Enter “Letter H”
 else if (the keyboard in lowercase mode)
 Enter “Letter H”
else if (the keyboard in number mode)
 Enter “number 8”

63

 else If ((X1-X2)<0 && (|X2-X3| < error) && (|Y1-Y3| < error))
 if (the keyboard in uppercase mode)

 Enter “Letter J”
 else if (the keyboard in lowercase mode)
 Enter “Letter J”
 else if (the keyboard in number mode)
 Enter “number 0”

 end if
 break;
 case 4: (Four Taps)
 if ((|X1-X2|<error)&& (X3-X4<error)&&(Y1-Y3<error)&&(|X1-X2|
 <gap)&& (|Y1- Y2|<gap)&&(X2<X3) &&(Y3<Y2) && (|X3 X4|<gap)
 &&(|Y3-Y4|<gap))
 if (the keyboard in uppercase mode)

 Enter “Letter G”
else if (the keyboard in lowercase mode)
 Enter “Letter g”
else if (the keyboard in number mode)
 Enter “number 7”

 end if
 break;
 case 5: (Five Taps)
 if ((|X1-X2|<error)&& (X2-X3<error)&&(X4-X5<error)&& (Y1-Y4< error)
 &&(Y2-Y5<error))

if (the keyboard is in uppercase mode)
 Enter “Letter Q”
else if (the keyboard is in lowercase mode)
 Enter “Letter q”

 else if ((|X1-X2|<error)&& (|Y1-Y2|<gap)&&(X3-X4<error)&&(X4-
X5<error)
 &&(Y1-Y3<error)&&(Y2-Y5<error))

if (the keyboard is in uppercase mode)
 Enter “Letter Y”
else if (the keyboard is in lowercase mode)
 Enter “Letter y”

 end if
 break;
 default:
 speak("Couldn't recognize letter");
 break;

 end
Step9. Clear the array list
Step10. Repeat step 1 to 9
Step 11. End Character Recognition Algorithm

Figure 14. The description of Braille characters’ recognition algorithm

64

Figure 15. Snapshot of Braille characters’ recognition algorithm

4.2.3.3 Grade 2 abbreviation module

The replace () method is used to change the abbreviation of a word with the entire words

letters. For example, if the user enters “ab”, then the replace method changes it to “about”.

65

Figure 16. Snapshot code of Grade 2 abbreviation method

4.2.3.4 Switching between the keyboard layout

1. Change the keyboard mode (Lowercase, uppercase, numbers and punctuations)

Step 1. Check if the user performs swiped Vertically on the screen
Step 2. If (YDown < Yup) is valid then
 If the keyboard mode is typing symbols mode (m==3)
 Change it to lower case mode (m == 0)
 else

 Increase the keyboard mode value to wrap around the layouts (m++)
Switch (keyboard mode)

Case 0: lower case mode (m==0)
Break;

Case 1: Uppercase mode (m==1)
Break;

Case 2: Numbers (m==2)
Break;

Case 3: Symbols (m==3)
Break;

Figure 17. Switching between the keyboard layout algorithm

66

Figure 18. Snapshot of switching between the keyboard layout code

4.2.3.4 Editing module

This module has typing, add space and backspace functions.

1. Add space

Add space method

Void addspace ()

X is the entered text on the screen

Return X + ‘ ’; // Add an empty space ‘ ’ to the entered text X
Speak “space”;
End addspace method

Figure 19. Add space method

Figure 20. Snapshot of add space code

67

2. Backspace method

Backspace method

Void Backspace ()

X is the entered text on the screen

 If (the length of the entered text X is 0)
 return X
 end if

 else if (the length of the written text is longer than 0)
 remove the last character (the entered text X -1)
 Speak the removed character
 return the written text X without the last character
 end if

 end Backspace method

Figure 21. Backspace method

Figure 22. Snapshot of Backspace method code

3. Write function

Typing method

Void WriteText (Character ch)

 Add x + ch; // ch is the new entered character
 Speak the new entered character
 Return the new string text X
End WriteText

Figure 23. Typing method

68

Figure 24. Snapshot of write Text method code

4.2.3.6 Text to speech module

The Text-to-Speech function is implemented in this keyboard to provide an audio

feedback for the final user.

Speak method ()

Void Speak (the entered text)

 if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.LOLLIPOP)
 t2s.speak(text, TextToSpeech.QUEUE_FLUSH, null, null);
 end if

else
 t2s.speak(text, TextToSpeech.QUEUE_FLUSH, null);
 end else
 end Speak

Figure 25. Speak method

Figure 26. Snapshot of speak method code

69

4.2.4 SingleTapBraille interface

The application will be installed in the users’ Android devices. As shown in Figure 25, the

SingleTapBraille keyboard has no visual content. Except for the edit text box at the top of

the screen, the remainder of the screen is empty to allow users to tap and move their fingers

over the screen without concern for hitting any object on the screen.

Figure 27. SingleTapBraille interface

4.3 EVALUATION METHODOLOGY

 This section describes the evaluation of the SingleTapBraille, which relied on

having blind and visually impaired participants use our proposed keyboard and the

QWERTY keyboard to perform the same tasks. Afterwards, we were able to compare the

performance of the keyboards based on quantitative measures and the feedback of the

participants. We also examined the accessibility, learnability and usability of the

SingleTapBraille keyboard.

70

4.3.1 RECRUITMENT OF PARTICIPANTS

Evaluation was conducted with blind users. We had seven blind users (2 males and 5

females) ranging in age from 28-52 years old (mean age: 40). Recruitment of participants

was undertaken with the assistance of the director of the Canadian National Institute for

Blind. An approval from the Dalhousie University Social Sciences and Humanities

Research Ethics Board was acquired before commencing the study (see Appendix D).

 All participants had prior experience with touchscreens, the QWERTY keyboard,

and TalkBack service. All of them were regular Braille users and were familiar with the

six dots Braille system. The participants’ demographic data is presented in Table 5.

Table 5: Participants’ demographic data

∗P = Participant number, G = Gender, PIB = Proficiency in Braille, BDU = Braille device

they use, ESP = Experience with smartphones and touchscreens, MTT= method used to

enter text on a touchscreen

P Age G Sight PIB BDU ESP MTT

P1 48 M blind expert P
erkins B

raille, slate and stylus

6 years A QWERTY keyboard

P2 34 F blind expert 7 years AQWERTY keyboard,
MBraille

P3 40 F blind expert 5 years A QWERTY keyboard

P4 50 M blind expert 5 years A QWERTY keyboard

P5 46 F blind expert 3 years A QWERTY keyboard

P6 36 F blind expert 3 years A QWERTY keyboard

P7 29 F blind expert 5 years A QWERTY keyboard

71

4.3.2 METHODOLOGY

 The following sections describe the evaluation process for the SingleTapBraille

application with respect to interface usability, learnability, accuracy and speed. The main

task for the participants was to listen to phrases and enter those phrases as messages using

each of the keyboards, QWERTY and SingleTapBraille. The independent variable here is

input method (QWERTY and SingleTapBraille) and phrases; the dependent variable is the

time required to type the text as well as error rate.

4.3.2.1 Study Procedure

The study was conducted at the Canadian National Institute for Blind (CNIB). For each

participant, the study was consisted of a training session and test sessions. Prior to the

training session, we conducted a pre-questionnaire to collect basic demographic data and

other details related to the input methods typically used for text entry on a touchscreen (see

Appendix A). In the training session, following an overview of the objective of the study,

we explained SingleTapBraille’s operation and functions, described how to do the finger

tap on a touchscreen, and demonstrated how the finger taps relate to the Braille code and

to the letters of the alphabet. To familiarize the participants with the input method, we

provided a 20-minute training period during which they could practice using the

application to type letters and numbers and to send a set of phrases as SMS messages using

the SingleTapBraille application. In order to avoid potentially confounding effects related

to participants memorizing particular phrases and learning how to type them, the set of

phrases provided for training differed from those used for the test session. Data associated

with the training session were not analyzed as part of this study.

72

 In the first part of the test session, which lasted 20-30 minutes, participants listened

to a set of phrases, typing each of them using the SingleTapBraille keyboard before moving

on to the next phrase. We obtained a set of short message phrases from the English for

Students website (English for Students, 2015). A moderate number of phrases was chosen

in order to maintain a reasonable session length that would not discourage people from

participating; the number of phrases used here was similar to other studies (Oliveira et al.,

2011; Mattheiss et al., 2011). Participants were encouraged to type as quickly and

accurately as possible. These phrases were sent as texts to the researcher’s phone number.

The text typed and the time required to type it were recorded in order to assess typing

accuracy and typing speed, respectively. We used a video recorder in order to help us

understand exactly how the participants interacted with a touchscreen. After the

participants had texted all the phrases, they answered a post-study questionnaire regarding

the usability and learnability of the SingleTapBraille approach and the SMS application

(see Appendix B). Following that, we asked participants to type the same phrases using the

QWERTY keyboard, providing another 20-30 minutes’ session. After that, to the

participants were further interviewed with respect to the strengths and weaknesses of the

two keyboards assessed in the study; participants were also invited to suggest

improvements with respect to the SingleTapBraille method (see Appendix C).

 The entire session took each participant about 2 hours to complete. There was a

short introduction, followed by a training session that took 15-20 minutes. Participants then

took about 20-30 minutes to write the sentences using each input method (45-60 minutes

total). The post-study interview took about 5-10 minutes.

73

4.3.3 RESULTS AND DISCUSSION

4.3.3.1 Results

During the study, each participant typed 14 short messages for each keyboard, totaling

1596 characters, including space and symbols, on the SingleTapBraille and QWERTY

keyboards. The results, detailed below, include quantitative measures of typing speed and

accuracy, as well as qualitative findings related to the participants’ experiences using the

keyboards.

4.3.3.1.1 Quantitative results

1. Speed

The measure used to assess text entry speed was Words-Per-Minute (WPM), calculated as

(transcribed text length/ entry time in seconds * 60 seconds in a minute) / (5 characters per

word) (Soukoreff & MacKenzie, 2001).

 (1)

The designation of five characters, including letters, numbers, spaces and symbols, as the

accepted word length was based on previous studies (e.g., Yamada 1980). There was a

significant difference in the SingleTapBraille speed (Mean = 4.71 WPM) and the

QWERTY keyboard speed (Mean = 3.72 WPM), paired t-test; p = 0.03) (Figure 28).

74

Figure 28: Text entry speeds (WPM) for each participant for

SingleTapBraille and QWERTY keyboard

2. Accuracy

 Participants were permitted to insert text without restrictions during the study, such

that they may or may not correct any typing errors. Therefore, to measure accuracy we

chose to use Minimum String Distance (MSD) (Soukoreff, MacKenzie, 2001). The MSD

method analyzes three types of primitives, insertion, deletion, and substitution. Keystrokes

are classified into four categories within the input stream: correct keystrokes (C), the

number of erroneous keystrokes that are not corrected in the transcribed text (INF), the

number of erroneous keystrokes and they are corrected in the transcribed text (IF), and the

number of keystrokes that used to correct errors, such as delete or backspace (F).

This classification enables us to measure several statistics, including the total error rate:

Total Error Rate =
(INF+IF)(C+INF+IF) ∗ 100% (2)

Total error rate (TER) represents the number of errors made while typing the phrases. The

total error rate was lower for the SingleTapBraille keyboard than it was for the QWERTY

keyboard indicating higher accuracy using the SingleTapBraille method. There was not a

significant difference in the total error rate for SingleTapBraille (Mean=11.23%, SD=2.14)

and QWERTY keyboard (Mean=20.54, SD=3.40), (paired t-test; p = 0.193) (Figure 29).

0

1

2

3

4

5

6

P1 P2 P3 P4 P5 P6 P7

E
n

tr
y

 S
p

ee
d

 (
W

P
M

)

Participants' number

SINGLETAPBRAILLE

QWERTY

75

Figure 29: Average total error rate for each participant for

SingleTapBraille and QWERTY keyboard

4.3.3.2 Qualitative Feedback

4.3.3.2.1 Pre-questionnaire

 The participants were asked for their opinions regarding the possibility of a new

input method, as well as the strengths and limitations of the keyboards they had used. Most

of participants use the QWERTY keyboard. All participants agreed that the audio feedback

is the best solution to confirm that they have located the intended letter.

 The users were asked about the main difficulties associated with using touchscreen

keyboards. The most common complaint related to the slowness of the QWERTY

keyboard; for example, Participant 5 stated that “because I have to swipe my finger and

listen to all letter I have passed. Finding a specific location of symbol takes time. Similarly,

QWERTY keyboard in your phone it is much slower than a keyboard that you can have

your finger tips to type with on a Bluetooth keyboard”.

 Another obstacle reported was interference by alternative keyboards that pop up

when a user pressed for a long on a letter. For example, Participant 3 stated that “I found

something frustrating on a touch screen, which is if you swipe your finger across the screen

0
10
20
30
40
50
60
70

P1 P2 P3 P4 P5 P6 P7

E
rr

o
r

ra
te

Participants' number

SingleTapBraille

QWERTY keyboard

76

to locate a certain letter, another keyboard or something else pops up and it says

“Alternative keyboards”, and then it types something else not the one I am looking for”.

Five participants made reference to the difficulty of locating the keys for specific letters,

numbers and symbols. Participant 7 said, “I found difficulty to find the symbols and

numbers more than letters. Because sometimes it layout differently and also because again

it is a touchscreen. I always guessing where I put my finger”. Reflecting this difficulty,

Participant 4, the only participant with limited experience using the QWERTY keyboard

and sending short messages, only reached 1.10 wpm with audio feedback, indicating

considerable difficulty in locating the requires characters.

 One participant that uses MBraille keyboard, which is similar to BrailleTouch, said

“I use six fingers to type based on Braille patterns and my thumbs hold the device from the

back, which is awkward”. She also didn’t like other features of MBraille, including the

need to copy text from MBraille to other applications (e.g., Facebook) and its tendency to

shut down unexpectedly.

 We also asked participants about how they hold their smartphones and interact with

touchscreens device while typing. Most participants use one hand to stabilize the

smartphone device while using the index finger of the other hand to tap on the screen.

Unlike six of the participants, participant 3 reported a preference for using her thumb to

type on a screen because she lost her sight when she was 20 years old; this method contrasts

with the tendencies of most people who are born blind, who typically use their index finger

to read Braille and type on a touch screen. We also asked the participants about sending

messages while walking; only two participants do this, with the others reporting it was too

difficult because they do not have two free hands while walking.

77

4.3.3.2.2 Usability questionnaire

 The usability questionnaire contained 19 statements regarding the keyboard, with

participants required to indicate their level of agreement with each statement on a 5-point

Likert scale (1 = disagree strongly, 5 = agree strongly). The participants rated the keyboard

highly with respect to usefulness, ease of use, and learnability. Nonetheless, they were

unsatisfied with some aspects of speed and usability. Overall, however, the results of the

questionnaire parallel the quantitative improvements in speed and reflect improvements

related to usability, learnability and accessibility.

4.3.3.2.3 Interview

 We developed approximately 15 qualitative codes to summarize the most relevant

findings we learned from each participant, which we clustered into sets of high level

themes, including difficulty typing the text, difficulty switching between keyboard layouts,

audio feedback, annoying, convenient, easy to use, physical comfort and navigation issues.

 All participants successfully used the newly developed approach to enter text with

the help of the Text-to-Speech feature built into the keyboard itself. All participants found

the audio to be clear and easy to follow. After the participants completed their test session,

we asked them about various elements of their experiences using the keyboard.

 All participants liked that interaction with the touchscreen did not involve a button

or looking for a specific location. For example, Participant 3 said “I like it because I did

not have to look all over the screen looking for something, it just a matter of tapping in or

swiping, it is simple to use.” Participants also liked the use of swiping gestures, reporting

that swiping from bottom to top and vice versa are easy gestures that blind users can

perform quickly. Interviews also revealed that that swiping gesture to switch between

78

layers and to capitalize letters is easier for blind users than finding the switch or shift button

on the QWERTY keyboard. As Participant 1 said, “It is simple, it is straightforward, it is

intuitive, that particular function, I like better than buttons in the normal keyboard because

it is quicker to flick up anywhere and switch between number, letters, and symbols than

finding the little button.” Likewise, Participant 7 said “switching up and down is quite

efficient and easier than trying to navigate with a QWERTY keyboard.” This finding is

supported by previous research; for example, Wobbrock and Ladner (2011) found that the

easiest gestures for blind users involve swiping rather than typing (Shaun et.al, 2011).

Participants also reported that using a long press gesture anywhere on a touchscreen to

perform a specific task is easier than finding a specific button. Participant 5 stated, “it was

great: on my Ipad, If I want to send message, I have to swipe over to locate send button. I

mean, it is much easier, pressing for long anywhere on a screen.” Participant 2 also said

“that’s cool because you do not need to look for send button.”

 Four of the participants were not satisfied with the keyboard speed, and they

provided different possible reasons for its inadequate speed. Participant 7 stated that “I was

not fast, because I have to think about Braille dots because I have never obviously typed

with Braille on a touch screens. Whenever I typed Braille, I used six keys right in front of

me, so it kind of the same I was typing on computers versus being on a regular keyboard

with a voiceOver, I can type faster and it gets easier as you go.” In contrast, Participant 5

found the keyboard speed is normal, stating, “normal, a little of delay because I think that’s

good because it gives you time to correct mistakes if you made one.” Most participants

also suggested the implementation of Braille grade 2 in order to minimize the number of

letters required to type a word.

79

 The users were also asked about the features that they liked the most, as well as

what they saw as the primary limitations of the SingleTapBraille keyboard. All seven

participants liked the way of using Braille to enter text on a screen. Participant 2 said “the

advantage is using something I grow up with it, I use Braille for 30 years.” Participant 3

agreed with that and added, “I am very keener for Braille, you will not forget Braille, if

you keep using it, you will not forget the Braille combination of dots to type a letter. It is

so straight forward and it is very simple to use.”

 The use of the swiping gesture and the long press gesture to perform different tasks

were both strengths according to the participants. Participant 2 also appreciated the ability

to hold the smartphone using one hand, saying “I am walking it is difficult to feel the screen

where is my d, a, s etc.; Here user can use one hand to enter text based on the shape of

Braille letter, which is for somebody who knows Braille and use it well is more natural

than slid your finger on the keyboard to find a specific letter.” Nonetheless, participants

agreed on some limitations for the keyboard. One criticism, brought up by three of the

participants, was that the keyboard does not repeat the word that has been typed out, an

action that helps blind users confirm that they entered the correct word. Another limitation

is the delay associated with users having to enter the Braille dots individually. Three

participants had difficulty typing some letters, like n, p and r, due to the similarity of Braille

code for these letters.

4.3.3.2.4 Evaluation of Grade 2 encoding in SingleTapBraille

To address the main limitation of the first prototype, we implemented the second type of

Braille (Grade 2) to develop a complete prototype and we evaluated the second version of

80

the keyboard to obtain the participants’ feedback about the feature that has been added,

and also to guide the final evaluation study design.

 After implementing Grade 2 Braille, the improved keyboard was evaluated with a

blind participant to determine whether the implementation of Grade 2 Braille improved the

accessibility and overall performance of the keyboard. During the evaluation, we explained

the improved SingleTapBraille and how can a user open the Grade 2 Braille and insert

words. Then, we asked the blind participant to type several words for 5 minutes as a training

session. The participant was then required to type specific words that have abbreviations

or signs in Grade 2 Braille. Some of these words can be represented by only the first letter

of each word, for example, “can”, “you”, “do”, “like”, “people”, and “rather”. Other words

can be represented using the first two letters in each word like “about”, “after”, “also”,

“again”, “blind” and “according”. After typing these words, we conducted an interview

with the participant about the strengths and limitations of the improved keyboard. He stated

that this keyboard is a very useful text entry tool. The most valuable features in this

keyboard after integrating Grade 2 Braille is enabling a user to type words in a short time

using Grade 2 abbreviations and without a need to insert each letter in a word. He said “I

like it because it is much quicker than spelling the word right out because it is a shortcut

for us”. He also liked that the keyboard provides both Grade 1 and 2 levels. He stated “I

like the way it allows us to have both options Grade 1 and 2 by swiping. It is much easier

and we are not guessing where we are swiping and typing Braille dots.” He also stated that

“I could use Grade 1 to type but I prefer Grade 2 Braille because it is much faster for me

than the other one.”

81

 He also likes the way that the keyboard speaks and types out the whole word. In

Grade 2 Braille, only abbreviations of words can be typed, which might cause confusion.

In addition, the participant pointed to a limitation with the keyboard after adding Grade 2.

He found that in case the user types a wrong abbreviation, the keyboard will insert the

whole word and the user has to delete the entire word letter by letter. Thus, he suggested

we allow the users in Grade 2 Braille to delete entire words and not each letter.

 Implementing this suggestion will definitely increase the speed of the keyboard.

In general, the results of the initial evaluation of the improved keyboard confirm that the

single tap approach is a promising direction for further exploration and development of an

accessible touchscreen keyboard for the blind users.

 This SingleTapBraille concept can be implemented in any mobile platform,

including iOS, Android, and Windows phones. The components of designing the user

interface of this approach are available across all platform versions. In the implemented

approach, we used only essential gestures to create a simple interface including tap and

swipe gestures that are easy to implement in other platforms. This approach does not

require any element that is restricted to any specific platform release, and can be easily

implemented across platform versions.

4.3.3.3 DISCUSSION

In this study, we compared the newly developed SingleTapBraille keyboard with

the standard QWERTY keyboard, with respect to speed, and accuracy. In this chapter, we

recap those results and discuss the suggestions from the participants regarding how to

improve this keyboard. We also discuss the key factors that should be considered in

developing an input method or application for the visually impaired.

82

4.3.3.3.1 Speed and accuracy

 The SingleTapBraille keyboard demonstrated superior speed and accuracy

compared to the QWERTY keyboard. The main advantage of the SingleTapBraille, likely

leading to the observed differences in performance, is that it allows blind users to enter

letters based on Braille coding. The reliance on Braille coding reflects one of

SingleTapBraille’s limitations, as the need to enter letters in several dot-based steps

potentially slows the text entry process. Along with this, this keyboard requires care and

accuracy because the tapping of the first dot directly influences how the following dots are

interpreted. Nonetheless, it is still faster than the standard keyboard and other options

available for this population. The average error rate was significantly less in the

SingleTapBraille keyboard compared to the QWERTY keyboard. The results indicated that

the SingleTapBraille keyboard is less prone to errors than the QWERTY keyboard, perhaps

because users operating the QWERTY keyboard can get confused while hearing all letters

that have passed as well as the letter that they have typed. In our keyboard, users only get

audio feedback once they have typed a letter. Just as sighted people have to spend a lot of

effort to understand a lot of presented visual information at once, blind users need to obtain

audio feedback when necessary; thus, eliminating unnecessary sounds can increase

accessibility and minimize cognitive load.

 A limitation of the study is that we did not counter balance the order of using each

keyboard.

83

4.3.3.3.2 Keyboard Features

 Using a single tap to enter text based on Braille patterns significantly improves the

accessibility for blind and visually impaired people while using touchscreens. The blind

participants expressed that the SingleTapBraille keyboard makes typing text easier than it

is with the QWERTY keyboard. It is much easier for blind users to tap anywhere on a

screen rather than trying to locate a specific key on a screen and worry about hitting a

wrong key. Swiping on a touch screen to perform a specific task was also considered an

easy and fast way to accomplish tasks. Most participants found flicking up and down to

switch the keyboard as well as flicking left to right to add or backspace to be much easier

than finding a shift key on a QWERTY keyboard or finding a switch sign to switch to other

layers or finding a space button to add space or delete button to perform backspace. It is

also much faster to flick than it is find a specific button on a touch screen.

 Some user interfaces on smartphones force blind users to use the QWERTY

keyboard and do not support the alternative keyboards that have been designed to serve

this population. For example, in the PIN (passcode) interface for a smartphone device,

blind users must enter a password using the QWERTY keyboard. According to the

participants, blind users find it easier to locate buttons near the corner and screen edges;

therefore, they often create simple passwords that rely on these landmarks. As a result,

blind users are at a disadvantage with respect to security, underlining the need to provide

them with the ability to easily create and formulate any password combination.

 Most participants usually use two hands to interact with touchscreens and have

great difficulty using new methods, including using only one hand. Participant 1 said “it is

different way of typing text. It takes some learning time because I have to train my muscles

84

to use to it”. Based on my observation, none of the participants were able to use predictive

words on the QWERTY keyboards, indicating that this feature is essentially inaccessible

for blind users. This feature therefore needs improvement in order to increase accessibility.

All participants liked the keyboard because it does not require them to deviate from the

language, Braille, that they use in daily life.

4.4 BRAILLEENTER INPUT METHOD

The BrailleEnter is an improvement version of the SingleTapBraille based on the

participants’ suggestions, who evaluated the SingleTapBraille keyboard.

4.4.1 The Framework of BrailleEnter Text Entry Method

BrailleEnter is a new touchscreen text input method for blind people. The main goal of the

research is to overcome the navigation problems that blind people face while interacting

with touchscreens. We also aim to allow users to use one finger to interact with the screen.

Based on previous studies the most accessible interaction technique with touchscreens for

blind people is using one finger because it is the most accessible way for them (Paisios,

2012, Alnfiai, Sampalli, 2016). The BrailleEnter keyboard description and functions are

described in the following section. BrailleEnter has several functions which are: Typing

small and capital letters, typing numbers, typing punctuation, editing functions (add space

and backspace), and audio feedback. These five functions will be explained in detail in the

following subsections.

85

4.4.1.1 Typing function

In the BrailleEnter keyboard, users can type based on Braille codes using one hand. In

Braille, each character is represented by six dots, which are organized in two columns and

are ordered from one to six. These Braille dots are inserted from left to right based on the

technique in which blind users read Braille.

Each character has a combination of activated dots and inactivated dots in different

orders. Based on the number of activated dots and inactivated ones along with their orders,

users can distinguish between characters. For example, when typing the letter “a”, the first

Braille dot is activated and the left five dots are inactivated. For letter “b”, the first two

dots are activated and the other four dots are inactivated.

 In our input method, users can use two types of gestures to represent active and

inactive Braille dots. BrailleEnter uses a press gesture to represent active dots and a tap

gesture to represent inactive dots. The press gesture is defined as a long tap and the tap

gesture is defined as a brief tap.

 In BrailleEnter, users are required to tap or press on a touchscreen six times to

represent a letter. However, they can tap or press anywhere on the screen without any

concern about the location of interactions, they can tap inactivated Braille dots and press

the activated dots anywhere.

4.4.1.2 BrailleEnter algorithm

From a previous study, we found that blind people do not know what user interfaces look

like and sometimes where they have touched on a screen (Mattheiss et al., 2015). Once

they move their fingers from screens, they are not always able to indicate where they have

86

been. Most of their interactions on touchscreens – and especially button based interfaces –

are completely based on guessing. Therefore, our algorithm does not require users to find

an object location nor use two hands to interact with a screen. The BrailleEnter algorithm

is designed based on two main concepts, which are:

1. Defining the active dots and inactivated dots in each character

2. Determining the order of these active and inactive Braille dots in each character

3. Determining the number of the active and inactive dots in each character

 Blind users already know the active and the inactive dots in each character and their

orders. When a blind user taps and presses on touchscreen six times, the BrailleEnter

algorithm analyses the inserted gestures and interprets them based on gesture types as well

as their orders. The algorithm analyses each dot and distinguishes between a brief tap or a

long press on the screen, as well as determines the order. This algorithm eliminates the

need to check the location of an interaction event on a touchscreen because this is

invaluable factor for blind users. Figure 30 demonstrates how blind users can type letter b

using the BrailleEnter keyboard.

Figure 30: Typing the letter “b” in BrailleEnter

 The swiping gesture is the best and most accessible interaction technique on

touchscreen devices for blind people (Mattheiss et al., 2015). In order to change the

keyboard mode, users can swipe vertically in a loop to move between keyboard modes.

87

The first swipe will allow users to type capital letters and audio feedback will speak the

name of the keyboard mode. Then, if the users swipe vertically twice, they will initiate the

second mode, which is for typing numbers (see Table 6). For instance, when the user

performs the first vertical swipe from bottom to top, the app will open up “capital letter”

mode. In case the user does not want the “capital letter” mode, he/she can swipe again from

bottom to top to type numbers instead of capital letters. Performing a vertical swipe from

top to bottom will open up “lower case” mode. A second swipe from top to bottom will

insert “symbols” mode instead of “small letter” mode.

Table 6. BrailleEnter keyboard interaction techniques

4.4.1.3 Typing numbers

 In BrailleEnter, blind users can type numbers as they do in Braille. First, they must

change the keyboard mode by swiping to number mode. Second, they can insert Braille

dots based on gesture type. For example, in order to type the number 1, users press, tap,

tap, tap, tap, tap (as shown in Figure 31).

Figure 31. An example of typing a number in BrailleEnter

Interaction techniques purposes

Swipe from bottom to top Capital letters, numbers

Swipe from top to bottom Small letters, symbols

88

4.4.1.4 Typing punctuation

The BrailleEnter keyboard also enables users to type punctuation based on Braille coding.

Users can tap the inactivated dots and press the activated dots to represent the punctuation.

For example, in order to insert a comma, users tap, press, tap, tap, tap, tap) (as shown in

Figure 32).

Figure 32. Type symbol “,” in BrailleEnter

4.4.1.5 Editing function

 Space and backspace operations have specific keys in the physical Braille machine

and the other six keys are used to represent Braille dots.

 Our keyboard also uses horizontal swiping gestures to enable the BrailleEnter

keyboard to perform editing functions, as detailed in Table 7. BrailleEnter uses audio

feedback to speak out the defined gesture’s function name to facilitate editing.

Table 7. Editing interaction methods and their functions in BrailleEnter

Interaction methods function

Swipe from left to right Add space

Swipe from right to left Backspace

89

4.4.1.6 Using voice feedback

 BrailleEnter applies the TalkBack service to read out the entered text on a

touchscreen as well as read out editing functions while users swipe over the screen. This

service enables blind users to make sure they entered the intended letter.

4.4.1.7 Keyboard advantages

 The main advantage of our keyboard is that it is eyes-free; users can interact

anywhere on the screen because the screen layout does not require users to locate a key on

a screen. Allowing the users to interact anywhere on a screen will significantly reduce the

error rate. The keyboard layout provides audio feedback that enables blind users to have

the same experience as sighted users. It is quite easy to use because it is mainly based on

their mother language, Braille, and it follows the approach of slate and stylus technique,

which is the old-fashioned Braille machine (WritingBraille, 1999). It is also cost effective

because nowadays most blind people own a smartphone device, thus it is much cheaper to

download a new keyboard than to buy a physical keyboard. The keyboard layout uses

accessible gestures, which are tapping, pressing and swiping. All these gestures are easy

for blind people to use (Alnfiai, Sampalli, 2016). In addition, the keyboard allows blind

users to use a thumb or one finger to insert a character, which is the most accessible way.

4.5 BRAILLEENTER KEYBOARD IMPLEMENTATION

In this section, we describe the implementation of the BrailleEnter keyboard to allow blind

users type on touchscreen easily. We will describe the process of entering character using

the BrailleEnter, its functions and interfaces.

90

4.5.1 Experimental model

In this section, we describe the implementation of the BrailleEnter keyboard. We will

describe the BrailleEnter interface as well as typing and editing functions.

4.5.1.1 User interaction module

This section presents the BrailleEnter architecture of the user interaction module, which

includes:

1. Gesture pattern recognition module (see section 4.2.3.1)

2. Braille character pattern recognition module

3. Keyboard modes (see section 4.2.3.2)

4. Editing module (see section 4.2.3.3)

5. Text to speech module (see section 4.2.3.4)

To enter a character on a touchscreen using the BrailleEnter keyboard, six touches are

required to recognize a character. The BrailleEnter architecture contains six modules: the

first detects the gesture pattern; the second recognizes Braille characters; the third module

determines the keyboard mode; the fourth, edit module, includes gestures for special keys

such as adding a space or backspace; and the fifth, Text-to-Speech module speaks out each

input entered or removed from the screen.

1. Gesture Recognition Algorithm

We followed the same process in the implementation to detect gestures enacted on the

smartphone screen. We also used onTouchEvent() method with MotionEvent class to

91

detect common gestures such as Tap, Press and Swipes on a screen (as explained in section

4.2.3.1).

 The input values include six combinations of tapping and pressing gestures that

taken from the smartphone screen. The algorithm produces expected outputs (letters,

number or punctuations) based on the order of the entered gestures and their types.

2. Braille character pattern recognition module

The input variables are the touching events that users perform on the screen. This algorithm

requires six inputs to produce one character. It processes these six touches or gestures

(input variables) by analyzing the gestures’ type and their orders. The active dots are

represented by long tap gestures and the inactive dots are represented by short tap gestures.

Character Recognition Algorithm follows four main steps to recognize and enter a

character, which are:

1. Detect and store the gestures

2. Check the order and type of the six gestures that are stored in the array list (is the

gesture tapping or pressing and their order from 0 to 5)

3. Check the keyboard modes (numbers, letters and punctuations)

4. Enter the character

/* Character Recognition Algorithm */
Comment: gesture/Tapping and Pressing by user recognition (Gesture recognition)
Comment: Enter the type of gesture from the list (TA)
Step1. Time == 0 and the size of array list is zero (c[]). // Time handler
Step2. Add touch gestures on a screen to the array list c[]
Step3. Start the time count once a user touches the screen
Step4. Detect the gesture type (Gesture recognition algorithm)
Step5. Store the gesture type and order in an array list, c[]

92

Step6. DO step 2, 3 and 5 six times (representing the six dots of Braille code)
Step7. If (array list has more than six gestures) then
 return “more than six dots”
 else if (array list has less than six gestures) then
 return “less than six dots”
 end if
 else If (The first digit == Long tap gesture && The second digit == Tap
 gesture && The third digit == Tap gesture && the fourth digit == Tap
 gesture && the fifth digit == Tap gesture && the sixth digit == Tap gesture)
then
 if (the keyboard in uppercase mode)
 Enter “Letter A”
 else if (the keyboard in lowercase mode)
 Enter “Letter a”
 else if (the keyboard in number mode)
 Enter “number 1”
 end if
 else If (The first digit == Long Tap gesture && The second digit == Long Tap
 gesture && The third digit == Tap gesture && the fourth digit == Tap gesture
 && the fifth digit == Tap gesture && the sixth digit == Tap gesture) then

 Enter “Letter b”
 if (the keyboard in uppercase mode)
 Enter “Letter B”
 else if (the keyboard in lowercase mode)
 Enter “Letter b”
 else if (the keyboard in number mode)
 Enter “number 2”
 end if
 else If (The first digit == Long Tap gesture && The second digit == Tap
 gesture && The third digit == Tap gesture && the fourth digit == Long Tap
 gesture && the fifth digit == Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter C”
 else if (the keyboard in lowercase mode)
 Enter “Letter c”
 else if (the keyboard in number mode)
 Enter “number 3”
 end if
 else If (The first digit == Long Tap gesture && The second digit == long Tap
 gesture && The third digit == Tap gesture && the fourth digit == Long Tap
 gesture && the fifth digit == Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter D”
 else if (the keyboard in lowercase mode)

93

 Enter “Letter d”
 else if (the keyboard in number mode)
 Enter “number 4”
 end if

else If (The first digit == Long Tap gesture && The second digit == Tap
gesture && The third digit == Tap gesture && the fourth digit == Tap gesture
&& the fifth digit == Long Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter E”
 else if (the keyboard in lowercase mode)
 Enter “Letter e”
 else if (the keyboard in number mode)
 Enter “number 5”
 end if

else If (The first digit == Long Tap gesture && The second digit == long Tap
gesture && The third digit == Tap gesture && the fourth digit == Long Tap
gesture && the fifth digit == Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter F”
 else if (the keyboard in lowercase mode)
 Enter “Letter f”
 else if (the keyboard in number mode)
 Enter “number 6”
 else if (the keyboard in symbol mode)
 Enter “symbol !”
 end if

else If (The first digit == Long Tap gesture && The second digit == long Tap
gesture && The third digit == Tap gesture && the fourth digit == Long Tap
gesture && the fifth digit == Long Tap gesture && the sixth digit == Tap
gesture) then

 if (the keyboard in uppercase mode)
 Enter “Letter G”
 end if
 else if (the keyboard in lowercase mode)
 Enter “Letter g”
 end if
 else if (the keyboard in number mode)
 Enter “number 7”
 end if

else If (The first digit == Long Tap gesture && The second digit == long Tap
gesture && The third digit == Tap gesture && the fourth digit == Tap gesture
&& the fifth digit == Long Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)

94

 Enter “Letter H”
 end if
 else if (the keyboard in lowercase mode)
 Enter “Letter h”
 end if
 else if (the keyboard in number mode)
 Enter “number 8”
 end if

 else If (The first digit == Tap gesture && The second digit == long Tap
gesture && The third digit == Tap gesture && the fourth digit == Long Tap
gesture && the fifth digit == Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter I”
 end if
 else if (the keyboard in lowercase mode)
 Enter “Letter i”
 end if
 else if (the keyboard in number mode)
 Enter “number 9”
 end if
 else If (The first digit == Tap gesture && The second digit == long Tap gesture

&& The third digit == Tap gesture && the fourth digit == Long Tap gesture
&& the fifth digit == Long Tap gesture && the sixth digit == Tap gesture)
then

 if (the keyboard in uppercase mode)
 Enter “Letter J”
 end if
 else if (the keyboard in lowercase mode)
 Enter “Letter j”
 else if (the keyboard in number mode)
 Enter “number 0”
 end if
 else If (The first digit == Tap gesture && The second digit == long Tap gesture
 && The third digit == Tap gesture && the fourth digit == Tap gesture && the
 fifth digit == Long Tap gesture && the sixth digit == Long Tap gesture) then

 Enter “symbol .”
 end if
 else If (The first digit == Tap gesture && The second digit == long Tap gesture
 && The third digit == Tap gesture && the fourth digit == Tap gesture && the
 fifth digit == Tap gesture && the sixth digit == Tap gesture) then

 Enter “symbol ,”
 end if
 else If (The first digit == Long Tap gesture && The second digit == long Tap
 gesture && The third digit == Tap gesture && the fourth digit == Tap gesture
 && the fifth digit == Long Tap gesture && the sixth digit == Tap gesture)then

95

 Enter “symbol ?”
 end if

else If (The first digit == Tap gesture && The second digit == Tap gesture &&
The third digit == Long Tap gesture && the fourth digit == Tap gesture &&
the fifth digit == Tap gesture && the sixth digit == Tap gesture) then

 Enter “symbol ‘”
 end if

else If (The first digit == Tap gesture && The second digit == Long Tap
gesture && The third digit == Tap gesture && the fourth digit == Tap gesture
&& the fifth digit == Long Tap gesture && the sixth digit == Tap gesture)
then

 Enter “symbol -”
 end if

else If (The first digit == Tap gesture && The second digit == Tap gesture &&
The third digit == Long Tap gesture && the fourth digit == Long Tap gesture
&& the fifth digit == Long Tap gesture && the sixth digit == Long Tap
gesture) then

 Enter “symbol #”
 End if

Step8. Stop the time after 3 seconds
Step9. Clear the array list
Step10. Repeat step 1 to 9 until user types the whole text
Step 11. End Character Recognition Algorithm

Figure 33. Braille characters recognition algorithm

Figure 34. Snapshot of Braille characters recognition code

96

Figure 35. Snapshot of Braille punctuations recognition

Figure 36. Time handler

4.5.1.2 BrailleEnter Keyboard interface

The BrailleEnter keyboard is designed for blind people who know Braille. The main

objective of the keyboard is to make touchscreen applications more accessible for blind

97

`users and to decrease the typing error rate on a touchscreen. The BrailleEnter keyboard

feedback interface is completely based on speech and has contains no visual content (see

Figure 37).

Figure 37. BrailleEnter interface

4.6 Preliminary evaluation

We conducted an empirical evaluation to compare BrailleEnter, which is button free

keyboard to Swift Braille, which is button-based. Both of them were designed based on

Braille code. We conducted the evaluation study with eight blind participants who know

Braille very well to evaluate the performance of both keyboards. Next, we describe the

participants, the study design, apparatus, text phrases and the evaluation metrics that used.

98

4.6.1 Participants

The study was conducted at the Canadian National Institute for Blind (CNIB) in Halifax

and Taif accessibility center in Saudi Arabia. An approval from the Dalhousie University

Social Sciences and Humanities Research Ethics Board was acquired before commencing

the study (see Appendix F). We recruited eight participants, (five females, three males),

with an average age of 40. Six participants are from CNIB and 2 participants are from Taif

university accessibility center. The same CNIB participants (P1 to P6) who participate in

the SingleTapBraille study joined again in the BrailleEnter study. All participants read and

write Braille at a professional level. One of the requirements to participate in the study is

knowing Braille very well because knowing the Braille code of each character is essential

for each participant to be able to enter text using Braille keyboards. All participants have

had experience with touchscreens for at least 3 years and all of them have been using the

QWERTY keyboard with VoiceOver as the main input method on smartphone devices (see

Table 8). Five of the participants are iPhone users and one is iPad user. All of them hold a

smartphone device with one hand and interact with a screen using their index finger.

Table 8: Participants’ demographic data

P Age Gender Sight Braille

device used

Experience with

smartphones
Touchscreen

keyboard

P1 49 Male Legally
blind

P
erkins B

raille, S
late and

stylus

7 years Qwerty
keyboard P2 51 Male 10 years

P3 36 Female 5 years
P4 30 Female 6 years
P5 46 Female 3 years
P6 62 Male 8 years + MBraille
P7 20 Female Visually

impaired
5 years Qwerty

keyboard
 P8 27 Female Legally

blind
6 years

99

4.6.2 Apparatus

We chose to compare our developed keyboard with the Swift Braille keyboard for several

reasons: both are developed based on Braille and both have the same aims of our keyboard,

which is allowing users to use one finger while interacting with a screen. Also, some of the

Braille based keyboards that presented in the related work were not full developed and did

not enable users to type all Braille characters and some Braille keyboards were not

available at the time we conducted the evaluation study. The Swift Braille keyboard was

selected based on its high number of downloads and customer reviews (as shown in Table

9).

Table 9. Touchscreen keyboards designed for blind and visually impaired

Keyboards Approach
Android iPhone

downloads Fee downloads Fee

MBraille Multi-touch +
location based

approach

60 (Free) 50 ($54)

BrailleTouch  

BrailleKey

Location based
approach

 
Swift Braille 71 (Free) 
EdgeBraille  
BrailleSkitch  
BrailleType  
Keeble
(QWERTY)

 5 ($34)

TypeinBraille  19 ($5.06)

BrailleEasy

Multi-touch
approach

 0 (Free)

iOS Braille  ✓
Super Braille
Keyboard
Pro

7 ($9) ✓

Perkinput  0 (Free)

Soft Braille 54 (Free) 
GBraille 2 (Free) 
Eyedroid  
BrailleÉcran

Tactile layout
 

MoonTouch  

BrailleSketch  

100

Table 9 shows all the input methods that developed on either Android or iPhone

smartphone devices. Some of these keyboards are available on both platforms and some of

them are available only on one platform. Not all mentioned keyboards are available for

public they are still under development or evaluation.

 For the study tasks, we used an Android mobile phone that runs on Google’s

operating system. The ASUS smartphone (Android version 5.0.2) was used in each

experiment to compare both the BrailleEnter and Swift Braille keyboards. We developed

the BrailleEnter prototype on an ASUS smartphone, which runs an Android operating

system (Android version 5.0.2). We installed the Swift Braille keyboard from Google play

on the same Android device to control other variables that associated with smartphone

devices, including audio feedback clarity, screen size as well as screen sensitivity.

 The BrailleEnter prototype only utilizes Grade 1 Braille to perform a fair

comparison with the Swift Braille keyboard, which only implemented Grade 1 Braille. The

same phrases had to be inserted on both keyboards. Phrases and keyboards were presented

randomly to participants to avoid learning and fatigue effects.

4.6.2.1 Swift Braille keyboard

Swift Braille is a soft keyboard developed for blind and visually impaired people (AlBanna,

2016; Mattheiss et al., 2015). The keyboard interface has six large buttons, which represent

Braille dots and are located on the edges and corners of a smartphone screen (as shown in

Figure 38). The main concept of this keyboard is that it uses one finger to connect the

wanted Braille dots of each character. It enables users to type letters, numbers, and

101

symbols. It uses Text-to-Speech service to read out the inserted letter when the user’s finger

is lifted. Users can add a space by flicking from right to left and a back space by flicking

from left to right. The main advantage of this keyboard is it allows users to use only one

finger to type on a screen.

Figure 38. Swift Braille keyboard

4.6.2.2 Text Phrases

The phrases chosen were commonly used, simple and easy to remember. There are three

test phrases for each text type (a total of 12 phrases). The order of the phrases was

randomized. This procedure will help researchers measure WPM and error rate and allow

us to compare between two keyboards while people type the same sentences.

These phrase types are:

1. Sentences: The goal of this task is to evaluate the usability while typing capital and

small letters

2. Number: The goal of this task is to evaluate the usability while typing contact number

102

3. Address: This goal of this task is to evaluate the usability while typing both numbers

and letters

4. Email: This goal of this task is to evaluate the usability while typing symbols and letters.

Table 10: The twelve test phrases used

Based on our previous experiment with blind participants, we observed that 12 sentences

were adequate. We could not increase the number of sentences without avoiding making

them bored and tired. We also observed that participants have trouble remembering long

sentences, and to avoid cognitive load, we provided short, commonly used sentences that

could be easily remembered by users (as shown in Table 10). All of the chosen phrases are

27 characters or shorter, which was a recommendation derived from other keyboard

evaluations with blind people (Azenkot et al., 2014). We asked them to insert different

types of text to simulate realistic text entry. Usually users need to add a contact number or

email, send an email, or send an address. Researchers read out a phrase and participants

103

were asked to repeat the phrase orally before typing it to make sure they heard the phrase

correctly.

4.6.3 Experimental Design

The experiment used 2*4 within-subject design structure. The two main independent

elements are:

1. Keyboard type: BrailleEnter keyboard, Swift Braille keyboard

2. Text type: sentences, numbers, addresses and emails.

All participants examined both keyboards, and the order of testing was balanced using a

2x2 Latin square. All participants typed all 12 phrases, and the order of typing was balanced

using 12x12 Latin square. We counterbalanced the two keyboard trials across participants

and text types to control for ordering type. The dependent variables are entry speed (words

per minute or WPM), error rates, and keystrokes per character (KSPC). For the subjective

evaluation, we used two questionnaires: First, the Lewis questionnaire to rate ease of

inserting letters, ease of fast typing, ease of accurate typing, ease of learning keyboard

approach, ease of typing, and acceptability of keyboard design (Lewis, 1995).

In the experiment, users were seated in the office, holding the mobile device with one hand

and interacting with the screen with the other. We used a stand with a camera to record the

typing tasks and to record the smartphone screen and the way participants’ hands interacted

with the screen to help us determine types of errors and causes. Figure 39 illustrates the

experiment setup.

104

Figure 39: Experimental setup

4.6.3.1 Procedure

At the beginning of the study, the study objectives and tasks were explained and the

participant completed the informed consent process. Then, a pre-questionnaire was

conducted to collect the participants’ demographic data (e.g. age, gender, vision status,

Braille devices used, touchscreen experience, type of smartphone, touchscreen keyboard

used, difficulties that participants face while using the keyboard, number of hands used to

type on a screen, tasks that perform while using smartphone devices, etc.) and determine

the participant experiences with available touchscreen keyboards that are designed mainly

for blind users (see Appendix E).

 The evaluation study was divided into two sessions per participant for each

keyboard: training session and test session. All participants were asked to try and test the

two keyboards. Both training and testing were performed on an ASUS Android phone with

Android 5.0.2.

 At the beginning of the training phase, participants underwent a training session for

105

one of the keyboards. The researcher showed the participant how the keyboard works,

explaining how participants can type and edit their writing. To make them familiar with

the input method, we instructed them to type two sentences using the keyboard. These two

sentences are different from the phrases that were used for the test session to avoid learning

effect contamination. The first sentence was: “The quick brown fox jumps over the lazy

dog.” which has all the English letters and spacing. The second phrase is: “56 Tobin

Street”, which has numbers and letters. We also asked them to use the keyboard to learn

other gestures and functions, allowing users to interact with the keyboards for 15 minutes.

After completing the training with the first keyboard, participants had a short break.

 In the study session, participants were asked to use the keyboard and insert the 12

chosen phrases as quickly and as accurately as possible. In case participants made errors,

they could correct their typing mistakes using the backspace feature of each keyboard.

After typing the phrases, participants were asked to rate the tested keyboard using questions

from the Lewis’ rating questionnaire that pertain to the design of Braille keyboards (Lewis,

1995). Since some of the Lewis’ questionnaire focuses only on physical keyboard features,

we made slight changes to make this questionnaire valuable for touchscreen keyboards (see

Appendix G). After completing the study tasks with the first keyboard, participants had an

interview about the keyboard’s strengths and limitations and to discuss the features they

liked and disliked (see Appendix H). During the interview, an audio recorder was used to

help us record the information faster than writing.

 After that, participants had a short break and then the researcher showed the

participants how the second keyboard works, explaining the keyboard functions and

operations. Then participants followed the same procedures with the other keyboard.

106

Participants practiced using the keyboard and were asked to write the same phrases using

the other keyboard. They again completed the Lewis’ rating questionnaire, then they had

an interview about the keyboard’s strength and limitations.

 After completing training and study sessions for both keyboards, participants were

asked to rate the keyboard interaction techniques in order of preference. This step helped

us figure out which keyboard participants prefer and the reasons why they prefer one

keyboard over the other. At the end of the study, the participants were compensated $20

for their time.

 The entire session took each participant about 2 hours to complete. There was a

short introduction, followed by a training session that took 15-20 minutes. Participants then

took about 30 minutes to write the sentences using each input method (45-60 minutes total).

The post-study interview took about 5-10 minutes.

4.6.4 Evaluation Metrics

To evaluate user experiences for both Braille keyboards, we measured efficiency (speed),

effectiveness (accuracy), and user satisfactions (questionnaire).

a. Speed

Typing speed is measured by word per minute (WPM), which is the number of words

inserted per minute, where a word contained five characters. Timing was measured as the

time from the first interaction with the keyboard layout until the last interaction.

107

b. Accuracy

In the study, we permitted users to type naturally so if they made a spelling error, they may

or may not correct it. Thus, Minimum String Distance (MSD) is used to measure accuracy

(Soukoreff and MacKenzie, 2003), and keystrokes per character (KSPC). In the MSD

method, there are four types of keystrokes in the input stream, which are: the number of

correct keystrokes (C), the number of incorrect keystrokes in the transcribed text (INF), the

number of incorrect keystrokes fixed in the transcribed text (IF), and the number of

keystrokes used to correct typing errors, such as backspace (F).

Based on the observations, the time spent to type the chosen phrases varies significantly

among both keyboards and participants. That means the time spent to type each sentence

might be affected by time that participants spent editing their typing mistakes. To address

this, we chose to use the Corrected Error Rate (CER), and Not Corrected Error Rate

(NCER).

1. Error rate: Total error rate = (𝐼𝑁𝐹+𝐼𝐹)(𝑐+𝐼𝑁𝐹+𝐼𝐹) ∗ 100 (3)

Total Error Rate shows the percentage of typing mistakes made by users while typing the

sentences using a particular input method.

2. Corrected error rate Corrected Error Rate = (𝐼𝐹)(𝑐+𝐼𝑁𝐹+𝐼𝐹) ∗ 100% (4)

Corrected Error Rate shows the percentage of typing mistakes made by users while typing

the sentences using a particular input method and then corrected.

108

3. Uncorrected error rate Not Corrected Error Rate = (𝐼𝑁𝐹)(𝑐+𝐼𝑁𝐹+𝐼𝐹) ∗ 100% (5)

Total Not Corrected Error Rate shows the percentage of typing mistakes made and not

corrected.

4. KSPC KSPC = |Input stream||Transcribed text| (6)

We also used KSPC (keystrokes per character) in order to measure the cost of making

typing errors and correcting them, as well as the effort that participants chose to invest in

error correction (Soukoreff and MacKenzie, 2001).

c. Lewis’ rating questionnaire

After typing the phrases, participants were asked to rate the tested keyboard using questions

from the Lewis’ rating questionnaire pertaining to the design of Braille keyboards (Lewis,

1995). Since some of the Lewis’ questionnaire focuses only on physical keyboard features,

we made slight changes to make this questionnaire valuable for touchscreen keyboards.

The questionnaire has nine item scales, where the scale starts from 1 very likely to 7 very

unlikely. That means lower scores are better than higher scores.

4.6.5 Results and Discussion

Statistical analysis of data collected was performed and processed in Microsoft Excel

program.

109

4.6.5.1 Quantitative results

4.6.5.1.1 Speed

Apparently, participants typed faster using the Swift Braille keyboard (mean= 3.67 WPM)

than using the BrailleEnter keyboard (mean= 1.99 WPM). The result indicates a significant

difference between the keyboards’ speed (paired t-test; p = 0.007). Figure 40 shows the

mean typing speed of each participant for both keyboards.

Figure 40: Typing speed for both keyboards

4.6.5.1.1.1 Keyboards’ speed across text types

Figure 41: Average typing speed of both keyboards across text types

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sentences Addresses Emails Numbers

W
P

M

Phrases' type

BrailleEnter speed

Swift Braille speed

0

1

2

3

4

5

6

7

8

9

p1 p2 p3 p4 p5 p6 p7 p8

W
P

M

Participants

BrailleEnter Speed

Swift Braille Speed

110

BrailleEnter speed was fastest when typing numbers (average = 2.44 WPM), over typing

addresses (average= 1.94 WPM), Sentences (average= 1.89 WPM), and emails (average=

1.69 WPM) (see Figure 41). Similarly, Swift Braille was fastest when typing numbers

(average= 4.15 WPM) over typing addresses (average= 3.7 WPM), sentences (average=

3.28 WPM), and emails (average= 3.55 WPM). Overall, typing all text types on Swift

Braille keyboard was faster than the BrailleEnter keyboard (as shown in Table 11).

Table 11: Average typing speed of both keyboards

Keyboards’ speed based on text types
BrailleEnter Swift Braille

Sentences 1.898973602 3.285500812
Addresses 1.936343126 3.709764145

Emails 1.694503227 3.551991737
Numbers 2.441188684 4.145991337

4.6.5.2 Accuracy

4.6.5.2.1 Error rate

The Swift Braille Keyboard was the most prone to errors at 20.66% while the BrailleEnter

keyboard had the lowest error rate at 6.03%. Figure 50 provides a summary of the error

rates of both keyboards. The error rate was higher using the Swift Braille keyboard than

the BrailleEnter keyboard. This indicates a significant difference in the error rate for the

Swift Braille keyboard (Mean=20.66%, SD=8.37) and the BrailleEnter keyboard

(Mean=6.03%, SD=2.63), paired t-test; p =0.00070) (see Figure 42 and 43).

 The high error rate for the Swift Braille keyboard was due to the inconsistency of

the editing service; when users meant to delete (flicking from right to left) or to make space

111

(flicking from left to right) most often the keyboard inserted a new line. For example, when

they wanted to make a space they by mistake touch dot 1 and 4 and inserted letter “c” as

well as when they tried to do backspace they hit dot 2 accidently and that inserts character

“,”. Another reason is that when blind users intended to change the keyboard mode and

they swipe vertically from top to bottom or vice versa, then they accidentally hit a dot,

which caused an error.

 Figure 42. Average error rate of both keyboards

Figure 43. Average total error rate for each participant for
 BrailleEnter and Swift Braille keyboards

Overall, the error rate is higher for Swift Braille keyboard for each participant than

BrailleEnter error rate.

0

5

10

15

20

25

BrailleEnter Swift Braille

E
rr

o
r

ra
te

Keyboards

BrailleEnter

Swift Braille

0

5

10

15

20

25

30

35

p1 p2 p3 p4 p5 p6 p7 p8

E
rr

o
r

ra
te

Participants

BrailleEnter

Swift Braille

112

4.6.5.2.2 Corrected error rate

Figure 44. Average corrected error rate for each participant
 for Braille Enter and Swift Braille keyboard

The overall corrected error rate for BrailleEnter was lower than the corrected error rate for

Swift Braille keyboard. There was a significant difference in the corrected error rate for

BrailleEnter (Mean=3.43%, SD=5.65) and Swift Braille keyboard (Mean=8.23%,

SD=2.23), paired t-test; p =0.02) (Figure 44).

4.6.5.2.3 Uncorrected error rate

Figure 45. Average uncorrected error rate for each participant
 for Braille Enter and Swift Braille keyboard

0

5

10

15

20

25

30

p1 p2 p3 p4 p5 p6

U
n

co
rr

e
ct

e
d

 e
rr

o
r

ra
te

Participants

BrailleEnter

Swift Braille

0

5

10

15

20

p1 p2 p3 p4 p5 p6 p7 p8

C
o

rr
e

ct
e

d
 e

rr
o

r
ra

te

Participants

BrailleEnter

Swift Braille

113

This figure 45 shows the differences in NCER was also significant. There was also a

significant difference in the NCER for the Swift Braille (Mean=17.39%, SD=8.39) and the

BrailleEnter (Mean=3.4%, SD=2.53), p = 0.005.

Figure 46: Average keystrokes per character rate for
each participant for BrailleEnter and Swift Braille keyboard

Keystrokes per character (KSPC) also shows a significant difference in the KSPC for the

Swift Braille keyboard (Mean =1.8, SD=0.34) and the BrailleEnter keyboard (Mean =1.3,

SD=0.05), (paired t-test; p = 0.03), indicating that BrailleEnter demands significantly fewer

keystrokes per character than Swift Braille when typing text (see Figure 46). Swift Braille

does not always respond correctly when users try to insert a space or delete thus it demands

more keystrokes.

4.6.5.2.4 Error rate across text types

In BrailleEnter, the error rate was lowest when typing numbers (average = 2.93%, over

typing addresses (average= 5.53%), sentences (average= 7.23%) and emails (average=

9.23%).

0

0.5

1

1.5

2

2.5

p1 p2 p3 p4 p5 p6 p7 p8

k
e

y
st

ro
k

e
s

p
e

r
ch

a
ra

ct
e

r
ra

te

Particpants

BrailleEnter

Swift Braille

114

 Figure 47. Average of total error rate based on phrases type, and keyboards

Similarly, the error rate was lowest when typing numbers using the Swift Braille keyboard

(average= 15.89%), over typing sentences (average= 25.01%), addresses (average=

21.15%), emails (average= 20.60%), (see Figure 47). Overall, typing numbers in both

keyboards caused fewer errors than other types of text.

4.6.5.2.5 Lewis’ rating questionnaire results

We calculated the mean of the nine items of the Lewis’ rating questionnaire. In this

questionnaire, the lower score indicates good status. This questionnaire provides more

information about the reason why participants preferred one keyboard over another (see

Table 12).

0

5

10

15

20

25

30

Sentences Addresses Emails Numbers

E
rr

o
r

ra
te

Phrases type

BrailleEnter TER

Swift Braille TER

115

Table 12: Results of Lewis’ rating questionnaire

The Lewis’ rating for BrailleEnter slightly exceeded the rating for the Swift Braille

keyboard. The mean rating was 2.41 for BrailleEnter, and 2.83 for Swift Braille keyboard.

Table 12 shows the mean ratings of each statement in the questionnaire for both keyboards.

Paired-tests result (p=0.19) indicate that there was no significant difference in the Lewis

questionnaire rating between the BrailleEnter and Swift Braille keyboards. Both keyboards

had positive ratings for using one finger and audio feedback to interact with the

touchscreen. However, The BrailleEnter keyboard had poorer ratings on the easy to type

fast statement than the Swift Braille keyboard (p=0.22). On the other hand, the Swift Braille

keyboard had significantly poorer ratings on the editing is accessible statement than the

BrailleEnter keyboard (p= 0.005).

116

4.6.5.2 Qualitative results

4.6.5.2.1 Pre-questionnaire

All of the participants use the QWERTY keyboard with VoiceOver as the main input

method on touchscreen devices. They mentioned some of the difficulties they have faced

while using QWERTY with VoiceOver, including that it is hard for them to find the

location of some letters and symbols and the QWERTY is not efficient because it causes

errors. These difficulties are explained in detail in (Alnfiai and Sampalli, 2016).

 Most of the participants have also used voice detection in private places to insert

messages, passwords, type notes and research online. However, in public places they used

the QWERTY keyboard with VoiceOver to type text to overcome the voice dictation

limitations, including that it does not detect their sound when they are in a noisy

environment, and people around them are able to hear what is said. One of the participants

reported that “when they pause Siri will not wait for them to complete the message”.

4.6.5.2.2 Interview

4.6.5.2.2.1 BrailleEnter Strengths and Limitations

We developed approximately 10 qualitative codes to summarize the most relevant findings

we learned from each participant, which we clustered into sets of high level themes,

including difficulty typing the text, difficulty switching between keyboard layouts, audio

feedback, annoying, convenient, easy to use, fast, error prone, physical comfort and

navigation issues. The most important advantage of the BrailleEnter keyboard is allowing

users to interact anywhere on a screen without looking for a specific location. Participant

1 stated that “Yes, I like it because you do not have to look around for a specific area of

117

the screen to type.” Participant 3 also agreed with the accessibility of typing anywhere on

a screen by saying “I like it because I do not have to move all around to find a letter. I can

type whenever was nice to be able to do that. If the Braille keyboard works better, it would

be faster.” Participant 6 said that: “You do not have to be specific in what area of the screen

you type in”.

 All participants were able to perform tap and long tap gestures easily, even though

they tended to hold too long to perform the long tap gesture. Participant 5 stated that “Tap

and long tap gestures are easy to differentiate between. I do not know whether I hold too

long or not I tried to speed up and it seems to work”. Participant 1 reported that “In the

beginning I noticed I held too long on a screen more than what I need to, once you get used

to the hold you can speed it a little bit.” Participant 3 stated that she has had difficulty with

how long she should hold her finger over the screen to perform a long tap.

 All participants liked using the swiping gesture to switch between keyboard modes.

Participant 3 stated that “Swiping, I like that you can just swipe to get to number, symbols,

letters, not to have to move around the screen too much and find things is nice.”

 The main disadvantages of the BrailleEnter keyboard is that it increases the

cognitive load on a user. Participant 2 reported that “it makes me think” (cognitive load).

This limitation leads to slowness. Thus, other drawbacks with this keyboard is that it is not

fast. The BrailleEnter keyboard had the slowest typing speed, due to participants having to

think about which dots require long taps and which dots require short taps for each

character. Some of the participants had not used Braille for some time, thus they spent a

significant amount of time trying to remember the Braille code of a character. Two

participants commented that BrailleEnter input method required too many interactions to

118

type on the screen.

4.6.5.2.2.2 BrailleEnter suggestions

Most of the participants recommended that we implement Grade 2 to improve the

BrailleEnter speed. Grade 2 Braille is a shorten form of words that are represented by one

Braille sign or two signs and to implement it would definitely speed up the keyboard. Some

of the participants suggested we replace the long tap gesture with other gestures that require

less time to perform.

 Participant 1 suggested we implement this input method on Apple Watch to type

Braille characters on a small screen to insert information on calendar, note, and calculators.

P1 stated that “I could see it more practical on an Apple watch.”

4.6.5.2.2.3 Swift Braille strengths and limitations

The main strength of the Swift Braille keyboard is that it allows users to use one finger to

interact with a screen. Participant 1 reported that “I think it would a good way for beginners

to learn, “it’s kind of like drawing Braille letters.”

 Another advantage is that the Braille dots are spread out on the screen and are

located on the edge of the screen, which allow blind users to find the dot quickly. Another

strength in this keyboard is that it uses vibration which informs users that they have touched

a dot. Based on how many times they feel vibration; they can identify how many dots have

been touched. Participant 3 stated that “Vibration was nice; you will know you hit the right

button or the wrong button.” The main limitation of Swift Braille keyboard is that users

have difficulty skipping a dot while trying to draw a letter that does not include dot 2 or 5.

119

For example, typing the letter ‘u’ requires users to connect dots 1, 3 and 6; they often hit

dot 2 by mistake because they cannot be precise about the exact area or space that they can

move their fingers without hitting unwanted dots. Participant 2 stated that “you have to

make sure when you are going in between for letters (u, m, x) because you are tracing those

letters. Someone with trouble with coordination might hit other buttons.”

 Editing in the Swift Braille keyboard was really difficult because when they

performed delete, which is flicking from left to right, they hit other buttons on the screen

and accidentally inserted a character. Making space was also a drawback on this keyboard,

usually when participants made a space by flicking from right to left, they hit the wrong

dot or sometimes created a new line. P2 stated that “I have a little difficulty because of the

space, new line and delete.” Participant 5 reported skipping dots and making spacing are

difficult to do in this keyboard. You have to be precise when you move from dot to the

another”. Another drawback is that accidently touching other buttons on the Swift Braille

interface might open up another screen and they have hard time to return back to the

keyboard layout. P6 stated that “Blind people have to run their fingers over the screen, they

cannot just touch”. This means blind people need to be able to move their fingers around

the screen first to identify the location of keys and then when they find the wanted key they

can perform a specific action to selected it. Thus, they made a lot of errors on the Swift

Braille keyboard because each time they touch the screen they insert a dot or enter a

command.

4.6.5.2.2.4 Swift Braille suggestions

Some of the participants suggested we add two buttons, one to add space and the second

120

one to delete. The main objective of adding two buttons on the Swift Braille interface is to

avoid hitting other buttons on a screen and making it do something else. Participant 5 also

suggested that providing instructions in the beginning, adding correction features, spell

check and implementation of Grade 2 Braille.

4.6.5.2.2.5 Observation

We tried to understand how blind users interact with both input methods. All participants

stated that interacting with touchscreen using one finger is the most accessible way for

blind people. Participant 1 stated that “I can hold the phone with one hand and just use one

finger to type.” and Participant 2 stated that “it is much easier to navigate around a screen

using one finger”. When users use the BrailleEnter keyboard, some of the users tapped on

one spot of a screen and did not change their finger position. Some of them tap as the

Braille shape which is 3*2 matrix. P1 and P4 typed at a speed that was slightly faster than

other participants. This might be because they tapped on one area of the screen, reducing

the movement of the finger while interacting with the screen to insert text. Other

participants took more time when they moved their finger from one position to another

while tapping the six dots.

 Regarding the Swift Braille keyboard, we noticed that users were trying to move

their finger slowly when they were trying to skip the middle dot to avoid hitting a dot by

mistake. We also noticed that they connected the Braille dots in order. For example, letter

x is the connection of the dots 1, 3, 4 and 6, so some of the participants connected these

dots in the same order, but some of them when they connected the dots they pick the

shortest way. For example, they connected 1, 4, 5 and 6, this path is easier because they

121

only came from the middle once despite that following the order requires the users to came

from the middle between dots two times, which might cause more typing errors.

4.6.5.2.2.6 Preference

At the end of the evaluation study, participants were asked which keyboard they preferred

and the reason they preferred one keyboard over the other. Six out of eight participants

preferred the BrailleEnter keyboard over the Swift Braille keyboard. The other 2

participants preferred the Swift Braille (P2, P5).

Some of the participants stated the reason why they preferred a BrailleEnter keyboard over

the Swift Braille keyboard. Participant 3, who preferred BrailleEnter, addressed the reason

for disliking Swift Braille by saying that the keyboard consistently behaved “differently

than what I expect.” Participant 3 stated that it is really easy to delete using BrailleEnter”.

Participant 4 stated that “I did not like [Swift Braille as much as the BrailleEnter, it was

not quite as easy to delete space. I found flicking up and down was not as easy as the

BrailleEnter.”

 The main reason Swift Braille was not preferable is that it required users to find the

specific location of keys on a screen. Participant 1 said that with Swift Braille he sometimes

“found the gestures were inconsistent when he changes the keyboard mode”. Participant 6

also reported that “This one here you had to be a little more precise as to what area of the

screen you are on when connecting the dots. Sometimes, another screen comes up, which

is really confusing.”

122

4.6.6 Discussion

We compared the BrailleEnter keyboard, a new input approach with the Swift Braille

keyboard in terms of speed, accuracy, usability and preference. In this study, we also

discussed the keyboards’ strengths, drawbacks and suggestions for improvements. Based

on the analyzed data, we highlighted the critical points for designing an accessible

keyboard for blind people.

4.6.6.1 Speed and accuracy

This experiment found the WPM of Swift Braille is much higher than the BrailleEnter.

Swift Braille was expected to have the same speed as BrailleEnter. Swift Braille requires

one swipe to connect between Braille dots of each character. However, based on our

observation, any time participants touched the Swift Braille interface, they inserted a

character, space or a new line even if they did not intend to do that. Sometimes, they did

not even finish connecting Braille dots of a character or they touched the screen

unintendedly and they inserted a wrong character.

 BrailleEnter keyboard was slower than the Swift Braille keyboard because it

requires users to interact six times with a screen to type a character. In addition to that, we

observed participants hold their fingers on the screen to perform the long tap gesture longer

than they should. That might be considered a reason why they took longer to type text on

this keyboard. The study results also show that there was a significant difference in both

keyboards’ speed across four text types. It shows that both keyboards were fast when users

typed numbers. This is because numbers have fewer active dots in Braille coding. Most of

the numbers have fewer than three active dots in each Braille number code.

123

 The error rate was significantly higher in the Swift Braille than the BrailleEnter

keyboard. Analyzing the error rate of each keyboard revealed three main reasons that make

Swift Braille more error prone. The first reason is that which some of the participants

mentioned; they made more typing mistakes on Swift Braille when they tried to make

spaces, delete or switch between keyboard modes. They found using swiping gesture

inconsistent and confusing because when they made a space they typed letter “c” or number

“3” and when they deleted (backspace) they typed “,”. The second reason is that typing

some characters on Swift Braille is difficult, such as ‘u’, ‘m’, and ‘x’. This was exposed in

the interviews with participants and from the video analysis. Some of the participants

mentioned that “it is hard to skip dots while connecting between dots”. The third reason is

that searching for a dot while using Swift Braille requires a continuous touching of the

screen to explore the interface. This touching gesture negatively affected the Swift Braille

keyboard accuracy because it makes the keyboards insert unwanted characters, which then

often either required the user to correct the typing error or start searching again for the

target dots. Even when participants were trying to correct their mistakes, they inserted

another error by hitting other dots while flicking from right to left.

 The result indicated that BrailleEnter causes less typing errors, perhaps because the

BrailleEnter keyboard does not require users to be precise while navigating on the screen.

It allows them to interact in any accessible part of the screen. Other reason is that it only

uses gestures to perform all the keyboard functions without presenting any button on the

screen. One participant mentioned that the feeling of typing on BrailleEnter is slightly

different from typing on Perkins Braille, in Perkins users have to insert only the active dots,

but in BrailleEnter they have to insert both active and inactive dots as a filler. That creates

124

cognitive load while inserting dots. This might be a reason why BrailleEnter’s speed is

slow. Furthermore, the study results show that there was a significant difference

in both keyboards’ accuracy across the four text types.

 Overall, the Swift Braille keyboard was the fastest, but it was the most error prone.

The study also showed that while BrailleEnter is the most accurate text entry, it is the

slowest input method. The study also examined the speed and accuracy of both input

methods across four text types including sentences, addresses, emails and numbers.

Overall, the result indicates that typing numbers on Braille requires less effort because they

have fewer numbers of active Braille dots. However, the Swift Braille input method

exceeded BrailleEnter in text entry speed in all four text types. On the other hand, the error

rate was lowest in BrailleEnter. The error rate was lowest while typing numbers over other

types of text.

4.6.6.2 Usability and preference

When participants were instructed about which keyboard they prefer most, the result

showed that BrailleEnter was the most preferred. Overall, BrailleEnter was more usable

and preferable than the Swift Braille keyboard. The Lewis questionnaire revealed the main

points that participants prefer a keyboard over the other. Subjective ratings of the two

Braille keyboards show reliable differences between the keyboards’ features and highlights

the main strengths and limitations in both keyboards. The essential advantages on both

keyboards were allowing blind people to use index finger to interact with a screen to type

as well as providing an audio feedback feature. Though, features that are not accessible in

the Swift Braille keyboard are its editing service including entering a space, backspace and

125

switching between keyboards. Most participants were frustrated when they did something

and got unexpected outcome. However, vibration and locating the Braille dots’ keys on the

screen edges improve the interaction with the keyboard interface. Regarding BrailleEnter,

interacting six times with a screen to insert a letter was not preferred by participants as it

significantly reduces the keyboard speed. However, typing anywhere on a screen without

boundaries was the most preferable feature of the BrailleEnter keyboard. The other

features participants liked was swiping horizontally to switch between keyboards and

vertically to edit were accurate and easy to perform. Overall, Table 13 shows the general

result about both keyboards.

Table 13. Result summary

Keyboard

Evaluation matrix

Efficiency

(speed)
Effectiveness

(accuracy)
Usability

(Lewis ratings)
Preference

(Number of
participants)

BrailleEnter 1.99 WPM 6.03% 2.41 6

Swift Braille 3.67 WPM 20.66% 2.83 2

Based on BrailleEnter’s speed, we can say that BrailleEnter is a valuable keyboard for short

text like passwords, and social media posts. It also can be a well-designed keyboard for

inserting passwords to login website applications, or enter bank information. Moreover, we

believe that the BrailleEnter keyboard might be a valid keyboard for small smart devices

like smart watches.

 The study also indicated that the Swift Braille keyboard could be improved by

eliminating the limitations that have been mentioned above. To overcome the Swift Braille

limitations, we suggest that making the six dots near to each other and locating them on

126

the bottom of the screen to make an unfilled space and the empty space of the top of the

screen can be used to enable users to perform swiping vertically to delete or add space and

horizontally to switch between keyboard modes (As shown in Figure 48).

Figure 48. Suggestion for improvements of Switch Braille keyboard

Mattheiss et al. also suggested that using unused Braille combination of dots to implement

editing features including delete and space (Mattheiss et al., 2015). However, this

suggestion will decrease learnability because users have to learn the combination of dots

that represent delete or space functions.

The most important design principles of developing an accessible input method for blind

people have been extracted from our evaluation study of two Braille keyboards.

1. Avoid using both buttons and gestures on one layout to prevent users from making

typing mistakes. Use both buttons and gestures on one layout that causes a lot of errors.

When a blind user performs a gesture for any function, they may be unable to avoid

hitting other buttons on a screen or they might not know exactly where buttons are

located on a screen, thus they perform a gesture anywhere which causes errors.

127

2. Eliminate using buttons on the application interface that are used to perform specific

functions., Instead try to use gestures that are accessible by blind people. For example,

in the Swift Braille keyboard, there are some buttons on the interface that are used to

allow users to copy, add a new line or remove the whole word, but users hit these

buttons accidently and make an error.

3. Use vibrations to help users get feedback while interacting with a screen.

4. Shrink the distance between the Braille dots to minimize the time searching for other

dots on a screen.

5. Provide a clear, quick and short feedback mechanism for users to inform them what is

going on a screen.

6. Implement Grade 2, word prediction, auto corrections, and sentences library to

enhance blind users’ performance on touchscreen keyboards.

4.6.6.3 Comparative analysis with other input methods for visually impaired

The quantitative and qualitative data collected from previously published papers to display

an overview about the performance and accessibility of most existing input methods (see

Table 14 and 15) (Lee, 2004, Azenkot et al., 2014; Azenkot et al., 2012; BrailleEasy, 2018;

Frey et al., 2011, Guerreiro et al., 2008; Heni et al., 2016; Jalaliniya et al., 2015; Keeble,

2018; MBraille, 2018; Mattheiss et al., 2015; Mascetti at al., 2011; Oliveira et al., 2011;

Orf, 2015; Siqueira et al., 2016; Sepic et al., 2015; Shabnam, Govindarajan, 2014;

Southern et al., 2012; Subash et al., 2012; Soft Braille, 2018; Bonner et al., 2010; Alnfiai,

and Sampalli, 2016a; Alnfiai, and Sampalli, 2017b; Alnfiai, and Sampalli, 2017c).

128

Table 14. An overview of input method performance

Keyboards Types Interaction

technique

Participants’
Number

Speed

(WPM
)

Error

rate

% Keeble SW

Location
based

approach

- - -
Qwerty keyboard SW 7 4.71 20.54
BrailleKey SW 5 1.80 5.60
BrailleSkitch SW 10 14.35 10.6
BrailleType SW 15 1.45 9.7
Swift Braille SW 8 3.67 20.66
EdgeBraille SW 14 3.97 8.43
No-Look-Notes SW 10 1.67 11
Eyedroid SW 12 - -
BrailleTouch SW

Multi-touch
approach

11 18.62 26.9
MBraille SW - - -
BrailleEasy SW 6 7.03 11.75
iOS Braille SW - - -
Super Braille SW - - -
Perkinput SW 8 6.1 15.75
Soft Braille SW - - -
GBraille SW - - -
TypeinBraille SW 10 3.6 6.5
SingleTapBraille SW Single Touch

approach
7 3.72 11.23

BrailleEnter SW 8 1.99 6.03
MoonTouch SW+HW

Tactile layout
6 10.14 5

BrailleÉcran SW+HW 10 2.52 2.86
H-Slate SW+HW 6 - -
Korean Perkins
Brailler

HW
Physical
keyboard

- 27.9 2.8%

Portuguese
Perkins
Brailler

HW - 16.7 -

129

Table 15. An overview of input methods’ Qualitative features

In
te

ra
ct

io
n

ap
pr

oa
ch

Is
 e

as
y

to
 le

ar
n

Is
 e

as
y

to
 u

se

R
eq

ui
re

s
on

e
ha

nd

R
eq

ui
re

s
on

e
fi

ng
er

 to

in
te

ra
ct

 w
it

h
a

sc
re

en

U
se

s
V

oi
ce

O
ve

r
se

rv
ic

e

U
se

s
ta

ct
il

e
fe

ed
ba

ck

E
li

m
in

at
es

 s
w

it
ch

in
g

be
tw

ee
n

la
ye

rs

E
li

m
in

at
es

 lo
ok

in
g

fo
r

a
sp

ec
if

ic
 lo

ca
ti

on

E
li

m
in

at
es

 in
te

ra
ct

in
g

ba
se

d
on

 p
ar

ti
cu

la
r

co
or

di
na

ti
on

S
up

po
rt

s
nu

m
be

r,

al
ph

ab
et

s,
 p

un
ct

ua
ti

on

A
ll

ow
s

ed
it

in
g

In
te

gr
at

es
 th

e
ke

yb
oa

rd

w
it

h
an

 a
pp

li
ca

ti
on

Keeble
L

oc
at

io
n

ba
se

d
ap

pr
oa

ch

           

Qwerty            

BrailleKey            

BrailleSkitch            

BrailleType            

Swift Braille            

EdgeBraille            

No-LookNotes            

Eyedroid            

BrailleTouch

M
ul

ti
-t

ou
ch

 a
pp

ro
ac

h

           

MBraille            

BrailleEasy            

iOS Braille            

Super Braille            

Perkinput            

Soft Braille            

GBraille            

TypeinBraille            

SingleTap
Braille

S
in

gl
e

to
uc

h 
          

BrailleEnter 
          

MoonTouch

T
ac

ti
le

            

BrailleÉcran            

H-Slate            

130

Tables 14 and 15 show user performance and qualitative features of existing text input

methods that have been developed for visually impaired people. These keyboards used

different approaches including location based, multi-touch, single-touch and tactile

interface. Each approach has its unique strengths and weaknesses. The multi-touch

approach allows blind users to type fast. However, there is a high rate of error. Due to the

small size of the smartphone device, the blind users’ hands tend to drift across the

touchscreen over time. Another requirement of the multi-touch entry method that makes

this approach inaccessible for blind users is that it is not practical to use two hands to type

when one hand is occupied while holding the device.

 Adding a tactile overlay on a touchscreen improves the accessibility for blind users

as it provides tangible interaction. Tactile feedback allows blind people to type fast with a

lower error rate. However, tactile overlay limits the applications’ functionality or requires

extensive customization of the hardware where it is very expensive and complex to prepare

as it requires intensive labour (He et al., 2017).

 Keyboards that are designed based on location are time consuming and cause too

many errors. This type of keyboards represents the keyboard layout visually and requires

users to find the exact location of a key. This requires the users to spend a long time to find

the desired key. Beginners need to spend more time and effort to map the keyboard layout

and memorize the location of each key. It is also error prone because the users might

accidently hit the wrong key or link on the screen, in which case another screen pops up or

deletes the inserted data.

 Input methods that use a single touch approach are still slow and produce errors,

but this type of keyboards improve the accessibility where the users can type using only

131

one finger and they can type anywhere on the screen without any concern about hitting

unwanted buttons. They also do not require the users to spend time to learn how to operate

the keyboards as they are familiar with Braille, their mother language. Other multi-touch

keyboards require users to learn the keyboards’ interaction techniques and map and

memorize the keyboard layout. Our method enables users to switch between keyboard

layouts without the need to locate a particular button on the screen; users tap the Braille

sign for the desired layout. These keyboards also can be easily integrated with other

applications like SMS applications or any social media application. This is novel because

other approaches like tactile or multi-touch require developers to take into account how to

manage and organize the application buttons so users do not accidently press them.

4.7 CONCLUSIONS

 Because keyboards based on Braille patterns provide an accessible input method

on touch screen devices, we tried to develop a text entry method that makes smartphones

more accessible for all populations, including blind people. We have described novel non-

visual text entry methods, SingleTapBraille and BrailleEnter, that do not require users to

locate a particular object on a touch screen; instead, text can be inserted by touching on a

touch screen based on Braille shapes. The SingleTapBraille and BrailleEnter keyboards

were evaluated in the CNIB, enabling us not just to quantify how blind users interact with

touch screens but also to understand specific aspects of phone use, like how they hold

devices to use them while walking. Our evaluation also enabled us to identify the

advantages and disadvantages of both input methods and to obtain feedback for

improvements.

132

 The main contribution of our research is that we have used Android mobile devices

to build accessible keyboards to help blind people overcome some of the difficulties they

face while typing on a touch screen using the standard keyboard (QWERTY keyboard) or

a button based keyboard (Swift Braille). The evaluation provided promising feedback and

also provided some suggested improvement for further development. It also showed that

using a thumb to interact with a touchscreen and holding the smartphone using only one

hand is not a common technique for blind users. Indeed, the ability to use this system with

only one hand is a critical advantage over other keyboards, especially for a population that

often has to use one hand for a cane or guide dog. Our results indicate that entering

characters based on Braille significantly enhances accessibility and usability, and has the

potential to be a valuable text entry tool for blind users.

 In the future, there are several opportunities for improvement to the proposed

keyboards. Firstly, because seven to eight is a relatively small sample size, future work will

test the keyboards with larger groups of people in order to better understand their strengths

and weaknesses. We are also planning to compare our keyboards with a multi-touch

keyboard. Future work will also increase the keyboards’ usefulness by integrating them

with existing communicating apps and implementing it with wearable technology such as

the Apple Watch to make it even more convenient for blind people to text short messages

while walking. Further, we will try to find a way in which blind users can use the predictive

text feature with Braille keyboards. Lastly, we will try to increase security and privacy

through a keyboard based entirely on Braille. Other possible future directions include

implementation of efficient error correction interfaces that minimize time needed to edit

typing errors.

133

CHAPTER 5: NUMBER INPUT METHOD

5 .1 The Design of the BrailleTap Calculator

Our main goal is to design an accessible calculator on a touchscreen device that allows

blind users to tap Braille numbers anywhere on a touchscreen using their thumb or one

finger without the need to find a particular number or operation button on a calculator

layout. In our proposed calculator, users are not required to navigate the calculator keys.

 The calculator is designed based on Braille codes. As mentioned above, the code

has two columns and three rows. Blind users generally enter Braille dots from left to right

and from one to six. Our calculator follows the same principle, allowing users to insert

Braille dots from left to right and from one to six. Users can activate Braille dots

individually using their thumb or a finger to tap on the screen. In order to activate the first

Braille dot, users can tap once anywhere on the screen and this will represent the number

“1”. In case the user wants to activate more than one dot, he/she can tap the screen quickly

to create Braille shapes. Once the user stops tapping on the screen for a short time, our

algorithm will interpret the Braille pattern and the corresponding letter. At the same time,

a Text-to-Speech function will read out the resulting number. Our approach allows users

to hold the smartphone device using one hand while they interact with the touchscreen

using their thumb to tap Braille dots anywhere on the screen. This follows Paisios (2012),

who found that the most accessible way for blind users to interact with a touchscreen is by

using one finger.

 In order to determine the corresponding number when users tap Braille dots on a

screen, our algorithm analyzes the relationship between all activated dots in each Braille

134

number based on the active dots’ coordinates. For instance, the number two will be

represented when a user activates the first and second dots on the touchscreen. Our

algorithm is mainly based on the clustering of active dots for each number and identifying

the relationship between those active dots. The algorithm clusters all the inserted taps on a

touchscreen and analyzes all these taps based on the number of taps, the shape of these

taps, as well as each tap’s coordinates. When the user stops tapping on the screen for a

short interval, the taps are analyzed and the number matched. Table 16 and Figure 49

represent the algorithms that have been used to examine the relationship between dots.

The factors that indicate the relationship between Braille dots are:

a. The value of coordinates (X, Y) for each tap on the screen

b. The number of dots in each number in Braille code

Table 16. Categorization of Braille numbers based on number of dots

a. Character that has one dot e. Characters that have four dots

Number 1

One tap anywhere in a mobile screen

Number 7

|X1-X2|<e; |X3-X4|<e; X2<X3; |Y1-Y3|<e; |Y2-
Y4|<e; Y3<Y2

b. Characters that have two dots

Number 2

|X1-X2|<e

Number 3

 |Y1-Y2|<e

0
1
2
3
4
5
Y
Y

0 1 2 3 4 5 6 7 X
0
1
2
3
4
5
Y
Y

0 1 2 3 4 5 6 X

0
1
2
3
4
5
Y
7

 0 1 2 3 4 5 6 7 8 X
0
1
2
3
4
5
Y

0 1 2 3 4 5 6 X
Yyyy 6 7

135

Number 5

X1-X2<0; Y1-Y2<0

Number 9

X1-X2>0; Y1-Y2<0

 c. Characters that have three dots

Number 4

Y1-Y2= 0; X2-X3=0

Number 6

X1-X2=0; Y1-Y3=0

 d. Characters that have three dots

Number 8

X1-X2=0; Y2-Y3=0

Number 0

X1-X2<0; X2-X3=0; Y1-Y3=0

As seen in table above, each Braille dot’s position is reflected by both an x and y

coordinates. These coordinates are used by the algorithm to create an equation that reflects

the relationship between the position of the dots in each Braille code. These equations are

represented below each Braille code in the table above. Once the pattern of Braille code is

recognized the algorithm will present the corresponding number.

0
1
2
3
4
5
Y

0 1 2 3 4 5 6 7 X

0
1
2
3
4
5
6
Y

0 1 2 3 4 5 6 7 X

0
1
2
3
4
5
Y

6

0 1 2 3 4 5 6 7 X

0
1
2
3
4
5
Y
7

0 1 2 3 4 5 6 7 X

0
1
2
3
4
Y
6

0 1 2 3 4 5 X 7

0
1
2
3
4
5
6
Y

0 1 2 3 4 5 6 X

136

Figure 49. Algorithm flowchart

The error variable “e” is a defined value that is used as a threshold for whether two floating

numbers are in a vertical or horizontal line. If the difference between the x or y values of

two taps is smaller than the error value, the algorithm will accept it because it is difficult

for a user to insert two taps in an exact vertical or horizontal line.

5.1.1 Representing Braille numbers using BrailleTap

BrailleTap allows operations to be entered in a way that is accessible and effective using

swiping gestures with a single thumb. This is in accordance with Paisios and Richard et al.,

who found that using swiping and tapping to interact with a touchscreen is the easiest

137

gesture and most accessible methods for blind users (2012). In order to insert an operation,

users can swipe vertically in a loop to activate a particular operation. The first swipe will

activate the first operation and TalkBack service will speak the operation name. Then, if

the users swipe vertically twice, they will obtain the second operation. For example, when

the user performs the first vertical swipe from bottom to top, the app will say “addition”.

In case the user does not want the addition operation, he/she can swipe again from bottom

to top to select subtraction instead of addition. Performing a vertical swipe from top to

bottom will insert division operation. A second swipe from top to bottom will insert

multiplication instead of division. They can also swipe horizontally to edit their typing (see

Table 17). After the users enter the mathematics equation, they can perform a long press

gesture to obtain the result.

Table 17. Braille keyboard interaction techniques and their purposes.

5.2 BrailleTap calculator Implementation

In this section, we describe the implementation of the BrailleTap calculator to allow blind

users perform calculation easily. We will describe the function and interfaces of BrailleTap

calculator.

Interaction techniques purposes

Swipe from bottom to top Addition, subtraction
Swipe from top to bottom Division, multiplication

Swipe from left to right Clear operation
Swipe from right to left Backspace

Long press equal

138

5.2.1 User interaction module

This section presents the BrailleTap architecture of the user interaction module, which

includes:

1) Gesture pattern recognition module

2) Braille number pattern recognition module

3) Switching between operations

4) Editing module

5) Text to speech module

To enter a number on a touchscreen using the BrailleTap, one to four taps are required to

recognize a number. The BrailleTap calculator algorithm contains five modules detecting

the gesture pattern, recognizing Braille numbers, switching between operations, editing

module includes gestures, and Text-to-Speech module.

5.2.2 Gesture Recognition Algorithm

This section explains the gestures used to implement the BrailleTap calculator.

5.2.2.1 Explanation of Gestures

The accessible gestures that have been used to implement the BrailleTap calculator are:

1. Short Taps: to form the Braille patterns of each number.

2. Long Tap: to get the result of the entered equation “=”.

3. Swiping horizontally: to edit

Swipe right: delete on digit

Swipe left: clear all

4. Swiping vertically: to switch between operations including (+, -, *, /)

139

The algorithm is implemented in Java language in an Android studio platform. The

corresponding output of the entered inputs is explained in tabulated from Table 1. The

implemented algorithm is designed mainly based on the interaction techniques that users

made on the mobile phone screen.

The input values are one to four of tapping gestures that are taken from the smartphone

screen. The algorithm produces expected outputs (numbers) based on the relationship

between the entered taps and their orders. The gesture swipe vertically and horizontally is

used to trigger one action (see Figure 50 and 51).

1. Gesture recognition module

/* Gesture Recognition Algorithm */

 Comment: The gesture used is swipping and performed by end user
Comment: Enter the type of gesture from the list (Swipe right, Swipe Left, Swipe
up, Swipe down)
SWIPETHRESHOLD 100px. // required minimum distance traveled to be
considered swipe
Step1. Read input details from the touch screen including events where the touch
position changed using MotionEvent
Step2. Detect gestures’ type
On ActionUp event: read Xup, Yup coordinates values
On ActionDown event: read Xdown, Ydown coordinates values
Step 3. If |Xup-Xdown|> SWIPETHRESHOLD) then
 return “Swipe Horizontly”
 Step 4. If (Xup > Xdown) then
 return “Swipe right”
 do “Clear”
 end if

 Step 5. If (Xup < Xdown) then
 return “Swipe left”
 do “Delete one digit”

 end if

 end if

 Step 6. If |Yup –Ydown|> SWIPETHRESHOLD) then
 return “Swipe Vertically”

 Step 7. If (Ydown < Yup) then
 return “Swipe down”

140

 do “Switch between operations”
 end if

 Step 8. If (Xdown > Yup) then
 return “Swipe up”
 do “Switch between operations”

 end if

 end if

Figure 50. Gesture recognition algorithm

Figure 51. Code of gesture recognition algorithm

2. Braille number pattern recognition module

The input variables are the touching events that users perform on the screen. This algorithm

requires one to four inputs to produce a number. It processes these touches or gestures

(input variables) by analyzing the number of touches that are being performed on the

141

screen, the position of theses touches (the shape or the relationship between taps by

determining the coordinates of each tap), the gestures’ type, and order. The active Braille

dots are represented by short tap gestures and the inactive dots are ignored in this algorithm

(see Figure 52 and 53).

/* Number Recognition Algorithm */

Void NumberRecognition ()
Comment: The gesture used is tapping and performed by end user
Comment: variable is error50 //e=50
Step1. Interact with the screen by tapping on the screen
Step2: Start the time count once a user touches the screen
//Timer == 0 and the size of array list is zero (Taps’ list[]). // Time handler
Step3. Detect the gesture type (Gesture recognition algorithm)
Step4. Add touch gestures on a screen, its coordinates, order into the array list to the
array list Taps’ list [] and the number of taps that have been performed on the screen in
the specified time.
Step5. DO step 1, 2 and 4 as many as the number of active dots in the Braille code

of the entered number (representing the active dots of Braille code) in 3 seconds.
Step6. Stop the timer == 3 seconds
Step7. If (array list has more than 4 gestures)
 return “more than 4 dots”
 speak “could not recognize number”
 End if

Step8. Else if (array list has 4 taps or less)
 Switch (the number of taps stored in the array list)
 case 1: // (one tap)

Enter “number 1”
break;

case 2: (Two Taps)
If ((|X1-X2| < error))

 Enter “Number 2”
 End if
 else if (|Y1-Y2|<error)

 Enter “Number 3”
 End if

 Else if ((X1-X2<0) &&(Y1-Y2<0))

 Enter “number 5”
 End if
 else if ((X1-X2) <0) && ((Y1-Y2)>0)

 Enter “number 9”
 else

 Speak “Could not recognize number”

142

 break;
 case 3: (Three Taps)
 If ((|Y1-Y2| < error) && (|X2-X3| < error))

 Enter “number 4”
 else If ((|X1-X2| < error) && (|Y1-X3| < error)

 Enter “number 6”
 else If ((|X1-X2| < error) && (|Y1-X3| < error) &&(|Y1-Y2|))

 Enter “number 8”
 else If ((X1-X2) <0 && (|X2-X3| < error) && (|Y1-Y3| < error))

 Enter “number 0”
 case 4: (Four Taps)
 if ((|X1-X2|<error)&& (X3-X4<error)&&(Y1-Y3<error)&&

 (X2<X3)&&(Y3<Y2))
 Enter “number 7”
 Break;
 default:
 Speak("Couldn't recognize number");
 break;

 end
Step9. Clear the array list
Step10. Repeat step 1 to 9 until users enter the wanted numbers
Step 11. End Number Recognition Algorithm

Figure 52. Number recognition algorithm

Figure 53: Snapshot of number recognition algorithm code

143

3. Switching between operations module

Change the calculator operations (+,-,/,*)

Step 1. Check if the user performs swiped Vertically on the screen
Step 2. If (YDown < Yup) is valid then
 If the calculator operation valid on multiplication mode // (m==3)
 Change it to summation operation (m == 0)
 else

 Increase the calculator mode value to wrap around the calculator layouts
 (m++)

Switch (keyboard mode)
Case 0: addition operation (m==0)
Break;

Case 1: subtraction operation (m==1)
Break;

Case 2: division (m==2)
Break;

Case 3: multiplication (m==3)
Break;

Figure 54. Change the calculator operations

Figure 55. Snapshot of switching between calculator operations code

144

4. Editing module

This module has two methods, which are backspace and clear.

1. Delete method

Delete method (Backspace) has been explained in Chapter 4.

2. Clear method

Clear function removes the contents of the edit text (see Figure 56 and 57).

Clear function

Void clear ()

X is the entered equation on the screen

Return ‘ ’; // remove all the entered equation X
Speak “clear”;
End clear method

Figure 56. Clear method

Figure 57. Snapshot of clear method code

5. Text to speech module

The Text-to-speech function has been implemented in this calculator to enable blind users

to hear the entered numbers, operations as well as results. This function has been

explained in detail in Chapter 4.

5.2.1 BrailleTap interface

The BrailleTap interface is based mainly on audio feedback and does not use any buttons

145

on the screen. Users can tap and perform gestures anywhere on the screen (as shown in

Figure 58). The TalkBack accessibility service in Android platforms reads out the written

text on the screen.

Figure 58. BrailleTap user interface

As shown in Figure 58, the BrailleTap calculator has no visual content except the edit

text box in the top of the screen that is used to enter the equation and to allow people with

low vision to see the entered numbers. The remaining of the screen is empty in order to

allow users to tap and move their fingers over the screen without concerning about hitting

any object on the screen.

5.3 Pilot Study

We evaluated the BrailleTap calculator to examine the performance of the calculator as

well as to compare it with the TalkBack calculator. Other touch-based methods that aim to

increase the accessibility of calculators to visually impaired individuals include Tapulator

and DigiTaps. However, in contrast to TalkBack these methods are not available on

smartphone devices. In addition, DigiTaps does not enable numerical computation. As a

146

result, the researchers only compared BrialleTap to the TalkBack calculator. This

evaluation was conducted with two participants who are completely blind and who are

fluent in Braille. The participants were involved from the initial phase of the calculator’s

design and provided some suggestions about choosing the appropriate touchscreen gestures

for operations. After we designed the application, they were asked to perform eight

mathematics equations using both the BrailleTap calculator and the TalkBack calculator.

 During a brief training period of approximately five minutes, participants learned

how to use the BrailleTap calculator. This pilot study utilized the counterbalance

methodology meaning that participant 1 used the BrailleTap application prior to the button

calculator and vice versa. Participants stated that they liked the application because they

can use Braille code, the language they are most familiar with, to input their commands.

 We asked the participants to perform several mathematical equations using both the

TalkBack calculator as well as the BrailleTap calculator. Table 18 indicates the amount of

time that each participant spent to compute each mathematical equation on both calculators.

Table 18: The time spent to use the button calculator and the BrailleTap calculator

Mathematical

equation

Average time spent using

button calculator

Average time spent

using BrailleTap

51+36 28 seconds 23 seconds
54+34-15 71 seconds 27 seconds
50*200 96 seconds 48 seconds
450/5 108 seconds 15 seconds
50+25/4 87 seconds 35 seconds
600/5-50 119 seconds 39 seconds
200+40*2 109 seconds 64 seconds

 Table 18 shows that BrailleTap was faster than the button keyboard because it

overcomes the navigation problem and the user can tap anywhere on the screen. BrailleTap

147

is also faster because it eliminates noisy audio feedback that is used to help the user identify

where he is on the calculator interface or identify the button name. In the interview, she

stated that the BrailleTap calculator is a promising tool that allows users to enter numbers

based on Braille and perform operations using accessible gestures. She also likes being

able to perform several tasks on the touchscreen without having to identify an object

location. She also found it helpful to delete everything at once using a simple gesture.

 Overall, the initial result indicates that the proposed calculator is easy to learn, more

accessible than the TalkBack calculator, and it overcomes most of the limitations that are

associated with the previously discussed calculators. In the BrailleTap calculator, users are

not required to learn specific techniques to enter a number. Unlike Tapulator, where users

have to memorize the prefix codes to be able to interact with the screen, BrailleTap allows

them to simply use their experience with Braille. Based on our observation of the

participants’ interaction with both calculators, we noticed that there are noticeable

improvements in both accessibility and speed of the BrailleTap calculator over the button

calculator. Although it is common for these types of studies to use one or a few participants,

the main limitation of the current study was being unable to recruit a large number of blind

participants.

5.4 Conclusion

We have presented BrailleTap, a non-visual number entry application with audio feedback

based on Braille coding. The proposed calculator allows visually impaired people to

perform basic operations on touchscreen devices more easily than presently available

calculators. It does so by overcoming their main limitation, which is requiring visually

148

impaired individuals to locate an object on a touchscreen.

 Based on the initial study, there are certainly opportunities for improvement to the

BrailleTap calculator. Firstly, we need to test the calculator with larger groups of people

via both qualitative and quantities methods in order to better understand its strengths and

weaknesses. We will also measure total typing time, digits per minute, as well as

identifying types of errors. We will improve the calculator based on the participant’s

suggestions, for example, by adding other mathematics operations using accessible

touchscreen gestures for blind users.

149

CHAPTER 6: BRAILLEPASSWORD METHOD

This chapter presents a new authentication method on smartphone devices for blind people.

6.1 Research Challenges

User authentication methods on touchscreen web applications have failed to tackle the

challenges that blind people face when entering passwords. We claim that due to lack of

touchscreen accessibility, the common authentication methods such as alphanumeric

passwords are highly vulnerable to various attacks. An attacker uses different ways to

discover the inserted password including hidden cameras, peeping or shoulder-surfing. The

observation attacks harm blind people more than sighted people since it is very difficult for

blind users to recognize and notice a shoulder surfer nearby or the existence of a hidden

camera recording their private information (Saxena, Watt, 2009; Kuber, Shiva, Sharma,

2012). Saxena and Watt (2009) reported that it is very difficult to discover spyware

monitoring password entry while using screen readers to navigate through an interface.

When blind users do not trust an online website security, they usually rely on trusted

sighted persons to aid them with accessing authentication mechanisms by giving them all

the private information (Sauer et al., 2010).

 Most of the challenges faced by blind users are caused by touchscreen devices,

input methods and the restrictions of assistive technology. Touchscreen devices are used

mostly to present a visual content on an interface. Touchscreen input methods also require

users to visually locate a button on the screen. This poses difficulty for blind people to

navigate through a visual layout on a screen. Thus, assistive technology like screen readers

is used to convert the visual content to oral information. The main goal of integrating the

screen reader on touchscreen devices is to help blind people obtain an accessible content

150

format like auditory. For example, in the QWERTY keyboard, they move their fingers over

the screen until they find the desired character with the support of the TalkBack service.

The TalkBack service reads aloud a character that is located under the users’ fingers to help

users navigate around the keyboard keys. When the user finds the desired character, they

perform a double tap to insert it. Even though the QWERTY keyboard with the support of

TalkBack service enables blind people to type on a touchscreen, it is time consuming and

error prone (Alnfiai, Sampalli, 2016). Another problem is that listening to the TalkBack

service reading out everything located under the user’s finger while sequentially navigating

from one object to another is annoying. The QWERTY keyboard with TalkBack service’s

drawbacks are not only distracting blind users when typing on a touchscreen, but it also

poses security and privacy threats when accessing the authentication interface.

 We are planning to improve web application security on smartphone devices by

designing a new accessible and secure authentication technique called BraillePassword.

BraillePassword uses gestures to input Braille characters on touchscreen devices. The

BraillePassword uses two types of gestures to represent Braille dots of each character, and

allows users to insert the password anywhere on the screen. BraillePassword does not

provide visual or oral feedback thus it is resistant to aural and visual threats.

6.2 BraillePassword authentication technique

 Unauthorized access to an online account is the major security risk for blind users

due to inaccessibility of the available authentication methods and the limitations that are

associated with the current input methods on touchscreen devices. To overcome this issue,

we have developed a novel touchscreen web authentication method that is entirely button-

151

free, and resilient to visual and aural eavesdropping, unlike the traditional authentication

method.

6.2.1 Design Principles  

The design of our method is based on several design principles established by our previous

study findings (Alnfiai, Sampalli, 2016), findings from interviews with blind people

(Azentok, 2012), and from an evaluation study on how blind people interact with

smartphones (Paisios, 2012) and standard authentication guidelines (Schneider, 2009). The

extracted design principles to overcome security and accessibility challenges are:

1. Allow users to use one finger to interact with a touchscreen.

2. Allow users to interact anywhere on a screen by eliminating visual interaction

3. Allow users to type passwords fast (speed)

4. Allow users to type passwords without audio feedback that permits unauthorized

persons to listen to their private information (Robust to aural eavesdropping).

5. Allow users to type passwords without visual feedback that permits others to see their

inputs (robust to visual eavesdropping)

6. Allow users to easily type combinations of capital and lower-case letters, numbers

and punctuation (high password strength).

6.2.2 The BraillePassword Design

 BraillePassword is an observation-resilient authentication method that uses a

gestural user interface and requires no modification on the server side. BraillePassword is

button free, allowing the user to use Braille patterns to login anywhere on the screen. The

152

gestures that are used are a brief tapping gesture to insert unraised dots and a long tap

gesture to insert raised dots in a Braille pattern. Braille code has a combination of six dots;

some are raised and some are unraised, facilitating differentiation between characters. In

BraillePassword, users can insert a combination of six long taps or short taps gestures to

represent raised and unraised dots based on the order of these dots in the Braille code of a

character. The BraillePassword was developed based on a similar technique, the

BrailleEnter keyboard (Alnfiai, Sampalli, 2017). The BrailleEnter keyboard is used as an

input method in the BraillePassword authentication method, allowing users to enter

credentials and access online account securely. We also improved the BrailleEnter

algorithm performance to insert characters on touchscreen devices. For example, we allow

users to differentiate between lower and upper-case characters using Braille signs instead

of performing swiping gestures

 Users can type anywhere on a screen without taking into account the positions of

any interaction made on the interface. They can type letters, numbers, punctuation, lower

and upper cases (see Figure 59 and 60).

Figure 59. Sample of Braille lowercase letters

153

Figure 59 shows a sample of how can blind users type lower case letters based on Braille

patterns using long tap and short tap gestures.

Figure 60. Example of inserting capital A in BraillePassword

Figure 60 shows a sample of how blind users can type upper case letters. First, a user can

insert a Braille capital sign followed by the Braille pattern of letters.

Figure 61. Example of typing number 1 in the BraillePassword

154

In BraillePassword, blind users can type numbers as they do in Braille. First, they can type

the prefix number sign, which requires the activation of dots 3, 4, 5, and 6; then they can

insert the actual number. The number sign is placed before the characters from a to j in

order to represent 0 to 9. For example, to type number 1, users can first type the Braille

number sign and then number one based on Braille patterns (as shown in Figure 61).

Figure 62: Example of typing punctuation in BraillePassword

BraillePassword also enables users to type punctuation based on Braille. Users can type

Braille punctuation sign then they can type the desired punctuation. First, user can insert

the Braille symbol sign, which is tap, press, and 4 taps, followed by the Braille pattern of

the punctuation they want to insert (see Figure 62).

6.2.3 BraillePassword interfaces

BraillePassword interfaces are designed mainly to make touchscreen applications more

accessible for blind people and to reduce the security challenges that they face when

logging in to an online account.

 The application has two main interfaces, the signup interface and the login

interface. Each interface has several pages that contain limited visual content.

155

6.2.3.1 Registration interface

The registration interface has five pages, as shown in Figure 63: First name page, last name

page, email page, phone number page and password page. Each page contains only one

field or edit text box, eliminating the need to navigate between several objects in one page.

The first four pages, excluding the password page, are completely based on oral feedback,

while the password page uses only haptic (vibration) feedback.

156

Figure 63: Registration pages

 Users can switch between these pages by swiping from top to bottom. They enter

text on all pages using the BrailleEnter keyboard. Users can enter letters, numbers and

symbols in any page by entering the Braille signs for capital letter, number, or punctuation

followed by the intended character code.

 The data entered in the password page is represented by dots. Users receive a

vibration each time they enter a digit in the password page. The main objective of this

vibration is to inform users that they have entered a digit. In this page there is no visual or

oral feedback, and the app reads only the keyboard layout (number, letter, or punctuation)

when the users enter the Braille sign of a character.

6.2.3.2 Login interface

The login interface has two pages, which are username and password page.

157

1. Username page

The user name interface is completely based on gesture and provides oral feedback. This

page has an edit text box that shows in the top of the screen (see Figure 63).

2. Password page

The password interface is completely based on gestures and has an edit text function that

shows the inserted characters as dots (see Figure 63).

 BraillePassword uses audio feedback to inform blind users which page they are on.

In the password page, we eliminated the audio and visual feedback in order to completely

prevent observer attacks (shoulder surfing). Instead, we used a vibration feedback to inform

users when they enter a digit.

6.2.3.3 Password recovery

In case the user forgets the password, he/she can tap 7 times anywhere on the screen, then

the app will ask the user to enter the registered phone number in order to send a new

password (as shown in Figure 64). Users can enter the received password and then they

change their password.

158

Figure 64. Password recovery pages

6.2.4 Interaction techniques

Swiping is the easiest and most accessible gesture for blind users. Blind users can also swipe

horizontally to edit their typing. The swiping gesture is used to allow users to add or delete

spaces (As shown in Table 19).

Table 19. Editing interaction techniques in BraillePassword

Interaction purpose

Swipe from right to left Add space

Swipe from left to right Back space

In order to switch between fields in the registration page, users can swipe vertically from

the top to the bottom in a loop to open up a particular field. The first swipe will open up

the first name field, and TalkBack service will read out the field name. After the users enter

the first name and swipe vertically again, it will open up the last name page; and so on for

the remaining separate pages. Performing a vertical swipe from top to bottom will open the

159

first name page. A second swipe from top to bottom will open the last name page. A third

swipe from top to bottom will open the email page. Swiping vertically from the bottom to

the top in a loop is also used to allow users to switch between login and registration

interfaces. The BraillePassword has only one text edit opportunity in each interface,

eliminating the need to navigate between objects on a screen. Table 2 shows the interaction

types and their functions.

Table 20: Switching between authentication interfaces in BraillePassword

Interaction technique Purpose User interface

First swipe from up to

down

Switching from user name to
password filed

The login interface

Second swipe from up

to down

Switching from first name to
last name field

The registration interface

Third swipe from up

to down

Switching from last name to
email field

Fourth swipe from up

to down

Switching from email to
phone number field

Fifth swipe from up to

down

Switching from phone
number to password field

Swipe from down to

up

Switching from registration interface to login interface or
vice versa

6.3 BraillePassword Implementation

6.3.1 BraillePassword authentication module

This section presents the BraillePassword architecture, which includes:

1. Designing a registration interface that includes first name, last name, email, phone

number and password fields as well as login interface that includes first name and

password fields.

2. Designing welcome interface that includes logout method

160

3. Setting up the database

4. Text-to-Speech function

5. Validation

6. Improved BrailleEnter keyboard

The flowchart below shows register and sign in processes (see Figure 65).

Figure 65. Register and sign in steps in the BraillePassword method

161

1. Designing registration and login pages

1.1 Register and login Algorithm

/* Registration and login Algorithm */

Comment: Registration interface has 5 fragments and login interface has 2
fragments
Comment: Swipe right and Swipe Left are used for editing. Swipe up and
Swipe down are used to move between pages.
Step1. If (the login interface is opened)
 Then Swipe up

 Open the register interface
 End if

Step 2. Enter first name in the first fragment

 Then Swipe down

Enter last name in the second fragment

Then Swipe down

Enter email in the third fragment

Then Swipe down

Enter phone number in the third fragment

Then Swipe down

Enter password in the fourth fragment

Then Swipe down

Step 3. If (the entered data in all fields valid)
 Register a new user in the database
 Read out “registered successfully”

 Open up the login page

 Else

 Read out “registered failed”

 Return back to the first field in the registration page
 End if

Step 4. Enter the first name in the first field in the login page
 Then Swipe down

 Enter password in the fourth fragment

 Then Swipe down

Step 5. If (the entered data in all login fields valid)

 Open up the welcoming page
 Else

 Display an error message “login failed”
 Return back to the page of the first name in the login interface
 End if

Step6. If (the welcome page is open)

 Do Swipe down
 Logout

 End if

Step 7. If (the user is already registered)

162

 Swipe up to open login page

 Repeat step 4, 5 and 6 to login again

Figure 66. Registration and login Algorithm

Figure 66 shows the steps of filling the registration and login input fields.

1.2 Register and login interfaces

This section shows that XML files that represent the user interface elements of each field.

Figure 67. XML codes of Register and login fields

2. Connecting XML files to java files

This section shows which XML files are working with Java files.

2.1 Register process

Users swipe up and the application directs users to “register.php” and show up a first field

in the register interface, which is first name field.

163

After filling the first name field using the BrailleEnter keyboard, users swipe down to move

to the next field, which is last name and so on for the remaining fields. After filling all the

registering fields users swipe down to send all the registered data to signup() function. The

signup function checks validation of the entered data in each field in the registration stage.

The application will check if the registered fields are empty or one of them has invalid data,

then it will show up an error message and read it out to the end users. However, if the users

enter accurate and unregistered data in the registration fields then the application shows

informative message “‘Registered Successfully” and immediately connects users to the

database to store the entered data (as shown in Figure 68).

Figure 68. The Java code of the signup function

2.2 Login process

After users register in the BraillePassword, the application will immediately open the login

interface. Users can enter the username in the first field in the login interface and then they

swipe down to enter the password in the second field. If the entered data is valid, the

164

application presents a message “Login success” and then the application opens up the

welcoming page, but if the entered data is invalid, the application presents an error message

that says “Login failed”.

 The entered data in the login fields are sent to the siginIn() function to check if the

username and password match the stored ones in the database. If the entered data matches

the registered information in the database, then the application will create the session and

open the main page; but if it does not match, the function displays an error message and

redirects the users to login interface again (as shown in Figure 69).

At the welcome page, users can swipe up to logout and then the application will direct users

to the login page.

Figure 69. Snapshots of login function code

We used vibration to inform users when they entered a digit in the password field (see

Figure 70).

165

Figure 70. Vibration function

3. Designing the welcome interface

This section shows the welcome interface element, which represents text that displays a

welcome message (see Figure 71).

Figure 71. XML code of welcome interface

4. Setting up the database

We used the free 000webhost to create a MySQL database by clicking on phpmyadmin

and to create a table that has five columns. We created a database that has one table called

“Registration Table” to store users’ information when they registered (Figure 72). The table

has five fields which are first name, last name, phone number, email and password.

Figure 72. A snapshot of register database

3.4 Connecting the Android app with the database

We created two PHP files that allow the web Android application to communicate with

the database on the server (see Figure 73 and 74).

166

3.4.1 Login.php

Figure 73. Login PHP code

3.4.2 Register.PHP

Figure 74. Register PHP code

167

We uploaded the PHP files to the server by opining up the cpanel and then file manager.

After that, we uploaded the login.PHP and register.PHP files under the public html

folder.

3.5 Connecting PHP files to Android app

Figure 75. Connecting PHP files to Android app code

168

 3.6 Connecting PHP to MySQL Database

Figure 76. Connecting PHP file to MySQL Database

5. Text-to-Speech function

All the BraillePassword responses will be read out using Speak function. The Speak

function uses the Text-to-Speech methods to convert text to speech. It has been explained

in Chapter 4.

6. Validation

Figure 77. The Java code of validation function

169

7. Improved BrailleEnter keyboard

The BrailleEnter keyboard was used as the main input method in the BraillePassword

application and the BrailleEnter keyboard has been explained in detail in Chapter 4.

However, we made slight changes in the BrailleEnter keyboard functions.

1. Changes to the keyboard layout

To type capital letters, users can tap on the screen Braille Capital sign to switch from small

letters to capital letters. Once the users tap the Braille capital sign the application will say

“Capital letters” and it will switch immediately to uppercase layout (see Figure 78).

Similarly, to type numbers, users can type first the Braille number sign and then the number

code in Braille (see Figure 79). The same process applies to allow users type symbols.

Figure 78. The code of Braille capital sign

Figure 79. The code of Braille number sign

170

2. Transferring between pages

Swiping down gesture is used in BraillePassword to change the fields of the registration

and login page. Users swipe down to move from the first name field to last name and so

on. On the other hand, swiping up is used to transfer between the registration and login

pages (see Figure 80). If the users are in the registration interface, they swipe up to go to

login interface and vice versa. In addition, swiping up used to allow users to logout from

the welcoming page.

Figure 80. Moving between fields

6.4 BraillePassword Entropy

Password entropy is a mathematical measurement of how difficult is it to predict (i.e., hack)

a password. Thus, password entropy can be described as a password’s randomness. The

171

entropy of a password is calculated based on the character set used to create a password

and the length of the password. The set of characters includes lowercase, uppercase, and

numbers, as well as punctuation. Considering numbers from 0 to 9, lowercase alphabet

from a to z, uppercase alphabet from A to Z, and symbols including `~! @ # $ % ^ & * ()

_ + - = { } | [] \ : " ; ' < > ? , . /, there are 95 possible characters that can be used to create

a password (10 + 26 + 26 + 32+ space). The formula to calculate entropy is:

Entropy = log(C) / log (2) * L (7)

where C is the character set size and L the password length. In both methods

implemented in this experiment, the character set size is 95 and the password length is 6

bits. Thus, the entropy of the both authentication apps is

log (95) / Log2 * 6 = 39.41 bits.

BraillePassword entropy is similar to that of traditional authentication methods, with the

same character set. However, BraillePassword differs from the traditional authentication

method in critical ways. First, BraillePassword allows users to type anywhere on a screen

without navigating to a specific object or key. Moreover, bystanders can only see the

number of digits that are entered in the password field, and if the BraillePassword interface

is recorded while users enter passwords, it may be very difficult to interpret the various

gestures and identify the character entered, as each character requires six interactions.

Thus, it should be substantially more resilient to observation attacks.

4.2 6.5 USER STUDY

We conducted a comparative evaluation to examine the performance, accessibility,

memorability and security of BraillePassword and a traditional alphanumeric method when

172

registering and logging in to web applications. We also sought to determine whether the

methods are resilient to video and shoulder surfing attacks. The user study has been

approved by the university.

6.5.1 Apparatus

To evaluate the two methods, we built prototype applications for BraillePassword

authentication method and traditional web authentication password entry. The traditional

authentication interfaces were visually similar to the typical web authentication system

used by most websites (as shown in Figure 81). The implemented traditional authentication

app enables double-tap selection of keys from the QWERTY keyboard layout and supports

Talkback service.

 BraillePassword uses the BrailleEnter keyboard as an input method that uses Braille

patterns, with a text-to-speech function for reading out entered data. Both password

systems require users to enter six digits.

 For the study tasks, we used an Android mobile phone that runs on Google’s

operating system, which is an ASUS mobile phone. Both the BraillePassword and

traditional authentication method run within the Android operating system.

173

a) Registration interface b) Login interface

Figure 81. The traditional authentication application

6.5.2 Participants

From September 2017 to January 2018, ten blind or visually impaired participants aged 22

to 50 years old were recruited from the Taif University Accessibility Center and the

Canadian National Institute for the Blind (CNIB) in Halifax. An approval from the

Dalhousie University Social Sciences and Humanities Research Ethics Board was acquired

before commencing the study (see Appendix K). Table 21 shows participants’

demographic data. Five participants were undergraduate students, three were graduate

students, and two were employees. Eight participants are from Taif university accessibility

center and 2 participants are from CNIB. All participants were proficient in reading and

writing Braille and had at least five years’ experience with touchscreen devices. All

participants used Perkins keyboard with slate and stylus to type Braille texts. Nine

participants used the screen reader as the main assistive technology to help them navigate

174

while using the touchscreen devices, while one participant used the Zoom (magnifier) to

locate objects on a screen when she was in a public place or had a headache other than that

she used the screen reader. All participants had experience with Android devices but had

switched to iPhones because Android TalkBack service is inefficient and sometimes does

not respond. All participants depend on their friends to perform some daily tasks like

withdrawing money from an ATM machine or paying for goods and services through debit

cards.

Table 21. Participants’ demographic data

6.5.3 Experimental Design

The experiment used within-subject design. The main factors are the authentication

methods: BraillePassword, traditional authentication method and the levels of order were

(1, 2).

 The main objective of this experiment was to evaluate the authentication methods’

memorability and performance, including both password speed and accuracy as well as

P Age Sight Experience

with

smartphones

Assistive

technology

Touchscreen

keyboard

 P1 22 Legally blind

6 years

P
erkins keyboard

Q

W
E

R
T

Y
 keyboard

P2 24 Legally blind

7 years
P3 23 Legally blind

6 years and half

P4 27 Legally blind

6 years
P5 20 Visually impaired 5 years

P6 34 Visually impaired 8 years
P7 24 Legally blind

6 years

P8 28 Legally blind

8 years
P9 51 Legally blind

8 years

P10 38 Legally blind

8 years

175

accessibility. The experiment used a within-subjects design in which each participant would

use both authentication methods; the order of methods used was alternated across

participants to account for Authentication applications. The dependent variables were

creation time, login time, password entry speed, failure rates, memorability, and whether

the authentication method is resilient to video and shoulder surfing attacks.

6.5.3.1 Study procedure

At the beginning of the study, the study goal and tasks were explained. After the participants

gave informed consent, they answered a brief background questionnaire to provide us with

basic demographic data and information about which authentication methods participants

use to access to websites on a touchscreen, the challenges they face while entering

credentials, and the ways they mitigate these challenges (see Appendix I). The questionnaire

was completed orally by the researcher and participants.

 As noted above, the order in which the methods were tested was alternated across

participants. For each of the two authentication methods, each participant went through a

training session followed by a test session. In the training phase, the investigator showed

the participant how the authentication method works, and explained how participants can

enter their authentication information. Participants were able to correct typing errors during

password entry; a password could be “reset” if the user makes an error by clicking on

password recovery link and re-entering the phone number. Such errors and corrections were

included in the time measured for a given password entry. To make them familiar with the

authentication technique interfaces, we had them register and login twice. The first

registration and login information, including user name and password, were given by the

176

researchers. The registration and login information for the training session is shown in Table

22.

Table 22. Registration information for the training phase

User name Mrim

Last name Alnfiai

email Alnfiai@hotmail.com

Phone number 9023297444

password Mrim123@

In the test session, participants were asked to register their username and password for the

first account. Participant were asked to create their own username and password to simulate

a realistic password creation and entry scenario, and to memorize this information. We also

informed participants that the password they generate should be secure, easy to memorize,

and difficult for others to guess. In addition, researchers emphasized that participants should

not use the passwords that they use in “real life,” nor use any password managers to help

memorization. They were told to behave as though entering real information but, but to use

fake usernames and passwords for both applications. The registration task was immediately

followed by a corresponding login task. After completing the tasks with the first

authentication method, participants went through the same training and test sessions with

the second method.

 Participants’ interactions with both authentication methods were screen recorded, and

time was recorded using an app that capture activity on smartphone screens. This provided

the researcher with the time it took users to register and to login.

177

 Participants then took the Android smartphone device with them to perform tasks in

their daily lives; these tasks included logging in to the two authentication applications

created by the researcher.

 On the first day of the week, participants were asked to log in to web applications on

the Android device at different times. The participants’ login data was stored in a database

at www.000webhost.com, a free web and database hosting plan. For each account, the

intervals between logins were one hour, one day, two days, and one week following the

creation task. The order related to tasks of those accounts was the same for each participant.

After a week, we invited each participant back to do the final task, which is logging in to

both accounts once again.

 Participants were asked to screen record the entirety of their interactions with their

smartphones while registering or logging to both applications during the week, from the

first to the last character that they entered. These records were used to examine the creation

time, login time, failure rate, recall rate, and overall error rate, and to identify typing errors.

In addition, the recordings aided in identifying technical problems participants encountered

while registering or logging in to the applications to determine whether and to what extent

the application is accessible.

 The video recordings were used to determine the degree to which the application is

secure and resilient to shoulder attacks. After completing the study tasks with the both

authentication applications, participants had an interview about the applications’ strengths

and limitations and to discuss the features they liked and disliked (see Appendix J). At the

end of the study, The researcher watched the video recordings three times trying to guess

the passwords.

http://www.000webhost.com/

178

4.3 6.5.4 RESULTS

The results of the experiment include quantitative findings related to registration time, login

time, failure time, password entry speed, and password strength, as well as qualitative

findings related to the participants’ experiences using the authentication methods and how

resilient the methods are to observation attacks alongside with suggestions for improvement

from participants.

6.5.4.1 Quantitative results

6.5.4.1.1 Registration time

There was a significant difference in the registration time for the BraillePassword (mean =

7.91 minutes; SD = 3.39) and the traditional authentication method (mean = 10.17 minutes,

SD = 3.13), paired t-test; P<0.03). The shorter registration time seen with BraillePassword

is likely because, with the traditional method, users must find the location of the wanted

key by moving their fingers over the screen, listening to all characters until they have found

the desired key. Another reason for the difference in is that in the traditional authentication

method, users have to search for the right authentication areas on the registration interface

by swiping from left to right trying to move between the fields in the registration interface

with the support of the screen reader.

 Results revealed no significant effect of order (F 1, 8= 0.065, P=0.80) and no

significant interaction of authentication method by order (F 1, 8= 0.95, P=0.36). As Figure

82 shows, there is no significant difference between participants’ speed who registered in

the traditional authentication account after they had registered in BraillePassword than

participants who registered in the traditional authentication method first ((F 1, 8= 2.95,

179

P=0.12). Similarly, order did not affect registration time for BraillePassword (F 1, 8= 0.95,

P=0.36).

Figure 82. Registration time for both authentication methods and order

6.5.4.1.2 Login time

There was not a significant difference in the authentication time for BraillePassword login

time (mean= 1.56 minutes, SD= 0.27) and the traditional authentication method (mean=

1.68 minutes, SD= 0.73), paired t-test; P=0.25). This lack of difference is likely because

the login interface in the traditional authentication method has only two fields, and locating

the authentication fields does not consume too much time, unlike the registration interface.

Having so few elements in the user interface reduces the confusion of locating the intended

authentication field, resulting in similar performance between methods.

6.5.4.1.3 Password entry speed

Password entry time was measured from the time the users touched the screen to the time

they stopped touching it by lifting up their finger after entering the sixth digit on the

12.845

8.27425 8.3125 8.4775

0

2

4

6

8

10

12

14

1st 2nd 1st 2nd

Traditional authentication BraillePassword

180

password field. In the BraillePassword method, participants spent an average of 61 seconds

entering six Braille characters in the password field, with the average time dropping from

67 seconds to 59 seconds over the course of the week. In the traditional authentication

method, the average time spent to enter the password was 57 seconds; over the course of

the week, mean time dropped from 71 seconds on the first day to 43.5 seconds at the end.

Overall, there was not a significant difference in the password entry speed for the

BraillePassword (mean = 61 seconds, SD= 0.63) the password entry speed for the

traditional authentication method (mean = 57 seconds, SD= 0.8), paired t-test; P = 0.43).

 Even though the traditional authentication sometimes takes additional time to locate

the authentication areas, there was no overall difference. Here we only calculated the time

when the user locates the password field in the traditional authentication method to

compare only the time spent to enter six digits in both methods. Participants may need

more time to do mental and physical efforts to enter each Braille digit in the password field.

6.5.4.1.4 Failure rate

The failure rate was slightly lower for the traditional authentication method. There was not

a significant difference in the failure rate for the traditional authentication method (Mean=

7.5%, SD= 0.38) and the BraillePassword (Mean=17.5%, SD=0.266), paired t-test; P =

0.20).

6.5.4.1.5 Password accuracy and memorability

All participants were able to remember their password using the BraillePassword interface

and the traditional authentication method both over a short time (logging immediately after

181

registering to an account) and over a longer period (a week). Even though participants did

not succeed at logging in to their accounts 100% of the time, this was due to interaction

problems associated with each application interface. All participants remembered their

traditional method passwords as well as the BraillePassword digits after a short and long

period of time.

 After both short and long periods, when participants failed to log in to their account,

they did not try to reset their password because they remembered their passwords but had

entered them incorrectly due to the accessibility issues related to the user interface or the

limitations of the input methods.

6.5.4.1.6 Password Strength

 We examined password strength by observing the 16 passwords generated by users

on the traditional authentication and BraillePassword methods. We found that the most

common password digits used in the traditional authentication methods were the characters

located in the left corner of the QWERTY keyboard, like ‘a’ ‘s’, ‘d’ and ‘z’, because they

are easy to locate. This differs somewhat from previous research by Burnett (2006), which

found that the most common digits used to create passwords in the traditional

authentication method are ‘a’,’1’, ‘e’, ‘o’, and ‘r’. We also observed that blind participants

selected characters from one keyboard layout that might be due to the difficulty and efforts

required to switch to uppercase letters or special characters, thus making their passwords

comparatively easy to guess and observe.

 In BraillePassword, we found out that the most common characters were ‘a’ or ‘1’,

demonstrating that blind people tend to choose the easiest characters to enter, those being

182

characters with few active Braille dots. The Braille pattern of letters ‘a’ and number ‘1’ is

easier to guess, so users should avoid those guessable characters.

 Blind and visually impaired people tended to choose passwords with low entropy

while using the traditional authentication method that due to the efforts are required to

switch between keyboard layers or locate characters on the QWERTY keyboard. However,

they entered the same passwords on the BraillePassword method, but that does not affect

the strength of BraillePassword entropy as surfers cannot differentiate between characters

as the method provide no aural and visual feedback.

6.5.4.1.7 Guessing of passwords from camera videos

 To measure the degree of protection against video and shoulder attacks afforded by

each method, the researcher watched 96 videos that show the participants’ attempts while

registering or logging into both applications over a week. The researcher was able to guess

Braille password digit if the entered digits were repeated an ‘a’ or ‘1’. The guessable rate

of the BraillePassword was 12.5%. However, if BraillePassword contained characters that

have more than one active Braille dot, it was very difficult to guess characters, probably

because of the difficulty in tracing gestures associated with user interactions. Entering

Braille dots in one position without moving the participant’s finger on the screen also

makes it very hard to trace the entered character. Thus, only once was the researcher able

to replicate the Braille password, and this was only when the participants entered ‘a’ six

times as a password.

 In the traditional authentication method, the researcher was able to easily guess the

password digits by tracing participants’ fingers during interaction with the QWERTY

keyboard, or by listening to the entered characters. The researcher was always able to guess

183

the entered passwords when participants were logging in to the web application account

and the guessable rate was 100%.

6.5.4.2 Qualitative result

6.5.4.2.1 Pre-questionnaire

 The participants were asked about the type of touchscreen platforms they have used,

the authentication methods that participants have used to access to websites on a

touchscreen, and the challenges they face while entering credentials, as well as how they

mitigate these challenges.

 All participants have experience in both the iPhone and Android platforms. All of

them use the Android platform for a period of time and then they transferred to the iPhone

device due to several accessibility reasons that participants mentioned. The iPhone

platform provides a free and proficient screen reader that supports different languages and

offers multiple tones. In contrast, the Android platform does not provide a free and efficient

screen reader.

 All participants used the traditional authentication method with the TalkBack or

VoiceOver service to access websites on smartphone devices, using the QWERTY

keyboard with audio feedback to fill out the registration and login fields. Only one

participant (p2) had tried the Braille keyboard on the iPhone device; she said it is

complicated and hard to place three fingers from each hand on a smartphone screen,

making it error prone.

 All participants have used the traditional authentication method to access websites

or PIN for the device, which is the common authentication method provided by most web

184

applications. They do not have experience with the graphical password or pattern password

because these techniques require vision to select the intended image or object. Participant

5 used the pattern technique for a short period, but she said it is easy to crack and can be

easily overseen by an observer. All participants use the biometric authentication method to

access the PIN, but it is not the main method that they have used. Participants reported that

they did not completely rely on biometric authentication because biometric reader

sometimes does not read their fingerprint info or does not respond. Thus, they use the

traditional authentication method as the main method to access their phone.

 The main difficulties that participants have faced while registering or logging in to

web applications, such as Facebook, Twitter or bank accounts, are that participants are not

able to locate the authentication area on a web application interface, like user name, email,

etc. Another challenge they reported is that they are not able to enter the CAPTCHA

(Completely Automated Public Turing test to tell Computers and Humans Apart) digits

because, as participant 2 stated, the voice is not clear. This outcome is supported by

previous work, as Bigham and Cavender (2009) found that entering the audio CAPTCHAs

is very hard and time consuming. These types of challenges lead blind users to give their

login credentials to others (participant 7: “she always asks friend to help her enter the

CAPTCHA info”), indicating that this population is willing to give their login credentials

to others in order to overcome the accessibility issues.

 As mentioned above, most blind participants use headphones and screen curtains

(or decrease the screen light) while logging in to a web application on a smartphone device

in a public place. Visually impaired participants also use confusion techniques, where they

enter erroneous digits and then edit them. This finding is supported by previous research;

185

for example, De Luca et al. (2009) found that the easiest method used to protect their

credentials is to input incorrect information to confuse a bystander. Reflecting security

concerns, none of the participants reported opening bank applications from their

touchscreen devices. Participant 1 stated that “I have never entered my bank information

data on my mobile device. I do not trust the app and I feel it is not safe.” Participant 5

agreed and stated that “I do not open the bank account from the phone because I feel it is

not safe and the web application is not accessible because it does not support the VoiceOver

service.” Furthermore, only participants 1 and 2 store private and personal information on

their device, with the remainder reporting that they do not do so.

 All participants except participant 5 automatically store their passwords in web

applications so they do not have to enter the password repeatedly. Participant 5 stated that

she “uses one password for all websites so she does not need to store the password.”

 All totally blind users who completely rely on the screen reader while interacting

with touchscreens have concern about aural eavesdropping. They use their headphones to

prevent people around them from hearing what has been typed on the screen. P1 stated that

“I always use the headphones. If I do not have the headphone, I cannot access my social

accounts in public places because I am concern about my information and the VoiceOver

sound is noisy and annoying.” Similarly, participant 2 stated that “I use the headphones

because the Voiceover is noisy and the device reads out clearly my private information.”

Participant 7 said “I have never used my phone in public places”. Participant 8 stated that

“I am worried if someone around me might be able to hear my personal info. If I do not

have the headphone, I go to my room and use my device there.”

186

 Similarly, all participants had concerns about visual eavesdropping while

interacting with smartphone devices in public places and they use the screen curtains to

hide their screens. Participant 5, who is visually impaired, said “I sometimes try to hide the

screen or type then delete to confuse who is looking to what I am typing”. Participant 6

also stated that “I do not like to use my phone in public place, I am worried people around

me might see my information.” However, some of the participants said they cannot use the

screen curtains in public places because people think they do not know how to open their

device or they have difficulty using the device.

 Overall, the questionnaire answers highlighted participants’ behaviors and

indicated that most blind users are aware of security threats, including observation attacks

like aural and visual eavesdropping, as well as unauthorized user access. These results

contrast findings by Azenkot et al. (2012), who reported that most people with no vision

have a lack of awareness related to protecting their private information on touchscreen

devices against security threats, such that they do not use security features like screen lock

or screen curtains.

6.5.4.2.2 Interview

 We developed approximately 15 qualitative codes to summarize the most relevant

findings we learned from each participant, which we clustered into sets of high level

themes, including lack of independence, lack of accessibility, finding items, navigation and

transportation, visual threat, aural threat, phishing, embarrassment, social barriers

(Stigma), and time consuming.

187

 All participants successfully registered and logged in using the BraillePassword,

with all participants successfully entering their credentials with the help of text to speech

feature and haptic feedback that have been built in the method interface. When the test

session was completed, all participants were asked to reflect about their experience while

using the BraillePassword, in terms of both strengths and limitations.

 In terms of strengths, participants liked that the use of Braille allowed them to type

their credentials anywhere on the screen without worrying about activating unwanted

objects on the screen. Participant 3 stated that “The thing I have liked best in this method

is that it allows me to type anywhere on the smartphone screen using Braille. I prefer the

Braille interface more than the traditional authentication because I do not have to find a

particular object on the interface.” Likewise, participant 6 stated that “I like it because I

can type in one spot on the screen I do not have to spend time looking for a particular key.”

Participant 8 said, “I like it where I do not have to move my finger just tap Braille dots and

wait for the response.” Interviews also disclosed that using the haptic feedback to enter the

password in the registration and login interfaces is very helpful. Participant 4 stated that

“Using the vibration is very good, it helps me to know I have entered a digit and increases

the privacy.” Similarly, participant 3 stated that “The vibration is very helpful. It informs

me when I am entering the digit, but I am just worried when I entered a wrong digit, how

can I know. I think you can inform me immediately once I entered the digit whether it is

correct or wrong (one by one) that will save my time.”

 Most participants also revealed that the use of swiping gestures to move between

interfaces and fields is accessible and easy to perform. As participant 4 stated, “it is very

easy I just swipe from top to bottom to move between fields. Unlike other interfaces where

188

I have to listen to all options until I find the object that I want.” Participant 7 stated that

“Swiping between fields is easier than locating the fields’ locations on the traditional

authentication screen.”

 The most important advantage of the BraillePassword is that it presents only one

field to be completed on each web application page. All participants liked that, and they

reported that it eliminated the need to locate specific authentication areas that need be

completed. Participant 7 agreed with that and added “It is great, it provides each

authentication field in an independent page and I swipe to transfer between fields. This is

unlike the traditional method where I have to find the exact location of each field and the

chance of hitting the wrong object on the screen is very high.” Another strength in the

BraillePassword, highlighted by most participants, is that it overcomes that navigation

problem. Participant 5 reported that “I do not have to find the location of an object on the

screen. I can just type anywhere on the screen.”

 All participants also liked the protection of the password by eliminating the audio

and visual feedbacks and using haptic feedback instead. As Participant 7 stated “I like how

it protects the password info, it does not provide any aural or visual feedbacks.” All

participants stated that the BraillePassword is more secure than the traditional

authentication method, reporting that no one nearby can hear or see the entered password.

Participant 5 stated that “BraillePassword does not read out the character and it does not

have any visual feedback. It prevents people around me from hearing or seeing what has

been typed on the screen. It is like a special code no one will be able to understand it.”

Participant 4 agreed and added “The BraillePassword does not read out my password. It

reduces the chance of someone hearing my personal data.”

189

 Interviews also revealed some drawbacks of the BraillePassword. Participant 1 and

3 faced difficulty changing the cursor to another location while typing. One limitation

addressed by four participants (4, 5, 7 and 9), was that when users tap 7 times, the

BraillePassword opens a page that has the forget password steps. Participant 5 stated that

“I do not like it when I tap more than six digits accidently. It opens other screen.”

Participant 7 also agreed, stating that “Tapping accidently 7 times makes me lose the page

that I want to type on”.

 Most participants also suggested the implementation of BraillePassword interface

in the ATM machine in order to reduce the risk of observation attacks. Participant 3 stated

that “using the BraillePassword interface in the ATM is very great and secure.” Another

suggestion was associated with the password entry strategy: participant 7 suggested that

“The app should let me know whether the password digit is wrong or right. By doing so I

can correct the password digit before inserting the whole password digits.” Some

participants prefer to protect all their credentials and not only their password; thus they

suggested to allow them to choose which feedback they want based on their settings.

Participant 6 also suggested that the interface “provide an option at the beginning of the

web application allowing me to select which feedback I want to receive (aural or vibration

feedback) in case I am in public place, I can choose the vibration feedback and I will not

annoy any one nearby.” Participant 8 agreed and added “I wish you applied the same

concept [haptic feedback] on the other authentication area like the first name field, by doing

so no one nearby will be able to know my information.” In addition, participants suggested

using other haptic feedback such as tone rather than speech while switching between

190

numbers, letters, and symbols. This would increase the security level where attackers

cannot distinguish which keyboard layout the user in.

 During the interview, participants also discussed the strengths and limitations of

the traditional authentication method. All participants entered their credentials using the

traditional authentication method successfully. Most of the participants like the support of

the screen reader to help them navigate through fields in the registration and login

interfaces. However, participants did not highlight any particular strength in this technique;

for example, Participant 4 noted that “I have been using this method for a long time and I

used to it because it is the only available way and we used this method to interact with most

interface on touch screen.”

 Participants identified several weaknesses associated with the traditional

authentication method. One limitation, brought up by three participants, was that the

traditional authentication method is slow. Participant 4 stated that “It is not flexible and it

does not let me type as fast as I want.” Participant 7 agreed, noting that the traditional

authentication method is time consuming and requires many steps to enter a character.

Most participants reported that using the traditional authentication interface with the screen

reader is annoying. As participant 2 stated, “If I have a headache, I cannot use the phone

neither the headphones.” Participant 5 reported that “I tried using the QWERTY keyboard

with the screen reader, but it sometimes gets freezing and it is annoying. I am using the

magnifier to interact with the screen even though it is slow and requires me to zoom out

many times because the smartphone screen is very small.” This indicates that blind users

are willing to use other methods that enable them to interact with the screen with less noise

while providing only the amount of audio feedback necessary.

191

 Another drawback is that locating a particular area in which to type specific

information was very difficult to perform using the traditional authentication method.

Participant 8 reported that “Transferring between authentication fields is very hard and

confusing.” This is similar to participant 4’s statement, that “The user interface of the

traditional authentication method is not efficient and it is really hard to move between

fields.”

 Participants tended to type particular information in the wrong place, which led to

login failure. Three participants discussed the confusion that occurs when they accidently

tap an unwanted link or button. They usually lost their current pages when they accidently

pressed an unwanted object. This error consumes time until the user’s return back to the

intended page. Using the traditional authentication method on a web application, blind

people faced unexpected distractions, such as other screens popping up or new dialog boxes

opening up while they are entering their credentials.

6.5.5 Discussion

Our findings reveal the accessibility and security issues that blind and visually impaired

face while authenticating themselves to web applications on touchscreen devices. We also

discuss the approaches that blind and visually impaired people have used to overcome the

accessibility challenges and reduce the security risks.

 The results of the study show that the main causes of security and accessibility

issues faced by blind people related to assistive technology like the screen reader. In the

traditional authentication application, the user interface provides too many audio

notifications to users This can annoy and overwhelm the user, which might directly affect

user’s attention and cause confusion and errors. Participants get annoyed and confused

192

while the screen reader reads unnecessary movements or web page elements. The screen

reader also suddenly freezes and stops responding to users’ interactions.

 Participants also highlighted their difficulty locating particular authentication areas

on the web application interface, with the screen reader inefficiently specifying such

locations. Most participants struggled to locate username or password fields in the

traditional authentication method, unlike with BraillePassword where they just swipe to

move to the intended field. This issue consumes too much time and leads to high levels of

confusion for the users. Another accessibility issue that causes confusion for users is

unexpected screens or dialogue boxes popping up. These issues require users to wait a long

period of time figuring out what the user interface looks like andreturning back to the

desired interface. Another thing that consumes time is waiting for the screen reader to

identify which object is under their finger.

 The most common difficulty that participants complained about is inserting

CAPTCHAs, which is very difficult and time consuming because the sound is not clear

and there is no alternative way to enter the captcha digits. One participant stated that it is

easier for her to ask an assistant to enter the CAPTCHA digits for her. This introduces a

new direction of research on how to detect captcha image info more easily for blind users.

From our findings, most participants prefer to ask for assistance to help them fill out the

CAPTCHA section, which introduces a critical privacy and security risk.

 Our result demonstrated that most participants are willing to provide their login

credentials to others. In fact, all participants reported asking others to help them withdraw

money from the ATM machine. This introduces additional privacy challenges related to

allowing others to see person bank information, and suggests a new direction of research

193

on how to improve the accessibility and security of using ATM for blind and visually

impaired people. We need also more work on how to reduce the risk of shoulder and video

attacks while a blind user is using the ATM Machine. Similarly, participants’ feedback

indicated another area that represents other privacy concern for blind users, which is when

blind users use their bank cards at point of sale machines in a store. Those credit and debit

machines are completely based on touchable buttons and do not provide vibration or audio

feedbacks to inform the users that they entered a digit.

 The majority of participant concerns were about the risks of aural and visual attacks

while using smartphone devices; and most use headphones and screen curtains to hide their

private information.

 The test study session revealed that all participants were able to register to the

BraillePassword application successfully without any assistance. The BraillePassword

method was perceived as more secure and trustworthy compared to the traditional

authentication application user interface. The proposed password entry system was

designed mainly to protect users from shoulder and video attacks, and all participants

agreed that the BraillePassword keeps their passwords hidden and protected against

observation attacks.

 We divide participants’ fingertip movements into three categories, which are typing

in one spot, typing in a vertical line (moving the finger in a vertical line until the enter all

the Braille dots), and typing the Braille dots as a matrix (2 columns by 3 rows). Entering

six Braille characters that have two or more Braille active dots was clearly more secure,

especially if the users interacted with one location on the smartphone screen without

moving their finger or if they interacted with the screen in an unorganized shape. In term

194

of perceived security, all participants reported that using Braille keyboard with the haptic

feedback is more secure than the traditional authentication method and the authentication

interface in the ATM interface.

 Most participants were able to recall their passwords with BraillePassword to a

similar degree as their ability to remember passwords in the traditional authentication

method. Even though the failure rate to log in using the BraillePassword was slightly more

than the traditional method, this is because participants made typing errors while inserting

the digit. We know this since they attempted to enter the password next time and succeeded.

However, participants described their main challenge while using the BraillePassword as

being the concentration required while entering the Braille dots of each character, because

entering one dot wrong can make the whole password incorrect. To reduce the problem

they encountered, two participants suggested that allowing the application to inform them

of the correctness of a password digit directly using haptic feedback, thus reducing the time

needed to enter the password again.

 All blind and visually impaired users strongly agreed that haptic feedback increased

the security and privacy levels of the application. Most of them expressed confidence in

using the BraillePassword in public places, believing that no one nearby would be able to

track the user’s password aurally or visually. At the same time, participants were not

requiring to use any tool to protect their passwords like screen curtains or headphones.

Based on the participants’ feedback, using gestures to enter password reduces the risk of

observation attacks.

 In addition, the process of entering Braille dots for each character individually

increases the entropy of the BraillePassword application, which produces higher levels of

195

perceived security and privacy. On the other hand, the process of entering Braille dots

demands concentration, particularly if participants enter six different characters that

contain two or more active dots.

 In terms of BraillePassword improvements, one participant suggested using a

sensor to detect if there is a person or camera located nearby; once the sensor locates a

person or camera, it turns off the screen and stops reading the content. This feature could

improve the privacy and security on smartphone devices for blind people against

observation attacks, but it would not be practical in some environments, such as an ATM,

because it has a camera and there are people around the user. In addition, participants

indicated the need to change the interaction technique to reset the password and suggested

using a Braille pattern that enable users to access to the rest password page. Using Braille

to reset the password will definitely eliminate the chance of opening this page accidently.

To improve the BraillePassword accessibility, participants suggest that when a user enters

a password digit, a vibration informs the user whether the entered digit correct or wrong.

 Many researchers have tackled the observation attacks that face blind and visually

impaired people on smartphone devices (De Luca et al., 2014; Sherman et al., 2014; Ali et

al., 2016). Our findings highlighted that BraillePassword was really hard to crack via video

attack. Passwords containing Braille characters with more than one active dot make it very

complicated to trace the gesture’s type and order, as a result it becomes very difficult to

guess the whole password. Someone who wants to attack the BraillePassword web

application would need to professionally learn Braille characters’ patterns, as well as the

Braille signs to switch between numbers and between lower and upper cases, as well as

remembering the gestures’ types that were entered. The user interface design with the

196

haptic feedback also proved that it allows blind users to enter their passwords safely and

prevent others from guessing or tracking their credentials aurally or visually. So, it is the

first method that uses Braille patterns with haptic feedback and no aural or visual feedback

while entering a password. It is much more secure than passwords in the traditional

authentication method, which were easy to guess aurally and visually due to the use of

screen reader and the QWERTY keyboard that broadcast users’ private information.

 The study also indicated that the traditional authentication method is not secure

against observation attacks due to the need to locate authentication areas on a screen and

the limitations associated with the use of assistive technology with the QWERTY

keyboard. Therefore, most blind users tend to choose guessable passwords that are easy to

enter and find on the QWERTY keyboard, but also easy to guess or hack. These findings

mirrored the results of other studies, such as von Zezschwitz et al. [27].

 The main limitation of this study is that the sample is from a single geographic area

and very small; therefore, it does not fully represent all vision statuses and ages (e.g., all

participants were between 20 and 27 years old). We also did not study those who have

limited experience with touchscreen. Our participants described themselves as blind or

visually impaired, meaning they can see only the light or things that are very near to their

eyes. Thus, it is difficult to generalize our findings to greater population and to understand

how functionality might differ for those with no versus limited vision.

 In summary, this work has described a novel authentication technique called

BraillePassword that uses gestures to encode Braille dots for characters, with an interface

that uses haptic feedback and has no buttons. Results revealed that performance with this

197

technique was at least as good as a traditional method, while being much more resistance

to security issues such as password observation attacks.

6.5.6 Study limitation

The main limitation of this study is that the participants sample is very small and it does

not cover all possible variations in vision status and age. It is also limited to two geographic

areas (Taif university accessibility center in Saudi Arabia and CNIB center in Canada). As

we were only able to recruit participants who are college students (their age range between

20 to 27) from Taif accessibility center and two employees from CNIB center (their age

range between 36 to 49). We did not study those who have limited experience with

touchscreen. Based on our collective data, our participants described themselves as blind

or visually impaired, who can see only the light or things that are very near to their eyes.

Thus, it is very difficult to generalize our findings to greater population due to the variations

of vision status and the interaction techniques’ differences between people with no or low

vision.

 Designing an accessible tool for this population is extremely challenging due to that

it is not easy to conduct usability studies with this population. That is because most of them

have problems with transportation and some of them cannot participate without assistants

to accompany them to the center to show them the direction. Some of them are very

concerned about their safety, so they are not willing to be involved in any extra-curricular

activities at the university. Another challenge is that the ways visually impaired people

interact with smartphone devices vary due to their different abilities and various degree of

198

vision. People with multiple disabilities face additional challenges that prevent their

participation.

6.6 Conclusion and future work

Smartphone devices have been becoming an indispensable part of the lives of people with

visual impairments. Unfortunately, smartphone devices present various privacy and

security risks for blind and visually impaired people. For example, using the screen reader

software to enter their authentication information causes aural attacks and the QWERTY

keyboard causes visual attack. As mentioned above, current web authentication interfaces

on smartphone devices are inaccessible and not secure to use for users with vision

impairment. Therefore, this paper described BraillePassword as a proof of concept that

enables users to authenticate to web application on touchscreens using gestures and haptic

feedback to code Braille characters. Results have shown that BraillePassword is an

accessible authentication method that is secure and resilient to observation and shoulder

attacks even when an attacker observes or camera-records the victim while entering the

password. It also allows blind users to enter their credentials without using any protection

like headphones or screen curtains. Furthermore, it is implementable on almost any

touchscreen device or platform.

 Findings have recommended that security software developers design a new

authentication method that takes into account the challenges that face people with

disabilities. They should also create a new method that tackle the limitations of assistive

technology and the size of smartphone device. In addition, designing a user interface for

199

the authentication method plays an important role in the accessibility and security of the

authentication method.

 We hope that our research will motivate other researchers to propose and design a

security and privacy solutions that meet the needs of the blind and visually impaired people.

Some blind people have multiple disabilities, which introduces potential research

directions to address and overcome the challenges that meet people with multiple

disabilities. Designing technical solutions for people with disabilities demands a strong

cross-disciplinary approach leading to collaborative research with technical experts, web

application experts, Human Computer Interaction experts and related disabilities centers.

In the future, we aim to conduct a user study where users have to recall multiple Braille

passwords for different web applications over a long period. We will also strength and

refine the BraillePassword interface by modifying the rest password procedures as well

providing a unique haptic feedback for each keyboard layout.

200

CHAPTER 7: DISCUSSION AND CONCLUSION

7.1 Discussion

Input methods are the most heavily relied upon applications in smartphone devices.

Touchscreen keyboards are often used to perform a variety of tasks, including typing notes,

inserting contacts, or sending emails and messages. Most smartphone devices have a

touchscreen keyboard, which is the standard QWERTY keyboard. The QWERTY

keyboard follows the same layout as the physical keyboard although the soft QWERTY

keyboard still does not reach the same quality and level of performance as the physical

keyboard for both blind and sighted people. This is due to the proximity of the keys and

small size of the keyboard. Another reason interacting with the touchscreen is especially

difficult for blind people is the absence of tangible buttons. These limitations affect blind

people more negatively because touching or feeling is the most important way for them to

understand things around them.

There have been significant improvements in the accessibility of touchscreen

devices in recent years. One of the most significant improvements is the screen reader, such

as the Voiceover service. A visually impaired user can touch the screen to identify the

screen layout, and the screen reader reads out the item under the user’s finger.

Despite these improvements, touchscreen devices and the VoiceOver service pose

accessibility and security issues for blind users. Touchscreen devices require a user to

visually locate a button on the screen, which is a challenging task for people with limited

or no vision (Nicolau et al., 2010; Azenkot et al., 2014). For example, it is difficult for

blind people to insert text on a touchscreen, even with audio feedback. The user has to find

a particular character on the soft QWERTY keyboard and double tap to insert it. This is

201

time-consuming, as users have to listen to every character when they explore the screen.

The possibility of inserting the wrong character is high because the keys are small and close

to each other (Nicolau et al., 2010). They also found that the soft QWERTY keyboard with

Voiceover is slow, annoying, and causes errors (2010). As such, there is a need for

accessible touchscreen entry methods that reduce the accessibility and security challenges

for blind and visually impaired people.

The touchscreen devices and VoiceOver service do not only cause accessibility

challenges, they also pose unique privacy and security threats to people with no or low

vision (Azenkot et al., 2014; Kuber et al., 2015). The Voiceover service speaks out

anything under the user’s finger on a screen. Bystanders might hear what has been typed

on the screen. This occurs even when a user logs into an online account. The VoiceOver

broadcasts user names and passwords to people around blind users. Thus, the audio threat

is increased when people use their smartphone devices in public places. Another security

threat that emerges from the touchscreen device is that it visualizes the keys and displays

the inserted information on the screen. That enables people around a blind person to see

the displayed information on a screen (visual threat).

 To address the accessibility issues, this research presents eyes-free input methods

on touchscreen devices that use gestures on a button-free user interface, which allows blind

users to overcome the limitations of button-based input methods. User studies with blind

users that examine the developed input methods’ accessibility and performance are

conducted.

The issue of security threats is tackled in the research by creating an accessible non-

visual web authentication method on touchscreen devices. The authentication method

202

provides no visual and audio feedbacks to reduce privacy and security concerns that blind

people encounter during password entry. In addition, the study conducts a user study with

blind users that examines how the novel authentication method is resistant to shoulder

surfing issue.

This research contributes to the study of input design for visually impaired

individuals, and to the approach of input method design more generally. In designing a

specific entry method for the visually impaired, a new way of interaction technique and

user interface security is introduced. Redesigning problematic input methods based on the

practical, everyday lives of the target population by using a Braille-inspired system allows

for the user to adapt faster to the touchscreen devices and save time. This research shows

that the connection of the everyday activities of those with visual impairments to input

methods increases expedience. Such theoretical implications of the research allow future

researchers to conceptualize the design of input and authentication methods.

7.2 Conclusion

We presented new methods and user studies that aim to improve the accessibility of input

method as well as security of password for blind smartphone device users. In this research,

we explain four single gesture methods that uses button free interfaces, which are

SingleTapBraille keyboard, BrailleTap calculator, BrailleEnter keyboard and the

BraillePassowrd method. SingleTapBraille is a novel nonvisual text input approach for

touchscreen devices. With SingleTapBraille, a user enters characters including text,

numbers, and punctuation by tapping anywhere on the screen with one finger or a thumb

several times based on Braille shapes of characters. The research also developed a non-

visual touchscreen calculator, which is called BrailleTap. This calculator allows users to

203

tap on a screen based on Braille coding to enter numbers and it supports audio feedback to

facilitate editing of spelling mistakes. In addition, it allows users to insert operations by

swiping vertically to switch between operations. This calculator overcomes the main

limitation associated with the button calculator by removing the fixed keys from the

calculator layout.

 This research also presented the BrailleEnter, which is a button free text entry that

enables blind people to enter text on touchscreens based on Braille. This keyboard allows

blind people to type more easily on a touchscreen by overcoming most of the limitations

of the QWERTY keyboard as well as other proposed keyboards. Users can type based on

two types of gesture anywhere on a screen and they do not need to worry about locating a

key on a touchscreen. The algorithm that has been used to implement this keyboard does

not depend on the coordinates of user interaction, which leads to improved keyboard

accuracy, and at the same time, reduces the error rate. It also allows blind users to type

with one finger and hold the mobile phone with a single hand.

 This research also develops a new web authentication system for blind and visually

impaired people, which is called a BraillePassword method. To login using the

BraillePassword, a user enters six digits of selected Braille characters informed by haptic

feedback (vibration). The BraillePassword provides no aural or visual feedback to

eliminate the risk of observation or shoulder attack without any extra fees for special

hardware.

 We conducted user studies to evaluate the performance of the proposed methods

and we compared them to the most common applications used by blind users like soft

QWERTY keyboard, Swift Braille keyboard, regular calculator and the standard

204

authentication system. The button free number and text entry methods were more accurate

and accessible than button-based keyboards. Both the SingleTapBraille and BrailleEnter

keyboards are more accessible than the button based keyboards. In addition, The

BrailleTap calculator was more accurate and faster than the regular calculator.

BraillePassword was more secure and resilient against observation attacks than the

traditional authentication method. We believe designing accessible input method and

secure authentication method on touchscreen devices like smartphone or wearable device

is very important to allow users with low or no vision to perform a variety of tasks.

 We conducted comparative evaluation studies to examine the developed Braille

methods via mixed methods using both qualitative and quantitative methods to obtain deep

understanding of research problems as well as to reduce the limitation of using only single

method (John, Creswell, 2013). The comparative evaluation results address the most

important keyboard and password system features and requirements that help blind people

to interact easily with touchscreen devices. The quantitative and qualitative data showed

that using single touch approach on button free touchscreen interface to create accessible

number and text entries with voice feedback to facilitate editing enable blind and visually

impaired users to type easily on a smartphone compared to button based keyboards. In

addition, following the same approach with the usage of haptic feedback instead of voice

feedback can noticeably reduce the risk of observation attacks and improve the security

and privacy of passwords on smartphone devices.

 The primary objective of the evaluation studies was to evaluate Braille methods’

performance and accessibility. The studies also aim to identify the methods’ strengths and

limitations, and to obtain users’ suggestions regarding the design of accessible techniques

205

on small touchscreen devices. The comparative evaluation results address the most

important keyboard features and requirements that help blind people to interact easily with

touchscreen devices.

 The input methods that use a single touch approach based on Braille patterns do not

restrict users to locate an object on touchscreens. These entry methods rely on the ability

to type using their mother language (Braille) which does not require time for them to learn.

The proposed methods, which employ a set of accessible gestures that can be easily

performed by blind users, lower the rate of errors that occur when users need to switch

between layers or do editing. Additionally, entry methods which allow for exploration of

the touchscreen that allows people with no vision to interact anywhere on the touchscreen

without any concern about hitting undesired objects or opening up another screen enables

them to learn the methods in a short time, and allows them to use the methods more easily.

Ultimately, the interaction approach that uses a single touch approach based on Braille with

haptic feedback provides an accessible and secure web authentication method that is

resistant to observation attacks and allows for simple gestures and relatively effortless

screen exploration. This research introduces a new interaction technique for input and a

secure user interface for web authentication applications.

7.3 Future work

This research unveiled a novel design approach on non-visual keyboards using gestures to

encode Braille patterns of characters. This approach makes the keyboard interaction more

accessible for blind users where they do not need to locate keys on a screen and they do

not need to concern themselves with navigation between keyboard layouts. Understanding

206

the proposed methods’ performance in the long term is area for future work. We also need

to test the proposed methods with larger groups of people in order to better understands

their strengths and weaknesses. Further, we will try to conduct longitudinal studies

to understand long-term behaviors and the improvements of Braille tools performance.

 While our research work concentrates mainly on visually impaired people, we

believe that the proposed work presents ideas and approaches that will improve the

accessibility of small touchscreen devices for people with other disabilities, for example,

deaf blind population. Designing technical solutions for people with disabilities requires

their feedback from the first stage of design, in order to respond to for the actual needs of

this population. In addition, integrating the eyes-free entry approach is a critical concept in

developing touchscreen technology that improves people’s lives. As touchscreen

technology expands, we will have to develop assistive technologies that allow blind users

to access a wider range of applications.

 Based on the findings from the evaluation studies, we need to improve the

performance of Braille keyboards by implementing the predictive text, automatic

correction and grade 2 Braille.

 The authentication method study revealed the need to design accessible web

authentication methods for blind people that allow them to register and sign in

independently. It also indicates the necessity to build an accessible password interface for

the ATM machine and the retailer point of sale that meets the needs of people with visual

impairment. Future work will increase the tools’ usefulness by integrating them in different

platforms including iPhone, Apple Watch, and iPad. This will make them accessible for

intended users for the developed tools can be easily adapted to work on any kind of devices.

207

We hope our research provides valuable insights for assistive technology researchers to

further explore single touch interaction based on Braille.

208

APPENDICES

Appendix A - Background Questionnaire

PART I - PLEASE FILL IN THE FOLLOWING INFORMATION:

1. Age: ________

2. Gender: Male Female Other

3. I am presently: Legally blind Visually Impaired Other: ________________

4. Do you know Braille language? Yes No

5. What type of Braille-based devices you use?

6. Do you use a touchscreen device? Yes No

7. If yes, how long have you been using a touchscreen device?

8. What are you using now to enter text on a touchscreen?

9. What are the main difficulties that you have faced while using the above method to

enter text?

10. If you are using a normal keyboard, finding a specific letter, number or punctuation is

difficult.

o Strongly agree

o Agree

o Neither agree nor disagree

o Disagree

o Strongly disagree

11. How long do you usually take to write a message contains 20 words?

o Once minute

o Two minutes

o Three minutes

o More than three minutes

12. How often do you send short messages (SMS)?

o Everyday

o Several times a month

o Never

13. Do you send messages while you are walking?

209

o yes

o no

14. If yes, how do you manage holding the mobile phone while you are walking or other

hand is busy?

15. How do you hold the smartphone device when you want to type a text?

16. How do you tap on a touch screen to enter a text? Do you use only your thumb or

your point finger?

17. It is difficult to switch from letter keyboard to number keyboard.

o Strongly agree

o Agree

o Neither agree nor disagree

o Disagree

o Strongly disagree

18. It is difficult to type a small or capital letter.

o Strongly agree

o Agree

o Neither agree nor disagree

o Disagree

o Strongly disagree

19. Using VoiceOver service is a good solution to make sure you chose the correct letter.

o Strongly agree

o Agree

o Neither agree nor disagree

o Disagree

o Strongly disagree

210

Appendix B – Post Questionnaire of SingleTapBraille

Part1: Describe how you feel about each statement.

1 = strongly disagree, 2 = somewhat disagree, 3 = neutral, 4 = somewhat agree, 5 = strongly

agree

PERCEIVED USEFULNESS Scale

1 2 3 4 5

1. Using the keyboard to enter text would enable me to accomplish typing
tasks more quickly.

2. The keyboard would enable me to enter text more independently.

3. Using the keyboard would improve my typing performance.
4. Using the keyboard to enter text would increase my productivity.
5. Using the application would enhance my effectiveness on entering text.
6. Using the application would make it easier to enter texts and send

messages.

7. I would find the keyboard useful in general.
PERCEIVED EASE OF USE
8. It was easy to use the keyboard to enter what I wanted to text.
9. My interaction with the keyboard was clear and understandable.
10. It would be easy for me to become skillful at using the keyboard.
11. The letters, numbers, and punctuation was easy to type.
12. The interaction techniques was easy to understand
PERCEIVED EASE OF LEARNING
13. Learning to operate the keyboard would be easy for me.
14. Editing text was clear.
15. Switching between keyboard was clear
16. Remembering the gestures and touch commands was easy.
17. Performing tasks like entering text, making capital and small letters were

straightforward

18. Voice feedback were helpful to define the gesture function
19. I found my skills at using the app improved with practice

211

Appendix C: Interview of SingleTapBraille

1. Do you feel that you successfully entered text using the improved

SingleTapBraille/ QWERTY keyboard?

2. Did you find the interaction with touchscreen without button or looking for a

specific location was more accessible? Why or why not?

3. What is your opinion about the command for opening the letter keyboard, number

keyboard and punctuation keyboard? Did you find these commands accurate and

easy to perform? Why or why not?

4. Did you feel your typing was faster than usual? Why or why not?

5. Did the Braille application assist you to send SMS messages easily? Why or why

not?

6. What are the application’s advantages?

7. What are the application’s disadvantages?

8. What is your overall impression of the improved SingelTapBraille/ QWERTY

keyboard?

9. Was the application user interface easy to use?

10. Did you have any difficulties when you used the application? What were they and

why do you think that you had this/these problems?

11. Do you have any suggestions to fix these problems?

12. What do you think the benefits of this system are?

13. What overall suggestions do you have for the system?

14. Did this system address your typing concerns? How and what didn’t it address?

Participant Number: ………………………………………Date: ………

212

Appendix D: Letters of approval from Dalhousie Research Ethics Board for the

SingleTapBraille study

Social Sciences & Humanities Research Ethics Board

Letter of l  February 23, 2016

 Ms Mrim Alnfiai

Computer Science\Computer Science

Dear Mrim,

REB #: 2016-3785 Project Title: Single-Tap Braille: Single Touch Braille Text Entry

Approach Based on Braille Patterns

Effective Date: February 22, 2016 Expiry Date: February 22, 2017

 The Social Sciences & Humanities Research Ethics Board has reviewed your application

for research involving humans and found the proposed research to be in accordance

with the Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans.

This approval will be in effect for 12 months as indicated above. This approval is subject

to the conditions listed below which constitute your on-going responsibilities with

respect to the ethical conduct of this research.

 Sincerely,

 

Dr. Karen Beazley, Chair

Post REB Approval: On-going Responsibilities of Researchers

 After receiving ethical approval for the conduct of research involving humans, there

are several ongoing responsibilities that researchers must meet to remain in compliance

with University and Tri-Council policies.

 1. Additional Research Ethics approval

Prior to conducting any research, researchers must ensure that all required research

ethics approvals are secured (in addition to this one). This includes, but is not limited to,

securing appropriate research ethics approvals from: other institutions with whom the

PI is affiliated; the research institutions of research team members; the institution at

which participants may be recruited or from which data may be collected; organizations

or groups (e.g. school boards, Aboriginal communities, correctional services, long-term

care facilities, service agencies and community groups) and from any other responsible

review body or bodies at the research site

2. Reporting adverse events

213

Any significant adverse events experienced by research participants must be reported in

writing to Research Ethics within 24 hours of their occurrence. Examples of what might

be considered “significant” include: an emotional breakdown of a participant during an
interview, a negative physical reaction by a participant (e.g. fainting, nausea,

unexpected pain, allergic reaction), report by a participant of some sort of negative

repercussion from their participation (e.g. reaction of spouse or employer) or complaint

by a participant with respect to their participation. The above list is indicative but not

all-inclusive. The written report must include details of the adverse event and actions

taken by the researcher in response to the incident.

3. Seeking approval for protocol / consent form changes

Prior to implementing any changes to your research plan, whether to the protocol or

consent form, researchers must submit a description of the proposed changes to the

Research Ethics Board for review and approval. This is done by completing an

Amendment Request (available on the website). Please note that no reviews are

conducted in August.

4. Submitting annual reports

Ethics approvals are valid for up to 12 months. Prior to the end of the project’s approval
deadline, the researcher must complete an Annual Report (available on the website)

and return it to Research Ethics for review and approval before the approval end date in

order to prevent a lapse of ethics approval for the research. Researchers should note

that no research involving humans may be conducted in the absence of a valid ethical

approval and that allowing REB approval to lapse is a violation of University policy,

inconsistent with the TCPS (article 6.14) and may result in suspension of research and

research funding, as required by the funding agency.  5. Submitting final reports

When the researcher is confident that no further data collection or participant contact

will be required, a Final Report (available on the website) must be submitted to

Research Ethics. After review and approval of the Final Report, the Research Ethics file

will be closed.

6. Retaining records in a secure manner Researchers must ensure that both during and

after the research project, data is securely retained and/or disposed of in such a manner

as to comply with confidentiality provisions specified in the protocol and consent forms.

This may involve destruction of the data, or continued arrangements for secure storage.

Casual storage of old data is not acceptable.

It is the Principal Investigator’s responsibility to keep a copy of the REB approval letters.

This can be important to demonstrate that research was undertaken with Board

approval, which can be a requirement to publish (and is required by the Faculty of

Graduate Studies if you are using this research for your thesis).

Please note that the University will securely store your REB project file for 5 years after

the study closure date at which point the file records may be permanently destroyed.

214

7. Current contact information and university affiliation The Principal Investigator must

inform the Research Ethics office of any changes to contact information for the PI (and

supervisor, if appropriate), especially the electronic mail address, for the duration of the

REB approval. The PI must inform Research Ethics if there is a termination or

interruption of his or her affiliation with Dalhousie University.

8. Legal Counsel The Principal Investigator agrees to comply with all legislative and

regulatory requirements that apply to the project. The Principal Investigator agrees to

notify the University Legal Counsel office in the event that he or she receives a notice of

non-compliance, complaint or other proceeding relating to such requirements.   9.

Supervision of students Faculty must ensure that students conducting research under

their supervision are aware of their responsibilities as described above, and have

adequate support to conduct their research in a safe and ethical manner.

215

Appendix E - Background Questionnaire of BrailleEnter keyboard

Thank you for your participation. Before we begin, we would like to get to know a little
bit more about you and your current use of touchscreen keyboards. Please take a few
minutes to answer this questionnaire.

PART I - PLEASE FILL IN THE FOLLOWING INFORMATION:

1. Age: ________

2. Gender: Male Female Other

3. I am presently: Legally blind Visually Impaired Other: ________________

4. Do you know Braille language? Yes No

5. What type of Braille-based devices you use?

6. Do you use a touchscreen device? Yes No

7. If yes, how long have you been using a touchscreen device?

8. Which types of phone have you used?

9. What are you using now to enter text on a touchscreen?

10. What are the main difficulties that you have faced while using the above method to

enter text?

11. How do you hold the smartphone device when you want to type a text?

12. How do you tap on a touch screen to enter a text? Do you use only your thumb or

your point finger?

13. Which tasks have you used touchscreen keyboard to perform? (Check all that apply)

() Adding contacts’ information , () Typing note, () Texting, () Emailing , () Other

216

Appendix F: Letters of approval from Dalhousie Research Ethics Board for the

BrailleEnter study

 

Social Sciences & Humanities Research Ethics Board

Letter of September 21, 2017

 Mrim Alnfiai

Computer Science\Computer Science

Dear Mrim,

REB #: 2017-4230 Project Title: Evaluation of touchscreen authentication methods for

blind people

Effective Date: September 21, 2017 Expiry Date: September 21, 2018

 The Social Sciences & Humanities Research Ethics Board has reviewed your application

for research involving humans and found the proposed research to be in accordance

with the Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans.

This approval will be in effect for 12 months as indicated above. This approval is subject

to the conditions listed below which constitute your on-going responsibilities with

respect to the ethical conduct of this research.

 Sincerely,

 

Dr. Karen Beazley, Chair

Post REB Approval: On-going Responsibilities of Researchers

 After receiving ethical approval for the conduct of research involving humans, there

are several ongoing responsibilities that researchers must meet to remain in compliance

with University and Tri-Council policies.

 1. Additional Research Ethics approval

Prior to conducting any research, researchers must ensure that all required research

ethics approvals are secured (in addition to this one). This includes, but is not limited to,

securing appropriate research ethics approvals from: other institutions with whom the

PI is affiliated; the research institutions of research team members; the institution at

which participants may be recruited or from which data may be collected; organizations

or groups (e.g. school boards, Aboriginal communities, correctional services, long-term

care facilities, service agencies and community groups) and from any other responsible

review body or bodies at the research site

217

2. Reporting adverse events

Any significant adverse events experienced by research participants must be reported in

writing to Research Ethics within 24 hours of their occurrence. Examples of what might

be considered “significant” include: an emotional breakdown of a participant during an
interview, a negative physical reaction by a participant (e.g. fainting, nausea,

unexpected pain, allergic reaction), report by a participant of some sort of negative

repercussion from their participation (e.g. reaction of spouse or employer) or complaint

by a participant with respect to their participation. The above list is indicative but not

all-inclusive. The written report must include details of the adverse event and actions

taken by the researcher in response to the incident.

3. Seeking approval for protocol / consent form changes

Prior to implementing any changes to your research plan, whether to the protocol or

consent form, researchers must submit a description of the proposed changes to the

Research Ethics Board for review and approval. This is done by completing an

Amendment Request (available on the website). Please note that no reviews are

conducted in August.

4. Submitting annual reports

Ethics approvals are valid for up to 12 months. Prior to the end of the project’s approval
deadline, the researcher must complete an Annual Report (available on the website)

and return it to Research Ethics for review and approval before the approval end date in

order to prevent a lapse of ethics approval for the research. Researchers should note

that no research involving humans may be conducted in the absence of a valid ethical

approval and that allowing REB approval to lapse is a violation of University policy,

inconsistent with the TCPS (article 6.14) and may result in suspension of research and

research funding, as required by the funding agency.  5. Submitting final reports

When the researcher is confident that no further data collection or participant contact

will be required, a Final Report (available on the website) must be submitted to

Research Ethics. After review and approval of the Final Report, the Research Ethics file

will be closed.

6. Retaining records in a secure manner Researchers must ensure that both during and

after the research project, data is securely retained and/or disposed of in such a manner

as to comply with confidentiality provisions specified in the protocol and consent forms.

This may involve destruction of the data, or continued arrangements for secure storage.

Casual storage of old data is not acceptable.

It is the Principal Investigator’s responsibility to keep a copy of the REB approval letters.

This can be important to demonstrate that research was undertaken with Board

approval, which can be a requirement to publish (and is required by the Faculty of

Graduate Studies if you are using this research for your thesis).

Please note that the University will securely store your REB project file for 5 years after

218

the study closure date at which point the file records may be permanently destroyed.

8. Current contact information and university affiliation The Principal Investigator

must inform the Research Ethics office of any changes to contact information for

the PI (and supervisor, if appropriate), especially the electronic mail address, for the

duration of the REB approval. The PI must inform Research Ethics if there is a

termination or interruption of his or her affiliation with Dalhousie University.

9. Legal Counsel The Principal Investigator agrees to comply with all legislative and

regulatory requirements that apply to the project. The Principal Investigator agrees

to notify the University Legal Counsel office in the event that he or she receives a

notice of non-compliance, complaint or other proceeding relating to such

requirements.   9. Supervision of students Faculty must ensure that students

conducting research under their supervision are aware of their responsibilities as

described above, and have adequate support to conduct their research in a safe and

ethical manner.

219

Appendix G – Post Questionnaire (Lewis Questionnaire)

Please rate the method you just used. Circle the number that best represents your
judgment. And why do you choose that number 1. Very Likely, 2. Likely, 3. Somewhat
likely, 4. Neither likely, 5. Somewhat unlikely, 6. Unlikely, 7. Very unlikely

Easy to insert letters 1--2--3--4--5--6--7 Hard to insert letters
Keyboard interaction
method acceptable

1--2--3--4--5--6--7 Keyboard interaction method
unacceptable

Easy to type fast 1--2--3--4--5--6--7 Hard to type fast
Easy to type accurately 1--2--3--4--5--6--7 Hard to type accurately
Easy to learn how to type letters 1--2--3--4--5--6--7 Hard to learn how to type letters
Easy to type 1--2--3--4--5--6--7 Hard to type
Using one finger is accessible 1--2--3--4--5--6--7 Using one finger is inaccessible
Audio feedback is accessible 1--2--3--4--5--6--7 Audio feedback is inaccessible
Editing is accessible 1--2--3--4--5--6--7 Editing is inaccessible

220

Appendix H: Interview of BrailleEnter keyboard

1. Do you feel that you successfully entered text using the BrailleEnter/swift keyboard

approach? Why or why not?

2. Do you like the keyboard? Why or why not?

3. Did you find the interaction with touchscreen without buttons or looking for a specific

location was more accessible? Why or why not?

4. Did you find using one finger to interact with touchscreen devices accessible? Why or

why not?

5. What are the keyboard’s advantages?

6. What are the keyboard’s disadvantages?

7. What is your overall impression of the keyboard prototype?

8. Did you have any difficulties when you used the keyboard? What were they and why

do you think you had this/these problems?

9. Do you have any suggestions to fix these problems?

10. What do you think the benefits of this keyboard are? Where do you suggest us to

integrate this keyboard?

Participant Number: ………………………………………Date: ………

221

Appendix I - Background Questionnaire of BraillePassword

Thank you for your participation. Before we begin, we would like to get to know a little
bit more about you and your current use of touchscreen devices. Please take a few
minutes to answer this questionnaire.

PART I - PLEASE FILL IN THE FOLLOWING INFORMATION:

1. Age: ________

2. Gender: Male Female Other

3. I am presently: Legally blind Visually impaired Other:

4. Do you know Braille language? Yes No

5. What type of Braille-based devices you use?

6. Do you use a touchscreen device? Yes No

7. If yes, how long have you been using a touchscreen device?

8. Which types of phone have you used? (single- choice: iPhone, Android, Windows

Phone, Other, I don’t use a smartphone)  

9. How do you log-in to a web application, such as twitter or your bank account? (using

the QWERTY keyboard, other Braille keyboard)

10. What are the authentication methods have you used?

 (Biometric authentication method, graphical authentication method, alphanumeric

authentication method).

11. What are the main difficulties that you have faced while registering or login to web

applications, such as Facebook, Twitter or bank account?

12. How do you secure your private information (passwords) while login to your account

on a smartphone device in public place?

13. Do you access your private information, such as bank account, email

communications, social networking sites, and location-tracking applications such as

Four Square from your smartphone device?

14. Do you store a wealth of private and personal information on your device?

15. Do you open your bank application from your phone?

16. Which authentication features do you use to protect your information on your

device?

222

17. Do you enter your password every time you login to a web application (such as

Facebook and Netflix) or is the password already stored in the application so you do

not have to enter the password repeatedly?

18. Do you have any concern about aural eavesdropping? What did you use to reduce the

aural threat? (headphones, …)

19. Do you have any concern about visual eavesdropping? What did you use to reduce

the visual threat? (screen curtains, …)

223

Appendix J: Interview of BraillePassword

1. Do you feel that you successfully registered and logged in using the BraillePassword

/traditional authentication method? Why or why not?

2. What are the BraillePassword/traditional authentication method’s advantages?

3. What are the BraillePassword/traditional authentication method’s disadvantages?

4. What is your overall impression of the BraillePassword/traditional authentication

method prototype?

5. Did you have any difficulties when you used the BraillePassword/traditional

authentication method? What were they and why do you think you had this/these

problems?

6. Do you have any suggestions to fix these problems?

7. What do you think the benefits of this BraillePassword are?

8. Which method do you think you are more secure while using it? Why?

9. Which method do you think would reduce the chance of having observation attacks?

Why?

Participant Number: ………………………………………Date: ………

224

Appendix K: Letters of approval from Dalhousie Research Ethics Board for the

BraillePassword study

 

Social Sciences & Humanities Research Ethics Board

Letter of Approval  September 21, 2017

 Mrim Alnfiai

Computer Science\Computer Science

Dear Mrim,

REB #: 2017-4230 Project Title: Evaluation of touchscreen authentication methods for

blind people

Effective Date: September 21, 2017 Expiry Date: September 21, 2018

 The Social Sciences & Humanities Research Ethics Board has reviewed your application

for research involving humans and found the proposed research to be in accordance with

the Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans. This

approval will be in effect for 12 months as indicated above. This approval is subject to the

conditions listed below which constitute your on-going responsibilities with respect to the

ethical conduct of this research.

 Sincerely,

 

Dr. Karen Beazley, Chair

Post REB Approval: On-going Responsibilities of Researchers

 After receiving ethical approval for the conduct of research involving humans, there are

several ongoing responsibilities that researchers must meet to remain in compliance with

University and Tri-Council policies.

 1. Additional Research Ethics approval

Prior to conducting any research, researchers must ensure that all required research

ethics approvals are secured (in addition to this one). This includes, but is not limited to,

securing appropriate research ethics approvals from: other institutions with whom the PI

is affiliated; the research institutions of research team members; the institution at which

participants may be recruited or from which data may be collected; organizations or

groups (e.g. school boards, Aboriginal communities, correctional services, long-term care

facilities, service agencies and community groups) and from any other responsible review

225

body or bodies at the research site

2. Reporting adverse events

Any significant adverse events experienced by research participants must be reported in

writing to Research Ethics within 24 hours of their occurrence. Examples of what might

be considered “significant” include: an emotional breakdown of a participant during an
interview, a negative physical reaction by a participant (e.g. fainting, nausea, unexpected

pain, allergic reaction), report by a participant of some sort of negative repercussion from

their participation (e.g. reaction of spouse or employer) or complaint by a participant with

respect to their participation. The above list is indicative but not all-inclusive. The written

report must include details of the adverse event and actions taken by the researcher in

response to the incident.

3. Seeking approval for protocol / consent form changes

Prior to implementing any changes to your research plan, whether to the protocol or

consent form, researchers must submit a description of the proposed changes to the

Research Ethics Board for review and approval. This is done by completing an Amendment

Request (available on the website). Please note that no reviews are conducted in August.

4. Submitting annual reports

Ethics approvals are valid for up to 12 months. Prior to the end of the project’s approval
deadline, the researcher must complete an Annual Report (available on the website) and

return it to Research Ethics for review and approval before the approval end date in order

to prevent a lapse of ethics approval for the research. Researchers should note that no

research involving humans may be conducted in the absence of a valid ethical approval

and that allowing REB approval to lapse is a violation of University policy, inconsistent

with the TCPS (article 6.14) and may result in suspension of research and research

funding, as required by the funding agency.  5. Submitting final reports

When the researcher is confident that no further data collection or participant contact

will be required, a Final Report (available on the website) must be submitted to Research

Ethics. After review and approval of the Final Report, the Research Ethics file will be

closed.

6. Retaining records in a secure manner Researchers must ensure that both during and

after the research project, data is securely retained and/or disposed of in such a manner

as to comply with confidentiality provisions specified in the protocol and consent forms.

This may involve destruction of the data, or continued arrangements for secure storage.

Casual storage of old data is not acceptable.

It is the Principal Investigator’s responsibility to keep a copy of the REB approval letters.
This can be important to demonstrate that research was undertaken with Board approval,

which can be a requirement to publish (and is required by the Faculty of Graduate Studies

if you are using this research for your thesis).

226

Please note that the University will securely store your REB project file for 5 years after

the study closure date at which point the file records may be permanently destroyed.

7. Current contact information and university affiliation The Principal Investigator must

inform the Research Ethics office of any changes to contact information for the PI (and

supervisor, if appropriate), especially the electronic mail address, for the duration of the

REB approval. The PI must inform Research Ethics if there is a termination or interruption

of his or her affiliation with Dalhousie University.

8. Legal Counsel The Principal Investigator agrees to comply with all legislative and

regulatory requirements that apply to the project. The Principal Investigator agrees to

notify the University Legal Counsel office in the event that he or she receives a notice of

non-compliance, complaint or other proceeding relating to such requirements.   9.

Supervision of students Faculty must ensure that students conducting research under

their supervision are aware of their responsibilities as described above, and have

adequate support to conduct their research in a safe and ethical manner.

227

REFERENCES

American Foundation for the Blind. (2017). Facts and Figures on Adults with Vision

 Loss. Retrieved from http://www.afb.org/info/blindness-statistics/adults/facts-
 and-figures/235

Accessibility. (2016). Accessibility features. Retrieved from http://www.lenovo.com/
 lenovo/ us/en /accessibility/

Authentication technologies. (2009). Authorization. Recognition. Verification.

 identification. screening. http://biometrics.pbworks.com/w/page/14811351/
 authentication%20technologies#limitationsofbiometrics

AppleVis. (2014). A Guide to Braille Screen Input on iOS. Retrieved from https://
 www.applevis.com/guides/Braille-ios-voiceover/guide-Braille-screen-input-ios

Alnfiai, M., Sampalli, S. (2016a). SingleTapBraille: Developing a text entry method

 based on Braille patterns using a single tap. The 11th International Conference on
 Future Networks and Communications (FNC 2016), Procedia, Computer Science,
 248-255. ISSN 1877- 0509, http://dx.doi.org/10.1016/j.procs.2016.08.038.

Alnfiai, M. and Sampalli, S. (2016b). An Evaluation of SingleTapBraille Keyboard: A

 Text Entry Method that Utilizes Braille Patterns on Touchscreen Devices. In
 Proceedings of the 18th International ACM SIGACCESS Conference on
 Computers and Accessibility (ASSETS '16). ACM, New York, NY, USA, 161-
 169. DOI: http://dx.doi.org/10.1145/2982142.2982161

Alnfiai, M., Sampalli, S. (2017a). BrailleTap Calculator. The 19th International

 Conference on Human-Computer Interaction. HCI International 2017.
 Vancouver, Canada, 9 - 14 July 2017, pp. 9 - 14.

Alnfiai, M., Sampalli, S. (2017b). BrailleEnter: A Touch Screen Braille Text Entry
 Method for the Blind. The 8th International Conference on Ambient Systems,
 Networks and Technologies (ANT 2017), Procedia, pp.257-264.

Alnfiai, M., Sampalli, S. (2017c). An Evaluation of the BrailleEnter Keyboard: An Input
 Method Based on Braille Patterns for Touchscreen Devices. International
 Conference on Computer and Applications (ICCA'17), Dubai, pp.107-119.

Alnfiai, M., Sampalli, S. (2017d). Improved SingleTapBraille: Developing a single tap
 text entry method based on Grade 1 and 2 braille encoding”. The International

 Journal of Ubiquitous Systems and Pervasive Networks (JUSPN), pp.1-9.

228

Alnfiai, M., Sampalli, S. (2018). BraillePassword: Accessible Web Authentication
 Technique on Touchscreen Devices. Journal of Ambient Intelligence and

 Humanized Computing. Springer, pp.1-26. DOI: 10.1007/s12652-018-0860-x

Ali. (2015). Sequential Gestural Passcodes on Google Glass. The 17th International ACM
 SIGACCESS Conference on Computers and Accessibility - Student Research
 Competition (ASSETS-SRC 2015), Lisbon, Portugal, October 26-28, 2015
 http://dx.doi.org/10.1145/2700648.2811326

Ali, A., Kuber, R., & Aviv, A. J. (2016). Developing and evaluating a gestural and tactile
 mobile interface to support user authentication. Proceedings of the iConference,
 2016. doi:10.9776/16141.

AlBanna, M. (2016). SwiftBraille-Android Braille Soft Keyboards. Retrieved from

 www.mbanna.info/swiftBraille-soft-keyboard/

Azenkot, S., Ladner, R., Wobbrock, J., Borning, Alan, Landay, James, & Levow,
 Gina-Anne. (2014). Eyes-Free Input on Mobile Devices, ProQuest Dissertations

 and Theses.

Azenkot, S., J., Wobbrock, O., Prasain, S., and Ladner., R. E. 2012. Input finger
 detection for nonvisual touch screen text entry in Perkinput. In Graphics

 Interface. 

Azenkot, S. Rector, K., Ladner, R., and Wobbrock, J. 2012. PassChords: secure multi-
 touch authentication for blind people. In Proceedings of the 14th international

 ACM SIGACCESS conference on Computers and accessibility (ASSETS '12).
 ACM, New York, NY, USA, 159-166.
 DOI=http://dx.doi.org/10.1145/2384916.2384945

Azenkot, S., Bennett, C., and Ladner, R. (2013). DigiTaps: eyes-free number entry on
 touchscreens with minimal audio feedback, Proceedings of the 26th annual ACM
 symposium on User interface software and technology, October 08-11, 2013, St.
 Andrews, Scotland, United Kingdom [doi>10.1145/2501988.2502056]

Bigham, J., P., & Cavender, A., C. (2009). Evaluating existing audio CAPTCHAs and an
 interface optimized for non-visual use. Proceedings of the 27th International
 Conference on Human factors in Computing Systems, p.1829, 2009.

Burnett, M. (2006). Perfect Password: Selection, Protection, Authentication. Syngress,
 2005, pp. 109–112, the password list is available at: http:// boingboing.net/2009/
 01/02/top-500-worst-passwo.html.

http://doi.acm.org/10.1145/2501988.2502056

229

Bonner, M., N., Brudvik, J., T., Abowd, G., D. & Edwards., K. (2010). No-look notes:
 accessible eyes-free multi-touch text entry. Proceedings of the 8th international
 conference on Pervasive Computing, Springer, May 17-20, 2010, Helsinki,
 Finland [doi>10.1007/978-3-642-12654-3_24]

BrailleEasy. (2018). Retrieved from https://itunes.apple.com/us/app/Brailleeasy/id112439
 1970 ?mt=8

Caute A., & Woolf, C.(2016). Using voice recognition software to improve
 communicative writing and social participation in an individual with severe
 acquired dysgraphia: An experimental single-case therapy study. Aphasiology,
 30(2-3), 2016; 245-268.

CNIB. (2001). About the Braille System. Retrieved from http://www.cnib.ca/en/living/
 Braille/ Braille-system/Pages/default.aspx

Cassidy, B., Cockton, G., & Coventry, L. “A haptic ATM interface to assist visually
 impaired users,” Proceedings of the 15th International ACM SIGACCESS
 Conference on Computers and Accessibility, pp. 1–8, 2013.

Dhamija, R., Perrig. A., Deja. (2000). A user study using images for authentication. In
 Proc. USENIX Security Symposium, pages 45–58, Berkeley, CA, USA, 2000.
 USENIX Association.

De Luca, A., von Zezschwitz, E., & Hußmann, H. (2009). Vibrapass: secure
 authentication based on shared lies. Proceedings of the SIGCHI Conference on

 Human Factors in Computing Systems, ACM, 913–916.

De Luca, A., Harbach, M., von Zezschwitz, E., et al. (2014). Now you see me, now you
 don't: protecting smartphone authentication from shoulder surfers. Proceedings of
 the SIGCHI Conference on Human Factors in Computing Systems (CHI '14).
 ACM, 2937-2946.

Dhamija, R. and Perrig, A., (2000), “Déjà Vu: A User Study Using Images for
 Authentication”, in Proceedings of the 9th USENX Security Symposium, Denver,
 Colorado, USA.

Eiband, M., Khamis, M., von Zezschwitz, E., Hussmann, H., Alt, F. (2017).
 Understanding shoulder surfing in the wild: stories from users and observers. In:
 Proceedings of the 2017 CHI Conference on Human Factors in Computing
 Systems, pp. 4254–4265.

Frey, B., Southern, C., and Romero. M. (2011). BrailleTouch: mobile texting for the
 visually impaired. In Universal Access in Human-Computer Interaction. Context
 Diversity. Springer,19-25. 

https://dx.doi.org/10.1007/978-3-642-12654-3_24

230

Fritsch, L., Fuglerud, K., Solheim, I. (2010). Towards inclusive identity management.
 Identity in the Information Society Online First™, 7 October 2010:1–24.

Guerreiro, T., P. Lagoa , P., Santana, P., Goncalves, D., and Jorge., J. (2008). NavTap
 and BrailleTap: non-visual texting interfaces. In Resna.

Helkala, K. (2012). Disabilities and authentication methods: Usability and security.
 Seventh International Conference on Availability, Reliability and Security, pp.
 327–334.

Heni S., Abdallah W., Archambault D., Uzan G., Bouhlel M.S. (2016) An Empirical
 Evaluation of MoonTouch: A Soft Keyboard for Visually Impaired People. In:
 Miesenberger K., Bühler C., Penaz P. (eds) Computers Helping People with
 Special Needs. ICCHP 2016. Lecture Notes in Computer Science, vol 9759.
 Springer, Cham

He, L., Wan, Z., Findlater, L., Froehlich, J. (2017).TacTILE: A Preliminary Toolchain for
 Creating Accessible Graphics with 3D-Printed Overlays and Auditory
 Annotations ASSETS '17, October 29-November 1, 2017, Baltimore, MD, USA

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
 Proceedings of the I.R.E. 1098–1102.

Hesselmann, T., Heuten, W., & Boll, S. (2011). Tap2Count. Proc. ITS ’11, New York,
 NY: ACM Press (2011), 256–257.

Holman, J., Lazar, J., and Feng, J. (2008). Investigating the Securityrelated Challenges of
 Blind Users on the Web. In P.L. BSc, J.C.M., CEng MIEE and P.R.M. Ceng, eds.,
 Designing Inclusive Futures. Springer London,129–138.

iOS Braille. (2018). Retrieved from https://www.applevis.com/guides/Braille- ios-

voiceover/guide-Braille-screen-input-ios

John, W., C. (2013). Research design: Qualitative, quantitative, and mixed methods
 approaches. Sage publications, Los Angeles, CA.

Jalaliniya, S., Mardanbegi, D., Sintos, I., and Garcia, D. (2015). EyeDroid: an open
 source mobile gaze tracker on Android for eyewear computers. In Adjunct

 Proceedings of the 2015 ACM International Joint Conference on Pervasive and

 Ubiquitous Computing and Proceedings of the 2015 ACM International

 Symposium on Wearable Computers (UbiComp/ISWC'15 Adjunct). ACM, New
 York, NY, USA, 873-879. DOI=http://dx.doi.org/10.1145/2800835.2804336

231

Kuber, R., Sharma, S. (2010). Toward tactile authentication for blind users.
 In Proceedings of the 12th international ACM SIGACCESS conference on

 Computers and accessibility (ASSETS '10). ACM, New York, NY, USA, 289-
 290. DOI=http://dx.doi.org/10.1145/1878803.1878875

Kuber, R. & Sharma, S. (2012). Developing an Extension to an Existing Tactile
 Authentication Mechanism to Support Non-Visual Interaction. In proceedings of
 IASTED Conference on Human-Computer Interaction, Baltimore, USA, 190-198.

Kane, S., Jayant C, Wobbrock, J, Ladner, R.(2009). Freedom to roam: a study of mobile
 device adoption and accessibility for people with visual and motor disabilities. In
 Proceedings of the 11th international ACM SIGACCESS conference on
 Computers and accessibility;115–122.

Karlson, A. K., Bederson, B. B., Contreras-Vidal, J. L., (2006). Understanding Single-
 handed Mobile Device Interaction. University of Maryland. HCIL-2006-02.
 Martin, G.L., 1988.

Kane, S. K., Wobbrock, J. O., & Ladner, R. E. (2011). Usable gestures for blind people:
 Understanding preference and performance. Proceedings of the SIGCHI
 Conference on Human Factors in Computing Systems, May 07-12, 2011,
 Vancouver, BC, Canada [doi>10.1145/1978942.1979001]

Keane, J. (2016). Facial Recognition Apps Are Leaving Blind People Behind. Face-
 scanning apps are the latest trend in biometrics, but do they work for people with
 sight issues?https://motherboard.vice.com/en_us/article/facial-recognition-apps-
 are-leaving-blind-people-behind

Keeble. (2018). Accessible keyboard. Retrieved from https://itunes.apple.com/ca/app/
 keeble-accessible-keyboard/id918497054?mt=8

Lowry, R. (2005). Concepts and applications of inferential statistics [Electronic Version].
 Web Site:http://faculty.vassar.edu/lowry/webtext.html.

Lin, F. X., Ashbrook, D., and White. S. (2011). Rhythmlink: securely pairing i/o-
 constrained devices by tapping. In Proc. UIST’11, pages 263–272, New York,
 NY, USA, 2011. ACM.  

Lee, S., Hong, S. H., Jeon, J. W., Choi, H. G., and Choi, H., Design of Chording Gloves
 as a Text Input Device, in Computer Human Interaction – Lecture Notes in
 Computer Science, 3101/2004 (2004), 201- 210.

Ladner, R., Kane, S., Wobbrock, J.(2011). Usable gestures for blind people:
 understanding preference and performance. In Proceedings of the 2011 annual
 conference on Human factors in computing systems. ACM, 2011.

http://doi.acm.org/10.1145/1978942.1979001
https://motherboard.vice.com/en_us/article/facial-recognition-apps-are-leaving-blind-people-behind
https://motherboard.vice.com/en_us/article/facial-recognition-apps-are-leaving-blind-people-behind

232

Marques, D., Carrico, L., Guerreiro, T. (2015). Assessing Inconspicuous Smartphone
 Authentication for Blind People. Retrieved from https://arxiv.org/abs/1506.00930

MBraille. (2018). Accessible keyboard. Retrieved from https://itunes.apple.com/ca
 /app/mBraille/id639199558?mt=8

Michael, T., Sirivianos, G., Solis, J., Tsudik, G., Uzun, E. (2006). Loud and Clear:
 Human-Verifiable Authentication Based on Audio, Proceedings of the 26th IEEE
 International Conference on Distributed Computing Systems, p.10, July 04-07,
 [doi>10.1109/ICDCS.2006.52]

Mudholkar, S., Shende, p., Sarode, M. (2012). Biometrics authentication technique for
 intrusion detection systems using fingerprint recognition. International Journal of
 Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2,
 No.1, February 2012 , DOI : 10.5121/ijcseit.2012.2106

MacKenzie, S., William, R. and Helga, J. (2011). 1 thumb, 4 buttons, 20 words per minute:
 design and evaluation of H4-writer. In Proceedings of the 24th annual ACM

 symposium on User interface software and technology (UIST '11). ACM, New
 York, NY, USA, 471-480. DOI=http://dx.doi.org/10.1145/2047196.2047258

Mattheiss, E., Georg, R., Johann, S., Markus, G., Schrammel, J., Garschall, M., & Tscheligi
 M. (2015). EdgeBraille: Braille-based text input for touch devicesnull. Journal of

 Assistive Technologies, 9(3), 2015; 147–158.

Mascetti, S., Bernareggi, C., Belotti, M. (2011). TypeInBraille: A Braille-based typing
 application for touchscreen devices. In: Proc. ASSETS 2011, 2011;pp.295–296.

Meng, Y., Wong, D., and Kwok, L. (2014). Design of touch dynamics based user
 authentication with an adaptive mechanism on mobile phones. In Proceedings of
 the 29th 48Annual ACM Symposium on Applied Computing (SAC '14). ACM,
 New York, NY, USA,1680-1687. DOI: http://dx.doi.org/10.1145/2554850.25

Ma, Y., Feng, J.H., Kumin, L., Lazar, J., and Sreeramareddy, L. (2012). Investigating
 authentication methods used by individuals with down syndrome. Proceedings of the
 14th international ACM SIGACCESS conference on Computers and accessibility,
 ACM, 241–242.

Nitesh, S, Watt, J. (2009). Authentication technologies for the blind or visually impaired,

 Proceedings of the 4th USENIX conference on Hot topics in security, p.7-7,
 August 11, Montreal, Canada.

Nicolau, H., Guerreiro, T., Jorge, J. & Gon, D. (2010). Proficient blind users and mobile
 text-entry. In Proc. of the 28th Annual European Conference on Cognitive
 Ergonomics, ECCE ’10, New York, NY, USA,. ACM,19–22.

http://dx.doi.org/10.1109/ICDCS.2006.52

233

Natã, M. Barbosa, Hayes, J & Wang, Y. (2016). UniPass: design and evaluation of a
 smart device-based password manager for visually impaired users.
 In Proceedings of the 2016 ACM International Joint Conference on Pervasive

 and Ubiquitous Computing (UbiComp '16). ACM, New York, NY, USA, 49-60.
 DOI: http://dx.doi.org/10.1145/2971648.2971722

Oorschot, P. C., Thorpe, J. (2008). On predictive models and user-drawn graphical
 passwords. ACM Trans. Inf. Syst. Secur., 10(4):5:1–5, 33.

Oliveira, J., Guerreiro, T., Nicolau., H, Jorge, J., and Gonçalves, D. (2011). BrailleType:
 Unleashing Braille over touch screen mobile phones. INTERACT ’11. Heidelberg:
 Springer, 100-107.

Orf., D. (2015). Tactus Technology. Tactile Keyboards That Rise Out of Touchscreens
 Are Finally Here. Retrieved from https://gizmodo.com/here-is-facebooks-
 dubious-plan-to-prevent-its-2016-elec-1825072042

Paisios, N. (2012). Mobile accessibility tools for the visually impaired. PHD Thesis.
 2012, Available from: URL: http://cs.nyu.edu/web/Research/Theses
 /nektariosp.pdf (retrieved online September 19, 2012).

Pierce, B. (1995). Braille--what is it? What does it mean to the blind? The World Under
 My Fingers: Personal Reflections on Braille. [serial online] 1995 [cited 2016 Mar
 14]; 15(1), Available from: URL: Retrieved from
 https://nfb.org/images/nfb/publications/fr/

Poh, N., Blanco-Gonzalo, R., Wong, R., and Sanchez-Reillo, R. (2016). Blind subjects
 faces database, in IET Biometrics, vol. 5, no. 1, pp. 20-27, 3 2016.
 doi: 10.1049/iet-bmt.2015.0016

Ruamviboonsuk, V., Azenkot, S., Ladner, R. (2012). Tapulator: a non-visual calculator
 using natural prefix-free codes. In Proceedings of the 14th international ACM

 SIGACCESS conference on Computers and accessibility (ASSETS'12). ACM,
 New York, NY, USA, 221-22

Refreshable Braille Displays. (2018). American Foundation for the Blind. Retrieved from
 http://www.afb.org/prodBrowseCatResults.aspx?CatID=43

Said, K., Kuber, R., Murphy, E. (2015). AudioAuth: Exploring the Design and Usability
 of a Sound-Based Authentication System. Int. J. Mob. Hum. Comput. Interact. 7,
 4 (October 2015), 16-34.DOI=10.4018/IJMHCI.2015100102
 http://dx.doi.org/10.4018/IJMHCI.2015100102

Siqueira et al. (2016). BrailleÉcran: A Braille Approach to Text Entry on Smartphones,"

 2016 IEEE 40th Annual Computer Software and Applications Conference

 (COMPSAC), Atlanta, GA, 2016, pp. 608-609. doi: 10.1109/COMPSAC.2016.5

http://dx.doi.org/10.4018/IJMHCI.2015100102

234

Sepic, B., Ghanem, A., and Vogel, S. (2015). BrailleEasy: One-handed Braille Keyboard
 for Smartphones. Qatar Computing Research Institute, Qatar Foundation

Shabnam, M., Govindarajan, S. (2014). Braille-Coded Gesture Patterns for Touch-
 Screens: A Character Input Method for Differently Enabled Persons using Mobile
 Devices. International Conference on Communication, Computing and

 Information Technology (ICCCMIT-2014).

Southern, C., Clawson, J., Frey, B., Abowd, G., & Romero. M. (2012). An evaluation of
 BrailleTouch: mobile touchscreen text entry for the visually impaired.
 Proceedings of the 14th international conference on Human-computer interaction
 with mobile devices and services, September 21-24, 2012, San Francisco,
 California, USA [doi>10.1145/2371574.2371623]

Soukoreff, R.W., & MacKenzie, I.S. (2001). Measuring errors in text entry tasks: An
 application of the Levenshtein string distance statistic. Extended Abstracts, Proc.

 ACM Conference on Human Factors in Computing System – CHI 2001, New
 York, NY, 319-320.

Sherman, M., Clark, G., Yang, Y., Sugrim, S., Modig, A., Lindqvist, J., Oulasvirta, A. &
 Roos, R. (2014). User-generated free-form gestures for authentication: security
 and memorability. Proceedings of the 12th Annual International Conference on
 Mobile Systems, Applications, and Services, ACM, 176–189.

Saulynas, S. & Kuber, R. Towards BCI and Gestural-Based Authentication for
 Individuals who are Blind. In Proceedings of the 19th International ACM
 Conference on Computers and Accessibility –ASSETS’17, Baltimore, MD, 403-
 404.

Sauer, G., Holman, J., Lazar, H. Hochheiser & J. Feng. (2010). Accessible privacy and
 security: A universally usable human-interaction proof. Universal Access in the

 Information Society, 9 (3), 239- 248. 

Kane, S., Wobbrock, J., Ladner, R. (2011). Usable gestures for blind people:
 understanding preference and performance, Proceedings of the SIGCHI
 Conference on Human Factors in Computing Systems, May 07-12, 2011,
 Vancouver, BC, Canada, doi:10.1145/1978942.1979001

Subash, N., Nambiar, S., and Kumar, V. (2012). Braillekey: An alternative Braille text

 input system: Comparative study of an innovative simplified text input system for
 the visually impaired, in Intelligent Human Computer Interaction (IHCI), 2012

 4th International Conference on, Dec 2012, pp. 1–4.  

Schneier., B. (2009). The secret question is: why do IT systems use insecure passwords?
 The Guardian, http://www.guardian.co.uk/technology/2009/feb/19/insecure-
 passwords-conflickerb-worm.  

http://doi.acm.org/10.1145/2371574.2371623

235

Soft Braille. (2018). Keyboard. Retrieved from https://play.google.com/store/apps
 /details?id=com.dalton.Braillekeyboard&hl=en

Sangore, R. B, Patil, G., Ramani, S., Pasare, S. (2014). Authentication Using Images and
 Pattern. International Journal of Advanced Research in Electrical, Electronics and
 Instrumentation Engineering. Retrieved from https://www.ijareeie.com/
 upload/2014/april/ 27XAuthentication.pdf

Sauer, G., Holman, J., Lazar, J., Hochheiser, H., & Feng, J. Accessible privacy and
 security: A universally usable human-interaction proof. Universal Access in the
 Information Society, 9(3), 2010, 239- 248.

Suo, X. Zhu, Y. Scott, G. O. (2005). Graphical Passwords: A Survey, Proceedings of the
 21st Annual Computer Security Applications Conference, p.463-472, December
 05-09, 2005 [doi>10.1109/CSAC.2005.27]

Sae-Bae, N. Memon, N. and Isbister, K. (2012). Investigating multi-touch gestures as a
 novel biometric modality. Proc. of IEEE Fifth Intl’ Conf. on Biometrics: Theory,
 Applications and Systems (BTAS), 14:156–161.

Tobe, C. B., Callahan, E., and Callahan, M. (2000). Embossed Printing in the United
 States, in Braille: Into the Next Millennium, J. M. Dixon, Editor. National Library
 Service for the Blind and Physically Handicapped of the Library of Congress:
 Washington, D.C., 41-71.

Von Zezschwitz, E., De Luca, A., & Hußmann, H. (2014). Honey, I shrunk the keys:
 Influences of mobile devices on password composition and authentication
 performance. Proceedings of the 8th Nordic Conference on Human-Computer
 Interaction: Fun, Fast, Foundational, ACM, 461–470.

WritingBraille. (1999). MarvelSoft Enterprises, Inc., DBA Future Aids, The Braille

 Superstore. Supplying products to blind people and their families since 1999.
 Retrieved from http://www.Braillebookstore.com/Writing-Braille

What is Braille. (2008). The Tennessee Council of the Blind (TCB). Retrieved from
 http://www.acb.org/tennessee/Braille.html

Wolf, F., Kuber, R., Aviv, a. Perceptions of Mobile Device Authentication Mechanisms
 by Individuals who are Blind. ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore,
 MD, USA

Yamada, H. (1980). A Historical Study of Typewriters and Typing Methods: from the
 Position of Planning Japanese Parallels. Journal of Information Processing, 2,
 175-202.

	Mrim Alnfiai
	Submitted in partial fulfilment of the requirements
	Dalhousie University
	TABLE OF CONTENTS
	5.2.1 USER INTERACTION MODULE………..…..…………………………..…...138
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	LIST OF ABBREVIATIONS USED

	CHAPTER 1: INTRODUCTION
	1.1 Research Objective

	1.2 Research questions
	1.3 Overview of the thesis contributions

	Figure 1. An overview of thesis contributions
	1.4 Thesis outline

	CHAPTER 2: BACKGROUND AND LITERATURE REVIEW
	2.1 Braille patterns

	Figure 2. The Braille code
	Figure 3. The Alphabet patterns in Braille
	Figure 4. Patterns of Common Punctuation Marks in Braille
	Figure 5. Patterns of numbers in Braille
	Table 1. Prefixes and suffixes forms in Grade 2
	Table 2. Contraction and shorten words forms in Grade 2
	Table 3. Removing the vowels in words in Grade 2 Braille
	2.2 Related work
	2.2.1 Existing calculators for blind people
	CHAPTER 3: FRAMEWORK FOR ASSISTIVE TECHNOLOGY
	3.1 Overview of the framework for the proposed assistive tools
	3.2 Framework overview

	Figure 6. Framework for assistive tools for visually impaired
	3.3 Framework components

	CHAPTER 4: TEXT INPUT METHODS
	4.1 The SINGLETAPBRAILLE TEXT ENTRY METHOD
	4.1.1 Typing and editing on a touchscreen
	4.1.1.1 Grade 1

	Figure 7. Sample of categorization of Braille characters based on number of dots
	4.1.1.2 Grade 2

	Figure 8. Example of entire words abbreviations in Grade 2
	Figure 9. Sample of typing shorten words forms in Grade 2
	Figure 10. Algorithm flowchart
	4.1.2 Algorithm advantages
	4.1.3 Typing and editing operations

	Table 4. Braille keyboard interaction techniques and their purposes
	4.2 SingleTapBraille implementation

	4.2.1 Experimental Tools
	4.2.1.1 Android OS
	4.2.1.2 Android Studio
	4.2.1.3 Microsoft Excel
	4.2.2 Experimental services
	4.2.2.1 TalkBack service

	Figure 11. TalkBack service
	4.2.3 Experimental model

	We used onTouchEvent, which is ith MotionEvent class to detect common gestures such as tap, press and swipe on a screen.
	b. Using onTouchEvent() to Detect Gestures

	4.2.3.1.1 Explanation of Gestures
	Figure 12. The description of gestures recognition algorithm
	Figure 13. Snapshot of swiping gesture recognition
	Figure 14. The description of Braille characters’ recognition algorithm
	Figure 15. Snapshot of Braille characters’ recognition algorithm
	Figure 16. Snapshot code of Grade 2 abbreviation method
	Figure 18. Snapshot of switching between the keyboard layout code
	Figure 20. Snapshot of add space code
	Figure 22. Snapshot of Backspace method code
	Figure 24. Snapshot of write Text method code
	Figure 26. Snapshot of speak method code
	4.2.4 SingleTapBraille interface

	Figure 27. SingleTapBraille interface
	4.3 EVALUATION METHODOLOGY
	4.3.1 RECRUITMENT OF PARTICIPANTS

	Table 5: Participants’ demographic data
	4.3.2 METHODOLOGY
	4.3.2.1 Study Procedure
	4.3.3 RESULTS AND DISCUSSION
	4.3.3.1 Results
	4.3.3.1.1 Quantitative results
	1. Speed

	Figure 28: Text entry speeds (WPM) for each participant for
	2. Accuracy

	Figure 29: Average total error rate for each participant for
	4.3.3.2 Qualitative Feedback
	4.3.3.2.1 Pre-questionnaire
	4.3.3.2.2 Usability questionnaire
	4.3.3.2.3 Interview

	4.3.3.3 DISCUSSION
	4.3.3.3.1 Speed and accuracy
	4.3.3.3.2 Keyboard Features
	4.4 BRAILLEENTER INPUT METHOD
	4.4.1 The Framework of BrailleEnter Text Entry Method
	4.4.1.1 Typing function
	4.4.1.2 BrailleEnter algorithm

	Figure 30: Typing the letter “b” in BrailleEnter
	4.4.1.3 Typing numbers

	Figure 31. An example of typing a number in BrailleEnter
	4.4.1.4 Typing punctuation

	Figure 32. Type symbol “,” in BrailleEnter
	4.4.1.5 Editing function

	Table 7. Editing interaction methods and their functions in BrailleEnter
	4.4.1.6 Using voice feedback
	4.4.1.7 Keyboard advantages
	4.5 BRAILLEENTER KEYBOARD IMPLEMENTATION
	4.5.1 Experimental model

	4.5.1.1 User interaction module
	Figure 34. Snapshot of Braille characters recognition code
	Figure 35. Snapshot of Braille punctuations recognition
	Figure 36. Time handler
	4.5.1.2 BrailleEnter Keyboard interface

	Figure 37. BrailleEnter interface
	4.6 Preliminary evaluation
	4.6.1 Participants

	Table 8: Participants’ demographic data
	4.6.2 Apparatus
	4.6.2.1 Swift Braille keyboard

	Figure 38. Swift Braille keyboard
	4.6.2.2 Text Phrases

	Table 10: The twelve test phrases used
	4.6.3 Experimental Design

	Figure 39: Experimental setup
	4.6.3.1 Procedure
	4.6.4 Evaluation Metrics
	4.6.5 Results and Discussion
	4.6.5.1 Quantitative results
	4.6.5.1.1 Speed

	Figure 40: Typing speed for both keyboards
	4.6.5.1.1.1 Keyboards’ speed across text types

	Figure 41: Average typing speed of both keyboards across text types
	Table 11: Average typing speed of both keyboards
	4.6.5.2 Accuracy
	4.6.5.2.1 Error rate

	Figure 42. Average error rate of both keyboards
	Figure 43. Average total error rate for each participant for
	4.6.5.2.2 Corrected error rate

	Figure 44. Average corrected error rate for each participant
	4.6.5.2.3 Uncorrected error rate

	Figure 45. Average uncorrected error rate for each participant
	Figure 46: Average keystrokes per character rate for
	4.6.5.2.4 Error rate across text types

	Figure 47. Average of total error rate based on phrases type, and keyboards
	4.6.5.2.5 Lewis’ rating questionnaire results

	Table 12: Results of Lewis’ rating questionnaire
	4.6.5.2 Qualitative results
	4.6.5.2.1 Pre-questionnaire
	4.6.5.2.2 Interview
	4.6.5.2.2.1 BrailleEnter Strengths and Limitations
	4.6.5.2.2.2 BrailleEnter suggestions
	4.6.5.2.2.3 Swift Braille strengths and limitations
	4.6.5.2.2.4 Swift Braille suggestions
	4.6.5.2.2.5 Observation
	4.6.5.2.2.6 Preference
	4.6.6 Discussion
	4.6.6.1 Speed and accuracy
	4.6.6.2 Usability and preference

	Table 13. Result summary
	Figure 48. Suggestion for improvements of Switch Braille keyboard
	4.6.6.3 Comparative analysis with other input methods for visually impaired

	Table 14. An overview of input method performance
	4.7 CONCLUSIONS

	CHAPTER 5: NUMBER INPUT METHOD
	5 .1 The Design of the BrailleTap Calculator

	Table 16. Categorization of Braille numbers based on number of dots
	Figure 49. Algorithm flowchart
	5.1.1 Representing Braille numbers using BrailleTap

	Table 17. Braille keyboard interaction techniques and their purposes.
	5.2 BrailleTap calculator Implementation

	5.2.1 User interaction module
	5.2.2 Gesture Recognition Algorithm
	5.2.2.1 Explanation of Gestures
	Figure 51. Code of gesture recognition algorithm
	Figure 53: Snapshot of number recognition algorithm code
	Figure 55. Snapshot of switching between calculator operations code
	Figure 58. BrailleTap user interface
	5.3 Pilot Study

	Table 18: The time spent to use the button calculator and the BrailleTap calculator
	5.4 Conclusion

	CHAPTER 6: BRAILLEPASSWORD METHOD
	6.1 Research Challenges
	6.2 BraillePassword authentication technique

	6.2.1 Design Principles  
	6.2.2 The BraillePassword Design

	Figure 59. Sample of Braille lowercase letters
	Figure 60. Example of inserting capital A in BraillePassword
	Figure 61. Example of typing number 1 in the BraillePassword
	Figure 62: Example of typing punctuation in BraillePassword
	6.2.3 BraillePassword interfaces
	6.2.3.1 Registration interface

	Figure 63: Registration pages
	6.2.3.2 Login interface
	1. Username page
	6.2.3.3 Password recovery

	Figure 64. Password recovery pages
	6.2.4 Interaction techniques

	Table 19. Editing interaction techniques in BraillePassword
	Table 20: Switching between authentication interfaces in BraillePassword
	6.3 BraillePassword Implementation
	6.3.1 BraillePassword authentication module

	Figure 65. Register and sign in steps in the BraillePassword method
	1.1 Register and login Algorithm
	Figure 67. XML codes of Register and login fields
	2.1 Register process

	Figure 68. The Java code of the signup function
	2.2 Login process
	Figure 69. Snapshots of login function code
	Figure 70. Vibration function
	Figure 71. XML code of welcome interface
	Figure 72. A snapshot of register database
	3.4 Connecting the Android app with the database
	Figure 73. Login PHP code
	Figure 74. Register PHP code
	3.5 Connecting PHP files to Android app
	Figure 75. Connecting PHP files to Android app code
	3.6 Connecting PHP to MySQL Database

	Figure 76. Connecting PHP file to MySQL Database
	Figure 77. The Java code of validation function
	Figure 78. The code of Braille capital sign
	Figure 79. The code of Braille number sign
	Figure 80. Moving between fields
	6.4 BraillePassword Entropy

	4.2 6.5 User Study
	6.5.1 Apparatus

	Figure 81. The traditional authentication application
	6.5.2 Participants

	Table 21. Participants’ demographic data
	6.5.3 Experimental Design
	6.5.3.1 Study procedure

	Table 22. Registration information for the training phase
	4.3 6.5.4 Results
	6.5.4.1 Quantitative results
	6.5.4.1.1 Registration time

	Figure 82. Registration time for both authentication methods and order
	6.5.4.1.2 Login time
	6.5.4.1.3 Password entry speed
	6.5.4.1.4 Failure rate
	6.5.4.1.5 Password accuracy and memorability
	6.5.4.1.6 Password Strength
	6.5.4.1.7 Guessing of passwords from camera videos
	6.5.4.2 Qualitative result
	6.5.4.2.1 Pre-questionnaire

	6.5.4.2.2 Interview
	6.5.5 Discussion
	6.5.6 Study limitation
	6.6 Conclusion and future work

	CHAPTER 7: DISCUSSION AND CONCLUSION
	7.1 Discussion
	7.2 Conclusion
	7.3 Future work

	Appendices
	REFERENCES
	Alnfiai, M., Sampalli, S. (2017b). BrailleEnter: A Touch Screen Braille Text Entry Method for the Blind. The 8th International Conference on Ambient Systems, Networks and Technologies (ANT 2017), Procedia, pp.257-264.

	Eiband, M., Khamis, M., von Zezschwitz, E., Hussmann, H., Alt, F. (2017). Understanding shoulder surfing in the wild: stories from users and observers. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 4254–4265.
	Marques, D., Carrico, L., Guerreiro, T. (2015). Assessing Inconspicuous Smartphone Authentication for Blind People. Retrieved from https://arxiv.org/abs/1506.00930
	MBraille. (2018). Accessible keyboard. Retrieved from https://itunes.apple.com/ca /app/mBraille/id639199558?mt=8
	Meng, Y., Wong, D., and Kwok, L. (2014). Design of touch dynamics based user

