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“No, a proof is a proof. What kind of a proof? It’s a proof. A proof
1 a proof, and when you have a good proof, it’s because it’s proven.”

Jean Chrétien
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Abstract

A polynomial f in Q[x,y, 2| is integer-valued if f(z,y,z) € Z, whenever z,y, z are
integers. This work will look at the case where f is homogeneous and construct
polynomials such that the denominators are divisible by the highest prime power
possible and find bases for the modules of homogeneous integer-valued polynomials
(IVPs). We will present computational methods for constructing such bases and an
algebraic method to construct these. We explain the connection between 3-variable
homogeneous IVPs of degree m and 3-variable IVPs of degree m, as well as with
2-variable IVPs of degree m evaluated at odd values only, then use linear algebra to
calculate bases in both cases. In order to obtain polynomials written as a product
of linear factors, we will look into extending the construction of finite projective
planes to rings and explain a connection between line coverings of those planes and

homogeneous IVPs.
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Chapter 1

Introduction

Rings of the form Int(S, D) “have many remarkable properties, and are a source of

examples and counterexamples in commutative algebra”. W. Narkiewicz

The results we describe below have been obtained over different rings, but they
can be adapted to Z, I, and Z;), the rings of interest in this work, as we will explain

for the appropriate cases.

This work is about IVPs on a set S C Z™. These are polynomials in Q[zy, ..., z,]
that return an integer when evaluated at any value in S. The set of IVPs on S forms

a ring and a Z-module denoted by
t(S,Z) = {f € Qlar, .., 2] | £(S) € Z}.

Since we are considering Z-modules, we are interested in finding bases for Int(.S, Z).

For example, when n = 1 and S = Z, we have that f(z) = x(g_l) is integer-valued,

since for any two consecutive integers there is always an even one. Generalizing this

gives the set of polynomials

{(Z;L) (e - 1)-~7~1!(x—n+ 1)}@0

which is, in fact, a Z-basis for Int(Z,Z). This basis contains one polynomial of each

degree, and so it is what will be referred to as a regular basis.

This work will focus mainly on homogeneous IVPs, which, for a given degree m,

1



are polynomials of the form

f(l'l, e ,xn) = Z Cil,ig,.“,inxill‘r? e ‘rflnv

i1+i2+Fip=m

where the coefficients ¢;, ;, s, are rational numbers and f satisfies the integrality

n

condition described above. Note that the polynomial where all coefficients are zero,

will be included in all modules we work with.

In addition to the nice number theoretical results one may obtain, further mo-
tivation to study IVPs in general and the homogeneous case in particular is their
connection to algebraic topology, which will be explained in Chapter 3. Integer-
valued polynomials tend to appear in homotopy theory, as described in [Joh14] and

summarized in the next chapter.

The connection between IVPs and topology has been studied for much longer.
One of the first instances is from 1971 when Adams, Harris and Switzer [AHST1]
explained some of the K-theory of BU through IVPs. Building on these results,
Clarke showed that the complex K-theory homology of the infinite complex pro-
jective space, Ko(CP>), is isomorphic to Int(Z,Z), and this can be extended to
Ko(BT™) ~ Int(Z",Z). The connection to homogeneous polynomials was made by
Baker, Clarke, Ray and Schwartz [BCRS89] who identified the primitive elements of

Ko(BU(n)) as the symmetric homogeneous IVPs in n-variables.

The goal of this work is to identify homogeneous IVPs, focusing on the 3-variable
case. We start by localizing at a prime. Usually p = 2 since it will allow us to
divide by higher powers of p within computational limits, but our methods extend

to odd primes. When constructing these polynomials, we are interested in how big

a denominator we can get, i.e., we are looking for basis elements of the form f; = pqeg

with ¢; € Zy)[x]. We are concerned with finding maximal e; such that f; is an IVP.

The 2-variable case was described by Johnson and Patterson’s work [JP11], hence

our results will build on this work. Note that, given the topological correspondence,
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the 3-variable case will not behave like the previous one, so we need to develop new

tools, but we will often refer to the 2-variable case to test our methods.

Our work is done over Z C Z,) C Q, but many of the results in the next chapter
are given in much greater generality. We have explored two different strategies to
obtain homogeneous 3-variable IVPs. The first is through computational methods

and the second is by direct construction.

For the computational part, we used tools from linear algebra to calculate the
polynomials for a restricted range of degrees. We started by using the Smith nor-
mal form of a matrix that writes a homogeneous basis through a known (non-
homogeneous) integer-valued one. This method produced results, but calculating
the necessary Smith normal form becomes computationally impossible beyond de-
gree 22, given the memory required for such calculations. Our next approach was to
use the Hermite normal form, where we focused on finding the intersection of three
submodules of the homogeneous 3-variable IVPs whose regular bases we can compute
completely. This allowed us to calculate a basis up to degree 25 when localized at

p = 2 and even further for other primes.

Even though the two previous methods produced IVPs with largest denominators
possible, the polynomials are irreducible and tend to have many terms, which makes
if difficult to find a general pattern for their construction. This is what the second
part of our explorations addresses. How can we construct such polynomials more
generally? Ideally, we want to write these as a product of linear factors, as is the

case of the polynomials in the basis for Int(Z,Z).

Since we are interested in the 3-variable case and wonder how large k can p* be
in the denominator of an IVP, our approach is to find these using generalized projec-
tive planes. These were first introduced by Klingenberg in [Kli54]. The connection
between evaluating IVPs and finite projective planes is as follows: for f(x,y, z) ho-
mogeneous of degree m we have f(Ax, \y, A\z) = X" f(x,y, z). Thus when evaluating

at any triple (z,/, '), where p divides all three of 2/, v/, 2/, f(2/, v/, 2") will always
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be divisible by p™. Similarly when working locally we are interested in dividing by
p" but not in the remaining result, so multiplication by units in F, will not affect our
results. This corresponds to how finite projective planes are built, and so we have a
correspondence between polynomials with linear factorizations and union of lines in
projective planes. Since we are interested in how large a power of p can be present in
the denominator, we will need to work over the ring Z/(p*), for k < h, instead of the
field IF, which will have us work with projective Hjelmslev planes. The polynomials
constructed from these unfortunately did not admit as large a denominator as the

ones obtained from the computational methods, but are much simpler to understand.

This thesis is structured as follows: in Chapter 2 we will set up the basic defi-
nitions for studying IVPs and motivate why we study these. Then Chapter 3 will
explain how homogeneous [VPs connect to algebraic topology. We then restrict the
situation to the simpler case of looking at polynomials that are integer-valued at odd
values only in Chapter 4. The next two chapters are on the computational data we
have for homogeneous 3-variable polynomials. Lastly, we use projective H-planes to

construct high degree homogeneous 3-variable IVPs in Chapter 7.



Chapter 2

Background and a Survey of Known Results

The goal of research in this area is to develop methods for computing a basis and
the valuative capacity (an invariant) of the ring of IVPs in one or several variables,

in both the homogeneous and general cases.

This is an expository chapter that reviews the work that has been done on integer-
valued polynomials (IVPs) and that is used as a basis of this project. The chapter
starts with general single variable results, then generalizes to the multivariable case
where we look at the existing results on the homogeneous case. The chapter ends by

summarizing results for the 2-variable homogeneous case.

In general, the ring of IVPs on a domain D is a free D-module [CC97, I.1]. In
certain cases, we can not only obtain that our module has a basis but also that the
basis is regular (i.e., that there is one polynomial of each degree in the basis). But
knowing this does not guarantee that we can find the basis, so this work will look
into finding some of these. Since the results from this thesis are over Z, Z/(p) and

Zp), the results from the background section have been restricted to Z.

2.1 Integer-valued Polynomials

For the rest of this chapter let S C Z.

Definition 1. [CC97, 1.1] For any subset S, the ring of integer-valued polynomials
on S is defined to be

Int(S,Z) = {f(x) € Qla] | £(5) € Z}.
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Definition 2. [CC97, I1.1] The sequence of characteristic ideals of S is given by
(I, | n=0,1,2,...) where I, is the fractional ideal of Q formed by 0 and the leading
coefficients of the elements of Int(S,Z) of degree no more than n. The characteristic
sequence of S with respect to a fixed prime p is the sequence of negatives of the p-adic

valuations of these ideals, denoted by agp(n).

In 1997, Bhargava introduced the following definition which is very important when

studying IVPs:

Definition 3. [Bha97, 2] For S C Z, and p a fized prime, a p-ordering of S is a

sequence (an)n>0, such that for each n, a, € S is chosen to minimize

vp((an — anr) -+ (a, — ag)).

ag can be chosen to be any element of S, and v,(m) is the p-adic valuation of m,

that is, the largest k such that p* divides m.

Definition 4. [Bha97] Define
Ity (S, Z) = {f(z) € Qlz] | f(S) € Z, deg(f) <mj},
that is the set of IVPs over Z of degree less than or equal to m.

Bhargava proved the following proposition that links IVPs to p-orderings by using

the characteristic sequence (Definition 2):

Proposition 5. [Bha97, Th. 19] Let (a,)n>0 be a sequence of distinct elements of
S. Then, (an)n>0 s a p-ordering of S if and only if for all m, (0 < n < m), the

polynomials
n—1
X — ag
n X) =
fa(X) ,gan—ak

form a basis for the Z,)-module Int,,, (S, Zy,)) = {f(z) € Qlz] | £(S) C Z, deg(f) <

m}. In this case we have that v, o (an — ar)) = asy(n) for 0 <n < m.



2.1.1 Significance of Integer-valued Polynomials

In their monograph [CC97, Introduction] Cahen and Chabert introduce the study of
IVPs, which are beautiful and interesting to study from a number theory perspective.
They give answers to the classic problem of how much can we divide? By writing
a polynomial as a product of linear factors we get more control of the divisibility
after input values, and ideally we obtain high divisibility for all elements in the set

of interest. Below are some interesting algebraic properties of I[VPs.

For a domain D, it is worth studying the ring Int(S, D) (denoted Int(D) in the
special case S = D) on its own, since it has nice properties and relates to various
mathematical areas. This subsection shows some interesting known results about
IVPs. These will not be proved in this thesis, but they demonstrate many of the
interesting connections between IVPs and other areas of mathematics. The connec-

tions between topology and IVPs will be explored in Chapter 3.

They study Int(D) and its connection to D itself. Localizations of these rings
have been studied, and IVPs behave well with respect to localization. For example,
if D is Noetherian, given a multiplicative subset S of D we get that S~! Int(D) and
Int(S!D) are equal [CC97, Prop 1.2.7].

Taking D to be local with unique maximal ideal m, we can consider the m-adic
topology and prove that IVPs are uniformly continuous from D to D, where D de-
notes the completion of D with respect to the m-adic topology. Using this, Mahler’s
results on p-adic continuous functions can be extended, proving an m-adic version of
the Stone-Weierstrass approximation theorem. Although Int(Z) is not Noetherian,
thus not a Dedekind domain, it is a two-dimensional Priifer domain that is not an

intersection of rank one valuation domains [Chal4, §2].



2.2 Known Results: General Cases

2.2.1 Bhargava’s Work

Manjul Bhargava [Bha0O] has contributed to many areas of mathematics. In this
section we introduce some of his work that relates to IVPs, that is, results about
factorials and p-orderings. A good introduction to this topic is [Bha00], where the
author does not aim to prove one main result, but, instead, gives information about
the factorial function from a number theoretic perspective, which is often forgotten
given all the combinatorial attention that the factorial gets. The most well-know
number theoretical result about the factorial is that k! divides the product of any k

consecutive integers. An equivalent statement of this is

Theorem 6. [Bha0O, Th. 1] For any non-negative integers k and ¢, (k + £)! is a
multiple of k!f!.

Proof.

k0! (k+t
A

]

We now look into less trivial applications of the factorial in number theory, and
discuss the close relationship between the factorial function and the sets of possible

values taken on by a polynomial.

Definition 7. [Bha00, 2| Given an integral non-zero polynomial f, that is a poly-
nomial with integer coefficients, the fixed divisor of f over Z, d(Z, f) is the greatest

common divisor of all the elements in the image of f on Z, that is
d(Z, f) = ged{f(a) | a € Z}.

Definition 8. For an integral polynomial f, if all of the coefficients of f are relatively

prime, then f is said to be primitive.

Theorem 9. [Bha00, Th. 2| Let f be a primitive polynomial of degree k, and let
d(Z, f) = gcd{f(a) | a € Z}. Then d(Z, f) divides k!. (This is sharp, i.e., there are
cases where d(Z, f) = k!.)
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Theorem 10. [Bha0O, Th. 3] Let ag, ay, ..., a, € Z be any n+ 1 integers. Then the

product of their pairwise differences H(ai — a;) is a multiple of 011121 ---nl. (This
i<j
is sharp.)

Bhargava discusses the relationship between the number of functions from Z/nZ to
Z/nZ and the number of functions from Z/nZ to Z/nZ that can be represented by
polynomials, which is equivalent to the number of functions from Z to Z/nZ that

can be represented by polynomials.

Theorem 11. [Bha00, Th. 4] The number of functions from Z to Z/nZ that can

be represented by polynomaials is given by
n—1
H n
ged(n, k)

k=0

Note that when n is prime there are n™ such functions.

Then p-orderings are introduced, as in Definition 3 and following this we define:

Definition 12. [Bha00, 4] Given (an)n>0 a p-ordering of a subset S of Z, let
a,(S,p) = vp((an, — ap_1) - (an — ag)). Then (o, (S,p)) is the associated p-sequence
of S.

Theorem 13. [Bha00, Th. 5] The associated p-sequence of S is independent of the
choice of p-ordering.
Example 14. Z~, in increasing order is a p-ordering of Z at all primes.

Using this we can get a definition of the factorial function for subsets of Z.

Definition 15. [Bha00, Def. 7] Let S be any subset of Z. Then the factorial
function on S, denoted by kls. is defined by

kz's — Hpak(svp)_
p

This definition allows us to revisit the four previous theorems about the factorial

for any S C Z.
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Theorem 16. [Bha00, Th. 8] For any non-negative integers k and ¢, (k + ¢)!s is
still a multiple of k!sl!s.

Theorem 17. [Bha00, Th. 9] Let f be a primitive polynomial of degree k, and let
d(S, f) =gcd{f(a) | a € S}. Then d(S, f) divides kls. (This is sharp.)

Theorem 18. [Bha0O0, Th. 10] Let ag,aq,...,a, € S be any n + 1 integers. Then
the product of their pairwise differences H(a,; —aj;) is a multiple of 01g1!s2lg - - - nlg.

1<j

(This is sharp.)

Theorem 19. [Bha00, Th. 11] The number of polynomials from S to Z/nZ is given
by

n—1

H n
ged(n, klg)

k—0
The author proves these statements, which we will omit here. We next look into

definitions that come into play quite often when studying this topic.

Definition 20. [Bha00, 7] Given an integer n, the falling factorial is x™ = x(x —
1)---(x —n+1) and if S is a subset of Z, with p-ordering (a;), then x(™sP =

(x —ap)(z—ay) - (xr —ap_1).
The theorem below forms the foundation for this thesis.

Theorem 21. [CC97, Prop. 1.1.1] A polynomial is integer-valued on Z if and only

if it can be written as a Z-linear combination of the binomial polynomaials

(D _m(as—l)--l-{:!(:v—k%—l)?

for k =0,1,2,.... The binomial polynomials with (:é) = 1 actually form a basis of
Int(Z).

Proof. The polynomials form a Q-basis of Q[z], since there is one of each degree and
one can see that the polynomials are integer-valued. Thus a Z-linear combination of

these polynomials is in Int(Z).
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Conversely, let f € Int(Z), and write f(x) = Ao+ iz+- -+, (2), where A\g, A\i,..., A\,
Q. Then Ao = f(0) € Z. Suppose by induction on k < n that \; € Z for i < k. Then
k
g, = f — Z i (x) is integer-valued and g = Mgy (kil) 4+ A (i) Therefore
)
i=0

Akl ng(/;—i— 1) € Z, since for all i > k + 1, (‘f) =0. O

Note that various forms of this result existed before the monograph [CC97], which

describes them in its Historical introduction.

Theorem 22. [Bha00, Th. 23] A polynomial is integer-valued on a subset S of 7

if and only if it can be written as a Z-linear combination of the polynomials

By s _ (x —app)(x —ayy) - (x — ag_1x)
ks kg ’

for k = 0,1,2,..., where (a;;);%, is a sequence in Z that is term-wise congruent

modulo v (S, p) to a p-ordering of S, for each prime p dividing k!s.

The author then discusses the multivariable case, but we will review this in a
later section. He then explores other applications of generalized factorial functions,
one of these being p-adic interpolation. Using the previous and generalizing to the

subset of a local field, one can obtain:

Theorem 23. [Bha00, Th. 4] Let S be any compact subset of a local field K. Then

every continuous map f: S — K can be expressed uniquely in the form

. Bn’g(af)
flz) = §Cn nlg

where the sequence ¢, tends to 0 as n — 0.

2.2.2 Single Variable: Summary of [Chal4]

This paper surveys the research area of [VPs, and presents most approaches that
have been used so far, includng generalizations. One of the goals of this paper is to
identify, for a domain D, when Int(D) has a regular basis, and, when possible to find

that basis. This paper focuses on the additive properties of Int(D) and we will use
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these for Int(Z).

For example, some polynomials in Int(Z) are (¥) for n > 2, and F,(z) = C’JPIT_”” for

p a prime by Fermat’s Little Theorem ( [DF04, pg. 96]).

Proposition 24. [CC97, 11.2] The set {1,z} U{(2? — x)/p | p € P}, where P is
the set of all primes, is a minimal system of polynomials in which every element of
Int(Z) may be constructed by means of sums, products and compositions, i.e., the

removal of any of these polynomials will not give Int(Z).

Proposition 25. [Chal4, 2.3] For every integer-valued polynomial g of degree n,
n!-g(x) € Zlx].

Proposition 26. [Chal4, 3.2] The subset formed by the leading coefficients of the
integer-valued polynomials of degree < n, that is, the characteristic ideal of Int(Z),

is L7.
n:

For S C Z we have defined Int(.S,Z) and we have the following inclusions:
Zlz] C Int(Z) C Int(S,Z) C Q[z].

Now we consider a Z-algebra B such that Z[z] C B C Q|x].

Definition 27. A basis of the Z-module B is said to be a regular basis if it contains

exactly one polynomial of degree n, for all non-negative integers n.

Definition 28. Two subsets E and F' of Z are said to be polynomially equivalent if
Int(E,Z) = Int(F,Z).

Similar to the characteristic sequence (see Definition 2), we get:

Definition 29. The characteristic ideal of index n of the Z-module B is the fractional
ideal J,(B) formed by 0 and the leading coefficients of the polynomials in B of degree

less than or equal to n for all n > 0.

Clearly, (J,(B))nen is an increasing sequence of Z-modules such that: for all
]{7,6 € N, 7 C 3k(B) - Q and 3k<B) . 3@(183) - Jk_._g(]B)
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Lemma 30. [Chal4, Prop. I1.3.1] Let f be a polynomial in Q[z] with degree n.
Assume that xo,1,...,x, are distinct elements of Q such that f(x;) € Z for 0 <
i <n, then df belongs to Z[x] where d = H (T — ;).

0<i<j<n

Proposition 31. [Chal4, Prop. 11.1.4] A sequence of polynomials ( f,)n>0, where
deg(fn) = n, is a reqular basis of B if and only if, for everyn > 0, the ideal generated
by the leading coefficients of the f,s is J,(B). In particular, the Z-algebra Int(B)

admits a reqular basis as a Z-module if and only if all the J,(B)s are principal.

Example 32. When S = Z, J,(Z) = L Z.

The inverse of a nonzero fractional ideal J of Z is the fractional ideal J~! = {z €
Q| zJ CZ}.

Definition 33. The factorial ideal n\% of index n of the subset S with respect to the
domain D is the inverse of the fractional ideal J,(S,7Z), i.e., n'% = J,(S,Z)7".

The sequence (n!%),cn is a decreasing sequence of integral ideals of Z.

Proposition 34. [CC97, 11.3.7] Given the factorial ideals n\% = d,Z, the polyno-
mials ign(x) then form a regular basis of the Z-module Int(S,7Z).

Proposition 35. [CC97, 11.3.7] The Z-module Int(S,Z) is free.

2.2.3 Multivariable Integer-valued Polynomials

We can now look into the ring of IVPs for the multivariable case as in [Chal4] and
[Evr12] and generalize some of the previous results, which gets us closer to our goal
of studying homogeneous 3-variable polynomials. Let m be a positive integer, let S
be a subset of Z™ and let mg, my, ... be any ordering of the monomials of Z™[x] ,

and consider the Z-algebra

Int(S,Z) ={f(z1,...,xm) € K|x1,...,2m] | f(S) C Z}.
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Let J3,(S,7Z) be the Z-module generated by all the coefficients of the polynomials of
total degree less than or equal to n in Int(S,Z) and let

0D = 3.(8,2)" = {z €Z | of € Zm, ..., wn¥f € (S, Z), deg(f) < n}.
For ¢ > 1 and any sequence (z,...,z, ;) of elements of Z™, let

Alzy, .-, 20 1) = det(m;(x;))o<ij<e

Before looking into bases for the multivariable case, we generalize p-ordering,
and, therefore factorials. In Definition 3 of p-ordering, choosing a; to minimize the
power of p dividing the product of differences is equivalent to choosing a; such that it

minimizes the p-adic valuation of the following Vandermonde determinant [Bha00]:

1 ay a2 - af
1 a a - af
= H(ai a;)
i<j
1 a, a2 - af

Before generalizing p-orderings to many variables, we need to assume that no
non-zero polynomial f € Q[z] is such that f(S) = 0. We will assume that we have
a sequence of monomials (m;),>o that have an order which is compatible with the

total degree, so that for ¢ < j we have deg(m;) < deg(m;).

Definition 36. [Evrl2, 4] Let S be a subset of Z". Then for a fized ordering

mo, M1, . .. of the monomials of Z[x1, . . ., x,), a p-ordering of S is a sequence ay, ay, . . .
of the elements in S inductively chosen so that a, minimizes v,(A(ag, ay,- .-, a;))
where
mo(ay) mi(ag) ma(a) mi(ay)
mo(a;) mi(a;) mo(ay) mk(ay)
Alag, ;- ap) =

mo(ay) mila,) ma(a) - mi(ay,)
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The associated p-sequence of S is then given by

_ Alag; ay, - - - a)
(S, p) = vp (A(QoaQD e y))

and the generalized factorial klg is

klg = Hak(ﬁ,p).
p
When S is a Cartesian product, its factorials are easy to compute, since they can
be obtained as in the single variable case. This is still the case when S is polynomi-
ally equivalent (recall Definition 28) to a Cartesian product. It would be interesting
to compute factorials for subsets that are not polynomially equivalent to a Cartesian

product [Evr12]. This thesis will look at some of these cases.

Below is a proposition found in [Chal4] that summarizes the results from [Evr12]:

Proposition 37. [Chald][Evr12, 19,20] Let (a;)r>0 be a sequence of elements of S
such that, for every k >0, A(ag, . ..,a,) # 0. Furthermore, consider the associated

polynomials
A(@O) s 7@]97172)

Aag, .., a)

The following assertions are equivalent:

Fi(z) =

1. (ay)k>0 s a p-ordering of S.
2. For every k >0, Fy € Int(S,Z).
3. {Fi(x) }i>o is a basis if the Z-module Int(S,Z).

4. For every f(x) € Qlz|, if the indices of the monomials of f are less than k,
then f(z) € Int(S,Z) < f(ay), ..., flay_q) € Z.

We now look into a case where we can construct a basis:

Proposition 38. The polynomials {(f) (z) | s € Z, r,s > 0} form a basis of the
Z-module Int(Z*, 7).
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Proof. (f) (ZS/) form a basis of the Q-vector space Q[z,y|, since we can obtain all
monomials, i.e., (jf) (z) has leading term z"y*. Since (’:) and (z) are integer-valued,
their product is as well, and any Z-linear combination of these polynomials is integer-

valued.

Conversely, let f € Int(Z?,Z) be a polynomial of degree n + m and

o= 3 e (Y),

r,s>0,
r<n, s<m

with a,, € Q. It suffices to show a,, € Z. We first order the terms by increasing
degree of r+s, then for a given r+s = k, we order by increasing degree of . Suppose
by induction on £ < n 4+ m that a,; € Z for r + s < k. For r + s = k 4 1, there can
be up to k + 2 terms of this degree, since the are at most k + 2 distinct pairs such
that r + s = k 4+ 1, so we proceed by induction on these terms. Suppose that for all
j<k+1,a;s €Z. When j+s =k + 1, we need to show that a;4; s € Z. In order

to use our induction hypothesis we work with

\ (y
Gk,j = f - T;]ﬂ Qr s (T‘) (8)

r<j

then gy ; = aj11 (jil) (y) + ot anm (”C) (y) Therefore a;1, = gx;(j + 1, 5), since

S n m

for all 7 such that ¢ > j + 1 we have (f) = 0. O

This result will be used in Chapter 4 to connect the homogenous 3-variable case
to the general 2-variable case. Induction can be used to obtain the following, which

will be proven in the next section:

Corollary 39. The polynomials {(fi) (12) (f;‘) | 7yt €2y T1y e T > 0}

T2

form a basis of the Z-module Int(Z", 7).
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2.3 Integer-valued Homogeneous Polynomials

2.3.1 Numerical Forms [Hub97]

In his paper Numerical Forms [Hub97], which is the term the author uses for homo-
geneous [VPs, Hubbuck gives a bound for the coefficients of a numerical form. The

goal of that paper is to show:

Proposition 40. [Hub97, Prop. 1.3] For a fized prime p, there exist monotonic
increasing polynomials w,(z) and v,(z) such that the coefficients a;, i, 4, of any

numerical M-form, a form, hence a polynomial, of degree M, in n variables satisfy

M — u,(t)

01462,00yin)
V(a 1,12, 777,) 'Un(t)

Here t is the integer such that p™ —1 > M —n+1 > p' — 1 and v is the valuation

such that v(=2;) = u, where p{r and p{ s.

r-p¥

The construction of the single variable polynomials u,(z) and v, (z) can be found

at the end of the paper. A consequence of this result is the following:

Proposition 41. [Hub97, Abstract]| If I is the graded ring of homogeneous rational
polynomials in n-variables which are numerical over Z, then I is a subring of T,
the diwvided polynomial algebra over Z in n-variables. For any positive integer k, the
image of the induced homomorphism I @ (Z/kZ) — ' ® (Z/kZ) is a finite graded

Ting.

2.3.2 2-Variable Homogeneous IVPs [JP11]

Keith Johnson and Donald Patterson have determined a basis for homogeneous IVP
in degree two. This section will summarize their work and then indicate where the
case of 3-variables differs given the computational results obtained in further chap-
ters. In this paper the idea of p-orderings is extended to Z? or Z%p) in such a way as
to give a construction of a basis for the Z)-module of p-local integer-valued homo-

geneous polynomials in 2-variables.
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Definition 42. [JP11, Def. 4] Let S be a subset of Z%p). A projective p-ordering

of S is a sequence ((a;,b;) | © = 0,1,2,...) in S with the property that for each

i > 0 the element (a;,b;) minimizes v, H(sbj —ta;) | over all pairs (s,t) € S.
j<i

The sequence (d; | i = 0,1,2,...) with d; = v, (H(aibj — biaj)> is the p-sequence
j<i
of the p-ordering.

Lemma 43. [JP11, Lem. 5]

1. If ((a;, b;) | 1 =0,1,2,...) is a projective p-ordering on%p), then for each index

i either v,(a;) =0 or v,(b;) = 0.

2. If ((a;,b;) | i = 0,1,2,...) is a projective p-ordering of Z?p), then there is
another projective p-ordering ((a,,b;) | i = 0,1,2,...) with the property that for

(2]

each index i either a; =1 and p | b;, or b, =1 and ((a},b,) | i =0,1,2,...) has

17 71

the same p-sequence as ((a;,b;) | 1 =10,1,2,...).

Definition 44. [JP11, Def. 6] Let S denote the subset of Z?p) consisting of pairs
(a,b) with either a = 1 and p | b, or b =1 and let Sy = ((a,1) | a € Z,) and
S1=((1,pb) | b € Zg).

Lemma 45. [JP11, Lem. 7] The set S is the disjoint union of Sy and Sy, and if
(a,b) € Sy and (c,d) € Sy, then vy(ad — be) = 0.

Definition 46. The shuffle S of two sequences S; and S; is obtained by arranging
the elements ofS; and S; in non-decreasing order in S such that the elements of each
sequence are in the same order. That is, if you ignore the elements of S; in S, you

obtain S; and vice versa.

Proposition 47. [JP11, Prop. 8] Any projective p-ordering of S is the shuffle of

projective p-orderings of Sy and Sy into nondecreasing order. The shuffle of any pair
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of p-sequences of Sy and Sy into nondecreasing order gives a p-sequence of S and
the corresponding shuffle of the projective p-orderings of So and Sy that gave rise to

these p-sequences gives a projective p-ordering of S.

Proposition 48. [JP11, Prop. 10]

1. A projective p-ordering of Z%p) 1s given by the periodic shuffle of the sequences
((1,1) | 1 =0,1,2,...) and ((1,pi) | i =0,1,2,...) which takes one element of
the second sequence after each block of p elements of the first. The correspond-

ing p-sequence is (Vp ( prJ) |1=0,1,2,.. )

2. The p-sequence on%p) is independent of the choice of projective p-ordering used

to compute it.

Proposition 49. [JP11, Prop. 11] If ((a;,b;) | ¢ = 0,1,2,...) is a projective p-
ordering of Z?p), then the polynomials

n—1
xb; — ya;

fo(zy) =1 b b
=0 nv n*

are homogeneous and Zy)-valued on Z?p).

The following will help us actually find a basis for the homogeneous 2-variable

polynomials and will be illustrated with an example.

Definition 50. [JP11, Def. 12] For 0 < n < m and ((a;,b;) | i = 0,1,2,...), the

projective p-ordering of Z%p) constructed in Proposition 48, let

( n—1

_ xb; — ya; .
T nsbn) € 5,
Yy g ab —ba if (a ) € So
g (r,y) =
xm”ﬁ zbi ~ ya. f (an,bp) € S
anbz‘ _ bnaz’ ? ny Yn 1-

\ =0
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Lemma 51. [JP11, Lem. 13] The polynomials g7 (x,y) have the properties
0 ifi<n

g;n(alybz) =
1 ifi=n.

Proposition 52. [JP11, Prop. 14] The set of polynomials {g"(z,y) | n =0,1,2,...,m}
form a basis for the Z)-module of homogeneous polynomials in Qlx,y] of degree m

which take values in Z, when evaluated at points of Z?p).

Example 53. [JP11, Ex. 15] Let p = 2 and m = 3. By Proposition 48 the following

is a projective 2-ordering of Z%p):

With this projective 2-ordering we construct g2(z,y) for n = 0,1, 2,3 and obtain the

{y?’,ﬂfy{x?(fv—y),w}.

following basis:

This method will be helpful to obtain basis elements in the 3-variable case by
either using some of these polynomials or multiplying by other homogeneous polyno-
mials to obtain an explicit 3-variable polynomial. More details about the connection

between the 2-variable and 3-variable case can be found in Section 5.2.



Chapter 3

The Connection with Algebraic Topology

The goal of this chapter is to describe the connections between algebraic topology
and IVPs, especially the homogeneous ones. This chapter will assume some familiar-
ity with algebraic topology, since that subject would require more than a chapter of
explanations by itself. This chapter will show how elements of certain groups arising

in topology are isomorphic to IVPs.

One motivation for studying homogeneous [VPs is their application to topology.
This can be established by starting with the Adams-Novikov spectral sequence, more
details about this subject can be found in [Rav86], which gives a tool for computing
homotopy groups of a topological space or spectrum X with the help of generalized
homology or cohomology theory. From a topological perspective this sequence is
useful for calculating stable homotopy groups of spheres. The spectral sequence is

known to converge, in many cases, to 72 (X), the stable homotopy groups of X.

For a space X the Adams spectral sequence [Adab8] is based on H*(X,Z/(p))
and an important part of this sequence is the Es-term which can be defined and
computed in strictly algebraic terms. The Adams-Novikov [Nov67] sequence, which
is also called the E,-Adams sequence, is the analogous sequence based on a general

cohomology or homology theory, E*( ) or E,( ).

For the study of IVPs the homology theory of interest is K, ( ), complex K-theory.
Recall, from [Rav86, 2.1], that F,(X) is a comodule over the (mod p) commutative
Hopf algebra A = E,E.

Theorem 54. [Rav86, Th. 2.1.1] Let X be a topological space. There is a spectral
sequence converging to 72 (X) with E**(X) and differentials d,: E3' — Estritr=1

such that

21
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(a) E5" = Boti (E.(X,Z/(p)), E.(X,Z/(p))), with A= E.,E.

(b) If X is of finite type, EX* is the bigraded group associated with a certain filtra-
tion of m¥(X) ® Z,, where Z, denotes the ring of p-adic integers.

In this theorem we have that F, is a homology theory and Ext is the algebraic
object. The idea behind the Adams spectral sequence is to use our knowledge of
72 (E) and E,(X) to get information about 72(X).

Using this tool to go from topology to algebra, in 1989 Baker, Clarke, Ray and
Schwartz [BCRS89] studied the K-homology of an n-torus BT™, and showed a con-
nection between homology and homogeneous IVPs, (which are referred to as numer-
ical polynomials in that paper). In this case X is the space BU and E is complex
K-theory. Their main focus is on describing the K-homology of C'P*°, the infinite
complex projective space, and BT", which makes the coaction of the cooperation

algebra K, (K), and hence the primitive submodule, easy to understand.

A previous paper from Adams, Harris and Switzer [AHS71], that had described
K,.(BU) and KO,(BSp), achieves this by mapping elements of Ky(K) and KO,(KO)
to Kon(K) ® Q and Ky, (K) ® Q respectively, where KO, is homology theory for
the BO-spectrum which comes from the real Bott periodicity that is described in
[AGP02]. The main interest for us is that these elements are mapped to homogeneous

2-variable IVPs, which are of the form

Pl 0) = (v = u)(o = 2u) -+ (0 = (= 1)

, B 2
qn(u7 U) - (

m(UZ _ u2)<1)2 _ 22u2) . (112 . n2u2).

The paper from Baker et al. uses a similar process to give a description of K,BT"

and K,BU. They make use of the result from [Cla81]:

Proposition 55. [Cla81, Th. 11] The ring Int(Z,Z) is isomorphic to Ko(CP>),
where Ko(C'P>) has the ring structure induced by the map CP>* x C P> — CP>®

which classifies the tensor product of line bundles.



23

Proposition 56. [BCRS89, Prop. 1.6] The ring A, = Int(Z",Z) is isomorphic to

the iterated tensor product A®™ and hence has a basis consisting of the elements

w1 Wa Wy,
(kl) (k2> (kn)7 kl) 25 7kn = 0

Corollary 57. [BCRS89, Cor. 1.7] If BT™ = (CP>)" denotes the classifying space

of an n-torus then Ko(BT™) is isomorphic to the ring A,. The coaction
is the ring homomorphism determined by ¥ (w;) = w; ® w;.

The following two propositions are of interest to us, since they give us a connection
to homogeneous IVPs and a way to construct these. By primitive elements here we
mean elements x such that ¢(z) = 1 ® z + 2 ® 1, under the coaction map ¢ defined

in the above corollary.

Proposition 58. [BCRS89, Prop. 1.8] The group of primitive elements P,, Ko(BT™)
1s i.somorphic to the Z-module of IVPs in n-variables which are homogeneous of degree

m.

Thus, studying 3-variable homogeneous IVPs, is another way of studying the

primitive elements of the K,-homology of the 3-torus.

Proposition 59. [BCRS89, Prop. 1.9] Suppose that f(ws,...,w,_1) € A,_1 has
total degree k and denominator M, so M f(wi,...,w,—1) has integer coefficients.

Then for sufficiently large j,
W f(wyw b, w—w, )

is a homogeneous IVP of degree k + j.
In fact W f(wiw;t, ... w,_qw; ) is integer valued if j is greater than or equal to

the mazimum exponent of any prime occurring in M.
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The estimate for 7 in that proposition, and in general, is not the best, which mo-
tivates our desire to find bases for homogeneous IVPs. The remainder of that section
goes over the non-trivial nature of the ring of homogeneous IVPs by exploring the
2-variable case localized at a prime p, (which was continued in the paper from John-
son and Patterson [JP11]) which fully solves the 2-variable case for homogeneous
2-variable IVPs.

In the second section of [BCRS89], the authors explore further the relationship
between the homotopy of BU and homogeneous [VPs, which is displayed in the next

two statements:

Theorem 60. [BCRS89, Th. 2.1] As a Ko(K)-comodule, Ko(BU(n)) may be iden-

tified with the submodule of Q|x1, ..., x,| consisting of those symmetric polynomials

f(xy, ..., x,) satisfying

n!
mf(ku---,kn) €z
where the sequence of integers ki, . ..k, contains r distinct elements repeated ny, ..., n,
times, respectively. Here Q[xy,...,x,] has the multiplicative comodule structure

given by ¥(z;) = w @ x;. The map A, = Ko(BT") — Ko(BU(n)) sends an IVP

flwy, ... wy,) to the symmetrization

1
(E) Z f(l’g(l), Ce ,xo(n)).

O'ESn

Where S,, is the symmetric group of permutations of n elements.

Proposition 61. [BCRS89, Cor. 2.2] The group of primitive elements Py, Ko(BU(n))
may be identified with the Z-module of homogeneous symmetric polynomials of degree

m satisfying the integrality condition of the theorem.

Since symmetric homogeneous IVPs give us primitive elements, we will try to

also find the symmetrizations of our IVPs in the next sections.



Chapter 4

Polynomials Integer-valued at Odd Values

We begin this project by focusing on the prime p = 2, since over Z) odd numbers

are invertible. By this we mean we will look into taking f(z) € Z[z] and finding

f(z)
21

a maximal ¢ such that is an IVP. In this chapter we restrict our attention to
evaluating our polynomials at odd values only. We will start by looking into the
2-variable case, and then establish an isomorphism between the 2-variable IVPs at
odd values of degree less than or equal to m and the homogenous 3-variable IVPs at

odd values of degree m.

Lemma 62. Int(1 4+ 27Z,Z) has as basis {((z—nl)/Q)}

n>0

Proof. We use the basis for Int(Z) from Theorem 21, the map

w: Int(Z,72) — Int(1 + 2Z,7)
r—1
2

T +—r

produces an isomorphism so maps bases to bases, as illustrated below

Z\
ul \\\f
1+ 27 =7,

J

Proposition 63. Int((1 + 2Z)% Z) has basis {((x*il)/z) ((;,51)/2)} , where the de-
$,§>0

nominators of the basis elements are 2174!5!.

25
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Proof. This is Lemma 62 applied to Proposition 38. [

This case will allow our polynomials to have bigger denominators and permits us
to draw some important conclusions for the general case. We start with definitions

that will be useful for the remainder of this work:

Definition 64. Int,,(Z*,7Z) is the submodule of Int(Z*,Z) of IVPs of degree less
than or equal to m, and Int,,((1 + 2Z)*,Z) is the submodule of Int,,(Z*,Z) of IVPs

at odd values.
The above is a multivariable generalization of Definition 4.

Definition 65. Int™(Z*, Z) is the submodule of Int(Z*,Z) consisting of homogeneous
IVPs of degree m and Int™((1 + 2Z)*,Z) is the submodule of Int™(Z*,Z) of IVPs at

odd values.
We connect the 3-variable case to the 2-variable one:
Proposition 66. Int,,((14+2Z)?, Z) and Int™((1+27)%, Z) both have rank " 42).

Proof. In the first case we are counting all non-negative pairs (¢, j) such that i+j < m

and, in the second, all non-negative triples (i, j, k) such that ¢ + j + k = m. Both

quantities are equal to w (]

Proposition 67. We have the isomorphism
Int,, ((1 + 27)% Z) ~ Int"((1 + 27Z)*, Z).
The isomorphism is given by the maps:

G: Int,,((1+2Z)* Z) — Int™((1 + 27Z)*,Z)

F: Int,((142Z)2 Z) < Int™((1 + 27Z)*, Z)

flz,y, 1) < f(z,y, 2).
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Proof. (1) We show that if g € Int,,((1 4+ 2Z)? Z) then G(g) € Int"((1 4 2Z)3,Z).

First we show that G(g) is homogeneous:

Glg)(,y.2) = "9 (2.2)

)
A4

).y, ) = (h2)"g (1,22

= h"(G(g)(x,y,2))

Thus G(g) is homogeneous. It remains to show that if z,y,z € (1 + 2Z), then
G(g9)(z,y,2) € Z. We know that 2,¥ € 14 2Z¢) and £ = 2/ (mod 2¥), £ = ¢/
(mod 2%), for some sufficiently large k (larger than m), and 2’,y’ € (1 + 2Z). We

then have that

),
Y
z

Glg)(a.y,2) = =g (2. 2) = ="g(',y)  (mod 2°)

and g(2',y') € Z). Hence G(g)(x,y,2) € Zy and G(g)(x,y,2) can be represented
in Z/(2%) for a sufficiently large k.

(2) Lastly, we show that if f € Int™((1 + 2Z)*,Z) then F(f) € Int,,((1 + 2Z)*, Z).
We know that for all a,b,c € (1 + 2Z), f(a,b,c) € Z and therefore f(a,b,1) € Z.
Thus g = f(a,b,1) € Z for all a,b € (1+ 2Z), and f(x,y,1) is a polynomial where

each term is of degree at most m.

(3) The homomorphism property holds from standard homogenization. Lastly, we

show that the functions are inverses of each other, i.e. F(G(g)) = g and G(F(f)) = f.
Let g(x,y) = Zz‘+j§m a;jz'y’, then
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Let f(g(:, Y, Z) = Zi+j+k:m bijkxiyjzk, then

F(f) = Z bijkxiyjlk: Z bijkxiyja

i+j+k=m i+i<m
T\ (Y\J 7t yj
6r ) = 3 b () () = 3 el
FU) =32 b (3) (5) = 20 "5
i+j<m i+j<m
= > by = > bty
i+j<m i+j+k=m
= f(z,y,2).

Remark 68. Note that in the previous proposition we could just as easily have used

fz, 1, y) or f(1,2,y) in the definition of F, with appropriate changes to G.

We present some properties of v,(n!) which will be very useful for this chapter.

Lemma 69. [Leg30][Mol12, Th. 2.6.1] (Legendre’s Formula) For p a prime and n
having the p-adic expansion n =}, nip', for n; € Z/(p), we have

n
Proof. For p a prime, v,(n!) = E L—ZJ, because the number of integers k in
p
LEN, pt<n

the range 1 to n for which v, (k) > ¢ is L%J

Write n = Zizo n;p', for i such that 0 < i < ¢, p* < mn and n; € Z/(p). Let k
being the greatest integer such that p* < n. Then for any 0 < r < k we have

n
{—J = " e 4

r
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Combining this with the first inequality yields

- 3]+ 3

= nkpk_l + nk,lpk_z + o+ ngp+ 1y
gt e p" i g

+ Ng

=ni+na(p+1)+ns(p’ +p+1)+ -+ + -+ 1)
m(p = 1) e — 1)+ ma(pt = 1) o+ melp — 1)
p—1
(no + nip + nop® + - -+ + ngp®) — (ng +ny +ng + -+ + ny)
p—1

n—>n;

p—1

Lemma 70. For an integer n we have
va((2n)!) = n 4 we(n!) = 1,(2"(n!)).

Proof. From the definition of the 2-adic valuation we have 15(2"(n!)) = n + vy(n!).

We use Legendre’s Formula, Lemma 69, if
n=n2 + ni12i_1 4+ -+ 112 + no,
then vo(n!) =n — 3 ., n;. We also have that
2n = n; 2" 4 n; 28+ -+ 1y 2% 4+ np2,

where the sum of the coefficients of the 2-adic expansion is the same as for n. Using

Legendre’s Formula v5((2n)!) = 2n — 37, ;1 = n + va(nl). O
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Lemma 71. Given any integer n with 2-adic expansionn =Y n;2" = 28 +n', where
n' < 28 we have

vy(nl) = 28 — 1 4+ 1p(n/)).

Proof. By Legendre’s Formula, (Lemma 69),

vo(nl) = ka;”J

1>0

k /
SRS

>0 >0

Since the first sum is a geometric series, this becomes
va(nl) = 28 — 1 4+ 1p(n/)).

]

We next show how to count the number of basis elements with denominator of
2-adic valuation n, for n < m in Int,,((1+2Z)% Z). From Proposition 5 the sequence
of 2-adic valuations of the denominators of Int(1 + 27Z,Z) is the 2-sequence (recall
Definition 12) of S = (1+27Z). Note that for any n we actually have that «,,(142Z, 2)

can be calculated using Lemma 70 and is
an(1427Z,2) =n+ a,(Z,2) = n+ va(n!) = 11(2"n!) = 1 (2n!).

Below we display the 2-sequence of Int(1 4 2Z,Z):

6 7 8 9 10

degree n )
8§ 10 11 15 16 18

an(1 + 27, 2)

0 4
0 7

1 2 3
1 3 4

Table 4.1: 2-Sequence for Int(1 + 27Z, Z)

For Int,,((1 + 2Z)?,Z) the basis elements are obtained as products of basis ele-
ments for each variable x, y, thus we add exponents in a square array. Each i, j-entry

in the table is

i+j+az(i) +az(§) = (i + ) + va(ilf) = va(2i125!) = ve(27Hil5)).
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From here on, the matrix representation of Table 4.2 will be called M.

degree of x
3 4 5 6 7 8 9 10 11 12 13
4 7 8 10 11 15 16 18 19 22 23
5 8 9 11 12 16 17 19 20 23 24
7
8

10 11 13 14 18 19 21 22 25 26
11 12 14 15 19 20 22 23 26 27
10 11 14 15 17 18 22 23 25 26 29 30
9 11 12 15 16 18 19 23 24 26 27 30 31
10 11 13 14 17 18 20 21 25 26 28 29 32 33
11 12 14 15 18 19 21 22 26 27 29 30 33 34
15 16 18 19 22 23 25 26 30 31 33 34 37 38
16 17 19 20 23 24 26 27 31 32 34 35 38 39
10118 19 21 22 25 26 28 29 33 34 36 37 40 41
11119 20 22 23 26 27 29 30 34 35 37 38 41 42
12122 23 25 26 29 30 32 33 37 38 40 41 44 45
13123 24 26 26 30 31 33 34 38 39 41 42 45 46

CoO Ol = DN |~

degree of y

© 00 IO Ul Wi~ O
0¢)

Table 4.2: M[i, j] = vo(277il5!) = 15((2i)!(25)!)

In order to get the 2-sequence of Int,,((1+ 2Z)?,Z), our goal is to find a formula
for v(n), where for a given n, y(n) counts the number of times n appears in M. We

look into the properties of M to construct v(n).

Definition 72. Given the matriz M, with i,7 > 1. The n-th diagonal D,, of M is

D, = {M[i,j] | i+j=n}.

Proposition 73. Ifi+j =21 —1, then M[i,j] =2F — k — 1.

Proof. Since we are looking at elements on the diagonal D, we have that these

elements M[i, j] satisfy i + j = 2¥~! — 1. We want to show that
Mli,jl =i+ 7+ (i) + () =28 -k - 1. (4.1)

We proceed by induction on k. If & = 2, n = 1, and from calculations we get

Dy ={(1,1)}, with 1 =22 —2 — 1.
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Suppose equation 4.1 holds for k, that is, for i +j = 2¥~t — 1. Then we have that
i+ j+ ve(i!) + 15(j!) = 28 — k — 1. That is,

(i) + (i) =28 — k-1 281 41
=212 -1)—k
=2F1 — k.

Hence for i +j = 2% — 1 we are reduced to showing that v5(i!) +15(j!) = 28 — (k+1).
Without loss of generality suppose i > 2! and j < 27!, Let ¢ = 2¥=! +4/. Then
by Lemma 71,

vo(i!) + 1a(51) = 2871 — 1 4 1y (1) + 1u(4)).
Since i/ +j = (i — 2" 1) +j =2F — 1 — 2871 = 21 we get by induction hypothesis
that v, (i'!) + 15(j!) = 2 — k — 1 and

(i) + (i) =2 142"~k =2" — (k+1).

Corollary 74. When n = 281 — 1, the diagonals D,, act as bounds for the values
in M, in the sense that if i +j > n then M[i,j] > 2¥ —k — 1, and if i +j < n then
Mli,j] < 28—k — 1.

Proof. Above D,, we have that i +j <n = 21 — 1. Thus

Mli,jl =i+ j+ (@) +1a(j!) <n+ 1+ wva(i!) + a(j!)
= 2" 14 (i) + (5"
e A
=oF | —1,

where the last inequality comes from the proof of Proposition 73. Below D,, we have
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that i +j >n+1 =21 -1 thus

Mli,jl =i+ j+ (@) +1a(j!) >n+ 1+ va(i!) + (4!
= 2" 1 wy(il) + 1 (4))
> okl ] 4okl g
=2k k-1,

where the last inequality comes from the proof of Proposition 73. O]

If we look at the section of M represented below:

degree of x

o 1 2 3 4 5 6 7

o0 1 3 4 7 8 10 11

111 2 4 5 8 9 11 12

degreeofy |2 | 3 4 6 7 10 11 13 14
314 5 7 &8 11 12 14 15

4|17 8 10 11 14 15 17 18

518 9 11 12 15 16 18 19

610 11 13 14 17 18 20 21

7111 12 14 15 18 19 21 22

Table 4.3: Symmetry

We notice that if you take a value in red and reflect it about D7, the diagonal
made of 11 = 2% —4 — 1, then adding the reflected value in blue will always yield 22.

This type of pattern will always occur and is demonstrated in Corollary 76.

Definition 75. We define the triangle T(q, b, a5,0,) 1 M, where by —ay = by — ay, to
be the following set:

Tarbrans) = 1(5,7) | a1 <0< by, ag < j < by, and i+ 35 < by + as}.

For example, the following section of M is Tig 70,7, the green section is T{o3,03),

the red section is T{47,0,3), and the blue section is T 34,7):



degree of x
o 1 2 3 4 5 6 7
0 7 8 10 11
1 5 8 9 11
degree of y | 2 6 7 10 11
3 5 7 8 11
417 8 10 11
518 9 11
6|10 11
7111

34

Table 4.4: Triangular Regions and Translations

You can see that every value in red or blue is 7 plus the value in the same position

in the green triangle. This is demonstrated in Proposition 77.

We look into counting how many basis elements of Int,,((1 + 2Z)?,7Z) have a
certain 2-adic valuation in their denominator. Corollary 74 shows that for degree m,
where 28 —k—1 < m < 28—k — 2 it is enough to search in the region i+j < 28 —1,
where ¢ + 7 will make up the total degree of a given polynomial. For example, for

m = 3 we would consider the following values:

W N = O
I =] =)
=N ==
= N
i~ o

Table 4.5: Denominators for Intz((1 + 2Z)?, Z)

That is for degree m, we find the diagonal that acts as an upper bound for the
denominators, and count the entries M[i, j] such that i 4+ j < 2%. We can count that
there is one basis element with a 2° in its denominator, two with a 2!, one with a 22,

two with a 2% and four with a 2.

We can recursively use this method, in this case, when know the number of

denominators for Int,, 1(((1+ 2Z)?,Z), one only needs to consider M]i, j] such that
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2=l < i 4 j < 2 — 1. Doing this up to m = 10 gives a table where we count the
number of basis elements with a certain denominator of each degree 0 < m < 10.
That is, in the table below the entries (m, n), record the number of entries M|i, j| of
size n for which 7 + 7 < m. In this case i + j is the total degree and n is the 2-adic
valuation of the denominators of the basis elements of degree m. This type of table

will be very important for this project.

n, for denominators of size 2"

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
0T 00000000000 0 0 0 0 0 0 0
1/12000000000 0 0 0 0 0 0 0 0
2/12 120000000 0 0 0 0 0 0 0 0

S13/1 2124000000 0 0 0 0 0 0 0 0
Sl4/1 2124212000 00 0 0 0 0 0 0
/512124214400 00 0 0 0 0 0 0
261212421452 4 0 0 0 0 0 0 0 0
Sl7/1 212421452 4 8 0 0 0 0 0 0 0
811212421452 4 8 4 2 1 0 0 0 0
9112 1 2421 452 4 8 4 2 5 2 4 0 0
10/1 212421452 4 8 4 2 5 2 5 4 4

Table 4.6: Number of Basis Elements in Int,,((1 + 2Z)?,Z) Having vy = n

The column values eventually stabilize because of Corollary 74, since the diago-

nals bound the values n can take on. This matrix has its rows stabilizing to
(v(n)) =1,2,1,2,4,2,1,4,5,2,4,8,4, ...

This sequence stores in each entry n,the number of pairs (4, j) for which v, (2174l5!) =
v5((21)!1(27)!) = n. We know how to construct a table to get values for this sequence,
but it would be very useful to have a formula for y(n). We will use the number
theoretical properties of M to derive a recursive way of counting how many times a

value x will appear in M.

Proposition 76. (Reflection.) Consider D,,, for n =21 —1. For all Mla,b] and
M{e,d] such that a+d =mn =b+ ¢, we have

Mla,b] + Mlc,d] = 2(2" — k — 1).
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Proof.

Mla, bl + Mlc,d] = a+ b+ va(al) + v2(b)) + ¢+ d + va(c!) + va(d!)

=a+d+ Vg(a') + Vg(c') + b+ ¢+ va(b!) + va(d!)
= (2F — 1)+ (2" =k —1) by Proposition 73
= 2(2k k—1).

Proposition 77. (Translation.) Let n = 2", If (i,7) € Tjon-1,0n-1), then
Mli,§] + (2% —1) = M[i +n, j] = M[i,j +n].
Proof. For 0 <i:<n—1and 0 <j<n-—1, we have by Lemma 70

Mli, j] = v2(2i12751) = 15((2)1(25)!)
Mli+mn,j] = (27 (i +n)12751) = vu((2(i +n))!(25)!)
MTJi,j +n] = 15(251277" (5 4+ n)) = v,((20)!(2(5 +n))!).

Furthermore,

MTi+n, 5] = va((2(i + n))!) + v2((25)!)
= (20 +2"71)) + 12((2))
(

o (20 + 28)1) + 1 ((25)!

(
)!

2F — 1) + 15((20)!) + vy
2F — 1) + MTi, 5.

( (27)!) by Lemma 71
= (
A similar argument can be used to show that M[i,j + n] = 28 — 1 + M[i, j] and to
prove our claim. O

Given a value n, we will calculate v(n) using the following:

(1) If n = 2¥ — k — 1, for some k, then n is on the diagonal Dox-1_;, and appears

2k=1 times in M.
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(2) If n is a value that appears between the diagonals Dyr-1_; and Dyr_;, thus
21 _ k < n < 28 —k — 1, then the number of times n appears in M de-

pends on the values of the smaller triangle below Dyr-1_; that is values in

Tio,20-1-1,0,26-1-1)-

(i) By symmetry (Corollary 76), for each m € T{gor_1,02r_1) such that n +
m = 2(2¥ — k — 1), there will be a corresponding n between Dgs—1 and

D2k.

(ii) By translation (Corollary 77), for each m € Tgs-1_1or-1_1) such that
m + 281 — 1 = n, there will be two corresponding n; one from the hor-
izontal translation of Tigox—1_19%-1_1), and the other from the vertical

translation.

Proposition 78. We have the following recursive formula for y(n): v(0) =1, v(1) =
2,72)=1,73)=2,7(4) =4 and

(

k=1 ifn=2"—k—-1
y(2(2F —k —1) —n) if 28 —k—-1<n<2F-1
y2@2F -k —1)—n)+2y(n—2F+1) if 2P —1<n<202F-k—-1)

\

where k is the largest integer such that 28 —k —1 < n.
Proof. We have v(0) =1, v(1) = 2, v(2) = 1 and ~(3) = 2 by counting in M, which

is partially represented by Table 4.2.

Let k be such that 28 — k — 1 <n < 2¥! — k — 2. We proceed by induction on

k. Our base case will be k = 3 and we will calculate v(n) for

2 _3-1<n<2*-3-2

4<n<l11

Given the formula in the statement we look at four sections of this interval, and show

that the formula works for k = 3

2v(n — 28 +1) if 228 —k—1)<n <2kt -k —

2
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Interval v(n)
n=2"%-k—-1=4 v(4)=2%"1=4

2F—k—1<n<2F-1 v(5) =7(2(2° =3 —-1) —=5) =v(8 = 5) =~(3) =2
4<n<T7 7(6) =78 —6)=~(2) =1

P _1<n<22—k—-1) |17 =18—-7)+29(7T-8+1)=~1)+29(0)=2+2
7<n<8 7(B) =7(8—-8)+2y(8—-8+1) =7(0)+29(1) =5

2 — k-1 <n<2 —k—2|7(9)=2y(0—8+1) = 27(2) = 2

8<n<l1l 7(10) =29(10 -8+ 1) =2¢(3) =4

Table 4.7: y(n) for 4 <n < 11

Now suppose the result holds for all n < 2¥ — k — 1. To prove the formula is
correct, we also need to show that the bounds of the formula are correct. Given the

values n between the diagonals Doyr—1_; and Dyr_; in M, that is, for
F _k—1<n<2Ml -2
we split these into three disjoint regions:

[ This region in M will be Tk 92k —1)41,0,2¢—1), Which in Table 4.4 corresponds to

the region in red.

IT This region in M will be T(g 9k _1 ok 22k —1)41), Which in Table 4.4 corresponds to

the region in blue.

II This region in M will be T{g a2k _1)11,0,2(2¢-1)+1)\11, [T}, which in Table 4.4

corresponds to the region in black.

Note that if n = 2¥ — k — 1, then n is on a diagonal and ~(n) = 2*¥~! by Propo-
sition 73. We then divide the interval 28 — k — 1 < n < 28! — k — 2 into three
subintervals where we want to show the following.

The values in the interval 28 — k —1 < n < 2¥ — 1 will be in region II only.

The values in the interval 28 —1 < n < 2(2F —k—1) will be in regions I, II and III.
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The values in the interval 2(28 — k — 1) < n < 2¥1 — k — 2 will be in regions I

and III only.

We proceed to prove this by showing that

(i) The elements in the interval I;: 28 —k — 1 < n < 2(2¥ — k — 1) are the only

ones having the reflection property.

(ii) The elements in the interval Ip: 2¥=! < n < 2¥1 — k — 2 are the only ones

having the translation property.

(i) For n € I}, we want to show that there exist 0 < ¢ < 2¥ — k — 1 such that
n+ ¢ =2(2¥ —k — 1) as in Proposition 76, which gives that

(= (2" — 2k —2) —n.

For ¢ to be in the allowed interval we need n < 28! — 2k — 2, which gives ¢ = 0.
Since 2F — k — 1 < n, we have that £ < 2¥ — k — 1, which is positive for £ > 3. This
completes the proof of (i).

(ii) For n € I, we want to show that n has the translation property as in
Proposition 77. That is, we want to show that n — (2¥ — 1) produces a value in the

triangle T{gox-1,025-1y. In this case we need

0<n—-(2F-1)<2"~k—-1,

ok 1 <n< 2l k-2

Y

which is exactly I, and it proves (ii).

Combining these bounds we get that, on the interval 28 —k —1 < n < 2F —1, the
values only have the reflection property and by induction v(n) = v(2(2* —k—1) —n).

On the interval 28 —1 < n < 2(2% —k—1), the values have both the reflection and
translation property thus, by induction v(n) = v(2(28** —k—2) —n)+2y(n—2F+1).
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On the interval 2(2F — k — 1) < n < 2¥! — k — 2. the values only have the
translation property and by induction y(n) = 2vy(n — 2% + 1)).

O
Note: When writing n as n = >_n;2", k described above is either the largest i in

this expansion, or it is i + 1, i.e. k = [logyn| or k = |logyn| + 1.

Implementing the recursive formula from Proposition 78 allows us to quickly

calculate y(n). The first values in the sequence are:

v(n)
nand columnindex | 0 1 2 3 4 5 6 7 8 9
0<n<10 1 2 1 2 4 2 1 4 5 2
10 <n <20 4 8 4 2 5 6 5 4 8 10
20 <n <30 5 4 9 10 4 8 16 &8 4 10
30 <n <40 9 6 9 12 12 12 9 8 13 12
40 <n < 50 8 16 20 10 9 14 13 12 12 18
50 < n < 60 21 12 9 18 20 8 16 32 16 8
60 <n <70 20 18 9 14 25 20 16 20 17 16
70 <n <80 17 20 24 24 24 20 17 18 21 22
80 <n <90 20 28 29 16 17 28 24 16 32 40
90 < n < 100 20 18 29 22 17 28 32 28 29 24

Table 4.8: y(n) for 0 < n < 100

Note the sequence (y(n)) cannot be found on the On-Line Encyclopedia of Integer
Sequences [OEIS], it will be added to the website and is currently waiting for the

approval of an Editor-in-Chief.

4.1 Why the Seven?
If we multiply «(n) by 7 we obtain the following sequence
7.14,7,14,28,14, 7,28, 35, 14, 28 56, 28. . ..

which is a 2-sequence that will appear in Matrix 5.4 in Section 5.2, and will be of ma-

jor interest to us, since it is related to the 2-sequence of homogeneous 3-variable IVPs.
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The columns of Table 5.4 stabilize to 7 times the 2-sequence of Int,,((1 + 2Z)% Z),
showing a connection between Int,,((1 + 2Z)?,Z) and Int™(Z?,Z).

The table M is for Int,,((1 + 2Z)?,Z) ~ Int™((1 + 2Z)3,Z), hence evaluated at
triples that have only odd values, i.e., that are congruent to (1,1,1) (mod 2). There

are six other triples of interest, namely
(1,0,0), (0,1,0), (0,0,1),(1,1,0), (1,0,1), (0,1,1),

since for a homogeneous polynomial of degree m, we can always divide by 2™ when
evaluating at (0,0,0) (mod 2). The seven basis elements arising from one element in
Int™((1 + 2Z)3,Z) possibly comes from deciding from which triple the IVP is built,
and the inconsistent “diagonal” might be explained by the lack of polynomials with
a certain denominator at a given triple. We will generalize the case of evaluating at

odd variables in Chapter 6.



Chapter 5

Computational Data and the Smith Normal Form

In this chapter we will develop computational methods to use our knowledge of 3-
variable IVPs of degree less than or equal to m, to obtain bases for the homogenous
case. We will use a tool from linear algebra, namely the Smith normal form of a
matrix, which will be a matrix that satisfies a divisibility criterion. This will allow
us, for a given degree m, to count the number of elements with a certain denominator

and to produce basis elements. We end the chapter by discussing these results.

5.1 Algebraic Background: The Smith Normal Form

For different parts of this project we will use the Smith normal form of a matrix.
In this section we recall the basic definitions and theorems, first over Z, then over
general rings, to ensure that the Smith normal form will exist over the rings we are

working with. For the following let R be a commutative ring.

Definition 79. [Bro93, Def. 15.6] Two m x n matrices A and B over R are said
to be equivalent, which we will denote A ~ B, if B can be obtained by performing

mvertible elementary row and column operations, invertible with respect to the ring

R, on A.

Definition 80. [Bro93, Def. 15.7] A commutative ring R is called an elementary
divisor ring if for all m,n > 1 and for every m x n matrix A over R, there exists a

diagonal matriz diag(dy, ..., d,) of size m X n over R such that
(a) A= diag(dy,...,d,), and

(b) di|divq foralli=1,...,r — 1. (Here r = min{m,n}.)

Definition 81. [Norl2, Def. 1.6] Let D be an m x n matriz over Z such that

42
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(a) the (i, j)-entries in D are zero for i # j, that is, D is a diagonal matriz,
(b) each (i,1)-entry d; in D is non-negative, and

(c) for each i with 1 < i < min{m,n} there is an integer q; with d;11 = ¢;d;, that

is, di|di+1-
Then D is said to be in Smith normal form and we write D = diag(dy, ds, . . . ,dmin{m,n}).

In general the Smith normal form for an m x n matrix looks like

dy
da

Notice that d; is the ged of the st entries in D. Also dids is the ged of the

2-minors of D (the determinants of the 2 x 2 sub-matrices of D).

Theorem 82. [Norl12, Th. 1.11] (The existence of the Smith normal form over Z)
Every m x n matriz A over Z can be reduced to an s X t matriz D in Smith normal
form using invertible elementary row and column operations over Z. For any matriz
A of size m x n over Z we can obtain A = UDV , where U is of size m X m and V
is of size n x n. Moreover, since U, V' are obtained from elementary row operations,

they are unimodular.

The previous theorem guarantees a Smith normal form for matrices over Z. We
need this for other rings, also, since we will be interested, for example, in Z/(p) for

this project.

Definition 83. [Bro93, Def. 15.1] A 1 x 2 matriz [a b] € Mixs(R) admits a
diagonal reduction if [a b} R~ [d O] over R, for some d € R.
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Definition 84. [Bro93, 2, page 181] A ring R over which every 1 X 2 matrixz admits

a diagonal reduction is called a Hermite ring.

Calculations later in this chapter and in further chapters will be over Z/(2*), for
k > 1. Hence it is useful to have that any row matrix [a b], where a # 0,b € Z/(2),

we can always multiply by the following invertible matrix

IR

0 1
and if a = 0 one can multiply by [ . Thus Z/(2*) is a Hermite ring.
10
Theorem 85. [Bro93, Th. 15.8] Any Noetherian, Hermite ring is an elementary

divisor ring.

Theorem 86. [Bro93, Th. 15.9] Any principal ideal ring (PIR) is an elementary

divisor ring.

Definition 87. [Bro93, Def. 15.10] Let A be an m X n matriz over R. A matric
in Smith normal form D = diag(dy,...,d,) of size m X n over R is called a Smith

normal form of A if A~ D and dy|ds|---|d, in R.

Recall that two elements a, b of a PIR are said to be associates if a = ub and u

is a unit in the PI R, in which case we write a ~ b.

Theorem 88. [Bro93, Th. 15.24] (The existence of the Smith normal form.) Let R be
a PIR. Then R is an elementary divisor ring. Furthermore, if D1 = diag(dy, . ..,d,)
and Dy = diag(sy,...,s,) are two Smith normal forms of A, then d; ~ s; for all

1=1,...,r.

Since the Smith normal form can be obtained through elementary row operations,
we can write for an m x n matrix A, matrix S = UAV where S is also of size m x n,
U is of size m x m and V is of size n x n. Note that both U and V are invertible

over R.
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The results above hold for PIRs hence for Z/(2%), which will be needed for Propo-
sition 126 in Chapter 7. Theorem 89 below is for the stricter case of PIDs, where we

cannot have zero divisors but is sufficient to prove Proposition 90.

Theorem 89. [DF04, 12.1 Th. 4] Let R be a principal ideal domain, let M be a free
R-module of finite rank n and let N be a submodule of M. Then

(1) N is free of rank m, m <n and

(2) there exists a basis y1,Ya,-..,Yn of M so that a1y, asys, . ..., amYm 1S a basis
of N where ay,as,...,a, are non-zero elements of R with divisibility relations
ay | ag |-+ | am.

Calculating the Smith normal form, will allow us to find the a;’s such that
a; | ay |+-+| an, in the previous theorem. Note that since m < n, m = r in

the earlier definitions and theorems.

Proposition 90. For M and N as above, if {z;} is a basis of M, {x;} is a basis
of N, A is the matriz expressing {x;} in terms of {z;}, and S = UAV is the Smith
normal form of A, then UA|z, ..., z,|" is the basis {y;} as in Theorem 89, and the

diagonal elements of S are the a;’s in Theorem 89.

Proof. Suppose we know that M has for basis {z1, 22,...,2,} and N has for basis
{z1,%2,..., %y }. Since N is a submodule of M, each z; can be written as an R-linear
combination of the z;’s. Let A be an m X n matrix that stores in each row j the

coefficients of the z;’s.

Taking the Smith normal form of A yields S = UAV, where S is diagonal such

that d; | d;q for d; = S[i,]. Since U and V are unimodular matrices, S is unique.

More precisely, we get the following commutative diagram:
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N—2-M
{@:} {zi}
VT lv—l lU
N—5 M
{zi} {vi}
in which the maps represent matrix multiplication. We have that we can write

the basis elements of N as linear combinations of the ones of M, by doing the matrix

multiplication
21 Z a1524 il
29 A9iZ; )
A _ > '] il _
1 _Z A Zj | EX
Now if multiply by U as well:
21 > U7
2o Ui Z;
UA _ Z . J~]
1 _Z Unm;Zj |

we additionally get that the coefficients w;; respect the same divisibility properties
as the diagonal of S. Hence we get a representation of the basis elements of N using

the ones of M respecting the desired divisibility criteria from Theorem 89.

Since UA = SV !, the d;’s are the invariant factors.

5.2 Computational Results for p =2

We will look at the case n = 3 here and present some computational results.
Since the case n = 2 was described in [JP11] we often use it to test our meth-

ods. We will make great use of the fact that a basis for Int(Z?,Z) is given by

(oo

r,s,t > 0} as seen in Corollary 39. We will also use the fact that for
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the Z-module of polynomials in Int3(Z?,Z), that is, the polynomials of degree less

than or equal to 3, we get an upper bound on indices, that is Int3(Z?, Z), is generated

i {6 [o<resre<sl.

We have that the Z-module Int™(Z3,Z) of polynomials in Int(Z? Z) that are

homogeneous of degree m is a proper submodule, hence is a free Z-module.

Definition 91. Let Z™[z,y, z] denote the Z-module of homogeneous polynomials of

degree m with integer coefficients.

Z™|z,y, 2] is a submodule of Int™(Z*,Z), and we have the following inclusions:
Z"x,y, 2] C Int"™(Z*,Z) C Int,,(Z* Z) C Int(Z>, 7).

We have that Z™[x,y, 2] has for basis the monomials {x'y/2* | i + j + k = m}.
Furthermore Int™(Z3,7Z) is a pure submodule of Int(Z3,Z), i.e. if f € Int™(Z3,Z)
is such that f = kg with k € Z, g € Int(Z> Z) then g € Int™(Z>,Z) . Thus, the

invariant factors of Z™|[x,y, 2] in Int"(Z3,7Z) are the same as those in Int(Z3,Z).

Proposition 92. [GKP98, 6.1, page 262] For any i the polynomial x' can be ex-

pressed in terms of the polynomials (i)0<r<i by

o = Tzi;r!S(i,r) (;’f)

where S(i,r) are the Stirling numbers of the second kind. These are defined by

By writing each of z, y and z using the above proposition and multiplying them,

we obtain:

Corollary 93. The monomials 2y’ 2* have the expression

2yl = " rlsitS(i,r)S (4, 5)S (k. t) (f) (‘Z) (i)
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where the sum ranges over all (r,s,t) such thatr +s+t<m=1i+j+k.

Here is the information about bases we have so far:

Z-modules Basis

ZMx oy, 2] | Ax'y 2 [ i+ g+ k=m}
Int™(Z?, Z) 777

Int,(Z*,2) | {(O)(*)C) | r+s+t<m}

T

Table 5.1: What We Know About Bases

We are looking for bases for the middle row. For a given m we want to find d € Z

and {a;;r} C Z such that for f € Int™(Z3,Z), we have

/= E aijszyjzk

and £ € Int(Z%,Z).

By Theorem 89, we can find a basis for Int™(Z3, Z) written as scalars respecting a
divisibility condition times a basis for Int,,(Z?,Z). With the previous formula using
Stirling numbers we can represent the basis elements of Z™[z,y, z] using the basis

elements of Int,,(Z3,Z), which allows us to go from one basis to another.

This gives a linear system expressing the basis elements of Z™[z, y, z] in terms of
those of Int™(Z3,Z). To do so we will express x'y/z" as a vector of coefficients of
(f) (Zs’) (j) That is for a given m, we get a matrix of coefficients for each row repre-

sents a triple such that ¢ + 7 + k£ = m. Prior to building these matrix of coefficients

we define the following ordering.

Definition 94. Given all monomials x'y?2* such that i + j + k = m, the decreasing
lezicographical ordering of these according to the triples (i,7,k) is obtained by first
ordering them by decreasing order of k. Then, for a fized value of k, the triples
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are ordered by decreasing order of 7. Lastly, for a fixed j, the triples are ordered by

decreasing order of i.

For example, in the case m = 3, the monomials in decreasing lexicographical

order are
z37 y227 'Tz27 y227 'ryz7 $227 y37 xy27 x2y7 xs
1 2 3 4 5 6 7 8 9 10

(003) (012) (102) (021) (111) (201) (030) (120) (210) (300) .

Using decreasing lexicographical order, we can order the triples (r, s,t), such that
r+ s+t < m in the following way, first order the triples in increasing order of
m’ such that r + s+t = m’. Then, for a fixed m’ order the triples in decreasing

lexicographical order. For m = 3 the ordered triples (r, s, t) are

(000) (001) (010) (100) (002) (011) (101) (020) (110) (200)
(003) (012) (102) (021) (111) (201) (030) (120) (210) (300) .

For 1 < m < 22 and p = 2, in the case of three variables we have a MAPLE
program which returns information about the denominators, d, of the basis elements
of Int"™(Z3,7Z).

(e )(m42) i g

First we create an (mHOmE2) o (m+1)(mgf2)(m+3)

5 matrix, where
number of monomials such that i+ j+k = m, and is therefore the rank of Z™[x, y, z].

Also (mﬂ)(mg 2)m+3) s the number of monomials such that r + s +¢ < m, hence the

rank of Int,,(Z3,Z). We order both bases as described above. Our matrix M has for
entries

Mla,b] = ilj!k!\S(i,7)S(j, s)S(k, 1),

which are the coefficients of the monomials z'y7z*, in the representation above,
(Corollary 93), for all (r, s,t) < (i, j, k), ordered as described above, where S(¢, u) are
the Stirling numbers of the second kind. Each row of M represents a triple (1, j, k)
such that 7 + 7 + £k = m, and these are in decreasing lexicographical order as in

Definition 94. Each column of M represents a triple (7, s,t) such that r + s+t < m,
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where the columns are ordered as described above.

Note that indices (a, b) range through 1 < a < w and1 <b< (m+1)(m;—2)(m+3)’

but there is no direct formula between a and (i, j, k), nor b and (r,s,¢). One must

use the above ordering, and example of such can be found after Theorem 95.

The matrix M allows one to write a polynomial f € Z™[z,y, z] in terms of the
basis {(f) (Z) (j) }, where we want d to divide everything in that vector in order to

obtain a homogeneous [VP.

m+1)(m+2) « (m+1)(m+2)(m+3) m
2 6

triz expressing the monomials 2y’ 2%, for i +j+k = m in terms of the multivariable

Theorem 95. For a given degree m, let M be the (

a_

binomial polynomials. Let S = UMYV the Smith normal form of M with diagonal
elements s; = S[i,i]. If B the vector of monomials of Z"[x,y, 2] in decreasing lexico-
graphical order and {u;} is the set obtained from UB, then the set {S%uz} is a basis
of Int™(Z3, 7).

Proof. The Smith normal form of M will be of the form S = UMYV, where S is diag-
onal and U,V have determinant 1 and are therefore invertible over Z. We know we
can calculate the Smith normal form of M by Theorem 88 and given the divisibility
condition that the Smith normal form respects in Definition 81, we can use S, U and

V' to obtain a basis as described in Theorem 89 and Proposition 90.

All three matrices S, U and V have integer coefficients. We use the notation
S = [s;] to denote the diagonal elements. We have U~'S = MV, where the elements
of the i-th column of U~1S are divisible by s;;. We use U~'S = MV to go from one

basis to another as illustrated in the following commutative square:

7™z, y, 2] -2 Int,, (Z°)
i |

Zm[z,y, 2] = Int,y (Z°)

and V!, U map the given bases for Z™[x,y, z|, and Int,,(Z?) to bases with respect
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to which the linear transformation represented by M is diagonal. If the image of the
basis for Z™|[x,y, z] under the linear transformation represented by V! is { f;}, then

Sf— is a homogeneous element of Int,,(Z?) and the polynomials {SL} form a basis

for Int™(Z3), with 1 <14 < w .

By taking B a vector of monomials that form a basis of Z™[x, y, z] in lexicograph-
ical order, the product UB written as the set {u;}, gives that {Siuz} is a basis for
Int"™(Z3, 7). O

Before illustrating this method, we look into data from the two-variable case, in
order to compare it to the three variable case. Here is a table returning information

about the denominators of the basis elements of homogeneous IVPs in 2-variables:
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Table 5.2: Number of Denominators for Int™(Z?, Z)

We illustrate our method with the example m = 3. First we display for each

entry in M7, the triples (i, 7, k) and (r, s,t) that are being represented.
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Triples (1, 7, k) corresponding to a certain a

1 2 3 4 5 6 7 8 9 10
1 [ (i,j,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (000) (000) (000) (000) (000) (000) (000) (000) (000) (000)
= [2 [ (i,j,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
g (r,s,t) | (001) (001) (001) (001) (001) (001) (001) (001) (001) (001)
5 3 (i5k) | (003) (012) (102) (021) (I11) (201) (030) (120) (210) (300)
- (r,s,t) | (010) (010) (010) (010) (010) (010) (010) (010) (010) (010)
o [41(, 7,k [(003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
0 (r,s,t) | (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)
2[5 [ (i, j,k) [ (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
S (r,s,t) | (002) (002) (002) (002) (002) (002) (002) (002) (002) (002)
£ 76 [(i,j,k) | (003) (012) (102) (02I) (IIL) (201) (030) (120) (210) (300)
g (r,s,t) | (011) (011) (011) (011) (011) (011) (011) (011) (011) (011)
— |7 G,j k) [ (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
% (r,s,t) | (101) (101) (101) (101) (101) (101) (101) (101) (101) (101)
E 8 (i, k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
ks (r,s,t) | (020) (020) (020) (020) (020) (020) (020) (020) (020) (020)
279 [(4,7,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
= (r,s,t) | (110) (110) (110) (110) (110) (110) (110) (110) (110) (110)
10 | (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (200) (200) (200) (200) (200) (200) (200) (200) (200) (200)
11| (4,7,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (003) (003) (003) (003) (003) (003) (003) (003) (003) (003)
12 [ (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (012) (012) (012) (012) (012) (012) (012) (012) (012) (012)
13 | (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (102) (102) (102) (102) (102) (102) (102) (102) (102) (102)
14 [ (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (021) (021) (021) (021) (021) (021) (021) (021) (021) (021)
15 | (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (111) (111) (111) (111) (111) (111) (111) (111) (111) (111)
16 | (i,7,k) | (003) (012) (102) (021) (I11) (201) (030) (120) (210) (300)
(r,s,t) | (201) (201) (201) (201) (201) (201) (201) (201) (201) (201)
17 [ (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (030) (030) (030) (030) (030) (030) (030) (030) (030) (030)
18 [ (i,7,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (120) (120) (120) (120) (120) (120) (120) (120) (120) (120)
19 [ (i,5,k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (210) (210) (210) (210) (210) (210) (210) (210) (210) (210)
20 | (7,5, k) | (003) (012) (102) (021) (111) (201) (030) (120) (210) (300)
(r,s,t) | (300) (300) (300) (300) (300) (300) (300) (300) (300) (300)

Table 5.3: Decreasing Lexicographical Ordering when m = 3
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The matrix of Stirling coefficients M, where the indices (i, j, k) and (r,s,t) are

as in the transpose of Table 5.3, and the Smith normal form S of M are as follows:

I
o O O O o o o o o o
_ o O O O O o o o o
o O O O O o o o o o
o o O o =, O O = O o
o O O oo O o o o o o
SO = = O O O o o o o
o O O O N O o o o O
o O O o O o o o o o
o O N O O O o o o o
S N O O O o o o o o
S O O O o o o o o o

o O O o o o = o = O
oSS O O O O o o o o o
o O O O O o o o o o
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o O O O O o O NN o O
o O O O O O v O o O
o O O O O ~, O o o o

o O O O O o o o o =
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o O O O o o o o == o
o O O o O o o +~ o O
O O O o O o = o o o

o O O O = O o o o
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SO O O B O O o o o o
S O N O O O O o o o
S N O O O O o o o O
D O O O O O o o o o
o O O O o o o o o o
o O O O o o o o o o

o O O O o o o o o
o O O O o o o o o o
o O O O o o o o o o
o O O O O o o o o o
o O O O O o o o o o
o O O O O o o o o o
o O O O O o o o o o

o O O O o o o o o

]
]
]
(@]

By looking at the diagonal of S we see that the basis for m = 3 will have seven
elements such that 2 is not present in the denominators and three such that 2! is
the highest power of 2 in the denominator. Since the degree is low, we can find the

basis by taking a linearly independent set that satisfies the above:

{xyzg :L'y("g_ y)’ 1’2(1‘2— Z), yz(yz_ Z),x2(33 . y),$2(l‘ . z),yQ(y o x),y2(y . Z),Z2(Z o $),Z3} .
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This set was obtained by using 2-subsets of {x,y, z} and replacing these in the 2-
variable basis of homogeneous IVP, which has been described in Section 2.3.2. This
method will not be of much use for bigger m, since we will not be capable of using

the case 2-variables only.

Since m = 3, we have the following vector of monomials:

T

3

2z oayzr 2%z P awy? 2y 23|

B= |2 yz* az

and the matrix of coeflicients is

1 000 0 00 0 00
000 00 0 0 1 0 00
00 00 0 0 0 0 0°1
01 00 0 0 0 0 00

s_ 00 100 00000
000 00 0 0 0 0 10
000 00 1 0 0 0 00
000 00 0 0 0 —110
000 10 -2 -10 ~110
0 -1 31 -4 -3 0 -1 1 0]

The product U - B will produce polynomials such that SL are a basis for homogeneous

IVPs in the case m = 3 we get:

y(yz +22) z(2? +zz+yz +y) 2%y + 222+ 2y? + 22?2 + P2 + y2? }

3,3 .3 ,.2 2
€T, 2, Y, T2, TY%z, y
{ y y y 5 5 5

Unfortunately, the polynomials from the bases obtained in this way tend to not
factor. In the next chapters we will try to find a solution to this. Nevertheless, the
matrix S gives us a way of counting the number of elements with a particular de-
nominator in a basis. We conclude this chapter with computational results obtained

this way.
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We tabulate these results as follows. In the next part of the MAPLE program,
we look at the elements on the diagonal of S, take their p-adic valuation, and store
this in a list L. For each m, L is a list of length w which contains the p-adic
norms of the denominator in the basis. Then a list of lists LL is created using all the
L’s we obtained at each iteration. Then a second matrix of dimension n x n is cre-
ated using LL. The entries from this matrix are obtained by comparing the column
index j and the values in LL[i], where i is the row index. We loop through LL][i]
and count how many values are equal to j. Thus the (7, j)-th entry of the matrix is

the number of basis element for Int’(Z?, Z) whose denominator has 2-adic valuation j.

Doing this for the cases 1 < m < 22, we obtain after removing all columns of
zeros the following 22 x 15 table, where each degree m is represented by the rows, the
entry a,, represents the number of elements with denominator of 2-adic valuation

l, for 0 < ¢:



k, for Denominators of Size 2F

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1/3 06 0 0O 0 0 0 O O O O O 0 0 O
2/6 0 0O OO O OO OO O O O 0 o0
3|7 3 0 o 0 0O O O O O O O 0 o0
417 8 0 06 0 0O O O O O O O O O o0
517 14 0 0 0 O O O O O O O O 0 o0

6 |7 14 4 3 0 O 0O 0O O O 0O O O 0 O
7|7 146 9 0 0 0O 0O O O O O O 0 O
8|7 14 7 14 3 0 0O 0 O O O O O 0 O
9|7 14 7 14 13 0 0 0 O O O O O O O
07 14 7 14 21 3 0 0 0O O O O O 0 O
gl|11|7 14 7 14 2888 0 0 O O O O O O O
1127 14 7 14 2814 4 3 O O O O O O O
§o 3|7 14 7 14 28 14 6 15 0 0 O O 0 0 O
Q147 14 7 14 28 14 7 25 3 1 0 0O 0 0 O
5|7 14 7 14 28 14 7 28 14 3 0O O 0O 0 O
6|7 14 7 14 28 14 7 28 25 6 3 O O O O
7|7 14 7 14 28 14 7 28 34 9 9 0 0 0 0
8|7 14 7 14 28 14 7 28 35 14 14 8 0 0 O
197 14 7 14 28 14 7 28 35 14 21 21 0 O O
2007 14 7 14 28 14 7 28 35 14 28 288 7 O O
217 14 7 14 28 14 7 28 35 14 28 42 6 8 1

22 |7 14 7 14 28 14 7 28 35 14 28 49 14 14 3

Table 5.4: Number of Denominators for Int"™(Z3,Z) at p = 2

57

Note that 7 = 22 4 2! 4 1 seems to divide the limit of every column. This table

will be extended in Table 6.1.

Given a certain column index j and row index ¢, if a; ; has the same value as the

limit of its column we will refer to the corresponding basis elements as being in the

stable part of the matrix. If not, the basis elements are considered unstable. We use

“diagonal” to refer to the set of first non-zero elements in each column.

Up to degree 7, the 2-variable and the 3-variable case take on the same denomina-

tors in the basis elements. The value 3 on the diagonal of table 5.4 can be interpreted

as coming from the 2-variable case, and we get three elements since we can pick 2-

variables out of three in three different ways. For degree 8, things diverge from the
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2-variable case where we previously had that the highest power of two that one can
get in the denominator is 22 and with 3-variable one can obtain a 2*. These basis
elements with larger denominator need to be created using all 3 variables. Another
interesting case to point out from this matrix is degree 14. This is the first instance
where we get a 1 on the diagonal, so once again the case of 2-variables will not be

helpful.

Using Table 5.2 we can calculate how many basis elements from the 3-variable
case are actually obtained from the 2-variable case. This is the previous table with

entries multiplied by three, which is the number subsets of 2 variables from 3 variables
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Table 5.5: Number of Denominators in Int,,(Z3, Z) from Int™(Z?, Z)

The following table lets us know how many basis elements from the 3-variable

case are obtained using all three variables :
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Table 5.6: Number of Denominators in Int™(Z3,Z) that Use All 3 Variables
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5.2.1 A Basis When m =4

Using Corollary 39 we obtain the following basis elements for Int,(Z3,Z), that

are of degree at least 4 and with denominator at least 2:

Y

{x(x—l)(x—?)(w—?)) zylx —1)(x—2) zz(x—1)(z—2) azy(lz—1)(y—1)

8 ’ 2 ’ 2 ’ 4
zyz(x —1) zz(@—1)(z—1) ayly—Dy—2) zyzly—1) ayz(z-1)
2 4 ’ 2 ’ 2 2
zz(z—1)(z=2) yy-—Dy—2)y—3) yz(y—1y—2) zz(y—1(z-1)
2 ’ 8 ’ 2 ’ 4 ’
yz(z —1)(z — 2) z(z—l)(z—?)(z—?))}
2 ’ 8 '

The basis for Z*[z,y, 2] is:

4 .3 3 2,2 .2 2,2 3 2 2 3 .4 .3 2,2 3 4
{‘/E?IyJxZ?xy)'ryz)'rz7‘/ry7xyz7xyz7xz7y?y'z?yZ?xZ)Z}'

By the above Table 5.4, the basis of Int*(Z3, Z2)) has seven elements for which no
power of two is in the denominator, and eight such that 2! is the highest power of two
present in the denominator. The following is a linearly independent set respecting

the previous, with only homogeneous terms of total degree 4:

{ 2 Tylw—y) mPlr—y) 2Pz@—z) zt(r—z) yrly—z2) yFly-—2)

€ y27 2 Y 2 Y 2 I 2 9 2 9 2 )

2 2 2 2
; ; oYz — Y2 TUYZ — TYZ
Bla =) o2, P ) P2, P -a), TEIE TESIE al,



Chapter 6
Intersection of Lattices and the Hermite Normal Form

The results from the previous chapter produced homogeneous IVP bases in a re-
stricted range. We would like to have more efficient computations in order to obtain
bases in higher degrees and [VPs with fewer terms, and to better understand them.
The calculations in this chapter will achieve part of this. We use our work from
Chapter 4 and take the intersection of the three cases, where one of the variables
must evaluate at an odd integer. The Hermite normal form of a matrix will be the

tool we use to obtain these intersections.

Since the Int(S,Z), for S C Z, are Z-modules, we can treat them as lattices and

use existing knowledge about these to find more details for the bases of homogeneous
IVPs.

Definition 96. [Micl6a, Def. 1] A lattice is a discrete additive subgroup of R™,
i.e., it is a subset A C R"™ satisfying the following properties:

(1) A is closed under addition and subtraction,

(i1) there is an € > 0 such that any two distinct lattice points x #y € A are at

distance at least ||x —y|| > e.

Above is the general definition of a lattice A, a useful computational definition
of lattices is by using the span to linearly independent vectors, where the notation
L will be used.

Definition 97. [GM02, Ch.1, 1] Let R™ be m-dimensional Euclidean space. A
lattice in R™ is the set
x; € Z}

i=1
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of all integral combinations of n R-linearly independent vectors by,...,b,. The

integers nand m are called the rank and dimension, respectively of the lattice.

We can use the above definition to get a definition using matrices, which will

facilitate computations.
Definition 98. [GMO02, Ch.1, 1] The sequence of vectors by, ..., b, in Definition 97
15 called a lattice basis, which we represent as a matriz

B =[by,...,b,] € R™*"

with basis vectors as columns. We will write our lattice as

L(B)={Bx|xeZ"}.

Definition 99. [Micl6b, Def. 3] The dual of a lattice A is the set A* of all vectors
x € span(A) such that (x,y) is an integer for ally € A,where (x,y) € R is the usual

inner product of X and 'y in R™.

Proposition 100. [Micl6b, Th. 2| The dual of a lattice with basis B is a lattice
with basis D = BG~! where G = BT B is the Gram matriz of B.

Proposition 101. [Sch86, 4.4] If a lattice A is generated by the columns of the

invertible matriz B, then A* is the lattice generated by the rows of B~!.

Proof. The lattice generated by the rows of B! is contained in A* as each row of
B! is contained in A*, since B~'B = I. Conversely, if z € A*, then zB is integral.

Hence z = (zB)B™! is an integral combination of the rows of B~ O]

The dual of a basis and the Hermite echelon form defined below will be useful in

finding the intersection of lattices.

Definition 102. [GMO02, Def. 8.2] A matriz with linearly independent columns
B = [by,...,b,] € R™*" is in Hermite normal form (HNF) if and only if

(i) There exists 1 <iy < ... <14, <m such that if b;; # 0, then j < h and i > i;.
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(ii) For all k > j, 0 < by, 1 < b, j, i.e., all elements at rows i; are reduced modulo
b

ijvj'

The HNF of a matrix is an analogue of the reduced normal form of a matrix over

Z. We will denote the HNF of a matrix A by HNF(A).

Proposition 103. [GMO02, Ch.1, 2.2] If L(B) and L(B') are lattices with bases B
and B', then HNF([B|B']) is a basis of L(B) U L(B’).

Proof. The matrix [B|B’] generates the lattice £(B) U L(B’), but there might be
linear dependence between the columns of B and of B'. HNF([B|B']) produces a

matrix with linearly independent columns with the same span. O

Proposition 104. [GMO02, Ch.1, 2.2] Given lattices L(B) and L(B') with respective
duals L(D) and L(D"), the lattice generated by HN F([D|D']) is the dual of L(B) N
L(B).

Proof. Take x € span(L(B) N L(B')); we want to show that (x,y) € Z for all

y € span(L(HNF[D|D'])).

We know that HNF([D|D']) generates the lattice £(D) U L(D’) by Proposi-
tion 103. Hence for all y € span(L(HNF[D|D'])) we have

<X17Y> S ZJ
<X27Y> S /

for all x; € span(L(D)) and xo € span(L(D")), since L(HNF[D|D']) is the lattice
generated by the union of £(D) and £(D'). Thus (x,y) € Z for all y € span(L(B)N
L(B')). O

By using the above, we get the following procedure for finding the basis of the
intersection of two lattices £(B) and L(B’).

1. Calculate D = B(BTB)™! and D' = B'(BTB')~%.

2. Calculate HNF([D|D']).
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3. Take the dual of HNF([D|D']), that is,

H'= HNF([D|D')(HNF([DID)" HNF([D|D']))~".

H' is the basis of L(B) N L(B').

Corollary 105. Givenn bases By, B, ..., B, for the lattices L(By), L(B2), ..., L(By,)
with corresponding dual lattices L(Dy), L(Ds), ..., L(D,), then the dual of L(By) N
L(By)N---NL(By) is L([D1]| Do - -+ |Dyl).

Proof. We prove the claim by induction, the base case being Proposition 104. Sup-
pose the basis of the dual of £L(By) N L(By) N---NL(By) is L([D1|Da| -+ |Dy]). We

want the dual of
L(B)NL(By)N-+-NL(Br)NL(By1) = (L(B1) N L(Bz) N+~ N L(Bg)) N L(Bpy1)
which by Proposition 104 is

L([[D1|Dz] - - - | Dy]| Disa]) = L([D1| Dol - - - [Dy| Dy ya]).-

This means that the above process can be generalized to n lattices.

6.1 The 2-Variable Case

Since we know what to expect in the 2-variable case, we first use this technique for

that case, and verify that we obtain the expected results.

Using the material from the previous section with homogeneous IVPs, we have

the following lattice of modules:
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F

o
S

F =Int,,(Z* 7)
Sy = Int™(Z x (1 + 2Z),Z) = Inty(Z, Z)
Sy = Int™((1 + 27) x Z,7) = Inty(Z, Z)

./

We are interested in S} NSy = Int"™(Z? Z). For S; we have the isomorphism from

Proposition 67:

Int,,(Z,7) = Int"™(Z x (1 +2Z),Z)
F: f(a) =y f (5)
G:g(x,1) < g(z,y).

We have similar maps for Sy. These were explained in Chapter 4.

We know that {(%)}._ and {(y)} _are bases of Int,,(Z,7Z), for the variables
< j<m

J
z and y respectively. We can homogenize these at y and x respectively and obtain

that
z y
sy (1)}, mam={(5)}
t i<m 1/ ) j<m

are bases for S; = Int"(Z x (1+2Z),Z) and Sy = Int""((1+2Z) X Z, Z), respectively.

Let V' be an ordered list of basis elements of Z™[x,y]. We do the following to

find a basis for the intersection:

1. Store in A and B the elements of B; and B, written in terms of V.
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2. Dualize A and B in order to obtain A’ and B’.
3. Take the HNF (H) of [A’|B’] and the Smith normal form (S) of H.

4. Consider H to be the m x m matrix made from removing the m x m all zero

block from H’.

5. Remove the zero block from H, and call the result H*, dualize H* to obtain
H'. For a fixed m, H' -V produces a basis.

These polynomials do not admit the same number of elements with certain de-
nominators as the ones obtained by Johnson and Patterson [JP11]. However taking
the Smith normal form of H produces a matrix whose diagonal is the denominators
of the basis, and when counting these for various m, we obtain the same results as
the ones in Table 5.2, which are the values from Johnson and Patterson [JP11]. Thus

one needs to use both the HNF and Smith normal form to obtain comparable bases.

6.2 The 3-Variable Case

We do something similar to the previous section for the 3-variable case. Here we are

interested in Int™(Z3,Z) = S; N Sy N S3 for:

S) =Int"™(Z x Z x (14 27),7Z) = Int,,(Z* Z)
Sy = Int™(Z x (1 + 27Z) x Z,7) = Int,,(Z?, Z)
Sy = Int"™((1 +2Z) x Z x Z,7) = Int,, (Z*, 7)

For Sy, this isomorphism is

Int,,(Z* Z) = Int"™(Z x Z x (1 4 27Z),Z)
F: f(z)—2"f (f,g>

z Z

G:g(z,y,1) < g(z,y,2).
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Similar maps exist for S, and Ss.
We work with the following bases for Int,,(Z? Z) :

O Q0. = OO, ..

which are bases for the variables (z,v), (z, z) and (y, z) respectively. We homogenize

at the variables z, y and z, and obtain

-0 5 (OO a0

respectively. Let V' be an ordered list of basis elements of Z™ [z, y, z].

SRS

1. Store in A, B, C the elements of By, By, B3 written in terms of V.

2. Dualize A, B, C in order to obtain A’, B',C".

3. Take the HNF (H) of [A’|B’|C’] and the Smith normal form (S) of H.

4. Remove the zero block from H, and call the result H*, dualize H* to obtain
H'.

Once again H' -V gives IVPs, but differing from those obtained in Chapter 5.
There are usually more elements with bigger denominators than the polynomials
from Table 5.4. This does produce the same largest denominators for degree m as
Theorem 95. Since this process is faster and requires less memory we can find the

next three rows of Table 5.4:

k, for Denominators of Size 2F
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
E123[7 14 7 14 28 14 7 28 35 14 28 49 14 14 6 O
§ 24 |7 14 7 14 28 14 7 28 35 14 28 49 14 14 25 6
EO 25 |7 14 7 14 28 14 7 28 35 14 28 49 14 14 34 23

Table 6.1: Number of Denominators in Int"(Z?, Z) at p = 2 Continued from Table 5.4

The faster computations may also be explained by the fact that we are work-

p (mtD(m+2) o 3(mt1)(m+2) (m+1)(m+2)
2 2

5 X

matrices for degree m, as opposed to

ing wit
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(m~+1)(m+2)(m+3)
6

matrices as needed for the Smith normal form, which will be smaller

for degrees 7 and higher.

6.3 Results at Other Primes

We can use the technique from Section 6.2 and localize at other primes. We repeated
this process for all primes between 3 and 29 (but only display results up to 13). For
p = 29, the degrees that were within calculations, produced bases with no denomi-
nators. As p gets bigger we get fewer basis elements with denominators, which will
allow calculations for higher degrees, since the matrices we work with are simpler.
Note that the size of the matrices we work with are independent of the prime, which

allows us to get the following tables:



k, for Denominators of Size 3*

o 1 2 3 4 5 6 7 8 9

113 o0 0 O 0O O 0 0 0 O
216 0 o0 O O O O 0 0 O
3110 0 0 O O O O O O O

4 112 3 0 0 O O O O 0 O
5113 8 0 0 O O O O 0 O
6|13 15 0 0 0 0 0O 0 0 0
7113 23 0 0 O O O 0 0 0
8113 26 6 0 0O 0 O 0 0 O
9113 26 16 0 O O O 0O 0 O
100/13 26 27 0 0O O O O O O
11(13 26 39 0 0 O O O 0 O
12113 26 39 10 3 0 O O O O

§ 13/13 26 39 18 9 0 O 0O O O
iﬁo 14113 26 39 23 19 0 O 0O O O
A1 |13 26 39 26 26 6 0 0 0 0
16 |13 26 39 26 33 16 0 0O O O
17113 26 39 26 36 31 0 0O O O
18113 26 39 26 38 41 7 0 0 O

19 13 26 39 26 39 52 15 0 0 O
20113 26 39 26 39 52 36 0 0 0
21113 26 39 26 39 52 52 6 0 O
22113 26 39 26 39 52 65 16 0 O
23113 26 39 26 39 52 78 27 0 O
24113 26 39 26 39 52 78 46 6 O
25113 26 39 26 39 52 78 49 29 0

26 |13 26 39 26 39 52 78 51 46 8
27113 26 39 26 39 52 78 52 62 19

Table 6.2: Number of Denominators in Int™(Z3,Z) at p = 3



k, for Denominators of Size 5
0 1 2 3 4
1 3 0 0 0 0
2 6 0 0 0 0
3 10 0 0 0 0
4 15 0 0 0 0
5 21 0 0 0 0
6 25 3 0 0 0
7 28 8 0 0 0
8 30 15 0 0 0
9 31 24 0 0 0
10 | 31 35 0 0 0
11| 31 47 0 0 0
12 ] 31 54 6 0 0
GE) 13| 31 59 15 0 0
%io 14 31 62 27 0 0
A 15 31 62 43 0 0
16 | 31 62 60 0 0
171 31 62 78 0 0
18| 31 62 87 10 0
19| 31 62 93 24 0
20 | 31 62 93 45 0
21| 31 62 93 67 0
22 | 31 62 93 90 0
23| 31 62 93 114 0
24 31 62 93 124 15
25 31 62 93 124 41
26 | 31 62 93 124 68
27| 31 62 93 124 96
28 31 62 93 124 125

Table 6.3: Number of Denominators in Int"™(Z3,Z) at p =5
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k, for Denominators of Size 7%

0 1 2 3

1 3 0 0 0

2 6 0 0 0

3 10 0 0 0

4 15 0 0 0

5 21 0 0 0

6 28 0 0 0

7 36 0 0 0

8 42 3 0 0

9 47 8 0 0

10 | 51 15 0 0

11 54 24 0 0

12| 56 35 0 0

S 13| 57 48 0 0
;SD 14| 57 63 0 0
S |15 57 79 0 0
16 | 57 90 6 0

17| 57 99 15 0

18 | 57 106 27 0

19 57 111 42 0

20 | 57 114 60 0

21 57 114 82 0

22 | 57 114 105 0

23 57 114 129 0

24 57 114 144 10

25 | 57 114 156 24

26 57 114 165 42

27 | 57 114 171 64

28 | 57 114 171 93

Table 6.4: Number of Denominators in Int™(Z3,Z) at p =7
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k, for Denominators of Size 11*

0 1 2
113 0 0
2 16 0 0
3 110 0 0
4 |15 0 0
5 121 0 0
6 |28 0 0
7 | 36 0 0
8 | 45 0 0
9 | 55 0 0
10 | 66 0 0
11178 0 0
12 | 88 3 0
S 13 ] 97 8 0
;% 14 | 105 15 0
A |15 | 112 24 0
16 | 118 35 0
17 | 123 48 0
18 | 127 63 0
19 | 130 80 0
20 | 132 99 0
21 | 133 120 0
22 | 133 143 0
23 | 133 167 0
24 | 133 186 6

25 | 133 203 15

26 | 133 218 27

27 | 133 231 42

28 | 133 242 60

Table 6.5: Number of Denominators in Int™(Z3,Z) at p = 11
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k, for Denominators of Size 13*
0 1
1| 3 0
2| 6 0
3| 10 0
4 | 15 0
5 | 21 0
6 | 28 0
7 | 36 0
8 | 45 0
9 | 55 0
10 | 66 0
11 78 0
12| 91 0
i 13 | 105 0
)
T
A
16 | 138 15
17 | 147 24
18 | 155 35
19 | 162 48
20 | 168 63
21 | 173 80
22 | 177 99
23 | 180 120
24 | 182 143
25 | 183 168
26 | 183 195
27 | 183 223
28 | 183 246

Table 6.6: Number of Denominators in Int™(Z3,Z) at p = 13

6.4 Symmetrization

Since symmetric polynomials are of interest in the case of computing the homotopy

of BU, we look into finding homogeneous symmetric IVPs.

Definition 106. A polynomial p(z1,...,x,) in n-variables is symmetric if for any
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permutation o of the subscripts 1,2,...,n one has

P(To(1ys -5 Tamy) = P(T1, ..., Ty).

Definition 107. Given a S-variable polynomial f(z,y,z) one can symmetrize f by

taking

fsym:f(x,y,z)+f(y,x,z)—|—f(z,y,x)+f(m,z,y)+f(y,z,x)—|—f(z,x,y).

An important matter to notice is that when adding six different permutations of
an [VP, there is a great chance that we will obtain even numerators for the coeffi-
cients which will cancel out with the denominators. Focusing on degree 14 for now,
from Table 5.4 we know we can get a homogeneous IVP with 2% in its denominator

and we wonder if we can obtain the same denominator with a symmetric IVP.

When we let f be the degree 14 homogeneous IVP with a 2° in its denominator,
we obtained f,,, with a 28 in its denominator. The main question of interest here
is: can we have a symmetric IVP with 2° in its denominator? We conjecture that

the answer is no.

Amongst other symmetrization attempts we symmetrize polynomials obtained
from the HNF and polynomials obtained from the Fano plane, (the construction of

these will be explained in Chapter 7).

From these attempts the best we managed to obtain is a homogeneous IVP g
with 2% in its denominator that factors as a product of linear factors. Even though
the denominator is smaller by a power of 2 than the best we can obtain for the non-
symmetric case, the factorization is useful to explain how to construct these, and the

polynomials can keep their full denominators once they are made symmetric.

Below is a table showing what happened when symmetrizing the polynomials
from the HNF up to degree 14. The “sym” column counts how many polynomials

were already symmetric, the “null” column counts the number of polynomials that
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went to zero when symmetrizing, and the other columns count the number of basis

elements with each denominator:

sym | null [ 20 28 22 23 2% 25 26 97 OB

1 0 0 30 0 0O O O O 0 O
2 0 0 6 0 0 O O O O 0 O
3 1 3 6 0 0 O O O O 0 O
4 0 5 7 3 0 0 O 0 0 0 O
5 0 5 /100 6 0 0 O O O 0 O
Degree 6 0 8 7 13 0 0 O O O 0 O
7 0 3112 9 6 6 0 0 0 0 O
8 0 077 12 3 13 0 0 0 0 0
9 0 4 7T 12 3 23 6 0 0 0 O
101 0 017 12 2 19 16 0 0 0 O
117 0 5 7T 14 2 15 31 4 0 0 O
121 0 6 7 12 2 10 31 20 3 0 O
131 0 0 7T 12 2 13 20 27 21 3 O
141 0 0 7T 12 2 11 20 9 22 32 5

Table 6.7: Denominators Obtained after Symmetrizing

For degrees 1,2,4,5,7,9,11,13 we did not lose all maximal denominators, but we

do get fewer elements than in Table 5.4.

Another question one may ask is: can we symmetrize each linear factor first,
multiply out and still obtain an IVP with 2% in its denominator? The answer is no

since each linear factor is of the form ¢ = ax + by + cz and calculating:

Usym = (az + by + cz) + (bx + ay + cz) + (cx + by + az)
+ (ax + cy + bz) + (bxr + cy + za) + (cx + ay + bz)
=(2a+20+2c)(z+y + 2)

Hence any linear factor will be divisible by 2 and will cancel out with the denomi-

nator.



Chapter 7

Building 3-Variable Homogeneous Integer-valued

Polynomials Using Projective Planes

The goal of this chapter is to use projective H-planes, which are a generalization of
finite projective planes over rings, to construct a correspondence between lines that
cover H-planes and homogeneous IVPs that are a product of linear factors. We will
illustrate this correspondence starting with the degree 8 case where we produce a
polynomial with largest possible denominator which factors as a product of linear

polynomials.

We then show why the degree 14 case, which has a basis element with a 2% in its
denominator, cannot be written as a product of linear factors. We look into building
polynomials of higher degree where we managed to obtain IVPs. We end the chapter
by using this correspondence with the 2-variable case and obtain the same results as

in Johnson and Patterson [JP11].

7.1 Projective H-Planes

In this section we summarize the literature on Hjelmslev planes, denoted H-planes,
in order to use it to build a correspondence later on. What we are interested in is
finding a extension of the notion of projective planes over the rings Z/(p*). These
were first introduced by Wilhelm Klingenberg [Kli54], who was following the work
of the Danish mathematician Johannes Hjelmslev, whose main results were in non-
Euclidean geometry. Klingenberg altered the axioms of the projective plane to allow
two lines to intersect in several distinct points. These points would be called neigh-
bours. This notion of neighbouring was shown by Klingenberg to be an equivalence
relation for H-planes. Note that the first paper written in English about projective
H-planes is from Erwin Kleinfeld [Kle59].

7
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7.1.1 Projective Planes over Finite Fields

Projective planes arise from wanting a geometry with no parallel lines. This would
more closely resemble the situation when we look at two parallel lines in reality. For

example, when we look at train tracks, these do seem to meet at a vanishing point.

The study of Projective planes arose in the early 1900’s [Veb04], we will present
results from [AS68] and [Ayr67], since their book defines finite projective planes in

the computational way that will be needed for this chapter.

Definition 108. [AS68, 1.3] A projective plane consists of a set of lines L, a set of
points P, and a relationship between the lines and points called incidence Z, having

the following properties:
I Given any two distinct points, there is exactly one line incident to both of them.

I Given any two distinct lines there is exactly one point incident with both of

them.
III There exist three non-collinear points.
IV FEwvery line contains at least three points.

We state some general statements about any projective plane and then some more

specific ones about projective planes over finite fields.

Lemma 109. [Ayr67, Th. 7.1] If Ly and Lo are distinct lines, then there is a point

that is on neither of them.

Theorem 110. [Ayr67, Th. 7.5] Every line in the projective plane has the same

number of points.

Over a finite field F,, where ¢ = p* for p a prime and 0 < k € Z, we look at the

projective n-space.

Definition 111. [AS68, 3.3] The finite projective n-space over F,, denoted F,P",
is defined as the set of points w € Fpt'\{0} with the equivalence relation W ~ Aw

for X non-zero in F,.
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For example, consider F,P', which is called the projective line. F,P! can be
represented as a set of equivalence classes (z,y), such that (z,y) ~ (Az, Ay) for all
non zero A. The pairs (z,y) are the points w in Definition 111. Projective lines will

have ¢ + 1 points. For example FoP! ~ F2\(0,0), and it has three points.

The finite projective space that we will mainly look at for our work is the finite

projective plane F,P? when ¢ = p, where we can do arithmetic (mod p).

Definition 112. [AS68, 3.3] A point in F,P? is a triple from Fg\(0,0,0), that
satisfies the following equivalence relation: (x,y,z) ~ (Ax, Ay, Az) for all non zero A

in I,

Definition 113. [AS68, 3.3] A line L = (a,b,c) in F,P? is determined by a linear
polynomial ax + by + cz, with at least one of a, b or ¢ not divisible by p, such that

the points incident to it are
Lgpey ={(2,y,2) | ar + by +cz=0 (mod p)}.

Note that the above is a symmetric relation, which gives the important result

below, referred to as the duality of the projective plane.

Proposition 114. [AS68, 1.7 Th. 3| Given the incidence relation in Definition 113,
the point P = (x,y,z) and the line L = (a,b,c) we also have that P, = (a,b,c) is

incident to Ly = (x,y,2). This is referred to as the duality of projective planes.

F,P? is referred to as the Fano plane and is the smallest projective plane, pic-

tured below. It has seven points and seven lines.

Any line in F,P? is isomorphic to F,P!. Any two lines intersect in exactly one
point, and any point has exactly three lines going through it. This holds for p = 2;

in general, p 4+ 1 lines go through one point.

Proposition 115. [AS68, 2.3 Th. 1(a)] When picking all p+1 lines that go through
a single point P in F,P? | these p + 1 lines cover all of F,P2.
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Figure 7.1: F,P2, the Fano Plane

Proof. For any point @ in F,P? there is a unique line passing through @ and P. [

Proposition 116. [AS68, 2.3 Th. 1(b)] The projective plane F,P? has p* +p+ 1

distinct points.

Proof. The set F,, has p points. The set (F,,)*\(0,0,0) has p* — 1 points. Since there
are p — 1 units in F, and we get an equivalence class for each of these, we have

%ZPQ—I—p—i-lpoints. O]

Corollary 117. [AS68, 2.3 Th. 1(b)] The projective plane F,P? has p* + p + 1

distinct lines.

Proof. This comes from the duality of lines and points in the projective plane.  [J

7.1.2 Projective H-planes over Z/(2%)

When trying to keep the same structure as in Section 7.1.1 but replacing Fy by Z/(4)
or by Z/(2F), we will not have a projective plane anymore. Before looking at the
planes, we will extend the projective line to Z/(p*). The definitions and results from
this section were obtained by adapting [Kle59] to get computational results as as in

Section 7.1.1.
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Definition 118. The line Z./(p*)P* will be represented as a set of equivalence classes
of pairs (x,y) € (Z/(p*))?, such that at least one of x and y is not divisible by p,
with equivalence relation (z,y) ~ (A\z, \y) for all units X in Z/(p*).

p2k_p2(k—1)

Lemma 119. The line Z/(p*)P* will contain e = ¥+ pF=L points.

Proof. We have that (pF~')? is the number of pairs in F2, where each element is

divisible by p and p* — p*~! is the number of units in F,. O

For example, FoP! has 2! + 2% = 3 points and Z/(4)P! has 22 + 2 = 6 points.

Now to extend the projective plane, we take all the triples (a, b, c) in Z/(4)? such
that there is at least one odd value in the triple, and we use the same equivalence
relationship on these. This will give us 437_8 = 28 points since there are eight even
triples in Z/(4)% and two units in Z/(4). There will also be 28 lines by duality which

will be revisited in Proposition 123. More generally, we have the definition below.

Definition 120. The projective H-plane over Z/(p*): Z/(p*)P? is the set of triples
from Z./(p*)3, such that p does not divide all values in the triple, with the equivalence
relation (x,y, z) ~ (Az, \y, \z) for all units \ in Z/(p*).

The properties of incidence of lines and points in projective H-planes have been
studied, especially by those interested in coding theory, through arcs in projective
H-planes. These will not be of any help for this work. However, the coding theorist

Michael Kiermaier [Kie| did produce a very useful visual representation of Z/(4)P2.
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Figure 7.2: Z/(4)P? [Kie]

Given this picture every point of FoP? is lifted to a tetrahedron that has four
points, which are the points over Z/(4)P?. Every line from F,P? is lifted to four lines,
that are represented by four coloured segments which are the lines over Z/(4)P2.
Each line in Z/(4)P? on the picture can be found by taking one of the four lines cor-
responding to a line over F, P2 which is represented by four coloured segments. Then
taking the points that are adjacent to these coloured segments on the tetrahedrons.

3k h-1)3

p—(p

Lemma 121. The projective plane Z/(p*)P* has ————— = P** P2+ p+1)
pr—=Dp

points.

Proof. We have that (p*~1)3 is the number of triples in Fz, where each element is

divisible by p and p* — p*~! is the number of units in Z/(p"). O
Incidence of lines and planes is defined in a similar way:

Definition 122. A line L = (a,b,c) in Z/(p*)P? is determined by a homogeneous
linear polynomial ax + by + cz, with at least one of a, b or ¢ not divisible by p. The

points incident to L are those such that

Liapey = {(7,9,2) | az + by +cz=0 (mod p*)}.
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Proposition 123. Given the incidence relation in Definition 122, the point P =
(z,y,z) and the line L = (a,b,c) we also have that P, = (a,b,c) is incident to
Ly = (x,y,z). This is referred to as the duality of projective H-planes.

We can build an incidence matrix of size |Z/(p*)P?| x |Z/(p*)P?|. Since both
point and lines can be represented by triples, we label the triple of the line with
coordinates L; be the same as the triple of the point with coordinates P;. A zero

entry in the matrix means that the point is incident to the line.

For F,P? we get the following incidence matrix:

Ly Ly Ls Ly Ls Le¢ Lrp

P=(001)T1 0 1 0 1 0 1
P=(0,1,00 |0 1 1 11
P=011) |1 1 0 0 1 1 0
P=(00 10 0 0 1 1 1 1
Ps=(01) |1 0 1 1 0 1 0
Ps=(1,1,00 /0 1 1 1 1 0 0
=111l 1 0 1 0 0 1.

One can build a similar 28 x 28 matrix for Z/(p*)P?. The duality between points

and lines is equivalent to the incidence matrices being symmetric.

Proposition 124. Each line in Z./(2)P? is incident to 28+ — 2k=1 points.

Proof. For aline L = (a,b,c) at least one of a, b, ¢is odd. Without loss of generality,
assume c is odd. Thus for any (z,y) in Z/(2%)P! there is a z such that (x,y,2) € L,
namely z = ¢ !(—ax — by). This gives us a one-to-one correspondence between L

and Z/(2%)P!, which has 2¥! — 281 elements by Lemma 119. O

Corollary 125. Each point in 7/(2")P? is incident to 281 — 281 [ines.

Proof. This follows since the incidence relation is symmetric. ]
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Proposition 126. Suppose L1 = (ay, by, c1) and Ly = (ay, by, o) are lines in Z./(2F)P?
for some k > 1. If (a1, b1, ¢1) = (ag, b, ca) (mod 27) for some h < k and (a1, b1, c1) #
(a2, be, c2) (mod 2"*Y), then |Liay pr.cr) N Liag,boes)| = 257"

Proof. Suppose L = (ay,b,¢;) and L = (ag, by, o) are lines over Z/(2F)P? for some

k > 1. We want to find the number of solutions to the following matrix equation:
AX =0

X
b 0
o y (mod 2%).
a9 b2 Co 0

z

Replacing A by its Smith normal form gives

T
0
USv |y| = H (mod 2%),

z

where U is a 2 X 2 matrix and V' is a 3 x 3 matrix, and both are unimodular. Since U
is invertible, we multiply both sides by its inverse, and since V' represents a change

of variables on z, y, z, we can write our equation as

Sly| = [3] (mod 2%).

First we look at when L; = L, (mod 2"), for 0 < h < k. Here h is the maximal

exponent such that the lines are congruent. Therefore we have:

as =a; (mod 2")

by =b, (mod 2"

ca=c; (mod 2M).

Without loss of generality we may assume that a; is odd, and as is also odd since

the lines are congruent (mod 2"), so a; = ay (mod 2). Now reduce A in order to
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obtain the Smith normal form over Z,), which exists by Theorem 88:

h a
[Cll by C1] N [1 ar a1] .
by c2
[¢5) b2 (&) 1 4y as
Since invertible column and row operations will not change the congruences, we have

that

b b
L=2 (mod 2"),
aq a9
a_2 (mod 2"),
ar Qg

which gives in Z )

b _ b

as ai
Co &1

as ai

Note that either m or n is odd since the two equations below have the same set of

solutions

aox + boy + o2 =0 (mod 2")
a T+ ﬂb2y + ﬂ<:22 =0 (mod 2%)
a9 a9
since the second equation is obtained by multiplying the first by a unit. From there

we get a; as the coefficient of x in both equations hence h is maximal such that

ﬂbz =0 (mod 2")
a2

ECQ =c¢; (mod 2"),
a2

and

by =b, (mod 2"

co=c; (mod 2M).
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Returning to our matrix reduction, we get

a b a 1 % o 1 0 0
as by ¢y 1 Z—ll—l—mQh Z—ll—l—th 0 m2h n2h

Without loss of generality suppose m is odd

a b o 1 0 O 1 0 0
Q9 bQ Cy 0 2h %2h 0 Qh 0
We then have the following matrix equation:
/

T
1 0 0 0
= mod 2°

z

We need to solve 2’ = 0 (mod 2¥) and 2"y’ = 0 (mod 2*%). The first equation
does not affect the number of solutions, and there are 2% values for ¢/ (mod 2F)
such that 2"y = 0 (mod 2%).

O

Corollary 127. Two lines over Z/(4)P? will intersect either in 2 points, when the

projections of the lines over FoP? are equal, or in 1 point when they are not.
Example 128. Proposition 126 has been programmed for the 28 lines over Z/(4)P?

in MAPLE, where all the distinct pairs of lines when put in a matriz and their Smith

normal form was calculated over Z using MAPLE. The following four matrices were

1 00 100 100 1 00
, , , and )
[0 1 O] [O 3 O] [O 5 O] [O 2 O]

The first three correspond to the cases when the lines only intersect once, and the

obtained:

last one occurs where the lines intersect in two points. Writing the element Sy o of

the Smith normal form, S, as 2'u, the lines intersect in 2 points.
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Lemma 129. Given a point P in Z/(4)P?, the 6 lines that are incident to P, reduce

pairwise to three lines in FyP2.

Proof. Given the point P = (x,y, z), we know that six lines are incident to it, given
the duality of Z/(4)P?. Without loss of generality P = (1,0,0). Over Z/(4)P?, P
is on the lines with the following linear representations: z, 2y + z, y, y + 2z, y + 2
and y + 3z. Thus the lines reduce to z = 2y + z (mod 2), y = y + 2z (mod 2) and
y+2z=y+3z (mod 2). O

Proposition 130. Given a point P in Z/(4)P? the siz lines that are incident to P
cover all of Z/(4)P2.

Proof. By Proposition 126 we have that any two lines intersect in one point, and by
the duality any two points are joined by a line. Thus when taking all the lines that
go through P, we cover all the points. [

Proposition 131. Given a point P in Z/(2%)P?, the 3 - 2871 lines that are incident
to P cover all of Z/(2F)P2.

Proof. The proof of Proposition 130 does not depend on the number of lines that

cover the plane, so the statement can be generalized. O

7.2 Using the Projective Plane to Build a Correspondence

This section will explain how we can use the correspondence between sets of lines in
projective H-planes and homogeneous IVPs that factor completely. Understanding
this correspondence will allow us to better understand both topics and solve prob-

lems on each side using knowledge of the other.

On the projective H-plane side we are interested in the geometry of those planes,
especially in how we can cover all points in the plane using a minimal number of
lines. On the homogeneous IVP side we are interested in our classical problem: how
can we construct a homogeneous IVP of a certain degree with the highest power of

the prime in which we are are interested in its denominator?
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Starting with the Fano plane we have that if we take any three lines that intersect
in one point, we manage to cover all seven points in the plane. If we multiply three
linear factors corresponding to the equations of the lines that all meet in one point,

say fl(xaya Z)? f2<$,y, 2)7 f3($7y>z)7 we get that % is an IVP.

Given how the Fano plane was constructed when taking seven linear factors that

correspond to all seven lines of the Fano plane, namely

f1<l',y,2), f2($7y>z)7 fB(xayaz)a f4<$,y,2), f5($7y>z)7 fﬁ(xayaz)a f7<x7y72)7

then M is an IVP, since each point will be on three lines, hence those

linear factors will each evaluate to an even value over Z.

We want to expand the previous to Z/(p*)P?, and see if for higher k, we can
obtain bigger denominators when we cover the full plane. We start with the case of
trying to cover Z/(4)P? with seven lines that would reduce to the lines of the Fano

plane.

In general the number of points covered by a set of lines can be counted using

the inclusion-exclusion principle stated below:

Theorem 132. [vLWO1| Given a finite number of finite sets, Ay, As, ..., A, we

have

AT UA U UA =D A =D AN A+ Y JAin AN Ayl-

i<j i<j<k

=D)AL N AN N A



39

Using this to count for seven distinct lines Ly, ..., Ly in Z/(4)P?, we get that

iU ULy =7-6=Y |LiNLi|+ Y |LinL;jn L
1<J i<j<k
— > LinLinLynLl+ Y |LiN LN Ly N Ly Ly,
i<j<k<t i<j<k<t<m
— Y |LiNLyN LN LeN Ly N L.
i<j<k<l<m<n

Note that since each point is on at most six lines, there is no point where all

seven lines intersect. The above can simplify to :
|Li U~ ULy| =7 6—iy+ i3 — ig + i5 — ig,

where 7; represents that number of points where j lines intersect. If we restrict this
to seven lines over Z/(4)P? that reduce to the full set of lines of the Fano plane, we

get at most three lines going through a point:
|LiU---UL7| =76 — g+ i3.

Each pair of lines intersect in exactly one point since the lines are not congruent

7

2) = 21 = iy, points of intersection. Thus we have

modulo 2. This gives us (
|LiU---UL7| =7-6—21+1i3 =21+ 3.

Thus, the number of points we cover depends on i3, the number of points that are
on the intersection of three lines. We can establish that 0 < i3 < 7, since the Fano
plane only has seven lines. When using MAPLE to calculate all options, we get that
iz € {0,2,4,6}. What is of main interest here is that i3 # 7, which means that we

cannot fully cover Z/(4)P? with seven lines that reduce to the Fano plane.
Proposition 133. Given iz defined as above, we have iz # 7.

Proof. Proposition 126 and an exhaustive combinatorial argument can be used to
prove this. However, we can get the same claim from our results in Chapter 5 where

from Table 5.4, we know that for degree 7 the best denominator we can have is 23. If
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we did obtain a full covering of the H-plane, from seven lines, then we would know
that for each triple of integers (a, b, ¢), three linear factors would evaluate to an even
value and one of them would be a multiple of 4 which would guarantee a 2 in the

denominator of this polynomial. [

This can be used to prove the geometric result below that states that there is no
copy of the Fano plane in Z/(4)P?. By this we mean that we cannot find seven lines
that reduce to the Fano plane when there are seven points that are the intersection

of three lines.
Corollary 134. There is no embedded copy of the Fano plane in Z/(4)P?.

Proof. Suppose we did have seven lines over Z/(4)P? such that there are seven points

over Z/(4)P? that reduce to FoP? and three lines intersect at these seven points.

The reduction map
7: 7.)(4)P? — F,P?

which reduces all three coordinates of a point (mod 2) is a surjective homomorphism.
Let

o: FoP? = 7,/(4)P?

be the map that sends FoP? to the seven corresponding points of Z/(4)P? where the

three lines intersect. Then

T O (70 = 1]1:2132,

which is not a possible composition, since the identity should only map FyP? to the
points of Z/(4)P? with the same coordinates, but these do not form an embedded
Fano plane. O]

The Theorem explain how covering projective planes can help us build homoge-

neous [VPs.

Theorem 135. When building a polynomial f of degree m > k, such that %
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1s an homogeneous IVP, it is sufficient to verify that %

points of 7./ (2%)P2.

18 integer valued at the

Proof. We have that f(22',2y,22") = 2™ f(2',y/, 2) since f is homogeneous. There-
fore, one only needs to focus on the triples (2, 3/, 2’), where at least one of 2/, 3 or 2’
is odd. For A\ € Z/(2F)*, if (2/,y/, ') = (\x, Ay, A\2), then f(2',y,2) = A" f(z,y, 2).
Hence if 2| f(x,y, ), then 2¢|f(2', 1/, 2'). It is sufficient that f only covers one rep-

resentative per equivalence class. O]

Note that Theorem 135 builds a homogenous IVP with 2* for denominator, the
next result, as well the following sections will demonstrate, that larger denominators

can be obtained.

The result below is a corollary of Proposition 130.

Corollary 136. When picking siz lines that intersect in the same point over Z/(4)P?,

f(z,y,2)
23

one can build the homogeneous IVP , where 23 is the greatest possible denom-

mator.

Proof. Given P, the 6 lines going through it will cover all 28 points of Z/(4) P? by
Proposition 130. Using Theorem 135 f(x,y, z) the product of these linear factors,
is such that % is an IVP.

Since the lines will cover twice the Fano plane for each point in Z/(4)P?, there
are two linear factors f; such that f;(z,y,2z) = 0 (mod 2) at all points of Z/(2)P?,
which gives an extra power of two in the denominator, and % is an IVP.

f(x7/y7z)

From Chapters 5 and 6 we know that we cannot get the IVP =5~ thus 23 is

the biggest possible denominator. ]

7.2.1 The Degree 8 Case

As mentioned previously, the case m = 8 is of interest, since three basis elements
of Int*(Z?, Zs)) will have a 2% in their denominator ,which does not happen in the

2-variable degree 8 case, i.e., there is no homogeneous degree 8 polynomial in two
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variables with denominator 2%. Using Z/(4)P?, it is possible to construct degree 8
homogeneous polynomials that have a 2* in the denominator. First we start with
the product of seven linear factors, such that they reduce to the seven distinct lines
in F,P?. No matter which triple from Z3 we take, we always have that at least 3 of
these will evaluate to an even number. The main thing we are interested in here is
how we can pick an extra 8-th factor in a way that we will add an extra factor of 2

when evaluating to a point.

For example, each line L = (a, b, c) can be written as a linear factor ax + by + cz.
The 28 lines in Z/(4)P? are: z, x + 2z, v + 2y, * + 2y + 2z, y, y + 22, 2z + vy,
20 +y+22, 2,2y +z,2x+ 2, 2r+2y+z, c+y, v+ y+ 2z, v+ 3y, x + 3y + 2z,
r+z, v +32, c+2y+z2, v +2y+32,y+z2,y+32, 2 +y+ 2, 2 +y+ 3z, v +y + 2,
r+y+3z, x+3y+ 2z and x4+ 3y + 3z.

Let f be the degree 7 homogeneous polynomial made of a product of the lines in

Z/(4)P?, which cover all the lines in FoP? namely

flr,y,2)=2-y-z-(y+2) (x+2) (z+y) (z+y+2).

Since f modulo 2 consists of all the lines in FoP?, at any integer triple (a, b, ¢) three
linear factors will be even. Thus 2% is an IVP. The points on each line corresponding

to a linear factor are the following:

L Points in Z/(4)P? on L

z (0,0,1), (0,2,1), (0,1,0, (0,1,2), (0,1,1), (0,1,3)
y (0,0,1), (2,0,1), (1,0,0, (1,0,2), (1,0,1), (1,0,3)
e (0,1,0), (2,1,0), (1,0,0), (1,2,0), (1,1,0), (3,1,0)
y+ 2 (0,1,3), (2,1,3), (1,0,0), (1,2,2), (1,1,3), (1,3,1)
oy (0,1,0), (2,1,2), (1,0,3), (1,2,3), (1,1,3), (1,3,3)
v+y (0,0,1), (2,2,1), (3,1,0), (3,1,2), (1,3,1), (1,3,3)
z+y+2 | (01,3), (2.1,1), (1,0,3), (1,2,1), (1,1,2), (3,1,0)

Table 7.1: Points on Seven Lines of Z/(4)P?

Theorem 137. The lines listed in Table 7.1 can be used to build a polynomial of
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degree 8, h(x,y,z) € Zlx,y, z|, such that 2% 15 an [VP.

Proof. By processing Table 7.1 , we get that (1,1,1) is the only point that is not
on any of the lines of those seven linear factors. Thus, to complete f to an IVP
with denominator 2%, we need only multiply by a linear factor which is even when
evaluated at (1,1,1). If we multiply f by g, a linear polynomial such that g(1,1,1)
is even, then the result will be an IVP when divided by 2%. In that case h = % will
be a homogeneous IVP. Out of the 28 possible linear factors coming from Z/(4)P?,
the following twelve will be even at (1,1,1): 2x +y + 3z, y+ 2, y+ 32, 2x +y + 2,
r4+2y+3z, x4z, 2+3z, v +y+2z,x4+y, v+3z, x4+ 3y+2zand v+ 2y + 2. O

7.2.2 Building Higher Degree Homogeneous IVPs that Can Be Written

as a Product of Linear Factors

The degree 14 case is of interest since from Chapter 5, we know we can obtain a
polynomial with a 2% in its denominator. Since the degree 14 case corresponds to
covering twice the Fano plane, we would like to construct an IVP with a 2° in its
denominator from a set of lines in Z/(4)P? that covers the Fano plane twice. Vari-
ous calculations were implemented in MAPLE, including grouping all 28 lines from
Z/(4)P? into sets of congruent lines over FoP? and picking two lines from each of
the seven sets. Unfortunately, even when looking at all 6”possible combinations of

lines, the best we could get is a 2® in the denominator.

Since we cannot find a degree 14 polynomial with a 2% in its denominator, we
turn our attention to the question: what is the biggest power of 2 we can have in a
homogeneous IVP of a certain larger degree? We start with the case degree 28 and
use the lifting from Z/(4)P? to Z/(8)P? to construct a degree 28 polynomial that is

a product of homogeneous factors and is divisible by 219,

Z/(8)P? has 112 points and lines. We got MAPLE to randomly pick 28 lines
from Z/(8)P? such that each line reduces to a different one over Z/(4)P% When
these 28 lines cover the 112 points of Z/(8)P?, we get a polynomial that is divisible
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by 219, An example of such a set of 28 lines is:

0,0,1), (4,1,0), (0,1,5), (1,0,1), (1,1,4), (1,0,4), (1,1,1), (0,2,1), (0,1,2),
0,1,3), (1,4,3), (1,1,2), (1,0,6), (1,1,3), (2,0,3), (2,1,0), (2,3,3), (1,6,0),
6
7

1), (1,3,0), (1,3,5), (2,6,1), (2,1,2), (2,1,7), (1,2,6), (1,2,3), (1,3,2),
77>

If we randomly pick a subset of 14 triples from the 28 above and find the corre-
sponding degree 14 homogeneous polynomial. Some of these polynomials are actually
divisible by 2% and still produce an IVP. Since 2° is not attainable through a product
of linear factors, this is the biggest possible denominator we can get. An example of

this set is:

(0,1,5), (1,1,4), (1,1,1), (0,1,3), (1,4,3), (1,0,6), (1,1,3), (2,0,3), (2,1,0),
(1,6,0), (2,6,1), (2,1,2), (1,2,3), (1,3,2).

These lines cover twice the Fano plane.

Proposition 138. When taking 28 lines from Z/(8)P? that cover all 112 points of

Z/(8)P?, one can build homogeneous IVPs with a 2 in their denominators.

Proof. Write each line as a linear factor f;. We can then take f = [] f; which gives

a degree 28 homogeneous polynomial.

We consider (a,b,c) € Z* such that at least one of a,b,c is odd. Otherwise
228| f(a,b,c). Up to multiplication by a unit in Z/(8), (a,b,c) € Z/(8)P?, since we
could pick 28 lines that covered all of Z/(8)P?. Thus f(a,b,c) =0 (mod 8), and we

get from this a 23 in the denominator that is guaranteed.

(a,b,c) is a point on six lines over Z/(4)P?, since the 28 lines we picked reduce
to Z/(4)P2. Thus fi(a,b,c) =0 (mod 4) for 6 f;s. Since one of these was counted

above, our denominator is now 2 - (22)°.
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(a,b,c) is a point on three lines over FyP?, and we have four lines that cover all

of these over FoP2. Six of these were already counted, so our denominator is now

23 . 210 . 26 — 219‘

The very useful thing that happened over Z/(8)P? was that we could find 28 lines
that reduced to all of Z/(4)P? and covered all 112 points of Z/(8)P?. That was not
possible when picking seven lines over Z/(4)P? that cover the Fano plane. Therefore
this will affect our denominator when we generalize by a factor of 2. We will assume

that we do not have that property for the remainder of the section.

Suppose we make up a degree 112 polynomial where the factors are made from
lines over Z/(16)P? that reduce to all lines over Z/(8)P2. Each point (a,b,c) is on
12 lines, so fi(a,b,c) = 0 (mod 8) for 12 values i, which gives us a (2%)'? in the

denominator.

Over Z/(4)P? each point is on six lines and is covered four times. Half of these
were already counted, so multiply by (22)' in the denominator. Over FoP? each
point is on three lines and is covered eight times. Removing those that are counted

already, we can multiply the denominator by 2'2. Therefore

112
117
i=1

236_224212

is a degree 112 homogeneous [VP.

Corollary 139. When taking 7 - 22*72 lines over Z /(28 )P? that reduce to all the
lines of Z./(2%)P?, one can build homogeneous IVPs with

(219)3-2’“*1 . (2k—1)3-2k*1 . (2)32’“*1
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i their denominators.

Proof. This is obtained by generalizing Proposition 138 as described for the degree
112 case. O]

So we have that

o o oo EED(E+2)
vo(f(a,b,c)) > (;&)-2 =3-2". 5 :

As k approaches infinity, this expression divided by the degree of the polynomial, is

3(k+1) (k+2)

=53, which approaches 0. (Even if we get an extra power of two from covering

all points in the plane, the limit is still 0.) Thus this approach is not optimal.

7.3 Statement of the Correspondence

We can use finite projective H-planes to produce IVPs, but they are dependent
on coverings of those planes, which means we cannot obtain full bases using this
technique. The polynomials we produce do have the nice property of factoring as a

product of linear factors.

Theorem 140. There is a one-to-one correspondence between products of m lines
in Z/(28)P? and homogeneous IVPs of degree m that completely factor with denom-
inator 2", where h depends on the number of coverings of Z/(28)P? that the lines

achieve.

Proof. We want to show the duality between

m

f= H(aix +biy +¢i2),
i=1
where (a;, b, ¢;) € Z/(2%)P?, and

1 m
9= 5n H(ajx + by +¢;2),
j=1

where (a;,b;,¢;) € Z/(Zh)g. Note that (a;, b;, ¢;) are not all even; otherwise we would

cancel a 2 in the denominator.
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First, suppose that f comes from a set of lines that fully covers Z/(2%)P? once,

that is, one that reduces exactly to all lines in Z/(2*1)P2.

Then by Corollary 139 we have

2= (2P (P (2

Now if f comes from a set of lines that fully covers Z/(2¥)P? in such a way that

it reduces to ¢ coverings of Z/(2*~1)P?, then

oh _ ((219)3-21“*1 . (2k71)3-2’“*1 L (2)3-2’“*1)6.

In the case of f not being a full covering of Z/(2¥)P?, proceed in the following
recursive way. Find the largest k; such that ¢; coverings of Z/(2"~1)P? can be

obtained. Let the polynomial corresponding to this set be f;. Then
2h1 — ((2k1>3.2k1—1 . (2k1_1)3,2k1—1 o (2)3_2;@1_1)51'

Repeat this process with % until no coverings of the Fano plane are possible. Then
h =731 hy- L, that is the resulting ~ will be the sum of the h, - ¢, obtained at

each iteration. W

Corollary 141. Consider f as in Theorem 140, such that k is the largest integer for
which the linear factors of f fully cover Z/(28)P? ¢ times. Then h from Theorem 140
15 bounded by

(2" —2) < h <m.

Proof. For { coverings of Z/(2%)P? we know that at any triple in Z/(2¥)P? one of the

linear factors will be congruent to 0 (mod 2¥), and that will be the case for i < k.
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Thus

k
KZQi < h<m,
i=1

(2M —2) < h < m.

7.4 Using the Projective Plane for the 2-Variable Case

Starting over Z), we can list the pairs that respect the same rules as the triples of
the projective plane, namely (0,1), (1,1), (1,0). These are all the linear 2-variable
polynomials we can make and the different points at which we can evaluate them.
When taking the dot product of these, we get what happens when evaluating our
linear factors at a given point. The table below displays a 1 if the dot product is

even, and a 0 if it is odd:

0,1) (L,1) (1,0)
01| 0 0 1
(1,1) | o 1 0
(1,0) | 1 0 0

Table 7.2: Parity of Dot Products of FoP!

In order to introduce a 2 in the denominator of a homogeneous polynomial, we
need to pick a subset of three columns such that we have a 1 in each row. In this

case that is the three columns, which gives a polynomial of degree 3.

When repeating this process over Z/(4), we obtain the table below where a 0
entry indicates that the dot product of the pairs is odd, 1 that it is congruent to 2
(mod 4) and 2 that it is congruent to 0 (mod 4):



99

0,1) (L) (LO) (1) (31) (1.2
00 0 0 2 0 0 1
(1,1) | o0 1 0 0 2 0
(1,0) | 2 0 0 1 0 0
2,1) | 0 0 1 0 0 2
(3,1)| 0 2 0 0 1 0
(1,2) | 1 0 0 2 0 0

Table 7.3: 2-Valuation of Dot Products of Z/(4)P!

If we try picking a subset of columns such that we always get a 2 in each row, we

will always get an extra 1. Hence with a degree 6 polynomial we always get a 23 in

the denominator.

When repeating this process over Z/(8), we obtain the table below where a 0

entry indicates that the dot product of the pairs is odd, 1 that it is congruent to 2
(mod 8), 2 that it is congruent to 4 (mod 8) and 3 that it is congruent to 0 (mod 8):

01 (1,1 (1o 21 (1) (12) @41 (1) (14 (61 (7.1) (16)
00 0 0 3 0 0 1 0 0 2 0 0 1
(1,1) | 0 1 0 0 2 0 0 1 0 0 3 0
(1,0) | 3 0 0 1 0 0 2 0 0 1 0 0
2,1) | 0 0 1 0 0 2 0 0 1 0 0 3
31| 0 2 0 0 1 0 0o 3 0 0 1 0
1,2) | 1 0 0 2 0 0 1 o 0 3 0 0
41| 0 0 2 0 0 1 o 0 3 0 0 1
(5.1) | 0 1 0 0 3 0 0 1 0 0 2 0
(1,4) | 2 0 0 1 0 0 3.0 0 1 0 0
6,1)| 0 0 1 0 0 3 0 0 1 0 0 2
71| 0 3 0 0 1 0 0 2 0 0 1 0
(1,6) | 1 0 0 3 0 0 1 0 0 2 0 0

Table 7.4: 2-Valuation of Dot Products of Z/(8)P*

When wanting to get a 2% in the denominator, we do not need all 12 linear factors

here. We see that a subset of nine columns is sufficient. By picking subsets of 10

or 11 columns, we still get that we can only put a 2% in the denominator. The next

power we get is 27, which corresponds to degree 12, since all the rows (and columns)
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add to 7.

Note that all the above matrices are doubly stochastic.



Chapter 8

Conclusion

In this thesis we explored ways of finding bases for the 3-variable homogeneous
integer-valued polynomials using two different approaches. First we developed com-
putational tools that used linear algebra to generate bases for the polynomials in
Chapters 5 and 6, and second, we studied the correspondence with a covering of

lines in finite H-plane for a constructive approach demonstrated in Chapter 7.

Given the corresponding problem in algebraic topology, described in Chapter 3, it
is not surprising that finding bases for the 3-variable case is a more difficult problem
than the 2-variable case. In this thesis we did find methods that produce 3-variable
homogeneous IVPs, but finding more efficient algorithms would be necessary to ob-
tain bases for degrees greater than 25. These would help when trying to generalize
to more variables, since the matrices we would work with would be much bigger.
A promising approach for this would be to implement local version of the Hermite
normal form and Smith normal form. These would produce the same output we are
looking for here, but, by focusing on a single prime of interest, the calculations would

be faster.

A broader goal is to get the basis elements obtained in Chapter 5 and 6 written
with as few terms as possible and written as almost a product of linear factors to
better understand how these polynomials arise. Ideally, we would have a recursive
construction for constructing homogeneous IVPs of any degree and even any number

of variables.

In Chapters 4, 5, 6 and 7 of this thesis we worked locally, that we were interested
in the highest power of 2 that could be in the denominators of the basis elements.

The results from Chapter 6, were generalized to odd primes. It would be of interest
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to use all the local results to get bases for homogeneous IVPs integrally.

The broader goal of this work is to develop efficient tools for calculating bases
of IVPs on various subsets of Z" in the general and homogeneous cases. There are
various ways of studying these; one of which is through the valuative capacity, which
is an invariant of the set of IVPs. An example of this can be found in [B.L17], where

the valuative capacity of the set of sums of d'" powers is calculated.

This thesis displays many results about homogeneous IVPs, yet there is much
more to be found. Hopefully these results can be used as a starting point for the

case homogeneous 3-variables and for more variables.
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Appendix A

Examples of Bases Calculations

Below is a table that displays bases for degrees 1 to 7 using the technique described
in Chapter 6.
For degrees 8 to 14 we only display one of the polynomials with largest denomi-

nator, since the full basis would be too large.
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m | Basis
1 |z, v, 2
2 | 22, xy, vz, Y2, yz, 22
3 | 2%, 2%y, za?, Faly + swy?, 2wy, Sheat 4 5%, P, 2P, eyt + 12%y, 2P
T AR S I S S AN S WA
5 RNy + 527y, 52X+ 5270, Y, 2Y°, 5 RYT + 5275, SRy + 527y, 2
o®, aty, zat, Staty + 328y, 2ady, Saat 4 52%28, Slaty + Loy,
3,200 4 g, gty + gty ety & gtay, et gt v oyt
S RY T 527y, SRy + 527y, SRy 52y, 2
m6, x5y, zx5, %x‘r’y + %x4y2, z:p4y, _712375 + %22x4, —la:5y + lx3y3,
ERARE AT R S SN St L S
ENA R AE SRt N ML R SR
6 | A7 ARy AT YISt LT Y T AT, B s
%zx4y izzzaxgj _1ZZ x4y—113zxéyl—z4zxy 1+2322$yi 2.3 1 4, 1.4
'y — {0y — syt 4 3y ety -yt gty - eyt gt
R AL S F L AR
TRy 3Ry, TRY Ry — Ryt 1Y, 2
a7, 28y, zab, Staby + a0y, 22y, Faab + 2%2°, Saby + Loty
2IYF I, I Ty, San 4 ar e, Sy ey
B L S S IR PR A
21zx4y2—|— Qf nyZ; lem 5— §Z1x2 Z i* :f t,g?,z x17 QTQ$ 3y Y
412;,6 431; —1145232 y17 2‘52:6 yl_ izzx Z11_2 4—14,21: yl +3Z§ xly?’, 3 1,24, 1,42
! it x5y +1§x4y2 B §1x2y4jL ny 73Z§x y1_ 2ZZ4x yl _2 Zz4x yraEeys
B 1
Lty 4 denty? = faty' + qanf, foly? = 40y - paaty' e
ESNANE SUNSE S S P S SIS B
%foys—i_ gf%yzx _1Z‘Z5x2y 1 62 xl ya_ §§x2y5+1;1239€§/, 1.4,3 =1.3, 4, 1.5 2
_1z2x5+§123x4—§1z5x2+zlz6x, Ziy — 3Py = IRy Y, TRy 327y
TRy Ry = gRYT 4Ry, 2
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m | Polynomial with Biggest Denominator
8 z:z: y+ zaz5y2—l— x5y+§zx4y3+1z3x4y za:y —lz2$3y3—lz3$3y2
szy— 22xyt + zxy
1.7, .1 . ,.6,2,.3,.53, 12592 135 1 _.44 1243 1.2 3 4
9 18§x2y+162xy+82xy+162xy 12°TY = RTTY — TNy — g7y +
32 Ty
1, 3 6,33 ,2.6,2 1 1.3 5,4, 3 .2,5 3 4,5
10 | 8§ m3y4 31 620 y4 322x1y +332 x%/ ;—%zsx y;—32222:c6y T ny 3224x2y4
62 2y 32 xy+322xy 3527 X°Y" — 552°X7Y xy—|—32zxy
1,28 7.3 3.2,6,3 1 23053
U R A s & S Ve S
3~ 1Y 32zxy 32zxy 322:133/—{—32 Y
10,2 8, 4 2T — L6,6 5,7
12 18'%33"' 2x2 :1y0+ 'Ty — sty + 5Ty — gy’ — %y’ 4 eyt -
352°Y 3527y +8xy
—1_,.12 52,11 5310 1 4,9 36,7 __1.7.6__ 1 85, 1_10.3
13 | 522 +32 +3 T LA EAR s EAR el v LA U i EA
11 ,.3,5.6 1 5.8, 3 1,211 1,3 6.5
%%6xyz 1%‘?62?{128 +1 :cyz;) 64my1122+511x3y3z8+ xy Ty 256196 y7z6
% g;g 511221 yzg—i-%%xy ZS 312x«7i §5+256xyz 6{1 fg’z +614x?/
14 2§6 5yZ 112 yfs 512x5y5z4—ﬁm5y623—%x5y7z2—|—11128m53éz—%28x6 %26_
55:By3z5+11 6?4{ 4 + y ; +579:2y 5 32333/ : 1@% g i_251’6xy N
356 yz—l— xyz+ yz—l— yz—l— xyz+512xyz—256 84323+
3 Y5 s 5 - %
1xyz 128 Y% 128a:yz+64xyz+128xyz




Appendix B

MAPLE Code

Useful computations for this work and how they were implemented are appended in

the follwoing pages. The following code is present:
1. The code for Chapter 5, calculations using Smith normal form.
2. The code for Chapter 6, calculations using Hermite normal form.

3. Code that generates Z/ (2k)P2, and groups the points given what they are con-

gruent to over FoP?, for calculations in Chapter 7.

4. Code for Chapter 7 that shows that the degree 14 polynomial with a 2% in its

denominator does not factor as a product of linear factor.
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#Code that shows that taking the SNF of the matrix of Stirling coefficients, creates IVPs.

#Upload the necessary packages for the computations and allow the display of big matrices. 110

with (combinat) : with (linalg) : with(LinearAlgebra) : with( padic) : interface(rtablesize = 110) :
with (ListTools) :

#Given as input a list L and a value a this procedure counts the number of entries in L equal to a
num :=proc(a, L) local i, c; ¢ := O;for i from 1 to nops(L) doif L[i]=a then c := c + 1 else
fi; od ; c;end:

# Establish p, the prime we are working at, q the maximum degree we want the calculation to go
for, and create an empty list LL.

p=12:
LL = []:
q = 14:

# repeat the process for degress 1 to q
for n from 1 to g do

M := Matrix((n+ 1)*(n+2)/2,(n+ 1)*(n+2)*(n+3)/6):
# Builds the matrix M, which will have the coefficients of our monomials, written as a product of

factorials and Stirling numbers of the second kind, since we are storing values of triples (i,j,k)
<=(r,s,t), in matrix we need more loops.

cr == 0 :forrs from O to n do
for » from O to rs do
Si=rs—r;t'=n-—rs,
cri=cr+1:cc=0:

for ijk from O to n do

for ij from O to ijk do

for i from O to ij do

J =i — ik = ik — i

cc = cc+ 1;

Mlcr,cc] = (i!)-(j!)-(k!)-stirling2 (1, 1) * stirling2 (s, j) *stirling? (t, k) :
M;

od;od;od;

od;od;

# Returns S,U,V, the Smith Normal form of M.
S == ismith(M, U, V);
L:=1]:

# Stores the p-adic norms of the diagonal of S in the list L.
1)- 2

) 2)

L := [op(L),ordp(S[i,i],p)]:od:

for i from 1 to

# appends L to LL, which will contain the p-adic norms of the basis elements for degrees 1 to q.



LL = [op(LL),L];
od: 111

#At this point we are done looping from degrees 1 to q.

# Create a matrix N which is table 5.2 in the thesis, where for degree i, N[i,j], is how many
basis elements have denominators with 2-adic norm j.
N = Matrix(q, q) :
#Note that the second q in the dimension could be smaller since we get columns of zeros.
forifrom 1 to g do forjfromOto (¢ — 1) do
Nli,j+ 1]:= num(j, LL[i]);od;0d;

N;
(3 00 0 0 00 000000 O]
6 00 0 0 00 0000000
730 0 0 00 0000000
780 0 0 00 0000000
7140 0 0 00 0000000
7144 3 0 00 0000000
7146 9 0 00 0000000
714714 3 00 0000000 1)
71471413 00 0000000
71471421 30 0000000
71471428 80 0000000
7147 1428144 3000000
7147 1428 14615000000
7147 1428 14725310000

> #The next section shows how to extract polynomials, from the Smith normal form by using the
matrix U above. We will illustrate this for degree 14, and by looking at the last row of N above

. ) 9. . )
we know we have a basis element with a 2° in its denominator.

> #V'is a vector of coefficients of the polynomials of degree 14 with a 2% in its denominator.
V= Row(eval(U), 120);
1 .. 120 Vector
row

Data Type: anythin
Vo= yp yining @)
Storage: rectangular

Order: Fortran_order

> #We reduce these coefficient mod 29, to make the polynomial easier to display.
Vmod = | ]:
for iin V' do: Vmod = [op(Vmod),mod(i, 29) ] :




od:
Vmod,

[0, 256, 0, 64, 384, 128, 192, 72, 40, 256, 304, 72, 488, 272, 32, 416, 262, 476, 444, 382, 352,
272,354, 31, 14, 337, 252, 160, 320, 468, 264, 316, 192, 204, 340, 64, 272, 396, 370, 46,

148, 146, 404, 388, 257, 380, 96, 64, 216, 300, 330, 40, 262, 122, 232, 306, 248, 440, 0,

304, 126, 260, 8, 400, 32, 0, 0, 0, 128, 256, 480, 64, 0, 0, 96, 64, 64, 128, 256, 0, 0]

> #Divide the coefficients by 29, since we want an IVP with 2° in its denominator-.
V= [k

1

for iin Vmod do: V := |op(V), 1—9] :
2

od:

Vi

1 1 31 3 9 5 1 19 9 6 17 1 13 131 119 111
847 4°8° 64 64727327 64> 64° 327 16° 16° 256° 128° 128°
191 11 17 177 31 7 337 63 5 117 33 79 3 51
2567 16° 327 256° 512° 256° 512° 128° 16°
8 1 17 99 185 23 37 231 8 17 7 1 19 57 195

128° 8° 327 128° 256° 256° 64° 256° 256 ° 64° 16° 16° 256° 64 ° 256°
89 215 129 31 215 11 19 105 247 15 37 73 101 97

256° 256 ° 256° 64° 256° 16° 32° 256° 512° 64° 128° 256° 128° 128°

257 95 3 1 27 75 165 5 131 61 29 153 31 55 5
51271287 16° 8 64 128° 256° 64° 256 ° 256° 64° 256 64° 64 8

1115 105 177 31 225 9 93 25 63 3 3 1 1 21 1

5

447 119 19 63 65 1 25 1 o1 115 103
2567 1287 1287 327 2567 1287 647 327 167~ 7 7 4727 16" 8" 7 7 16"
1 1 1 1
2 g 2 200
> #Produce in lexicographical order, all monomials of degree 14.
m = 14;
B=1[]

for i from O to m do:
for j from O to m do:
for & from O to m do:

if (i +/+k=m) then: B:= [op(B),xy/-Z"]; endif;

od;od;od;

296, 462, 174, 136, 224, 32, 38, 456, 390, 178, 430, 258, 248, 430, 352, 304, 210, 247, 120,

320, 88, 120, 420, 177, 496, 450, 36, 93, 400, 504, 48, 384, 256, 64, 168, 256, 86, 188, 476,

112
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#Reversing the list produces the ordering we want.

B := Reverse(B); 113
m = 14
Bi=1]
o 14 13 13 12 2 12 12 2 11 .3 11 2 11 2 11 3 10 4 10 3
B = [x XY X Tz, x Ty, x Tyz,x TzZ,x y,Xx yzx vz, x zZ,x y,x YV z &)
10 2.2 10 3 10 4 9 5 9 2 3 4 95 86 8.5
xyzxyzxzxyxyzxyzxyzxyzxzxyxyz
8 4 2 8 3 3 8 2 4 5 8 6 7.5 2 7. 43 7 3 4 5
xyzxyzxyzxyzxzxyxyzxyzxyzxyzxyz,

6 77 6 6 2 6 5 3 6 4 4 5 6 7 68
xyz X z xyxyzxyz Xy zZ,xyz, xyz xyz xyz X z xy,

572 5 63 554 545 536 5275 8 5 9 4 10 4 9
xyzxyz Xy zZ,xyz,xy z, xyzxyzxyzxzxy,xyz,

4 82 4 73 464 455 446 437 4228 4 9 410 11 3 10
xyz,xyz,xyz,xyz,xyz,xyz,xyz,xyz,xz,xy,xy z,

392 383 374 3 65 356 347 338 329 3 10 _ 311
XyzZ,xyzZ,xyz, Xy zZ, X yz,xyz,xyz,xyVz,xyz , Xz,

212 2 11 _ 2102 293 28 4 275 266 257 2 48 2309
Xy, xy zxy Z,xyzxyzxyzxyzxyzxyz Xy z,

2. 210 2 11 2 12 12 11 2 10 3 4 5 .76 6 7
xyz , X yz xz,xy xy Z, Xy zxy zxyz xyz Xy z, xyz,

8 4 9 10 2 11 12 14 12 2 10 4
xyz xyz xyz , XYz ,xyz ,xz ,y ,y zy z,y z,y z,yz,yz,

7 7 5 9 410 3 11 2 12 1314]
yZLyZ’yZastyZayZayzaz

> #Change V to a list instead of a vector, to be capable of using the dot product procedure.

Viist := [ ]:
for iin V' do: Viist := [op(Vlist), i] : od:
Viist

(> 4T, aking the dot product of B the monomials and Vlist the coefficients produces the IVP f.
= DotProduct(B Viist);

1l omwp, 1 5390, 1 59 65 49 63 535 19 ¢ 7
f~—2yz —|—64xyz —|—8yz+128xyz+256xyz+32xyz (6)
119 76, 47 85, 4 94 1 q03, 21 412 1 1
—I—128xyz+128xyz+256xyz+2xy —|—64xy z+8xyz
1 93,3 212, 3 2 11,63 22100, 25 239, 93 543
+2xy +4xz +32x z +64 y —|—32 h% +512xyz
257 2 31 2 4 77T 2 8.4, 105 5 9 3
T Y E Tt 5 Y N 32 " U s YV E T g Yy

15 5000 1L o 5 20 55 5 0, 315
—I—64xy +64xy z—|—8xy —|-64xyz —I—64xyz

153 3 3 29 61 3 ;5 131 3 ¢ 5 3 4
+—256xyz+64xyz+256xyz+256xyz+64xyz

+ A0 33 o2 2T 3o Lany 3 a0, 95 4o
256 ~ V% T 128 © 'z 64 Y FT MY 16 "7 128 * V2
257 101 73 37
-|-—x42 +—x4yz+—4 +—x4y525+—x4y624

5127 7 T g 128 ¥V 7 T 256 128




Tt ¥Vt 5, z+2506x Tk R i s S X VE
+2x5y227+;6x5y3z6 zslgxsy4zs+;596x5ysz4+;;92xsy623
+2471x5y722+21596x5y82+116x5y9+176x628+é;71 6)/27—1-28576966)/226
+§§éx6y325+sz6y4z4+22536x6y523+;§2x6y622+19298x6y7z
+£x6 8_'_; 7z7+18258x7yz6+128x7y225+8x7y3z4+17298x7y4z3
+243lx7y522+128)67)/62+Zx7y7+156x826+128x8y25+231;x8y224
—|—2576x8y3 3%—53112368324 z—i-zzzxgysz—l— ;;xg 6+iéxgzs—l—;;x9yz4
+};éx9yzz3 1212 9 3 2+2; 9y4z+12x9 5_'_E 10 4+;xloy2
_|_ﬂxloyzzz_,_ixloy3z+7x10y4+ix1123+7x11y22+7x11y22

64 64 32 2 64 64
+§x11y3+ix1222+3x12yz+éx12y2+;xl3y—|—:gy4zlo+136y6zg
+;y1123+}éy1024+ly3zll+§§xyzz“+116xy212+411y1222
+;y925

;> #Unapplying fwill allow us to evaluate at given triples (i,j k).

| > f+= unapply(f,x,y,2) :
>

> #Show that fis an IVP, by evaluating it at all triples (i,j,k) of positive integers less than 2.
for i from 0 to 511 do:
for j from O to 511 do:
for k from 0 to 511 do:

a = f(i, ], k);
if type(a, integer) = false then: print("error" ); end if:
od:od:od:




> # Code that shows that taking the dual of the HNF of the dual of the bases of IVPs where one
variable is restricted to evaluate at odd values only produces a basis for homogeneous IVPs115
Taking the SNF of the HNF will produce a basis equivalent to the one in the previous code.
> #Upload necessary procedures.
with(ListTools) : with(linalg) : with(LinearAlgebra) : with( padic) : with(PolynomialTools) :
with (combinat) : interface(rtablesize = 110) :
> #create binomial polynomial of degree n.
> binompoly = proc(x, n)
local f; i, v;
v:= ordp((n!),2);

1
/= o

forifromOton — 1 do:

f=f(x—=10);
od:

return f;
end:

> #find basis of 2-variable IVPs of degree less than n, for all subsets of two variables from (x,),z).
> binomxy :=proc(n)
local i, j, Lxy;
Lxy = []:
for i from O to n do:
for j from O to » do:
if i +j < nthen Lxy := [op(Lxy), binompoly(x, i) -binompoly(y, j) ] : fi:
od:od:
return Lxy;
end:
> binomxz :=proc(n)
local i, j, Lxz;
Lxz == [ ]:
for i from O to n do:
for j from O to » do:
if i +j < nthen Lxz := [op(Lxz), binompoly(x, i) -binompoly(z, j) ] : fi:
od:od:
return Lxz;
end:
> binomyz = proc(n)
local i, j, Lyz;
Lyz = []:
for i from O to » do:
for j from O to n do:
ifi +j < nthen Lyz := [op(Lyz), binompoly(y, i) -binompoly(z,j) ] : fi:
od:od:
return Lyz;
end:




| > #Homogenize these at the third variable.

> homogz :=proc(LB, n) 116
localf, LH, g;
LH = []:
for fin LB do:
J = unapply(f,x,y) :
g = zn~f(£, X) .
z z
LH = [op(LH), expand(g)]:
od:
return LH,;
| end:
> homogy :=proc(LB, n)
localf, LH, g;
LH:=[]:
for fin LB do:
S = unapply(f,x,z) :
I ERERY
£ f( y'y ) '
LH = [op(LH), expand(g)]:
od:
return LH;
| end:
> homogx :=proc(LB, n)
local f, LH, g;
LH = []:
for fin LB do:
S = unapply(f,y,z) :
g = x”-f(l, i) :
X x
LH := [op(LH), expand(g)]:
od:
return LH,
end:

> #Create a list in lexicographical order of all monomials of degree n.
> monomials = proc(n)

local LM, i, j, k;

LM :=[]:

for i from O to »n do:

for j from O to n do:

for k from O to n do:

if (i +j+k=n)then LM = [op(LM),x -/ -2*] i

od:od:od:

return Reverse(LM);

end:




| > #Given a polynomial f and a variable return the coefficent of the variable in f.
> co :=proc(f, x) 117
local ¢, i, k;
¢ = [coeffs (f, indets (x), k) ];
if member (x, [k], i) then c[i] else O fi
end:

[ > #Given a homogeneous polynomial f of degree n return a list of coefficients of f, given the
lexicographical ordering.

listofcoeffs = proc( f, n)
local fin, i, v, u, gn, L, k, w, LM,
gn = expand(f) :

L:=1]:

LM := monomials (n) :

fori in LM do:

v:i= co(gn,i):

L:= [op(L),V]:
od:

return L;

end:

>

(> #F inding bases using intersection of lattices, create three empty lists Lpolys for the polynomials
from the HNF, Lotherpolys for the polynomials from SNF and LLL to count denominators.

> Lpolys == [ ]:
Lotherpolys :== | ]:
LLL == [ ]:

#Repeat the process for degrees 1 to 14.
for m from 1 to 14 do:

#Create a list of two binomial variable polynomials of degree m, the variable in the name of
the list is the one not present in the polynomials.

LBz := binomxy(m) :

LBy := binomxz(m) :

LBx := binomyz(m) :

#Homogenize the list at the third variable, which is the one restricted to be odd only. The
varaible in the name of the list is the one the polynomials were homogenized at.

LHz := homogz(LBz, m) :

LHy := homogy(LBy, m) :

LHx := homogx(LBx, m) :

#For each of these store in a list of list the coefficients of the homogeneous monomials from the
two variable binomial polynomials that were homogenized.

LLO == []:

foriin LHz do:

LLO = [op(LLO0), listofcoeffs (i, m) ] :




od:

LL = []: 118
foriin LHy do:

LL == [op(LL), listofcoeffs (i, m) ] :

od:

LLI = 1]:

for iin LHx do:

LLI == [op(LL1), listofcoeffs (i, m) ] :
od:

#Create matrices from the list of list and take their dual, DA, DB, DC are the dual basis for
each homogeneous basis where one varaible evalautes at only odd values.

C := Matrix(LLO) :

C := Transpose(C) :

A = Matrix(LL) :

A = Transpose(4) :

B := Matrix(LLI) :

B := Transpose(B) :

DC = C.MatrixInverse( (Transpose(C).C)) :

DB := B.MatrixInverse( (Transpose(B).B)) :

DA = A.MatrixInverse( (Transpose(A).A)) :

#Join these matrices and take the HNF of the result
DC := Matrix([[DC, DA, DB]]) :
HDC := HermiteForm (Transpose(DC)) :

#Remove all rows of zeros from the HNF and dualize

n := Dimension(HDC)[2]:

HDC := HDC(1.n,1.n):

H := HDC.MatrixInverse( (Transpose(HDC).HDC)) :

#The the SNF of the HNF to obtain bases similar as the ones on the previous code.
S = SmithForm (HDC) :

#Using the dual of the HNF creat a list of homogeneous integer valued polynomial by taking
the dot product of the coefficients from the rows of H and the lexicographical ordering.
LP:=[]:
for i from 1 to Dimension(H)[1] do:
f = Vector (Row(H, i)).Vector (monomials (m)) :
LP = [op(LP).f]:
od:

#Lpolys a list of IVPs of degree m for each m up to degree 14.
Lpolys :== [op(Lpolys), LP]:

#count the 2-adic norm of the diagonal of the SNF, and store it in LLL the list of list.



L:=1]:

for i from 1 to n do 119
L = [op(L),ordp(S[i,i],2)]:od:

LLL :== [op(LLL), L],

od:
>
> #Look at the polynomials from the Hermite normal form and find the denomianator with greatest 2
-adic norm.
L2:=1]:
for i in Lpolys do:
LO:=]]:
forjin i do:
L1'= [coefs(j)]:
c:=0:
for kin L/ do:
d:= ordp(k,2):
ifd < cthen c := d fi:
od:
L0 := [op(L0),-c]:
od:
L2 := [op(L2),L0]:
| od:
>

> #necessary procedure used to count how many of the polynomials have a certain 2-adic norm
num = proc(a, L) local i, c; c := O;for i from 1 to nops(L) doif L[i]=a then c := c + 1 else
fi; od ; c;end:
N = Matrix(nops(L2), nops(L2) — 1) :

# builds the table with ij-entry the number of basis elementsin degree i whose denominator is
of 2-norm j, from the polynomials obtained by the HNF.
for i from 1 to (nops(L2)) do forj from O to ( (nops(L2) —2)) do
L N[ij+ 1]= num(j, L2[i]);od;0d;
> N,

1)
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:> #Note that this matrix is different from the one of the SNF technique.

(> #We count the 2-adic norm of the diagonal elements of the Smith normal form of the Hermite

normal form

(> NI = Matrix(nops(L2), nops(L2) — 1) :

120

0y

# builds the table with ij-entry the number of basis elements of degree i whose denominator is

of 2-norm j

for i from 1 to (nops(L2)) do forjfrom O to ((nops(L2) —2)) do
NI[i,j+ 1]:= num(j, LLL[i]);0d;od;

> NI

2



(3 00 0 0 00 00000 O]
6 00 0 0 00 000000 121
730 0 0 00 000000
780 0 0 00 000000
7140 0 0 00 000000
7144 3 0 00 000000
7146 9 0 00 000000
714714 3 00 000000 )
71471413 00 000000
71471421 30 000000
71471428 80 000000
71471428144 300000
7147 1428 1461500000
7147 1428 1472531000

;> #this produced the same matrix as the SNF code
> #L2 contains the 2-adic norm of the denomianators of the IVPs obtained by the hermite normal

form, find the indices of the degree 14 polynomials with a 2’ in their denomiantor
for i from 1 to 120 do: if L2[14][i] = 9 then print(i);fi:od:
100

101
102
103
104 A3)

> #Take f obtained from the dual of the Hermite normal form, which is an IVP of degree 14 with 2
in its denomiantor

/0 := Lpolys[14][100];

9 473 1 37 4 1 310 1 635 1 53¢
— L L _ 4
= g 2 XV g T XY T BN Y T g XY e F Xy “)
9 266 1 6 7 1 2 5 7 2 4 38 3 4 7
T s XY TR Y Y T g AN Y T iy g ey
n 3 A3 1 JENIN 11 49 _iz3x9 > 1 JEN
128 Y 7T 256 YT 108 Y7 64 Y T 08 Y
3 428, 1 53 5.5 4 1 455, 1 939
+5122xy+64zxy+256zxy 256zxy+64zxy
1 833 15 S0 1 464 1 N 1 N
256 YT 56 TV T 108 YT Y T 08 Y
+ I ngs— ! 26x L25)68— Z4x9+iz3x10
256 Y T a8 Y T ea TNV T 56 2N T gy B Y



TR N ENEN 23 N B Oy — 1 52y
64 256 256 128 512 122
1 6,26 _ 1 8.5 1 J6.53 4 9 36 _sz7 6
256 YT 8 Y 256 Y T 256 YT e 2N Y
1 2309 1 662 13 563, 1 5 1 94
+64zxy+256zxy+256zxy—I—642x +1282xy
1 g 42 11 5 g 4 25 8 5 5 5.3 5 4.8 2
PR IR S Y g Y T g Xy ey
+LZ3X10 _ L 20 2_izsx7 2 T 2,7 5_i22x9 3
32 T YT 64 YT 18 Y Y
11 5 5 5 23
B azx9y4_i_ szlzy_i_ gzzx“y+ sznyz_ azxm);
(> f1 == Lpolys[14][101];
5 473, 1 374 1 3209 Il 635 1 536
f]-—lzgzxy—l-mzxy 128ny 256zxy+256zxy &)
9 266 1 257 13 5 43 3 347, 1 437
T s TN T E Y A TNy g TNy g 2y
3 338 19 A0 17 392 1 527 1 4,208
256 Y 7 256 Y08 YT 128 Y T 512 Y
+ : zx )+ ! 20y + : 2y + : 23— ! 2y
256 Y T 256 YT 256 Y8 Y 7 256 Y
_Lzzxz 10_sz4 9o 1 A6 4 1 NN 1 N
64 32 7Y T 08 Y T 256 YT 18 4
+ ! 29x4— 3 st ——z3x10—izx“+ > Z3x56
128 2% T8 Y T s 16 - * T 256 Y
7 N I 1 - 1 J6,2.6 _ 3 85 1 6,53
256 Y T 512 YT 256 Y 7 256 Y 256 Y
5 L 9 NN 3 2309 1 J6,6.2 1 11 56,3
256 YT 8 Y T Y 7 256 Y T 256 Y
_|_sz2 11-I—ng)c‘t + ! 28x4 2+ 22x8 4+lzx8 >
16 64 YT 512 512 64 -7
_ S 58 48 2_Lzsx10 _ 3 200 6.7
64 YT 512 YT 6 Y 64 128 Y
—Lzsx7 2 4 & 2y _L22x9 3 zxX +izx12 +£22x11
32 Y8 YT Y T 56 2V Y T g YT 64 Y
-I-izx“ 2_izx10 3
64 Y7 64 Y
(> 12 := Lpolys[14][102];
9 473, 3 374 3209 1 635 3 536
f2~—1282xy+322xy+1282xy 256zxy+256zxy (6)




n széyé_LZx6y7__sz5y7+ R 7 Sty
256 32 64 512 128 123
o Loasgy 1 338 21 49 123x9 > 1 S5 2T
32 YT 256 YT 256 YT 64 T 128 4
3 428 1 5.8 1 554 3 455 1 403
TS Y T s T N sg TV T g PN T BNy
+LZ9X3 > 1 833 1 S22 10 3 o 9_Lz4x6 4
64 =Y T 256 YT 64 64 64 Y
1 54 5_L24x4 6+L210x3_izsx b a3 5 0
256 YT 64 YT 64 VT e F Y T e 2 T e 2 Y
b o b 356 93 383 1 o235 1 824
16 7Y 7 256 YT YT 28 YT 51 4
1 25 1 J6,2.6 _ 1 8.5 1 J6,5 3 4 17 3,65
128 YT 256 YT 56 © YT 256 7YY T 256 4
1 7.6 I 239, 1 75 1 662 563
8 ZY Y T E N N g P g E XV g £ XY
B I 1 9.4 1 342 7 4 3 3 2384
LTI U T I A T T AR T S si2 2 Y
3 8 1 53 13 482, 15 3 10 1 67
+322xy 1282xy—i—512zxy+642xy 1282xy
_izsx7 > 1 247 5+ﬁzzx9 3 3 230 +izx12 _izzxu
64 T 128 YT 64 YT 56 Y Ty YT 64 Y
9 112 53 103
+ o4 zZX 64 zZX
[> 3 := Lpolys[14][103];
_ 3 473 Il 374 1 329 1 435 3 536
Bim g 2 XV g XY T g TNV T gag XV g T @
n 2.6 6_LZX6 7_L22x5 7 S 24 8+Lz3x47
256 ° Y Tea Y T et Y T s ) 4
o Loasg_ 3 JENEIN 19 I 21 ENCI N 1 4,208
64 YT 256 Y728 YT 51 Y
3 N RN 1 Ao sy Lo o3 1 833
256 ©% Y T 256 256 T 64 256 4
—sz49— ! 25x45+—211x2— ! 29x4— ! z X
128 “7 Y 7 256 YT e TN T ase 7YY T pg 2 Y
1 SesoLowa 1 3s5 6 37 A8 L 923
256 =Y T 64 YT s6 T T 56 7YY T 108 4
1 8204 1 6,26 _ 3 8.5 _Lz7x5 > 1 6,53
512 REPYT: YT Y7 64 PYT: 4




9 N NN 2394 S50 6,62

256 YT s P Y T g YT 28 YT 256 Y 124

563, 1L 2 9 4 8 42 1 743

256zxy+322xy +256zxy+512zxy 64zxy

11 5 8 4 21 8 5 11 5 3 482, 15 3 19
+5122xy+1282xy+256zxy+5122xy—|—642xy
_ 3 202 3 6.7 13 57 2+Lzzx7 54 17 2,93

64 YT 108 Y718 YT 64 YT 08 Y
35 20 4_’_l2x12 _izzxu +2—7le1 2_l2x10 3

256 Y T g Y7 64 YT 64 YT Y

(> #4:= Lpolys[14][104];
5 473 11 374 1 435 1 5356 Il 7266
f4~—1282xy+1282xy 256zxy—|—256zxy+256zxy t))

_Lzzxs 7 248 1 34 7+Lz4x3 7 338

32 Y T 512 YT 28 YT 64 Y T 256 Y
_ 2 a9 21 500 1 5o 1 4 8 4 N

256 Y728 YT 18 512 YT 56 2 Y
n 1 SO 1 N 5_L210x3 JrLZ9X3 > 1 8,33

256 Y T 256 YT 64 YT 64 Y 7 256 Y
_Lzzxz 10_izx4 o 1 A6 4 1 RN 1 RN

64 o4 27V T 128 Y 7 256 YT 28 Y
__nylz_’_Llex n 1 ENEN 41 N S 1 A2

16 16 YT )56 YT 256 512
1 - 6,26 _ B85 1 6,53 _ 1 RN

128 Y T 256 YT 256 Y7 256 Y 7 256 Y

3 7 6 Il 239 1 662 1l 563 1 1
+1282xy+1282xy 256zxy—|—256zx +322xy
+L29x4 + ! 28x4 2-I- ! Z7x4 3-I- ! zzx8 +sz8 >

64 Y512 128 Y TS YT e MY
b s 9 48 2+L22 02 5 6.7 7 N

64 YT 51 YT 64 128 Y708 Y

275, 3 293 94,3 12 9 o2 13 4102

+1282xy+16zxy 256zxy+8zxy 64zxy+64zx
L1

64 Y

> #Show that these are IVPs, by evaluating these at all triples (ij,k) where the indices range through
all values less than 512.
SO = unapply(f0,x, y, z) : fI := unapply(f1,x,y,z) : 2 := unapply(f2,x, y,z) : f3 =
unapply(f3,x, v, z) - fA = unapply(ft,x,7,z) :
for i from 0 to 511 do:




for j from 0 to 511 do:

for k from 0 to 511 do: 125
c0:=0:
a0 = f0(i, ], k); if type (a0, integer) = false then: cO := c0 + 1; end if:
cl :=0:
al = fI1(i,j, k); if type(al, integer) = false then: c/ := cl + 1; end if:
c2:=0:
a2 = f2(i, J, k); if type (a0, integer) = false then: c2 := c2 + 1; end if:
c3:=0:
a3 == f3(i,j, k); if type(a3, integer) = false then: c3 := c3 + 1; end if:
c4d:=0:
a4 = f4(i,J, k); if type(a4, integer) = false then: c4 := c4 + 1; end if:
| od:od:od:
| > c0,cl, c2,c3, c4;
> i

>



| > #Code that for a given m that is a power of 2, will generate all points (and lines) in ZmP*.
> #Upload necessary procedures. 126
> with ( padic) :
> #For a given m, find all triples over Zm, where at least one entry is odd, store these in L.
m:=4:
L:=1]:
for i from 0 to m — 1 do:
for j from 0 to m — 1 do:
for k from 0 to m — 1 do:

if ( (lype( %, integer) jand (Zype( %, integerj ) and [Zype( %, integerj ) )then c=20:
else L :== [op(L), [i,J, k]] i

od:od:od:

> #Find all units in Zm, store these in U.
U:=1]:
for i from 1 to m — 1 do:
if gcd(i,m) =1then U := [op(U), i] fi
od:

> #Given all triples in L, find those who are equivalent when multiplied by a unit and only keep one
representative per equivalence class.

P:={}:

for ain L do:
al == a[l]:
a2 == al2]:
a3 == a[3]:

Q:={lal,a2,a3]}:
for u in U do:
for bin L do:

bl ==mod ((u-b[1]),m) :

b2 :=m0d((u’b[2]),’m):

b3 :=mod ((u-b[3]),m) :

if ((al=0b1) and (a2=0>b2) and (a3=53) ) then Q := Q U {[b[1],b[2],b[3]]}: fi
od:od:

P:= PU {Q}:

od:

>
[ > #Convert the set into a list, which will be the list of points and lines in ZmP2.

Q=11




foriin P do:

Q= [op(Q), i[1]]:

od:
> #Display Q, which in this case represents all points in Z4P
0;
[[0,0,1],(0,1,0],[0,1,1],[0,1,2],[0,1,3],[0,2,1],[1,0,0],[1,0,1],[1,0,2],[1,0,
3,[1,1,0], [L,1,1],[1,1,2],[1,1,3],[1,2,0], [1,2,1],[1,2,2],[1,2,3],[1,3,0]
[1,3,1],[1,3,2],[1,3,3],[2,0,1],[2,1,0], [2,1,1],[2,1,2],[2,1,3],[2,2, 1]]

> #Group the points according to what they are congruent over Z2P

S:i={}:

for a in QO do:

al :==mod(a[l1],2):

a2 :=mod(a[2],2):

a3 :=mod(a[3],2) :
I={[la[l]a[2]a[3]]}:
for b in O do:

bl :=mod((b[1]),2):
b2 :==mod((b[2]),2):
b3 :=mod((b[3]),2):

od:
s=sU (1}
| od:
| >
> for iin S do: print(i) : od:
{[0,0,1],[0,2,1],[2,0,1],[2,2,1]}
{[0,1,0],[0,1,2],[2,1,0], [2,1,2]}
{[0,1,1],[0,1,3],[2,1,1],[2,1,3]}
{[1,0,0],[1,0,2],[1,2,0],[1,2,2]}
{[1,0,1],[1,0,3],[1,2,1],[1,2,3]}
{[1,1,0],[1,1,2],[1,3,0],[L,3,2]}
{I,1,1],[1,1,3],[1,3,1],[1,3,3]}

| > #Each set is 4 lines over Z4P* that are congruent over Z2P
>

if ((al=b1) and (a2=5b2) and (a3=53) ) then T =T {([p[1],5[2], 5[3]]}: fi

127

0y

2



;> kernelopts ( printbytes = false) :

> #this file shows that the polynomial we are interested in is not made of a product of 14 linear ~ 128
factors that correspont to a product of seven pair of lines that are congruent in the fano plane.

>

;> #the polynomial obtained from the Smith normal form and the matrix of Sterling coefficients

7 17 6

6 26,6 231 6 35 6 4 4 23 6 5 3

6 8 7 87 37
—xz t+—xyz +—__—-—x)yz+ z + —

> = ==
/=16 64 256 256 " 7 64 XV I T 5e Y E
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256 © 7 128 * 7 YTy 128 * 7 128 * 7
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3 g 5, 337 g 24 7 833 1 g4 2, 177 g 5
+—128xyz +—512xyz+—256xyz +—512xyz+—256xyz
17 g6, 11 9 5 191 o 4 111 ¢ o 3 119 9 3 5 131 9 4
t 3 76 t 56 ¥V T g HNDY: * 256 z
13 95 1 q04a 17 10 3,6l 1022, 9 103 19 10 4
+16xy+16x z+32x yz+64x yz+64x yz+32x
1 5 9 3 1 3
+Ex”f—l-ax”yzz—i-ax11y22+§x11y3+zx1222+lezyz

> 1 1202

1 1 1 1 65
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+%x3 11_’_13_6 4 10_,_78 4 9+§% 4028 o 4y3z7+%x4y426
Jr%xztys 5er 4y6 4 2 4 7 3 i‘g 4y8 2 %xﬁpz
+£x4y10+£x5 9+£x5y28 £x527 129 5 3 ¢ £x5y4zs

32 16 256 64 256 256
+%x5 5 4+256 5,9 3+2_Z 5,7 2+256 5084 116x5 9+32xy22“
+%y3211_+_13_6y6z8+ . R 3+%y4 10+%y529+1—6xy212+1—2y10 4
+ly925




| > #clear out denominators

(> fi=512-f 129
Fi=256x"y+64x2)7 +384x" 7y + 128X 2+ 1924 P + 24 Pz 4404 v @)
+256x " 2 +304x" 03 + 725105 2 4488 X102 2 + 272410 2 + 32410

+ 416x9y5 + 262 x9y4z + 476)69)/3 2+ 444x9y2 4382 x9y24 +352x° 2

+272:° 00 435458 2 4318 ) 2+ 1448 2 4337402 2 425248y 2

+160x° 2% +320x" )" +468x" 10z + 264"y’ 22 +316x Y 22 +192x" 3 2

+204x 122 4340 y2° +64x" 27 +272x° 3% +396x° ) z +370x°1° 2

+ 46x6y5 2+ 296x6y4 2+ 462x6y3 2+ 174x6y2 2+ 136x6yz7 +224° 8

+32x° ) +38x° )0 24456y 22 +390x° 02 + 178 x° )y 2t +430x° ' 2

+258%° 2 20 +248x° ) 2 +430x° yzt +352x° 2 + 30451 'O + 21041 ) 2

+247x 8 22 + 12051y 2 4 148110 2 + 14611 ) 2 + 404X ) 20 38841y

+257x" 17 2 4380  y2” + 9611 20 + 6427 Y + 21653102 4+ 3007 0 22

+ 330x3y8 2440 y7 242625 y6 2+ 122x3y5 242325 y4 z/ +306x° y3 2

+248x° ) 2 4440 20 + 3207 y' 2 + 8857y 2 + 12047 310 22 + 42047y 2

+ 177x2ygz4 -I—496xzy7z5 +450x2y6z6 + 36x2y5 2+ 93x2y4z8 -1—400)62)/3 z

+504x° )y 210 + 48y 438427 212 + 256 x )" +64x )Pz + 1681y 22

—I—256xyloz3 —|—86xy9z4 + 188)6)/825 —|—476xy7z6 +304xy6z7 + 126xy528

+260x1" 27 +8x)° 20 +400x)* 2! + 3222 + 12812 27 + 2561 22

+480'° 2" + 641722 +96)° 28 + 641 22 + 643" 210 + 1287 2! + 2567 212
;> #reduce this polynomial mod 8
> f=mod(f8);
f= 6x9y4z + 4xgy3 z +4)69yzz3 + 6x9yz4 + 2x8y52 + 7x8y4z2 + 6)68)/3 z 2)

+x8y224+4x8y25 —|—4x7y6z-i-4x7y423 +4x7y225 +4x7yz6+4x6y7z

—|-2x6y6zz—|—6x6ysz3 +6x6y325 —|—6x()y226—|—6)c5ygz+6x5y()z3 —|—2x5y524

-|—6)c5y4z5 +2x5y326+6x5y28+2x4y92+7x4y822+4x4y6z4+2x4y525

+4x4y4z6+4x4y3z7+x4y228—|—4x4yz9+4x3y922—|—2x3y823—|—6x3y625

+2x3y526+2x3y328+4x2y923+x2y824+2x2y6z6+4x2y527+5x2y428

+6xy9z4+4xy825+4xy7z6+6xy528+4xy4z9
;> #multiply f by all the other units mod 8
| > f1 :==mod(3-f,8):
| > /2 :==mod(5/,8):
[ > f3:=mod(7f,8):
>

:> #find all 4 linear factors mod 8 that are congruent to a factor coming from a line over Z4P2




| > #lines congruent in Z2P2 have been grouped

| > #store the coefficients of each line

> L:=10,1,2,3,4,5,6,7]
Ml :==1[]1:M2:=1[]:M3:=[]:M4
hl == x:
h2 :=x+2-y
h3:=x+ 2z
h4 =x+2y+2z:
foriin L do:
forjin L do:
for kin L do:

g=ix+jy+kz:
gl ==mod (g, 4) :

if g/ = hi then M1 = [op(M1), [i, ], k]]: fi
if g/ = h2 then M2 := [op(M2), [i,], k]]
if g/ = h3 then M3 := [op(M3), [i, ], k]]
if g/ = h4 then M4 := [op(M4), [i, ], k]]

od:od:od:
PP:=[]:
U=1[13,57]:
m:= 8:

M = [MI, M2, M3, M4] :

for Miin M do:
={}:

for a in Mi do:
al == a[l]:a2 :=a[2]:a3 =
Q= {[al,a2,a3]}:

for # in U do:
for b in Mi do:

bl :=mod((u-b[1]),m) :b2 :=mod((u-b[2]),
if ((al =b1)and (a2=0>2) and (a3 =>03) ) then Q := QU {[b

od:od:
P:=PU{Q}:

od:

PP := [op(PP), P]:
od:

Q0 := [ ]:foriin PP[1]do: Q0 =
Q1 := [ ]foriin PP[2]do: QI =

al3]:

.i'
- fi:
fi

[op(00),
[op(O1),

m) :b3 :=mod ((u b[3]),m):

1], 6[2],b[3]]} : fi

i[1]]:0d: Q0
i[1]]:0d: QI;
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Q2 := [ |doriin PP[3]do: Q2 := [op(Q2),i[1]]:0d: O2;

Q3 := [ ]:foriin PP[4]do: O3 := [op(Q3),i[1]]:0d: O3; 131

Q01 = [op(Q0), op(Q1), 0p(Q2), 0p(0Q3)]:
[[1,0,0],[1,0,4],[1,4,0],[1,4,4]]
[[1,2,0],[1,2,4],[1,6,0],[1,6,4]]
[[1,0,2],[1,0,6],[1,4,2],[1,4,6]]
[[1,2,2],[1,2,6],[1,6,2],[1,6,6]] 3)

> #then with the 16 factors all congruent mod 2, find all the possible quadratics that are a product of
_ two of these, store these in Ri

> Rl = {}:

foriin QQI do:
forjin Q0! do:

il = (i[1])-x+ (i[2]) 5 + (i[3]) =
JU= (D) >+ (j[2]) v+ (j[3])z:
g '=mod (expand (il -jIl),8) :

Rl =ri1UJ (g}
od:od:

| >

> RI;

{xz,x2 —I—4yz,x2 +2xy,x2 +4xy,x2 —|—6xy,x2 —|—422,x2 +2xz,x2 +4xz,x2 —|—6xz,x2 “4)
—I—4xy+4yz,x2 —I—4xz+4z2,x2 —|—4y2 —I—4zz,xz—}—4xz—|—4y2,xz—i—4xy—|—4zz,x2
-|-2xy+2xz,x2 —i—2xy—|—4xz,)c2 -I—2xy—i—6xz,x2—i—4xy-|—2xz,x2 +4xy
—I—4xz,x2 —I—4xy—|—6xz,x2 +6xy—|—2xz,x2 —I—6xy—|—4xz,x2 +6xy—|—6xz,x2
+4xz+4y2+422,x2+2xz+4y2+4yz,x2+6xz+4y2+4yz,x2+2xy
—I—4yz—|—4zz,x2 —I—6xy—|—4yz+422,xz—|—4xy+4y2 —F4zz,x2 +4xy+4xz
-|-4zz,x2 —i—2xy-|—2xz-|—4yz,x2-|—2xy-|—6xz—|—4yz,x2 -I—6xy-l—2xz—|—4yz,x2
—I—6xy—|—6xz+4yz,x2 —I—4xy—|—4xz+4yz,x2 +2xy+4xz—|—4yz+4zz,x2
-I-6xy-|-4xz-|—4yz—|—4zz,x2 -l—4xy-|—4xz-i—4y2—i—4zz,x2 —|-4xy—i—2xz-|—4y2
+4yz,x2—|—4xy+6xz—|—4y2+4yz}

> L= [0,1,2,3,4,5,6,7]:
MI=[]:M2:=[]:M3:=[]:Md:=]]:

hl == y:
h2 :=2-x+y:
h3 :==y+2z:

h4 :=2-x+y+2-z:




foriin L do:

forjin L do:

for kin L do:

g=ix+jy+tkz:

gl :=mod(g,4):

if g/ = hi then M1 := [op(M1), [i,], k]]: fi:

i
if g/ = h2 then M2 := [op(M2), [i,], k]] : fi:
if g/ = h3 then M3 := [op(M3), [i,], k]] : fi:
if g/ = h4 then M4 := [op(M4), [i,j, k]] : fi:
od:od:od:

PPi=1[]:

U:= [1 3,5,7]:

m:= §:

M = [MI, M2, M3, M4] :

for Miin M do:
P:={}:

for a in Mi do:

al = a[l]:a2 = a[2]:a3

Q= {[al,a2,a3]}:

for u in U do:
for b in Mi do:

bl :=mod((u-b[1]),

od:od:

P:=PU {Q}:

od:

PP := [op(PP), P]:
od:

= a[3]:

m):b2 :=mod((u-b[2]),m) :b3 :=mod ((u-
if ((al=0b1) and (a2=05b2) and (a3=53) ) then Q := QU {[b[1]

04 = [ ]foriin PP[1]do: 04 == [op(Q4),i[1]] :0d: O4;
05 := [ ]foriin PP[2]do: 05 = [op(05),i[1]] :0d: O5;
06 = [ ]foriin PP[3]do: 06 = [op(Q6),i[1]]:0d: O6;
Q7 = [ ]foriin PP[4]do: Q7 == [op(Q7),i[1]]:0d: O7;
Q02 = [op(Q4),0p(05),0p(06),0p(07)]:

[[0,1,0],[0,1,4], [4,1,0], [4,1,4]]

[[2,1,0],[2,1,4],[6,1,0], [6, 1,4]]

[[0,1,2],[0,1,6],[4,1,2], [4, 1, 6]]

[[2,1,2],[2,1,6],[6,1,2],[6, 1, 6]]
> R2:={}:
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foriin Q02 do:
forjin OQ2 do:

il = (i[1])x+ ({[2])y + (i[3])'Zi
JE= () x+ (j[2D)y+ (j[3])z:
g '=mod (expand (il -jI),8) :

rr=r U g):
od:od:

> R2;

{yz,2xy—|—y2,4xy—|-y2,6xy+y2,4x2+y2,y2—|-422,y2+2yz,y2+4yz,y2—|—6yz,
4x2+4xy+y2,y2+4yz+422,4xy+y2+4ZZ,2xy+y2+2yz,2xy+y2
—I—4yz,2xy—|—y2+6yz,4xy+y2—I—2yz,4xy—|—y2+4yz,4xy+y2—|—6yz,6xy
+y2+2yz,6xy+y2+4yz,6xy+y2+6yz,4x2+y2+422,4x2+y2+4yz,
4xy—|—y2—|—4yz+4zz,2xy—|—4xz+y2+422,6xy+4xz —|—y2—|—422,2xy—|-4xz
-I-yz—|-2yz,2xy—|—4xz-|—yz-I-6yz,6xy—|—4xz-|—yz—|—2yz,6xy—|—4xz-i—y2
—i—6yz,4x2+y2—|—4yz—|—4zz,4x2+4)cz-|-)/2—|—2yz,4)c2—|—4xz-|—y2+6yz,4x2
+4xy+y2+422,4x2+4xy+y2+4yz,2xy+4xz+y2+4yz+422,6xy
Fadxz+ Y +A4yz+42 4 4+ Axy+ )y 44y +42 4 +Axy+Adxz+ )
+2yz,4x2+4xy+4xz+y2+6yz}

> nops (R2);

>L:=10,1,2,3,4,56,7]
Ml :=[]1:M2:=[]:M3:=1[]:M4:=1]
hl = z:
h2:=2-x+2-y+z:
h3:=2x+z:
hd:=2-y+z:
foriin L do:
forjin L do:
for kin L do:

g=ix+jy+tkz:

gl :=mod(g,4):

if g/ = hi then M1 := [op(M1), [i,], k]] : fi:
if g/ = h2 then M2 := [op(M2), [i,j, k]] : fi:
if g/ = h3 then M3 := [op(M3), [i,j, k]] : fi:
if g/ = h4 then M4 := [op(M4), [i,], k]] : fi:
od:od:od:
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3 C

M = [MI, M2, M3, M4] :

for Miin M do:
P:={}:
for a in Mi do:

al = a[l]:a2 = a[2]:a3 == a[3]:

Q= {lal,a2,a3]}:

for u in U do:

for b in Mi do:

bl :=mod((u-b[1]),m) :b2 :=mod((u-b[2]),m) :b3 :=mod((u-D[3]),m) :

]
if ((al=b1)and (a2=5b2) and (a3=53) ) then 0 =0 \J {[b[116[2]5[3]]}: fi

od:od:

P:=PU {Q}:

od:

PP := [op(PP), P]:

od:

Q8 := [ Jdoriin PP[1]do: 08 := [op(Q8),i[1]]:0d: O8;

Q9 := [ Jdoriin PP[2]do: Q9 := [op(Q9),i[1]]:0d: QY;

Q10 := [ Jdoriin PP[3]do: Q10 := [op(Q10),i[1]]:0d: Q10;

Q11 := [ ]foriin PP[4]do: Q11 := [op(QI11),i[1]]:0d: Q11

003 = [op(08), 0p(Q9), op(010),0p(Q11)]:
[[0,0,1],[0,4,1],[4,0,1],[4,4,1]]
[[2,2,1],[2,6,1],[6,2,1],[6,6,1]]
[[2,0,1],[2,4,1],[6,0,1],[6,4,1]]
[[0,2,1],[0,6,1],[4,2,1],[4,6,1]] 8)

> R3:={}:

foriin QQ3 do:
forjin Q03 do:

il = (i[1])x+ (i[2]) -y + (i[3])z:
JE= () x+ (j[2D)y+ (J[3])z:
g :=mod (expand (il -jIl),8) :
rR3=r3U (g}

| od:iod:

> R3;

{22,2xz+22,4xz+22,6xz+22,4x2 —I—zz,2yz+22,4yz+22,6yz+22,4y2 —I-zz, )



4x2+4xz+22,4y2—|-4yz+22,2xz+2yz+22,2xz+4yz+22,2xz+6yz
+22,4xz+2yz+22,4xz+4yz—|—22,4xz+6yz+22,6xz+2yz+22,6xz
—I—4yz—|—zz,6xz+6yz—|—22,4xz—|—4y2—|—22,4x2+4yz—|—22,4x2+4y2+zz,
4xz+4y2+4yz+22,4xy+2xz+2yz+22,4xy+2xz+6yz+22,4xy
—I—6xz—|—2yz+22,4xy—l—6xz—|-6yz+22,4xy+2xz+4y2—|-22,4xy—|-6xz

F A4y 4 A F A Ay A FAxz Ay 24X FAxz 4y + 2
4x2—|—4xy+2yz—|—zz,4x2+4xy—|—6yz+22,4xy+2xz—|—4y2+4yz—|—zz,4xy
t6xz4+4y +ayz+ A FAxz+ 4y Ay 4 FAxytAxz+2yz
—I—zz,4x2+4xy+4xz+6yz+zz}

> nops (R3);
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hl :=x+z:
h2:=x+2-y+3-z:
h3:=x+2y+z:
h4 :==x+3-z:

foriin L do:

forjin L do:

for kin L do:

g=ix+jy+tkz:

gl :=mod(g,4):

if g/ = hi then M1 := [op(M1), [i,], k]] : fi:
if g/ = h2 then M2 := [op(M2), [i,], k]] : fi:
if g/ = h3 then M3 := [op(M3), [i,], k]]
)

- fi:
if g/ = h4 then M4 := [op(M4), [i,], k]] : fi:
od:od:od:

PP:=11]:
= [1,3,57]:
m = 8:

M = [MI, M2, M3, M4]:
for Miin M do:
={}:
for a in Mido:
al == a[l]:a2:=a[2]:a3 = a3]:

Q= {lal,a2,a3]}:
for u in U do:



for b in Mi do:

bl :=mod((u-b[1]),m) :b2 :=mod((u-b[2]),m) :b3 :=mod((u-b[3]),m):

if ((al=01) and (a2=0>02) and (a3=03) ) then QO := Q U {[b[1],b[2],D[3]]}: fi

od:od:

P:=PU{Q}:

od:

PP := [op(PP), P]:

od:

Q12 := [ Jdoriin PP[1]do: Q12 := [op(Q12),i[1]]:0d: Q12;

Q13 = [ Jdoriin PP[2]do: QI3 := [op(Q13),i[1]]:0d: Q13;

Q14 := [ ]doriin PP[3]do: Q14 := [op(QI14),i[1]]:0d: Q14

Q15 := [ Jdoriin PP[4]do: Q15 := [op(Q15),i[1]]:0d: O15;

Q04 = [op(Q12),0p(Q13), 0p(Q14),0p(Q15)]:
[[1,0,1],[1,0,5],[1,4,1],[1,4,5]]
[[1,2,3],[1,2,7],[1,6,3],[1,6,7]]
[[1,2,1],[1,2,5],[L,6,1],[1,6,5]]
[[1,0,3],[1,0,7],[1,4,3],[1,4,7]]

> R4:={}:

for iin Q04 do:
for jin Q04 do:

il = (i[1])x+ (i[2])y+ (i[3])z:

JU= (D) x+ (j[2]) v+ (j[3])z:
g :=mod (expand(il jI1), 8) :

rRe=riU (o):
od:od:

> R4,
{x2+722,x2 —|—2xz+zz,x2+2xz—|—522,x2 +4xz—|—322,x2 +6xz—|—zz,x2 +6xz

-|-522,x2-|—4y2—i—4yz-|—7zz,x2—i—2xz—|—4yz-l-zz,xz-i—2xz+4y2-|-522,x2
—I—6xz—|—4y2+22,x2—|—6xz+4y2+522,x2—|—2xy+2yz—|—722,x2+2xy+6yz
-|-7zz,xz-l—4xy—|—4yz+722,x2-I—6xy—i—2yz-|—7zz,x2—|—6xy-|—6yz-|—7zz,x2
—|—4xy—|—4y2—|—722,x2—|—4xz—|—4y2—|—4yz—i—322,xz—I—2xy—i—2xz—i—2yz+zz,x2
+2xy+2xz+6yz+522,x2+2xy+4xz+2yz+3zz,x2+2xy+4xz+6yz
+3zz,x2+2xy—|—6xz—|—2yz+522,x2+2xy+6xz+6yz+zz,x2+4xy
+2xz+4yz+22,x2+4xy+2xz+4yz+522,x2+4xy+4xz+4yz+322,
xz+4xy+6xz+4yz—|—zz,x2—|—4xy—|—6xz+4yz+522,x2+6xy—|—2xz+2yz
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—|—4yz+522}
(> nops (R4);
40
> [ = [0,1,2, 3 45.6.7):
MI = [ 13 e [ 203 = [ ]:Md = [ ]:
hl :=x+y+z:

h2:=x+y+3-z:
h3 =x+3y+3-z:
h4 =x+3-y+z:

foriin L do:

forjin L do:

for kin L do:

g=ix+jy+tkz:

gl -=mod (g, 4):

ifgl/ = hil then M1 := [op(M1), [i,], k]] : fi:
if g/ = h2 then M2 := [op(M2), [i,], k]] : fi:
if g/ = h3 then M3 := [op(M3), [i,j, k]]:fi
if g/ = h4 then M4 := [op(M4), [i,], k]]: fi
od:od:od:

PP = []:
U:=11,3,57]
m:= 8:

M = [MI, M2, M3, M4] :

for Miin M do:

={}:
for ¢ in Mi do:

Q= {lal,a2,a3]}:

for u in U do:

for b in Mi do:

bl :=mod((u-b[1]),m):b2 :=mod((u-b[2]),

od:od:
P:=PU{Q}:

m) : b3 —mod((
if ((al = b1) and (a2=b2) and (a3=53) ) then 0 =0 J {[»

+522,x2+6xy+2xz+6yz+22,x2+6xy+4xz+2yz+3zz,x2+6xy
+4xz+6yz+3zz,x2+6xy+6xz—|—2yz+zz,x2+6xy—|—6xz+6yz+522,
xz+4xy—|—4xz+4y2+322,x2—|—4xy+2x2+4y2+4yz—|-22,x2+4xy+2xz
-|-4yz-|-4yz+522,x2-|-4)cy+6xz-|—4yz—i—4yz-|—zz,xz—|—4xy—i—6xz-i—4y2
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od:

PP := [op(PP), P]:

od:

Q16 == [ |foriin PP[1]do: Q16 := [op(Q16),i[l]]:0d: Q16;

Q17 = [ Jdoriin PP[2]do: Q17 := [op(Q17),i[1]]:0d: Q17

Q18 := [ ]Aoriin PP[3]do: QI8 := [op(Q18),i[1]]:0d: O16;

Q19 := [ |foriin PP[4]do: Q19 := [op(Q19),i[l]]:0d: Q19;

Q05 = [op(Q16),0p(Q17),0p(Q18),0p(Q19)]:
[[1,1,1],[L,1,5],[1,5,1],[1,5,5]]
[[1,1,3],[1,1,7],[1,5 3], [1,5,7]]
[11,3,3],[1,3,7],[1,7,3],[1,7,7]]
[[1,3,1],[1,3,5],[1,7,1],[1,7,5]]

3

> R5:={}:

for iin QQ5 do:
for jin Q05 do:

il = (i[1])x+ (i[2])y+ (i[3])z:
JU= (D) x+ (j[2])y+ (j[3])z:
g :=mod (expand(il -jI1), 8) :

rRs=r5J (g):
| od:od:
> RS,
{xz—i-7yz+2yz-|—7zz,xz+7)/2-|-6yz-|-7zz,xz+2xz-|—7yz-I—zz,)c2-|-6xz-|—7y2
+22,x2—I—2xy+y2+7zz,x2+6xy+y2+722,x2+2xz+7y2—|-4yz+522,x2
FAxz4+ TV 422432 +a4xz+71 +6yz+32F +6xz+7) +4yz
+522,x2+2xy—|—5y2—|—4yz—|-722,x2—|—4xy—|—3y2+2yz+722,x2—|—4xy
+3y2+6yz+722,x2+6xy+5y2+4yz+722,x2+2xy+4xz+5y2+3zz,
x2+4xy+2xz+3y2+522,x2—|—4xy—|—6xz+3y2+522,x2+6xy+4xz+5y2
-|-322,xz-l—2xy—|—2xz-|—yz-l—2yz—|—zz,xz—|—2xy—i—2xz-|—yz—|—2yz-|-522,x2
—|—2xy—|—2xz+5y2+2yz—|—22,x2—|—2xy+2xz—|—5y2—|—2yz—|—522,x2—|—2xy
+4xz+y2+4yz+322,x2+2xy+6xz+y2+6yz+22,x2+2xy+6xz+y2
+6yz+522,x2—|—2xy+6xz+5y2+6yz—|—22,x2—|—2xy+6xz+5y2+6yz
-|-522,xz—I—4xy—|—2xz—i—3yz-I—4yz-|-22,x2-|-4xy—|-4xz-i-3y2—|-2yz—|-322,x2
+4xy+4xz+3y2+6yz—|—3zz,x2+4xy—|—6xz+3y2+4yz+zz,x2—|—6xy
—|—2xz+y2+6yz—|-22,xz—|—6xy+2xz—|—yz+6yz+522,xz+6xy+2xz—|—5y2
+6yz+zz,x2+6xy+2xz+5y2+6yz+522,x2+6xy+4xz+y2+4yz
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-I-?azz,xz—i—6xy—|-6xz—|—y2-|-2yz-|-zz,xz+6xy—i—6xz-|-yz—|-2yz-|-522,x2
+6xy+6xz+5) +2yz 4+ +6xy+6xz24+5) +2yz+527}

[ > nops (R5);

hl :=y+z:
h2:=2-x+y+3-z:
h3 = =2-x+y+ z:
h4:=y+3-z:

foriin L do:

forjin L do:

for kin L do:

g=ix+jy+tkz:

gl ==mod (g, 4) :

if g/ =hl then M1 := [op(M1), [i,], k]]
if g/ = h2 then M2 := [op(M2), [i,], k]]
if g/ = h3 then M3 := [op(M3), [i,], k]]
if g/ = h4 then M4 := [op(M4), [i,], k]]
od:od:od:

PP:=1]:
U=1[13,57]:
m:= 8 :
M := [MI,M2, M3, M4]:
for Miin M do:
={}:
for a in Mi do:
al == a[l]:a2 = a[2]:a3 = al3]:
Q= {lal,a2,a3]}:

for u in U do:
for b in Mi do:
bl :=mod ((u-b[1]),

40

: fi:
i
- i
fi

m) :b2 :=mod((u-b[2]),

m) :b3 —mod((

if ((al=bl) and (a2=52)and (a3=53) ) then 0 = 0 J {[b

od:od:
P:=PU{Q}:
od:
PP =
od:

Lop(PP), P]:
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Q20 := [ ]doriin PP[1]do: Q20 := [op(Q20),i[1]]:0d: Q20
Q2] == [ |foriin PP[2]do: Q2] := [op(Q21),i[l]]:0d: Q21; 140
Q22 := [ Jdoriin PP[3]do: Q22 := [op(Q22),i[1]]:0d: Q22
Q23 := [ ]doriin PP[4]do: 023 := [op(Q23),i[1]]:0d: Q23
Q06 = [0p(0Q20), op(Q21), 0p(Q22), op(Q23)]:
[[0,1,1],[0,1,5],[4, 1,1],[4, 1,5]]
[[2,1,3],[2,1,7],[6,1,3],[6,1,7]]
[[2,1,1],[2,1,5],[6,1,1],[6,1,5]]
i [[0,1,3],[0,1,7],[4, 1,3], [4,1,7]] a7
(> R6 = {}:
for i in QQ6 do:
for jin Q06 do:
il = (i[1])x+ (i[2]) -y + (i[3])2
JE= () x+ (j[2D)y+ (J[3])z:
g :=mod (expand (il -jI1), 8) :
r6 = rsJ {g}:
od:od:
=> R6;
{y2+722,y2+2yz+22,y2+2yz+522,y2+4yz+3zz,y2+6yz+22,y2+6yz (18)

—I—522,2xy+2xz—|—y2—|—7zz,2xy—|—6xz+y2+722,4xy+4xz +y2—|-722,6xy
F2xz4+1 472, 6xy+6xz+ 0 +T72,4° 41 +2yz+254° +P + 22
—|-522,4xz—I—yz+6yz—|—22,4)c2+y2—|—6yz—|—522,4x2—|—4xz+y2—|—722,4x2
FAdxy+ P +T722xy+2xz24+ 1V + 2y 4+ 2xy+2xz2 4+ +4yz 4327,
2xy+2xz—|—y2+6yz+522,2xy+6xz+y2—|—2yz+522,2xy—|—6xz+y2
+4yz+322,2xy+6xz+y2+6yz+22,4xy+4xz+y2+2yz+22,4xy
—|-4xz+y2+2yz—|—522,4xy+4xz+y2+4yz+322,4xy+4xz+y2+6yz
+Zz,4xy+4xz+y2+6yz+522,6xy+2xz+y2+2yz+522,6xy+2xz
+y2+4yz+3zz,6xy+2xz+y2+6yz+zz,6xy+6xz+y2+2yz+22,6xy
—I—6xz+y2+4yz—|—322,6xy+6xz—|-y2+6yz—|—522,4x2—|-4xz+y2—|—4yz
-|-322,4x2-|—4xy-i—y2-|—4yz-|-322,4x2+4xy-|—4xz-|—yz—i—Zyz—i—zz,4x2
—I—4xy—|—4xz+y2—|—2yz+522,4x2+4xy—|—4xz+y2—|—6yz+22,4x2—|—4xy
+4xz+)y +6yz+52})

[ > nops (R6);

40 (19)



:M§==[]:M4==[]: 141

MI=[]:M2:= |
hl :=x+y:
h2:=x+y+2-z
h3 :=x+ 3-y:
h4:=x+3y+2z:
foriin L do:
forjin L do:

for £in L do:

g=ix+jy+tkz:
gl :=mod(g,4):

if g/ = hi then M1 := [op(M1), [i, ], k]]: fi:
if g/ = h2 then M2 := [op(M2), [i,], k]] : fi:
if g/ = h3 then M3 := [op(M3), [i,], k]] : fi:
if g/ = h4 then M4 :== [op(M4), [i,], k]] : fi:
od:od:od:

Ppi=[1]:

U:= [1 3,5,7]:

m:=8:

M = [MI, M2, M3, M4] :

for Miin M do:
P:={}:

for a in Mi do:
al == a[l]:a2:=a[2]:a3 = a[3]:

Q= {lal,a2,a3]}:

for v in U do:

for b in Mi do:

bl :=mod((u-b[1]),m) :b2 :=mod ((u-b[2]),m) :b3 :=mod((u-b[3]),m):

]
if ((al=b1) and (a2=5b2) and (a3=53) ) then 0 = 0 \J {[b[1]6[2]5[3]]}: fi

od:od:

P:==PU{Q}:

od:

PP := [op(PP), P]

od:

Q24 = [ ]doriin PP[1]do: Q24 := [op(Q24),i[1]]:0d: O24;

Q25 := [ ]doriin PP[2]do: Q25 := [op(Q25),i[1]]:0d: Q25

026 := [ Jdoriin PP[3]do: 026 := [op(026),i[1]]:0d: Q26;

Q27 := [ ]doriin PP[4]do: Q27 := [op(Q27),i[1]]:0d: Q27
E

Q07 = [op(Q24), op(Q25), op(Q26), op(Q27)



[[1, 1, 0],
[[1,1,2],
[[1,3,0],
[11,3,2],

1,1,4],[1,5,0],
1,1,6],[1,5,2],
1,3,4],[1,7,0],
1,3,6],[1,7,2],

1,5,4]]
1,5,6]]
1,7,4]]
1,7,6]]
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for iin Q07 do:
forjin Q07 do:

il = (i[1])x+ (i[2]) -y + (i[3])z:

JE= () x+ (j[2]D) -y + (J[3])z:
g :=mod (expand (il -jI1), 8) :

rR7=r7U (o}:
od:od:

> R7,

{x2+7y2,x2—|—2xy+y2,x2+2xy—|—5y2,x2+4xy—|—3y2,x2+6xy—|—y2,x2—|—6xy (21)
-|-5y2,xz-i-7yz—|-4yz-|-422,xz—I—4xz—|—7yz-1-422,)cz—|-2xz-|-7yz-I-ZyZ,x2
—I—2xz—|—7y2—|—6yz,x2—|—4xz+7y2+4yz,x2+6xz—|—7y2—|—2yz,x2—|—6xz
+7y2+6yz,x2+2xy+y2+422,x2+2xy+5y2+422,x2+6xy+y2+422,x2
—|—6xy+5y2—|—422,x2+4xy—|—3y2—|—4yz+422,x2—I—4xy+4xz—|—3y2+4zz,
x2+2xy—|-2xz+y2+2yz,x2—|—2xy+2xz+5y2+6yz,x2+2xy—|-4xz+y2
+4yz,x2+2xy+4xz+5y2+4yz,x2+2xy+6xz +y2+6yz,x2+2xy
—I—6xz+5y2—|—2yz,x2+4xy+2xz—|-3y2—|-2yz,x2—|-4xy+2xz—|-3y2
+6yz,x2+4xy+4xz+3y2-|-4yz,x2+4xy+6xz+3y2+2yz,x2+4xy
—I—6xz—|—3y2—|—6yz,x2—|—6xy+2xz—|-y2+6yz,x2+6xy—|—2xz+5y2—|-2yz,
xz—i—6xy—|—4xz—i—y2—|—4yz,)c2-|—6xy+4xz-|—5yz—i—4yz,)c2-l-6xy-i—6xz-|—y2
—|—2yz,x2—I—6xy+6xz—|—5y2+6yz,x2—|—2xy—|—4xz +yz—|-4yz+4zz,x2
+2xy+4xz+5y2+4yz+4zz,x2+6xy+4xz+y2+4yz+422,x2+6xy
taxz4+5)y +4yz+47)

| >
> nops(R7);
40 (22)
> #ake a quadratic from each set and multiply these to get a degree 14 polynomial, and check if it is
| congruent to fand f times a unit mod §

B h:==0:

foriin R/ do:




forjin R2 do:

for kin R3 do: 143
for /in R4 do:

for m in RS do:

for n in R6 do:

for p in R7 do:

g :=mod (expand(i-j-k-l-m-n-p), 8) :

if g=f then print(g,i,j, k, [,m,n,p) : h ==
if g=f1 then print(g,i,j, k, L m,n,p) : h :=
if g = /2 then print(g, i,j, k, L m,n,p) 1 h :
if g=/3 then print(g,i,j, k, L m,n,p) 1 h :
od:od:od:od:od:od:od:

g fi:

g :print("Times 3") : fi
g : print("Times 5") : fi:
g :print("Times 7") : fi:

> #did not print, those do not exist



