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Abstract 

In permafrost regions, the thaw depth strongly controls shallow subsurface hydrologic processes 

that in turn dominate catchment runoff. In seasonally freezing soils, the maximum expected frost 

depth is an important geotechnical engineering design parameter. Thus, accurately calculating 

the depth of soil freezing or thawing is an important challenge in cold regions engineering and 

hydrology. 

The Stefan equation is a common approach for predicting the frost or thaw depth, but this 

equation assumes negligible soil heat capacity and thus exaggerates the rate of freezing or 

thawing. The Neumann equation, which accommodates sensible heat, is an alternative implicit 

equation for calculating freeze-thaw penetration. This study details the development of 

correction factors to improve the Stefan equation by accounting for the influence of the soil heat 

capacity and non-zero initial temperatures. The correction factors are first derived analytically 

via comparison to the Neumann solution, but the resultant equations are complex and implicit. 

Thus, explicit equations are obtained by fitting polynomial functions to the analytical results. 

These simple correction factors are shown to significantly improve the performance of the Stefan 

equation for several hypothetical soil freezing and thawing scenarios. 

Keywords 

Cold regions hydrology, freeze-thaw, cryogenic soils, permafrost, frost depth, active layer 

 

mailto:barret.kurylyk@dal.ca
http://onlinelibrary.wiley.com/doi/10.1002/ppp.1865/abstract


2 
 

1. Introduction 

The seasonal penetration of the frost or thaw front is an important consideration in cold regions 

hydrology (French, 2007; Woo, 2012). Pore ice reduces the hydraulic conductivity of soils 

(Kurylyk and Watanabe, 2013), and thus the upper surface of frozen, saturated soil in permafrost 

regions acts as a relatively impermeable unit that restricts subsurface flow to the perched 

seasonally thawed active layer (Carey and Woo, 2001). Lateral subsurface runoff can decrease 

during concomitant lowering of the thawing front and saturated zone due to the inverse 

relationship between the depth of organic soils and saturated hydraulic conductivity (Carey and 

Woo, 1999; Quinton et al., 2000). Hence, the location of the thawing front exerts a strong control 

on shallow subsurface flow (Carey and Woo, 2005; Metcalfe and Buttle, 1999; Wright et al., 

2009), which is the dominant runoff mechanism in many northern catchments (Quinton and 

Marsh, 1999; Tetzlaff et al., 2014). 

From a geotechnical engineering perspective, predicting the maximum frost depth is essential for 

determining appropriate foundation depths to minimize the influence of frost heave (Andersland 

and Ladanyi, 2004). Furthermore, cyclical freeze-thaw action has been known to effect the 

physical and mechanical properties of soils including hydraulic conductivity (Konrad, 2000), 

consolidation (Edwards, 2013), and strength (Qi et al., 2008). Consequently, geotechnical 

engineers have developed most of the theory and methodology for determining the frost depth 

(e.g., Andersland and Ladanyi, 1994; Aldrich and Paynter, 1953; Jumikis, 1977), and these 

approaches have been adopted and modified by permafrost hydrologists and geomorphologists 

(e.g., French 2007; Woo, 2012). 

As reviewed by Kurylyk et al. (2014a), there has been recent intensified interest in the 

quantitative study of shallow subsurface thermal regimes due to the potential influence of 

changing climatic conditions. For example, warming air temperatures and changing 

precipitations regimes can lead to a reduction in the insulating winter snowpack, which can 

paradoxically lead to a decrease in winter surface temperatures (Groffman et al., 2001; Kurylyk 

et al., 2013) and an increase in the maximum frost depth. Also, recent climate warming has 

already produced measurable increases in the active layer thickness in many regions of the world 

(e.g., Harris et al., 2009; Romanovsky and Osterkamp, 1997). Alterations to atmospheric 

conditions and subsurface thermal regimes may both contribute to changing surface hydrological 
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processes (Tetzlaff et al., 2013). The influence of changing climate conditions on seasonal soil 

freezing or thawing can be studied using mechanistic approaches that consider governing heat 

transfer processes. 

The two most common analytical solutions applied to calculate the rate of soil freezing or 

thawing are the Neumann (ca. 1860) and Stefan (1891) equations (Lunardini, 1981). The 

Neumann equation accounts for both latent and sensible soil heat, whereas the Stefan equation is 

an approximate approach that neglects the sensible heat required to change the soil temperature 

(Kurylyk et al., 2014b). Despite its approximate nature, the Stefan equation has been more 

widely implemented because the Neumann equation is implicit and requires a constant surface 

temperature. The simplicity of the Stefan equation also facilitates its incorporation into freeze-

thaw algorithms that accommodate more complex conditions such as soil layering (Kurylyk et 

al., 2015) and changing moisture content (Hayashi et al., 2007). The Stefan equation indicates 

that the rate of freezing or thawing is proportional to the square root of the cumulative thawing 

or freezing index (i.e., the product of surface temperature and time). The proportionality constant 

is a function of the latent heat released or absorbed from the soil during pore water phase change 

and the soil thermal properties. Several researchers have employed a modified form of the Stefan 

equation by empirically determining the proportionality constant from measured site conditions 

(Anisimov et al., 2002; Hinkel and Nicholas, 1995; Woo, 1976). These approaches work well for 

estimating the active layer thickness where data exists for calibration, but such an approach is not 

generally transferable to other locations or climates.  

The errors arising from the lack of inclusion of sensible heat in the Stefan equation can be 

considerable, especially for calculation of the frost depth. For example, by not considering the 

influence of the soil heat capacity, the Stefan equation can potentially overestimate the frost 

depth by up to 30% (e.g., Aldrich and Paynter, 1953). This is especially true when soil 

temperatures in the zone subject to freeze-thaw are not close to 0°C at the commencement of 

freezing or thawing at the surface. The source and magnitude of these errors are seldom 

explained in studies that incorporate the Stefan equation, or some variant thereof, to calculate the 

depth to the freezing or thawing front. The accuracy of the Stefan equation can potentially be 

improved via the inclusion of a quasi-empirical correction factor. The forms and application of 

previously proposed correction factors can be obtained from cold regions geotechnical 
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engineering texts (Aldrich and Paynter, 1953; Andersland and Ladanyi, 1994; Jumikis, 1977; 

Lunardini, 1981). However, no mention of these Stefan correction factors are made in recent 

cold regions hydrology or geomorphology review papers that present variations of the Stefan 

equation to predict the depth of soil freeze-thaw (Bonnaventure and Lamoureux, 2013; Kurylyk 

et al., 2014a; Riseborough et al., 2008; Zhang et al., 2008).  Recent permafrost hydrology or 

geomorphology texts (e.g. French, 2007; Woo, 2012) are also void of any discussion of these 

Stefan correction factors. Thus, it appears that their adoption has been primarily limited to 

geotechnical engineering applications. 

The objectives of the present study are fourfold: 

1. Derive analytical expressions for the Stefan correction factor via comparison to the 

Neumann equation; 

2. Obtain reasonable fits to these implicit, analytical equations using simple polynomial 

functions; 

3. Compare the performance of these new correction factors to those previously proposed in 

literature for a variety of soil freezing or thawing conditions, including non-zero initial 

temperature; and 

4. Demonstrate the utility of these correction factors for simple illustrative examples. 

We begin by presenting the Stefan and Neumann equations to highlight the assumptions of the 

Stefan approach and to derive analytical, implicit equations for correcting the Stefan equation to 

account for soil sensible heat.  The implicit and complex nature of the analytical correction 

factors prohibits their incorporation into engineering practice or cold regions hydrology or land 

surface models, and thus we propose simple polynomial equations to reasonably approximate the 

analytical results. These flexible polynomial equations are functions of dimensionless numbers 

that are readily calculated. The underlying theory and derivations presented in this study are 

extensive. However, readers who are only interested in the final results may advance to Table 5, 

which presents the four alternative correction factor equations developed in this study and the 

respective settings for their applications.  
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2. Theory and Methods 

2.1 Stefan and Neumann equations for soil thawing 

Stefan (1891) proposed an equation for predicting the thawing or freezing of sea ice, and this 

equation has been modified and applied to calculate the rate of soil freezing and thawing. The 

governing equation, initial conditions, boundary condition, and derivation are provided in the 

supplementary material (Appendix S1.1). Figure 1 presents the conceptual model for the Stefan 

solution for calculating soil thawing. Soil freezing will be discussed later. The Stefan equation 

for soil thawing in the case of variable surface temperature is: 

                                                                        
L

tIk
tX
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u


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)(                                                   (1) 

where ku is the bulk thermal conductivity of the upper unfrozen zone (W m-1 °C-1), X is the 

distance (m) between the surface and the interface between the thawed and frozen zones (Fig. 

1b), ϕ is the volumetric moisture content (volume of water divided by total soil volume) that has 

undergone phase change, ρw is the density of water (kg m-3), L is the mass based latent heat of 

fusion for water (3.34× 105 J kg-1), and  
t

s dTtI
0

)(   (Ts = surface temperature, °C) and is 

known as the surface thawing index (Fig. 1).   

The product of the volumetric water content and water density yields the mass of moisture per 

unit volume of the unfrozen zone. Assuming complete phase change, this product can be  
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Figure 1: Conditions for the Stefan solution in the case of soil thawing for (a) the initial conditions 

and (b) after a period of thawing has occurred. This figure also represents the Neumann solution 

conditions when Ti = 0°C (modified from Kurylyk et al., 2014b). Note that if the initial temperature 

is less than 0°C, as in the case of the Neumann solution, the zone of conduction extends below 

the thaw front. 

 

interchanged with the product of the volumetric ice content and ice density in the frozen zone. 

Often air temperature, rather than surface temperature, is used to form the thawing index. In this 

case the air thawing index is multiplied by the empirical ‘n factor’, which is ratio of I(t) to the 

integral of the air temperature (Klene et al., 2001). This n factor crudely accounts for the 

influence of snowpack, vegetation, and other surface conditions on surface thermal regimes.  

If the surface temperature is constant, the Stefan equation becomes: 
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where t is time (s). Due to its simplicity, the Stefan equation has been widely implemented in 

cold regions engineering practice (Andersland and Ladanyi, 1994; Jumikis, 1977; Lunardini, 

1981), cold regions hydrology models (Carey and Woo, 2005; Fox, 1992; Woo et al., 2004), and 

land surface schemes (Li and Koike, 2003; Yi et al., 2006). The Stefan solution assumes a linear 

temperature distribution in the upper zone (Appendix S1.1), which implies that the heat capacity 

of the soil is negligible and the soil is uniform.  

The dimensionless Stefan number is proportional to the ratio of sensible heat to latent heat 

absorbed during thawing (Kurylyk et al., 2014b; Lunardini, 1981). In the case of soil thawing 

with initial temperatures at 0°C and a constant surface temperature Ts, the Stefan number is: 

                                                            
w
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Although, this form of the Stefan number is commonly defined as the exact ratio of sensible heat 

to latent heat (Andersland and Anderson, 1978), this is only the case when the entire thawed 

domain is uniformly at a temperature of Ts. The Stefan number for freezing soils will be 

discussed later. The derivation of Eq. (2) tacitly assumes that the Stefan number is zero, and thus 

the Stefan equation error can be shown to be strongly related to the Stefan number (Kurylyk et 

al., 2014b). 

Figure 2 shows the ratio of the Stefan number to the surface temperature versus the moisture 

saturation for common soils. The relationship between ST1/Ts and the moisture saturation is not 

linear as the bulk unfrozen heat capacity is also dependent on the moisture saturation (see Eq. 3). 

Figure 2 indicates that the Stefan number for soils with saturations higher than 0.25 will typically 

be less than 1 as the average surface temperatures during the thawing period are usually less than 

20°C in permafrost regions. Hence, only ST1 values ranging between 0 and 1 will be considered 

in this study. 
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Figure 2: Ratio of the Stefan number during thawing (Equation 3, ST1) to surface temperature (Ts) 

versus the moisture saturation. The ε symbol represents porosity (εS = ϕ). Thawed zone saturated 

bulk heat capacities for the different soils were taken from Bonan (2008, p. 134). The relationship 

between saturation and the bulk heat capacities was obtained via the volumetrically weighted 

arithmetic mean of the constituent heat capacities. 

Neumann (ca. 1860) derived a mathematically exact solution (i.e., the assumption of a linear 

temperature profile is relaxed) to the propagation of the frost or thaw front, but this equation has 

not been frequently applied due to its implicit nature, increased complexity, and constant surface 

temperature requirement. The exactness of the Neumann equation has been verified with 

numerical methods, and the equation has thus served as a benchmark for cold regions heat 

transport numerical models (Kurylyk et al, 2014b). The initial conditions, boundary conditions, 

and assumptions of the Neumann solution are presented in the supplementary material 

(Appendix S1.2). Of particular note, the Neumann solution assumes a bottom (infinite depth) 

boundary temperature at the initial temperature, and thus does not account for two-directional 

freezing in permafrost soils or two-directional thawing in non-permafrost soils (Lunardini, 1981; 

Woo et al., 2004). In the case of soil thawing, the Neumann equation is: 

http://onlinelibrary.wiley.com/doi/10.1002/ppp.1865/full#ppp1865-bib-0005


9 
 

                                                                        tmX                                                               (4) 

where m is the coefficient of proportionality (m s-0.5). This can be found via the implicit equation 

below: 
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where αf and αu are the thermal diffusivities of the frozen and unfrozen zones (m2 s-1), kf is the 

bulk frozen zone thermal conductivity (W m-1 °C-1), Ti is the initial temperature (< 0°C), erf is 

the error function, and erfc is the complementary error function. Equation (5) is sometimes 

presented in a slightly different form as Ti is often defined as the number of degrees below zero. 

Table 1: Details for thawing/freezing scenarios shown in Figures 3 and 4 

Description Silty Clay1 

Total water content ϕ 0.4 

Unfrozen zone thermal cond. (W m-1°C-1) 1.07 

Frozen zone thermal cond. (W m-1°C-1) 1.75 

Unfrozen zone heat capacity (J m-3 °C-1) 2.88 × 106 

Frozen zone heat capacity (J m-3 °C-1) 2.19 × 106 

Boundary and initial conditions during thawing (Figure 3) 

Constant surface temperatures2, Ts (°C) 15, 10, 5  

Uniform initial temperatures2, Ti (°C) -2 

Boundary and initial conditions during freezing (Figure 4) 

Constant surface temperature3, Ts (°C) -3  

Uniform initial temperatures3, Ti (°C) 1, 2, 5 

1All thermal properties taken from McClymont et al. (2013). 

2Runs 1-3 (for thawing) had surface temperature of 15, 10, and 5°C and initial temperatures of -2°C. 

3Runs 1-3 (for freezing) had surface temperature of -3°C and initial temperatures of 1, 2 and 5°C. 

2.2 Illustrative soil thawing examples and previous Stefan correction factors  

The Neumann and Stefan equations both indicate that the penetration of the thawing front is 

proportional to the square root of time when the surface temperature is constant. To illustrate the 

potential inaccuracy of the Stefan equation, the thawed depths for three separate scenarios were 

calculated via the Stefan and Neumann equations. Table 1 presents the thermal properties, initial 
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conditions, and boundary conditions used for the illustrative calculations. Initial temperatures of 

only -2°C were selected as the snowpack typically insulates the ground thermal regime during 

the winter months and maintains soil temperature close to 0°C (Kurylyk et al., 2013; Zhang et 

al., 2005). Figure 3 demonstrates that, for these examples, the Stefan equation over-predicts the 

thaw depth and yields normalized errors between 8 and 9%. These errors arise solely because the 

Stefan equation assumes negligible soil heat capacity. Stefan equation errors can be more 

pronounced for soils with lower moisture contents (higher Stefan numbers) or for colder soil 

temperatures at the onset of thaw, such as in wind scoured sites or other areas with snow-free 

conditions in the winter. 

Aldrich and Paynter (1953) and others have proposed a modified Stefan equation to account for 

the influence of sensible heat: 

                                                               
L
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where Xcorr is the corrected thaw depth (m), λ is a dimensionless correction factor that is less than 

1. Figure 3c indicates that if the appropriate value is obtained for λ, the corrected Stefan equation 

should exactly equal the Neumann equation for any point in time. Sometimes Eq. (6) is known as 

the ‘Modified Berggren Equation’.  

Various empirically or analytically obtained correction factors have been proposed in 

geotechnical engineering literature. Aldrich and Paynter (1953) listed two alternative forms for λ 

which they obtained from earlier engineering work and/or from comparison to the Neumann 

solution. These simplify to Eqs. (7a) and (8a) once appropriate substitutions for differing 

nomenclature are made and further reduce to Eqs. (7b) and (8b) when the initial temperature is 

assumed to be zero.  
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Figure 3: (a) Predicted depths to the thaw front for the Stefan (Eq. 2, solid lines) and Neumann 

(Eqs. 4-5, dashed lines) equations, (b) absolute error of the Stefan equation, and (c) normalized 

error of the Stefan equation vs. time for thawing scenarios 1-3. Soil thermal properties, initial 

conditions, and surface temperatures are presented in Table 1. The absolute errors were obtained 

via comparison to the Neumann solution, and the normalized errors were calculated as the 

difference between the Stefan and Neumann equations divided by the Stefan equation. 
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Nixon and McRoberts (1973) proposed a modified form of the Stefan equation via a comparison 

of the Stefan and Neumann solutions. When their expression is rearranged, it can be shown that 

they were essentially suggesting the following expression for λ: 
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Lunardini (1981, pp.  384-386) employed the heat balance integral method to obtain various 

corrections to the Stefan equation based on different assumptions for the temperature 

distribution. The associated λ values can be extracted by dividing Lunardini’s (1981) corrected 

equations by the simple Stefan equation (Eq. 2). His most accurate λ for a given thawing scenario 

was shown to be: 
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This is the first time these previously proposed correction factors have been presented in a single 

resource. In the following sections, alternative correction factors are proposed, and the 

performances of these expressions are compared. 

2.3 Derivation of an implicit, analytical correction factor for soil thawing 

The Neumann equation (Eq. 4) can be compared to the corrected Stefan equation (Eq. 6) to 

obtain the relationship between λ and m: 
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Eq. (11) can be inserted into Eq. (5) to obtain an implicit mathematical expression for λ that is 

exact when the assumptions of the Neumann equation are met. This expression reduces to Eq. 

(12b) when the initial temperatures are 0°C. 
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This implicit form is inconvenient, and charts have been produced to alternatively allow the user 

to obtain λ from dimensionless parameters (Andersland and Ladanyi, 1994). These charts cannot 
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be integrated directly into models or spreadsheet calculations, and thus the previously noted 

approximate expressions for λ have been proposed (Eqs. 7-10).                                 

2.3.1 Analytical correction factor for soil thawing when Ti = 0°C 

As shown in Eq. (12b) the mathematical expression for λ simplifies if the initial soil temperature 

is 0°C. If the Stefan number for soil thawing (Eq. 3) is inserted into Eq. (12b), the following 

simplification can be obtained:   

                                                   























2
erf

2
exp

2

112

1

TT

T

SS

S



                                         (13)      

This correction factor, which is only a function of ST1, is not dependent on the frozen zone 

thermal properties because there is no conductive flux in the frozen zone when the initial 

temperatures are 0°C. Plots of λ vs ST1 will be generated from Eq. (13) to obtain an explicit 

polynomial expression to estimate λ directly from the Stefan number. 

2.3.2 Analytical correction factor for soil thawing when Ti < 0°C 

Equation (12a) is the implicit function for determining the Stefan correction for soil thawing 

when the 0°C initial temperature assumption is relaxed. This expression simplifies to: 
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where β and δ are dimensionless parameters that account for the differences in the thermal 

properties of the frozen and unfrozen zones.  
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Thus, when the soil temperatures are less than 0°C at the onset of surface thaw, the λ correction 

factor is an implicit function of three dimensionless variables (ST1, δ, and βTi/Ts). Typical values 

for β and δ can be explored using conventional approaches for estimating the bulk thermal 

properties of a soil-water-ice matrix as detailed in Appendix S.1.3.  

 

2.4 Derivation of implicit, analytical correction factors for soil freezing 

The Neumann and corrected Stefan equations for soil thawing can be modified for the case of 

soil freezing, and these can be respectively shown to be (Lunardini, 1981): 
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As before, Eq. (18) is the implicit equation from which the m term is obtained for the Neumann 

solution (X = m×t 0.5). Note that because the frozen zone is now the upper layer, the locations of 

the frozen and unfrozen zone thermal properties have been interchanged in comparison to the 

Stefan and Neumann equations for soil thawing. The negative signs in Eqs. (17) and (18) arise 

because the relative signs of Ti and Ts have been interchanged in comparison to the case of soil 

thawing. 

The Stefan equation errors can potentially be much greater for soil freezing than for thawing 

because the magnitude of the Ti/Ts ratios are typically higher. Figure 4 presents illustrative 

examples of the differences between the approximate Stefan equation (λ = 1, Eq. 18) and the 

Neumann solution (Eq. 17) for soil freezing. Table 1 presents the thermal properties used for the 

Stefan and Neumann calculations in Figure 4. Average surface temperatures of -3°C were chosen 

as these are typical of surface temperatures beneath a snowpack in permafrost regions (Brenning 

et al., 2005; Hoelzle, 1992). Initial conditions of 1, 2, and 5°C were chosen to represent different 

conditions for the average soil temperature before the onset of freezing (Table 1).  
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Figure 4: (a) Predicted depths to the frost front for the Stefan (Eq. 18, λ=1, solid lines) and 

Neumann (Eq. 17, dashed lines) equations, (b) Absolute error of the Stefan equation, and (c) 

normalized error of the Stefan equation vs. time for thawing scenarios 1-3 (initial temperatures = 

1, 2, and 5°C, respectively). Soil thermal properties, initial temperatures, and surface temperatures 

are presented in Table 1. The Stefan errors were obtained via comparison to the Neumann 

solution. 

 

Figure 4 demonstrates that, for these examples, the Stefan equation predicts frost depths that are 

up to 15.5% greater than those obtained from the Neumann equation. The Stefan equation is 

independent of the initial temperature as indicated by the overlap of the Stefan equation curves in 

Figure 4a. Thus, the errors of the Stefan equation increase with increasing initial temperature 

(Figure 4b). Because the error is related to the Ti/Ts ratio, the Stefan errors can be even higher in 

non-permafrost soils under deep snowpack where surface temperatures during soil freezing may 

be closer to 0°C. For example, for Run 3, the relative error of the Stefan equation increases to 

23% if a surface temperature of -1°C is applied (results not shown), which is more typical of 

temperature beneath a snowpack in seasonally freezing soils (Kurylyk et al., 2013). Also, as in 

the case of soil thawing, the normalized errors of the Stefan equation are constant in time (Figure 

4c), which suggests that the concept of applying a constant correction factor λ is also valid in the 

case of freezing.  
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2.4.1 Analytical correction factor for soil freezing when Ti = 0°C 

Similar to before, the λ term can be inserted into Eq. (17) using the relationship between m and λ 

(see Eq. 11 for thawing).  
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If Ti = 0°C, then Eq. (19) simplifies to: 
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where ST2 is the Stefan equation during freezing (Eq. 21), and all other terms have been 

previously defined. 
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Note that similar to the case of soil thawing, the Stefan number does not depend on the initial 

temperature.  

A comparison of Eqs. (20) and (13) reveals the strong mathematical parallels for the analytical 

correction factor equations during freezing or thawing when Ti = 0°C.                                        

2.4.2 Analytical correction factor(s) for soil freezing when Ti > 0°C 

Even when the Ti = 0°C assumption is relaxed, Eq. (19) can be shown to simplify to: 



























 




























 















2
erfc

2
exp

1

2
erf

2
exp

2

22

2

22

2

2

TT

s

iTT

T

SS

T

TSS

S
                       (22) 

where the definitions of β and δ are the same as in the case of soil thawing (Eqs. 15 and 16). 
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Comparisons between Eqs. (22) and (14) indicate the similarities between the analytical 

correction factor equations during freezing or thawing when Ti ≠ 0°C. The primary differences 

are that the relative positions of β and δ have changed and the Stefan number for freezing (ST2) is 

now employed. 

3.  Results and Discussion 

3.1 Correction factors for the Stefan equation during thawing 

3.1.1 Correction factors for soil thawing when Ti = 0°C 

The simplest Stefan correction factor for soil thawing applies when the initial temperature is 

zero. In this case, the correction factor is only a function of the Stefan number, and various 

explicit equations (Eqs. 7-10) have been proposed to approximate the form of the implicit, 

analytical equation (Eq. 13). Figure 5 presents the results for the correction factors considered in 

this study versus the typical range of Stefan numbers experienced during soil thawing (0 to 1, see 

Fig. 2).  The approximate Stefan correction factors listed by Aldrich and Paynter (1953) and 

Lunardini (1981) (Eqs. 7b, 8b, and 10) are inaccurate across the typical range of Stefan numbers. 

The results from Eq. (8b) are not even presented as this proved to be a very inaccurate expression 

that would not be visible on the vertical axis range in Figure 5. The correction factor proposed by 

Nixon and McRoberts (1973) in Eq. (9) is reasonably accurate for the typical range of Stefan 

numbers experienced for thawing soils, although its accuracy diminishes around ST1 values of 0.5 

(Figure 5).  

An even more accurate expression can be found by fitting a second order polynomial to the 

analytical results. The best fit (Figure 5) was found to be: 

                                                               
2

115 038.016.01 TT SS                                    (23) 

Table 2 presents the root-mean-square-error (RMSE) between the approximate λ correction 

factors and the implicit expression for λ (Eq. 13) for when the initial temperature is 0°C. The λ5 

term has the lowest RMSE by over an order of magnitude for Stefan numbers ranging up to 1. 
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Figure 5: The analytical correction factor expression (Eq. 13), previously proposed approximate 

correction factors (Eqs. 7b, 9, and 10), and the new polynomial expression (Eq. 23) vs. the Stefan 

number for when Ti = 0°C. 

 

Table 2: Performance of approximate Stefan correction factors during thawing when Ti = 0°C 

Equation 

reference 

Equation  

number 

Symbol RMSE  

(ST1: 0 to 1) 

Aldrich and Paynter (1953) 7b λ1b 0.038 

Aldrich and Paynter (1953) 8b λ2b 0.297 

Nixon and McRoberts (1973) 9 λ3 0.006 

Lunardini (1981) 10 λ4 0.018 

Present study 23 λ5 0.0004 

 

3.1.2 Correction factors for soil thawing when Ti < 0°C  

It is not generally true that soil temperatures in the zone of seasonal thaw will exactly equal 0°C 

at the beginning of surface thaw. Typical initial shallow soil temperatures at the onset of surface 

thaw are -1 to -3°C, depending on the temperature at the bottom of the snowpack (Brenning et 
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al., 2005; Hoelzle, 1992). Thus, approximate Stefan equation correction factors should be 

obtained for further reducing the predicted thaw rate due to negative initial temperatures.  
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Figure 6: The dimensionless β and δ terms vs. the moisture (ice or water) saturation for sand, 

clay, and peat. The solid grain heat capacities were indirectly obtained from the bulk heat 

capacities presented in Bonan (2008, p. 134) by using the volumetrically weighted arithmetic mean 

method. The β and δ terms were calculated according to the method detailed in Appendix S.1.3. 

Porosities for the sand, clay, and peat were taken as 0.4, 0.4, and 0.8, respectively (Bonan, 2008). 

 

Eq. (14) provides the implicit, analytical equation for obtaining λ during soil thawing when Ti < 

0°C. This implicit relationships is difficult to reproduce using simple, polynomial functions 

given its dependence on three independent dimensionless numbers (ST1, δ, and βTi/Ts). 

Figure 6 indicates that β (Eq. 15) ranges between 0.95 and 1.3 and that δ (Eq. 16) ranges between 

0.2 and 1 and for typical soil types and moisture saturations. Appendix S.1.4 demonstrates that δ 

does not exert considerable influence on the analytical expression (Eq. 14) for this range of 

values, and thus hereafter we tacitly assume δ =1 to simplify the resultant equations to be a 

function of only two dimensionless numbers (ST1 and βTi/Ts).  

The previously proposed approximate correction factors presented in Eqs. (9) and (10) 

(Lunardini, 1981; Nixon and McRoberts, 1973) do not include a term related to the initial 
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temperatures, and hence these forms cannot accommodate initial temperatures less than 0°C. 

Thus, only Eqs. (7a) and (8a) can in theory account for the further reduction in the soil thaw rate 

due to subfreezing initial conditions, and these have already been shown to be very inaccurate 

even when Ti = 0°C (Figure 5).  
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Figure 7: The analytical correction factor expression (Eq. 14), previously proposed approximate 

correction factors (Eqs. 7a and 8a) and the new polynomial correction factor (Eq. 24) vs. Stefan 

number for βTi/Ts ratios: 0, -0.1, -0.5, and -1. These results are valid for soil thawing when δ = 1, 

which is a reasonable assumption (Appendix S.1.4). 

Figure 7 shows the correction factor obtained from the implicit, analytical equation (Eq. 14), and 

the approximate, explicit equations for four different βTi/Ts ratios. The magnitude of the initial 

temperatures is typically less than the average surface temperature during thawing, and β 

typically has a narrow range between 0.95 and 1.3 (Fig. 6). Thus only βTi/Ts ratios up to -1 are 
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considered. The two correction factor equations listed by Aldrich and Paynter (1953) can yield 

errors up to 25%, and these would translate into associated 25% errors in the calculated thaw 

depth.  

An excellent fit for the λ correction factor for all of the considered βTi/Ts ratios was found to be: 
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where λ5 can be obtained from Eq. (23). 

Note that the bracketed term in Eq. (24) represents the further reduction of the correction factor 

due to initial temperatures less than 0°C. The resultant polynomial equation is a readily 

calculated constant that is only a function of the Stefan number and the product of β and the ratio 

of the initial temperature to surface temperature. Table 3 presents the RMSE value between the 

explicit, approximate correction factor equations (Eq. 7a, 8a, and 24) and the implicit, analytical 

equation (Eq. 14) for each non-zero βTi/Ts ratio considered. In all cases, the RMSE values 

associated with Eq. (24) are at most 25% of those obtained using Eqs. (7a) or (8a).  

Table 3: Performance of approximate correction factor results for thawing when Ti < 0°C  

Equation 

reference 

Equation  

number 

Symbol RMSE  

(ST1: 0 to 1) 

(a) β(Ti / Ts) = -0.1 

Aldrich and Paynter (1953) 7a λ1a 0.019 

Aldrich and Paynter (1953) 8a λ2a 0.273 

Present study 24 λ 6 0.004 

(b) β(Ti / Ts) = -0.5 

Aldrich and Paynter (1953) 7a λ1a 0.046 

Aldrich and Paynter (1953) 8a λ2a 0.199 

Present study 24 λ 6 0.006 

(c) β(Ti / Ts) = -1 

Aldrich and Paynter (1953) 7a λ1a 0.100 

Aldrich and Paynter (1953) 8a λ2a 0.134 

Present study 24 λ 6 0.007 
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3.2 Correction factors for the Stefan equation during freezing 

As previously noted, there are strong parallels between the implicit, analytical equations for 

determining λ during freezing or thawing.  These parallels suggest that the approximate 

correction factors obtained for the case of thawing (Eqs. 23 and 24) may, in some cases, also be 

applied for the case of freezing, provided that appropriate substitutions are made. 

3.2.1 Correction factors for soil freezing when Ti = 0°C 

When initial temperatures are 0°C, the analytical expressions for the correction factors during 

freezing or thawing (Eqs. 13 and 20) are exactly identical except that the Stefan numbers for 

freezing and thawing are interchanged. 

Hence, in this case the appropriate correction factor equation during freezing can be obtained by 

replacing ST1 in Eq. (23) with ST2: 

                                                           
2

227 038.016.01 TT SS                                      (25) 

The range of Stefan numbers experienced during soil freezing is typically more constrained than 

in the case of thawing. Thus, this equation form, which was obtained for Stefan numbers ranging 

up to 1, is still appropriate in the case of soil freezing. The RMSE values in Table 2 and 

graphical fits in Figure 5 are still valid in the case of freezing.  

3.2.2 Correction factors for soil freezing when Ti >0°C  

When initial temperatures are above 0°C, the appropriate Stefan equation correction factor for 

soil freezing should not be taken from the polynomial function that was obtained for thawing 

(Eq. 24). This equation was only shown to be accurate in the case of thawing for β(Ti/Ts) values 

ranging from 0 to -1 (Figure 7). Negative values were considered in the case of thawing because 

Ti was negative and Ts was positive. In the case of freezing, the signs of these temperatures are 

switched, and the ratio remains negative. However, the potential range of this ratio increases in 

the case of freezing.  

The thawing and freezing scenarios also differ because β moves from the numerator to the 

denominator in the dimensionless number in the case of freezing (Eq. 14 vs. 22). Recall that β 
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ranges between about 0.95 and 1.3 (Fig. 6). Here we consider (Ti/βTs) ratios of -1, -5, and -10. A 

ratio of -10 would not likely be realized in a permafrost environment, but it may be achieved in a 

seasonally freezing environment where initial temperature are higher and surface temperature are 

closer to 0°C (Kurylyk et al., 2013). 
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Figure 8: The analytical correction factor expression (black, Eq. 22), previously proposed 

approximate correction factors (Eqs. 7a and 8a), and new polynomial correction factor (Eq. 26) vs. 

the Stefan number for soil freezing when Ti >0°C and when δ =1 and βTi/Ts= 0, -1, -5, and -10. 

 

The magnitude of the Stefan numbers is typically less than 0.1 in the case of freezing. Thus, to 

develop the approximate Stefan equation correction factor for soil freezing, we constrain the 

range of Stefan numbers to be 0 to 0.25. As in the case of soil thawing, δ exerts only minor 

influence on the λ value obtained from the analytical expression (Eq. 22), and thus δ is assumed 
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to equal 1 (Appendix S.1.4). A reasonable fit to the implicit, analytical equation (Eq. 22) can be 

obtained by the following function: 

                  7
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where λ7 is given in Eq. (25). Figure 8 presents results from the analytical equation and the three 

approximate equations (Eqs. 7a, 8a, and 26) that accommodate positive initial temperatures at the 

onset of surface freezing. Table 4 indicates that the RMSE values for Eq. (26) are always at least 

an order of magnitude smaller than those for the previous equations for the scenarios considered. 

Table 4: Performance of approximate correction factor results for freezing when Ti > 0°C  

 

Equation 

reference 

Equation  

number 

Symbol RMSE  

(ST2: 0 to 0.25) 

(c) Ti / (βTs) = -1 

(Aldrich and Paynter, 1953) 7a λ1a 0.087 

(Aldrich and Paynter, 1953) 8a λ2a 0.188 

Present study 26 λ8 0.008 

(c) Ti / (βTs) = -5 

(Aldrich and Paynter, 1953) 7a λ1a 0.274 

(Aldrich and Paynter, 1953) 8a λ2a 0.077 

Present study 26 λ 8 0.006 

(c) Ti / (βTs) = -10 

(Aldrich and Paynter, 1953) 7a λ1a 0.347 

(Aldrich and Paynter, 1953) 8a λ2a 0.153 

Present study 26 λ8 0.010 

    

 

3.3 Summary of results and practical significance 

Table 5 summarizes the four approximate correction factor equations obtained in this study. The 

appropriate selection of these equations depends only on the initial temperature and the nature of 

the phase change (i.e., freezing or thawing). The corrected Stefan equation is obtained by the 

product of the correction factor equation and the standard Stefan equation for freezing or 

thawing. 
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Table 5: Summary of approximate equations for estimating the Stefan correction factor 

Scenario Analytical 

equation  

Approximate correction 

 factor equation1,2,3 

(a) Thawing 

Ti = 0°C Eq. (23) 
2

115 038.016.01 TT SS   

Ti < 0°C Eq. (24)2,3 
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(b) Freezing 

Ti = 0°C Eq. (25) 
2

227 038.016.01 TT SS   

Ti > 0°C Eq. (26)2,3 
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1The expressions for obtaining ST1, ST2, and β are given in Eqs. (3), (21), and (15), respectively. 

2The λ5 and λ7 which are required for Eq. (24) and (26) respectively can be found in Eqs. (23) and (25). 

3Eqs. (24) and (26) do not include the dimensionless δ term (Eq. 16), and thus they tacitly imply δ =1. Appendix 

S1.4 demonstrate that δ exerts little control on the correction factor, at least for typical δ ranges (0.2 to 1), and thus 

the δ =1 assumption is generally justified. 

 

The derivations of the Stefan equation correction factors presented in Sections 3.1 and 3.2 are 

somewhat onerous, and the forms of the resultant analytical expressions are not conducive to 

inclusion in land surface schemes, hydrology models, or engineering practice. However, these 

implicit equations can be reasonably approximated with the simple polynomial equations given 

in Table 5. When initial temperatures can be assumed to equal 0°C, the appropriate correction 

factor requires no more information than forms proposed in previous studies (Aldrich and 

Paynter, 1953; Lunardini, 1981; Nixon and McRoberts, 1973) as only the Stefan number is 

required. However, the performance of the second order polynomial equation proposed in this 

study (Eq. 23 or 25) can be shown to perform considerably better than previous equations 

(Figure 5 and Table 2). When non-zero initial temperatures are accommodated, the resultant 

polynomial equations (Eq. 24 or 26) also require β and the ratio of the initial to surface 
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temperatures as input parameters. The β parameter, which is merely a measure of the difference 

in thermal properties between the frozen and unfrozen zones, can be easily obtained via Eq. (15). 

In the case of lower moisture saturation (e.g., < 40%), β can be assumed to be 1 for most soils 

(Fig. 6). These polynomial equations (Table 1) can be included in spreadsheet-based programs 

for calculating ground freezing and thawing in engineering practice or coded into cold regions 

hydrology models that currently employ the Stefan equation to calculate the rate of freeze-thaw.  

To demonstrate the utility of the equations presented in Table 5, we return to the examples given 

in Figures 3 and 4. These figures compare the depths to the thaw or frost fronts calculated by the 

Stefan and Neumann equations for a total of six scenarios. In all cases, the Stefan equation 

overestimates the penetration of the thaw or frost front. Figure 9 presents the corrected Stefan 

equation results overlaid on the results previously presented in Figures 3 and 4. For the thawing 

results (Figure 9a), the corrected Stefan equation was calculated as the product of λ6 (Eq. 24) and 

the standard Stefan equation for thawing (Eq. 2). For the freezing results (Figure 9b), the 

corrected Stefan equation was obtained by inserting λ8 (Eq. 26) into the Stefan equation for 

freezing (Eq. 18). The corrected Stefan equation results overly the Neumann solution results and 

thus demonstrate that the Stefan equation has been appropriately modified to account for the 

influence of sensible heat. These Stefan equation correction factors can also be incorporated into 

previously proposed Stefan-type algorithms which accommodate soil layering (Jumikis, 1977; 

Kurylyk, 2015), variable surface temperatures (Andersland and Anderson, 1978), depth-

dependent initial temperature (Jumikis, 1977; Kurylyk, 2015), and  temporally changing 

moisture content (Hayashi et al., 2007). Details regarding these algorithms and appropriate 

modifications can be found in Appendix S1.5. 
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Figure 9: The calculated depths to the thaw front (a) and frost front (b) obtained from the 

Neumann, Stefan, and corrected Stefan equations. Equation parameters are listed in Table 1. The 

λ correction factors for the thawing and freezing runs were calculated with Eqs. (24) and (26) 

respectively (Table 5). 

 

4. Limitations 

There are limitations associated with the Stefan and Neumann solutions that are not addressed 

herein. These limitations stem from assumptions in the governing equations including: the 

infinitesimal freeze-thaw temperature range, strictly one-dimensional heat flow, and negligible 

heat advection (Kurylyk et al., 2014b). As indicated in Appendix S1.5, other assumptions of the 

analytical solutions (e.g., homogeneous soil, constant surface temperature, and temporally 

constant moisture) can be relaxed by incorporating the polynomial correction factors developed 

in this study into the Stefan-type algorithms proposed by previous researchers. Of particular 

note, the correction factors presented in Table 5 are obtained from the Neumann solution, which 

assumes a constant temperature. However, these factors are applied to the Stefan equation for 

which it is common to replace the product of the constant surface temperature and time with the 

thawing or freezing index due to a variable surface temperature (see Eqs. 1 and 2).  

One practical limitation associated with all analytical solutions for calculating soil freeze-thaw is 

that the surface temperature must be obtained. In engineering practice, the entirely empirical n-
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factor (Klene et al., 2001) is often used due to the lack of surface temperature date for many 

sites. The n-factor has been shown to exhibit inter-annual variability in mountainous regions due 

to inter-annual changes in snowpack (Juliussen and Humlum, 2007). However, alternative quasi-

empirical approaches exist to determine surface temperature or the ground heat flux by balancing 

the surface energy fluxes (e.g., Hwang, 1976; Williams et al., 2015). 

The equations proposed in this study should not be utilized if the dimensionless numbers (ST1, 

ST2, βTi/Ts, and Ti/(βTs)) are outside of the ranges considered in this study. In such cases, the 

principles demonstrated herein can be applied to obtain alternative expressions. 

In general, our purpose is not to overcome all of the limitations associated with the Stefan 

equation, but rather to propose an approach for relaxing the specific assumption of negligible 

heat capacity. This assumption can severely limit the utility and accuracy of the Stefan equation, 

especially when the initial temperatures prior to freezing or thawing deviate from 0°C. Hence, 

our proposed Stefan equation correction factors (Table 5) should be a useful contribution to the 

large community of engineers and cold regions scientists who still apply the Stefan equation to 

calculate soil freeze-thaw. 

5. Conclusions and Summary 

It has long been known that the Stefan equation can overestimate the penetration of soil freeze-

thaw because the sensible heat required to change the temperature of soil effectively retards the 

rate of soil freezing or thawing (Aldrich and Payner, 1953). Previous studies have suggested that 

a correction factor less than 1 can be applied to account for soil heat storage and thus improve 

the accuracy of Stefan equation predictions. However, most previous proposed correction factors 

are only valid in the simplest thawing or freezing case when initial temperature are 0°C. The 

present study has demonstrated that all of these approximate equations, except for the form 

proposed by Nixon and McRoberts (1973), perform poorly even for this simplest case (Fig. 5 and 

Table 2). Furthermore, non-zero initial temperatures can further impede the rate of soil freezing 

or thawing, and the correction factor proposed by Nixon and McRoberts (1973) cannot 

accommodate this phenomenon. Thus none of the previously proposed correction factors 

identified in this study are appropriate for correcting the Stefan equation when initial 

temperatures are not equal to 0°C. 
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We have proposed four alternative polynomial equations for approximating the Stefan equation 

correction factor λ (Table 5). These polynomial expressions can be implemented in more flexible 

Stefan-type algorithms that consider other factors such as multiple soil layers, variable surface 

temperature via the thawing index, or temporally changing moisture conditions.  

Despite its limitations, the Stefan equation is still frequently applied in permafrost settings to 

calculate the rate of freeze-thaw as indicated by its consideration in several recent review papers 

(Bonnaventure and Lamoureux, 2013; Kurylyk et al., 2014a; Riseborough et al.; 2008; Zhang et 

al., 2008). The proposed modifications to this equation improve its fidelity to physical processes 

and are timely given the emerging concerns regarding the influence of climate change on 

subsurface thermal regimes in cold regions. 
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