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Abstract:  

Global climate models (GCMs) project significant changes to regional and 

globally-averaged precipitation and air temperature, and these changes will likely have an 

associated impact on groundwater recharge. A common approach in recent climate 

change-impact studies is to employ multiple downscaled climate change scenarios to 

drive a hydrological model and project an envelope of recharge possibilities. However, 

each step in this process introduces variability into the hydrological results, which 

translates to uncertainty in the future state of groundwater resources. In this contribution, 

seven downscaled future climate scenarios for a northern humid-continental climate in 

eastern Canada were generated from selected combinations of GCMs, emission scenarios, 

and downscaling approaches. Meteorological data from the climate scenarios and field 

data from a small unconfined aquifer were used to estimate groundwater recharge with 

the soil water balance model HELP3. HELP3 simulations for the period 2046-2065 

indicated that projected recharge was most sensitive to the selected downscaling/ 

debiasing algorithm and GCM. Projected changes in average annual recharge varied from 

an increase of 58% to a decrease of 6% relative to the 1961-2000 reference period. Such 

a large range in projected recharge provides very little useful information regarding the 

future state of groundwater resources. Additional results from recent comparable studies 

are discussed, and the benefit of performing similar studies without better constraining 

future climate projections is questioned. Based on the results obtained from the present 

cast study and the other studies reviewed, the limitations of current approaches for 
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projecting future recharge are identified, and several suggestions for research 

opportunities to advance this field are offered. 
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Highlights  

1. Future projections for groundwater recharge are highly uncertain. 

2. This uncertainty stems primarily from the variability in climate projections. 

3. We simulated future recharge in a northern climate using seven climate scenarios. 

4. The recharge was most sensitive to the choice of the post-processing method. 

5. Suggestions for advances in future climate change-recharge projections are given. 

 

1.   Introduction  

Climate change has resulted in increases in globally-averaged mean annual air 

temperature and variations in regional precipitation, and these changes are expected to 

continue and intensify in the future (Solomon et al., 2007). Projected climate data are 

generated by simulating global atmospheric, oceanic, and surficial processes in global 

climate models (GCMs), which are driven by emission scenarios that require forecasts of 

future population growth and technology (Nakicenovic and Swart, 2000). GCM 

simulations are performed using coarse computational grids, and the results should be 

downscaled to produce local climate conditions that may subsequently be used for 

hydrology applications (Wilby and Wigley, 1997; Wilby et al., 2000).  

The impact of climate change on the quantity and quality of groundwater 

resources is of global importance because between 1.5 and 3 billion people rely on 

groundwater as a drinking water source (Kundzewicz and Döll, 2009). Despite the 

importance of the relationship between climate conditions and groundwater reserves 

(Taylor et al. 2012), research examining the effects of future climate change on 

groundwater has lagged corresponding research for surface water resources (Green et al., 

2011). The IPCC Fourth Assessment Report stated ‘knowledge of current [groundwater] 

recharge and levels in both developed and developing countries is poor. There has been 

very little research on the impact of climate change on groundwater’ (Kundzewicz et al., 

2007).  This statement spurred an initiative to fill this research void, and a number of 

studies have emerged in the past five years that address the relationship between climate 

change and groundwater recharge (e.g., Aguilera and Murillo, 2009; Ali et al.,  2012; 

Allen et al.,  2010; Crosbie et al., 2010; Crosbie et al.,  2011; Crosbie et al., 2013; 

Crosbie et al.,  2012b; Dams et al.,  2012; Döll,  2009; Ficklin et al., 2010; Green et al., 

2011; Herrera-Pantoja and Hiscock, 2008; Holman et al.,  2009; Jackson et al., 2011; 
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Jyrkama and Sykes, 2007; Leterme et al., 2012; Liggett and Allen, 2010; McCallum et 

al., 2010; Mileham et al., 2009; Serrat-Capdevila et al., 2007; Taylor et al., 2012; Thampi 

and Raneesh, 2012; Toews and Allen, 2009b; Wegehenkel and Kersebaum, 2009).  

 

Recently there has been a discernible shift in the approaches used to examine 

climate change impacts on groundwater recharge. Rather than simulating changes for a 

single climate scenario, researchers have been employing multiple climate change 

scenarios generated from a variety of methods to produce a range, or envelope, of 

projected changes in recharge. Holman et al. (2012) suggested that the best practice for 

using climate model projections to assess the impact on groundwater was to ‘use climate 

scenarios from multiple GCM or RCMs [regional climate models] …use multiple 

emission scenarios…[and] consider the implications of the choice of the downscaling 

method’. This approach introduces additional variability in the climate data, which 

translates into uncertainty in future groundwater recharge. For example, when more than 

10 GCMs were employed for projecting future precipitation, it was found that less than 

80% of the GCMs agreed ‘in whether annual precipitation will increase or decrease’ in 

most regions other than at high northern latitudes and in the Mediterranean region (Döll,  

2009).  The majority of uncertainty in the projected climate data (and consequently in the 

projected recharge) appears to stem from the selection of the GCM (Kay et al., 2009), 

although other factors, such as the emission scenarios, downscaling methods, or the 

hydrological model can also contribute uncertainty (Crosbie et al., 2011; Holman et al.. 

2009; Rowell, 2006).  

 

Several recent groundwater recharge studies, employing multiple climate change 

scenarios, have been conducted at a very large scale. Döll (2009) simulated the 

vulnerability of groundwater to climatic change at the global scale using the hydrology 

model WaterGAP driven by climate data from two GCMs and two emission scenarios, 

and concluded that the uncertainty in projected precipitation from the climate scenarios 

resulted in uncertainty in recharge estimates, but this uncertainty was spatially 

heterogeneous (e.g., see Australia, Figure 1, Döll 2009). Crosbie et al. (2013) simulated 

the changes in recharge for a 2050 climate for the entire continent of Australia using 

climate data from 16 GCMs and three emission scenarios to drive the WAVES 

hydrological model. Their study indicated that the range of projected changes in recharge 

was large and spatially variable and that it was generally difficult to project the 

magnitude or even direction of future recharge changes, although in certain regions of 

southern Australia, all 48 climate variants projected a decrease in recharge. 

 

Many more regional scale studies have been conducted to investigate the link 

between climate change and groundwater recharge. For example, Serrat-Capdevila et al. 

(2007) used climate data for the San Pedro Basin from 17 GCMs to estimate recharge 
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from a simple empirical equation. In the case of the drier climate projections, their 

simulations indicated that groundwater recharge could cease completely. Holman et al. 

(2009) simulated groundwater recharge using one GCM, two emission scenarios, and two 

downscaling methods (a stochastic weather generator and the change factor method) and 

found that the uncertainty due to the downscaling method was greater than the 

uncertainty associated with the emission scenario. Allen et al. (2010) used climate data 

from four GCMs, one emission scenario, and one downscaling algorithm to drive 

simulations within a hydrology model of the Abbotsford-Sumas aquifer. Crosbie et al. 

(2011a) simulated groundwater recharge changes at three locations in southern Australia 

using multiple GCMs, downscaling methods, and hydrology models and found that the 

highest uncertainty in modeling future recharge arose from the selection of the GCM. 

Dams et al. (2012) used 28 climate scenarios to simulate a range of changes in mean 

annual recharge for a catchment in Belgium. Table 1 gives a summary of the results from 

these and other recent regional, continental, and global groundwater recharge studies. 

 

Table 1  

An overview of several recent studies that have employed multiple climate change 

scenarios to examine the impact of projected climate change on groundwater recharge  

Study Number of Number  Number Scale of Max Changes in 

Reference 

 

. Scenario 

GCMs of ES1 of DM2 Studies Avg. Recharge (%)3 

 

3 
Serrat-Capdevila et al. (2007) 17 4 1 Regional -100% to ~+35% 

Döll (2009) 2 2 NA Global ~-30 to +100%4 

Holman et al. (2009) 1 2 2 Regional -14 to -37% 

Allen et al. (2010) 4 1 1 Regional -1.5 to +23% 

Crosbie et al. (2010) 15 3 1 Regional <-50 to  >+50% 

Crosbie et al. (2011a) 5 1 3 Regional -83 to +447% 

Jackson et al. (2011) 13 1 1 Regional -26 to +31% 

Crosbie et al. (2013) 16 3 1 Continental +45% to +283%5 

Dams et al. (2012) 5 2 1  Regional -20 to +7% 

Ali et al. (2012) 15 3 1 Regional -33% to +28%6 

1ES= emission scenarios (A1F1, A2, A1B, B1, etc.) 
2DM= downscaling methods 
3For studies with multiple locations this column lists the results from the locations with the highest 

uncertainty in the mean annual recharge estimations.  
4Estimated from the southwestern Australian region in Figure 1 of Döll (2009) 
5Taken from Appendix C of Crosbie et al. (2011b), these results were for Brunswick Coastal Sands for the 

median dry climate and the median wet climate. 
6Taken from Table A1 of  Ali et al. (2012), these results were from the Southern Perth Basin for the wet 

and dry simulations compared to the recent recharge. 
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The purpose of this contribution is to provide a case study that adds to the recent 

body of literature by examining the uncertainty in projected recharge for a humid-

continental climate in which snow accumulation and melt are important factors affecting 

groundwater recharge. Seven climate scenarios generated from multiple (1) GCMs, (2) 

emission scenarios, and (3) downscaling/debiasing methods were utilized to drive 

simulations of projected future (2046-2065) groundwater recharge for a small, shallow, 

unconfined aquifer in central New Brunswick, Canada. Others (e.g., Jackson et al., 2011; 

Serrat-Capdevila et al., 2007) have examined the uncertainty in groundwater recharge 

due to varying one or two of the climate modeling options noted above, but this is the 

first contribution to examine the effect of varying all three following the 

recommendations of Holman et al. (2012). The uncertainty in recharge projections 

obtained in this study is also compared to the uncertainty reported in several recent 

groundwater recharge studies. Recommendations for future research opportunities are 

suggested based on the results obtained from the present case study and the studies 

summarized in Table 1. 

 

2.   Methods 

 The approach for estimating recharge was based on techniques similar to those 

recently employed by others (e.g., Jackson et al., 2011; Jyrkama and Sykes, 2007; Scibek 

and Allen, 2006; Toews and Allen, 2009b). We first obtained an array of future climate 

projections that were developed using several documented and established techniques. 

These climate scenarios were selected because they span the range of plausible future 

climatic conditions for the study location. The observed climate data and the projected 

climate series were then used to drive a simple water balance hydrology model to 

simulate historic and future groundwater recharge.  In general, a parsimonious 

hydrological modeling approach was employed. For example, although it is known that 

increased CO2 concentrations will affect canopy density and evapotranspiration and 

thereby impact groundwater recharge (Ficklin et al., 2010; Green et al., 2007), like many 

previous studies, the biophysical parameters (e.g., maximum leaf area index) were 

assumed to be temporally invariant so as to isolate the effect of the driving climate data 

on groundwater recharge.  

 The approach outlined above was used to investigate the inherent uncertainty 

involved when using climate projections to drive simulations of groundwater recharge 

due to the uncertainty arising from the selection of the (1) GCM, (2) downscaling 

method, and (3) emission scenario. In this work, the uncertainty in projected groundwater 

recharge is defined as the magnitude of the range in changes to the projected mean annual 

groundwater recharge. The projected changes in mean annual groundwater recharge are 

quantified as the % difference from the simulation for the reference period (1961-2000). 

Uncertainty arising from the selection of (1), (2), and (3) is propagated through the 
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climate and groundwater recharge modeling processes. However, following the approach 

of others who have demonstrated the uncertainty in groundwater recharge projections 

(e.g., Crosbie et al., 2011a, Jackson et al. 2011), we have not attempted to conduct a 

formal uncertainty propagation analysis for each step in the modeling process. Rather, the 

uncertainty arising from the selection of (1), (2), and (3) was investigated by holding two 

climate simulation approaches constant while varying the third. For example, the effect of 

the downscaling algorithm was investigated by examining the difference in the resultant 

climate data and simulated recharge when the GCM and emission scenario were identical 

in two runs, but the downscaling method was varied. 

 

Figure 1. The location of the Otter Brook catchment within the province of New 

Brunswick, Canada (data from NBADW, 2011). 

 

2.1 Geographical setting 

The geographic location for our simulations is the Otter Brook catchment in 

central New Brunswick, Canada (N46 52 W66 02).  Otter Brook is a second order 

tributary of the Little Southwest Miramichi River (Figure 1) that is predominately fed by 
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groundwater baseflow. Lavergne and Hunter (1982) mapped the surficial geology 

surrounding Otter Brook and determined that the brook lies within a glaciofluvial 

outwash deposit that mainly consists of sand and gravel. In a more recent investigation, 

multiple test holes were excavated within the Otter Brook catchment. Aerial 

photography and samples from these test holes indicate that the Otter Brook deposit is 

primarily composed of glaciofluvial outwash sediments, varying from cross-bedded sand 

to thick-bedded coarse gravel (Allard, 2008).  The results from a ground penetrating 

radar survey indicated that the groundwater table is at a depth of about 7.5 m and that 

the surficial sand and gravel deposit is approximately 10 m thick (Allard 2008). 

 

The Otter Brook catchment has a land surface cover similar to the surrounding 

region, which is forested with a coniferous (65%) and deciduous (35%) canopy (Cunjak 

et al., 1990). The annual precipitation in the region is 1230 mm; with approximately 

33% falling as snow (EC, 2010a). The region experiences a humid-continental climate 

characterized by arid, cold winters (Cunjak et al., 1993). This particular catchment was 

selected because it is part of a study area in which climate-induced thermal and 

hydrologic changes to salmonid habitat are being investigated. 

 

2.2 Emission scenarios, downscaling algorithms and GCMs 

The three emission scenarios that we have utilized in this study are B1, A1B, and 

A2 (Nakicenovic and Swart. 2000). Climate simulations driven by emission scenario A2 

typically project more pronounced climatic changes than those driven by emission 

scenarios A1B or B1; however, the effects of each emission scenario may not be realized 

for several decades.  

 

Downscaling approaches have been thoroughly reviewed in the literature (e.g., 

Maraun et al., 2010; Wilby and Wigley, 1997; Xu, 1999). A simple downscaling 

approach is the daily translation (DT) method, which is in the family of ‘statistical’ or 

‘quantile-quantile mapping’ downscaling techniques (Teutschbein and Seibert, 2012). In 

the DT method, a GCM is initially run for a reference period containing local 

observations. Scaling factors for precipitation and AT are then determined from the 

distributions of the reference period simulation and the local observations using empirical 

cumulative distribution functions. GCM simulations for a future time period/emission 

scenario are then downscaled by applying the scaling factors. This approach differs from 

the often criticized delta method by adopting variable scaling factors (Huard, 2011).  

 

Many more complex statistical downscaling methods have been developed; one of 

these is the hybrid multivariate linear regression (HMLR) model (Jeong et al., 2012a; 

Jeong et al., 2012b). Regression-based statistical downscaling techniques are predicated 

on the assumption that local climate conditions can be determined from large-scale 
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climate variables using linear or non-linear transfer functions (Jeong et al., 2012a).  

Because regression-based methods often have difficulty producing the observed 

variability in local climate predictands, a stochastic generator is used to increase the 

variance in the datasets. In the HMLR method, the local climate variables are obtained 

from the GCM simulations using multiple regression functions determined from 

reference period simulations.  

 

The output from GCMs can also be dynamically downscaled by performing simulations 

with finer resolution RCMs, which are driven at the boundaries by the results from 

GCMs. However, RCMs tend to introduce additional biases, thus the results are often 

further debiased/downscaled by comparing simulations for a reference period to 

observations to determine scaling factors, and then making corrections to the generated 

dataset for a future period. For the present study, additional debiasing/downscaling was 

performed to RCM climate series using the DT method (Huard, 2011). Debiasing and 

downscaling are often collectively referred to as ‘post-processing’.  

 

Table 2 

Details for the climate simulations utilized in this study 

Emission  Model      Model GCM  ID Post-processing Contributor 

Scenario 

 

. Scenario 

 Type      Name  

Name 
Driver    - Method Organization 

 

 
A2 GCM CGCM3 - - Statistical-HMLR INRS (Jeong et al., 2012b) 

A2 RCM CRCM 4.2.3 CGCM3

3333 
 Aev Dynamical Ouranos (Huard, 2011) 

A2 RCM CRCM 4.2.3 Echam5  Agx Dynamical Ouranos (Huard, 2011) 

B1 GCM CSIRO Mk3.0 - - Statistical-DT Ouranos (Huard, 2011) 

B1 GCM CSIRO Mk3.5 - - Statistical-DT Ouranos (Huard, 2011) 

A1B GCM Miroc3.2 Hires - - Statistical-DT Ouranos (Huard, 2011) 

A1B GCM CGCM3 - - Statistical-HMLR INRS (Jeong et al., 2012b) 

 

 

The HMLR downscaled climate data were contributed by the Université du 

Québec Institut National de la Recherche Scientifique (INRS) (D. Jeong, personal 

communication), while the other climate data series were produced from the third 

Coupled Model Inter-comparison Project database of GCM output (CMIP3, Meehl et al., 

2007) and dynamically downscaled using the Canadian Regional Climate Model 

(CRCM4.2.3; de Elia et al., 2008; Huard, 2011) or statistically downscaled with the DT 

method (Huard, 2011).  In total, seven projected climate scenarios (Table 2) were 

produced for the period of 2046-2065 using six GCMs, two downscaling methods, and 

three emission scenarios. These climate data provide the basis for projecting future 

groundwater recharge. The ‘ID’ in Table 2 refers to a particular simulation performed in 
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the RCM; in this case the primary difference between the two RCM runs is the GCM 

driver (CGCM3 or Echam5). 

 

Figure 2 shows the projected changes in mean annual precipitation and air 

temperature for each of the seven combinations given in Table 2 compared to reference 

period climate data obtained from Environment Canada (EC, 2010b). All of the scenarios 

project an increase in air temperature (range of 0.4 to 3.9°C), but the projections for 

precipitation vary significantly in magnitude and direction (-12% to +49%). 
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Figure 2. Projected changes in mean annual air temperature and precipitation for 

the Otter Brook catchment for the period 2046-2065 (data provided by D. Huard of 

Ouranos and D. Jeong of INRS).  

 

2.3 The hydrology model: HELP3 

Downscaled climate data can be utilized to drive simulations within hydrology 

models. Kingston and Taylor (2010) determined that the selection of the GCM yielded far 

more uncertainty in their climate-hydrology simulations than their hydrological model 

parameterization. Crosbie et al. (2011a) found that the selection of the hydrology model 

contributed less uncertainty to recharge estimations than did the choice of the 

downscaling scenario or the GCM.  Teng et al. (2012) simulated the impact of climate 

change on runoff and also found that the selection of the GCM contributed far more 

uncertainty to the hydrological simulation results than the selection of the hydrological 
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model. In light of these three recent studies, only one hydrological model was employed 

for the present study. 

 

We performed daily point simulations of recharge using the soil water balance 

hydrology model HELP3 (Hydrologic Evaluation of Landfill Performance, version 3), 

which simulates surface and shallow subsurface processes, including snow storage, 

snowmelt, interception, infiltration, runoff, evaporation, transpiration, and drainage 

(Schroeder et al., 1994). HELP3 is a one-dimensional model that simplifies horizontal 

lateral flow and the interactions between the hydrologic processes. For example, HELP3 

does not allow water to be rerouted upwards once it has passed the evaporative zone 

depth (EZD) (Toews and Allen, 2009b). For the purpose of this study, water passing the 

EZD is assumed to result in groundwater recharge. HELP3 has been used in several 

recent studies (e.g., Allen et al., 2010; Crosbie et al., 2011a; Jyrkama and Sykes, 2007; 

Liggett and Allen, 2010; Scibek and Allen, 2006; Toews, 2007) to project future 

groundwater recharge rates from climate scenarios. Our modeling approach in HELP3 

follows the processes detailed by these previous contributions, and additional details on 

the HELP3 model can be found in these studies. Limitations of the HELP3 model, 

particularly for application in arid regions, are discussed by Berger (2000) and Scanlon et 

al. (2002). 

 

2.4 The hydrology model input data  

HELP3 is driven by daily values of mean air temperature, precipitation, and solar 

radiation, and by annual average wind speed and quarterly relative humidity. The mean 

daily air temperature was determined by averaging the maximum and minimum daily 

temperatures provided in the post-processed climate datasets. Quarterly relative humidity 

values were extracted from the Environment Canada database (EC, 2010a) and held 

constant for each simulation. When needed, daily solar radiation data were generated 

using the methodology proposed by Hargreaves and Samani (1982) and expanded on by 

Allen (1997). This is a self-calibrated approach to determining solar radiation based on 

extraterrestrial radiation and the diurnal range in temperature. 

 

In addition to climate data, HELP3 also requires several soil and land cover 

parameters. Because the Otter Brook catchment is small (9.5 km2) and has a relatively 

homogeneous land cover, spatial variability in surface characteristics was not considered 

in the present study. For the subsurface, HELP3 requires that the saturated hydraulic 

conductivity, field capacity, porosity, evaporative zone depth, and wilting point be 

specified. These subsurface properties were determined from a combination of site visits, 

soil gradation analyses (Allard, 2008), soil pedotransfer function ranges (Balland et al., 

2008), previous HELP3 recharge simulations studies (Toews, 2007), and model-

recommended values (Waterloo Hydrogeologic, 2002). The surface parameters, including 
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the maximum leaf area index, and runoff curve number, were specified based on previous 

recharge studies (Liggett and Allen, 2010; Toews and Allen, 2009a), standards (United 

States Soil Conservation Service and Water Resources, 1985), climate data, and model 

recommendations (Schroeder et al., 1994; Waterloo Hydrogeologic, 2002). The growing 

season length was adjusted for each climate scenario based on the annual temperature 

cycle (i.e., when daily temperature exceeded 10°C).  A summary of the key input data is 

given in Table 3. 

 

Table 3 

A summary of the HELP3 surface and subsurface input parameters 

Parameter Value Reference 

Hydraulic cond. 0.25 cm/s (Hazen, 1892; 1911) 

Evaporative depth 150 cm (Toews, 2007) 

Deposit thickness 9.5 m (Allard, 2008) 

Depth to GWT 7.5 m (Allard, 2008) 

Field capacity 0.031 (vol/vol) (Balland et al., 2008) 

Wilting point 0.019 (vol/vol) (Balland et al., 2008)  

Porosity 0.417 (Waterloo Hydrogeologic, 2002) 

Unfrozen curve number 50 
(US Soil Conservation Service and 

Water Resources, 1985)  

Max leaf area index 4 (Toews, 2007) 

 

 

The flow of data from the GCMs through to the HELP3 model is indicated in 

Figure 3.  Although not depicted in Figure 3, there are feedback loops between the land 

surface/subsurface characteristics and the climate data. For example, the maximum leaf 

area index is specified explicitly by the user, but HELP3 simulates an annual cycle for the 

vegetative density and leaf area index as a function of the air temperature and solar 

radiation (Schroeder et al., 1994). This will impact the timing and magnitude of the 

evapotranspiration regime. During the winter when air temperature is low, recharge 

ceases, and the precipitation increases the snowpack thickness. HELP3 also simulates a 

decrease in late fall and early spring recharge by increasing the runoff curve number for 

colder air temperatures.  
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Figure 3. Algorithm for translating global climate model results into projections of 

temporal groundwater recharge. 

 

 

3. Results 

In general, the post-processing (see Figure 3) of the GCM and RCM climate data 

had a significant impact on the resultant climate series.  Figure 4 shows the change in 

mean annual precipitation and air temperature due to the downscaling (HMLR or DT) 

and debiasing processes (DT, for the RCM simulations).  The results demonstrate that 

near surface climate data (e.g., precipitation and air temperature) produced by a statistical 

downscaling method can deviate significantly from the climate data produced by the 

GCM, as many statistical downscaling methods (e.g., HMLR) are driven by upper-air 

field predictors from the GCM (Jeong, 2013, pers. communication). 

 

The HELP3 simulations were not calibrated, but the percent of annual 

precipitation simulated to result in groundwater recharge for the reference period (range =  

32-56%, mean =44%) generally concurs with previous hydrograph studies (45%, Noble 

and Bray, 1995) and water balance techniques (48% in 1994, Jones, 1997) for unconfined 

aquifers in the Little Southwest Miramichi River catchment. Figure 5 presents the annual 

average groundwater recharge simulated for the reference period (1961-2000) and for 

each climate scenario given in Table 2 for the future period (2046-2065). The most 

pronounced increase (58%) in annual average recharge, compared to the reference period, 

was obtained for the CGCM3-A2 climate data, while the most pronounced decrease in 

the average annual recharge (-6%) was obtained for the MIROC 3.2 HIRES-A1B climate 

data. 

 

In addition to variations in annual recharge, the HELP3 hydrology simulation 

results also indicated changes to the timing of recharge. Figure 6 gives the monthly 
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distribution of simulated average annual recharge for the observed climate data and the 

CGCM3-A1B, CSIRO Mk3.0-B1, and MIROC 3.2 HIRES-A1B climate simulations. 

Results for these three simulations are presented because they span the range in projected 

annual average recharge. The normalized December recharge increases for all three 

future climate scenarios, while the normalized May recharge significantly decreases for 

two of the three climate scenarios. Little to no recharge occurs in January and February 

because precipitation during those months is mainly in the form of snow.  
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Figure 4. Changes in (a) mean annual precipitation (%) and (b) air temperature 

(°C) due to the post-processing of the GCM/ RCM data. The point of reference is 

the raw GCM/ RCM data for each climate scenario not the reference period data. 

 

 

4. Discussion  

4.1 The impact of the GCM, emission scenario, and downscaling method on the magnitude 

and timing of groundwater recharge 

As indicated in Figures 2, 4, 5, and 6, the local projected climate data and the 

simulated groundwater recharge are dependent on the selected GCM, emission scenario, 

and downscaling method. For example, the CRCM 4.2.3 aev-A2 and CRCM 4.2.3 agx-

A2 climate scenarios were both generated with the A2 emission scenario, dynamically 

downscaled with the CRCM 4.2.3 model, and further downscaled/debiased using the DT 

method. However, the CRCM 4.2.3 aev-A2 and CRCM 4.2.3 agx-A2 data produced 

projected changes in mean annual recharge  of +3.4% and +14.7% respectively (Figure 

5). Applying our definition of uncertainty yields a GCM-induced recharge uncertainty of 

11.3% for these two climate-hydrology simulations. This significant difference can be 
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attributed to the two GCMs, Echam5 and CGCM3 (Table 2), that were selected to drive 

the CRCM 4.2.3 simulations.  
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Figure 5.  Average annual groundwater recharge for each climate-hydrology 

simulation. The recharge results obtained using the reference climate data (1961-

2000) are indicated by the far left data point. The error bars indicate one standard 

deviation in the annual average recharge results 

 

The effect of the choice of the emission scenario can be seen in the CGCM3-A2 

and CGCM3-A1B climate data. These climate series were both generated by the CGCM3 

and downscaled using the HMLR algorithm. Figures 2 and 5 illustrate that the emission 

scenario had very little impact on the resultant annual average climate data and 

subsequent simulated recharge, but the CGCM3-A2 recharge results are characterized by 

more annual variability (higher standard deviation). Thus, in this case, the selection of the 

emission scenario contributed very little uncertainty in the climate-hydrology 

simulations, at least on an annual average basis. In this case, the CGCM3-A1B data 

actually showed greater changes in the precipitation and temperature data than the 

CGCM3-A2 data. Although A2 is a higher emission scenario on a global scale, these 

effects may not be manifested at a local scale for a given GCM and time period. The 

effect of the emission scenario would be expected to be more pronounced in later decades 

(e.g. 2061-2100) due to the thermal inertia of the ocean (Huard 2011). It cannot be 

concluded from such a limited sample that the emissions scenario will always have the 

least impact on simulated groundwater recharge.  
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Figure 6.  The monthly distribution of average annual groundwater recharge for the 

1961-2000 period (reference) and three climate-hydrology simulations for 2046-2065 

 

 

The effect of the downscaling/debiasing method is demonstrated by differences 

between the CGCM3-A2 and CRCM 4.2.3 aev-A2 precipitation and air temperature data 

indicated in Figure 2. Both of these climate scenarios were generated with the same GCM 

and emission scenario (Table 2), but one was dynamically downscaled with an RCM and 

debiased with the DT method, while the other was statistically downscaled using the 

HMLR algorithm. HELP3 simulated a 58% increase in annual average recharge for the 

CGCM3-A2 climate data and only a 3% increase for the CRCM 4.2.3 aev-A2 data 

(Figure 5). Thus, the differences in downscaling/debiasing techniques contributed 

significant recharge uncertainty (55%) when comparing these two climate-hydrology 

simulations. These results are predictable given the significant effect that different post-

processing techniques have on the resultant climate series (Figure 4). 

 

The changes to the timing of the recharge indicated in Figure 6 are a result of 

changes to the timing of the projected precipitation and air temperature. On average, 

monthly precipitation remained relatively constant throughout the year for the reference 

period. However, in general, the projected climate scenarios were characterized by 

increased variability in the distribution of monthly precipitation. The change in available 

soil moisture during these periods will directly impact groundwater recharge for that 

season. The decreases in May recharge projected for several of the climate scenarios are a 

result of an increase in winter temperature and consequently an earlier shift in the timing 
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of the snowmelt.  This phenomenon is apparent in Figure 6 where the MIRCO 3.2 Hires-

A1B normalized recharge increases in March and April and decreases in May compared 

to the simulations conducted for the reference period. However, this effect is not as 

apparent for the CSIRO Mk 3.0-B1 data (Figure 6), which is likely due to the relatively 

small increase in annual average air temperature when compared to the MIRCO 3.2 

Hires-A1B data (Figure 2). Thus, at northern latitudes, the selection of the GCM, 

downscaling/debiasing algorithm, and emission scenario may all have a significant effect 

on the timing of the simulated snowmelt and consequently, the timing of the simulated 

recharge. 

 

4.2 Comparison to other recharge studies with multiple climate scenarios 

The uncertainty in the projected annual average recharge for the present study  

(range = -6% to +58%, uncertainty = 64%) is larger than the uncertainty in recharge 

simulated by Allen et al. (2010) and Dams et al. (2012) (Table 1), and this likely arises 

because the present study considered multiple downscaling/debiasing methods in addition 

to multiple GCMs. However, as shown in Table 1, the uncertainty in the current study is 

approximately the same as ranges simulated by Holman et al. (2009), Jackson et al. 

(2011) and Ali et al. (2012) and considerably less than those simulated by Serrat-

Capdevila et al. (2007), Döll (2009), Crosbie et al. (2010), Crosbie et al. (2011a), and 

Crosbie et al. (2013). 

 

These uncertainties primarily arose from the approaches used to generate the 

climate data that drive the hydrologic models. Holman et al. (2009) indicated that more 

uncertainty arose from the choice of the downscaling method than the choice of the 

emission scenario. Crosbie et al. (2011a) found that the largest source of uncertainty 

could be attributed to the GCM, while the choice of the downscaling method was of 

secondary importance. The information given in Table 2, Figure 5, and the discussion 

above indicates that the variability in simulated future recharge for the present study 

arose primarily from the downscaling method, secondly from the GCM, and thirdly from 

the emission scenario. These findings generally agree with those of Holman et al. (2009), 

although that study only employed one GCM. However, these findings contrast with the 

study by Crosbie et al. (2011a) by suggesting that the downscaling/debiasing method has 

more impact on the resultant climate data than the choice of the GCM. This difference 

likely arises from the more limited suite of GCMs utilized in the present study. Thus, this 

study suggests that in any projected recharge study, multiple downscaling methods 

should be employed if a full range of uncertainty in the associated impact is to be 

determined.  

 

For all of the studies summarized in Table 1, the magnitude of the change in 

future groundwater recharge was difficult to forecast given the uncertainty in climate-
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hydrology modeling. For example, Döll (2009) stated: ‘climate change scenarios cannot 

be used to quantitatively project the future development of groundwater resources.’ 

Furthermore, many of these studies produced ranges that made it difficult to project the 

future trajectory of groundwater recharge. For example, Crosbie et al. (2010) concluded, 

‘it [is] difficult to project the direction of the change in recharge…let alone the 

magnitude’ and ‘such variability in recharge estimates using different climate sequences 

means that making recommendations for water-resources management…is highly 

uncertain’. Crosbie et al. (2013) stated: ‘for most of [Australia] there is no consensus 

amongst the models on the direction of the change in recharge’. The present study 

produced an average change in mean annual recharge of  +16% (Figure 5), but similar to 

what others has concluded, it would seem presumptuous to suggest that future recharge 

will increase given that three of the seven climate scenarios resulted in a decrease in 

recharge.  

 

Several authors have attempted to address the uncertainty in recharge projections 

by applying a probabilistic approach or averaging the results (e.g., Jackson et al., 2011; 

Ali et al., 2012; Crosbie et al., 2013). This approach may assist water resource managers 

in understanding the uncertainty in future recharge projections; however, the findings are 

prone to being statistically insignificant. For example, Jackson et al. (2011) found that the 

sign of the change in potential groundwater recharge could not be determined at the 95% 

confidence interval. Additionally, a problem arises when assigning probabilities to 

distinct climate scenarios, each of which should not necessarily be considered equally 

likely to occur.  

A number of recent groundwater recharge studies have suggested that 

considerable value remains in projecting future recharge, despite the uncertainty in the 

simulated results. Serrat-Capdevila et al. (2007) suggested that their study could benefit 

policy makers because almost three quarters of their GCM simulations indicated a 

decreasing trend in precipitation; however, the present study suggests that their results 

would likely exhibit more uncertainty if they had employed more than one downscaling 

method. Döll (2009) suggested that valuable information can still be obtained from these 

studies to demonstrate the possible ranges in future groundwater resources that will 

require an adaptive response. Crosbie et al. (2013) stated that their study demonstrated 

that water resources managers should understand the uncertainty involved with making 

future groundwater resource decisions. In general, we agree that the major contribution of 

the studies summarized in Table 1 has been to demonstrate that future groundwater 

resources could potentially change significantly, but that the magnitude and trajectory of 

this change in uncertain. These results are not surprising considering that precipitation is 

poorly resolved and inconsistent in GCMs (Döll 2009), and that variations in recharge 

can be 2-3 times greater than variations in precipitation (Ali et al. 2012). 
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4.3 Suggestions for future research investigating the impact of climate change on 

groundwater recharge 

Given the number of recent studies, including the present example, that explicitly 

or implicitly suggest it is difficult to predict the magnitude and direction of groundwater 

recharge, perhaps it is time that we refocus our efforts rather than continue with similar 

simulation approaches. The following suggestions for future research are offered based 

on the findings of the illustrative case study detailed above and the gaps identified in the 

literature reviewed: 

1.  To date, groundwater recharge projections have exhibited significant 

uncertainty. Thus, there should be an exploration of new techniques for a) 

better quantifying and communicating the uncertainty in projected recharge, 

such as employing probabilistic approaches that recognize that projected 

emission scenarios may not have equal likelihood, and b) reducing the 

uncertainty in the driving climate data and resultant recharge projections.  

Because it appears that hydrologic models used to estimate groundwater 

recharge contribute relatively little to the overall uncertainty (Kingston and 

Taylor, 2010; Crosbie et al., 2011a; Teng et al., 2012), the focus for 

improvements should be the GCMs, post-processing methods, and emission 

scenarios. For example, uncertainty in the driving data could be reduced by 

abandoning climate modeling techniques (e.g., coupled GCM-downscaling 

method simulations) that do not adequately reproduce recently measured 

climate data (e.g., 2000-2010).  

2. Studies investigating the impacts of climate change on groundwater recharge 

should employ multiple post-processing methods in addition to multiple 

GCMs and emission scenarios. There has been a tendency to deemphasize the 

impact of the downscaling/debiasing methods, but recent studies, included the 

present one, have demonstrated that downscaling may contribute significant 

uncertainty in the resultant climate data utilized to drive groundwater recharge 

simulations. In accordance with the first suggestion, only downscaling 

methods that have been shown to perform well for the study region in 

question should be employed. 

3. There remains a lack of data on the relationship between long-term climate 

change and groundwater recharge, although several studies (e.g., Chen et al., 

2004; Hughes et al., 2012; Rivard et al., 2009) have examined the relationship 

between seasonal or decadal climate variations and groundwater levels. 

Kundzewicz et al. (2007, Table 3.1) found ‘no evidence for [a] ubiquitous 

climate-related trend’ for groundwater resources. Thus, there should be an 
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increase in field-based studies that track climate change-induced impacts on 

groundwater recharge. 

4. If recharge projections are to be obtained for a period only a few decades into 

the future, it may be reasonable to assume constant land cover conditions. 

However, for recharge projections for time periods in the more distant future 

there should be an increased effort to address simultaneous changes to the 

socioeconomic environment, land cover, and climate conditions. It seems 

unreasonable to project climate change impacts on groundwater recharge for a 

century into the future and assume that water supply needs and land cover 

conditions will be intransient (Döll, 2009; Holman, 2006; Holman et al., 

2012).  

5. Climate-groundwater interactions are currently simulated by explicitly 

coupling GCMs with hydrological models. Because of the interdependence on 

groundwater and land-energy feedbacks (Maxwell and Kollet, 2008) it may be 

more appropriate to directly simulate the groundwater recharge response to 

climate change within the land surface model of the GCM. Perhaps more 

hydrogeologists should be researching and improving the groundwater 

components of the existing GCM land surface models (Gulden et al., 2007). 

5. Conclusions  

 Downscaled climate scenarios for central New Brunswick, Canada were used to 

drive HELP3 and simulate future groundwater recharge. The simulated data exhibited 

uncertainty both in the direction and magnitude of future changes in mean annual 

recharge (-6 to +58%).  The variations arose from the selection of the GCMs, emission 

scenarios, and downscaling algorithms employed to generate the climate data. For the 

particular combinations examined, the largest variations resulted from the choice of the 

post-processing approach (i.e., statistical versus dynamical downscaling with statistical 

debiasing).  

 

This study has demonstrated the limitations inherent in predicting future changes 

in groundwater recharge using downscaled climate change scenarios. For example, a 

single projection of climate based on one emission scenario, simulated with one GCM, 

and downscaled using only one approach, will provide limited insight into potential 

changes in recharge. Although significant efforts are required to produce downscaled 

climate data using a variety of GCMs, emission scenarios and downscaling methods, it is 

concluded that this approach will provide a more honest representation of the uncertainty 

involved in assessing the hydrogeological impacts of climate change.  
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The IPCC correctly identified a gap in the knowledge of the impact of climate 

change on groundwater resources (Kundzewicz et al. 2007), and numerous recent studies 

have attempted to bridge this gap. However, these studies have demonstrated that we do 

not currently have the ability to quantitatively predict the magnitude or direction of the 

impact of climate change on groundwater resources with a high degree of confidence. 

This does not imply that we should abandon the modeling of projected recharge; indeed 

there are many opportunities for advancing this field, including constraining climate 

projections; collecting extensive time series of recharge and climate data; simulating 

simultaneous changes in land cover, water withdrawals and climate change; and 

developing increasingly complex land surface models within GCMs. 
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