
ANALYSIS OF MULTILAYER-ENCRYPTION ANONYMITY
NETWORKS

by

Khalid Shahbar

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

October 2017

c© Copyright by Khalid Shahbar, 2017



It is my genuine gratefulness that I dedicate my thesis to the greatest

mother, my mother. You are the reason I reach this stage. Your

support started a long time before even when you taught me the

alphabetic letters.

To my father, who passed away before I started my PhD., I wish to

share this moment with you.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations Used . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Overview of Multilayer-encryption Anonymity Networks 8

2.1 Tor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 JonDonym Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 I2P Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Measuring Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Identifying Anonymity Networks by Discovering Infrastructure . . . . 18

3.3 Identifying Application on Top of Anonymity Networks . . . . . . . . 20

3.4 Discovering Hidden Services . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 First N-Packets for Traffic Classification . . . . . . . . . . . . . . . . 27

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



Chapter 4 Weighted Factors for Measuring Anonymity Services . 30

4.1 Proposed Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 The Level of Information Available for the Service Provider . . 32
4.1.2 Blocking Anonymity and Obfuscation Options . . . . . . . . . 35
4.1.3 Application and Anonymity . . . . . . . . . . . . . . . . . . . 39
4.1.4 Authority and Logs . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 Threat Models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Factor Calculation . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Weight Calculation . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Weighted Anonymity Factor . . . . . . . . . . . . . . . . . . . 47
4.2.4 Evaluation Case Study . . . . . . . . . . . . . . . . . . . . . 48
4.2.5 Expanding the Quantification . . . . . . . . . . . . . . . . . . 50

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Anon17: Network Traffic Dataset of Anonymity Services 52

5.1 Data Collection and Traffic Types . . . . . . . . . . . . . . . . . . . . 53
5.1.1 Tor Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 TorApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Tor PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 I2PApp80BW . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.5 I2PApp0BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.6 I2PUsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.7 I2PApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.8 JonDonym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Dataset Features and Format . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 6 Research Methodology . . . . . . . . . . . . . . . . . . . 58

6.1 Data Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 C4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.4 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Flow Exporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



Chapter 7 Experiments on the Identification of Anonymity Net-
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Tor Behaviour to Circuits and Flows Analysis . . . . . . . . . . . . . 67
7.1.1 Cells in the Tor Network . . . . . . . . . . . . . . . . . . . . . 68
7.1.2 Circuit Level Classification . . . . . . . . . . . . . . . . . . . . 70

7.1.2.1 Cells Per Circuit Life Time . . . . . . . . . . . . . . 72
7.1.2.2 Uplink Cells . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2.3 The Ratio of the Downlink Cells to the Uplink Cells 72
7.1.2.4 Exponentially Weighted Moving Average (EWMA) . 73

7.1.3 Flow Level Classification . . . . . . . . . . . . . . . . . . . . . 73
7.1.4 Evaluation of Circuit and Flow Level Approaches . . . . . . . 75

7.1.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.4.2 Circuit Level Classification Data . . . . . . . . . . . 76
7.1.4.3 Flow Level Classification Data . . . . . . . . . . . . 76

7.1.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 76
7.1.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 77

7.1.6.1 Circuit Level Classification Results . . . . . . . . . . 77
7.1.6.2 Flow Level Classification Results . . . . . . . . . . . 78
7.1.6.3 The Performances of the Classifiers Employed . . . . 80

7.2 The Effects of Shared Bandwidth on I2P Tunnels . . . . . . . . . . . 83
7.2.1 Data Collection and Setup . . . . . . . . . . . . . . . . . . . . 84

7.2.1.1 Browsing . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.1.2 Instant Relay Chat . . . . . . . . . . . . . . . . . . 85
7.2.1.3 Downloading Files Using Torrent (I2PSnark) . . . . 85

7.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.2.1 Tunnel-Based Data Analysis . . . . . . . . . . . . . . 85
7.2.2.2 Applications and User-Based Data Analysis . . . . . 86

7.2.3 Clustering Tunnels Using SOM . . . . . . . . . . . . . . . . . 89
7.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 8 Traffic Flow Analysis of Obfuscated Traffic . . . . . . . 94

8.1 Tor Pluggable Transports . . . . . . . . . . . . . . . . . . . . . . . . 94
8.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.1.1 Obfs3 Traffic . . . . . . . . . . . . . . . . . . . . . . 95
8.1.1.2 FTE Traffic . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.1.3 Scramblesuit Traffic . . . . . . . . . . . . . . . . . . 96
8.1.1.4 Meek Traffic . . . . . . . . . . . . . . . . . . . . . . 96
8.1.1.5 Flashproxy Traffic . . . . . . . . . . . . . . . . . . . 96
8.1.1.6 Other Traffic . . . . . . . . . . . . . . . . . . . . . . 97

8.1.2 Pluggable Transport Flow Analysis . . . . . . . . . . . . . . . 97

v



8.1.2.1 Split and Cross-Validation Analysis . . . . . . . . . . 97
8.1.2.2 Reduced Number of Features . . . . . . . . . . . . . 99
8.1.2.3 Binary Classification . . . . . . . . . . . . . . . . . . 100

8.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 JonDonym Traffic Forwarding . . . . . . . . . . . . . . . . . . . . . . 103
8.2.1 JonDonym Flow Behaviour . . . . . . . . . . . . . . . . . . . 103
8.2.2 TCP/IP and Skype Forwarding . . . . . . . . . . . . . . . . . 104

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 9 Packet Momentum . . . . . . . . . . . . . . . . . . . . . . 107

9.1 Packet Behaviour in Anonymity Networks . . . . . . . . . . . . . . . 108

9.2 Proposed Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2.1 Maximum Packet Size . . . . . . . . . . . . . . . . . . . . . . 111
9.2.2 Frequency of Maximum Packet Size . . . . . . . . . . . . . . . 112
9.2.3 Second Maximum Packet Size . . . . . . . . . . . . . . . . . . 112
9.2.4 Second Maximum Packet Size Frequency . . . . . . . . . . . . 112
9.2.5 Packet Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2.6 Sequence Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2.7 Packet Momentum . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3 Traffic Analysis Using Packet Momentum . . . . . . . . . . . . . . . 117
9.3.1 Anonymity Network Identifications . . . . . . . . . . . . . . . 120
9.3.2 Identification of Applications and Anonymity Networks . . . . 120

9.4 Packet Momentum Validation . . . . . . . . . . . . . . . . . . . . . . 121
9.4.1 Number of Packets . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.2 Number of Features . . . . . . . . . . . . . . . . . . . . . . . 123

9.5 Performance Under Different Classifiers . . . . . . . . . . . . . . . . . 124

9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.2 Anonymity Measurement . . . . . . . . . . . . . . . . . . . . . . . . 127

10.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 128

10.4 Traffic Flow Analysis of Anonymity Networks . . . . . . . . . . . . . 129

10.5 Efficiency and Accuracy Using Packet Momentum . . . . . . . . . . . 129

vi



10.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Appendix A Calculation of the Features on Packet Momentum . . . 141

A.1 Calculation of Packet Sequence . . . . . . . . . . . . . . . . . . . . . 141

A.2 Calculation of Sequence Speed . . . . . . . . . . . . . . . . . . . . . . 142

A.3 Calculation of Packet Momentum . . . . . . . . . . . . . . . . . . . . 142

Appendix B Packet Momentum Pseudo code . . . . . . . . . . . . . . 145

vii



List of Tables

Table 4.1 Default browser settings for anonymity services. . . . . . . . . . 41

Table 4.2 Proposed anonymity factors. . . . . . . . . . . . . . . . . . . . 46

Table 4.3 Calculating the weights. . . . . . . . . . . . . . . . . . . . . . 46

Table 4.4 Final weights of the factors. . . . . . . . . . . . . . . . . . . . 47

Table 4.5 Evaluated factors for users (A), (B) and (C). . . . . . . . . . . 48

Table 5.1 The number of traffic flows in each data set. . . . . . . . . . . 55

Table 5.2 Anon17 data set features. . . . . . . . . . . . . . . . . . . . . 56

Table 7.1 Flow exporter attributes. . . . . . . . . . . . . . . . . . . . . . 74

Table 7.2 Circuit level classification results. . . . . . . . . . . . . . . . . . 78

Table 7.3 Flow level classification results - uniform classes. . . . . . . . . 79

Table 7.4 Flow level classification results - downsampled classes. . . . . . 80

Table 7.5 Methods used to achieve the best accuracy. . . . . . . . . . . . 81

Table 7.6 Binary classifier on the tunnels. . . . . . . . . . . . . . . . . . . 86

Table 7.7 Classification results for the tunnel based traffic analysis. . . . 87

Table 7.8 Summary of traffic and user profiling performance. . . . . . . . 88

Table 7.9 Summary of traffic and user profiling performance without band-
width sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 8.1 Total number of flows of the background traffic. . . . . . . . . . 95

Table 8.2 Total number of flows of the pluggable transport traffic. . . . . 95

Table 8.3 Results on the first data set using the splitting technique. . . . 98

Table 8.4 Results on the first data set using the 10-fold cross validation
technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 8.5 Results using three features only. . . . . . . . . . . . . . . . . . 100

Table 8.6 Results for binary classification. . . . . . . . . . . . . . . . . . 100

Table 8.7 JonDonym flow analysis results. . . . . . . . . . . . . . . . . . 104

viii



Table 8.8 Results of the applications and JonDonym analysis. . . . . . . 104

Table 8.9 Results of Skype and TCP/IP forwarder flow analysis. . . . . . 105

Table 9.1 Results for binary classification using packet momentum. . . . . 120

Table 9.2 Results of packet momentum for the obfuscated traffic. . . . . . 121

Table 9.3 Results of applications and anonymity networks analysis. . . . 122

Table 9.4 Influence of number of packets on the packet momentum. . . . 123

Table 9.5 Features ranking for packets between 3 and 6. . . . . . . . . . 124

Table 9.6 Measurement of packet momentum performance for the number
of packets vs the number of features. . . . . . . . . . . . . . . 124

Table 9.7 Performance of Packet Momentum under different classifiers. . 125

Table 9.8 T-Test result for the accuracy of the C4.5 classifier compared to
other classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table A.1 Direction of packets for Case 1. . . . . . . . . . . . . . . . . . . 141

Table A.2 Final calculations of packet sequence. . . . . . . . . . . . . . . 142

Table A.3 Direction and Inter Arrival time for Case 1. . . . . . . . . . . . 142

Table A.4 Calculation of the Sequence Speed for Case 1. . . . . . . . . . . 143

Table A.5 Size, Time, Direction and Inter Arrival time for Case 1. . . . . 143

Table A.6 Calculation of Packet Momentum for Case 1. . . . . . . . . . . 144

ix



List of Figures

Figure 2.1 The Sequence for Establishing a Tor Circuit . . . . . . . . . . 11

Figure 2.2 Path Selection on the Tor Network . . . . . . . . . . . . . . . 11

Figure 2.3 Cascades on the JonDonym Network . . . . . . . . . . . . . . 13

Figure 2.4 Inbound and Outbound Tunnels on the I2P Network . . . . . 15

Figure 4.1 Sequence for Anonymity Measurement . . . . . . . . . . . . . 51

Figure 6.1 Directed Acyclic Graph for the Joint Distribution of Variables
x1 to x7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 6.2 Flow Analysis on Anonymity Networks . . . . . . . . . . . . . 66

Figure 7.1 Data Transferred in the Uplink and Downlink Communications
for Different Applications . . . . . . . . . . . . . . . . . . . . . 69

Figure 7.2 Browsing Circuit Data Rate - Different Colours Show the Rate
for Different Circuits . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 7.3 Streaming Circuit Data Rate - Different Colours Show the Rate
for Different Circuits . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 7.4 Bittorrent Circuit Data Rate - Different Colours Show the Rate
for Different Circuits . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 7.5 The Number of Cells During Circuit Life Time . . . . . . . . . 72

Figure 7.6 The Ratio of Downlink Cells to Uplink Cells During the Circuit
Life Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 7.7 Circuit Level Classification Accuracy . . . . . . . . . . . . . . 78

Figure 7.8 Flow Level Classification Accuracy Using Cross-Validation . . 81

Figure 7.9 Tunnels on the SOM Map - “Sheet” Shape . . . . . . . . . . . 90

Figure 7.10 Hits on the SOM Map for All Classes . . . . . . . . . . . . . . 90

Figure 7.11 Hits for the Merged Eepsites and Exploratory & Participating
Tunnels - “Cyl” Shape . . . . . . . . . . . . . . . . . . . . . . 91

x



Figure 8.1 Comparison of F-Measure Values Between the 10-Fold Cross
Validation Technique and the Splitting Technique on the First
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 8.2 The Distribution of Average Packet Size . . . . . . . . . . . . 101

Figure 9.1 Example of Packet Size and Inter Arrival Time Features . . . 110

Figure 9.2 Packets Exchange in Case 1 and Case 2 . . . . . . . . . . . . . 110

Figure 9.3 Case 1 Packet Sequence . . . . . . . . . . . . . . . . . . . . . 114

Figure 9.4 Case 2 Packet Sequence . . . . . . . . . . . . . . . . . . . . . 114

Figure 9.5 Sequence Speed for Case 1 . . . . . . . . . . . . . . . . . . . . 115

Figure 9.6 Sequence Speed for Case 2 . . . . . . . . . . . . . . . . . . . . 117

Figure 9.7 Packet Momentum for Case 1 . . . . . . . . . . . . . . . . . . 118

Figure 9.8 Packet Momentum for Case 2 . . . . . . . . . . . . . . . . . . 118

xi



Abstract

The main goal of multilayer-encryption anonymity networks is to provide a certain

level of privacy to their users. At the same time, such networks could be misused

to perform harmful network activities. Multilayer-encryption anonymity networks

are blocked in some countries. Consequently, different obfuscation techniques are

employed by some of these networks to bypass the censorship restriction and enable

access to the network by the users.

This thesis studies and analyzes multilayer-encryption anonymity networks. Traf-

fic flow analysis is employed to identify multilayer-encryption anonymity networks.

The analysis includes collecting data from the three most popular anonymity net-

works (namely, Tor, JonDonym and I2P). The collected data (Anon17) is made pub-

licly available for researchers on the field. The study also includes proposing weighted

factors to quantify and measure the level of anonymity these networks could provide.

The flow analysis is used to identify the multilayer-encryption anonymity networks

and to identify the obfuscated traffic, if any.

Moreover, in this thesis, Packet Momentum is proposed to identify multilayer-

encryption anonymity networks. Packet Momentum is a set of appropriate features

which could identify multilayer-encryption anonymity networks. The proposed Packet

Momentum achieved statistically significant high performance with a low number of

packets and a low number of features.
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Chapter 1

Introduction

On December 16, 2013, during final exams time, Harvard University received bomb

threats by email [33]. The police evacuated the threatened buildings and started in-

vestigating. After searching the buildings, the police did not find anything suspicious

in any of the four threatened buildings. The investigation showed that the emails

came from an anonymous email address using the Tor network [25]. At the end, it

appeared that the emails were sent by a student to avoid the final exam. On the Tor

network, the source of the email (Internet Protocol (IP) address) cannot be linked

directly to the student (his IP address). Therefore, finding the source of the emails

was achieved by using conventional police mechanisms and not by tracing the emails

back to Tor. The student connected to the university Wireless’s network to send the

emails through Tor. It seems that only a few students were connected to Tor at the

time the emails were received which finally led to the student who sent the emails.

The Tor network is one example of the multilayer-encryption anonymity net-

works which grant privacy to users by preserving their identities and their activities.

On multilayer-encryption anonymity networks, messages between sender and receiver

pass through multiple stations with multiple layers of encryption. Each station only

knows the information necessary for passing the message. In this way, not even the

final destination can link the message to the sender (more details in Chapter 2).

The growth of the amount of information collected by services websites such as

search engines, web servers, or even ISP (Internet service provider) for the purpose

of improving the services, data analysis, security enhancement, advertisement, or

other reasons increased the demand and growth of multilayer-encryption anonymity

networks. Not only this, but these networks facilitated reporting any kind of ille-

gal activities to the authorities without the fear of exposing the reporter’s identity,

provided space with freedom to express thoughts and ideas and ensured the person’s

privacy for the journalists’ (or other) sources [82]. These are examples and the list
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can be expanded to many others.

On the other hand, the environment of multilayer-encryption anonymity networks

offered the possibility of performing harmful activities with little or no probability of

tracing back the source of such harmful activities.

A Botnet is one of the threats to Internet users which infects computers to gain

control through the botmaster. One way of communication between the bot and the

botmaster is to use a Command and Control (C&C) server where frequently the bots

contact the C&C server to get instructions from the botmaster. By blocking the

server, the bots could not communicate with the botmaster anymore. Therefore, bot-

net developers seek more complex methods to communicate without being detected

such as using Peer to Peer (PTP), Domain Generation Algorithm (DGA) or IP flux.

Moreover, one of the attempts to build undetectable communication on the botnet is

by using multilayer-encryption anonymity networks. For example, the 64-bit Zeus [94]

botnet could use hidden services on the Tor network to communicate anonymously

between the bots and the botmaster. The hidden services are one of Tor’s services

which allow anonymously hosting servers (such as a web server) on the Tor networks.

The user accessing the server does not know the IP address of the server. Thus,

the C&C server could be hosted anonymously on the Tor network. The Zeus botnet

has not been the only attempt to implement an anonymous botnet over multilayer-

encryption anonymity networks, there has been much research and multiple reports

about using such an anonymous environment to hide botnet communications [83] [13]

[14].

Multilayer-encryption anonymity networks relay users’ traffic through multiple

stations on the network on the way to the final destination. On the Tor network,

the user has the option to select the last station (exit node) which the user’s traffic

will appear to come from. Also, the user can specify the exit nodes to be from a

certain country. This option could be misused by users to access services that are not

available, not legal or not allowed in their countries. This is similar to the Netflix

bans of proxies and Virtual Private Networks (VPNs) [73] [15]. Some users access

the U.S. Netflix content which contains materials only available to U.S. customers

based on country-exclusive licensing agreements. By using a proxy or VPN, users

change the IP address and have access to the content from outside the U.S., which
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Netflix tries to prevent. The detection that the IP address belongs to a VPN or a

proxy is easier when compared to finding that the IP address belongs to a multilayer-

encryption anonymity network. For example, a list of the IP addresses of the VPN

service providers could be blocked to prevent access from the VPN. Also, monitoring

the number of logins from a specific IP address could help to identify that the IP

address belongs to a VPN or a proxy. While discovering that an IP address belongs

to an anonymity depends on the anonymity network being used.

Online anonymous marketplaces are another misuse of the multilayer-encryption

anonymity networks. Silk Road, Silk Road 2.0, Evolution and Agora are examples

of online anonymous marketplaces hosted on such networks where sellers and buyers

can trade anonymously. These marketplaces offer illegal goods such as contraband,

weapons, controlled substances and narcotics [27] [19] [26]. The size of the online

anonymous marketplaces is about $300,000-$500,000 of sales daily [91]. Even though

some of these marketplaces (such as Silk Road) are shut down by the authorities, the

list keeps changing where new marketplaces appear and others just disappear.

There are some options for identifying multilayer-encryption anonymity networks.

Each one of these methods has its weaknesses and disadvantages ( detailed in Chap-

ter 3). In general, these methods are costly and require resources which might be

only available at the Internet Service Provider (ISP) level. In addition, some of the

multilayer-encryption anonymity networks developed and implemented some obfusca-

tion techniques (detailed in Chapter 2) to resist and avoid detection or being blocked

by the censorship authorities.

1.1 Research Objectives

The main objective of this research is to investigate how far a machine-based learning

approach can be pushed to analyze and identify different users and/or applications

on such anonymity networks without decrypting the multi-layer encryption of their

traffic. Potentially, such an investigation could shed light into how anonymous these

networks are from a traffic analysis perspective. Also, it could provide an indication

of what type of attacks could be performed against them. In order to achieve this,

the research entails: (i) understanding the multilayer-encryption anonymity networks

and measuring the anonymity level of such networks; (ii) collecting / capturing traffic
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of such networks for analysis; (iii) studying their traffic behaviour; (iv) extracting the

best features to describe / model such behaviour; and (v) investigating the effects of

running different applications on these anonymity networks.

The analysis of multilayer-encryption anonymity networks distinctly requires ac-

quiring the data in the first place. Unfortunately, there is not any publicly available

data set for the multilayer-encryption anonymity networks which covers the diversity

of the design in such networks and includes the obfuscation techniques used on these

networks (more on this in Chapter 5). Research in this field is based on collecting

the required data by the researchers themselves while connecting to the anonymity

network as a user(s) or running a station on the network [16] [3] [111] [62]. The

challenge of providing publicly available data for anonymity networks is that collect-

ing such data includes also collecting other users’ data on the anonymity networks.

This then requires additional care for ensuring the privacy of those users. The path

a message on the anonymity networks takes could contain two or more stations un-

til the message reaches its final destination. These stations serve multiple users at

the same time; this improves the anonymity by making it hard to link the message

with the sender. On some of the anonymity networks, users participate in relaying

the messages of other users on the network. Therefore, collecting data even at the

user’s side requires considering how to deal with the privacy of the other users. This

thesis provides the first publicly available multilayer-encryption anonymity network

data which includes more than one anonymity network in addition to the data of the

obfuscation techniques on such networks.

It is important when analyzing and studying the behaviour on anonymity networks

to understand what affects the anonymity level and how to measure such incommen-

surable value. The anonymity set which is presented by Chaum [18] is a way to

measure the level of anonymity on the multilayer-encryption anonymity networks. It

presents the number of possible choices to which a message on the anonymity net-

work belongs for a specific user. The higher the value of the anonymity set, the

better the anonymity becomes. This way of measuring the anonymity level focusses

on the probability of linking the message to the user. The level of anonymity is af-

fected by many factors which increase or decrease the anonymity level. For example,

the design of the anonymity networks and what level of information is available to
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the service provider (station) is an important factor to take into consideration when

measuring the anonymity level. Therefore, in this research, weighted factors for mea-

suring anonymity services are presented as another way to measure and quantify the

anonymity level. The method takes into consideration multiple factors: quantifying,

comparing and applying them to evaluate the anonymity level of different use cases

(details in Chapter 4).

Another objective of this research is to analyze the traffic of the multilayer-

encryption anonymity networks and profile the behaviour of their traffic within other

non-anonymous network traffic. Obviously, the traffic of these networks is encrypted;

the payload cannot be used to identify this type of traffic. In addition, the port

number is not suitable for identifying applications nowadays. A flow analysis will

be employed to extract the flow of the multilayer-encryption anonymity network and

machine learning algorithms will be used to identify such networks. Furthermore, the

usage of multilayer-encryption networks is blocked in some countries through cen-

sorship. Therefore, these networks employ different obfuscation techniques to resist

being blocked by some censorship. The implemented obfuscation techniques make

the identification of the multilayer-encryption anonymity network a very challenging

task. For example, these techniques could change the traffic to look like random

strings, or change the traffic to make the regex of the encrypted traffic to look like

non-anonymous traffic such as HTTP, or even use services such as Google as a domain

fronting to hide the traffic behind and make it hard to block through censorships (more

in Chapter 8). There are other forms that the obfuscation techniques employ which

makes it difficult to use one method to identify the multilayer-encryption anonymity

network. The diversity in such obfuscation techniques is employed to evade the dif-

ferent known ways to identify encrypted traffic, especially the multilayer-encryption

anonymity networks. In order to explore how much these obfuscation techniques could

avoid detection by censorship, traffic flow analysis is used in this research to profile

the behaviour of multilayer-encryption anonymity networks and the obfuscation tech-

niques they use. Moreover, a packet-based approach called the Packet momentum

technique is proposed and evaluated to investigate such challenges (more in Chapter

9).
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1.2 Contributions

What follows is a summary of the contributions of this research.

1- Present the first publicly available data set for multilayer-encryption anonymity

networks. Anon17 [5] [87] includes traffic flows for Tor, JonDonym and I2P. More-

over, Anon17 contains traffic of the obfuscation techniques as well as the applications

running on top of the anonymity networks.

2- Propose a novel approach to quantify and measure the level of anonymity offered

by the multilayer-encryption anonymity networks. The approach first presents five

factors which have the highest influence on the users’ anonymity. Then, these factors

are compared with each other and assigned weights based on the comparison. Finally,

the calculated weights and factors could be used together to measure the anonymity

level of anonymity networks.

3- Analyze the traffic flow behaviours using machine learning algorithms to iden-

tify (i) traces of multilayer-encryption anonymity networks, (ii) applications running

on top of the multilayer-encryption anonymity networks [85] [88] and (iii) obfus-

cated traffic generated by obfuscation tools which some of the multilayer-encryption

anonymity networks have employed to avoid blockage or detection [86].

4- Packet Momentum; a novel approach proposed to identify multilayer-encryption

anonymity networks efficiently and accurately and the obfuscations techniques they

use. The Packet Momentum approach aims to use a small number of features and a

small number of packets to identify such networks.

1.3 Structure

The rest of this thesis is structured as follows. Chapter 2 presents the concept of

multilayer-encryption anonymity networks and the three anonymity networks ana-

lyzed in this research (Tor, JonDonym and I2P). Chapter 3 summarizes related work

on Tor, JonDonym and I2P. Chapter 4 introduces the weighted factors to quantify

and measure the anonymity level of anonymity networks. Chapter 5 presents Anon17,

a network traffic data set of anonymity services. Chapter 6 discusses the methodology

of this research which includes data collections, publicly available data employed in

this research, machine learning algorithms and the network traffic flow exporter tools
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employed in this thesis. Chapter 7 presents the evaluations and results for the traffic

analysis of the multilayer-encryption anonymity networks. In Chapter 8 the analysis

of the obfuscation techniques implemented by multilayer- encryption anonymity net-

works is introduced. Chapter 9 presents the proposed Packet Momentum method to

identify the multilayer-encryption anonymity networks. Conclusions are drawn and

future works are discussed in Chapter 10.



Chapter 2

Overview of Multilayer-encryption Anonymity Networks

Multilayer-encryption anonymity networks aim to provide privacy to users by the

separation of the users from their final destination. Multilayer-encryption anonymity

networks counted on the Mix concept presented by Chaum [17] to provide anonymity

to email. The sender sends the message indirectly to the receiver through multiple

mixes. The message is encrypted multiple times. Therefore, each mix can decrypt

only one layer of the encryption and see the part which belongs to that mix which

is the address of the next destination to which the message is going to be sent. For

the first mix, this address is the second mix on the path to the final destination. For

the last mix, this address is the final destination. The sender encrypts the message

multiple times starting with the public key of the last mix and ending with the public

key of the first mix. Therefore, when the message arrives at the first mix, the message

will be encrypted multiple times based on the number of mixes between the sender and

the final destination. Assuming there are three mixes, then the message is encrypted

with the public key of the last mix then the public key of the second mix then the

public key of the first mix. The first mix then decrypts the message using its private

key to obtain the address of the second mix and so on until the message reaches the

final destination.

Choosing the mixes which will be included in the message’s path between the

sender and the receiver varies based on the design of the anonymity networks. This

path could be fixed in a cascade way or a variable path based on a selection protocol.

The number of mixes on the network, the operator of theses mixes and the band-

width (BW) they offer to the users also count on the anonymity networks and their

design. The following sections introduce the most popular anonymity networks: Tor,

JonDonym and I2P [81] [110] [1].

8
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2.1 Tor Network

Tor is a publicly available software which is built to provide users with anonymization

when using the Internet. The Tor Network depends on the volunteers who run their

machines as relay nodes to forward other users’ traffic through Tor. The user starts by

establishing a virtual circuit. This circuit consists of three relays. A directory server

is used to get the addresses of available routers and their keys to encrypt the data.

User data is encrypted with three layers of encryption. First, the data is encrypted

with the last relay (exit router) key then the middle relay and finally, by the first

relay (entry router). This way, the entry router only knows the source of the data.

The middle routers only know where to get the encrypted data and where to send

them, but nothing about the source of the data or the destination of them. Finally,

the exit router knows the destination of the data but knows nothing about the source.

This ensures that the whole path is not known by any of the three nodes (routers)

on the Tor network.

The Cell is the building block in Tor. The user’s data is divided into small fixed

size Cells. The Cell size is 512 bytes. It consists of two parts; header and payload.

The header contains information about the circuit that the Cell belongs to and the

type of Cell. There are two types of Cells: Control Cells and Relay Cells. The

Control Cells direct the relays what to do with the Cell. The Relay Cells contain

the user’s data. The structure of the Cell’s header varies based on the type of the

Cell. The header of the Cell consists of the circuit Identity (CircID) and a command.

The command type distinguishes between the control Cell and the relay Cell. Com-

mands like CREATE, CREATE FAST, CREATED, CREATED FAST, PADDING,

DESTROY, NETINFO, CREATE2 and CREATED2 are control commands. They

are used to manage the connection inside Tor. The payload of the control Cell con-

tains different information based on the type of the command. For example, when the

command is CREATE then the payload contains the handshake challenge. In cases

for which the command is DESTROY then the payload holds the reason for closing

the circuit. In addition, when the command is RELAY then the structure of the Cell

is different from the control Cell. It means that this is a RELAY Cell. Each RELAY

Cell has a relay header which comes between the Cell header and the payload. The

relay header consists of 11 bytes. The components of the relay header are Stream ID,
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Digest, Recognized, Length and Relay command. RELAY BEGIN, RELAY DATA,

RELAY DROP, RELAY TRUNCATE and RELAY EXTEND are some forms of the

relay commands.

The user and the relay use encrypted Transport Layer Security (TLS) connections

to communicate. Circuits and cells are the components for Tor communication. The

circuit is a virtual path from the user machine to the last relay (the exit relay).

Inside the circuit, the data are packed into cells. Each cell contains the identifier of

the circuit to which it belongs. The circuit ID is unique in the connection between

the user and the relay. Through the path, the circuit ID is not the same.

Figure 2.1 shows the sequence for establishing the circuit. When the user wants

to send data through Tor, he/she starts by establishing a circuit. The circuit estab-

lishment starts with the user of the first relay in a CREATE cell. When the circuit

is established, the relay sends back the CREATED cell to the user. The user then

extends the circuit to the second relay by using the RELAY EXTEND cell. The first

relay sends the CREATE cell to the second relay. The second relay responds back

with the CREATED cell when the circuit is established between the first and the

second relay. The first relay replies back to the user with the RELAY EXTENDED

cell to inform the user that the circuit path is now up to the second relay. Then,

in the same way, the user extends the circuit to the exit relay. After the circuit is

established between the user and the exit relay, the user is ready to send the data

into RELAY DATA cells.

The circuit path changes each time the user makes a connection. The bandwidth

of the nodes and the policy of the exit node play a key role in selecting the best circuit

path. Figure 2.2 shows how the circuit path could be different according to the path

selection protocol. The circuit will be used for a short period; then, another circuit

is created. The user has the option to fix the entry node and/or the exit node.

2.2 JonDonym Network

JonDonym/AN.ON is a network of mix cascades, providing anonymity to the users

based on multilayer encryption [78]. The cascade consists of two (free) or three (paid)

mix servers. The user starts the connection to the JonDonym network by selecting

the mix cascade.
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Figure 2.1: The Sequence for Establishing a Tor Circuit

Figure 2.2: Path Selection on the Tor Network
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Currently, there are five free Cascades and eleven paid Cascades the user can

choose from. JonDo, previously known as JAP, is the client software that connects

the user to the JonDonym network.

Only one active connection to one cascade is possible during the user’s connection

to the JonDonym network. Each HTTP request will create a connection from the

browser (JonDoFox) with the client software JonDo. The JonDoFox browser can

generate multiple connections with the JonDo. All these connections are multiplexed

into one connection to the first mix server, which receives connections from multiple

users. All the users’ connections are then multiplexed into one Transmission Control

Protocol/Internet Protocol (TCP/IP) connection to the second mix, or to the last in

case of only two mixes in the cascade.

The information about the available Cascades, the number of users, the loads and

the mix status are stored in the InfoService [55]. The user gets the information about

the cascades from the InfoService and the last mix sends the users’ requests to cache

proxies. Multilayered encryption is used during the communication between the user

and the last mix, which ensures that even the mixes cannot access the user’s data.

The path that the user’s data takes is fixed based on the chosen cascade. To choose

another path (Cascade), the user has to start a new connection to the JonDonym.

The user can only have one connection to one cascade at any given time. Figure 2.3

shows that a user is connecting to only one cascade that has a fixed path. It also

shows that there are other possible paths (cascades) to which the user connects.

When the connection is established, the IP address that is visible to the websites

is the IP address of the last mix. JonDo and mixes use fixed-size packets called

MixPacket. The first mix receives multiple packets from multiple users, which are

then multiplexed and sent to the second mix. The MixPacket size is 998 bytes,

consisting of 4 bytes for the channel ID, 2 bytes for flags and 992 bytes for the data

field. The data field is readable only at the last mix. It contains 2 bytes of information

about the length of the data, 1 byte of information about the type and 989 bytes for

the payload.
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Figure 2.3: Cascades on the JonDonym Network

2.3 I2P Network

The I2P network is a decentralized anonymous network with no central database or

server that contains the network database. The Network Database (netDb) [48] is

distributed by using the Kademlia algorithm [65], which is used in many applications

where P2P communication is needed in a decentralized network. The information

that the user gets from the netDb enables the user to build tunnels. Sending and

receiving data on the I2P network and building the knowledge about the network is

done by building Inbound and Outbound Tunnels [107]. The tunnels are unidirec-

tional [108]: the inbound tunnels are used by the users to receive messages and the

outbound tunnels are used to send messages. The default configuration of the users’

agents (clients) enables bandwidth participation, which means in addition to the user

building his/her tunnels, the user can also participate in building other users’ tunnels.

The tunnels consist of two or more routers based on the client configuration and the

tunnel type. Therefore, when the user participates in building tunnels, his/her role

could be the first or the last or one in the middle in forming the tunnel. At the same

time, the user could continue to send/receive his/her messages (if any). This aims to

enhance the anonymity because it makes it harder to separate a specific user’s tunnels

from the other participating tunnels.
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The netDb contains the leaseSet of the tunnels and routers. LeaseSet shows

the routers involved in a tunnel. RouterInfo in the netDb shows how to contact

a specific router. The user has the option to modify the number of routers in the

outbound tunnel. I2P uses the concept of garlic routing [37], where layered encryption

is implemented in addition to binding multiple messages together. The messages

within the I2P network are encrypted end-to-end as long as the two communication

parties are within the I2P network. However, when the user communicates with an

end-system that is outside of the I2P network using an outproxy, then the encryption

is not end-to-end.

By default, the user within the network transfers their data and that of other

users where the user’s machine functions as a resource for the network. The user can

change the amount of bandwidth dedicated to the network from the console. The

users’ contributions in passing the network data are restricted by passing the data

only within the I2P network. A different configuration is required when a user wants

to pass the I2P traffic to an end-system outside of the I2P network (outproxy). The

number of outproxies in the I2P network is limited.

One of the major differences between I2P and other anonymity networks such as

Tor and JonDonym is that I2P is designed as a private network. The users mainly

communicate within the network. The user builds two tunnels: inbound and out-

bound. The inbound tunnels are used to receive messages and the outbound tunnels

are used to send messages. Figure 2.4 shows the inbound and outbound tunnels on

the I2P network.

2.4 Summary

The Tor, JonDonym and I2P networks have similarities and differences. The three

anonymity services share the goal of providing anonymity by relaying traffic to mul-

tiple stations using multiple layers of encryption. The multiple layers of encryption

are used to harden and deny the link between the user and their messages. Tor and

JonDonym mainly focus on providing anonymity for their users to access websites

outside of their network. On the other hand, I2P provides anonymity to access web-

sites hosted privately within the I2P network itself. At the same time, Tor also has

websites hosted within the Tor network (hidden services). Moreover, I2P supports
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Figure 2.4: Inbound and Outbound Tunnels on the I2P Network

access to websites hosted on the Internet but not on the I2P network using an out-

proxy. In terms of the path used to relay the traffic, the path on the Tor network and

the I2P network changes and is not fixed, while the path on the JonDonym network

is fixed. The duration that the user will stay connected to one path (circuit tunnels

cascade) differs based on the anonymity system. The routing technique and the path

selection also differ among the three anonymity services.
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Related Literature

Studies of anonymity networks have dealt with multiple aspects. For example, part of

these studies worked on the improving and enhancement of the anonymity networks’

performance. Others focussed on analyzing vulnerabilities and performing attacks.

The following sections summarize the related studies of anonymity networks.

3.1 Measuring Anonymity

Measuring the level of anonymity is one of the concerns of the research field. Measur-

ing the anonymity level is a challenge for a number of reasons. One is the difference

in the design and the goal of each anonymity network. On the other hand, there

is no single way to measure the anonymity levels of different anonymity networks.

In addition, the anonymity level is not directly quantifiable compared to such other

network traffic measurements as delay, bandwidth, volume, etc.

Ries et al. [81] evaluated five anonymization tools with regard to performance,

usability, anonymity, network reliability and cost. The evaluated tools were the Tor,

I2P, JonDonym, Perfect Privacy and Free proxies. The performance factors used

to evaluate and rank these tools were Round Trip Time (RTT), Inter-Packet Delay

Variation (IPDV) and throughput. Additionally, they used installation, configuration

and verification of the anonymization connection as factors to define the usability of

these tools. The anonymization of the tools was evaluated by using the rankings of

the ability of an adversary to perform de-anonymization attacks against the tools.

It should be noted here that these evaluations were limited to specific scenarios.

Network reliability was measured using the failure rate, which in turn was measured

by the mean time between failures (MTBF) and the mean time to recovery (MTTR).

Abou-Tair [1] et al. examined the usability of four anonymity tools (Tor, JonDo,

I2P and Quicksilver) during the installation phase. They detailed the installation

process of these tools, applying four tasks to test the installation phase: success of

16
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installation, success of configuration, confirmation of anonymization and ability to

disable anonymization. To test the usability of these tools, the authors used eight

guidelines taken from Clark [21], which focussed on the user’s ability to perform the

four tasks mentioned above.

Wendolsky et al. [110] compared Tor and AN.ON (JonDonym) from the user’s

perspective, based on performance and number of users. Latency and bandwidth were

used to measure performance and the results showed that Tor performs unpredictably

based on the time of day. In contrast, AN.ON (JonDonym) showed more consistent

performance.

The above studies focussed mainly on evaluating anonymity services based on their

performance or usability, where anonymity was not the focus of the evaluation. On the

other hand, there are studies where measuring anonymity was the main goal. The idea

of measuring anonymity is synchronized with the proposed ideas to develop anonymity

by passing the message between the sender and the receiver through multiple stations

until it reaches the final destination (the Mix concept) [17]. This concept aims to

separate the ability of an attacker to link the sender and the receiver, even if they

communicate over a channel observed by the attacker. To anonymize against such a

threat model, Chaum [18] presented the concept of the anonymity set, in which the

set is the total number of participants in the anonymity service which may include

the sender. When the size of the set is increased, the anonymity level is considered

to increase as well. Consequently, if the size of the anonymity set is one, then there

is no anonymity and the attacker can identify the sender easily.

Serjantov and Danezis [84] developed the concept of the anonymity set by using

the information-theoretic metric based on anonymity probability distribution.

Diaz et al. [23] also used an information-theoretic model to evaluate the anonymity

level of a system in a particular attack scenario. The model aimed to evaluate the

anonymity level of a system by finding the level of information the attacker can sta-

tistically gain to connect a user of the anonymity system to his messages. Shannon’s

definition of entropy is used to calculate this gain.

Murdoch [70] surveyed studies performed on measuring anonymity for low-latency

anonymous networks and high-latency email anonymous networks and discussed the

development of the techniques used for measuring anonymity.
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There are other studies such as Berthold [9] and Toth [105] that also evaluate the

anonymity level of the anonymity service in terms of the possibility of linking the

message to the sender within the anonymity service.

3.2 Identifying Anonymity Networks by Discovering Infrastructure

Tor bridges [97] are special Tor nodes where their addresses are not announced pub-

licly like the other nodes. A Tor user can connect to the Tor network using Tor

bridges in cases where the IP addresses of normal nodes are blocked by censorship.

The user can get up to three addresses of Tor bridges per day by sending an email to

request these three IP addresses or by accessing Tor bridges web site and requesting

the IP addresses. Ling et al. [61] used two different methods to reveal the addresses of

Tor bridges. The first method was using bulk email accounts to request many bridge

IP addresses daily. Since Tor allows only three IP address daily, they created 2,000

email accounts using different tools (iMacros, PlanetLab, the Tor network itself) to

automate retrieving the bridge addresses by email and overcome the limitation of IP

addresses. In addition to using the email to request the IP addresses of the bridges,

1,000 planetLab nodes were used to request bridge addresses through the web.

The second method seems to be more practical and effective than the bulk email

accounts. Tor has its policy to classify routers inside the Tor network as entry, middle

and exit routers. This policy includes but is not limited to weighting the bandwidth

of each router, measuring their uptime, averaging the bandwidth available in the

network, collecting reports about suspicious routers and applying the exit router’s

policy set by the router itself. By manipulating these factors, they aimed to insert

one router in the Tor network and let the directory server chooses it as a middle

router. Whenever a user tries to connect to the Tor network using a bridge, if the

connection comes through the middle router to establish a connection to a bridge

router, then the address of the bridge is obtained through the comparison of the

announced entry routers and the address passed through the middle router. If the

address of the router is not in the public list of all routers then this address is a bridge

address.

The bandwidth of the routers and their number increased the probability of collect-

ing more bridge addresses. To increase the chance of getting more bridge addresses,
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they used a probability comparison to find out if the number of injected routers or the

weighted bandwidth is the main factor for increasing the selection probability of the

malicious router as a middle router. They found that using the right bandwidth gives

better results even with a limitation of the spread of routers. Using both methods,

they discovered 2,365 bridges by using the email method and 2,369 bridges by using

only one middle router for 14 days.

Li et al. [58] classified Tor nodes depending on their uptime. Nodes which have a

higher bandwidth and longer uptime considered as super nodes. To prove that the Tor

network has super nodes, data regarding the uptime of Tor nodes was collected from

the Tor network. The collected data contained information about Tor nodes such as

the IP address and the bandwidth. In addition to the collected data, information from

Tor’s official metric site was used as well. The high availability and bandwidth of these

super nodes could decrease the anonymity of the Tor network. Using the information

theory to measure the entropy of the anonymity of the Tor network showed less

anonymity when super nodes were recognized. Brute-force attacks against super

nodes also showed that they could affect the performance and availability on the Tor

network. Super nodes present about 21% of the total nodes on the Tor network and

provide 66% of the total bandwidth on the network. Controlling a super entry node

or a super exit node has more effect than controlling a normal node. The analysis

of the effect of discovering and attacking super nodes was simulated in large scales.

The simulation included 3,000 nodes, Tor algorithms, a directory server and a path

selection protocol. In the first case, attacks against the simulated Tor nodes assumed

a priori knowledge of the locations of super nodes were known on the network. In

the second case, attacks did not assume such a priori knowledge. Brute-force attacks

were used for both cases. Results showed that when the super nodes were targetted

with higher rates than the normal nodes, the failure on the network increased.

Liu et al. [62] presented four methods to discover the I2P routers. They discovered

about 95% of all the I2P routers in their two-week experiment. One of their methods of

discovering the I2P router was to run an I2P router and monitor the communications

with other I2P routers to collect information about them. Another method was to

run an I2P FloodFill router to monitor and collect information about routers that

make communications with their FloodFill router. The third method for discovering
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the I2P router was the “crawling reseed URL”. This method used the reseed option

in the I2P network to collect the I2P router’s information. The fourth method was

“exploiting NetDB”, where the I2P mechanism of router query and response was used

to collect router’s information.

Herrmann and Grothoff [42] presented an attack which determines the identity

of the HTTP hosting peers (routers) on the I2P network. The attack required using

three types of routers. The first type is used to provide information about the tunnel

operations to the attacker. The second type is used to direct the user to select the

attacker’s routers by performing a DOS attack. The third type is used to perform

requests to the Eepsite. A combination of using the three types of routers was used

for identifying the hosting router on the I2P network.

3.3 Identifying Application on Top of Anonymity Networks

Alsabah et al. [3] used ML algorithms to classify the application used by Tor’s

users. The applications are Browsing, Streaming and BitTorrent. Given that Tor

traffic is encrypted, they used the circuit level and the cell level information to do

the classification. The circuit level information included the circuit lifetime and the

amount of data transferred by the circuit. The cell level information included the cells’

inter arrival time and their statistics. The classification included online and offline

classification. The online classification used the cell level information to classify the

circuit while in use. The offline classification used both the cell and the circuit level

information to classify the circuit. In terms of accuracy, the best result they achieved

in the offline classification was 91%, whereas the best results achieved in the online

classification was 97.8%.

Wagner et al. [109] proposed Torinj — a malware code that uses an image tag

injection and a semi-supervised learning algorithm for identifying the number of users

on Tor and their web browsing activities. A compromised or controlled exit node was

assumed to collect the flow between the users and the web servers. All HTTP sessions

were collected for further analysis. To classify each user’s session, a label propagation

algorithm was used to relate a flow to a specific user. Torinj aims only to classify

users’ browsing activities. It does not target either their identity or their location.

The image injection method could be detected by the user using a hash function
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to compare between a recently viewed web site and its injected version through the

Tor network. This way the proposed image injection would not be able to capture

the user’s traffic. To overcome this, the authors suggested using a probability ratio

to inject part of the session rather than all of them. Furthermore, users can harden

the protection of their identity by using “Privoxy” to modify the browser information

(text replacements, user agents, accepted language, etc.) so it is not shown or changed

each time they start browsing. A game theoretic approach was used to solve similar

detection issues where the goal was to find the best injection probability while keeping

the user’s tracking undetectable.

The set up for Torinj took place on the Tor network itself. Three main components

were used in the set up: a Tor client, an intercepting proxy and a hidden command

and control channel. BIND, a Domain Name System (DNS) server, TCPdump (for

DNS queries captures), a Tor exit node, NTP (for time stamps), a Web proxy using

Perl (to inject images), an IPtable (to route requests to the web proxy) and an Apache

web server (to host images) were used for testing the injection method. SQLite3 and

tcpick (a textmode sniffer) were used to process the collected flows.

Panchenko et al. [76] used a support vector machine (SVM) classifier with the

websites’ fingerprints to show that Tor and JAP are not providing total anonymity.

The volume, time and direction of the traffic were the features in SVM. In the closed

world (the set of known websites), the training data set consisted of browsing different

websites using a computer running Debian distribution in the Tor network or JAP and

logging the features using TCPdump. The Chickenfoot Firefox plugin was used to

automate the browsing and retrieving activities. The data set contained 775 websites

with 20 instances for each of them. On the other hand, in the open world part of their

experiments (unknown web sites), the training data set included 4,000 URLs chosen

from the 1 million most popular websites provided by Alexa [2]. Another 1,000 URLs

were added to the test data. The features used in both data sets were: (i) Packet

size (52 bytes) — the size of the packet that contains the ACK between the sender

and the receiver; (ii) Size marker — a special text label that shows the change in

the direction of the packet and is used to sum up all packets in the same direction;

(iii) an HTML marker for distinguishing between each HTML request and to check

the size of the requested site; (iv) Rounded transmitted bytes for the number of all
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transmitted packets in both directions (rounded in increments of 10,000); (v) Number

of markers group the packet size for all the packets of a flow in one direction; (vi)

Occurring packet size — the number of each site’s packets in both directions; (vii)

the Percentage of Incoming Packets; and (viii) the Number of packets. Using these

features improved the results of detecting closed world websites from 3% to 55% in

the Tor network and from 20% to 80% in JAP compared to other related works. In

the open world data set, the detection was 73% with 0.05% false positive rate.

A simulated Tor network was used by Barker et al. [6] to differentiate between

encrypted traffic and Tor traffic. The simulated network contained three directory

servers and fifteen relays. Salenium browser (a Firefox add-on) was used to gather

a sample of thirty website browsing traces. To do the comparison between the two

types of encrypted traffic, Hypertext Transfer Protocol Secure (HTTPS) traffic was

gathered alone for a period of two weeks then followed by HTTP traffic over the

simulated Tor network for two weeks. Lastly, HTTPS traffic over the simulated

network was gathered also for two weeks. In total, approximately 25 GB of data were

collected for the three different tests. Each sample was 1 MB in size, so to build

the whole captured data set, Mergecap was used. Different ML algorithms (Random

Forest [RF], J4.8 and AdaBoost) were employed via WEKA. Their results showed

that approximately 90% of the HTTP and HTTPS traffic on the Tor network could

be detected with a false positive rate of 3.7%.

Timpanaro et al. [96] proposed a monitoring architecture for the I2P network to

describe how it is used. The proposed system analyzed what type of applications

are used on the I2P network. The applications that the monitoring architecture can

identify are limited to web browsing and I2PSnark. The results showed that the

proposed monitoring architecture could identify 32% of all running applications.

Egger et al. [31] presented several attacks that could be implemented against

the I2P network. The authors claimed that their attacks against the I2P network

could reveal the services that the I2P user accesses, the time of access and the time

spent using the service. First, the attacks control most of the nodes that host the

decentralized database (netDB) on the I2P network and then monitor the network

activities to link the related ones. Denial of Service (DoS) could be used to disable

the nodes hosting the netDB and speed the takeover process.
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Westermann and Kesdogan [111] presented two attacks against the AN.ON net-

work: the Redirection attack and the Replay attack. The Redirection attack aims

to discover the websites which the user of the AN.ON visited. The attacker controls

a web server and tries to redirect the user to this controlled web server. Once the

user is redirected to the controlled web server, the attacker uses a Cascading Style

Sheet (CSS) attack to recover the websites visited by the user. The Replay attack

aims to correlate the user’s HTTP request with a web server. The attacker monitors

and records the user’s communications with the first mix. The recorded messages are

then replayed by the attacker to the cascade. The attacker then monitors the time it

takes to get the response back. At the same time, the attacker communicates with

the web server to find a pattern that confirms that the user was communicating with

this web server.

3.4 Discovering Hidden Services

The Tor protocol was used by Ling et al. [59] to get information about the hidden

servers. It was used to locate servers that use the Tor network to provide hidden

services. Several entry routers, a client, a rendezvous point and a central server

were required to relate the hidden server with its Tor feature. This requires the

controlled client to connect to the hidden server while the entry routers are watching

for different cell types that have special combinations. It is not necessary that the

hidden server will choose the entry routers in its path, so watching is required until

the entry routers are chosen by the server. Since the entry routers might be used by

other users, cells were manipulated for the client in order to let them get an error from

the hidden server when trying to decrypt them. The hidden server then disconnects

the established circuit with the client. In this way, the entry routers could confirm

that the path comes through them. If that were the case, then the hidden server

could be located by the information gathered by the rendezvous point, the client and

the entry router. The hidden server chooses an introduction point that introduces

the service provided by the server to the Tor network. The Rendezvous point stays

in the middle between the client on the Tor network and the hidden server which is

using the introduction point. To make a connection between the two circuits (the one

between the client and the rendezvous point and the one between the hidden server
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to the rendezvous point through the introduction point) a central server was used

to receive the timing report from the client, the entry routers and the introduction

point. It collects the “destroy cell” information from both the entry router and the

rendezvous point (cell type, the timestamp of the cell, circuit ID and the source IP

address) after the detection of the encryption error. Changing one bit in the cell by

the rendezvous point makes this error reported to the central server.

The important part for detecting the hidden server is to let it choose a specified

entry router which depends on the number of entry routers and the bandwidth avail-

able. To ensure that tracking the “destroy cell” through the Tor network will lead to

detecting the hidden server, the configured hidden server was tested with ten entry

routers and repeated 1,000 times. The test result was a 100% detection of the hidden

server with a 0% False Positive.

The security of hidden services on Tor was analyzed by Biryukov et al. [10] to

find out the amount of information that could be obtained about hidden services.

The analysis included finding the popularity of any hidden service, denying access

to the hidden service by impersonating the responsible hidden service directory and

revealing the IP addresses of the hidden services. Two main techniques were used

in this analysis. The first was inserting nodes with an incorrectly announced high

bandwidth. The second technique used Sybil attacks to inject nodes to be selected as

hidden service directories (which hold the service descriptor ID). The Tor network uses

the bandwidth announced by the relays which gives the relays the chance to set unreal

bandwidth values. Even though the Tor network uses a bandwidth measurement

technique by establishing a circuit and downloading a file through the node, this will

not prevent announcing an incorrect high bandwidth. When a node announces a high

bandwidth it increases the probability of being selected in the connection path, the

hidden server directory and the introduction point.

It is necessary to know the descriptor ID of the hidden service and the fingerprint

of the hidden service directory to find out which one is responsible for the hidden

service. From the original directory anyone can get the hidden service descriptor ID.

When the hidden service starts to publish its descriptor ID it compares all the hidden

service directories with their fingerprints. The descriptor ID number must be less than

the fingerprint of the hidden service directory responsible for publishing its ID. Using
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this information, anyone can use the public key of the hidden service and manipulate

the hash function to generate a fingerprint which is greater than the hidden server

directory responsible for the hidden server. In this way the hidden server will choose

this node as that responsible of its descriptor ID. Therefore, in their analysis, they

used this technique to control the hidden service directory of the Tor botnet, the

Silk Road hidden service and the DuckDuckgo hidden service. After controlling these

directories for several days, they were able to get the number of requests for the hidden

service descriptor. Each hidden service publishes its descriptor in three hidden service

directories. Tor arranges hidden service directories in a closed ring. Each descriptor

ID belongs to the three higher directories. If there are 1,200 hidden services then, in

order to collect the directories of all of them, it requires 600 nodes using the technique

described above. Instead, by using the shadowing technique this number could be

decreased to 24. Tor has a rule which limits the maximum number of nodes to two,

for any IP address to run a node as a directory on the Tor network. To overcome this,

they used 50 IP addresses where each address runs 24 Tor nodes (from EC2). Tor

will pick only 100 of them. The rest (1,100) will be ready to replace any unreachable

nodes. Making these 100 nodes unreachable intentionally will let Tor use the other

nodes (shadow nodes) as new directories holding the same previous information. This

way all hidden server directories can be retrieved.

Elices et al. [32] used a time fingerprint to mark a hidden server behind Tor. It

showed that even for web servers that use Tor to hide their identity, using a time

fingerprint could lead to marking the server. They estimated the time required for

the HTTP request to get a response from the web server on the Tor network by using

the data field in the HTTP response message with statistical models. In this case,

their sent requests were logged on the server with many other users’ requests. There

was a delay in the server response time due to the latency on the Tor network. To

calculate the time for the server response they did two different experiments showing

that the delay through the Tor network could be estimated depending on the server

characteristics. The data used for these experiments was collected from seven servers

around the world (research and university servers) with more than ten million re-

quests. This data was analyzed to find the best distribution (Binomial or Poisson)

that modelled the arrival of the server request within a specific time window. This
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time window was then used in the calculation to distinguish server responses from

different users.

3.5 Packet Inspection

Wilde [112] found out that censorship in China uses a scanner to discover where the

bridge is. To do so, a connection from the user to the bridge must take place first.

Should inspecting the packets show that that there is a connection using the Tor

protocol, the scanner starts to search through random Chinese IP addresses. If a

certain IP address seems to be a bridge, then it establishes a connection to this IP

address. If the connection is a success, then this is a bridge IP and its ports are

blocked. Tor connections could be recognized because Tor uses a special Tor TLS

client hello message.

The result of Wilde’s work was used by Winter & Lindskog [113] to get more details

about how China blocks the Tor networks. They did an experiment to understand

how clients in China are blocked from accessing the Tor networks. In this experiment,

they set up a relay in Russia and bridges in Singapore and Sweden to help the clients

in China to be able to connect to the Tor network. They found that once the bridge IP

address was discovered by the Chinese authorities, it was blocked within 15 minutes

with the port (IP:Port tuple). This way the blocking of the Tor bridges did not affect

other Internet traffic. In this case, the blocking was continuous as long as the scanners

could connect to the bridge, otherwise the blocking was removed. They also found

that only 1.6% of Tor relays could be reached from China. The Packet inspection for

Tor connections is applied only for the connection from China to the outside world.

The scanning of the bridge in Singapore comes from one IP address. After inspecting

this IP address and its behaviour to Ping, Transmission Control Protocol (TCP), User

Datagram Protocol (UDP), the Internet Control Message Protocol (ICMP) traceroute

and Time to live (TTL), it seems as though it is a spoofed IP address. The scanning of

bridges which have been discovered already is repeated every 15 minutes. Inspecting

packets will not lead to the discovery of Tor connections in cases using pluggable

transports such as “Obfsproxy” that Tor uses in its browser.
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3.6 First N-Packets for Traffic Classification

There are many studies that use the first N-Packets of the flows for traffic classification

to design an early detection system or online traffic classification. Huyn-Min An et al.

[4] proposed a statistic signature method to classify application traffic. The statistic

signature is generated from the payload size, the direction of packets and the order of

packets in a flow. The proposed method aims to find a signature for each application

from these features in the first N packets in the flow. In their experiment to classify

Dropbox, uTorrent, Nateon, Skype and Kartrider, the achieved precision was between

97-100% and the recall was 25-78%.

The statistical features of the first N-packets is also used by Tabatabaei et al. [93]

for traffic classification and early detection system. SVM and k-Nearest-Neighbors

are employed to classify seven applications: BitTorrent, Gnutella, P2P live-streaming,

Skype, Web browsing, Email and FTP. The experiment tested the first 3, 5, 7, 9, 11,

13 and 15 packets of the application flows. The results showed that SVM achieved

the best overall accuracy of 84.5% when the number of packets is seven.

Huijun et al. [45] tested using the packet length, packet intervals and packet

direction of the first N-packets in a simulated environment to early detect and classify

traffic. Multiple experimental tests were employed by using a combination of features

from the three features (packet length, interval and direction), four machine learning

classifiers (C4.5, KNN, KNN1 and SVM) and a variable number of first N-packets of

the flow (2 - 10). The results showed that KNN has the highest accuracy when the

number of packets is 6.

Gu et al. [38] proposed a Bayesian Networks online traffic classification system

by using packet sizes and the inter-arrival times of the first N-packets of a flow. The

proposed system was tested on collected data for five applications: HTTP, POP3,

POP3SSL, SMTP and FTP when using the first seven packets in the flows and the two

aforementioned features. The results showed an accuracy between 88-100%. When

the number of the first packets is between five and seven, the variance of the accuracy

is small.

Bernaille and Teixeira [8] proposed an early recognition system for encrypted

application classification by using the size of the first few packets of an SSL connection.

The proposed system identifies the encrypted traffic in two stages. Firstly, the SSL
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traffic is identified, then the early detection is applied to recognize the type of the

encrypted traffic. The accuracy of the proposed system is 85%.

3.7 Summary

As shown in the previous sections, research on multilayer-encryption anonymity net-

works has studied multiple aspects such as design, attacks, development, performance,

identification and many others. This thesis focusses on contributing to some of the

aspects covered as well as contributing to some areas that have not been investigated.

Much research on the multilayer-encryption anonymity networks has studied mea-

suring the anonymity level. Even though the above studies have been important

and significant in measuring anonymity levels, this measurement could be analyzed

from a perspective other than that of linking the message to the sender among the

anonymized users, since other factors affect the anonymity level, such as user be-

haviour and the browser setting being used. Even the link between the user and the

final destination varies in its theoretical ability to achieve based on the design of the

anonymity service itself, which is different from one system to another. Therefore,

this research will present a method for measuring the level of anonymity by analyzing

the anonymity service from different perspectives and proposing measurable metrics

(factors) which enables the quantification of the anonymity of such services.

Research on the identification of multilayer-encryption anonymity networks by

discovering the network’s infrastructure requires compromising part of the anonymity

network. Then the compromised resources are used to identify users on the network

or other resources on the anonymity network. Other research has been proposed

employing resources out of the anonymity network (such as web servers) and using

them to provide access to the anonymity networks’ users. Then the information from

these resources is used to identify users or profile them on the condition that the user

has accessed these resources. On the other hand, this thesis employs flow analysis to

identify a multilayer-encryption anonymity network without compromising any part

of the anonymity network. The analysis also preserves the users’ privacy and does not

aim to de-anonymize the anonymity networks’ users. Moreover, the analysis has been

extended to investigate the possibility of identifying those applications running on

the multilayer-encryption anonymity networks without compromising any network’s
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resources.

In addition, this thesis uses flow analysis to identify the obfuscated traffic employed

by some of the multilayer-encryption anonymity networks which is an area which

lacks or has very weak research which covers this issue. Moreover, features that

best suitable for identifying the multilayer-encryption anonymity networks for better

performance are presented in this thesis.

The first N-packets were employed in many studies for designing an early detection

system or online traffic classification. Most of these studies focussed on application

classification, some of them used the first N-packets for encrypted traffic classification.

The features employed in such studies are different based on the type of applications

under study. Packet size, inter-arrival time, packet direction and duration are mostly

the features which accompanied the first N-packet studies with different machine

learning algorithms. In this thesis, the first-N packet is used to design a system that

could classify multilayer-encryption anonymity networks.The statistical information

from these N-packets is used to generate new features which fit such a classification

task.

In summary, the proposed approaches in this thesis for identifying multilayer-

encryption anonymity networks do not need to compromise or use any resources

within the multilayer-encryption anonymity networks. In some of the research men-

tioned above the identification of multilayer-encryption anonymity networks requires

the use of marking technique for the users’ traffic within the network or compromis-

ing/operating resources within the network (such as nodes) or resources at the final

destination (such as web servers). This could interfere easily with the users’ privacy.

In addition, these approaches are limited to traffic passing through the compromised

resources.
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Weighted Factors for Measuring Anonymity Services

There are many tools, applications and websites on the Internet claiming to protect

the privacy of their users. The level of provided privacy protection for these services is

different based on the way they work. For example, a VPN (Virtual Private Network),

which can be provided either as a free or a paid service, hides the user’s identity while

surfing the Internet anonymously. At the same time, the service provider has access

to the user’s identity and his/her activity on the Internet. Some of these service

providers also keep the logs of their users. This is also the case with free proxy

websites, which claim that they protect the user’s identity.

In fact, a user’s privacy in such services depends on the amount of trust the user

places in these service providers. On the other hand, there are other systems that

claim to provide anonymity service without logging user activity by relaying the user

connection to the final destination (such as a web server) via multiple stations. The

design of such systems aims to prevent the stations from linking between the user

request and the final destination.

Tor, JonDonym and I2P are popular anonymity services. They provide anonymity

to their users to hide their identity from Internet web servers and hide the websites

they have accessed. These systems prevent not only the web servers from revealing

users’ identities, but also the operators of the systems themselves from identifying the

users. However, there are many details behind this kind of anonymity which might

not be clear or obvious to the user. For example, changing the default setting in some

of these systems’ browsers (such as JavaScript or Cookies) could lead to a breach of

user anonymity. These systems provide anonymity and at the same time give the user

the ability to customize the settings of the system to control the level of anonymity.

For example, JavaScript could be enabled or disabled as a default in these systems

depending on which system is used. Many websites require that JavaScript be active

to show website contents properly; however, the user has the ability to enable or

30
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disable JavaScript, which might conflict with how these anonymity services work.

Tor and JonDonym have their own browsers, which are modified to ensure the users’

privacy. However, the user can use any other available browser of their choice and

thus have the ability to configure it to work with these anonymity services. In this

case, it is the user’s responsibility to ensure a proper configuration that guarantees

anonymity. Even with the proper configuration or using the default browser, user

privacy and anonymity concern not only the setting, but also user behaviour and the

tools employed.

Browser fingerprinting is one of the examples of how the anonymity of the user

could be breached. The browser itself could provide considerable information about

the user’s environment and consequently their identity. This type of information is

obtained from the HTTP that is used for communication between the web browser

and the web server. The HTTP header of this protocol contains information about

the browser name, version, operating system, language and other information. For

example, enabling cookies could lead to the storage of third-party cookies, which

then could provide the ability to track users by the web sites they visited. Browser

fingerprinting is not limited only to this; there are many studies on the application

of different methods of implementing browser fingerprinting [68] [69] [76].

Eckersley [29] collected a sample of 470,161 browsers that visited the website

http://panopticlick.eff.org. A fingerprinting algorithm was then applied to the sample

based on the information available in the HTTP request field (stored in the web server

access log files) and the JavaScript was running in the browser to test the ability to

define how unique the browsers were. The results showed that browser fingerprinting

was possible with a promising performance, especially when the browser supported

Flash or Java utilities.

Therefore, the anonymity level of the users is not the same, even when using an

anonymizing tool. The reason/goal behind using an anonymity service varies from

one user to another. This variation of goals could affect the anonymity level and

the choice of the right anonymity service to achieve this goal. The design of the

anonymity tools varies based on: (i) which services such a tool offers to users, (ii)

how the user decides or measures anonymity level, given all the different anonymity

services. To answer these questions, this chapter presents a method of calculating
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and comparing user anonymity levels that takes into consideration the different needs

of different users. Therefore, this aims to assist the user in choosing the most suitable

anonymity service for their needs. The proposed method depends on evaluating

anonymity systems based on five factors. To measure anonymity level using this

method, the factors are converted to numeric values in order to assign weights and

scores. In addition, each factor is compared with the others according to the goal or

purpose of anonymity. Therefore, the relative weights (importance) of the factors are

determined based on who is using the anonymity service and why. In doing so, the

objective is to provide a comprehensive measurement technique which could be used

to evaluate the level of anonymity based on the environment in which the anonymity

service is used.

4.1 Proposed Factors

Multilayer-encryption anonymity networks differ in the design and the main goal

they aim to achieve. For example, the I2P network is designed as a private network.

Consequently, the best performance and anonymity it could achieve is when it uses

internally available resources. On the other hand, the Tor network performs better

when browsing Internet web sites even it supports Hidden Services. This kind of

differences between the multilayer-encryption anonymity networks has their effect on

the level of anonymity. Therefore, the proposed factors aim to include and take into

consideration what could affect the anonymity of such networks. The following section

presents the five proposed factors to analyze the anonymity level of the aforementioned

anonymity systems (Tor, JonDonym and I2P).

4.1.1 The Level of Information Available for the Service Provider

When a Tor user connects to the Tor network a virtual circuit is created. The circuit

consists of three nodes; the first node has the actual IP address of the user and

therefore his identity, but it does not have knowledge of his Internet activity. Tor

uses the concept of Entry Guard, which means assigning the Tor user to a specific

node which acts as a permanent gate to the Tor Network for this user. The goal of

this process is to increase the privacy of the users in case of a compromised node.

By using this process, the probability of using such a compromised node is low. On
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the other hand, using Entry Guard provides other information about the users to

the operator of the entry node. For example, Internet browsing habits such as time

of the day, online duration and the amount of data transferred could be obtained

by the operator. This information could be used to perform attacks that depend on

the correlation between the duration, data and the server. The exit nodes, through

which all user requests pass, have a considerable amount of information, as they are

the links between the Internet and the Tor users. The operator of the exit node has

the ability to know and statistically evaluate the user’s activities on the Tor network.

For example, McCoy et al. [66] provide percentages of the Tor Internet activities

based on exit node observations. Another important fact about the exit node that

might not be clear for nontechnical users is that the encryption of the requests through

the exit node are all based on the encryption of the original requests and has nothing

to do with the three levels of encryption on the Tor Network. Therefore, the exit

node alone can breach the anonymity of the users if they use their login information

to access their email or any web server without sending an encrypted request.

Furthermore, JonDonym works similarly to Tor in terms of connecting the user

with the requested destination without revealing user information to the destination.

The first point on the JonDonym network (First Mix) receives the connection request

from the user which has the information about the connection duration and the user’s

identity. The last point (Last Mix) does not know the user’s identity, but it has the

activities or the websites that the users request. Even though the user data passes

through several mixes, the operators of these mixes do not have the ability to access

the data. The encryption layers used by JonDonym and Tor overlay networks protect

the data, even from the operators; an exception occurs when the data sent by the user

to the web server is not encrypted when the last node/mix has the ability to access

the data sent by the user. The anonymity mechanism in Tor/JonDonym depends

on relaying the user data through multiple points (Node/Mix). Each node/mix only

knows part of the connection information, not the whole information required to

connect the user to the request for the web server; the assumption is that even a

compromised mix/node will not be able to find the complete connection information.

On the other hand, what if all the nodes/mixes on the path between the user and

the server are compromised or attacked? On the Tor network, the three nodes in
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the circuit path are selected by using the path selection protocol [24], which specifies

the three nodes the user will use to relay the data in conjunction with the policy

that the exit node operator defines. When the user’s request does not match the exit

node policy, the path selection protocol finds another exit node that permits such

traffic. For example, an exit node might allow only port 80. In addition, the user has

the ability to override the path selection protocol and to choose a specific exit/entry

node. In this case, the chosen exit node will not change for any circuit created by

the user. This flexibility and randomness in node selection make it harder for an

attacker to target a specific user by trying to compromise the three nodes that the

user selects. On the other hand, it might be possible to compromise a node on the Tor

network. Potentially, volunteering to run a node on the Tor network does not require

information about the operator beyond the IP address and the nickname. However,

running and compromising three nodes does not mean that these three nodes will be

selected by the path selection protocol.

On the JonDonym network, this type of attack is also possible; the difference lies in

the operation of the mixes. The number of mixes on the JonDonym is fewer than the

number of nodes on the Tor network. On the other hand, the operators of the mixes

are registered with their identities. They also sign an agreement with JonDonym not

to exchange information between operators of the mixes and not to save user data.

One of the differences between Tor and JonDonym is that JonDonym mixes do not

change and the path is always the same. In the case of cooperation between all the

mixes, it is possible to breach user anonymity on the JonDonym network.

Last but not least, the goal of the I2P network is different from both Tor and Jon-

Donym. I2P is designed to provide anonymity for the users within the I2P network;

however, that does not mean that I2P services are limited by the network bound-

aries. Browsing web pages outside the I2P network requires configuring the user’s

machine to use an outproxy. In this case, the information available to the outproxy

is similar to Tor’s exit router or JonDonym’s last mix. The outproxy has access to all

traffic passing through; if the traffic is not encrypted, the outproxy can see sensitive

information.

The common point among the three anonymity services is that at any point during

use part of the network has some user information. This information could be the IP
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address of the user which is available at the first point on the anonymity network that

connects the user to the network. Alternately, it could be the amount of traffic that

the last point can see when sending traffic to its final destination. As a result, the

difference in the design of the anonymity services regarding how to relay the traffic

affects the difficulty of linking the user with their traffic.

4.1.2 Blocking Anonymity and Obfuscation Options

The anonymity systems can hide user activity on the Internet, but cannot always

hide the fact that such a system is in use. Sometimes, using anonymity systems

might raise questions about why such a system is in use. In some countries, the IP

addresses of the hosts running such systems are blocked in order to prevent access to

such networks.

On the Tor network, a bridge [97] is a special node (hostrouter) connecting the

user with the Tor network. The IP address of the bridge is not announced like the

Tor nodes. The user sends an email to the Tor network (bridges@torproject.org) to

get an IP address for a bridge. The user can also use the bridge database website

to get the IP addresses (https://bridges.torproject.org/). The Tor network provides

the user with the IP addresses of three bridges during a 24-hour period. This is to

prevent censorship organizations from obtaining and blocking all IP addresses.

Furthermore, Pluggable Transports (PT) [102] work as an interface between the

Tor user and the Tor network. The user connects to a pluggable transport which sends

the connection request to the Tor network on behalf of the user in order to hide the

connection between the user and the Tor network. There is more than one pluggable

transport tool available for the Tor users to choose. These tools work differently,

using different techniques to resist different blocking methods.

In addition to blocking Tor by blocking the IP addresses of the nodes [101], there

are cases in which the Tor service is blocked by other techniques. The encryption in

the Tor network is based on using TLS between the communication parties; the user

to the first node, the first node to the second node and so on. Therefore, fingerprinting

the Tor TLS is one of the blocking techniques. Another blocking technique is Deep

Packet Inspection (DPI). DPI is used to find a pattern that recognizes Tor. Toward

this end, the handshake phase in establishing a TLS Tor connection could be used
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to identify Tor. Therefore, changing the content to look like something other than a

TLS is used by some of the pluggable transports to hide their connections to Tor. In

fact, Obfs3 [100] is one of the pluggable transports that obfuscates the Tor TLS to

look like random strings using another layer of encryption to wrap the TLS handshake

used by Tor. Even though Obfs3 aims to hide the TLS from an observer, the packet

length and the timing of the packets are still the same as normal Tor connections

because Obfs3 mainly focusses on preventing the Tor TLS from being fingerprinted.

It is possible to intercept a TLS handshake to extract the destination IP address.

In the case of Tor, this IP address is the bridge or the node IP address. After obtaining

the IP address, the censors can establish a Tor connection to this IP address. When

a reply is received, it confirms that this IP address does belong to the Tor network.

This active probing method is also used to find bridges and to block them [112] [113].

Scramblesuit [114] is one of the Tor pluggable transports and is designed to prevent

such active probing. To resist against active probing a password and a ticket are used

to connect to the Scramblesuit server. In the Tor network, the Scramblesuit password

is exchanged by requesting the password from the bridge database (email/website).

Blocking the IP address of a bridge prevents Tor users from connecting to this

bridge. Even though the IP addresses of the bridges are not announced, they can

still be discovered [61]. Flashproxy [34] is another pluggable transport that works

around IP blocking by using the IP addresses of the visitors to a website, which

change based on the IP address of the website that supports Flashproxy. When a

website chooses to provide Flashproxy to the Tor users, it includes a JavaScript code

that is activated when visitors access the websites. The code uses the website visitors’

browsers to pass the connection between the Tor user and the Tor relay. Therefore,

the Flashproxy IP address always changes based on the IP addresses of the visitors

to the Flashproxy-supported websites. Accordingly, blocking those websites which

support Flashproxy does not affect the ability of the Flashproxy to connect the Tor

user to the Tor relay. Once the visitors leave the websites, their IP addresses are not

used anymore. However, blocking their IP addresses does not prevent the Tor users

from connecting to the Tor relays because new website visitors will simply take over

the connection task. This makes blocking IP addresses challenging and less efficient.

On the other hand, Flashproxy by itself does not work on changing the form or
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pattern of the connection to Tor; rather, it depends on the Obfsproxy framework to

accomplish this.

The user needs to install the Flashproxy client transport plugin (included in the

Tor browser bundle) and define a specific port in the configuration to receive Flash-

proxy connections. When the user starts Tor, the client plugin sends an encrypted

message to a facilitator containing the IP address of the user. The facilitator keeps

track of all users who need to communicate with the Flashproxies and sends their

IP addresses to the Flashproxies. The client communicates with the facilitator indi-

rectly by connecting to Gmail and sending a message. The facilitator then obtains

the users’ IP addresses from the server. In this way, blocking the facilitator does not

prevent the user from contacting the facilitator. In order to prevent the user from

communicating with the facilitator, services such as Gmail need to be blocked, which

is a challenge to the censors.

Flashproxy is distributed through the websites of the volunteers; they install and

activate Flashproxy when they get visitors to their websites. When Flashproxy is

activated on a volunteer’s browser, it communicates with the facilitator which in turn

provides the volunteer’s browser with the IP address of the Tor user. The volunteer

then sends a connection to the Tor user via the browser to the port through which

the Tor user is configured to receive the Flashproxy connection. Also, the volunteer’s

browser sends a connection to the Tor relay and starts to transfer the data between

the Tor user and the Tor relay. Again, blocking the websites of the volunteers that

host Flashproxy will not prevent the Tor user from communicating with the Tor relay.

This is because Flashproxy runs on the volunteers’ browsers and the IP addresses of

the Flashproxies are their own IP addresses.

Whitelisting is another method that can be used to block Tor. In this case, all

the allowed traffic is profiled and anything which does not match with this list is

blocked. Format-Transforming Encryption (FTE) [28] is a pluggable transport that

takes a ciphertext and transforms it into another format that matches a regex. In

the Tor case, FTE changes the Tor traffic to look like HTTP traffic, generating an

HTTP regex out of Tor traffic that matches what DPI expects from HTTP traffic.

Meek [99] is a pluggable transport which uses the concept of domain fronting which

hides a Tor message inside an HTTPS request. Meek uses GoogleAmazonAzure for
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domain fronting to send Tor messages on behalf of a Tor user.

Last but not least, network traffic flow analysis is another technique which can

be used to detect Tor. To evade the network flow analysis, Scramblesuit forms the

traffic in a way which does not resemble a specific shape (form). This includes the

packet length and the interarrival time for every Scramblesuit server. For example,

it changes the packet length distribution to mislead classifiers. This way each server

has its own flow characteristics. To this end, the server starts by generating a 256-bit

seed randomly which is used in PRNG to generate two random distributions. The

packet length is then changed by using a padding (0-1520 bytes) of random sampling

from the distribution of all the packet lengths.

JonDonym has two options for bypassing blocking of the service. The first one is

using a TCP/IP forward method in which the user will use an encrypted connection to

another user who has unblocked access to the JonDonym network. Speed and stability

suffer when using such a method. The connection also depends on the forwarder to

stay alive. The second method uses Skype to tunnel the blockage of the JonDonym

service which is more reliable than using the TCP/IP forward method.

On the I2P network there are no obfuscation options similar to Tor pluggable

transports and it is thus possible for an observer to collect the routers’ IP addresses

with a harvesting attack [41]. Currently, the I2P network has not developed an

obfuscation option which could provide the users with a way to connect to the I2P

network if that network is blocked by using such an attack. However, the I2P network

implemented other improvements in the design of the transport layer to obscure the

identification of the I2P network traffic. I2P employed random port numbers, point-

to-point encryption, DH key exchange and the use of both TCP and UDP. In addition,

several obfuscation options are still considered by the developers of the I2P network,

including using padding techniques at the transport layer to achieve random length,

studying the signature of the packet size distribution and studying the technique used

to block Tor.

It should be noted that anonymity services do not generally hide the fact that

the users are connecting to the service. Consequently, in a regular situation in which

the user is connected directly to the anonymity service, any observer can see that an

anonymity service is in use.
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In cases using an obfuscation option, an observer who wants to de-anonymize the

user needs to determine that the user is connecting to the anonymity service in the

first place. Therefore, the existence of obfuscation options is a factor which should

be taken into consideration when measuring the level of anonymity.

4.1.3 Application and Anonymity

The common way to use an anonymity service is to use the default browser of the

aforementioned services (Tor, JonDo, I2P, etc.) to browse the web. However, these

anonymity services can be used with other applications in addition to web browsing.

This requires the user to configure the application and the anonymity service to

work together. For example, JonDonym enables the user’s e-mail service to work

with JonDonym and also supports any application that has the ability to configure

the proxy. Tor supports any application that has the ability to pass all its traffic

through a proxy. However, using any application other than the default browser on

the Internet raises the chances of breaching the user’s anonymity.

The configuration for these applications is not that simple for non-technical users.

When configuring any application to work with an anonymity service it is important

to understand fully how this application works to ensure that user information is not

leaked. For example, the DNS request that accompanies many applications might leak

the user’s data and this, in turn, might breach the user’s anonymity. Applications

might not use the anonymity service to resolve the DNS name, even if they are

configured to do so [103].

The user can run any application on the I2P network which depends on TCP

or UDP; the I2P messages are based on UDP. TCP applications count on using

an I2PTunnel which passes the TCP stream within the I2P network. For example,

Eepsites [30] and IRC (Internet Relay Chat) use I2PTunnel [107] to work within the

I2P’s UDP-based network. Eepsites are websites hosted anonymously on the I2P

network. The user accesses these websites without getting any information about the

one(s) creating the website(s). At the same time, the website cannot determine the

real identity of the users. These types of applications work by default only within

the I2P network. To browse outside of the I2P network, an outproxy is needed to

pass/forward the traffic. The I2P network supports many applications for blogging,
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file storage, DNS, email, file sharing, web hosting and others. These applications differ

when working within the I2P network or outside the I2P network. Some of these

applications are supported by third parties; therefore, the anonymity and security

level varies among them.

The configuration of the application and how the user sets the application on the

anonymity network is an important issue. For example, the web browser contains

many details other than what anonymity system the user is using. The anonymity

tools aim to make their browsers undistinguishable in order to raise the anonymity

level. The Tor browser is a modified version of Firefox based on Mozilla’s Extended

Support Release (ESR) Firefox branch [98]. It includes HTTPS-Everywhere [44],

NoScript [75], modifying some of the default Firefox settings and modifying some of

the default extension settings. JonDoFox is the JonDonym browser and is a modified

version of Firefox [54].

Even when using the default browser for anonymity services, the right setting

of the browser is important to ensure the safety of the user against many Internet

websites that track their visitors. To this end, some of the tools used by web sites

could also identify the user or their behaviour for the purpose of advertisements,

collecting data for different types of studies or building a database about the visitors

of the website. Thus, it is crucial to know the policy and the default setting for a

browser with such tools. The question to consider here is: how such tools address the

trade-off between browsing the websites with full offered services and preserving the

anonymity of the users [52].

Table 4.1 presents the information as to how the Tor Browser and JonDoFox, i.e.

the JonDonym browser, deal with these trade-offs. Compared to Tor and JonDonym,

the I2P network does not have a specific browser preference. After connecting to the

I2P network, the user configures the proxy setting manually in any browser to use the

I2P network. The network encrypts the traffic between the users within the network,

regardless of the application used. The I2P network is designed to work as a private

network on the Internet. The browser could be used to configure the router of the

user. For example, configuring the bandwidth up and down, participation on the

FloodFill, starting or stopping services such as IRC and web hosting are all possible

on the I2P network.
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JonDoFox Tor Browser
Cookies Disabled Enabled
Third-party Cookies Disabled Disabled
JavaScript Disabled Enabled
Flash-Cookies (LCO) Disabled Disabled
WebGL Enabled Disabled
Flash Plug-in Disabled Enabled
Java Disabled Enabled
Silverlight Disabled Enabled

Table 4.1: Default browser settings for anonymity services.

The applications supported by the anonymity services are not the same. The

method used to run applications other than web browsing also varies from one

anonymity service to another. How well the anonymity service is structured to sup-

port a number of applications affects the level of anonymity. For example, using the

default anonymity browser or configuring the user’s browser could make a difference

in the anonymity level. Therefore, it is not only the anonymity service which affects

the anonymity level; it is also what application is used along with that anonymity

service.

4.1.4 Authority and Logs

There is no doubt that the policy of the anonymity services about co-operating with

the authority (operator or regulator) and the keeping logs affects the level of privacy.

For example, JonDonym’s agreement with the operators requires keeping no logs and

not exchanging information between operators of the mixes. The reason behind this

policy is that the identities of the operators are known and they work according to

the regulations in their own countries. Therefore, in JonDonym, there are several

points that must be taken into consideration when evaluating the anonymity of such

a system, as listed below.

• The mixes that construct the path are fixed. That means knowing that the user

employs one of these mixes (e.g., the last mix) implies knowing the first and

the second mix.

• The number of mixes on the JonDonym network is very limited compared to
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the Tor network. On the JonDonym network there are only nine Cascades; six

are operated by companies and three by individuals.

• The operators of these mixes are known and registered. They work according

to the regulations in their countries regarding cooperation with the authorities.

• These cascades are fixed. This makes it easier for authorities to approach and

investigate them.

On the other hand, on the Tor network there is a different approach, as indicated

below.

• The nodes that construct the user’s path are not fixed. The user connects to

three nodes that change periodically. Therefore, knowing that the user connects

to a specific exit node does not necessarily imply knowing the first or the middle

node.

• The number of Tor’s nodes is around 8,000, which makes it relatively harder to

get information about them.

• The operators of these nodes are not known. Tor does not require their users

to identify themselves when offering to run a node. This might help to protect

the operators’ identities, but it does not guarantee that the operators are to be

trusted.

• The nodes on the Tor network are supposed to be online as much as possible.

However, that is no guarantee since most of these nodes are run by volunteers.

• On the other hand, keeping the log for the created circuits is an available option

for the nodes’ operators. When the debug option is enabled in the configuration

file, then the log file will contain information about the circuits and cells. Also,

the operator of the node has the ability to modify the Tor source code in order to

log additional information about the cell. It can be used to extract information

and analyze it later (as shown in Chapter 7). Getting this extra information

does not mean that these tools do not provide anonymity; it indicates that there

is a specific amount of information available to the operators of the nodes of

which the user should be aware.
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Furthermore, on the I2P network there other options as indicated below.

• The I2P user has the option of modifying the number of routers used when

exchanging messages. In addition, end-to-end encryption is used. The concept

of garlic routing is used as well when exchanging messages. In this way, messages

that pass through the routers are not distinctive, which means the purpose or

the content of the messages cannot be extracted or inferred easily. For example,

information as to whether the messages are from an extension to the number

of routers in the tunnel or whether they contain data would not be extracted

from the messages.

• The I2P network is decentralized, so there is no single point that is responsible

for or represents the network.

• The user does not need to know all the routers in the network to be able to use

that network’s resources.

• The I2P network’s design is different from Tor and JonDonym; it is designed

basically to provide a private network within the Internet. The number of

outproxies is very limited. Also, this makes the browsing outside the network

low compared to Tor and JonDonym. Therefore, the possibility that the user

will use the same exit point frequently is high. This does not mean that it is

a threat but it does increase the probability of correlating the user with their

traffic based on factors such as access time, duration and the amount of data

used.

Based on the above, it can be seen that the lower the possibility of compromising

all of the nodes on the user’s path, the better the anonymity level. In addition, what

information the service provider (operator) has about the user and the operator’s

willingness to provide this information when asked to do so is important as well in

measuring the level of anonymity.

4.1.5 Threat Models

Ideally, anonymity services provide anonymity to their users and protect their privacy.

However, there are possible threats which could breach the anonymity of such services.
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The anonymity services are based on the separation of the user’s identity from the

data sent or received by the user. One of the threats that such services face is

correlating user data and final destination data. This is possible by monitoring the

first point in the anonymity network and the last point that connects the user with

the final destination (web server). Through analysis of the amount of data, it is

possible to correlate the user and their final destination when there is variety in the

data size. The path on the JonDonym network is known and if the attacker has the

ability to monitor the traffic from the first mix and the last mix (out of the last mix),

then connecting the users of this cascade and the amount of sent and received data

is possible. The path on the Tor network is not fixed, but the correlation is also a

possible threat. To this end, there are studies on using marking techniques to trace

user activities, but they are often limited to a specific user, a specific web server or

even a specific exit node. The attacker could compromise both an entry node and

an exit node, in which case the traffic out of the entry node is marked. The attacker

then watches for the mark to appear at the exit node. Indeed, the probability of the

user who is using the compromised entry node of using the compromised exit node

as well is very low, but it is still possible. The mark might be used as well to track

the web server instead of the exit node [60]. In this case, the attacker compromises

an entry node and watches for the users who are using this entry node to access this

specific web server. On the other hand, the design of the I2P network makes this kind

of correlation a low threat. The path is not fixed or specified; users build inbound

and outbound tunnels which do not count on the type of the router. All routers on

the networks can be part of any path. The encryption mechanism provides for the

confidentiality and the integrity of the messages. However, if the attackers have the

resources to monitor all routers, then they may have enough data to discover paths.

As for the JonDonym network, this type of attack can target a mix server. A

mix server has a limit on the number of users it can serve. The attacker could use

this limit to break the anonymity of the mix server. If the attacker connects to a

mix server to fill its capacity (n) to the point (n-1) when the user connects to the

only space left in the mix server, the attacker could then isolate and detect the user’s

traffic.

The threat models are not the same for all anonymity services; what is considered
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a threat to one service may not be applied to another anonymity service. Even when

they share the same threat to a certain saturation point, the level of the risk is not

always the same. Therefore, to measure the anonymity of any anonymity service, the

threat model should be taken into consideration, based on the environment or the

purpose for which the anonymity service is used.

Accordingly, evaluating the level of anonymity should be done in a comprehensive

way that takes into consideration the purpose, the design and the environment. As a

result, the following factors will be used to measure the effectiveness of any anonymity

service: the level of information available to the service provider, the obfuscation

options, application anonymity, the authority, the logs and the threat models.

4.2 Evaluation

This section discusses how the aforementioned factors can be used to measure the

anonymity of Tor, JonDonym and I2P. These factors are dynamic, so they change

over time based on many variables such as user behaviour, the anonymity system

used, the configuration of the system, the purpose of using the anonymity system,

etc. Therefore, these factors will be quantified in order to be able to measure and

compare them against each other. This process is called the weighted anonymity

factor. What follows summarizes the weighted anonymity factor measurement.

4.2.1 Factor Calculation

To quantify these factors, they are grouped into three categories, as shown in Table

4.2. These categories (High, Mid and Low) are converted into numerical values as 100,

67 and 33, respectively. The exception is the obfuscation, where it is labelled as Yes

or No depending on whether an obfuscation is used. The reason is that some of the

anonymity systems involve obfuscation techniques and others do not. Additionally,

the use of these techniques (if they are available) is optional. Therefore, the value

is set to 100 (for No) and 0 (for Yes). The higher the values for these factors, the

lower the anonymity level of the system. For example, a 100 in the Threat model

factor is applied whenever the threat in the case under study is very strong (i.e.,

highly probable). The three categories are represented by 100, 67 and 33 as an

approximation for High, Mid and Low. These values could be expanded and detailed
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to a scale from 10 to 100 to increase accuracy. This will be explored further in Section

4.2.5.

Level of Information
High Mid Low
100 67 33

Obfuscation
Yes No
0 100

Authority and Log
High Mid Low
100 67 33

Application Configuration
Low Security Configuration Mid Security Configuration High Security Configuration

100 67 33

Threat Model
Low Cost Mid Cost High Cost

100 67 33

Table 4.2: Proposed anonymity factors.

4.2.2 Weight Calculation

Given that the weights of the factors may vary from one evaluation environment to

another, quantifying these factors to measure anonymity is necessary but insufficient

by itself. Also, the weights of the factors have to be considered. Therefore, the

“Pairwise Comparison” technique is employed to evaluate the weight of these factors.

Each one of the factors is compared with all other factors; then, the weight for the

factor is calculated based on these comparisons. The higher the weight of a factor,

the more important it becomes for the anonymity of a given service. Calculating the

weights is performed until all factors are evaluated comparatively, as shown in Table

4.3.

γ 1

γ 2 2 γ 1

γ 3 γ 1 γ 3 γ 3

γ 4 γ 4 γ 4 γ 3 γ 4

γ 5 γ 1 γ 2 γ 5 γ 3 γ 5 γ 4 γ 5

Table 4.3: Calculating the weights.

γ 1 refers to the first factor “level of information available to the service provider”.

γ 2 refers to the second factor and so on.

Table 4.4 shows the weights of the five factors after the comparison and their total

value. Based on the weight value it is important to notice the three factors with the

same weight (the level of information, the application configuration and the authority
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and log. The obfuscation has the lowest importance, compared to the other factors.

The weights represent the importance of each factor compared to the other factors.

Using the pairwise comparison helps in deciding how to rank or weight the factors

compared to the others.

γ 1 γ 2 γ 3 γ 4 γ 5 Total
4 1 4 4 3 16

Table 4.4: Final weights of the factors.

4.2.3 Weighted Anonymity Factor

Eq. 4.1 and Eq. 4.3 are applied after calculating the values of the factors and weights.

Eq. 4.2 is the total of the weights of the factors. (f) represents the value of a factor.

WeightedAnonymity Factor (WF ) = γ1f1 + γ2f2 + γ3f3 + γ4f4 + γ5f5 (4.1)

=
n∑
i=1

γi fi where n = number of factors (4.2)

TotalWeight (Tγ) =
n∑
i=1

γi (4.3)

The measurements may vary from one environment to another, where different

factors are applied or when the numerical conversion is different from what is used in

Table 4.2. To generalize measurements, Eq. 4.4 shows the conversion of the calculated

values based on the factors used to a percentage by using the minimum and maximum

values from Eq. 4.1.

WeightedAnonymity Factor (%) = (1− WF −Min(WF )

Max(WF )−Min(WF )
) ∗ 100 (4.4)

Eq. 4.4 can be rewritten after calculating the weights to the form in Eq. 4.5.

WeightedAnonymity Factor inPercentage (%) = (1− WF − 495

1600− 495
) ∗ 100 (4.5)



48

4.2.4 Evaluation Case Study

In this scenario, three users are assumed for whom the levels of anonymity will be

compared. It is important to note that the evaluation does not aim to identify the

best anonymity service; it aims to evaluate the level of anonymity according to the

environment in which these anonymity services are used.

The first user (A) uses the standalone Tor to browse Internet web sites. The user

configures the Chrome browser to work with Tor by setting the browser to access

Tor via Socket. To increase the anonymity level, the user adds Scramblesuit as an

obfuscation option to his “torrc” file to access Tor via a bridge. The user (A) browses

websites on the Internet which include a compromised web server by an attacker.

The web server injects the coming request to force the browser to request images

from another website that belongs to the attacker. The attacker aims to identify the

user by forcing the browser to send requests without using the Tor network.

User (B) chooses to use JonDonym as an anonymity service. The user does not

have a technical background. All the settings are left to default. The only addition

to the default setting is that the user chooses to use the TCP/IP forwarder. User (B)

wants all the activities that she performs on the Internet to be anonymous. Therefore,

user (B) uses JonDoFox to browse all the Internet websites. She visits usually web

sites such as news, videos, email, Internet shopping and her bank account.

User (C) lives in a country where the Internet is censored and some websites are

blocked. Therefore, user (C) uses Tor to gain access to the blocked Internet blogs.

User (C) browses these blogs and participates on them via Tor. This user is concerned

about hiding his identity, so he uses the Internet from the company where he works.

It seems that user (C) is the only person who is using Tor in this company. The user

organizes his time so that he only accesses Tor at the end of the day between 5-6 pm

on weekdays.

According to the scenario above, Table 4.5 shows how it is converted to measurable

numeric values, using the proposed factors.

Level of Information Obfuscation Authority and Log Application Configuration Threat Model
A 33 0 33 100 67
B 100 0 67 33 100
C 67 100 100 33 67

Table 4.5: Evaluated factors for users (A), (B) and (C).
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Table 4.5 is calculated based on the given information about the scenario above

and how the users (A), (B) and (C) are using these anonymity services. For example,

user (C) did not include an obfuscation option when using the anonymity service;

therefore, the obfuscation value is measured as 100. User (A) prefers to use his

favorite browsers instead of using the default Tor browser. Therefore, the possibility of

a DNS leak is higher, especially when accessing suspicious websites or when using any

application other than browsing. Based on that, user (A) gets 100 on the application

configuration. Even though user (B) uses some sort of obfuscation, she misses the

fact that browsing any website already linked to her real identity such as her email

or bank account, even while using an anonymity service, does not mean that she is

anonymous. Furthermore, the information available to the exit node, in this case, is

high, even if the information does not contain passwords. The level of information is

evaluated as 100 in this case. The same applies to user (C); he uses Tor at the same

time daily from the same place where no one else is using Tor. Using Table 4.5 and

Eq. 4.1, the weighted factors will be calculated as below.

WF = γ1f1 + γ2f2 + γ3f3 + γ4f4 + γ5f5

WF = 4f1 + f2 + 4f3 + 4f4 + 3f5

WFA = 4 ∗ 33 + 0 + 4 ∗ 33 + 4 ∗ 100 + 3 ∗ 67

= 865

WFA(%) = (1− 865− 495

1600− 495
)

= 66.5%

WFB = 4 ∗ 100 + 0 + 4 ∗ 67 + 4 ∗ 33 + 3 ∗ 100

= 1100

WFB(%) = (1− 1100− 495

1600− 495
)

= 45.2%

WFC = 4 ∗ 67 + 100 + 4 ∗ 100 + 4 ∗ 33 + 3 ∗ 67
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= 1101

WFC(%) = (1− 1101− 495

1600− 495
)

= 45.16%

Based on the above calculations, user (A) has a higher level of anonymity than

either user (B) or (C).

4.2.5 Expanding the Quantification

The mechanism used in this chapter to measure anonymity level is first based on

determining the factors. Then, each factor is divided into three levels (two for the

obfuscation) in order to be able to evaluate each factor numerically. The importance

of each factor is then determined based on a comparison of all the factors. Figure 4.1

shows the sequence for measuring anonymity. The second step, which is converting

the factors into measurable values, has three levels: High, Mid and Low. According to

these values, the factors are converted into numeric values. This could be considered

to be the applicable form of measuring anonymity. However, it is possible to expand

this step to improve the accuracy of the quantification of the factors by: (1) instead

of using three levels, the factors could be evaluated as a scale (for example, from

10 to 100), (2) At the same time, each value on the scale should represent the level

of the anonymity of the factor in a predefined way. In this way, the value of the

factors is determined more accurately. For example, if the extended scale is applied

to the “Threat Models” factor, then the values will be from 10 to 100 instead of 33,

67 and 100. The threats or attacks on the anonymity systems should be ordered

to match the scale from 10 to 100. This requires the study and evaluation of all

possible threats on the anonymity systems and their applicability. In this way, the

scale has predefined values for every possible threat against the anonymity systems in

the threat models factor. The same step could be repeated for the other factors. This

type of approach could increase the accuracy of the proposed factors in measuring

the anonymity provided by the services.
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Figure 4.1: Sequence for Anonymity Measurement

4.3 Summary

This chapter presents a different method for measuring the level of the anonymity on

the multilayer-encryption anonymity networks. First, the method applies five factors

which influence the anonymity on such networks. The five factors are: the level of

information available for the service provider, blocking anonymity and obfuscation

options, application and anonymity, authority and logs and threat models. Then

these factors are compared with each others to rank their importance (weight). Af-

terward, depending on the case under study, these weighted factors could be applied

for measuring the anonymity level. As an example for applying these factors, the

anonymity level is measured for three cases with different environments for using the

anonymity network which mimic some of the real use of such anonymity networks.

In short, the measurement of the anonymity networks provides a quantifiable way of

measuring the level of anonymity of multilayer-encryption anonymity networks.



Chapter 5

Anon17: Network Traffic Dataset of Anonymity Services

One of the difficulties that face researchers in the anonymity networks field is the lack

of an anonymity data set. Researchers need to collect their data to conduct research

or to use a simulated environment to collect the data they need. The lack of such a

data set is due to the nature of the anonymity networks. These anonymity networks

aim to provide a certain level of privacy for the users. There are many studies

conducted on these anonymity tools. The studies include a wide range of aspects

related to the anonymity field such as improving the design, performing attacks on the

anonymity tool, analyzing the user’s behaviour on the anonymity network, studying

the performance and delay, revealing the user’s identity and many others.

In some of the anonymity research papers the used data is collected in a simulated

environment [6] [7]. Others used data collected by the researchers themselves [16] [3]

[111] [62]. The most common issue that faces researchers in the anonymity field is

that these anonymity tools provide anonymity to the users; thus collecting the data

and making it publicly available might affect the privacy of the users of the anonymity

tools. Consequently, the research in this field ends up using data collected from a

simulated environment or collected by the researchers themselves.

The traffic on the anonymity networks relies on passing the users’ data through

multiple stations on the network (nodes, for example). These stations pass traffic

for multiple users; collecting the data from these stations will include traffic for other

users which means that usually the research needs to run a station (node) and modify

the way they collect the data to include only their traffic.

Anon17 is a data set for three anonymity tools: Tor, JonDonym and I2P. This

data is prepared and made publicly available without affecting the privacy of the

users. To this end, the IP addresses of the users have been removed. The payload

information is used only for statistical measurement and then is removed. This is

because Anon17 aims to provide a publicly available anonymity data set which could

52
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be used to study the aforementioned anonymity tools. The data set includes several

applications used on these anonymity tools as well as several obfuscation techniques

that are used on some of these tools. Consequently, the data set could be used for

multiple types of research.

5.1 Data Collection and Traffic Types

Anon17 [5] was collected at the Network Information Management and Security

(NIMS) lab [74] between 2014-2017 in a real network environment. The data set

is labelled based on the information available on the anonymity services themselves.

For example, in the Tor network, the IP addresses of the Tor nodes are available.

Therefore, whenever data related to a node on the Tor network is collected, the IP

address is used to label this traffic as Tor. The same applies for all the labelling in

the data; none of the application classification tools was used to label the data. The

Anon17 data set contains the data listed below.

5.1.1 Tor Data

The Tor data set contains Tor traffic. The traffic includes the circuit establishment

and the user activities on the Tor network, such as browsing the Internet websites.

5.1.2 TorApp

The TorApp data set contains flows for three machines (computers) running three

applications on the Tor network (Browsing, Video streaming and File sharing). Con-

sequently, there are three classes on the TorApp data set (Browsing, Streaming and

BitTorrent [BT]). The Browsing class contains connection flows between a user and

an entry node on the Tor network when the user is using Tor to browse different

Internet websites. The Streaming class has the connection flows between the user

and the entry node when the user is watching videos on Tor. The last class, the

BitTorrent class, contains flows between the user and the first node when the user is

using Torrent files on the Tor network.
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5.1.3 Tor PT

The TorPT data set contains flows for Tor pluggable transports. TorPT has five

classes: Obfs3, Meek, Flashproxy, FTE and Scramblesuit. TorPT is collected by

connecting to the pluggable transports from the NIMS lab and capture the traffic.

The Obfs3 data is collected from two different Obfs3 bridges. The Scramblesuit traffic

is collected by connecting to 22 different Scramblesuit servers. This is to ensure that

the effect of changing the flow behaviour that Scramblesuit pluggable transport aims

to achieve is included in the data.

5.1.4 I2PApp80BW

These traffic flows are collected while running three applications on the I2P network.

The applications (classes) are Eepsites (the web sites browsing on the I2P network),

jIRCii (Internet Relay Chat [IRC] plugin on the I2P network) and I2Psnark (the file

sharing plugin on the I2P network). The bandwidth sharing on the I2P client is

set to default which is an 80% sharing rate of the user bandwidth. In this data set

each class contains the application flows in addition to the management traffic flows.

For example, the Eepsite flows contain flows for the Eepsite Tunnels in addition to

the Tunnels used for the management of the I2P network and tunnels used to share

bandwidth such as the Exploratory and the Participating Tunnels.

5.1.5 I2PApp0BW

This data set is similar to the I2Papp80BW; the difference is that the amount of

shared bandwidth is set to 0%. This will reduce the amount of management traffic

flows on each class.

5.1.6 I2PUsers

This data set contains the traffic flows for three users on the I2P network. The

classes are named PC1,PC2 and PC3. The data set I2PUsers is the same data set

used in I2PApp80BW. The difference is that the data is classified differently. Instead

of labelling the data set based on the application, the data set is labelled based

on the user traffic. Consequently, any class on this data set will contain the three
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applications used on the I2Papp80BW data set. For example, the PC1 flows contain

flows for the machine of the first users when the users have used Eepsites, jIRCii and

I2Psnark on the I2P network.

5.1.7 I2PApp

This data set contains traffic flows for the same three applications used in I2PApp80BW.

The difference is that this data set contains separate classes for the management tun-

nels. The total number of classes in this data set is five: Eepsites, jIRCii, I2Psnark,

Exploratory Tunnels and Participating Tunnels. Consequently, the application tun-

nels do not contain any management tunnel flows.

5.1.8 JonDonym

The JonDonym data set contains traffic flows for the JonDonym network. The data

set contains flows for the whole free mixes on the JonDonym network. Table 5.1

shows the Anon17 data set and the number of instances on each part of the data set.

Tool Type of Traffic Dataset Name Classes Number of Instances Total Number of Instances

Tor

Normal Tor Traffic Tor Tor 5,283 5,283

Applications on Tor TorApp
Browsing 84

252Streaming 84
Torrent 84

Tor Pluggable Transports TorPT

Obfs3 14,718

353,384
Meek 43,152
FTE 106,237

Scramblesuit 16,953
Flashproxy 172,324

I2P

I2P Applications Tunnels with other Tunnels 80% Bandwidth I2PApp80BW
Eepsites 149,997

449,987jIRCii 149,998
I2PSnark 149,992

I2P Applications Tunnels with other Tunnels 80% Bandwidth I2PApp0BW
Eepsites 127,349

195,081jIRCii 29,357
I2PSnark 38,375

I2P Users Traffic I2PUsers
Pc1 150,000

449,998Pc2 150,000
Pc3 149,998

I2P Applications I2PApp

Eepsites 145

640
jIRCii 221

I2PSnark 62
Exploratory Tunnels 86
ParticipatingTunnels 126

JonDonym JonDonym Traffic JonDoNym JonDonym 5,440 5,440

Table 5.1: The number of traffic flows in each data set.

5.2 Dataset Features and Format

Tranalyzer [106] is used to extract the flows from the PCAP files captured in the

NIMS lab. Tranalyzer has 91 features such as Number of bytes sent, Number of bytes

received, Statistics about the Interarrival time and Number of connections, etc. Some

of the unrelated features are removed from the data set, such as the ICMP features
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and VLAN features because they do not provide useful information for this research.

IP addresses and payloads of the packets are removed as well from the data set to

protect the privacy of the users. In the data set the values of some features might

have zeros. For example, the I2P network works on both TCP and UDP. Therefore,

if the I2P data set contains UDP connections then all the TCP-related features will

have zero values. The data is formatted into into the Attribute-Relation File Format

(ARFF) file format used in the open source data mining software tool, WEKA [40].

Table 5.2 summarizes the features included in the Anon17 data set.

Tranalyzer

Features

Description

dir time first, time last, duration
Flow direction, time and duration
of the flow

numPktsSnt numPktsRcvd numBytesSnt numBytesR-
cvd minPktSz maxPktSz avePktSize pktps bytps pk-
tAsm bytAsm

Counting of Packets and Bytes

ip mindIPID ip maxdIPID ip minTTL ip maxTTL
ip TTL Chg ip TOS ip flags ip Opt ip OptCnt

The IP Header-related features
such as TOS, TTL, etc.

tcp PSeqCnt tcp SeqSntBytes tcp SeqFaultCnt
tcp PAckCnt tcp FlwLssAckRcvdBytes
tcp AckFaultCnt tcp InitWinSz tcp AveWinSz
tcp MinWinSz tcp MaxWinSz tcp WinSzDwnCnt
tcp WinSzUpCnt tcp WinSzChgDirCnt tcp AggrFlags
tcp AggrAnomaly tcp AggrOptions
tcp MSS tcp WS tcp OptCnt tcp S-SA/SA-
A Trip tcp S-SA-A/A-A RTT tcp RTTAckTripMin
tcp RTTAckTripMax tcp RTTAckTripAve tcpStates

The TCP Header-related features
such as Window size, sequence
number, etc.

connSrc connDst connSrc Dst

Counting of number of connec-
tions between source and destina-
tion/ source to different destina-
tions.

min pl max pl mean pl low quartile pl median pl
upp quartile pl iqd pl mode pl range pl std pl stdrob pl
skew pl exc pl

Packet length statistics

min iat max iat mean iat low quartile iat median iat
upp quartile iat iqd iat mode iat range iat std iat
stdrob iat skew iat exc iat nfp pl iat ps iat histo

Inter arrival time statistics

TrafficType The Classes

Table 5.2: Anon17 data set features.
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5.3 Summary

This chapter presents Anon17, the first publicly available data set for the multilayer-

encryption anonymity networks studied in this thesis. Anon17 contains data for three

popular anonymity networks, namely, Tor, JonDonym and I2P. Moreover, Anon17

contains data for several applications running on multilayer-encryption anonymity

networks such as browsing web pages and videos and file downloading, among others.

These applications’ data is collected at the NIMS lab by running multiple computers

connected to the anonymity networks running different applications. As well, Anon17

contains different obfuscated traffic used on Tor such as Meek, FTE and ScrambleSuit,

among others. Moreover, Anon17 is ready-to-use for researchers in the form of Arff

files.



Chapter 6

Research Methodology

This research aims to analyze multilayer-encryption anonymity networks. Tor, Jon-

Donym and I2P are well-known examples and the most popular multilayer-encryption

anonymity networks. Therefore, these aforementioned anonymity systems/networks

have been chosen to be studied in this research. As shown previously in Chapter 4,

analysis of such networks starts by understanding the anonymity they aim to pro-

vide. Several factors are proposed which describe the anonymity on such networks.

In addition, these factors are quantified (weighted) in order to be able to apply them

to different anonymity environments.

6.1 Data Collections

The lack of a data set in this research field is a challenge to study multilayer-encryption

anonymity networks efficiently. The analysis of such networks in this research requires

obtaining various data sets to cover the multiple aspects the research will study. The

required data is the traffic on Tor, JonDonym and I2P. The configuration and the

setup for these networks are not the same, so collecting data for each one of them

requires a different setup. In Chapter 5, Anon17 is presented where the anonymity

data is collected and made publicly available. This research will use Anon17 and

other data sets collected by different universities and labs.

Experiments on the analysis of traffic flow behaviour of the multilayer-encryption

anonymity networks are conducted to study the possibility of identifying such net-

works. Furthermore, identifying the obfuscation techniques employed by some of the

multilayer-encryption anonymity networks is attempted using the traffic flow analysis.
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6.2 Machine Learning Algorithms

Decision Tree C4.5, Random Forests, Naive Bayes (NB) and Bayesian Network (BN)

are the machine learning algorithms employed in this research for analyzing the ex-

tracted flows of the multilayer-encryption anonymity networks. What follows is an

overview of the machine learning algorithms employed.

6.2.1 C4.5

C4.5 [80] is a supervised machine learning algorithm which builds a tree that defines

a relation between the instances, attributes and classes on a training set of data. The

tree can be used then to classify unseen instances based on the relationships built

during the training phase. The tree divides the training set into subsets starting at

a root node. The root node represents an attribute that split the training set best.

The tree then split again on another decision node based on another attribute. The

split decision is based on entropy and information gain. The entropy of a training

data (T) with c classes is calculated as shown in Eq. 6.1:

Entorpy(T ) =
c∑
i=1

pi log2 pi (6.1)

The probability pi is calculated as the number of instances in class i over the total

number of instances. The information gain of an attribute A on the training data (T)

is calculated as shown in Eq. 6.2. v represents the possible values of attribute A. Tv

is a subset of the training data (T) that has the value v of attribute A.

InformationGain(T,A) = Entropy(T )−
∑
v

|Tv|
T

Entropy(Tv) (6.2)

C4.5 is the successor of Iterative Dichotomizer 3 which is known as an ID3 algorithm.

ID3 was presented by Quinlan [79] in 1979. The ID3 algorithm [67] builds a decision

tree by using a top-down greedy search from the possible decision trees. The algorithm

is shown in Algorithm 1 [43]. ID3 starts by deciding the root attribute of the tree

by testing all the attributes in the training set using the information gain. The root

node is then branched based on the possible values of the attribute. Then the training

instances are sorted to the appropriate branch. The process is repeated to select the

best attribute for classifying the training examples based on the information gain.
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Algorithm 1 : ID3

inputs R: a set of non-target attributes

C: the target attribute

S: a training set. returns a decision tree;

if S is empty then

Return a single node with value Failure

end if

if S consists of records all with the same value for the target attribute then

Return a single leaf node with that value

end if

if R is empty then

Return a single node with value as the most common value of the target attribute

values found in S

end if

D ← the attribute that has the largest Gain (D,S) among all the attributes of R

djj = 1, 2, ...,m ← Attribute values of D

Sj with j = 1, 2, ...,m← The subsets of S respectively constituted of dj records

attribute value D

Return a tree whose root is D and the arcs are labelled by d1, d2, ..., dm and going

to sub− trees ID3 (R−D,C, S1), ID3(R−DC,S2), .., ID3(R−D,C, Sm)
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6.2.2 Random Forests

Random forests [12] is an ensemble of trees working together to predict. Random

forests build multiple decision trees, then for a given input, a vote decides the classi-

fication results based on the majority of the result of the trees. A tree on the random

forests ensemble is built by selecting a set of features randomly at each node and

split on theses and splitting these features based on the best possible split. The tree

is built on about 66% of the training set. The instances are selected randomly from

the training set with replacement. The rest of the training set (Out Of Bag) is used

to calculate the error of the tree (OOB error). One of the features that random

forests offers is to avoid overfitting. Random forests showed good performance and

enhancement on such decision trees as C4.5. At the same time, random forests lacks

the interpretability that C4.5 offers.

Bootstrap aggregating or Bagging is an ensembles method which could make dif-

ferent models on different random samples from the training data set. The bootstrap

samples are drawn with a replacement which makes the bootstrap sample different

from the original data set. Subspace sampling builds each tree from a different ran-

dom subset of the features. This sampling reduces the training time of each tree.

Algorithm 2 shows the random forests algorithm [35].

6.2.3 Naive Bayes

Naive Bayes [115] is a supervised classifier known for its simplicity to build. Naive

Bayes is based on Bayes’s theorem with an assumption of independence between

features. The assumption that a feature (x) on a class (c) is independent from other

features is called the class conditional independence. If the likelihood P (x|c) is the

probability of feature x given class c, P (c) is the prior probability of class c and P (x)

is the prior probability of feature x. Then, the posterior probability of class c, given

feature x, P (c|x) is calculated as:

P (c|x)
P (x|c)P (c)

P (x)
(6.3)

The likelihood function P (x|c) is evaluated for the observed data x (feature) and

it is shown as a function of c [11].
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Algorithm 2 : Random Forests

Input: data set D; ensemble size T; subspace dimension d.

Output: ensemble of tree models whose predictions are to be combined by voting

or averaging.

for t=1 to T do

build a bootstrap sample Dt from D by sampling |D| data points with replace-

ment;

select d features at random and reduce dimensionality of Dt accordingly;

train a tree model Mt on Dt without pruning;

end for

return Mt|1 ≤ t ≤ T
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The likelihood is not probabilistically distributed over c. Therefore, the posterior

probability could be rewritten as:

Posterior ∝ Likelihood× prior (6.4)

The posterior probability can be expressed in terms of the prior distribution and the

likelihood function by integrating equation 6.3 with respect to c:

P (x) =
∫
P (x|c)P (c) dc (6.5)

6.2.4 Bayesian Network

Bayesian Network (Belief Network) [36] is a probabilistic graphical model which uses a

combination of graph theory and probability theory. The graph describes the relations

among random variables shown as nodes on the graph. Links on the graph repre-

sent the relation (probabilistic dependencies) among the random variables. Bayesian

uses a Directed Acyclic Graphs (DAG) model where links are directed to show the

causality among the random variables. Nodes on the graph are represented as well by

Conditional Probability Distribution (CPD) which in a discrete model can be repre-

sented as a Conditional Probability Table (CPT) for quantifying the relations among

the nodes.

To demonstrate how the Bayesian Network represents a direct graph for a proba-

bility distribution [11], assume a joint distribution p(a, b, c) for the variables a, b and

c. The joint distribution p(a, b, c) can be rewritten using the following probability

rule:

p(X, Y ) = p(Y |X) p(X) (6.6)

The joint distribution p(a, b, c) can be rewritten as follows:

p(a, b, c) = p(c|a, b) p(a, b) (6.7)

p(a, b, c) = p(c|a, b) p(b|a) p(a) (6.8)

Equation 6.8 could be represented by a graph where the three random variables are

represented by three nodes. The conditional probabilities are represented by links on

the graph between the nodes. The p(c|a, b) could be presented by links from node
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Figure 6.1: Directed Acyclic Graph for the Joint Distribution of Variables x1 to x7

a and node b to c. A link from node a to node b will present p(b|a). The graph

will not show any link for p(a) because it has no conditional probability. A graph

could be drawn for more than three variables. For example, if we have a K number

of variables, the joint distribution p(x1, ..., xK) could be written using the product of

conditional distribution as follows:

p(x1, ..., xK) = p(xK |x1, ..., xK−1)...p(x2|x1)p(x1) (6.9)

Assume we would like to draw a graph for the joint probability distribution

p(x1, x2, x3, x4, x5, x6, x7) which is written in the product of conditional distributions:

= p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5) (6.10)

the variables x1, x2 and x3 in the parts p(x1)p(x2)p(x3) have no conditional proba-

bility. Therefore, as shown in Figure 6.1, the nodes of these variables have no links

going to them. The nodes for variables x4, x5, x6 and x7 show links coming from the

other nodes representing the conditional probability.

6.3 Flow Exporters

Flow exporter tools use the following five tuples to define a flow: the source IP

address, the destination IP address, the source port, the destination port and the
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protocol. Flow analysis employs statistical information extracted from the packet

header such as packet size, average packet size and minimum and maximum packet

size. In addition, information about packet transmission rates such as average inter

arrival time, minimum inter arrival time and maximum inter arrival time is employed

by the flow analysis as well. It is possible also to use information extracted from the

used protocol. For example, if the protocol is TCP, then window size, TCP flags,

Sequence and other protocol-related information could be used in the flow analysis.

There are many flow analysis tools [39] commercially available such as Cisco Net-

Flow [20], Juniper J-Flow [56] and InMon sFlow [51] or open source such as Softflowd

[89], YAF [116], Maji [63], Tcptrace [95] and Tranalyzer [106]. Most of these tools

support extracting flows from captured network traffic in forms like PCAP or directly

from the network. Extracting flows first requires collecting data (flow exporter), then

these flows are sent to a flow exporter to archive them, finally analyzing these flows.

Some of the flow analysis tools contain the flow exporter only and require a collector,

others have the exporter and collector integrated into the tool itself [39]. Figure 6.2

shows how the flow analysis tools have been employed in this thesis to extract and an-

alyze multilayer-encryption anonymity networks. Even though flow analysis tools use

mostly the same 5-tuple to extract flow information, they differ in multiple ways such

as the number of generated features, the definition of flow timeout and the ability to

configure this value, the number of generated flows, the supported form of captured

traffic, as well as other features. Few of the open source flow analysis tools have been

tested for the purpose of analyzing multilayer-encryption anonymity networks. Based

on the performance of Tranalyzer over Tcptrace as shown in Chapter 7 and in our

published work [85], Tranalyzer has been selected for use as the flow analysis tool in

this thesis.

In this research, once the flows are exported using Tranalyzer, information such

as the source IP address, the source IP address, source and destination numbers

as well as flow start and end times are removed from the analysis to ensure that the

classification process is not biased using this information. Not using the port numbers

in the analysis eliminates the bias as well in terms of linking a port number to an

application. This is important since many applications use dynamic port numbers on

today’s Internet. In most of the multilayer-encryption anonymity networks the port
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Figure 6.2: Flow Analysis on Anonymity Networks

number is configurable. For example, Pluggable transports can be configured even to

use well-known ports such as port 80 or port 443.

6.4 Summary

This chapter demonstrates the methodology employed in the thesis. This includes

describing the data sets used in this thesis (Anon17, plus data collected from other

universities or labs). In addition, this chapter illustrates the machine learning al-

gorithms used in the thesis. The algorithms used are C4.5, Random Forests, Naive

Bayes and Bayesian Networks. The flow analysis approach and how it is implemented

in this thesis to perform analysis on the multilayer-encryption anonymity networks is

explained as well.



Chapter 7

Experiments on the Identification of Anonymity Networks

Multilayer-encryption anonymity networks provide privacy for the network’s users by

the separation between the users’ requests and the final destination. The separation

is achieved by relaying the users’ data through multiple stations in encrypted traffic

to the final destination. The multiple encryptions are used to protect the data even

from any station on the path to the final destination. In this chapter flow analysis is

used to study the amount of information which could be extracted from the encrypted

traffic. Moreover, the analysis studies the application’s behaviour on the multilayer-

encryption anonymity networks and the possibility of identifying these applications.

7.1 Tor Behaviour to Circuits and Flows Analysis

Tor provides its users with anonymity by hiding their browsing activities and loca-

tions. This level of anonymity is achieved by relaying the users’ activities through

three Tor nodes. When the user connects to the first relay, it knows the IP address

of this user. The user activities stay encrypted while moving from the first relay to

the second one and from the second one to the third one. The third relay sends the

user activities on behalf of the user without any information regarding the identity

of the user.

This section analyzes the amount of information which can be extracted from the

encrypted Tor traffic without decrypting the traffic. To explore this, two different

approaches for the classification of user activities are employed. The first approach

is the Flow level classification. It depends upon analyzing the TCP communication

between the user and the relay to predict the type of user activities in the encrypted

traffic. The second approach is the circuit level classification. The encrypted circuits

have characteristics which can be extracted and calculated to classify the type of

traffic in the circuits. The main difference between the flow level classification and

67
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the circuit level classification is the level of access to the Tor network. The circuit

level classification requires having access to the relay node, itself [3]. That means

only the one who runs the relay can gather the required statistics about the circuit.

By contrast, flow level classification only requires access to any point between the

user and the relay. This means the collection of the encrypted TCP communication

between the user and the relay can be on the user machine, the relay machine or the

ISP.

7.1.1 Cells in the Tor Network

Even though the cells in the circuit are encrypted, they have different behaviours and

characteristics according to the type of traffic they carry. Cell timing, the number of

downlink cells, the number of uplink cells and the number of cells in the duration of

the circuit vary based on the type of traffic in the cells. There is a directly proportional

relationship between the type of traffic and the number of cells that flow in the circuit:

the higher the amount of data, the higher the number of cells. The uplink cells that

flow from the user to the relay depend on how the application reacts to send data

requests. For example, as shown in Figure 7.1, the number of uplink cells for web

browsing is much lower than the uplink cells in BitTorrent. This reflects the natural

behaviour of the applications. The web browsing activity uses few requests to visit

a web site. By contrast, BitTorrent sends frequent requests to locate the files that

the user wants to download. The circuit itself stays active for a longer duration in

BitTorrent than it does in web browsing. Even if two circuits stay active for the same

duration, the circuit utilization is higher in BitTorrent. When these cell statistics and

timings are combined together they provide a good view for distinguishing among the

different types of traffic in the cells.

Figure 7.2 shows how the rate of uplink cells to downlink cells changes with time

in web browsing circuits. In most of the circuits the rate reaches its maximum value.

This rate stays only for a short period when it starts to decay quickly. The rate then

starts to fluctuate up and down until it reaches a very low rate. This observation

shows conformity with normal web browsing requests in which the user enters a URL

and waits for the web server’s reply message to download then enters another URL

and so on.
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(a) Browsing Uplink (b) Browsing Downlink

(c) Streaming Uplink (d) Streaming Downlink

(e) Torrent Uplink (f) Torrent Downlink

Figure 7.1: Data Transferred in the Uplink and Downlink Communications for Dif-
ferent Applications
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Figure 7.2: Browsing Circuit Data Rate - Different Colours Show the Rate for Dif-
ferent Circuits

The amount of data in the requests sent is lower than the amount of data down-

loaded from the web sites themselves. This causes the rate to decay with time.

Figure 7.3 shows how the rate behaviours differ for the video streaming circuits.

The rate is higher than for the web browsing. The decay period is longer and

smoother. The rate remains within a certain range for the rest of the circuit du-

ration time. The BitTorrent circuits show yet another behaviour in the rate as shown

in Figure 7.4. In this case, the rate reaches to 100 and decays slowly. The circuit

duration is longer than both the web browsing and the video streaming. BitTorrent

uplink cells stay high in numbers compared to the web browsing or the streaming.

However, since the number of the downlink cells is high in BitTorrent, the rate decays

with time.

7.1.2 Circuit Level Classification

This approach depends upon using statistics extracted from the circuits and their

cells to classify the user activities in the Tor traffic without decrypting the traffic. It

is similar to the work done by AlSabah, Bauer and Goldberg [3] but is extended with

the attributes described below.
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Figure 7.3: Streaming Circuit Data Rate - Different Colours Show the Rate for Dif-
ferent Circuits

Figure 7.4: Bittorrent Circuit Data Rate - Different Colours Show the Rate for Dif-
ferent Circuits
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Figure 7.5: The Number of Cells During Circuit Life Time

7.1.2.1 Cells Per Circuit Life Time

The amount of data delivered by a circuit is a good indication of the type of traffic

carried by the circuit. However, without considering the time the circuit is alive, this

indication might be misleading. For example, two circuits might deliver the same

amount of data in two different durations. As shown in Figure 7.5, the numbers of

streaming circuits and BitTorrent circuits are both high compared to the number of

browsing circuits. The circuit life time is what distinguishes them.

7.1.2.2 Uplink Cells

Relays’ cells are transferred in both directions: uplink and downlink. BitTorrent

seems to transmit a higher amount of uplink cells than the browsing or streaming

applications. In other words, the number of cells required to send a request might be

a good indicator of the type of traffic running on the Tor network.

7.1.2.3 The Ratio of the Downlink Cells to the Uplink Cells

Even though the uplink data is a good indication of the type of traffic the circuit

has, the ratio of the uplink to the downlink is also important. If the circuit life time

is long enough, it could transmit a considerable amount of uplink cells even if it is



73

Figure 7.6: The Ratio of Downlink Cells to Uplink Cells During the Circuit Life Time

used for browsing. However, most of the time, the rate will vary based on the type

of traffic no matter how long the life of the circuit is. Figure 7.6 shows the ratio of

the downlink cells to the uplink cells with the circuit life time.

7.1.2.4 Exponentially Weighted Moving Average (EWMA)

EWMA is a good indicator because it can differentiate between two circuits when

both have the same life time. Eq. 7.1 is used to calculate the EWMA of the cells

[72]:

x̄k = α x̄k−1 + (1− α) xk (7.1)

where x̄k is the current average. x̄k−1 is the previous average. xk is the current

measurement. α is a factor that indicates the weight for the old value, 0 ≤ α < 1.

7.1.3 Flow Level Classification

In this approach, the traffic flows between the node and the client are employed to

classify the user activities in the Tor traffic. Two flow exporting tools are used to

generate the flows and to extract the attributes of the flows between the client and

the Tor node. They are described below.

Tranalyzer2. This is an open source tool which generates flows from a captured
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traffic file or directly by working on the network interface. It is based on the libpcap

library. Its output can be exported directly to a text file without the need for an

external collector [106]. The output depends on the type of plugins enabled when

using Tranalyzer2 to analyze the captured traffic. Choosing the proper plugins is

important for generating the features that are useful for the classification task.

Tcptrace. This is a tool used to do a TCP analysis. It can handle different types

of captured traffic formats. Different connection graphs can be drawn using Tcptrace.

The output can be exported to a text file and a CSV file [95]. The attributes vary

based on the tools used. Each one of them generates a different number of attributes.

The number of attributes depends on the options (plugin) enabled in the tool itself.

Selecting which attributes to include in the classification of Tor is very important.

The flow between the client and the node contains much other information which

is used by the flow exporters to generate the attributes. For example, the IP address,

the port number, the MAC address, the time when the flow starts or ends, the

sequence number and any information related to the physical client but not to the

data between the client and the node. Table 7.1 shows the number of attributes that

Tranalyzer2 and Tcptrace provide in the first column. The second column shows the

number of attributes selected by the classifiers from the full set provided. Tor uses

the TCP protocol for establishing the connection between the user and the relay.

Thus, any attributes which are based on any protocol other than the TCP protocol

are excluded. Furthermore, the source port number, the destination port number,

the source IP address and the destination IP address attributes are also excluded in

the used set. The IP address is used to label the user’s activity since it is known

which IP address runs which application on this testbed. Finally, the payload is not

employed in any attribute set, only statistics about the payload.

Tool Number of Attributes Number of Selected Attributes
Tranalyzer2 91 62

Tcptrace 88 50

Table 7.1: Flow exporter attributes.
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7.1.4 Evaluation of Circuit and Flow Level Approaches

Two different sets of experiments were performed to verify the two approaches em-

ployed in this research (circuit level classification and flow level classification). What

follows details these experiments.

7.1.4.1 Setup

In these experiments a testbed is set up with three clients. These three clients are

used to generate the three traffic types automatically: Browsing, Streaming and

BitTorrent. All the clients are configured to use this research node as the sole entry

node. iMacro [50] is used to automate the browsing and the streaming activities.

Both of them start by searching for random words generated by the 26 letters in the

English alphabet. They pick one of the results randomly. In the case of Browsing,

the iMacro script picks one of the search results and navigates through the site by

clicking a random hyperlink existing on that web site. It keeps moving from one link

to another. For each link, the client will stay for a random period of time on that

web page then move again to another link.

The setting is similar in the streaming activities. The script will move from one

video to another. The time spent for watching a video or moving from a link to another

is set randomly. The main difference between the times spent in the browsing and the

streaming is that the streaming one is longer than the browsing time setting. Deluge

[22] is used as the BitTorrent software. A proxy is used to be an interface between

the clients’ traffic and the Tor node. The socket port in Tor is enabled to listen for

the proxy requests.

The Tor source code is edited to log only incoming circuit creation requests from

the node set for this research. The IP address of each client is used to enable the

logging and also to label the circuit as one of the three traffic types. This maintains

the privacy of the users on the Tor network who connect to the node used in this

research.
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7.1.4.2 Circuit Level Classification Data

The data in the circuit level classification is entirely different from the data in the

flow level classification. In the circuit level classification the data includes information

about the cells and the circuits between two given Tor nodes and between the clients

and the node. By contrast, in the flow level classification the data includes the flows

between the clients and the node. The circuit level classification is based on the cell

statistics per circuit to distinguish between each traffic type. The Tor source code

is edited to relate each circuit to its source IP. Even for the relay cells where Tor

switches the circuit ID, the Tor logging is set to log this ID in its previous circuit ID,

not the new switched ID. In this way, the uplink and the downlink cells related to

each class can be tracked.

The log for each circuit contains the circuit ID, the class, the time when the circuit

is created and the time when the circuit is destroyed. The cell’s log contains the class

and the circuit ID each cell belongs to, the cell arrival time and the direction of the

cell. The attributes needed in the circuit level classification are then extracted from

the circuit’s log and the cell’s log files. To maintain the privacy of other users, circuits

related to the other users using the node run by this research have not been logged.

7.1.4.3 Flow Level Classification Data

PCAP network traces are collected in the entry node machine for the duration of the

experiment (ten hours). The required connection information is the traffic between

the entry node in this research and each client. To keep the privacy of other users

who use the node run by this research a filter is applied for the capturing so only

the connections from the clients in this research are logged. For the duration of the

experiment, 4.2 GB of data are captured.

7.1.5 Performance Metrics

To obtain a clear picture of the results, the same metrics as used by AlSabah, Bauer

and Goldberg [3] are calculated (accuracy and F-measure). This enables a comparison

between the two approaches as well. The first metric Accuracy is defined as the

summation of True Positive (TP) and true negative (TN) values divided by the total
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number of instances (N), as shown in Eq. 7.2. For example, when measuring the

accuracy of the classification for the browsing application, TP is the total number

of instances classified correctly as browsing. TN is the total number of instances

classified correctly as non-browsing. As shown in Eq. 7.3, Precision is the ratio of TP

divided by the summation of TP and False Positive (FP). If the classifier classifies

an instance as browsing and the right type is not browsing then this is considered as

an FP measure. The opposite occurs when the classifier classifies an instance to be

non-browsing while it is a browsing instance, then this is a False Negative (FN). Eq.

7.3 defines the Recall as the division of TP over the summation of TP and FN. The

relation between the precision and recall is shown in Eq. 7.5.

Accuracy =
TruePositive(TP ) + TrueNegative(TN)

NumberofInstances(N)
(7.2)

Precision =
TruePositive(TP )

TruePositive(TP ) + FalsePositive(FP )
(7.3)

Recall =
TruePositive(TP )

TruePositive(TP ) + FalseNegative(FN)
(7.4)

F −Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(7.5)

7.1.6 Results and Discussion

The circuit level and the flow level approaches both give a high level of classification

accuracy. Even though the machine learning algorithms used in this research are

similar in both approaches, the same algorithm gives a different accuracy depending

on the approach used. The details of these results are discussed in the following

sections.

7.1.6.1 Circuit Level Classification Results

In this approach the circuit level classification uses the attributes of the cell. The

data set consists of 60% browsing, 20% streaming and 20% BitTorrent activities.

Table 7.2 shows the results for the offline circuit level classification. In this case,

accuracy reaches to 100% when using the C4.5 classifier with 70% of the instances as

the training set. When 10-Fold cross-validation was used the best accuracy was 94.9%

using the Random Forest classifier. In Table 7.2 (and thereafter), “split” refers to
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Figure 7.7: Circuit Level Classification Accuracy

the results obtained on the test data set (30% of the data) using the model generated

from the training data set (70% of the data).

Classifier Accuracy
F-Measure

Browsing Streaming BitTorrent

Bayes net
SPLIT 98.6% 0.99 0.97 1

CV 87.7% 0.89 0.82 0.98

Naive Bayes
SPLIT 98.6% 0.99 0.97 1

CV 94.5% 0.95 0.88 1

C4.5
SPLIT 100% 1 1 1

CV 93.2% 0.94 0.83 1

RF
SPLIT 97.2% 0.98 0.97 0.96

CV 94.9% 0.96 0.88 1

Table 7.2: Circuit level classification results.

On the other hand, “CV” refers to the results obtained using the 10-fold-Cross-

Validation. Figure 7.7 shows the results for offline circuit level classification for all

classifiers using the 70-30 training/testing split and the 10-fold cross validation.

7.1.6.2 Flow Level Classification Results

In this case the data set consists of the uniform distribution of the three classes. The

number of flows is approximately the same for each class. Even though the amount
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of data transferred by the Streaming and the BitTorrent circuits is larger than the

browsing circuits, they are similar in terms of the number of flow instances. Table

7.3 shows the results when using the uniform distribution of the three classes. The

results are 88% to 100% when using 70% of the instances as the training set. When

using 10-Fold cross-validation results are 86% to 99%. It should be noted here that

the data set employed by AlSabah, Bauer and Goldberg [3] consists of 60% browsing

instances, 20% streaming instances and 20% BitTorrent instances. Those authors [3]

generated such a data set to mimic the traffic distributions of Tor users. To make the

results of this research comparable to theirs, the data is downsampled to the same

percentages.

Classifier Accuracy
F-Measure

Browsing Streaming BitTorrent

Tranalyzer2

Bayes Net
SPLIT 100% 1 1 1

CV 99.2% 0.99 0.99 1

Naive Bayes
SPLIT 94.7% 0.98 0.91 0.94

CV 93.3% 0.98 0.90 0.93

C4.5
SPLIT 98.7% 0.98 0.98 1

CV 97.2% 0.96 0.98 0.98

RF
SPLIT 98.7% 0.98 0.98 1

CV 98.8% 0.99 0.98 0.99

Tcptrace

Bayes Net
SPLIT 97.4% 1 0.96 0.96

CV 97.7% 0.98 0.97 0.99

Naive Bayes
SPLIT 97.4% 0.96 1 0.96

CV 92.2% 0.96 0.89 0.92

C4.5
SPLIT 94.87% 0.96 0.92 0.97

CV 96.1% 0.96 0.95 0.98

RF
SPLIT 97.4% 1 0.96 0.97

CV 97.7% 0.99 0.96 0.98

Table 7.3: Flow level classification results - uniform classes.

Table 7.4 shows the results when the data is downsampled to get the same distri-

butions in the work done by AlSabah, Bauer and Goldberg [3]. In this case the results

still show high accuracy in both the split and cross validation cases. The Bayes Net

classifier achieved 100% in both the split and the cross validation cases. Figure 7.8

shows the accuracy of all the classifiers when using cross validation
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Classifier Accuracy
F-Measure

Browsing Streaming BitTorrent

TRANALYZER2

Bayes net
SPLIT 100% 1 1 1

CV 100% 1 1 1

Naive Bayes
SPLIT 100% 1 1 1

CV 95.7% 0.99 0.89 0.91

C4.5
SPLIT 97.6% 0.98 1 0.93

CV 99.3% 0.99 1 0.98

RF
SPLIT 100% 1 1 1

CV 98.6% 1 0.96 0.96

TCPTRACE

Bayes net
SPLIT 81.8% 0.95 0.71 0.73

CV 93.3% 0.98 0.84 0.90

Naive Bayes
SPLIT 77.3% 0.95 0.55 0.71

CV 82.3% 0.94 0.60 0.73

C4.5
SPLIT 81.8% 0.82 0.91 0.73

CV 92.0% 0.94 0.83 0.94

RF
SPLIT 90.9% 1 0.83 0.83

CV 94.7% 0.98 0.86 0.93

Table 7.4: Flow level classification results - downsampled classes.

7.1.6.3 The Performances of the Classifiers Employed

Table 7.5 shows a comparison between the best results achieved in this research and

the work done by AlSabah, Bauer and Goldberg [3]. The performance improved by

9%. In the work done by AlSabah, Bauer and Goldberg [3], the accuracy was 91%

when using functional tree with 10-Fold Cross-Validation. The classification level was

a circuit level. In this research the accuracy reached 100% by using the circuit level

classification with the extended attribute set as well as when using the Flow level

classification. For the circuit level classification this result is achieved when using the

C4.5 classifier with a 70% training set.

For the Flow level classification the accuracy is 100% when using Bayes Net, Naive

Bayes and Random Forest classifiers with 70% of the training data. The same result

is achieved as well when using the Byes Net classifier with 10-Fold Cross-Validation.

The improvement in the circuit level classification compared to the result achieved

by AlSabah, Bauer and Goldberg [3] is due to the features added to the classification.

The BitTorrent circuits tend to have a longer lifetime than the browsing circuits.

However, there is a small percentage of the BitTorrent circuits that stay active for

a short time period and then are destroyed. These circuits let the circuit behaviour

of BitTorrent look similar to the browsing circuit behaviour. This similarity reduces
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Figure 7.8: Flow Level Classification Accuracy Using Cross-Validation

Accuracy

Results in the work done by AlSabah, Bauer and Goldberg [3]

91%
Circuit Level Classification

Functional Tree
10-Fold Cross-Validation

Results of
this Research

100%
Circuit Level Classification

C 4.5 Classifier
70% training set

100%
Flow Level Classification

Bayes Net, Naive Bayes and Random Forest classifiers
70% training set

100%
Flow Level Classification

Bayes Net classifier
10-Fold Cross-Validation

Table 7.5: Methods used to achieve the best accuracy.

the classification performance in the work done by AlSabah, Bauer and Goldberg

[3]. It can be seen that by adding the number of cells transferred during the circuit

lifetime makes the circuits more distinguishable. On the other hand, in the browsing

circuits, the amount of data per circuit fluctuates between high and low values based

on the user’s browsing habits and the website content. The same applies to the

BitTorrent circuits where not all circuits transfer high amounts of data. Consequently,

differentiating between the combined uplink and downlink data per circuit increases

the classification accuracy. Consequently, the uplink data is added alone as a feature

to address this issue. While adding the uplink data provides a good indication, there



82

is a similarity between the browsing circuits and the streaming circuits in the number

of uplink cells. Consequently, employing the rate of the downlink to the uplink cells

is useful for improving the distinction between the classes.

The circuit level classification requires access to the network connection traffic

between the user’s machine and the Tor relay. Moreover, in the circuit level classifi-

cation, access to the relay itself is required. That means the circuit level classification

has its limitations in terms of who can use it. On the other hand, the flow level

classification can be performed on any captured data.

From the availability perspective, flow level classification is easier to apply com-

pared with circuit level classification. The tools used in the flow level classification

are available online. These tools include traffic capturing (such as Tcpdump and

Wireshark) and flow exporters for generating the flow statistics (such as Tcptrace

and Tranalyzer2).

Capturing similar data in circuit level classification (as done in this research) which

is ready to be classified by the ML algorithms requires additional effort compared with

flow level classification data. Tor itself and Tor’s tools can be used to provide such

information about the usage of Tor’s circuits and cells. However, both of these provide

a limited amount of information for doing the classification.

The circuit and the cell information in the Tor code maintains a certain level of

privacy for the Tor users. For instance, the cell statistics feature (CELL STAT) which

was introduced in Tor version 0.2.5.2-alpha is only available when Tor is working in

the test mode. This mode works only when the “TestingTorNetwork” value is set in

the Tor configuration file as described in the Tor control protocol [104]. That means

using this feature will work only on private networks, not on the live Tor network.

STEM [92] can provide the user with information about Tor as well. It provides a

library for the user to communicate with Tor using the Tor control protocol. It can

generate useful information about the circuit, bandwidth usage, etc. However, for the

same previous example, STEM cannot retrieve the cell statistics by using the CELL

STAT event unless Tor is working in the test mode.

Finally, the results show high accuracy in both techniques. The flow level is

based on the assumption that each flow represents only one class. In the circuit level

classification this assumption is always true where each circuit will represent one of
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the classes.

7.2 The Effects of Shared Bandwidth on I2P Tunnels

The I2P network uses separate tunnels for the outgoing and incoming traffic. That

means it is impossible to link between the user’s sent and received data while observing

a tunnel. In addition, the inbound tunnels of the users are used for receiving any

messages from any source. In this way it is not possible for an attacker who is

observing the connection to detect the source of a message sent to a user.

The tunnels are used to send and receive messages, to communicate with the

netDb and to manage the tunnels. Consequently, the messages which travel through

the user’s tunnels do not always represent only the messages travelling between the

users. So, if the tunnels contain this type of control and user messages mixed together

and the incoming/outgoing tunnels are separated, then this section investigates the

following research which follow. What is the effect of such a design in terms of

anonymizing the NetFlow behaviour of a user’s activities? Can a user’s activities be

completely anonymized by this design or do they rely on the amount of other user

traffic which shares the bandwidth?

The tunnels in the I2P network are short-lived which lessens the possibility of

profiling the user’s activity based on monitoring the tunnels. To overcome this, is

it possible to collect information about multiple short-lived tunnels (related to the

same user) in order to profile the user’s activities? Does this give an indication of

the level of the overhead (the influence of the overhead due to routing traffic of other

users) when the user participates on the netDb or when other users’ traffic is carried

to hide activities? To find answers to these questions, this section studies: (i) the

ability to identify the type of application the user is using; (ii) the effect of bandwidth

participation on the ability to identify the type of an application; (iii) the effect of

bandwidth participation on the ability to profile the users; and (iv) regardless of the

application used, the ability to profile the user and to distinguish between different

users by observing the tunnels.
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7.2.1 Data Collection and Setup

Three machines (computers) were used to collect data on the I2P network. The

version of the I2P software used on these machines was (0.9.16). The applications

under study (on the I2P network) are browsing, chat and file downloading. The

reason behind choosing these applications is that they are the most used ones. On

each machine only one application is running at a time while collecting the data. This

is to ensure the ground truth of the data. All the traffic of the applications and the

traffic of the users are collected from machines in NIMS lab and do not include any

other user traffic. Where the three machines employ other users’ tunnels, the other

users’ privacy has been preserved. The encryption used on I2P keeps the users’ data

private. In addition, before analyzing the traffic, all the IP addresses and payloads

are removed.

7.2.1.1 Browsing

To collect the browsing data a list was prepared with the available Eepsites on the I2P

by default. This list includes the built-in (bookmarked) Eepsites on the I2P software

such as (i2p-projekt.i2p). In addition to these web sites, some other Eepsites were

added to the list by using Eepsites which provide a “search” service on the I2P

network. After the list was ready, iMacro [50] was used to automate the browsing.

To this end, a script was written which browses the first address on the list. Then it

waits for a random period of time before it navigates through the Eepsite by clicking

randomly on a link on the Eepsite. After moving (traversing) from one link to another

multiple times by using this approach, the script picks the second link in the list and so

on. The randomness in picking the link ensures that the visited Eepsites keep changing

from one iteration to another. Some of the Eepsites contain links to websites outside

of the I2P network. This results in the data collection includes traffic to websites

hosted outside of the I2P network as well but still accessed through the I2P network.

This requires using an outproxy (a router on the I2P network works as a proxy to

access websites outside of the I2P network). To this end, the default outproxies of

I2P were used (false.i2p and outproxy-tor.meeh.i2p). To be able to collect real-life

data all the tunnel configurations were set to default.
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7.2.1.2 Instant Relay Chat

For IRC each machine in this research was set up to work independently from the

others as well. Again, only one type of application was working while collecting

the data. During this process the jIRCii [53] plugin [47] was chosen and installed

on the three machines. Then the machines were connected to the Irc2P network

(this is the Instant Relay Chat for I2P) by using the Irc2P Tunnel and one of the

following servers: (irc.dg.i2p), (irc.postman.i2p) or (irc.echelon.i2p). The machines

stayed connected 24/7 on the Irc2P network and joined multiple channels such as

#i2p, #i2pchat and #i2people.

7.2.1.3 Downloading Files Using Torrent (I2PSnark)

To download files on the I2P network, I2PSnark [49] was used on all machines. It

is one of the built-in applications within the I2P network. The downloaded files

included files such as videos, documents, music, movies, etc. The sizes of the files

vary from small to big. The torrent files were obtained from the Eepsite (diftracker.i2p

and tracker.postman.i2p). The data of the torrent includes both the uplink and the

downlink of the files.

7.2.2 Data Analysis

The analysis of the collected data includes tunnels-based data analysis, applications

and user-based data analysis and tunnel clustering as described below.

7.2.2.1 Tunnel-Based Data Analysis

In this case, the focus is on differentiating application tunnels from Exploratory and

Participating tunnels [46]. Exploratory tunnels are used for management (adminis-

tration/control traffic of the I2P network) and also for testing purposes. The Par-

ticipating tunnels are those used to relay other users’ traffic. In the training phase

of the classifier, to train a decision tree model in order to differentiate the applica-

tion tunnels from Exploratory and Participating tunnels, the I2Psnark, Irc2p and the

shared clients’ tunnels are labelled as the applications tunnels class. The Exploratory

tunnels and the Participating tunnels (when the bandwidth setting is set to a default
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80% for participating) are labelled as one class, called “others”. The reason behind

this is to investigate the ability to distinguish application traffic from management

or other users’ traffic. In this way, it is a binary classification problem in which one

represents the “applications” and the other represents “other” shared traffic. In this

case, the analysis shows that these two groups of traffic can be differentiated in I2P

tunnels with up to 82% accuracy. Table 7.6 shows the performance of the classifier on

the test data, which was unseen by the classifier during the training, for this analysis.

TP Rate FP Rate TN Rate FN Rate
Applications Tunnels 0.875 0.288 0.712 0.125

Others
(Exploratory

&
Participating

Tunnels)

0.712 0.125 0.875 0.288

Accuracy 82.04%

Table 7.6: Binary classifier on the tunnels.

The other goal is to analyze for what purpose a tunnel might be used. In this case,

if an application is running (such as 2Psnark), then the tunnels related to I2Psnark

are extracted and labelled as I2Psnark. The same applies for jIRCii and Eepsites. The

Eepsites tunnels, which are the client tunnels, might be used for another application

on the I2P network. They also stay alive all the time that the user is online. On

the other hand, the I2Psnark (Irc2P) tunnels stay alive as long as the user uses the

application. The shared client tunnels could be used for I2Psnark (if the user changes

the setting) but the default setting is for using the Irc2P tunnels. The Exploratory

and Participating tunnels stay alive as they are. Aiming to shed light on the purpose

for which a tunnel might be used, is a very challenging problem. However, the results

still achieved 70% accuracy (on the unseen test data) in predicting the potential

purpose of a tunnel on the I2P network by just analyzing the flow features. Table 7.7

presents the results of this analysis.

7.2.2.2 Applications and User-Based Data Analysis

In this part of the analysis the effect of bandwidth participation on the I2P network

was examined using two scenarios: the first one entails the identification of the type
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TP Rate FP Rate TN Rate FN Rate
I2Psnark 0.661 0.033 0.967 0.339

jIRCii 0.778 0.084 0.916 0.222
Eepsites 0.531 0.143 0.857 0.469
Others

(Exploratory
&

Participating
Tunnels)

0.755 0.152 0.848 0.245

Accuracy 70.3%

Table 7.7: Classification results for the tunnel based traffic analysis.

of application the user is running (Traffic Profiling); and the second one is the ability

to profile the users based on the amount of shared bandwidth (User Profiling). In

both scenarios, an investigation of the protocol used (TCP or UDP) on improving

the detection rate was included.

In the traffic identification scenario (Traffic Profiling), the data are ladled as Eep-

sites, I2PSnark and jIRCii. In this way the traffic of one application includes the

behaviour of the traffic of multiple users using the same application. The important

difference in this part is that when running an application, for example, I2PSnark,

all the tunnels (exploratory, shared client and participant if any) are intentionally la-

belled as I2PSnark. This way it is possible to test if the overhead of the Exploratory

tunnels and the Participant tunnels will affect the ability to distinguish the applica-

tion type.

In the user identification scenario (User Profiling), the data is labelled as Machine

1, Machine 2 and Machine 3, since each machine was used by only one user. In

this case the Machine 1 traffic will include the I2PSnark, jIRCii and Eepsites data

generated from Machine 1. The same applies to Machine 2 and Machine 3. The

purpose of combining different traffic from each machine into one class is to mimic

user behaviour while using multiple applications and to evaluate the ability to analyze

the I2P user behaviours.

On the I2P network the traffic could be in the form of TCP or UDP Traffic.

Consequently, the analysis includes as well the separation of the traffic based on the

protocol in both scenarios (the traffic and the user profiling) and on both bandwidth

cases.
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What follows is a summary of the results of both scenarios in addition to the effect

of the protocol separation on the test data.

With Bandwidth Participation Table 7.8 shows the accuracy per class for the

Traffic and User profiling when the amount of shared bandwidth is 80%, which is the

default case on the I2P network. The accuracy measures the percentage of correctly

classified instances out of all instances. It should be noted here that even though both

the IP addresses and the port numbers were not used in the analysis, the result can

achieve 80-86% accuracy for differentiating one user from another. However, it seems

like differentiating traffic behaviour in terms of protocols is much more challenging.

80% Bandwidth Participation
Number of Instances

(flows)
Accuracy (%)

Traffic Profiling 190,000 47.4
Traffic Profiling TCP Only 61,453 61.7
Traffic Profiling UDP Only 128,547 56.3

User Profiling 189,906 81.8
User Profiling TCP Only 62,882 86
User Profiling UDP Only 127,024 79.8

Table 7.8: Summary of traffic and user profiling performance.

Without Bandwidth Participation The configuration used in Section 7.2.1 was

achieved by activating the default bandwidth configuration (300 KBps In, 60 KBps

Out) of an I2P client. Under this setting, the bandwidth participation is 80% which is

equal to 48KBps. To observe and study the effect of this amount of participation on

anonymity, the bandwidth participation parameter was configured on the I2P client

to 0%. In both cases, the floodfill was disabled. Table 7.9 presents the results of

the analysis of the traffic and user profiling when the bandwidth participation was

set to 0% and effectively not allowing any bandwidth sharing. In this case, while

the user profiling drops by 15%, traffic profiling increases by 20%. Intuitively, this

was expected because with no traffic sharing finding patterns in the tunnels is more

likely to happen. However, under the same conditions differentiating users/machines

without using IP addresses and port numbers is more challenging.
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0% Bandwidth Participation
Number of Instances

(flows)
Accuracy (%)

Traffic Profiling 195,081 73.7
Traffic Profiling TCP Only 40,075 65.6
Traffic Profiling UDP Only 155,006 75.7

User Profiling 195,081 66.7
User Profiling TCP Only 40,075 81.7
User Profiling UDP Only 155,006 63.2

Table 7.9: Summary of traffic and user profiling performance without bandwidth
sharing.

7.2.3 Clustering Tunnels Using SOM

Based on the analysis in Section 7.2.1, the classification of tunnels seems to be more

challenging than the classification of users. Also, the confusion matrices of the clas-

sifiers show that there is an overlap between the tunnel classes. Therefore, an ar-

tificial neural network based on an unsupervised learning algorithm, namely Self-

Organization Map (SOM) [57] was employed to cluster and visualize the different

patterns (if any) which may exist in the data of the tunnels captured in this research.

For this purpose the Matlab [64] SOM toolbox [90] was used. Figure 7.9 presents the

visualization of the SOM Clusters (groupings) on the data consisting of four classes:

I2PSnark, jIRCii, Eepsites and Exploratory & Participating Tunnels. In this figure,

the four clusters are represented in four different colours.

SOM is an unsupervised learning technique, so no labelled data is used during the

training phase. However, post training labels were used to analyze the performance

of this clustering algorithm on the data sets. Figure 7.10 shows the hits of the four

post-training classes on the SOM Map introduced in Figure 7.9. This means Figure

7.10 is obtained by projecting the instances of the labelled data on the SOM Map in

Figure 7.9.

The ideal case occurs when each class is represented by a separate cluster on the

map which means that the map has a good representation of the data. In Figure

7.10, one cluster, the yellow hexagons, represent the I2PSnark tunnels. Another clus-

ter, the magenta hexagons, represent the Exploratory & Participating Tunnels. The

third cluster shown in red represents the hits of the jIRCii tunnels on the map. The
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Figure 7.9: Tunnels on the SOM Map - “Sheet” Shape

Figure 7.10: Hits on the SOM Map for All Classes
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Figure 7.11: Hits for the Merged Eepsites and Exploratory & Participating Tunnels
- “Cyl” Shape

green ones represent the Eepsite hits on the map. Based on how these clusters are

distributed on the SOM, the Eepsite data flows seem to overlap with the Exploratory

& Participating Tunnel data flows, namely, the magenta ones. Thus, based on the

SOM output, the Eepsite and the Exploratory & Participating tunnels (green and

magenta) seem to be grouped together. Actually, this matches with how the I2P

tunnels are used. The I2PSnark and the jIRCii both use separate tunnels (I2PSnark

& Irc2P Tunnels). The client Tunnels are the tunnels which are used for the Eep-

sites. Therefore, in Figure 7.11 the Eepsites were grouped with the Exploratory &

Participating tunnels to form one class.

7.2.4 Discussion

When collecting the data, the information of the client tunnels was used to label the

data for a better level of accuracy. For example, if the machine is running jIRCii

and connecting to a participant in one of the inbound or outbound tunnels and that

participant is labelled for IRC traffic, that does not mean that that participant will

not be part of any other. Indeed, this adds a challenge to the data analysis problem

in this research.

The resource sharing (bandwidth participation) increased the anonymity level
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when profiling the applications. The shared client tunnels are used for the Eepsite

application. They could be configured to be used for other applications as well.

The default is to use client tunnels for Eepsites, while separate tunnels are used for

I2PSnark and Irc2P. Furthermore, when application tunnels are grouped as one class

and the Exploratory tunnels in another class, this increased the accuracy of profiling

the applications. Therefore, based on the results, forcing all the applications to use

the client tunnels will improve the users’ anonymity on the I2P network. On the

other hand, increasing the bandwidth participation improves the ability to profile

the users. When the user allocates more resources to participate on the network

that means more traffic flows on the network belong to the user. This seems to en-

hance the profiling of the users. Moreover, the unsupervised learning algorithm SOM

shows that the Eepsite tunnels tend to have similar behaviours with the Exploratory

and Participating tunnels. Therefore, when the Eepsite tunnels were merged with

the Exploratory and Participating tunnels to find the hits on the SOM, it showed

more consistent behaviour. This reinforces that the separation between the tunnels

for different applications seems to enhance the application profiling. Consequently,

changing the default setting on the I2P client to force applications such as IRC to

use the “shared client” tunnels hardens the application profiling which consequently

improves the anonymity level.

7.3 Summary

Several experiments on the identification of the multilayer-encryption anonymity net-

works were implemented on this chapter. At first, the infrastructure of the Tor

network (Circuits, Cells, Nodes) was used to collect data and extract information

about the application type running within the encrypted Tor’s traffic. Then, the

achieved results were compared with the results of using the flow analysis to identify

applications on Tor without the need to have access to the Tor resources (Nodes).

Both approaches showed a high performance while the flow analysis does not require

running a node to extract the needed information to identify the applications.

On the other hand, the experiments included studying the influence of sharing

the users’ bandwidth on the I2P networks at the level of anonymity the I2P network

provides. The experiments included studying user and application profiling when



93

bandwidth sharing is enabled and when it is disabled. After collecting the data on

the I2P network for three selected applications for three users, flow analysis was used

to analyze the collected data for both the user and application profiling. Moreover, an

unsupervised learning algorithm (SOM) was employed to understand the behaviour

of the Tunnels on the I2P networks when running different applications. The experi-

ments showed that the effect of bandwidth sharing on the anonymity level of the I2P

network is clear.



Chapter 8

Traffic Flow Analysis of Obfuscated Traffic

In this chapter flow analysis will be used to explore the behaviour of Tor and Jon-

Donym when anti-censorship techniques are used with these tools. The I2P network

does not implement such techniques in their network yet, so the analysis will include

Tor and JonDonym only.

8.1 Tor Pluggable Transports

Pluggable transport systems [102] work to provide access to the Tor network in adver-

sarial (censorship) environments. Most of the pluggable transport tools concentrate

on hiding the content of the packets in a way that makes it hard for the adversaries

when using deep packet inspection (DPI) to detect the connection to the bridges.

But DPI is not the only method used to detect Tor traffic. Active probing and flow

analysis are some of the other popular methods used to detect Tor traffic. In this

analysis the flow analysis technique is used to explore the resistance of Tor pluggable

transports against such techniques.

8.1.1 Data Collection

In this experiment, four virtual machines and one Ubuntu Desktop 12.04 were con-

figured to collect Tor pluggable transport data. All the machines were configured to

use one pluggable transport at a time to connect to the Tor network. The traffic data

was collected from these five machines. Once the machines are connected to the Tor

network, an automated script starts to browse different websites and then closes the

connection after the browsing (or watching the videos, etc.) activities are completed.

This process repeats until a sufficient amount of data is collected.

Given that pluggable transports hide the Tor traffic using different protocols, the

data included HTTP, HTTPS, Secure SHell (SSH), BitTorrent (BT) and Encrypted

BitTorrent traffic as background traffic. Table 8.1 and Table 8.2 present the number

94
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of flows for the background traffic and the pluggable transports, respectively. All

of the Tor pluggable transport data generated and captured in this thesis is made

publicly available for the research community at large [5].

Background Traffic
Type HTTP HTTPS SSH BT Encrypted BT

Number of flows 182,725 8,058 54,214 116,440 198,302
Total 559,739

Table 8.1: Total number of flows of the background traffic.

Tor Pluggable Transports Traffic
Type Obfs3 FTE Scramblesuit Meek Flashproxy

Number of flows 15,356 106,549 16,953 43,152 172,331
Total 354,341

Table 8.2: Total number of flows of the pluggable transport traffic.

What follows details the experiments for each pluggable transport and the amount

of data collected.

8.1.1.1 Obfs3 Traffic

The data for the Obfs3 bridge connection has been collected from connections to two

bridges. The first bridge was configured by using the recommended bridge setting in

the Tor browser (Obfs3). The port used in this bridge was port 80 (one of the well-

known ports assigned for HTTP). Even though the flow characteristics do not depend

on the port number to identify the type of protocol used in the connection, HTTP

traffic is included in the background traffic to compare the ability of the classifier to

distinguish between two different applications while both use the same port number.

The second bridge was configured by running a node as a bridge which could accept

Obfs3 connections. Then four virtual machines running Ubuntu Desktop 12.04 were

configured to use this Obfs3 bridge to connect to the Tor network. The port number

used was a dynamic port number. The total amount of Obfs3 traffic captured in these

experiments was 20 GB with 16,953 flows.
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8.1.1.2 FTE Traffic

The FTE data was collected from five machines with Ubuntu Desktop 12.04 as the

operating system. Four of them were running virtual machines. The data was gath-

ered via connecting to five different FTE servers. The total amount of FTE traffic

collected was 23 GB. The number of collected flows was 106,549.

8.1.1.3 Scramblesuit Traffic

In addition to the active probing of DPI resistance, Scramblesuit is designed to resist

flow analysis by generating different flows for every Scramblesuit server. For this

reason, the data was collected from multiple Scramblesuit servers to generate different

flows. By using the bridge database, Scramblesuit data was collected by connecting

to 22 different Scramblesuit servers. The importance of having different servers is to

have a variety of behaviours based on the design of Scramblesuit which changes the

server flow for every server. The total number of flows collected from these 22 servers

was 10,649. The total amount of Scramblesuit traffic collected was 22 GB.

8.1.1.4 Meek Traffic

Meek makes connections with popular websites which provide services used by a wide

range of users. These services include Google, Amazon and Azure. For example,

when Google is used as the front domain for Meek, then the multiple addresses which

appear with this setting all belong to Google. In these experiments, the total number

of flows was 43,152. The data size was 22 GB.

8.1.1.5 Flashproxy Traffic

In Tor it is normal for the user to start the connection to the bridge. However, in

Flashproxy, it is the other way around; the Tor user will receive connections from

the visitors of the Flashproxy-supported websites. This requires that the user has

the ability or the access to do port forwarding if he/she is behind a Network address

translation (NAT) or has an open port configured to listen for incoming connections.

The number of connections is high compared to the other pluggable transports. The

total number of Flashproxy flows was 172,331. The data size was 11 GB.
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8.1.1.6 Other Traffic

Pluggable transports are used by Tor to obfuscate Tor traffic in different flavours.

To study the efficiency of these tools, pluggable transport traffic should be compared

to the flavour of the traffic they are trying to mimic and with different types of

encrypted traffic. Thus, five different types of traffic were added as the background

non-Tor (normal) traffic as follows: 26 GB of peer-to-peer BitTorrent traffic, 24 GB

of encrypted BitTorrent traffic, 29 GB of SSH traffic, 1 GB of HTTPS (SSL) traffic

and 0.5 GB of HTTP traffic.

8.1.2 Pluggable Transport Flow Analysis

Three different forms of the collected data sets were generated from the flows of the

pluggable transports and the other traffic (background) on the network. The first data

set contains all the instances (914,080 instances) with all the features (65 features)

and it is labelled (ground truth) using ten classes. The experiments on this data set

was performed by splitting the instances into training and testing instances and by

using a cross-validation technique as well.

The second data set contains all the instances and the labels of the first data set,

but in this case, a smaller number of features is used (three), to represent the data.

The third data set contains all of the instances and features of the first data set, but

in this case the data set was labelled using only two classes, namely Tor and non-Tor.

What follows details the three forms of data set.

8.1.2.1 Split and Cross-Validation Analysis

The first data set will be analyzed by first splitting the data into 66% for training

and 34% for testing. Then, 10-Fold cross-validation will be used on the same data

set as indicated below.

Splitting the Data into 66% Training / 34% Testing The data is split into a

training set (2/3) and a testing set (1/3). The training set is 66% of the whole data.

The testing set is the remaining instances. Thus, the goal of using this approach is

to investigate whether the classifier would be able to learn the properties of each of

the ten classes on the training set only. Then the classifier is tested as to how well
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it learned the content of the unseen test data set (the set not seen during training).

When the C4.5 traffic classification system is used on this data set, the percentage

of correctly classified instances is 97%. The performance measurements are shown in

Table 8.3.

Class
TP Rate

%
FP Rate

%
Precision

%
F-Measure

%

Background
Traffic

HTTP 99 0.1 99 99
HTTPS 94 0.1 94 94

SSH 99 0 99 99
BT 94 2.6 80 88

BTecr 89 0.9 96 92

Pluggable
Transport

Traffic

FTE 99 0.1 99 99
Scramblesuit 98 0.1 92 95

Meek 99 0 99 99
Flashproxy 99 0.1 99 99

Obfs3 99 0 99 99
Overall Correctly-
Classified Instances

97%

Table 8.3: Results on the first data set using the splitting technique.

10-Fold Cross Validation In this case the classifiers are evaluated using only the

10-fold cross validation technique on the first data set. The detailed results of this

approach are shown in Table 8.4. Figure 8.1 shows the F-Measure of the 10-fold

Class
TP Rate

%
FP Rate

%
Precision

%
F-Measure

%

Background
Traffic

HTTP 99 0.1 99 99
HTTPS 94 0 95 95

SSH 99 0 99 99
BT 94 2.5 84 89

BTecr 89 0.9 96 92

Pluggable
Transports

Traffic

FTE 99 0 99 99
Scramblesuit 98 0.1 92 95

Meek 99 0 99 99
Flashproxy 99 0.1 99 99

Obfs3 99 0 99 99
Overall Correctly

Classified Instances
97%

Table 8.4: Results on the first data set using the 10-fold cross validation technique.

cross validation technique and the split technique for the background traffic and the
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Figure 8.1: Comparison of F-Measure Values Between the 10-Fold Cross Validation
Technique and the Splitting Technique on the First Dataset

pluggable transport traffic. The lower F-measure values in these experiments indicate

that the BT, the encrypted BT, the HTTPS and the Scramblesuit traffic flows are

more difficult to identify compared to the other applications. The traffic flows of these

applications have differences between the 10-fold cross validation results and the split

results. The traffic of the other applications showed consistent results between the

10-fold and the split technique. This indicates that the training set contains instances

that did not appear on the testing test and vice versa when using the split technique

for these applications.

8.1.2.2 Reduced Number of Features

The number of features used to represent the traffic in the above experiments was 65.

These include all the relevant features of Tranalyzer for the purpose of this analysis,

i.e. the analysis of Tor pluggable transport flows. The non-relevant features (such as

ICMP and VLAN) have been excluded from the flow analysis. However, this large

number of features, when combined with the number of instances (914,080), makes

the classification computationally costly. So a feature selection technique (Ranker

from WEKA) was used to reduce the number of features. Ranker is a search method

for arranging the features from the most important to the least important. Based on
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the results of Ranker, the most important features were selected (Duration, Number

of Bytes Sent and Maximum Packet Size). The performance of the classifiers using

only these three features is shown in Table 8.5.

Class
TP Rate

%
FP Rate

%
Precision

%
F-Measure

%

Background
Traffic

HTTP 97.4 0.8 96.9 97.1
HTTPS 79.1 0.1 85.2 82

SSH 98.7 0 99.9 99.3
BT 82 2.7 81.7 81.9

BTecr 86.3 3 88.8 87.5

Pluggable
Transport

Traffic

FTE 97.7 0.3 97.4 97.6
Scramblesuit 84.6 0.1 92 88.1

Meek 95 0.4 91.7 93.3
Flashproxy 97.8 1.2 95 96.4

Obfs3 98.3 0 98.8 98.6
Overall Correctly-
Classified Instances

93%

Table 8.5: Results using three features only.

8.1.2.3 Binary Classification

In this experiment all the pluggable transports in the data set are labelled as Tor

and all the other traffic labelled as non-Tor. This brings up the total number of Tor

traffic to 354,341 instances and for the non-Tor traffic to 559,739 instances. In this

case the percentage of instances classified correctly is increased to almost 100%. The

results of this experiment are presented in Table 8.6.

Class
TP Rate

%
FP Rate

%
Precision

%
F-Measure

%
Tor 99.7 0.3 99.5 99.6

NonTor 99.7 0.3 99.8 99.8
Overall Correctly-
Classified Instances

99.7%

Table 8.6: Results for binary classification.

In this case all the background instances are put together into one group and all

the pluggable transport instances are put into another group (Figure 8.2). The x-

axis represents the duration and the y-axis represents the summation of the average
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Figure 8.2: The Distribution of Average Packet Size

packet size for every flow in each group. The y-axis is the aggregation of the average

packet size with time. The number of instances is large and sampled from all the

data sets. The duration is limited to ten minutes. The average packet size for an

individual flow of pluggable transports lies in the middle area of the graph with few

outliers. The average packet size of the other (background) traffic is scattered all over

the graph. This relationship between the data points indicates that the average value

of the data transmitted by Tor can be used to distinguish Tor from non-Tor traffic.

It seems as though the tools that change the packet length (such as Scramblesuit)

do not change the average amount of the data transmitted in a way that makes it

indistinguishable. This is because the amount of padding used to change the length

of the packets is small. In return, this does not change completely the total amount

of Tor data transferred compared to the non-Tor data. The use of this phenomenon

is important because hiding the 512-bytes cells by padding still does not change the

total amount of data transferred.

8.1.3 Discussion

The results above show that an attacker who has the means to perform flow analysis

against Tor could achieve a very high performance in detecting the Tor pluggable

transports under all the evaluated conditions.
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The analysis shows that when the feature selection is used for the flow analysis

of the pluggable transports one can identify the prominent features that describe the

pluggable transport behaviour. In this experiments the duration, the number of bytes

sent and the maximum packet size seem to be the most important features.

The pluggable transports are designed to hide or obfuscate the content of the Tor

connection, not the flow. Thus, the flow analysis could identify Tor traffic even with

the existence of such obfuscation techniques. Even though Scramblesuit can change

the distribution of the packet length and the inter arrival time of the traffic, the flow

analysis could still profile different Tor traffic behaviours with an 85% true positive

rate (just by using the aforementioned three features). If more features are used then

the detection rate goes up to 98%. Additionally, under other obfuscation techniques,

Tor behaviour classification could even reach a 98% true positive rate.

Having said this, the detection rate might change based on the background traffic

characteristics. For example, FTE obfuscates by making the regex of the Tor en-

crypted traffic look like the regex of HTTPS traffic. This makes the HTTPS traffic

an important factor in the training data set.

Furthermore, the feature selection indicates that the packet size, the number of

bytes sent and the maximum packet size are the three primary features that profile

the pluggable transports. In fact, this observation is consistent with how Tor works

as well. For example, Obfs3 does not change the packet size nor the inter arrival

time. This makes the packet size an important feature that profiles the Obfs3 traffic.

Obfuscating the TLS handshake has nothing to do with the amount of data transferred

between the user and the pluggable transport server. The duration of the connection

is one of the features that could profile Tor traffic with or without the pluggable

transports. Regular connections stay active for a shorter time than the duration that

a Tor user connection does.

Moreover, based on the observations on the network traffic, Flashproxy changes

the connection to the user based on the IP addresses of the Flashproxy-supported

websites. This causes the importance of the duration in the detection of Flashproxy

to become less compared to the importance of the packet size. Scramblesuit changes

the packet size (to a certain level) but the duration is still a factor. In summary, the

evaluations seem to indicate that pluggable transports are designed mainly to evade
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deep packet inspection (DPI). However, pluggable transports need to consider the

flow analysis in their design to improve the obfuscation of the Tor traffic.

8.2 JonDonym Traffic Forwarding

The obfuscation technique on the JonDonym network is different from the one on the

Tor network. The JonDo client software includes an option for the user to enable

the obfuscation; while on the Tor network, the obfuscation tools are separated from

the client and are needed to be configured first. In addition, the obfuscation on

JonDonym counts on forwarding the connection to the network to another JonDonym

user instead of connecting directly to the network to obfuscate the connection to the

JonDonym network.

JonDonym has two forwarding options: TCP/IP forwarding and Skype forward-

ing. To study the flow behaviour of the forwarding techniques used on JonDonym, the

JonDonym traffic without any obfuscation will be studied first then will be compared

with the TCP/IP and Skype forwarders indicated below.

8.2.1 JonDonym Flow Behaviour

The JonDonym data employed in this analysis is the JonDonym part from the Anon17

data set. The JonDonym data is collected from three machines at the NIMS lab by

connecting to all the free cascades on the JonDonym network.

For a background traffic, the LBNL/ICSI data set [77] was employed as the back-

ground traffic. It contains network traces collected from more than 100 hours of

activities for several thousands of hosts. The data size is 11 GB. The data is publicly

available in a Packet Capture (PCAP) form. The data is distributed over several

small PCAP files. For this analysis a total of 211,370 flows was extracted from ap-

proximately 1.5 GB of data. Table 8.7 shows the result for the JonDonym traffic with

the background traffic. The result shows that JonDonym flows can be distinguished

from background traces with a high accuracy level.

The next part of the analysis is performed by labelling the background data to

application/protocol names based on the port number. The background data con-

tains a vast number of applications and protocols. Some of the applications or the

protocols appear just a few times while others have a high number of appearances in
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TP Rate FP Rate Precision F-Measure
JonDonym 0.997 0 1 0.998
Background
LBNL/ICSI

1 0.003 1 1

Accuracy 99.99%

Table 8.7: JonDonym flow analysis results.

the data. Consequently, the top appeared applications in the data are labelled with

their application name, the rest are labelled as “Others”. Thus, instead of having one

class (Background), the data will have 12 classes (HTTP, HTTPS, IMAPS, SNMP,

NETBIOS-SSN, DNS, POP3, LPD, EPMAP, SMTP, SSH and Other). Table 8.8

shows the results of the application and JonDonym analysis. The results dropped

by 2% compared with the previous analysis in which all the background traffic was

grouped into one class.

TP Rate FP Rate Precision F-Measure
HTTP 0.986 0.013 0.981 0.984

HTTPS 0.897 0.004 0.919 0.908
IMAPS 0.88 0.001 0.900 0.888
SNMP 0.998 0.000 0.996 0.997

NETBIOS-SSN 0.974 0.002 0.971 0.972
DNS 0.997 0.000 0.998 0.998
POP3 0.982 0.000 0.969 0.975
LPD 0.998 0.000 0.998 0.998

EPMAP 0.993 0.000 0.988 0.990
SMTP 0.948 0.000 0.961 0.955
SSH 0.455 0.000 0.613 0.522

OTHER 0.973 0.006 0.976 0.974
JonDonym 0.999 0.000 1.000 1.000
Accuracy 97.99%

Table 8.8: Results of the applications and JonDonym analysis.

8.2.2 TCP/IP and Skype Forwarding

JonDonym’s users can use the TCP/IP forwarding option to connect to the network

through other users of the network. The user needs to solve a strong CAPTCHA

(Completely Automated Public Turing Test to tell Computers and Humans Apart)

before establishing the connection. The other option is to use the Skype forwarding
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option. The user needs to have a Skype account and log in. Then after logging in, the

user selects Skype as the forwarding option. The JonDo client sends the connection

to Skype to forward the connection to the JonDonym network. Table 8.9 shows

the results of JonDonym, Skype Forwarder, TCP/IP Forwarder and the background

applications. The results show a high performance for the classifier.

TP Rate FP Rate Precision F-Measure
HTTP 0.986 0.012 0.982 0.984

HTTPS 0.900 0.004 0.920 0.910
IMAPS 0.888 0.001 0.906 0.897
SNMP 0.997 0.000 0.997 0.997

NETBIOS-SSN 0.973 0.002 0.970 0.972
DNS 0.998 0.000 0.998 0.998
POP3 0.979 0.000 0.977 0.978
LPD 0.998 0.000 0.998 0.998

EPMAP 0.992 0.000 0.991 0.992
SMTP 0.956 0.000 0.958 0.957
SSH 0.437 0.000 0.591 0.502

OTHER 0.974 0.006 0.977 0.975
JonDonym 0.999 0.000 1.000 1.000

SKYPEFWD 0.992 0.000 0.983 0.988
TCPIPFWD 0.988 0.000 0.996 0.992

Accuracy 98.04%

Table 8.9: Results of Skype and TCP/IP forwarder flow analysis.

8.3 Summary

Flow analysis was used in this chapter to identify the obfuscated traffic on the multi-

layer

-encryption anonymity networks. On the Tor network there are many tools used for

the obfuscation of the Tor traffic. The JonDonym network has two obfuscations which

could be used to forward the connection to the JonDonym network. The I2P network

does not have any obfuscation techniques yet. The results of using flow analysis to

identify obfuscated traffic in multilayer-encryption anonymity networks demonstrated

a high performance.

JonDonym uses two traffic forwarding options to obfuscate the connection to the

JonDonym network: TCP/IP and Skype. On the other hand, the obfuscation options
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on the Tor networks have more choices. In addition, the Tor obfuscation options are

more reliable compared to JonDonym. In order to use the forwarder in JonDonym,

the user first has to solve a strong CAPTCHA. Moreover, the connection is not

guaranteed even if the CAPTCHA is solved correctly using the Skype option. Even

after solving the CAPTCHA, the connection faild and data could not be transferred.

The TCP/IP option for JonDonym also has a CAPTCHA which needs to be solved

but in these experiments this option seemed to be a more reliable way to forward the

data.



Chapter 9

Packet Momentum

Identifying the traces of anonymity networks is a challenging task. One of the im-

portant reasons for this is that these networks are designed to provide some level

of privacy. This in turn results in hiding or changing the traffic. Even though the

anonymity networks do not hide the users’ connections to the network, they do change

the default form of some activities such as browsing in one way or another. The users

who employ the anonymity network to surf websites on the Internet do not necessarily

use the standard HTTP port (port 80) for this purpose. Moreover, HTTP requests

are wrapped within the multilayer of encryptions that the anonymity networks use

to cover them. Additionally, some countries’ censorships block anonymity networks

which results in the anonymity network investigating and adapting more methods

such as obfuscation techniques to hide the connection and bypass the blockage.

DPI, active probing and flow analysis are examples of some of the few techniques

used to identify anonymity networks. These methods have limitations: for example,

the disadvantage of using DPI is that encryption makes the packets opaque so DPI

will be irrelevant/useless. The IP addresses of the anonymity networks’ routers could

be used to identify such networks. Using the obfuscation techniques or the bridges

will reduce the effectiveness of such method. Some of the obfuscation techniques

are designed to resist active probing as well. Flow analysis has satisfactory results in

identifying anonymity networks even with the existence of the obfuscation techniques.

However, flow analysis has its limitations as well. One of the obstacles in using flow

analysis is the computational cost: the higher the amount of data traffic and the

number of features, the higher the cost. In large scale network this requires high

CPU resources and time. Consequently, using flow analysis for identifying anonymity

networks inline (i.e. classifying the flow while it is still active) is a difficult challenge

and could be affordable only at the censorship level. At the same time, the existence

of this vast number of applications these days might increase the false alarm rate

107
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which might cause normal traffic to be identified as anonymity traffic. This was a big

motivation for seeking the possibility of improving flow analysis to give better results

in less time.

9.1 Packet Behaviour in Anonymity Networks

The anonymity networks have their way in dealing with traffic within the network.

The unit that is used on the Tor network is the cell. The size of the cell is 512

bytes. The Tor user (client) installed on the client’s machine divides data sent by

the client to the Tor network into fixed-size cells. When these cells arrive at the

transport layer and beyond they are considered to be like any other normal traffic

according to the protocol used. The cells will be packed inside packets and traverse

like other packets on the network. There are research papers on studying the link

between the packets and the cells. The point here is that the fixed-size cells have

a kind of relationship with the number and size of the packets. Obfs3 is one of the

obfuscation techniques used by the Tor network which change the data into unknown

random strings. At the same time, Obfs3 does not change packet timing or volume.

For example, downloading files while using Obfs3 does not change the increase in the

traffic volume due to downloading files as compared with browsing only. Using Obfs3

is useful to hide the identity of the users or the communication parties. Consequently,

the pattern in the size of the data could lead to a link between the data and the user.

On the other hand, how applications or protocols work in general has a sort of

repetition in the data flow. For example, accessing a web server starts by sending a

request to the web server then waiting for the server to reply while data travels back

and forth to the web server. Whenever another access to the web server is taking

place the process is repeated. This type of pattern exists to a certain level in many

applications. On the anonymity network the pattern is used as well but it is more

complex. The obfuscation techniques aim to make identification of such patterns a

difficult task. In addition, on all anonymity networks the anonymity level is increased

when more users are using it. The reason for that is the difficulty of finding patterns

when the number of users is large. Also, on some of these anonymity networks users

of the network relay data of other users on the networks in addition to their own data

and messages related to managing the connection to the network.
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On the anonymity networks the users’ data contains mostly overhead due to en-

cryption operations and managing the connection to the network. This requires that

the users maintain a connection to the network where packets with volume and se-

quence keep going back and forth between the users and the network. No matter what

obfuscation techniques are used to avoid inspecting packets, packet flows cannot be

hidden. Scramblesuit alters the flow between the user and the Scramblesuit server.

This change in the flow (as shown in Chapter 8) produces a different pattern from

the original flow, but it is still identifiable.

Another aspect of packets’ behaviour is the direction of dialog in the process of

communication. For example, when watching a video stream the direction of the data

is mostly from the server to the user with little from the user to the server. On PTP,

this behaviour is different. The direction of the data takes a different form or a more

balanced shape based on the application and the user’s activity. The point here is

that the application has its influence on the direction that the data will take back

and forth.

9.2 Proposed Features

Assume that there are two communications taking place as shown on Figure 9.1 and

Figure 9.2. Case 1 represents communication between user A and user B for appli-

cation 1. Case 2 represents communication for application 2. In Case 1 user A sent

5 packets to user B which contain 10 bytes in total. User B sent 4 packets to user

A with 6 bytes in total. The numbers used in this example are simplified for the

purpose of explaining the features. In Case 2 (another application) user A sent 5

packets as well to user B with 10 bytes in total. User B sent back to user A 4 packets

with 6 bytes in total. Based on these values, the total number of packets in both

directions, the total bytes sent, the average payload size and the average inter arrival

time for the two different applications are exactly the same. The average payload size

in Case 1 (A) and Case 2 (A) is identical (equal to 2 bytes). The total bytes sent is

identical as well (equal to 10). The average inter arrival time between the packets

in Case 1 (A) is equal to 3. The average inter arrival time between the packets in

Case 2 (A) is equal to 3 as well even though the timing in both cases is totally different.
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Figure 9.1: Example of Packet Size and Inter Arrival Time Features

Figure 9.2: Packets Exchange in Case 1 and Case 2
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The same applied to B in both cases where both have the same average inter arrival

time which is 4. Consequently, in this particular situation, the average payload size,

the number of packets, the average inter arrival time and the number of sent bytes

are not enough to distinguish between Case 1 and Case 2. It might be hard in real life

to have size, inter arrival time and the number of packets to be identical like this but

the point is that even using these different important features might not give enough

information to have a clear picture about two different applications.

Features generated by any flow exporter tool have different importance based on

the types of applications or traffic under analysis. That means if the features are

ranked top-down for one set of applications, then this rank is different for another set

of applications. For example, in Chapter 8 (as shown on Section 8.1.2.2) the duration,

the number of bytes sent and the maximum packet size were the most important

features for describing the data under study. The importance of these features is

determined based on a features ranking method called “Ranker” in WEKA. This

method could use the information gain to decide the importance of the features. In

addition, a decision tree could visualize the importance of the features based on the

features information gain. When the idea of information gain is applied to the example

given here and according to the value shown in Figure 9.1, then the information

gain for the features (Average Inter Arrival Time, Average Payload Size, Total bytes

sent and Number of packets) could not provide any difference for Case 1 and Case

2. Consequently, in this situation these features do not provide useful information

for classifying the two applications. The features described below will address this

difficult classification situation.

9.2.1 Maximum Packet Size

The highest value for the packet size in Case 1 (A) is 3 and 2 in Case 1 (B). In Case

2 (A) the maximum packet size is 4 and 2 in Case 2 (B). It can be seen that the

maximum packet size will help to show the difference between Case 1 (A) and Case

2 (A) even when both have the same number of packets and the same average packet

size. At the same time, however, the maximum packet size alone is not enough to

distinguish between Case 1 (B) and Case 2 (B) where both have exactly the same

size of packets.
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9.2.2 Frequency of Maximum Packet Size

The maximum packet size is a useful feature but it can give more information when

combined with the measurement of the influence of the maximum packet size. In

Case 1 (A) the maximum packet size is 3 bytes but it appears only once in the

communication. In Case 2 (A) the maximum packet size is 4 bytes and it appears

twice. By adding the frequency of the maximum packet size, it could describe how

strong the effect of this maximum packet size is on the communication.

9.2.3 Second Maximum Packet Size

In Case 1 (A) the highest packet size is 3 bytes and it appears only once, while the

2-byte packet size appears three times. Consequently, including both the highest

packet size and the second highest packet size can give more information about the

communication.

9.2.4 Second Maximum Packet Size Frequency

The highest packet size in Case 1 (A) equals 3 bytes and the second maximum packet

size equals 2 bytes. However, the maximum packet size appears only once while the

second maxim packet size appears three times. Consequently, adding the frequency

of the second maximum packet size will show the repetition factor.

9.2.5 Packet Sequence

The 4-byte packet in Case 2 (A), which is the maximum packet size, appears twice

but not in a sequential order. By contrast, the 2-byte packet, which is the maximum

packet size in Case 1 (A), appears three times in a row. The maximum packet size or

the second maximum packet size will not show this information. The maximum packet

length or the average packet length will not see any difference whether the packets

arrive in sequence or not. Consequently, the packet sequence here will describe how

the packets arrive in the communication between A and B: it will give more value to

the subsequent packets. Figure 9.3 and Figure 9.4 show how to present the packet

sequence in both cases. The packets will have positive value (1) every time a packet

goes from A to B in a cumulative way. If three packets go from A to B in sequence
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before any packets come from B, then this will add up to (3). Packets from B to A

will take the packet sequence down one step, and so on. The packet sequence will be

calculated as the summation of all cumulative values. The packet sequence for Case

1 will be 5 and 3 for Case 2. More on calculating the packet sequence can be found

in Appendix A. The Pseudo code for calculating the Packet Sequence is shown in

Algorithm 3.

Algorithm 3 : Calculation of the Packet Sequence.

inputs n: total number of packets in the direction of A to B and packets in the

direction of B to A.

if the first packet is from A to B then

SequenceV alue1 = 1

else

SequenceV alue1 = −1

end if

PacketSequence = SequenceV alue1

for i = 2 to n do

if the current packet is from B to A then

SequenceV aluen = SequenceV aluen−1 − 1

else

SequenceV aluen = SequenceV aluen−1 + 1

end if

PacketSequence = PacketSequence + SequenceV aluen

end for
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Figure 9.3: Case 1 Packet Sequence

Figure 9.4: Case 2 Packet Sequence
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Figure 9.5: Sequence Speed for Case 1

9.2.6 Sequence Speed

The packet sequence considers the sequence of the packets between A and B, but

it does not take into consideration how fast or slow the packets’ flows stay in one

direction before the sequence changes. If, for example, three packets arrive in sequence

within three minutes, the sequence will have the same value even if these three packets

arrive in sequence within 3 seconds. Figure 9.5 and Figure 9.6 show how to include

the inter arrival time in the calculation to measure the sequence speed. In this way

the time needed to change the direction from (A to B) to (B to A) or the opposite will

be taken into consideration. The sequence speed reflects the change in direction with

respect to the time taken to change the direction and for how long this change stays.

Appendix A shows how to calculate the sequence speed for Case 1. The Pseudo code

for calculating the Sequence Speed is shown in Algorithm 4.

9.2.7 Packet Momentum

Assume three packets arrive from A to B within 3 seconds with 2-, 3- and 4-byte

packets in the first case and another three packets arrive from A to B within 3 seconds

(same timing also) 6-, 8- and 9-byte packets in the second case. The sequence speed

for both cases will be the same (when the inter arrival time is the same also).
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Algorithm 4 : Calculation of the sequence speed.

inputs n: total number of packets in the direction of A to B and packets in the

direction of B to A.

IATn: inter arrival time of packet n.

Tn: Time of packet n.

if the first packet is from A to B then

SequenceV alue1 = 1

else

SequenceV alue1 = −1

end if

IAT1 = T1

SequenceSpeedV alue1 = SequenceV alue1 ∗ IAT1
SequenceSpeed = SequenceSpeedV alue1

for i = 2 to n do

if the current packet is from B to A then

SequenceV aluen = SequenceV aluen−1 − 1

else

SequenceV aluen = SequenceV aluen−1 + 1

end if

IATn = Tn − Tn−1

SequenceSpeedV aluen = SequenceV aluen ∗ IATn
SequenceSpeed = SequenceSpeed + SequenceSpeedV aluen

end for
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Figure 9.6: Sequence Speed for Case 2

The packet momentum is what takes into consideration the packet size in addition

to the sequence and speed. Figure 9.7 and Figure 9.8 show the packet momentum for

Case 1 and Case 2. The packet momentum distinguishes between packets that have

the same inter arrival time and the same sequence. The packet momentum is shown

in Algorithm 5. The calculation of the packet momentum for Case 1 is explained in

Appendix A. The pseudo code for all the features of packet momentum is shown in

Appendix B.

9.3 Traffic Analysis Using Packet Momentum

The strength of packet momentum analysis relies on two factors: a small number

of features and a small number of packets required for the analysis. The number

of features has an influence on the calculation cost: the higher the number, the

higher the calculation cost. The number of packets needed to analyze the traffic

affects the speed of classifying it. For example, the duration of the connection, one

of the features employed in the flow analysis in Chapter 7 and 8, requires that the

connection be terminated in order to calculate the duration of the connection. In

the Tor pluggable transport analysis, the duration was one of the more important

features in the analysis.
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Figure 9.7: Packet Momentum for Case 1

Figure 9.8: Packet Momentum for Case 2
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Algorithm 5 : Calculation of the Packet Momentum.

inputs n: total number of packets in the direction of A to B and packets in the

direction of B to A.

IATn: inter arrival time of packet n.

Tn: Time of packet n.

Sn: Size of packet n.

if the first packet is from A to B then

SequenceV alue1 = 1

else

SequenceV alue1 = −1

end if

PacketSequence = SequenceV alue1

IAT1 = T1

SequenceSpeedV alue1 = SequenceV alue1 ∗ IAT1
SequenceSpeed = SequenceSpeedV alue1

PacketMomentumV alue1 = SequenceSpeedV alue1 ∗ S1

PacketMomentum = PacketMomentumV alue1

for i = 2 to n do

if the current packet is from B to A then

SequenceV aluen = SequenceV aluen−1 − 1

else

SequenceV aluen = SequenceV aluen−1 + 1

end if

IATn = Tn − Tn−1

SequenceSpeedV aluen = SequenceV aluen ∗ IATn
SequenceSpeed = SequenceSpeed + SequenceSpeedV aluen

PacketSequence = PacketsSequence + SequenceV aluen

PacketMomentumV aluen = SequenceSpeedV aluen ∗ Sn
PacketMomentum = PacketMomentum + PacketMomentumV aluen

end for
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The duration of the connection might stay for a brief time or for a very long

time. Accordingly, the number of packets in a connection between two parties varies

between very low to very large. The packet momentum requires a smaller number

of packets for the analysis regardless of the duration of the connection. More details

on the number of packets employed in the packet momentum analysis are shown in

Section 9.4. The analysis using packet momentum is described below.

9.3.1 Anonymity Network Identifications

A binary classification is used here to identify the anonymity network. The first class

is the anonymity network which contains anonymity network traffic from Anon17 all

combined into one class. This includes the obfuscated traffic of Tor and JonDonym.

The second class is non-Anonymity traffic which is the LBNL/ICSI data set (the same

as that employed in Chapter 8) where all traffic is labelled as non-anonymity. The

LBNL/ICSI size is 11 GB distributed over several small PCAP files. In total, 211,370

flows were extracted from approximately 1.5 GB. The features employed here are the

packet momentum features described previously. The number of packets extracted

from each flow and used to calculate the features is 3. By using the C4.5 classifier

and 10-fold cross-validation the accuracy was 98.75% as shown in Table 9.1.

TP Rate FP Rate TN Rate FN Rate
Anonymity Traffic 0.99 0.01 0.99 0.01

Non-Anonymity Traffic 0.99 0.01 0.99 0.01
Accuracy 98.75%

Table 9.1: Results for binary classification using packet momentum.

Table 9.2 shows the accuracy of the classifier when using the packet momentum

features to classify the anonymity networks (Tor, JonDonym and I2P) in addition to

the obfuscated traffic from Tor and JonDonym. In this case, the anonymity networks

and the obfuscated traffic are not grouped into one class but labelled separately. The

background traffic is the same LBNL/ICSI data set. The accuracy was 98.73%.

9.3.2 Identification of Applications and Anonymity Networks

Table 9.3 shows the performance of the packet momentum when the background traffic

is labelled according to the application or the protocol (same way as in Chapter
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TP Rate FP Rate TN Rate FN Rate

Background Traffic 0.99 0.01 0.99 0.01

I2P 0.98 0 1 0.02
Tor 0.94 0 1 0.06

JonDonym 0.99 0 1 0.01
TCPIPFWD 0.98 0 1 0.02
SKYPEFWD 0.99 0 1 0.01
Flashproxy 0.98 0 1 0.02

FTE 1 0 1 0
Meek 1 0 1 0
Obfs3 0.97 0 1 0.03

Scramblesuit 0.92 0 1 0.08
Accuracy 98.73%

Table 9.2: Results of packet momentum for the obfuscated traffic.

8). The anonymity network traffics and the obfuscated traffics also separated in

independent classes. Accordingly, there are 22 classes used in this analysis. The

result shows a 97.92% accuracy.

9.4 Packet Momentum Validation

One of the factors which influence the time required to build the training and testing

models on a classifier is the number of features. In addition, the number of packets

employed in the analysis affects the time required for building the models. Also, the

number of packets will affect the calculation time for the features. Consequently, the

lower the number of features and packets the better the efficiency of the classifier.

The following examines these two factors.

9.4.1 Number of Packets

Table 9.4 shows the accuracy of the C4.5 10-fold cross-validation for the number of

packet changes from 1 to 25 packets. The table includes as well the time needed

to build the model, the number of leaves on the decision tree and the tree size.

The data employed here is the same data used in Section 9.3.2 with a total of 22

classes representing the anonymity networks traffics, the obfuscated traffics and the

LBNL/ICSI data set as the background traffic labelled as 12 different classes.
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TP Rate FP Rate TN Rate FN Rate
HTTP 0.97 0.01 0.99 0.03

HTTPS 0.95 0 1 0.05
IMAPS 0.81 0 1 0.19
SNMP 1 0 1 0

NETBIOS-SSN 0.99 0 1 0.01
DNS 1 0 1 0
POP3 0.80 0 1 0.20
LPD 0.98 0 1 0.02

EPMAP 0.99 0 1 0.01
SMTP 0.99 0 1 0.02
SSH 0.43 0 1 0.57

OTHER 0.96 0.01 0.99 0.04
I2P 0.98 0 1 0.02
Tor 0.94 0 1 0.06

JonDonym 0.99 0 1 0.01
TCPIPFWD 0.99 0 1 0.01
SKYPEFWD 0.99 0 1 0.01
Flashproxy 0.98 0 1 0.02

FTE 1 0 1 0
Meek 1 0 1 0
Obfs3 0.97 0 1 0.03

Scramblesuit 0.92 0 1 0.08
Accuracy 97.92%

Table 9.3: Results of applications and anonymity networks analysis.

The results show that packet momentum has the best accuracy with the lowest

time to build the model when the number of packets is between 3 and 6. Below and

above these two numbers, the accuracy will drop and the time will increase. When

the number of packets was one the accuracy dropped to 45.78%. The reason is that

the features of packet momentum will not be utilized. The second maximum packet

size will always be zero no matter what applications or protocol are analyzed. The

frequency of the maximum packet size will always be one for all the classes. When

the number of packets is 2, the accuracy improved to 82.53%. Once the number of

packets is 3 and above, the accuracy reaches 97%.
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Number of Packets Accuracy (%) Time (sec) Leaves/Tree
1 45.8 4.4 183/365
2 82.5 22.53 1568/3135
3 97.9 15.83 1649/3297
4 98.2 20.75 1497/2993
5 98.3 24.01 1524/3047
6 98.1 25.38 1742/3483
7 98 27.31 1763/3525
8 97.9 29.26 2109/4217
9 97.9 30.69 2102/4203
10 97.9 28.98 1956/3911
11 98 28.06 1812/3623
12 98 29.65 1808/3615
13 98 31.07 1902/3803
14 98 31.77 1894/3787
15 98 31.61 1895/3789
16 98 28.27 1868/3735
17 98 28.95 1900/3799
18 98 28.42 1918/3835
19 98 28.57 1947/3893
20 98 27.57 1914/3827
21 98 29.01 1904/3807
22 98 28.54 1982/3963
23 98 31.29 2036/4071
24 98 31.1 2026/4051
25 98 29.55 1999/3997

Table 9.4: Influence of number of packets on the packet momentum.

9.4.2 Number of Features

Based on the results of the number of packets in the previous section which shows

that a number between 3 and 6 packets gives the better performance for packet

momentum, the number of features will be analyzed for the same range of packets

(3-6). WEKA’s InfoGianAttributeEval will be used as the method for evaluating the

attributes. The search method is the WEKA’s Ranker. Table 9.5 shows the ranking

of the features when the number of packets is between 3 and 6 packets.

Table 9.6 shows the accuracy and the time needed to build the model when the

number of features is reduced. One feature will be removed at a time based on the

ranking in Table 9.5. Starting from 11 features until only one feature remains, the
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Number of Packets Features ranking
3 5,1,10,11,8,4,9,6,7,3,2
4 5,1,10,11,4,6,8,2,9,7,3
5 1,5,10,2,6,11,4,8,9,3,7
6 5,1,10,6,2,11,4,8,9,7,3

Table 9.5: Features ranking for packets between 3 and 6.

accuracy and the time needed to build the model will be measured for 3, 4, 5 and 6.

Mostly, removing a feature from the features list will reduce the time needed to build

the model. At the same time the accuracy decreases for each feature removed from

the features list. A high drop in the accuracy happens when the number of features

is reduced from 3 to 2. The highest drop in the accuracy appears when reducing the

number of features to only one feature.

No of Features
3 Packets 4 Packets 5 Packets 6 Packets

Acc
(%)

Time
(sec)

Acc
(%)

Time
(sec)

Acc
(%)

Time
(sec)

Acc
(%)

Time
(sec)

11 97.9 15.83 98 20.75 98.3 24.01 98.1 25.38
10 97.9 16.51 98 16.95 98.2 21.1 98 20.07
9 97.9 14.44 98 18.57 98.1 20.06 98 21.82
8 97.8 15.6 98 17.43 98.1 17.92 97.9 20.11
7 97.8 14.92 98 16.98 98 16.19 98 18.32
6 97.8 14.17 98 14.87 97.9 15.48 97.8 17.03
5 97.7 13.09 97.6 15.23 97.9 13.55 97.8 14.88
4 97.6 12.78 97.3 15.59 97.6 12.82 97.3 16.25
3 97.2 10.65 97.1 12.95 96.8 14.72 96.3 16.77
2 92.4 7.81 93.1 9.63 93 11.04 92.6 11.91
1 84.3 4.01 85.1 4.76 83.2 5.71 83.3 5.09

Table 9.6: Measurement of packet momentum performance for the number of packets
vs the number of features.

9.5 Performance Under Different Classifiers

The C4.5 Decision Tree was the classifier employed in the aforementioned analyses

in the previous sections using packet momentum. Table 9.7 shows the performance

of packet momentum when using cross-validation for C4.5, Random Forests, Naive

Bayes and Bayesian Network. The performance was measured for the 22 classes as in

Section 9.3.2.
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C4.5 Random Forest Naive Bayes Bayesian Network
Accuracy (%) 97.92 98.25 39.2 90.58

Time (sec) 19.02 142.6 0.56 3.9

Table 9.7: Performance of Packet Momentum under different classifiers.

The performance of C4.5 (97.92 %) was increased to 98.25% when using Ran-

dom Forests, while the time needed to build the model increased from 19.02 seconds

to 142.6 seconds. Apparently, the increase in accuracy that Random Forests offers

(0.33%) which is less than 1% does not substitute the increased time in building the

model. Naive Bayes had the lowest time to build the model (0.56 seconds) but the

performance suffered (39.2%). Bayesian Network has a balance performance between

the time needed to build the model (3.9 seconds) and the accuracy (90.58%). Com-

pared to Naive Bayes, Bayesian Network has much better performance but still, C4.5

is the best choice compared to time and accuracy.

A paired T-test [71] was run on the four classifiers in Table 9.7 to compare the

performance (accuracy) of these classifiers when using the packet momentum for the

22 classes. C4.5 was used as a baseline scheme in a pair-wise comparison of the

classifiers. 10-Fold Cross Validation was used for the four classifiers. Then, this

procedure was repeated ten times which lead to the generation of 400 results. The

test aims to provide evidence to reject the null hypothesis which means the accuracy

of a classifier is statistically significantly better or worse than C4.5. As shown in

Table 9.8 the confidence level in the test was 95% (0.05 significance level). The

test shows that Random forest with a 98.2% accuracy was statistically significantly

better than C4.5 with a 97.9% accuracy. Naive Bayes with a 39.2% accuracy was

statistically significantly worse than C4.5. Bayesian Network with a 91% accuracy

was statistically significantly worse than C4.5.

T-Test, Significance Level = 0.005, 10-Times 10-Fold Cross Validation
Classifier Random Forest Naive Bayes Bayesian Network

Statistically Significant Better worst worst
Accuracy 98.2 % 39.2 % 91 %

Table 9.8: T-Test result for the accuracy of the C4.5 classifier compared to other
classifiers.
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9.6 Summary

This chapter proposed Packet Momentum: a set of features to identify multilayer-

encryption anonymity networks. Packet Momentum aims to provide the suitable

features that could provide sufficient information to identify multilayer-encryption

anonymity networks efficiently. The proposed features in Packet Momentum are

Maximum Packet Size, Frequency of Maximum Packet Size, Second Maximum Packet

Size, Frequency of Second Maximum Packet Size, Packet Sequence, Sequence Speed

and Packet Momentum. The Packet Momentum features were tested on identify-

ing multilayer-encryption anonymity networks and showed high accuracy. Moreover,

the results of using Packet Momentum on identifying applications running on the

anonymity networks and on identifying obfuscated traffic used on anonymity net-

works showed that Packet Momentum is efficient for identifying such traffic as well.



Chapter 10

Conclusion

Multilayer-encryption anonymity networks provide privacy which has become a sig-

nificant concern on today’s Internet due to many attacks and privacy breaches. The

anonymity and privacy these networks provide is a double-edged knife. Increasing

attacks, threats and misuse of such valuable anonymity services trigger the need to

identify such anonymity networks. Moreover, the implementation of the obfuscation

techniques hardens the identification of such networks. Consequently, this research

presents an analysis of multilayer-encryption anonymity networks and proposes a new

approach for identifying them.

10.1 Dataset

Anon17 is an anonymity network data set which contains data from three anonymity

networks: Tor, JonDonym and I2P. In addition to the traffic flows of these three

anonymity networks, the data set includes applications traffic flows run on Tor and

I2P. Furthermore, the data set contains traffic flows for the obfuscation techniques

used on the Tor network: the pluggable transports. In addition, Anon17 includes

data on the tunnels used on the I2P network. It would appear that Anon17 is the

first publicly available anonymity network data set which covers three anonymity

networks as well as obfuscation traffic.

10.2 Anonymity Measurement

Many systems provide anonymity for their users and most of these systems work

on the separation between the users’ identity and the final destination. The level

of anonymity these services provide is affected by several factors, some of which are

related to the design of the anonymity service itself. Others are related to how the

system is used or the user’s application/purpose in using the anonymity service. This
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research (i) proposes five factors which aim to measure anonymity level from the user’s

perspective; (ii) evaluates these factors for three anonymity services, namely Tor,

JonDonym and I2P; and (iii) presents a mechanism to evaluate anonymity services

based on the proposed factors and measure actual levels of anonymity. Understanding

these factors and knowing how to address them is an important step in improving

users’ privacy. To this end, three popular anonymity systems, namely Tor, JonDonym

and I2P, were used as case studies to analyze these factors. The analysis showed that

even though these systems aim to provide anonymity to their users, user information

is visible to the operators of the services. Furthermore, the infrastructure and the

browser settings vary from one system to another. The setting is configured based on

the developers’/administrators’ evaluation of possible threats. The same threat might

be considered high in one system but low in another. Based on the proposed factors,

the anonymity of a given situation could be evaluated by a measurable mechanism.

This evaluation could be used on any anonymity system using different scenarios.

10.3 Machine Learning Algorithms

Multilayer-encryption anonymity networks use multiple layers of encryption which

makes inspecting the packets to identify such networks is not possible. In addition,

some of these networks employ obfuscation techniques that make the identification

task harder. One of the advantages of using Decision Tree is the interpretation of the

result it gives through the visual representation of the Decision Tree. This interpre-

tation of the solution is not possible when using many of the other machine learning

algorithms. This supports the suitability of the Decision Tree for many encrypted

traffic classification problems.

The number of used features is important to define the computational cost and

time required in a classification task. The higher the number of features the higher

the time to build the model. Decision Tree has the ability to select - based on the

information gain - the most important features. Moreover, the lower the number

of features features the less time to build the Decision Tree model. Reducing the

number of features is helpful in a way that makes building the model and obtaining

the result fast enough to make a decision while the connection is active. On the

other hand, describing the data with a hight number of features could result in losing
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the generalization of the solution to the data at hand. While using a low number of

features enables the learned solution to be more robust to the unseen/new data.

10.4 Traffic Flow Analysis of Anonymity Networks

Traffic flow analysis has demonstrated high accuracy in identifying multilayer-encryption

anonymity networks. Experiments exercised on this research have shown the flow be-

haviour of applications when involving anonymity networks. Based on the design of

the anonymity network, collecting the data and extracting the flows requires having

some knowledge about the way they work. For example, the Tor network packs the

traffic in cells and circuits while the I2P network uses tunnels. These differences in

the design change the level of behaviour profiling that the traffic flow analysis can

retrieve from the analysis.

Furthermore, traffic flow analysis has shown high accuracy in identifying obfus-

cated traffic. The Tor network has offered pluggable transports as the obfuscation

technique. JonDonym has two forwarder techniques to relay connection to the Jon-

Donym network. In Tor the pluggable transports with their different forms provide

evasions or resistance to censorship. Obfsproxy is the framework used by these plug-

gable transports to obfuscate the user connection to the Tor network. This obfus-

cation concentrates mainly on hiding the contents that make the connections to the

Tor network recognizable. Consequently, using deep packet inspection cannot detect

them as with Tor. Pluggable transports obfuscated the Tor traffic successfully to

look like random or different forms of traffic. At the same time this success at hiding

the content is not optimum. The obfuscation in the pluggable transports changes

the content shape distinctly from Tor which creates a fingerprint for the obfuscated

pluggable transports. The results of this research show that pluggable transport flows

have their own unique fingerprints which make them recognizable.

10.5 Efficiency and Accuracy Using Packet Momentum

Packet Momentum could use as few as three packets to identify multilayer-encryption

anonymity networks with a high accuracy. The number of features in the Packet

Moment approach is eleven. These features are fewer than the number of features
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employed previously in experiments on multilayer-encryption anonymity networks.

The features have been inspired by the analysis and experiments of this research. For

example, the traffic flow analysis of the Tor network highlights the fact that Tor uses

fixed-size cells to communicate and carry data. This behaviour has its reflection in the

packet sizes that Tor shows in the traffic analysis. Consequently, maximum packet size

and its frequency are included in the Packet Momentum features pool. Furthermore,

the usual way for the anonymity user to include obfuscated traffic in the connection

to the anonymity network starts with the user sending a connection request to the

obfuscation server and waiting for a response. By contrast, Flashproxy starts the

connections to the user, not the other way around. This example of communication

behaviour inspired the use of sequence and sequence speed. The features on Packet

Momentum demonstrated a high accuracy on different data sets.

10.6 Future Work

For future work Anon17 will be expanded to include additional applications run on

anonymity networks. Future research on anonymity measurement will continue to

analyze other anonymity systems based on the proposed five factors and will evaluate

them using the expanded quantification approach under adversarial conditions. In

addition Packet Momentum will be analyzed on a larger scale and investigated for the

implementation of this approach in a network tool used to identify anonymity net-

works. The Packet Momentum tool will be studied as well for identifying applications

in conjunction with the anonymity networks.
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Appendix A

Calculation of the Features on Packet Momentum

A.1 Calculation of Packet Sequence

As shown in Section 9.2.5, the packet sequence feature calculates how strong is the

change in the packet direction between two communication parties, A and B. Packet

Sequence takes into consideration the number of times the packets keep going in one

direction. To explain how to calculate the Packet Sequence for Case 1 in Section 9.2,

the packets can be arranged according to the direction, as shown in Table A.1. The

time is not taken into consideration when calculating how long the packets stay in

one direction. The time is used here only to find the change in the direction of the

packets. The (+) sign means that the packet direction is from A to B. The opposite

is true for the (-) sign. No packets arrived at 3, 6, 7, 9 or 12 seconds, so the table’s

cells are highlighted in gray to show that. Based on the sign which indicates the

direction, one is added whenever there is a (+) sign and one is subtracted whenever

there is a (-) sign. At the end all the values of the direction change are added together

to find the packet sequence. Table A.2 shows the value of the direction each time a

change in the direction is happening. Instead of using the time from 0 to 14 seconds,

which is the time that the packet originally arrived at A or B, the change in direction

will be used. At the first packet the sequence value in Table A.2 is set according

to the direction of the packet (A to B). For the next packets, if the direction does

not change, the sequence value is increased by one. When the direction changes (B

to A), the sequence value is reduced by one, and so on. The packet sequence is the

summation of all the sequence values. In this case, the packet sequence is 5.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Direction + - + - - + + + -
Size 1 1 2 2 1 2 2 3 2

Table A.1: Direction of packets for Case 1.
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Packet Sequence Value Direction Packet Sequence
1 1 A to B 1
2 0 B to A 1 + 1 = 1
3 1 A to B 1 + 1 = 2
4 0 B to A 2 + 0 = 2
5 -1 B to A 2 + (-1) = 1
6 0 A to B 1 + 0 = 1
7 1 A to B 1 + 1 = 2
8 2 A to B 2 + 2 = 4
9 1 B to A 4 + 1 = 5

Table A.2: Final calculations of packet sequence.

A.2 Calculation of Sequence Speed

To calculate the Sequence Speed for Case 1, it is necessary to add the inter arrival

time from Table A.1 as shown in Table A.3:

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Direction + - + - - + + + -

IAT 1 1 2 1 3 2 1 2 1

Table A.3: Direction and Inter Arrival time for Case 1.

The direction in Table A.3 is the same as in Table A.1. The inter arrival time

is the difference between the time of two consequent packets and it is independent

of the direction. In the calculation of the sequence speed the change of direction

will be measured with the inter arrival time. Then the summary of all these values

will be added to find the sequence speed. Table A.4 shows the calculation of the

sequence speed for Case 1. The column “Sequence Value” in the table represents the

cumulative direction change for each instance of a packet arriving at that time. The

column “Sequence Speed Value” is the multiplication of the IAT with the “Sequence

Value”. Finally the Sequence Speed is calculated by adding all the results in the

“Sequence Speed Value” column. The sequence speed in Case 1 is 6.

A.3 Calculation of Packet Momentum

The packet momentum includes the size of the packets when evaluating the direction

and time of the packets. The size is used to scale the amount of change up or down (in
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Time Sequence Value IAT Sequence Speed Value Sequence Speed
1 1 1 1 1
2 0 1 0 1 + 0 = 1
3
4 1 2 2 1 + 2 = 3
5 0 1 0 3 + 0 = 3
6
7
8 -1 3 -3 3 - 3 = 0
9
10 0 2 0 0 + 0 = 0
11 1 1 1 0 + 1 = 1
12
13 2 2 4 1 + 4 = 5
14 1 1 1 5 + 1 = 6

Table A.4: Calculation of the Sequence Speed for Case 1.

the direction of the communication between A and B, in this case). Table A.5 shows

the size of the packets in Case 1 to be used in the packet momentum calculation. The

table includes as well the Inter Arrival time and the direction of the packets taken

from Table A.3.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Direction + - + - - + + + -

IAT 1 1 2 1 3 2 1 2 1
Size 1 1 2 2 1 2 2 3 2

Table A.5: Size, Time, Direction and Inter Arrival time for Case 1.

The calculation of the packet momentum requires knowing the size of the pack-

ets, the inter arrival time and the packet sequence. The latter has been calculated

earlier and could be used to calculate the packet monument. Table A.6 shows how

to calculate the packet momentum from the required values. The first two columns

in the table are the same from the previous calculation of the sequence speed. The

third column is the size of the packets at the time the packets arrive. The packet

momentum value is the multiplication of the size, the inter arrival time and the se-

quence value. Finally, the packet momentum is calculated by the summation of all

the column “packet momentum value”.
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Time Sequence Value IAT Size Packet Momentum Value Packet Momentum
1 1 1 1 1 1
2 0 1 1 0 1 + 0 = 1
3
4 1 2 2 4 1 + 4 = 5
5 0 1 2 0 5 + 0 = 5
6
7
8 -1 3 1 -3 5 - 3 = 2
9
10 0 2 2 0 2 + 0 = 2
11 1 1 2 2 2 + 2 = 4
12
13 2 2 3 12 4 + 12 = 16
14 1 1 2 2 16 + 2 = 18

Table A.6: Calculation of Packet Momentum for Case 1.



Appendix B

Packet Momentum Pseudo code

Algorithm 6 shows the Pseudo code of all the features of Packet Momentum.

Algorithm 6 : Pseudo Code of all Packet Momentum Features.

inputs n: total number of packets in the direction of A to B and packets in the

direction of B to A.

IATn: inter arrival time of packet n.

Tn: Time of packet n.

Sn: Size of packet n.

PSizen: Array of packet size for A and B.

for i = 1 to n do

Find the maximum packet size in PSizen

Find the frequency of maximum packet size in PSizen

Find the second maximum packet size in PSizen

Find the frequency of second maximum packet size in PSizen

end for

maxPS1 = themaximumpacket size

FPS1 = the frequency of maximumpacket size

maxPS2 = the secondmaximumpacket size

FPS2 = the frequency ofthe secondmaximumpacket size
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if the first packet is from A to B then

SequenceV alue1 = 1

else

SequenceV alue1 = −1

end if

PacketSequence = SequenceV alue1

IAT1 = T1

SequenceSpeedV alue1 = SequenceV alue1 ∗ IAT1
SequenceSpeed = SequenceSpeedV alue1

PacketMomentumV alue1 = SequenceSpeedV alue1 ∗ S1

PacketMomentum = PacketMomentumV alue1

for i = 2 to n do

if the current packet is from B to A then

SequenceV aluen = SequenceV aluen−1 − 1

else

SequenceV aluen = SequenceV aluen−1 + 1

end if

IATn = Tn − Tn−1

SequenceSpeedV aluen = SequenceV aluen ∗ IATn
SequenceSpeed = SequenceSpeed + SequenceSpeedV aluen

PacketSequence = PacketSequence + SequenceV aluen

PacketMomentumV aluen = SequenceSpeedV aluen ∗ Sn
PacketMomentum = PacketMomentum + PacketMomentumV aluen

end for
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Return maxPS1

Return FPS1

Return maxPS2

Return FPS2

Return PacketSequence

Return SequenceSpeed

Return PacketMomentum


