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Abstract

In this dissertation work, we present our research on decentralized and centralized

control strategies in power systems using convex optimization methods. We have

analyzed nonlinear models of power systems. These models include an exact repre-

sentation of frequency and terminal voltage through which we are able to cope with

the uncertain terms and unknown design parameters of a power system stabilizer.

Decentralized control lies in two aspects. First, the control approach to the prob-

lem is aimed at solving the voltage regulation problem of the power system. We

suggest a method to solve the stabilization problem, which includes uncertain time-

varying parameters using a state feedback controller. The main objective of the

decentralized control scheme is to control the terminal voltage of synchronous gen-

erators using a decentralized voltage controller. Our model has been expanded with

a stabilizer to obtain the output feedback controller. We have optimized the design

parameters, which depend on the uncertainty intervals, within the feasibility region

of uncertain parameters. We have implemented a bisection procedure to determine

the value of design parameters. Second, we used an observer-based control for a

decentralized stabilization of a multimachine power system. We have verified the

contraction region for a multimachine power system. We have also performed nu-

merous simulations of power system models to prove the stability properties of the

extended Kalman filter based on contraction theory.

Finally, this work analyzes the optimal power flow problem by integrating renew-

able sources with demand participation in electric grids. The demand participation

has been achieved by demand-side resources with renewables to curtail the actual

loads. With penetrations of renewable energy in a power system, the problem has

been solved by a semidefinite programming method. In addition, this method is pre-

sented for contingency scenarios, such as generation unit failures and transmission

lines failures. These scenarios have been used to determine the effect of shedding

load, dropping or tripping generation, or tripping transmission lines in the power

system.

x



List of Abbreviations and Symbols Used

Abbreviations

AC Alternating Current

AVR Automatic Voltage Regulator

AVRs Automatic Voltage Regulators

DAEs Differential-Algebraic Equations

DERs Distributed Energy Resources

EKF Extended Kalman Filter

EMF Electromotive Force

IEEE Institute of Electrical and Electronics Engineers

LMI Linear Matrix Inequality

LMIs Linear Matrix Inequalities

LP Linear Programming

LPV Linear Parameter Varying

NLP Nonlinear Programming

OPF Optimal Power Flow

PSS Power System Stabilizer

PSSs Power System Stabilizers

RESs Renewable Energy Resources

SDP Semidefinite Programming

SMIB Single-Machine Infinite Bus

VPP Virtual Power Plant

xi



Notations

∈ belongs to

∀ for all

: such that

≡ equivalent

≈ approximately equal

� much greater than

C Field of complex numbers

R or R Field of real numbers

Rn or Sn Space of n-dimensional real vectors

Rn×m(Cn×m) Space of n×m real (complex) matrices

R+ Nonnegative real numbers

[·, ·] Closed interval

| · | Euclidean vector norm

‖ · ‖ Euclidean matrix norm (spectral norm)

det(·) Determinant of a matrix

Tr(·) Trace of a matrix

Re(·) Reel part of a complex number

Im(·) Imaginary part of a complex number

I Identity matrix

In×n n× n identity matrix

AT Transpose of matrix A

A−1 Inverse of matrix A

A∗ Conjugate transpose of matrix A

diag(A1, . . . , Am) Block diagonal matrix with blocks A1, . . . , Am.

A > 0 or A � 0 A is (symmetric) positive definite

A � 0 A is (symmetric) positive semidefinite

A < 0 or A ≺ 0 A is (symmetric) negative definite

A � 0 A is (symmetric) negative semidefinite

� End of theorems, lemmas, facts, and proof

xii



Acknowledgements

I would like to thank all the people who helped this Ph.D. study possible by their

valuable advice, support, and endless patience.

First of all, I am thankful to my supervisor Prof. M. E. El-Hawary for providing

me a Ph.D. opportunity at Dalhousie University. By his guidance, I am enlightened

by his wealth of knowledge and expertise. This thesis would never been accomplished

without his continuous support, invaluable comments and tireless efforts on teaching.

It has been an honor and a great pleasure to be his student.

I am thankful to my advisor Dr. Bulent Bilir for providing me the opportunity to

conduct research in the field of power systems at Bahcesehir University. I am grateful

to him, for his enthusiasm with my study that triggered me to be a researcher and

an engineer.

In addition, I would like to express my gratitude to my friends F. Kemal Bayat and

Cihan Tunc. I appreciated that they shared their opinions, knowledge and suggestions

concerning my Ph.D dissertation. Moreover, I warmly thank to my friends Firat

Murat Senel, Levent Ceviker, and Duygu Cakir for their continued moral support

and encouragement.

Last but not least, of course, I would like to give special thanks to my parents

and my younger brother Baris Yilmaz for their endless love and support during my

education life. I cannot find the power to succeed without their love. It was impossible

to make my dreams come true. Finally, I would also like to thank my uncle Selim

Yilmaz and my cousin Dr. Nese Yilmaz for their support and attention throughout

this work.

xiii



Chapter 1

Introduction

1.1 Background

Modern power systems are known as the largest dynamical nonlinear network systems

in the world. The interconnected power network that is now widely referred to as

“the grid” has a linear supply that electric power is transferred from generating units

to distribution systems via transmission systems [1],[2]. The inputs of the system are

mainly defined as injections and withdrawals at the buses, and these buses deal with

the supply of electricity generation to meet the demand. Injections and withdrawals

of electricity cannot flow across a specified path within a transmission line, but rather,

power flows move freely across all lines in a manner that is inversely proportional to

line’s impedance. In addition, power flows that are on transmission and distribution

systems which pass through the power network are subject to network constraints

by physical limitations and environmental factors. From the electricity market per-

spective, energy transactions are required to ensure the constant balance between

electricity supply and demand between producers and consumers [3],[4]. Here energy

transactions such as injections and withdrawals on the system must be stable. These

transactions to complex power flows through the transmission system are not achieved

easily because of the possible nonlinear behavior of power systems. Maintaining the

balance of power flows is extremely critical for the secure grid operations and energy

delivery.

The growing uncertainty and complexity in power grids have brought many con-

cerns regarding the control and coordination, reliability, and security of modern power

systems [5]. These challenges are due to a number of factors, including large scale

transmission, distribution systems and production facilities in combination of inter-

mittent producers; the nonlinearity in the components of interconnection and the

participation of all control devices in the systems; the dynamic interactions such as

1
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between generators and loads, combined with the fact that electricity flows freely

within the system; the uncertainty in the load behaviors such as the great variation

of loads in the short term; the major failures of grid elements such as generation units

and the transmission grids (lines, transformers, substations); the computational com-

plexity and different timescale and types of power system components installed [6].

Moreover, electric power systems are continuously influenced by disturbances, i.e.,

contingencies. Contingency involves unpredictable equipment failures or outages oc-

curring in real-time, such as the failures of a generator, transmission line, circuit

breaker, switch, other electrical components, or some combination of events which

leads to a cascading outage [7]. These disturbances result in an unexpected loss of

components of the interconnection; for example, the forced outages of the major gen-

erators may cause a change in the power network. As a result, a power system then

suffers due to frequency and voltage changes, or operational changes to cope with

the uncertain generator outputs and the curtailment of power transactions or loads.

Furthermore, load disturbances are sudden variations of load demands. Obviously,

electric power systems are responsible for the load variation in conditions of aggregate

variation [8]. The load variations in the power system are considerably predictable;

the system always modifies its generation or consumption schedule to meet the peak

load and correct the load imbalances because of sudden changes in load behaviors.

The optimal configuration of the power network may remain unchanged when sub-

jected to a load disturbance [9].

These primary problems in power grids have forced power systems engineers to

enhance the control methodologies and design, as well as design protection schemes to

improve the reliability and efficiency of grids using extensive simulation tools [10],[11].

However, the electricity industry consists of a large electric power system and facil-

itates the integration of diverse energy resources into power pools [12],[13]. The

diversity of resources depends heavily on the intermittent energy generation from

nondispatchable sources, such as wind- and solar-based production facilities. For the

power system to become more reliable and resilient, it is important to choose which

control and optimization schemes as well as which (smart) control devices. Therefore,

the control, coordination, planning of modern power grids results in the much greater

diversity of generation required for advanced monitoring, control, and communication
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techniques [14],[15],[16]. Illustrating this concept, a large electric power system and

its control are based on a hierarchical structure [17],[18]. The hierarchical structure

usually has several subsystems each operated by different equipment and/or utilities

(at local and regional levels) coupled via tie-lines. The basic hierarchical control of

power grids is exerted at specific levels [19]. Firstly, the local control is usually entirely

localized by primary controllers that respond to the local output variable changes.

The main function of local control is to react to fast and small deviations in supply

and demand mismatches around the scheduled demand, thus restoring voltage and

frequency to the desired value. At this level, the local power generation units are

operating on their local measurements to find a balance between supply and demand,

and increasing the stability of the local system, which is not adversely affected by the

large interconnected grid. In order to meet these objectives, each generating unit has

a local feedback control loop; thus, frequency and voltage regulation is implied by a

local control. The automatic voltage regulator (AVR)/exciter and turbine/governor

systems provide either primarily level or task oriented control schemes. The control

loops of the generating units mainly provide control of the generator power output

and terminal voltage, and the controllers are thus mainly responsible for frequency

and voltage stabilization [20].

Next, the regional level (or secondary level) control operates a control area that in-

cludes a certain number of generating and control units. Each control area is confined

to measurements in its own utility service; it is responsible for retaining the control

and coordination over wide regional areas, thus ensuring reliability and continuous

matching of supply and demand for the span of regional operations [17]. The control

area has power generation units to follow the native load in its operating region and

the agreed-upon power transaction between neighboring areas. At the regional level,

the frequency and voltage deviations are eliminated at a certain operating region over

a midterm-time scale. However, the regional control has a slower time scale than pri-

mary or local control [21]. On the other hand, depending on further developments of

the existing power system which incorporate information and communication technol-

ogy today. Modern power grids can be seen differently in a heirarchically structured

level, depending on further developments of the existing power system [22].
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The aim of the modern power grid is to comprise the electrical and cyber informa-

tion systems in between any location of the supply and the demand. Therefore,

today’s power grids are supplemented by modern information, communications and

automation systems [23]. The information structure of Supervisory Control and Data

Acquisition (SCADA) systems of the power grid has highly hierarchical architecture

and therefore falls under several layers, namely the supervisory, network, communi-

cation, control, and physical layer [24],[25]. The basic principles of modernizing grids

are the following: to improve system reliability and efficiency, alleviate transmission

congestion; build new generating facilities such as conventional generation resources,

renewable energy resources (RESs) and demand-side management programs, and de-

sign a highly secure grid that allows to avert cascading failures of grid elements.

Modern power grids also have the purpose of ensuring the design of defense strategies

against potential cyber threats, attacks and random unanticipated events [26],[27].

As previously mentioned, there are several purposes that need to be addressed, using

the following definitions. First, reliability is defined as the degree of performance of

elements of the electricity industry; reliable operations must ensure that electricity

is supplied to consumers within accepted standards and meets their desired level of

reliability [28]. Thus, efficient and reliable operation of the electric system requires

that there is sufficient excess generating capacity available to respond to contingency

events for protecting reliability while also ensuring the real-time balancing of supply

and demand. Second, electricity consumption may change significantly by time of day.

In addition, security is an important task for power systems and refers to the ability

of the power system to make arrangements for possible disturbance situations such

as electric short circuits and unpredictable loss of grid elements, or a failure spread

across a wide area or the entire power grid [29]. Furthermore, the issue of efficient

dispatch and feasibility are additional objectives for the grid operations. Efficient

dispatch means that the generators within the power grid are efficiently dispatched

in real-time to meet actual loads at least cost, while all relevant generator operating

limits and transmission constraints are taken into account. It worth noting that the

total supply of generation is generally slightly larger than load demand; otherwise,

the system is fragile or unclear. Thus, the reliability goal is to achieve total supply

equal to or slightly above the demand [30]. Finally, power transactions on the system
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must be feasible or optimal. Because of the nonlinear combination of power flows,

power transactions over the transmission grids must be appropriately coordinated, or

the scheduling of power transactions may be unfeasible [31].

RESs play an crucial role in distributed energy resources (DERs). The generation

capacity of non-synchronous, usually stochastic, and variable generation sources, such

as wind or solar-based producers with dynamic energy storage resources, contributes

to a significant increase in modern power grids [32]. A key objective of the electricity

industry is to extend existing generation facilities by increasing the penetration level

of RESs that serve the load within reasonable cost in the long-term, and incorpo-

rating incentives for investment in RESs while continuing to invest in the existing

power system. However, the integration of RESs comes with difficult challenges for

current power grids. Today, there is a large effort to integrate a balanced mixture

of renewable generation into electric grids. In general, one of the primary challenges

is to achieve the penetration of large-scale or high-variability resources and to oper-

ate the entire power network collectively with respect to the presence of reliability

and security requirements of the power grid. On the other hand, the integration

of distributed RESs into the existing power grids is believed to be able to increase

the actual reliability and efficiency of the system. Therefore, the electromechanical

stability is required to increase reliability and efficiency using the alternative energy

sources [33]. From this perspective, conventional resources, such as synchronous gen-

erators and RESs, have different dynamic characteristics. First, RESs are not natural

synchronous sources locked to the nominal frequency value of the system. Second,

RESs can be coupled to system with power-electronics components that have indi-

rect grid connections [34]. In addition, the real power capacity of these individual

resources is smaller, so large-scale integration is required. In real-time, these variable

resources do not necessarily run for a time-frame of seconds and minutes to produce

energy. Instead, dispatchable and fast-response generation resources must provide the

required generation to correct the scarcity of actual supply, resulting in uncertainty

and variability of nondispatchable resources. However, the incumbent generators con-

necting to RESs have a negative impact on system inertial response [35]. Note that

the inertia of the system determines the sensitivity of system frequency due to the

supply/demand balance in the grid. However, the expansion of the grid following
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these variable resources adopting the high level of wind and solar generation causes

a lack of stability and control over power systems. The overall stability of the sys-

tem becomes more challenging with the integration of large amounts of RESs in the

distribution system [36]. Furthermore, the control schemes of distributed generation

have evaluated both decentralized and centralized methods. Distributed control con-

sists of the individual distributed resources and its technologies and components in

the distribution system. The control action is made in a decentralized manner and

operated by its own independent control action. It mainly depends on the presence of

demand response, and accommodates price-responsive demand offers or bids and de-

mand resources to be more prone to dispatchable demand [37],[38]. Hence, it tends to

reduce the peak load, provide reactive power and voltage support, and enhance power

quality. In today’s power grid, contrary to the more general trend, demand resources

are used for grid control. Then, a centralized control scheme allows the incorporation

of system level control and coordination in the distribution system. The optimal mix

of new generation resources in the grid are needed to ensure optimal system operation

and reliability of the distribution system. As a result, decentralized and centralized

control plays a important role in utilizing RESs, which have significantly challenged

the stable operation of power systems.

The general problems can be classified into frequency and voltage control prob-

lems [19]. The regulation of frequency and voltage are some of the main challenges

in large electric power systems. The power system is operated at the nominal oper-

ating frequency across the entire interconnected system at any timescale. Frequency

regulation is a fundamental problem that depends on the concept of autonomous de-

centralized control to each area or region. For this purpose, regulation in the electric

industry provides the variation of loads following the power supply to enforce instan-

taneous production and consumption balancing (and to keep the system frequency

fixed) [39],[40]. The overall frequency of system remains near-ideal nominal frequency,

while depending on the load balance between generation capacity and aggregate de-

mand in the system. Thus, generation units are used in real-time operation for load

following. In this case the system frequency must be observed continuously. Smart

control devices must automatically shut down or decrease load when the system fre-

quency drops below the nominal frequency, and increase their consumption when the
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frequency rises [26]. Note that when the supply exceeds the demand, the system

frequency rises, and vice versa. Hence, each control area is responsible for comparing

real time load against the supply and ensuring frequency stability. In addition, each

control area is only responsible for its own unwanted energy deviations, or imbalances,

and restores its own power balance in the operation of the system. In principle, con-

trol areas can suppress this small amount of frequency deviation. This is because

generating units equipped with turbine/governor are better to stabilize frequency in

response to small deviations in frequency. Finally, because of the scarcity of supply

and the large fluctuations of demand; in addition, the large integration of RESs, and

especially the high penetration of stochastic production in the power system, results

in the occurrence of constant imbalances in practice [41],[42].

The voltage regulation at the regional level depends on the measurements of con-

trol areas. Regional levels pose problems to operate with the various generation

sources and devices. The integration of renewable production into the grid entails

the additional uncertainty and variability in the operation of the system. Thus, the

voltage control is required to fully consolidated operations and these operations con-

sist more centralized control methods. The voltage control for centralized system

has much experience with reactive power management such as optimal power flow

(OPF) [43]. The voltage control scheme needs to generate reactive power using re-

active power sources such as capacitors, batteries, and generators to improve grid

quality. It is of supreme importance to balance reactive power supply and demand to

correct the system voltages. These sources must be adjusted daily to maintain volt-

ages that operates within the security limits of the system. However, many generators

that have AVR are able to support to the reactive power for variation of system volt-

ages beyond the acceptable limits. In addition, the loss of reactive support or low

voltage causes voltage collapse or system instability [44]. If reactive power consump-

tion is high, it tends to stress power flow and depress transmission voltage, and might

eventually produce nonconvergence. As indicated above, there are a number of issues

that must be resolved, including the large integration of of RESs into the power grid,

and sustaining voltage for higher demand periods. The existing grid capacities must

therefore be enhanced as efficiently as possible with DERs.
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The large portions of DERs in power grids produces voltage control problems in the

system [45]. Moreover, the renewables using power-electronic devices imposes a heavy

burden on reactive power demands.

1.2 Statement of Problem

An important feature of modern power systems is that the inclusion of conventional

and renewable resources are interconnected to the end customers by means of an

electric power grid. The modern power grids are prone to the generation of elec-

tricity from renewable resources. The incorporating of more RESs into the grid

requires a coordinated control to optimize or maximize their electric usage in the

existing power network. The large amounts of renewable resources that are required

to integrate the electricity market face a number of new barriers in addition to the

existing ones, especially barriers associated with their design, operation and con-

trol [12]. The main problem is that RESs have an intermittent, time-dependent, and

dispersed nature that is an additional source of uncertainty for power grid opera-

tions. However, electricity generation from all options of RESs is directly influenced

by increasing weather-based effectiveness or weather fluctuations. Thus, the high

variability and uncertainty of renewable generation pose major challenges for the cur-

rent power grid [32]. Intelligent and efficient management of both conventional and

renewable-based electricity generation sources that are inherent in the electricity mar-

ket requires decentralized (distributed) and centralized optimization procedures. We

consider that a synchronous generator driven by steam, water, or gas turbine movers

is a dominant supplier. The RESs integrate into the power grid as a large (perhaps,

passive) supplier. The tasks of deployment and reliable integration of RESs support

the facilitating of distributed generation technology. When the installed capacity of

DERs with RESs increases, their comprehensive integration into the current grid is

a difficult task. Following this, it is possible to manage these resources, such as the

demand-side resources. Therefore, demand response plays a large role in achieving

greater integration to maintain a balancing between supply and demand in electric

power grids. The stability of power system relies on the real-time balancing between

the generation and consumption of electricity. In order to achieve this, the demand



9

response is an important feature of electricity markets; it also enables random re-

newable generation which helps reduce peak load and adapt elastic demand to cover

the drastic fluctuations or sudden changes in electricity generation [30]. To achieve

this, the intermittent resources are dispatched through the power grid as a negative

demand. In addition, ensuring the supply/demand balance in a constrained physical

and cyber environment causes a unique challenge for the reliable and secure opera-

tion of power systems. On the other hand, the integration of RESs leads to design

problems at the power plant. A power system normally operates at a stable operating

point in the steady state. RESs cause greater volatility in the operating (equilibrium)

point of power grids, and consequently, the increase of renewable generation penetra-

tion (especially, wind generation), which has a significant impact on the power grid

stability and control [11]. The existing control methods are based on the character-

istics of turbine-driven synchronous generators. Also, the traditional decentralized

control methods may capture the dynamic behavior of synchronous generators. In

order to maintain the centralized control structure, the distinct dynamic properties

of renewables embeds into the control and the optimization procedure checks whether

if the resulting power flows are feasible.

The electric grid has no geographic boundaries; rather, it is delineated by a com-

plex combination of nonlinear power-flow equations. The power-flow equations rep-

resents the physical constraints on the highly complex network. To establish the

OPF with RESs, distributed renewable-based energy resources are injected at related

buses. Then, the physical and environmental constraints of the grid engages in the

optimization scheme, and thus the optimal distributed power generation at each bus

is obtained. The optimization scheme can be recast as convex optimization. In partic-

ular, in the special case where the cone is selected as the cone of positive semidefinite

matrices, the optimization framework is called a semidefinite optimization which can

be seen here as an OPF problem. The OPF problem is known to be NP-hard in

general. The convex relaxation in the form of semidefinite programming is able to

find a global optimal solution [46].
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Distributed or decentralized control is a fundamental method in the control and

estimation of multiple generators interconnected through a large-scale interconnected

system. Decentralized control of power systems may provide efficient network con-

trol when the information and communication between subsystems or agents are

constrained. The most important feature of decentralized control is its ability to

handle the complexity of the power systems. This control method is used for stabil-

ity analysis, frequency, and terminal voltage control of multimachine power systems.

Maintaining a steady frequency and voltage are two major control problems for most

of today’s power systems [17]. In this case, the terminal voltage (and frequency) reg-

ulation are assumed to be done by local control action (within a control area), or are

regulated by the larger network. The main objective is to keep the terminal voltage

and frequency as close to their nominal value as possible. The terminal voltage and

frequency are regulated primarily by decentralized excitation control. In fact, the

purpose of regulating the terminal voltage and frequency is to correct the occurrence

of mismatches between supply and demand due to demand fluctuations. Therefore,

decentralized control algorithms for voltage and frequency regulation are achieved

by introducing decentralized controllers. On the other hand, the formulating of a

control problem depends on an uncertain model, implying that the effectiveness of

such a control strategy is based on performance requirements over a wide operating

envelope, and that disturbances are a challenging task [6]. In this respect, the given

system must be an accurate representation of the original one to be properly incor-

porated into the analysis, and thus the controller, which is designed based on this

model. In power systems, the building of models must be able to capture the design

specifications of the system dynamics under model nonlinearities. The power system

is subject to parametric uncertainties in its model. These parameter values may be

bound to vary significantly with time and/or because of exogenous disturbances.

In general, the power system has high-order dynamics or large dimensions. A

nonlinear state-space model often contains states that cannot be directly measured,

or where all state variables are measurable. In many cases, the dynamical model of

power systems cannot capture both the terminal voltage and frequency of synchronous

machines. Consequently, the terminal voltage described by a differential equation

may be used to denote the state of the system. The terminal voltage and frequency



11

are locally controlled by the decentralized voltage controller [47]. Consider voltage

controller dynamics given by a nonlinear function of (ω, Pe); the system equation to

model is then:

V̇t(t) = h1(t)ω(t) +
h2(t)

T ′
Pe(t) +

h2(t)

T ′
uf . (1.1)

The power system state Vt(t) which is measurable state is controlled by uf with the

presence of disturbances and noises. The terms h1(t) and h2(t) are assumed to be

uncertain parameters but are bounded by the operating conditions. The allowable

intervals of these parameters are found by the known range of the operating region.

Now the decentralized control problem is to enlarge the region of attraction and

maintain stability for an allowable range of parametric uncertainties in electric power

systems. The decentralized control obviously depends on the local components and

its measurements in any given machine. The control must also be robust in order to

guarantee the stability robustness for the whole operating region and all allowable

uncertainties. Given system (1.1) when the uncertainties h1(t) and h2(t) affect the

model, our objective in the following control law

uf = −k1ω(t)− k2Pe(t)− k3Vt(t), (1.2)

where {k1, k2, k3} represent linear gains respect to the bounds on h1(t) and h2(t). It is

worth noting that the basic Lyapunov theory is the basic theoretical tool for stability

and robustness analysis and the corresponding control strategy for the nonlinear

dynamical systems. In view of this connection, the stability analysis with respect

to Lyapunov techniques employs the concept of quadratic stability. The problems

of parametric uncertain systems are handled by using the framework of quadratic

stability, and then obtained in terms of matrix inequalities. As a consequence, both

state feedback and dynamic output feedback controllers are designed for the known

range of parametric uncertainties.

Contraction theory is introduced as a powerful concept to treat the stability prop-

erties of nonlinear dynamical systems. The difference between the Lyapunov and

contraction stability analysis is that stabilization in the sense of Lyapunov occurs at

the minima of a generally defined a given function (particular) of any solution, while

contraction theory proceeds to a differential approach and the stability of trajectories

of a dynamical system with respect to one another. In addition, the convergence of
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solutions is determined to be independent of initial conditions [48]. With this new

form of stability, contraction analysis assesses the incremental behavior of trajecto-

ries that tend to coalesce. As its natural extension, this theory can be applied to the

observer-based problems and designs. To apply the contraction theory to derive the

controller and observer designs for the multimachine power systems, the observer con-

trol problem is proposed [49]. Thus, the problem of a nonlinear state observer is also

constructed in a decentralized manner. This leads to the observer for a given power

system model. The observer design with the extended Kalman filter (EKF) achieves

the decentralized control of multimachine power systems. The basis of the contraction

theory arguments is then established for the stability properties of the EKF [50].

1.3 Objectives

In writing this dissertation, our objective is to improve the integration of renewable

generation, while increasing the stability of a power grid, and to present the appropri-

ate decentralized control methods for enhancing system-wide performance of a large

electric power system. For this purpose, we first establish an optimal power flow

program for achieving the demand-side participation at selected buses and examine

the equilibrium distributed power generation across the grid using the convex opti-

mization problem. Renewable resources are located at these buses which allows them

to produce a random renewable generation. The renewable integration at the load

buses is realized by an iterative algorithm, and the level of renewable penetration in

the grid is increased by examining the feasible solutions of the optimal power-flow

problem. Therefore, the power injection at load buses rises with an increasing pen-

etration level of distributed renewable generation. Here, the demand participation

is utilized by demand-side resources that can curtail the actual loads of the rest of

the electric grid. Moreover, we also test the feasibility conditions for global optimal-

ity of the optimal power flow problem with demand participation under the various

contingency scenarios.

Another objective is to resolve the decentralized control problem of power sys-

tem. Following this objective, we aim to design a decentralized voltage and frequency

control scheme and analyze its stability properties for a multimachine power system.
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To do this, an efficient power system model to measure the terminal voltage and

frequency is presented. According to this model, the synchronous machine states

are described by second-order dynamics. We neglect the other states to obtain a

minimal realization by defining the measurable states (namely, terminal voltage and

frequency). Thus, obtaining the system dynamics is solved by using the concept of

quadratic stabilization via the state feedback control scheme. We also state a method

to analyze the inherent system nonlinearity due to the uncertain parameters in the

model. Then, the acceptable bounds of uncertain parameters is determined accord-

ing to the secure operating region of the system. As a consequence, the uncertainties

caused by operating point variations are canceled by using the decentralized con-

troller. Furthermore, we aim to solve the voltage (and frequency) regulation problem

with output feedback. A decentralized output feedback controller is designed by using

a power system stabilizer. The dynamics model accommodates the additional states

as well as design parameters. These unknown design parameters that belong to a

power system stabilizer are computed via bisection algorithm. The design parame-

ters are optimized based on the uncertain parameters and their allowable bounds of

the system, and the resulting controller stabilizes the power plant. To this end, an

convex optimization problem for the design of state and output feedback controllers

is solved.

This work aims to extend decentralized control design for the multimachine power

system. We provide observer-based control in a decentralized fashion through a con-

traction theory-based analysis of the stability. The decentralized stabilization of the

multimachine power system is implemented by a deterministic observer. We then

propose the stability properties of the deterministic extended Kalman filter based on

contraction theory. The main objective for using contraction theory is that contrac-

tion properties are specified under the multimachine power system. We also introduce

a contraction metric. We thus prove that the multimachine power system model is

contracting in a diagonal metric.
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1.4 Methodology

The fundamental methodology in this dissertation consists of decentralized and cen-

tralized optimization strategies. Decentralized control for each individual machine

contained in an area lies in two aspects: first the decentralized control approach pro-

poses to solve the voltage regulation problem for given power system models. Here,

the control problem is described as stabilizing the power system using the state feed-

back controller. The power system models have time-varying parameters. Parameter

changes are particularly important, as uncertain parameters are bound to change with

time affected by external disturbances. Therefore, stabilization of the power system

model subject to uncertain (and time-varying) parameters is achieved [51]. The de-

sired dynamical behavior of a power system varies in the parameter range of interest.

The security operating region of power systems is used to determine the operating

range in which the controller is used. Secondly, the voltage regulation problem is

expanded with power system stabilizer (PSS) to obtain a stabilizing controller for the

admissible set of uncertain parameters when full state information is not available.

As a consequence, we use the Lyapunov stability theory to verify the stability of the

closed-loop system corresponding to the resulting (stabilizing) controller [52]. The

voltage regulation problem is thus determined by a global (local) admissible state-

feedback controller, and a global (local) output-feedback controller for given require-

ments in the presence of uncertainties in the power system models. The designing

controllers are based on linear matrix inequalities (LMIs). This control problem is

addressed by means of convex optimization techniques and, at the same time, is recast

as a set of LMIs and the control gain matrices are then obtained directly from LMIs

optimization formulation using very efficient interior-point method algorithms [53].

By using the proposed LMIs conditions, we can verify the feasibility of the LMIs,

while guaranteeing the stability of each machine or multimachine power systems.

Another methodology used in this dissertation is the observer-based scheme for

decentralized stabilization of power systems, which solves the voltage regulation prob-

lem [54]. The considered observer proposes a state estimation procedure by introduc-

ing a state observer when the states are entirely available from measurements. Using

the proposed Kalman filter state estimation procedure, we obtain the Kalman gain
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and the calculation of the updated covariance of the state estimation error [55]. We

then introduce contraction theory as a tool to study the stability properties of power

systems. Contraction theory copes with the system stability by the differences be-

tween solutions with respect to different initial conditions. In contraction theory,

stability is described incrementally between two arbitrary trajectories. The concept

of contraction theory presents an alternative way for stability analysis of highly non-

linear systems. It is clear that contraction theory-based analysis deals with the incre-

mental stability properties of deterministic systems. Contraction-based incremental

stability is a more specific analysis techniques based on an exponential convergence

of the (non)linear system [56]. Thus, the contraction properties of the EKF is used

to analyze the deterministic observer for the stabilization of multimachine power sys-

tem [57]. In order to adopt the contraction theory to the analysis of the power system

model, we provide a deterministic nonlinear observer which is obtained by running

the EKF to design of decentralized control in the power system, and the solutions

are derived for the case where full state information is available to the controller for

synchronous machines.

In this dissertation, the centralized control scheme is adequately formulated as

the optimal power flow, and constitutes the most fundamental optimization problem

for power systems [58],[59]. The OPF problem requires the optimal solution of a set

of nonlinear equations, such as power-flow equations. Indeed, OPF is a method to

compute the power-flow problem. Analysis of the power flow equations forms the

cornerstone of the power systems so that the required task is achieved [60]. These

equations allows us to see the physical capability of a power network to transfer

electricity from the supply side to the demand side. Power-flow equations are widely

used for each type of problem, and thus the main goal of the classical power-flow

problem is to determine the unknown complex voltages at all buses. Following this,

our special interest in this work is the choice of convex programming for which the

resulting optimization problem is called a semidefinite optimization, or semidefinite

programming (SDP) [61]. We present an implementation for the primal-dual interior-

point based SDP solutions of the OPF problem; in other words, we construct a

semidefinite programming relaxation of the power-flow equations [62],[63]. Under the

rank condition, the SDP solution finds a global optimal solution to the OPF problem
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in polynomial time, and also ensures that the local solutions are also global. The

OPF via SDP also provides solutions for discrete decision variables of a power grid,

including phase shifters and distributed generation, and additional constraints for

more realistic case studies [64],[65],[66]. On the other hand, we expect to maintain

the remaining convexity of the optimization problem. The convexity of power-flow

solutions associated with the optimization problems often need to be represented via

economic dispatch or OPF applications [67]. Therefore, the OPF problem is typically

nonconvex as a consequence of the nonlinear nature of the power-flow equations.

Thus, the set of power flow injections is nonconvex due to its computational nature.

The nonlinear form of the power-flow equations in polar coordinates which involve

voltage magnitudes and angles that the feasible set expressed in active power, reactive

power, voltage magnitude, and angle, cannot be convex. Moreover, the power-flow

equations in rectangular coordinates involving the real and imaginary parts of the

bus voltages are also nonconvex. We can conclude that the nonconvexity conditions

of the power-flow equations mainly depend on the rank condition, and the result in

an optimization model can be intractable. The bus voltages determined from a SDP

relaxation of the OPF is guaranteed to be the globally optimal solution if the rank

condition is achieved [68]. Finally, the SDP is implemented to achieve the optimal

solution, or an approximation of the solutions, of many realistic problems that have

computational complexity [69].

As we mentioned before, the ability of a power system to integrate renewable

generation mainly depends on the diversity of electricity generation resources. The

growing penetration of renewable power production into power systems needs a higher

degree of grid flexibility. This considerable flexibility tends to operate conventional

generation at various production levels in absorbing the uncertainty and variability of

renewable generation. Therefore, the facilitation of renewable integration by demand

response is of particular importance in today’s power grid [70]. Roughly speaking, a

power system designed with demand response refers the active participation of con-

sumers can provide efficient operation of an electricity market. The demand response

action aims at assessing the benefit of the demand flexibility of desired customers by

shifting or reducing their demand for high-cost or high-demand periods [37].
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In general, electricity has traditionally faced flat electricity costs, but the true produc-

tion costs of electricity vary over time. The demand provided by response programs

enables electricity consumers to participate in such dynamic or real-time pricing and

facilitate the various forms of demand-side response [71],[72]. In addition, the de-

mand response can provide a reduction in the operating costs. The involvement of

end-use consumers in demand response enables real-time pricing by shifting power

consumption. As a result, the demand response programs and technologies provide

to determine time-based market prices through this action and communicate electric-

ity prices to the consumers who face challenges in receiving deterministic real-time

prices. The demand-response management can restrain prices for customers receiving

low prices with high renewable power production or stochastic production. On the

other hand, the demand response is also used to balance between supply and demand

throughout the power system. In this work, the power grid is basically designed to

support the penetration of renewable resources, such as demand-side suppliers. This

way, we build an optimization problem for renewable power production as a demand-

side supplier. The renewable power production is precisely known. Then we aim

to solve the OPF problem by defining a realization of the random renewable power

production involved in the optimization problem by means of a SDP relaxation. An

efficient iterative algorithm is used to penetrate renewable power gradually. The re-

sulting optimization model is solved by using the SDP. The global optimal solution is

achieved by solving the optimization problem for each incremental change of renew-

able production [73]. The optimal solution is then implemented to some contingency

scenarios.

1.5 Relevant Literature

Over the years, much effort has gone into the mathematical modeling and control

design of power systems. The main references to control theory and stability anal-

ysis for power systems are given in [74],[75],[20]. We now present an overview of

the relevant literature in the area of decentralized control of large-scale complex sys-

tems. The main supposition of decentralized control schemes is that they only deal

with locally available state information on the model [76],[77]. Thus, this approach
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is viewed as a completely independent analysis of the control system, which takes

into account online information about the states of the system. Hence, it has sat-

isfactory performance with little or no communication between subsystems, such as

weakly coupled subsystems [78],[79]. The ideas behind a robust decentralized control

scheme is one of the fundamental requirements for the control of large-scale power sys-

tems. In general, the design of the robust decentralized controller for enhancing the

transient stability of nonlinear power systems is discussed in [80],[81],[82],[83]. The

proposed methods also include the decentralized turbine/governor control schemes.

In addition, the classical control strategies of robust decentralized exciter design in

power systems are developed in [84],[85],[86],[87]. Contrary to the direct-feedback

linearization techinique, a new decentralized control scheme has been successfully

applied in both the exciter control and turbine/governer control for the robust de-

centralized stabilization of large power systems based on LMIs [88],[89]. Here we

focus our attention primarily on motivations of the proposed decentralized control

and optimization method for some basic problems of power systems. The aim here

is to introduce the frequency regulation design related to the problem of automatic

generation control (AGC). In case of frequency regulation, the major coordination

method is known as AGC. The earliest contributions to generation-based frequency

control are expressed in [90],[91],[92],[93]. Lately, some control algorithms are im-

plemented for the frequency control problems [94],[95],[96]. The frequency control

in power systems can be divided into two levels, which are called primary control

and secondary control [97],[98],[99]. The primary frequency control is well defined

in [100],[101]. In addition, the purpose of AGC is to regulate frequency to its nominal

value and maintain power transfer between the control areas by changing the output

of generators. This is called load frequency control (LFC). Load-frequency control

is major function of AGC. An overview and a comprehensive bibliography on LFC

is given in [102]. Then, the earliest optimal control concepts for generation control

are proposed in [103],[104],[105],[106]. Recently, the research papers about the AGC

and its applications can be found in [107],[108],[109]. Furthermore, the robust control

design for the LFC problem in multi-area power systems has been extensively studied

in [110],[111],[112],[113]. In [114] and [115], the robust decentralized control design

methodologies for LFC are studied in particular. The main objective of these papers
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is to propose new control schemes for the LFC problem of multi-area power systems.

Voltage regulation is an important property for power network stability [116],[117].

The main objective is to regulate the voltage to meet its nominal value under different

load conditions: traditional or disturbed. The topic of voltage regulation is studied

using LQ-optimal techniques [118] and robust control techniques [119],[120]. The

problem here consists in designing voltage controller that ensures transient stability

over the whole operating region. This robust voltage controller has an AVR and

PSS to enhance power system stability and performance under varying operating

conditions [121],[122]. In [123], a control action to network stability analysis for long-

term dynamics of load systems is shown. In these papers, different operation modes

are proposed for secondary voltage control methods to investigate emergency action

in preventing voltage instability and system breakdown is proposed [124],[125],[126].

Recently, a decentralized excitation control scheme has been proposed for voltage

regulation of multimachine power systems [127].

The ideas of nonlinear stability and robust control has been a hot topic of research

over the past twenty-five years. We refer the reader to [128],[129],[130],[131],[132],[133].

In this context, the mathematical theories especially designed for analysis and syn-

thesis of an robust control of dynamic systems are discussed. Thus, the proposed

control must be robust with respect to unknown cases [134],[135]. The main is-

sues applied in robust (also optimal) control theory regard the development of con-

ditions which guarantee the system stability in the presence of various classes of

uncertainties. Then, the design of controller for the nonlinear system is presented

when the close-loop system is stable and admissible. In addition, it is well known

that robust H∞ control, optimization and filtering have attracted considerable re-

search interest [136],[137],[138],[139],[140],[141]. Since H∞ control methods deal with

the uncertain model case, it is more realistic. The authors of these books share a

basic knowledge in H∞ control theory for uncertain linear systems with nonlinear

uncertainties [142],[143],[144],[145]. A decentralized fixed-structure H∞ optimization

is shown in [146]. Robust stability and robust stabilization conditions for the sin-

gular systems are also studied [147]. On the other hand, the stability robustness

with respect to a wide class of nonlinear uncertainties is investigated, such as re-

garding input-output and state space uncertainties [148]. The uncertain cases are
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due to the inaccurate modeling or measurement errors between the mathematical

model and real system [149]. The class of state space uncertainties contain para-

metric uncertainties and norm-bounded uncertainties [150],[151],[152]. Moreover, in

studies of the problems of robust stability analysis and robust stabilization with re-

spect to parameter uncertainties, strong forms of stability methods such as quadratic

stability are introduced [153],[154],[155]. In [156] and [157], necessary and sufficient

conditions for quadratic stability and quadratic stabilization are expressed in detail.

General methodologies that provide the successful design of state feedback and output

feedback for stabilization of nonlinear systems in the presence of linear time-varying

parameters are described in [52]. In particular, the problem of robust stability of

systems dealing with parametric uncertainties is described in [158],[159],[160]. The

stabilizing feedback controller is represented by the corresponding bilinear matrix in-

equalities (BMIs) or LMIs. If the LMIs optimization is found to be feasible, then one

may guarantee that all possible trajectories of the proposed systems are bounded.

The main properties of LMIs optimization are given in [161],[162],[163]. The problem

of state feedback conrol for nonlinear quadratic systems is described in these pa-

pers [164],[165]. Based on these concepts, a dynamic output control scheme using the

LMIs framework is given in [166],[162]. On the other hand, a robust output-feedback

controller design via BMIs optimization is proposed in [167]. The static output feed-

back problem is one of the main problems in control theory. An LMIs-based method

for designing static output feedback is developed in [168],[169]. In recent years, the

BMIs-based technique has been widely used to solve the static output feedback prob-

lem [170],[171]. However, the BMIs-based optimization problem is not convex and

known to be NP-hard [69].

The observer problem with possible observer design is proposed in this disserta-

tion. The observer design for nonlinear systems is presented in [172],[173],[174]. The

nonlinearity can be formed from direct measurements, and thus can be transformed

into a linear system by a change of states and output injection [175]. In [176], the

observer-based control for a class of uncertain linear systems is discussed, and the

disturbance of observer-based control for nonlinear systems is also given in [177].

One of the fundamental obsever designs for deterministic linear systems is used

in [178],[179]. With reference to the seminal works of Luenberger, the nonlinear
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observer based on a slight modification of the extended Luenberger observer is devel-

oped in [180]. In addition to this, Kalman observer is first introduced in [55]. Then

the well-known Kalman observer is designed for nonlinear systems, and called the

extended Kalman filter [181],[49]. The Kalman filter algorithm is an efficient state

estimator. It is widely used in estimation problems due to its optimality, tractabil-

ity and robustness [57],[182]. In our work, the convergence properties of the EKF

are presented using contraction theory [48],[50]. Contraction theory is a nonlinear

control system tool for investigation of asymptotic properties of nonlinear dynamical

systems [56],[183], and is based on an incremental stability that is an exact differ-

ential analysis of convergence [184]. Using this theory, the stochastic incremental

stability approach [185], which is an observer-based control for stochastic nonlin-

ear systems with incremental stability [186], and contraction-based nonlinear model

predictive control [187] are presented. Moreover, the well-known unscented Kalman

filter [188] with contraction-based analysis is given in [189]. In [190], the concept of

partial contraction for nonlinear systems is discussed. Contraction theory has also

been applied to stability analysis and synchronization of systems [191],[192]. The

analysis of robust stability of uncertain systems with polynomial or rational dynam-

ics through the use of convex optimization and sum of squares programming [193]

and the stabilizing output-feedback controller design using contraction metric and

convex optimization can be found in [194]. Applications of contraction theory are

also used in many scientific disciplines such as nonlinear chemical processes [195],

chaotic systems [196], biology [197], power systems [198], and neuroscience [199].

Historically, the supply structure of the power grid was dominated by centralized

control of power generation units. However, the current centralized power system

and its operational paradigm is restructured, and the distribution network partic-

ipating in electricity markets has become a passive supplier. Decentralized power

sources connect to the distribution system, which is intended to fully displace a

large amount of power production by large conventional power sources. This new

operating paradigm has the advantage of allowing the massive deployment of renew-

ables to penetrate the electricity market which, in turn, allows for a reduction in

the per-unit cost of renewable energy. Despite these advantages, new challenges for

centralized electricity system have reported due to the growing percentage of DERs
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with power-electronic technologies in existing power network [200],[201]. The main

problem is that RESs are widely dispersed, and tend to be intermittent and unpre-

dictable. In addition, the growing level of penetration renewable generation causes a

voltage instability problem which is mainly related to reactive power imbalance [36].

RES-generated power, in particular wind power, is variable and uncertain. Conse-

quently, its large-scale integration into a power system poses a large challenge for

power system operators [202], [203]. As we mentioned before, the large amount of

renewable integration reduces the power system’s inertia. Several studies have ex-

plained that the impact of this lack of the system inertia is due to a large amount

of wind generation on grid frequency regulation [204],[205]. In such a case, a large

number of participants with energy storage units and price responsive loads may have

a (in)direct impact on the power grid protection and control [206]. In [33], the effects

of the integration of distributed generation on the electricity network are studied. As

a result of the intermittent nature of nondispatchable production units, their out-

put cannot be controlled, or can only partly be controlled, and power production is

stochastic. Integration of renewables requires a higher degree of power system flexibil-

ity to be able to follow load fluctuations [207]. This way, the variations of electricity

generated from RESs can be passively absorbed by customers, which are provided

by demand response. Demand response schemes are responsible for achieving the

demand-side flexibility that allows covering the variability of uncertain sources such

as wind energy, and photovoltaics [208]. For more details, we refer again to the lit-

erature [12],[32]. Several aspects of electricity markets from the perspective of the

demand-side menagement are considered in [209]. In [210], load management pro-

grams are presented for residential appliances; in addition, a price prediction scheme

for real-time dynamic pricing is given in [211]. In another paper, some methods

based on a dynamic programming alghoritm are implemented for the dispatch of di-

rect load control [212], the dispatch of air conditioner direct load control [213], and

profit-based load management [214]. In [215], an efficient approach for the dispatch

of direct load control with the aim of reducing system operational costs is studied.

The penetration of wind power production facilities in electric energy systems with

load following requirements is studied in [216],[217]. The concept of a virtual power

plant (VPP) composed of an intermittent source, flexable loads, storage systems, and
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dispatchable generating units is introduced in [218],[219]. The main objective of a

VPP is to coordinate the production and consumption in both the day-ahead and the

balancing markets seeking to maximize their performance [220],[12].

Creating computer simulations of various scenarios of operation to achieve the

demand-side response is one of the main purposes of our work. These simulations

are performed by a semidefinite programming relaxation of the power flow equations

using the OPF problem. The OPF problem is well reviewed [221],[222],[223] as a pro-

cess of determining the optimal dispatch of active and reactive powers of distributed

generator units. There is a large body of literature related to the OPF problem; see

the following surveys [58],[59],[224]. Many special cases for the using of the OPF

problem are considered in the literature. The effects of distribution networks with

the OPF-based approach are discussed in [43],[225],[226]. Similar applications are

studied for distributed generations in a network or an area [227],[228],[229]. Some

work on basis of probabilistic OPF can be found in [230],[231],[232]. Additional ap-

plications of the OPF are developed by the use of genetic algorithms [233], a unified

power flow controller [234], an evolutionary programming algorithm [235], and a fuzzy

model [236]. The solutions of the OPF problem using the probabilistic and stochastic

methods for RESs are presented in [237],[238],[239]. Also, the optimal control of RESs

with energy storage systems is introduced in [240],[241],[242]. Then, the OPF is used

to determine the optimal allocation of demand-side resources in [243]. On the other

hand, many different solution schemes are proposed to the OPF problem. In general,

based on the optimization techniques applied the OPF methods, they can be classi-

fied into two main categories: namely, linear programming (LP) based methods and

nonlinear programming (NLP) based methods. The LP based OPF is implemented

by proving a LP based algorithm for the solution of a general OPF problem [244].

Using an LP based approach to follow the primal-dual interior point methods for an

OPF problem with polar coordinates is studied in [245]. Interior point algorithms

using both the polar and rectangular coordinates are shown in [246]. Following these,

the solution of the OPF dispatching problem by a primal-dual interior point method

is obtained in [247],[248]. Next, some aproaches using the interior point methods

are considred for the optimal reactive power flow problem [249] and the trust region

approach with interior-point OPF algorithm [250],[251]. Some methodologies are
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aimed at solving an optimal power flow problem with integrated security constraints

in [252],[253],[254]. More recently, the family of interior-point methods for linear opti-

mization were extended to solve SDP problems, which in turn solve convex optimiza-

tion problems allowing self-concordant barrier functions [255]. Considerable progress

has been achieved in the understanding of the basic concepts in convex programming,

which is related to semidefinite programming for the OPF problem, as well as algorith-

mic solution schemes for conic programs. In particular, some recent advances in the

convex relaxation of the OPF problem are discussed in [256],[257]. The OPF problem

can be seen as the SDP optimization problem, which is the dual solution of the OPF

problem [68],[258],[46]. Nonzero duality gap solutions for the OPF problem are also

given in [259],[260], and a framework for exploiting sparsity in primal-dual interior-

point based SDP solutions of the OPF problem is introduced. Moreover, an approach

with chordal conversion techniques is used for reducing the complexity of semidefinite

relaxations of OPF problems [261]. The OPF problem for DERs [262],[263],[65] and

radial networks [67] is solved using SDP. In addition, an implementation of the OPF

problem for direct current networks [264],[265] using a second-order cone program-

ming relaxation is considered in [266]. Transient stability analysis using constrained

programing for the OPF problem is presented in [267],[268],[269]. In this direction,

another work [270] involves the security-constrained OPF. The condition that power

flow optimization is based on a set of coupled OPF using a variety of variables and

constraints, and constraints over these variables. Thus, the problem is described

as the security-constraint OPF problem. What makes the security-constraint OPF

problem different from the OPF problem is that independent system operators tend

to determine an operating point that satisfies the supply/demand and network con-

straints not only under normal operation, but also under-prespecified contingencies

corresponding to the outage of an arbitrary number of lines and generators. For more

involved security-constrained OPF, we refer to [61] and the references therein. In ad-

dition, another class of conic optimization problems is the class of second-order cone

problems. This conic programming problem, whose constraint cone is a product of

semidefinite cones and second-order cones, is to find a global solution in a polynomial

time for the OPF problem, and it has been used for various applications in power

systems; see [271],[272],[273] and the references therein. In [64], the paper has dealt
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with a second-order cone program relaxation is to determine the optimal solution of

a general OPF problem with virtual phase shifters. They reformulate certain SDP

with the OPF problem as a second-order cone program.

1.6 Dissertation Outline

The dissertation comprises six chapters. The rest of dissertation is structured as

follows.

In Chapter 2, we develop some models of power systems based on the swing

equation and the simplifying assumptions. First, the second-order model and the

fifth-order model are used for the state feedback and the output feedback problems,

respectively. The power system models are intended to be an representation of termi-

nal voltage and frequency of generators. The models include uncertain time-varying

parameters and unknown design parameters. In addition, we develop a classical

model of power systems based on network equations. This model is used for the

observer-based control in multimachine power system.

In Chapter 3 discuss some fundamental mathematical concepts and definitions

necessary for the Lyapunov-based control of power systems. Then, we solve the volt-

age regulation problem in a decentralized manner. Finally, a decentralized controller

with both state feedback and dynamic output feedback controllers is developed. By

using the convex matrix inequality optimization problem, the quadratic stability of

the closed-loop system is established. We present our numerical results for the IEEE

test system.

In Chapter 4 is fully devoted to contraction theory-based analysis of stability.

We discuss the contraction region and contraction metric that define power system

models. The stability of nonlinear power system is proved by studying the properties

of its Jacobian matrix. This concept introduced here is to use observer-based control

for the multimachine power system. The decentralized control of the multimachine

power system is provided by a deterministic EKF observer. We obtain our simulation

results for multimachine power system cases.

In Chapter 5, we solve the optimal power flow problem with using a semidefinite

programming optimization. Demand participation is used to facilitate the integration
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of renewable resources. We develop an algorithm for achieving renewable energy inte-

gration. In addition, we also express the SDP-based OPF problem with contingency

analyses. The results are performed for the IEEE test system.

Finally, in Chapter 6, we discuss our contributions to decentralized voltage control

and observer design of power systems. Also, we discuss our demand-side participation

concept for achieving renewable energy integration in power grids.



Chapter 2

Conventional Generation Modeling for Power System

Control and Stability

2.1 Introduction

The mathematical model of an electrical network is a fundamental motive for power

system analysis. In studying power system control and stability, mathematical knowl-

edge of the system is predetermined. The mathematical models reflect the accurate

behavior of electric power systems. The fully-accurate modeling of large power sys-

tems will, in general, be complicated and difficult to handle. However, a simpler or

more abstract model is not able to capture the overall system dynamics, despite the

fact that lower-dimensional models can be much easier to implement. Moreover, it

can be unwise to work on the basis of a highly-detailed model in view of possible

changes in power system dynamics that may take place in the course of time. In this

case, the accurate model has high dimension and represents the dynamical behavior

of a power system over a broad range of operating conditions with its time scales.

Electric power systems are highly nonlinear and complex systems that are con-

stituted by a variety of utilities in different geographic locations, in which they can

be reliably served under different conditions. Their dynamic behaviors are there-

fore influenced by nonlinearity. The scale, as well as the degree of nonlinearity and

uncertainty, depend heavily how much other devices contribute to. The complexity

of power generation, distribution and consumption using modern information, com-

munication, and electronic devices are the main reasons for control, coordination,

and stability problems of power systems. As nonlinear systems, there have not yet

been adequate closed-form solutions for power system models. From the viewpoint

of electrical theory, a nonlinear and high dimension system is representable as a clas-

sical multimachine model. This chapter provides various multimachine models under

simplified assumptions.

27
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Similar to large-scale dynamic systems, we study the modeling and control of

large electric power systems which have properties similar to the computational as-

pects of large dynamic systems. In this way, the hierarchic structures can be adopted

as a solution for the large dynamic systems. Similarly, the large power systems are

based on hierarchic structures to achieve reliable operation of the power grid. From

this hierarchical perspective, modern power systems that are constituted of a number

of interconnected subsystems are made of a well-known layered structure [21]. The

layered-architecture of large power systems are dependent on each other due to con-

ceptual or computational reasons. In this section, we describe the physical model (or

layer) of the power system which is depicted as a power plant to be controlled, and

is often described by dynamic equations in accordance with the laws of physics. Fol-

lowing this, the separate analysis of subsystems provides the separating stabilization

and the operating objectives. In order to stabilize the system, the proposed control

scheme is a decentralized one, since each subsystem is stabilized by a local feedback

loop [274].

In this work, we consider an individual subsystem to be a conventional gener-

ation unit consisting of a synchronous machine equipped with an exciter and tur-

bine/governor, which is called called a generator-turbine/governor set. As previously

mentioned, the local characteristics of each generation unit is modeled in a decen-

tralized way, such that the unit is affected by its own performance and the dynamic

behavior of its components. Each generator-turbine/governer set has a local feedback

loop. That is, the stability of each subsystem is maintained by eliminating the mutual

interactions of neighboring systems. This may occur at the level of the regional sys-

tem or at each subsystem level. Since a certain region may include many conventional

generation units that are coupled with tie-line, and as a result power flows through

that region. In the proposed decentralized scheme, we design the local controllers

via the existence of both state feedback and output feedback controllers to stabilize

each individual subsystem. In this chapter, these local controllers are mainly respon-

sible for frequency and voltage stabilization. The local frequency control is intended

to keep scheduled load and scheduled generation in balance. The voltage control

achieves voltage regulation, but it is only based on local measurements.
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We measure the performance of a subsystem with respect to controlling system fre-

quency and voltage. Using a decentralized approach, the control and coordination on

a system-wide basis may be provided.

In our formulation of power system models, we specify the system of differential

equations which represents valuable information about the dynamical behavior of

power systems. Differential equations are the most useful and widely applied tools in

describing models of dynamic systems. Mathematically, the problem of fitting can of-

ten be modeled by a set of ordinary differential equations (ODEs), partial differential

equations (PDEs), or/and delayed differential equations (DDEs). However, the prob-

lem can naturally be extended to models described by differential-algebraic equations

(DAEs). In fact, the nonlinear differential equations are highly constrained by the

characteristics of algebraic equations power system models. In the literature, various

approaches have been proposed to solve DAEs. Following [275], one can solve all

equations simultaneously by using the trapezoidal integration method. In this case,

the whole set of system equations is considered. Therefore, the system matrix is quite

sparse and the solution may be computed by using sparse solution techniques. Al-

ternatively, the other approach allows the computation of subsystems independently

by eliminating some Jacobian elements from the system matrix. In the latter case,

the power system model can also be described by difference equations. Consequently,

these nonlinear equations can be solved independently for each component of power

systems. The local dynamics of generator units that are subject to adding network

constraints are represented as algebraically coupled DAEs of the following form:

ẋ(t) = f(x, y, u, t), (2.1)

0 = g(x, y, u, t), (2.2)

where x is the state vector which contains the local and dynamic state variables of a

conventional generator unit, the vector y contains all of the algebraic variables, u is

the input to the system, and t is the time in seconds. As indicated above, algebraic

constraints on the electric network are the algebraic power-flow equations. The local

dynamics of the generator unit and the network couplings may require modification

of the power system model formulation by by introducing new variables.
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2.2 Modeling Procedure

Basically, electric power systems may consider as synchronous generation units, and

electric loads interconnected through a transmission lines, i.e., a transmission net-

work. Power systems are comprised of a large number of multimachines multimachines

that accommodate nonlinearities in the interconnections among the neighboring syn-

chronous machines. In this case, all the synchronous machines run in parallel and

at the synchronous speed when used under normal operating conditions. The stator

fields and rotor fields of the machines are synchronized in the machine, which means

that their rotational speeds must be almost exactly equal for successful operation of

the system. To maintain electromechanical stability of the system, the stator voltages

and currents of all the machines have the same frequency and the rotor mechanical

speed of each machine is exactly proportional to this frequency, in proportion the

number of generator windings on the synchronous machine. Therefore, the rotors of

all interconnected synchronous machines in the system must remain in synchronism;

see [276] for details.

In this section, we first discuss the basic equation governing the electromechanical

dynamics of power systems. This equation is often referred to as the classic swing

equation. The swing equation, which is based on Newton’s second law, governs the

rotor dynamics of a synchronous machine. Clearly, the swing equation governs speed

(and frequency) of synchronous machine in a power system. In relating the dynamic

performance of the machine to the power network, the swing equation can be formu-

lated by the units of power instead of the units of torque. Power is a preferred unit,

since it is more suitable than torque to measure. Roughly speaking, power equals

the product of torque and speed, thus power becomes almost exactly proportional

to torque. As seen in this relationship, the electrical power output is almost exactly

equal to the power in accordance with magnetic fields within the machine. Finally,

the well-known swing equation in the second-order differential equation is

Mδ̈ +Dδ̇ = Pm − Pe, (2.3)

where M denotes the normalized inertia constant, M = 2H/ω0 in seconds-squared

per electrical radian, the inertia constant H has units of seconds, ω0 is synchronous
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speed which is equivalent to 2πf0 in electrical radians per second, and f0 is the rated

frequency in Hertz. In addition, D is the damping constant in per unit, δ is the rotor

angle of the machine in electrical radians, Pm is the mechanical input power from the

prime-mover, and Pe is the electrical power output absorbed by the network from the

generator. Note that Pe must balance the power absorbed by the rest of network at

the generator bus and is related to the other network variables through the standard

power-flow equations. The power quantities Pm and Pe are in per unit.

In the following analysis, the model does not include such a detailed representation

of the synchronous machine. In this work, the power system models are considered

under various simplifying assumptions and explanations.

1. Each synchronous machine is assumed to be equipped with the same type of

exciter control and turbine/governor.

2. In Eq. (2.3), it is assumed that Pm is constant for all machines during the time

interval of interest.

3. Loads are not considered and/or represented as constant impedance while com-

prising the local state variables from each conventional generation unit.

4. The subscript indexes d and q show in the coordinate system of direct and

quadrature axis.

5. Subtransient parameters can be neglected.

6. Sum of the reactance for a one-machine, infinite-bus power system is considered

as

Xds = Xd +XT +XL (2.4)

X ′ds = X ′d +XT +XL (2.5)

where Xd and X ′d are direct axis reactance and direct axis transient reactance

of the machine in per unit, respectively. XT and XL are transformer and trans-

mission line reactance in per unit, respectively.

7. The constant voltage behind transient reactance model the machine is valid.
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8. The rotor angle of the machine coincides with the voltage behind the transient

reactance angle.

9. The transformer voltages are neglected and the armature resistance, which is

very small, is neglected for the excitation system.

2.3 The Models

2.3.1 SMIB System

In this subsection, we shall present a single-machine infinite-bus (SMIB) power sys-

tem model. A SMIB involves a power system consisting of a synchronous machine

which is connected via a transmission line to an infinite bus. However, an infinite bus

represents a voltage source with constant phase, magnitude, and frequency, and it is

not affected by the amount of current that flows into the transmission lines. It also

may be defined as a machine having zero impedance and infinite inertia. A major bus

of a large power system may often be chosen as an infinite bus. The internal voltage

of the machine is represented by the phasor E∠δ where δ is the phase angle and is also

the initial rotor angle of the machine with respect to a synchronously rotating refer-

ence frame. For each machine of the system, the constant magnitude E is denoted

the internal voltage of the machine, and the voltage V ∠0 is called the voltage of the

infinite bus. The initial rotor angle, by the internal voltage leading to the infinite bus

voltage, coincides with rotor angle of the synchronous machine. The internal voltages

and rotor angles for each synchronous machine are calculated using the generated ac-

tive and reactive powers, voltage magnitudes, and angles. To do this, we first perform

a power-flow analysis to determine system voltages, angles, and active and reactive

power generation. In addition, transmission line includes the reactance X which is

the equivalent reactance of the transmission network, including the transient reac-

tance of the machine and the resistance R which represents the equivalent resistance

of the transmission network. Thus, power flows freely along all available transmission

lines from the generators to the loads by dividing among all connected lines flowing

in the electric network, in inverse proportion to the impedance Z on each line. The

electric network can be assumed to be losses, so all lines including the resistance can
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be neglected.

2.3.2 Local Dynamics

The main objective of this section is to introduce a power system model for mea-

suring voltage (and frequency) in a decentralized way. The model is supposed to be

an exact representation of the power system and includes the main power system

indicators such as frequency and voltage. Then we investigate some strategies that

are robust with respect to deviations between the proposed model and reality. The

model is motivated by earlier study of a generator model with these same components

in [51],[116]. The model that we study is flexible enough to incorporate locally avail-

able information associated with the generator unit(s). Note that in contrast to the

papers [51],[116], we consider the salient-pole case [277]. Throughout this subsection,

we consider a multimachine power system with ith generator in the system. The

state-space representation for such a system is described by the following equations

δ̇i(t) = ωi(t), (2.6)

ω̇i(t) = M−1 (−Diωi −∆Pei) , (2.7)

where

Pei(t) =
E ′qiVssin δi(t)

X ′ds
, (2.8)

and ωi(t) is departure of machine speed from synchronous speed ω0 in electrical

radians per second, ∆Pei(t) = P 0
mi−Pei(t). E ′qi denotes the transient EMF of the ith

machine in per unit, and Vs is the infinite-bus voltage in per unit. Correspondingly,

the generator reactive power can be shown as

Qei(t) =
E ′qiVscos δi(t)

X ′ds
− Vs
X ′ds

. (2.9)

Note that δi(t) and ωi(t) are measurable state variables. Next, we extend the model

for the state variables of steam valving control. The differential equation for ith

machine belongs to a simple nonreheat turbine that can be expressed in the forms

Ṗmi(t) =
1

TMi

[−Pmi(t) +Xi(t)] , (2.10)
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where TMi
is the turbine time constant and Xi is the stream valve opening for ith

machine in per unit. In addition, the governor-hydraulic model for ith machine can

be formulated as a first-order differential equation [74],[278]

Ẋi(t) =
1

TEi

[
−Xi(t)−

1

Ri

ωi(t) + P 0
mi

]
, (2.11)

where P 0
mi = Pmi(t), and P 0

mi is the mechanical power at the initial steady state. TEi

is the governor time constant and Ri is the regulation constant in per unit.

The exciter model addresses how to measure generator terminal voltage using the

concept of terminal voltage regulation, which is the main function of exciter control.

The electrical power delivered by the ith machine is related by the definition

Pei(t) ≡ E ′qi(t)Iqi(t), (2.12)

where

E ′qi(t) = Eqi(t) + (Xdi −X ′di)Idi(t), (2.13)

and Eqi(t) is the EMF of the ith machine. Here Idi and Iqi are defined as

Idi(t) =
E ′qi(t)− Vscos δi(t)

X ′ds
, (2.14)

Iqi(t) =
Vs sin δi(t)

X ′ds
, (2.15)

where the expressions of Idi(t) and Iqi(t) are the armature windings currents of the

ith machine. Note that Idi(t) and Iqi(t) cannot be measured directly but they can

be obtained from measurable variables. In addition, Eqi(t), E
′
qi(t), Idi(t), Iqi(t), and

Vs are in per unit. Then, Pei(t) is differentiable and measurable from Eq. (2.12), we

write

Ṗei(t) = Ė ′qi(t)Iqi(t) + E ′qi(t)İqi(t) (2.16)

with

Ė ′qi(t) =
1

T ′doi

[
−
E ′qi(t)Xds

X ′ds
+

(Xdi −X ′di)Vs cos δi(t)

X ′ds
+ Efdi(t)

]
, (2.17)

İqi(t) =
Vs cos δi(t)

X ′ds
, (2.18)
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where T ′do is direct axis transient open circuit time constant in seconds and Efi is the

field voltage of ith machine in per unit.

Then substituting Eq. (2.17) and Eq. (2.18) into (2.16), we obtain

Ṗei(t) =

{
1

T ′doi

[
−
E ′qi(t)Xds

X ′ds
+

(Xd −X ′d)Vs cos δi(t)

X ′ds
+ Efdi(t)

]}
Iqi(t)

+ E ′qi(t)

{
(
Vs cos δi(t)

X ′ds
)δ̇i(t)

}
(2.19)

or equivalently,

Ṗei(t) =

{
(Xd −X ′d)Vs cos δi(t)− E ′qi(t)Xds

X ′dsT
′
d0

× Vs sin δi(t)

X ′ds
+
Efdi(t)× Vs sin δi(t)

X ′dsT
′
d0

}
+

{
E ′qi(t)Vs cos δi(t)

X ′ds

}
ωi(t). (2.20)

We recall that the Eq. (2.12) and E ′q is the unmeasured value and can be eliminated

from the Eq. (2.20)

Ṗei(t) = −Pei(t)Xds

X ′dsT
′
d0

+
(Xd −X ′d)V 2

s sin 2δi(t)

2X ′2dsT
′
d0

+
Efdi(t)Vs sin δi(t)

X ′dsT
′
d0

+

{
Qei(t) +

V 2
s

X ′ds

}
ωi(t). (2.21)

Each side of the above equation is multiplied by
X′ds
Xds

and the equation can be written

as follows;

Ṗei(t) = −Pei(t)
T ′d0

+
1

T ′d0

{
(Xd −X ′d)V 2

s sin 2δi(t)

2XdsX ′ds
+
Efdi(t)Vs sin δi(t)

Xds

+
X ′ds
Xds

T ′d0

(
Qei(t) +

V 2
s

X ′ds

)
ωi(t)

}
. (2.22)

Here the control input is defined as

u1i =
(Xd −X ′d)V 2

s sin 2δi(t)

2XdsX ′ds
+
Efdi(t)Vs sin δi(t)

Xds

+
X ′ds
Xds

T ′d0

(
Qei(t) +

V 2
s

X ′ds

)
ωi(t). (2.23)

Thus, Pei(t) is used as alternative state instead of E ′di(t) and E ′qi(t). Note that

the reactive power Qei(t) can be measured and calculated explicitly. Finally, the

derivative of Pei(t) is formulated as

Ṗei(t) = − 1

T ′doi
Pei(t) +

1

T ′doi
u1i. (2.24)
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Next, we will formalize the generator terminal voltage Vt(t) as a state variable. The

main idea here is that the expression of Vt(t) is written in terms of δi(t) and Pei(t).

The algebraic equation of the ith generator terminal voltage is

V 2
ti (t) = V 2

di + V 2
qi, (2.25)

where

Vdi = XqiIqi(t), (2.26)

Vqi = −X ′diIdi(t) + E ′qi(t), (2.27)

which results in

Vti(t) =
{
E ′2qi(t)− 2E ′qi(t)X

′
diIdi(t) +X ′2diI

2
di(t) +X2

qiI
2
qi(t)

} 1
2
. (2.28)

Then, we can eliminate Idi(t) and Iqi(t) from Eq. (2.28). To do this, recalling Eq (2.14)

and Eq. (2.15), we obtain

Vti(t) =

{
E ′2qi(t)− 2E ′qi(t)X

′
di

(
E ′qi(t)− Vs cos δi(t)

X ′ds

)
+X ′2di

(
E ′qi(t)− Vs cos δi(t)

X ′ds

)2

+X ′2qi

(
Vs sin δi(t)

X ′ds

)2
} 1

2

. (2.29)

By defining X ′ds = Xs +X ′di, Eq. (2.29) becomes

Vti(t) =
1

X ′ds

{
E ′2qi(t)X

2
s + 2E ′qi(t)X

′
diXsVs cos δi(t) +X ′2diV

2
s cos2δi(t)

+X ′2qiV
2
s sin2δi(t)

} 1
2
. (2.30)

In above equation, E ′q(t) is not measurable. We rewrite the terminal voltage of the

ith machine in terms of the Pe(t) by using Eq. (2.8), and the following result is thus

obtained.

Vti(t) =

{
P 2
ei(t)X

2
s

V 2
s sin2δi(t)

+
2X ′diXsPei(t) cot δi(t)

X ′ds
+
X ′2diV

2
s cos2δi(t)

X ′2ds

+
X ′2qiV

2
s sin2δi(t)

X ′2ds

} 1
2

. (2.31)
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Differentiating (2.31) yields:

V̇ti(t) = h1i(t)δ̇i(t) + h2i(t)Ṗei(t), (2.32)

where

h1i(t) = −P
2
ei(t)X

2
s cot δi(t)

Vti(t)V 2
s sin2δi(t)

− Pei(t)X
′
diXs

Vti(t)X ′ds sin2δi(t)
(2.33)

− X ′2diV
2
s sin 2δ(t)

2Vti(t)X ′2ds
+
X ′2qiV

2
s sin 2δ(t)

2Vti(t)X ′2ds
,

h2i(t) =
Pei(t)X

2
s

Vti(t)V 2
s sin2δi(t)

+
X ′diXs cot δi(t)

Vti(t)X ′ds
·

Expressions h1(t) and h2(t) are assumed to be uncertain parameters which are only

known in their uncertainty interval. The nonlinearity of the power system model is

modeled in terms of two time–varying parameter vectors, h1(t) and h2(t). For the case

of two uncertain parameters, the terminal voltage Vt(t) contains all nonlinear terms

that are uncertain parameters that are considered in only a function of measurements,

whose time behaviour is unknown. Thus, we have four points (h1, h2) = (h1, h1, h2, h2)

for two uncertain parameters which are possibly time-dependent. To find the uncer-

tainty interval for the parameters (h1, h2), we use the security operating constraints

for the power system model. In doing so, we provide the bounds of the uncertainty

range where the system remains stable with respect to allowable operating conditions

of the system. In addition, the control input is not assumed to be constant since we

have an uncertain parameter h2i(t) in the input vector.

Remark 1. Saliency of the synchronous machines is not neglected from the parame-

ters h1(t) and h2(t).

The main goal is to choose the terminal voltage as a state variable, since this pro-

vides measurement of the synchronous machine of terminal voltage directly. Finally,

we introduce the decentralized feedback control input u1i into (2.32), obtaining

V̇ti(t) = h1i(t)ωi(t)−
h2i(t)

T ′doi
Pei(t) +

h2i(t)

T ′doi
u1i. (2.34)

Notice that, the control input u1i is defined withQei(t) in Eq. (2.23). Alternatively, u1i
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can be written in terms of δi. That is:

u1i =
Vs
Xds

sin(δi(t))

[
Efdi + T ′d0(Xdi −X ′di)

Vs
X ′ds

ωi(t) sin(δi(t))

]
+ T ′d0ωi(t) cot(δi(t)).

(2.35)

2.4 Network Model

Decentralized control and coordination in generators is required to effectively and re-

liably coordinate of power systems. However, both generation and load require access

to an interconnected network of transmission lines. The transmission network consists

of high voltage transmission lines, transformers, phase shifters and other utilities that

enable the transfer of electricity production from generators to loads. The complete

power system model for dynamic stability control depends on the integration of more

components to the network configuration, as well as their interactions in the system.

Thus, the transmission network plays an important role in interactions. In order to

obtain a more realistic power system, the synchronous machine, AVR/exciter, and

turbine/governor equations are combined by the network equations. In addition the

local dynamics of generators and load deviations are subject to transmission network

constraints.

Let the electrical network consist of n-buses power system with N = {1, 2, . . . , n}
connected by the set of transmission lines L ⊆ N × N . The system has generator

buses G ⊆ N , in other words, these buses represent synchronous machines. N − G
represents the load buses. Now, we can view the network mathematical model by

the nodal equation that is the relationship between node current and voltage in the

linear network. Hence, the nodal equation of an electrical network can be generally

described by I = YV and it can shown in a matrix form
I1

I2

...

In

 =


Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Yn1 yn2 · · · Ynn




V1

V2

...

Vn

 , (2.36)

where I =
[
I1 I2 . . . In

]T

is current vector and Ik is the nodal current injected to
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the bus; Vk is the complex voltage at bus k ∈ N , which is measured from the reference

node; the diagonal element Ykk is the self admittance or the input admittance at node

k for every k ∈ N , and the off-diagonal element Ykj (k, j ∈ N , k 6= j) is the mutual

admittance or the transfer admittance between nodes k and l. Note that the self

admittance for a node is the sum of all the admittances connected to that node;

the mutual admittance between two given nodes is the negative of the admittance

connected between the given nodes. Here,

Ykk = Ykk∠θkk = Gkk + jBkk, (2.37)

Ykj = Ykj∠θkj = Gkj + jBkj, (2.38)

where Gkk = Ykk cos θkk is the short-circuit conductance; Gkj = Ykj cos θkj is the mu-

tual conductance; and Bkj = Ykj sin θkj is the mutual susceptance. Thus, when for-

mulating the network equations, the nodal admittance matrix of the power grid Y =

G + jB is used, in which n× n complex-value matrix is defined. We can also use the

trigonometric identities:

G cos δ +B sin δ = Y sin(δ + θ), (2.39a)

G sin δ −B cos δ = −Y cos(δ + θ). (2.39b)

Let P + jQ be the complex (or apparent) power of all the buses. The power

balance equations can be written as

P + jQ = diag{VV∗Y∗}. (2.40)

The above equation can be divided into a real and an imaginary part. Thus, the

active power injection at bus k is described by

Pk = Re{VkI∗k}, k ∈ N (2.41)

and the reactive power injection at bus k:

Qk = Im{VkI∗k}, k ∈ N . (2.42)

Here, Vk is the voltage phasor for every k ∈ N . Substitution of Eq. (2.41) into the



40

Eq. (2.45) gives

Pk = Re

{
n∑
j=1

VkVjYkj∠(δk − δj − θkj)

}
, k ∈ N

=
n∑
j=1

VkVjYkj cos(δk − δj − θkj). (2.43)

Following this, we can also write

Pk = V 2
k Ykk cos θkk +

m∑
j=1
j 6=k

VkVjYkj cos(δk − δj − θkj), k ∈ N (2.44)

= V 2
k Gkk +

n∑
j=1
j 6=k

VkVjYkj cos(δk − δj − θkj). (2.45)

The formulation of electrical active power injection at bus k is also presented in terms

of the line susceptances and conductances. Now, one can write

Pk + jQk =
n∑
j=1

VkVj(Gkj − jBkj) [cos(δk − δj) + j sin(δk − δj)] k ∈ N (2.46)

Again, this can be stated as the active power injection:

Pk =
n∑
j=1

VkVj[Gkj cos(δk − δj) +Bkj sin(δk − δj)], k ∈ N (2.47)

or

Pk = V 2
k Gkk +

n∑
j=1
j 6=k

VkVjYkj [sin θkj sin(δk − δj) + cos θkj cos(δk − δj)] , (2.48)

= V 2
k Gkk +

n∑
j=1
j 6=k

VkVj[Bkj sin(δk − δj) +Gkj cos(δk − δj)], k ∈ N . (2.49)

Also,

Qk =
n∑
j=1

VkVj[Gkj sin(δk − δj)−Bkj cos(δk − δj], k ∈ N (2.50)
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or

Qk = −V 2
k Bkk −

n∑
j=1
j 6=k

VkVj[Bkj cos(δk − δj)−Gkj sin(δk − δk)], k ∈ N .

(2.51)

Obviously, the electrical real power delivered to the power network by the ith machine

is a function of the angle differences (δk − δj) between the ith machine and the

machines connected to that machine.

The electrical real and reactive power, Pk and Qk, come from the nonlinear AC

power-flow equation. The flows in power grid are defined by nonlinear AC power-

flow equations. The goal of the classical power-flow problem is to determine the

unknown complex voltages at all buses. The power-flow problem is usually computed

approximately through linearization the process or in an asymptotic sense via the

standard Newton-Raphson method. The values of all unknown variables are fully

determined with a sufficiently close initial guess. The power network has generator

and load buses. The active powers and voltage magnitudes are known at generator

buses, and active and reactive powers are known at load buses. Thus, the network

equations can be expressed for both generator and load buses, and the resulting

equations are nonlinear. The network equations for generator buses are given by

0 = −
[
EiVi
Xi

sin(δi − θi)
]

+
n∑
j=1

VkVj[Gkj cos(δk − δj) +Bkj sin(δk − δj)], (2.52)

0 = −
[
EiVi
Xi

cos(δi − θi)−
V 2
i

Xi

]
+

n∑
j=1

VkVj[Gkj sin(δk − δj)−Bkj cos(δk − δj)]

(2.53)

for ith synchronous machine and i, k ∈ G.
The power balance equations for load bus at bus k ∈ N − G are given by

0 = PDk
+

n∑
j=1

VkVj[Gkj cos(δk − δj) +Bkj sin(δk − δj)], (2.54)

0 = QDk
+

n∑
j=1

VkVj[Gkj sin(δk − δj)−Bkj cos(δk − δj)] (2.55)
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2.5 Contributions on Models

State-space models are used to represent the dynamical models such as classical mod-

els of power systems. Thus, a power system model is characterized using the state-

space form for the analysis of the system behavior. In this section, we develop some

state-space models consisting of synchronous machines interconnected via the trans-

mission network. For every i ∈ G, let Pci = Pmi−E ′2qi(t)Gii. Then the swing dynamics

of the ith machine becomes

Mi
d2δi
dt2

+Di
dδi
dt

= Pci −
n∑
j=1
j 6=k

E ′qiE
′
qj[Gij cos(δi − δj) +Bij sin(δi − δj)]. (2.56)

Note that the asynchronous damping constant Dij is neglected from the above equa-

tion. In this way, we convert n second-order differential equations into 3n first-order

differential equations. We now can rewrite (2.56) as follows:

δ̇i(t) = ωi(t), i ∈ G

Miω̇i(t) = Pci −Diωi(t)−
n∑
j=1
j 6=i

E ′qiE
′
qjαij, i ∈ G

and with excitation,

T ′d0iĖ
′
qi(t) = −(1−∆XdiBii)E

′
qi −∆Xdi

n∑
j=1
j 6=i

E ′qjβij + Efdi , i ∈ G

where ∆Xdi = Xdi −X ′di and Efdi = E0
fdi

+ ui. Using the Eq. (2.39), we get

αij = Gij cos(δi − δj) +Bij sin(δi − δj), (2.57)

βij = Gij sin(δi − δj)−Bij cos(δi − δj). (2.58)

Defining the following constants

vij = G2
ij +B2

ij , θij = arctan

(
Gij

Bij

)
,

ai =
1

T ′d0i

(1−Bii∆Xdi) , bi =
∆Xdi

T ′d0i

√
vij . (2.59)



43

Using these new definitions, we define the state-space model with the state variables(
δi, ωi, E

′
qi

)
,

δ̇i(t) = ωi(t), i ∈ G

ω̇i(t) = PciM
−1
i −

Di

Mi

ωi(t)−M−1
i

n∑
j=1
j 6=i

E ′qiE
′
qj

√
vijsin (δi − δj + θij) , i ∈ G

Ė ′qi(t) = −aiE ′qi − bi
n∑
j=1
j 6=i

E ′qj cos (δi − δj + θij) + Efi, i ∈ G

(2.60)

where Efi =
Efdi

T ′d0i
is the constant parameter for all machines (i ∈ G). For every i ∈ G,

ai, bi > 0, θij = θji.

On the other hand, the dynamics of a synchronous machine are not in strict

feedback form, thus Pei(t) is a state variable instead of unmeasurable state E ′qi(t).

However, measurement of the terminal voltage Vti(t) is the main issue in this chapter.

As we have seen before, the terminal voltage Vti(t) is a nonlinear function of δi(t),

Pei(t) that is assumed to be unknown and time-varying, and depends on the deriva-

tives of δi(t) and Pei(t). To regulate the terminal voltage directly, we have so far

used the terminal voltage equation given in (2.34), which is represented in terms of

δi(t) and Pei(t). Thus, the dynamics of terminal voltage lead to a highly nonlinear

equation. Next, we set the system dynamics with three measurable states:

ω̇i(t) = −Di

Mi

ωi(t)−
1

Mi

Pei(t) i ∈ G, ,

Ṗei(t) = − 1

T ′doi
Pei(t) +

1

T ′doi
u1i i ∈ G,

V̇ti(t) = h1i(t)ωi(t)−
h2i(t)

T ′doi
Pei(t) +

h2i(t)

T ′doi
u1i i ∈ G.

Finally, the active power output is measured at every bus of the power network, thus

Pei(t) can be removed from the above model, and is introduced as a new input of the

system [279]. The dynamic model can be written by the following state Vti:

V̇ti(t) = h1i(t)ωi(t) + h2i(t)ufi i ∈ G, (2.61)
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where ufi = Ṗei(t) is assumed to be a decentralized feedback input. The state Vti(t) is

subject to the uncertain parameters h1(t) and h2(t) and can be controlled by the new

input ufi. The closed-form solution of (2.61) is derived for the case where full state

information is available. In the case where full state information is available, the

decentralized voltage controller is linear in the state and in the disturbance.

The state-space model with the new input can be represented as

ẋ(t) = Ax(t) +Buf , (2.62)

where the system state vector x = [ω Vt]
T.

2.5.1 Power System Stabilizers

Power system stabilizers are widely used in power systems [280]. The PSSs serve to

add an auxiliary signal to AVRs which is input of the excitation system of a generator.

In general, PSSs are used for damping enhancement in power systems oscillation, and

to damp out the low-frequency oscillations of the machine through the excitation

system. As a result, PSSs in operation improve power system dynamic stability,

and also improve the system-wide performance of power systems with other control

devices.

A PSS design is proposed for a decentralized output feedback problem. Additional

state variables are applied to the power system model. As a result, the control action

is provided by the certain states of the model. As a starting point for the design [281],

we provide the standard representation of PSSs which include a third order transfer

function. The dynamic model consisting of a constant gain, a washout filter, and a

lead-lag filter as follows

Gi(s) = KSi

sTwi
1 + sTwi

(1 + sT1i)(1 + sT3i)

(1 + sT2i)(1 + sT4i)
i ∈ G, (2.63)

where T1i, T2i, T3i, T4i and Twi are the time constants, and in addition, KSi
is the

stabilizer gain. In this case, the value of the washout time constant Tw is not critical

for phase shift or gain at the oscillating frequency. Thus it is accepted to be unaffected.

Then, for mathematical simplicity, we can write the expression of Gi(s) as

Gi(s) = Ki +
β2is

2 + β1is+ β0i

s3 + α2is2 + α1is+ α0i

i ∈ G, (2.64)
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where Ki = KSi

T1iT3i
T2iT4i

and the coefficients {β0i, β1i, β2i} and {α0i, α1i, α2i} are explicit

functions of the time constants. Let ξ = [ξ1, ξ2, ξ3]T be PSS state. Then we write an

appropriate dynamic model for a PSS as

ξ̇1i = −α2iξ1i + ξ2i + β2iωi(t) + u1i i ∈ G,

ξ̇2i = −α1iξ1i + ξ3i + β1iωi(t) + u2i i ∈ G,

ξ̇3i = −α0iξ1i + β0iωi(t) + u3i i ∈ G.

(2.65)

The PSS input is given by

upi = Kiωi(t) + ξi i ∈ G. (2.66)

Moreover, additional inputs are assumed for the states of PSSs such as [u1i, u2i, u3i]
T.

Following the state-space approach (2.65), these additional inputs are an auxiliary

step in the both control and design principle. For this purpose, we may write a

feedback strategy in the following PSS path:

[
u1i u2i u3i

]T

=
[
η1i η2i η3i

]T

ξ1i. (2.67)

Notice that only states (ωi, Vti) are available for input ufi. Furthermore, the states of

a PSS are only observable variables and it is assume that they may not be measurable.

The input upi is assumed to be a continuous function of the states (ωi, Vti). Using the

PSS input upi, we model the power system as the fifth-order system:

ω̇i(t) = −D
M
ωi(t)−

1

Mi

Pei(t),

V̇ti(t) = h1i(t)Kiωi(t) + h2i(t)ufi + ξ1,

ξ̇1i = −(α2i − η1)ξ1i + ξ2i + β2i(t)ωi(t),

ξ̇2i = −(α1i − η2)ξ1i + ξ3i + β1i(t)ωi(t),

ξ̇3i = −(α0i − η3)ξ1i + β0i(t)ωi(t),

(2.68)
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where

α2i − η1 =
1

T2i

+
1

T4i

+
1

Twi
, (2.69)

α1i − η2 =
1

T2iT4i

+
1

T4iTwi
+

1

T2iTwi
, (2.70)

α0i − η3 =
1

T2iT4iTwi
. (2.71)

Remark 2. In this work, the coefficients {α2i, α1i, α0i} are assumed to be constant.

On the other hand, the coefficients {β2i(t), β1i(t), β0i(t)} are required to be adjusted

for the changing of uncertain parameters h1i(t) and h2i(t). Thus, a control or opti-

mization scheme is needed to regulate the states of the fifth-order dynamics and these

coefficients will change accordingly.

Finally, the closed-form solution is derived for the case where partial state infor-

mation is available to the fifth-order system.

2.6 Conclusion

In this chapter, a general state-variable forms of mathematical modeling of a mul-

timachine power system are presented. We aim to establish some models for de-

signing the controllers that are to obtain appropriate measures for modern power

systems. In (2.60), we firstly develop a classic model involving network equations for

the observer-based analysis of power systems. A first contribution of this chapter is

to propose a model in (2.61) for the voltage regulation problem of power systems,

which takes into account the known allowable bounds of parametric uncertainties of

the state equations of the system. These parametric uncertainties are deterministic

and obtained depending on the system operating conditions. Then, the dynamics of

a single generator are described with two major states: the frequency and terminal

voltage of a synchronous machine. The nonlinearity of the model is only affected by

these uncertain time-varying parameters, and hence, the state Vti is used to eliminate

everything else using these uncertain parameters. The aim of the model is to neglect

other states of the synchronous machine, thus the system voltage and frequency are

also affected by the input as electrical output power of the generator. The voltage
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regulation problem is represented as a stabilizing controller problem using decentral-

ized feedback. The control action provides a stabilization for the rest of the system

by locally stabilizing each machine. The second-order system makes it possible to

derive decentralized control for the closed-loop full-state measurement structure in a

general setting with operating constraints of the power system and the requirements

in the presence of parametric uncertainties on control action. This can further be

simplified to the case of the state feedback problem.

A second contribution of this chapter is to enhance the model (2.61) with a power

system stabilizer. The goal of the enhanced model is to solve the output feedback

problem. In (2.65), using the states of the power system stabilizer, we propose a

high-order model for a decentralized control-based output feedback controller. The

design parameters of PSSs are controlled by uncertain parameters, which in this case

are optimized using Bisection iterative algorithms.



Chapter 3

Voltage Control of Power Systems via Convex Optimization

3.1 Introduction

Voltage control is one of the main issues of power systems. The need to provide new

voltage control methodologies is recognized by power system researchers, see [282].

The resulting increase in electrical demands, number of generation facilities with

intermittent generation units, loading of transmission grids, high power transfers,

and the loss of generation or transmission facilities in the power systems, all pose

voltage control problems for power systems. The complexity of electric grids has

greatly increased the concern for maintaining the voltages (and frequency) within a

secure range pertaining to all system electrical equipment, and addressing the need

to design security measures for modern power grids [283]. In most cases, the voltage

control strategies are organized in both centralized and decentralized manners.

The main objective of this chapter is to control the terminal voltage (and fre-

quency) of synchronous generators. The control action is characterized in a decen-

tralized way. The main idea here is that it is not possible to eliminate many feedback

loops from the controller design for a large electric power system since the cost of this

process is expected to be much more expensive than the decentralized method. This

difficulty motivated us to suppose that the system is composed of (non)interacting

subsystems that are controlled independently on the system’s local control action.

This method is a modeling and solving control strategy for large power systems. In

order to achieve this control strategy, the modeling process requires the measurement

of terminal voltage and frequency of synchronous generators. However, the system

frequency is a key system variable. That is, the system operates at a unique frequency

in the entire interconnected system. As a consequence, all the local controllers of the

synchronous generators are implemented to regulate the system frequency due to the

48
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limitations of power flow through transmission lines. In the voltage control prob-

lem, the local variables on the controller and the power-flow equations often interact

weakly; these weak interactions are neglected. As a result, the voltage control scheme

achieves the measurement of voltage between suitable operating ranges. The system

uncertainties are modeled by the nonlinear terms of the terminal voltage. In other

words, the dynamics of terminal voltage contain the nonlinear terms that are the

only function of the online measurements. The terminal voltage equation depends on

parametric uncertainties for which their exact values are unknown or a priori known

constants. This allows effective measurement of the terminal voltage.

For the solution process of the decentralized scheme, we design a decentralized

controller with both state feedback and dynamic output feedback controllers to sta-

bilize each individual generator. System modeling, viewed as two different dynamic

models, is the fundamental motivation for the design of these decentralized controllers

for power systems. In this chapter, we suggest a solution strategy to solve the de-

centralized voltage control problem that is subject to uncertain parameters using the

case of full and partial state measurements. To achieve this, we adopt the following

procedure. We first build a control scheme associated with the relevant models with

uncertain (time-dependent) terms. By defining a set of scheduling variables from the

knowledge of power system dynamics and/or based on the most recent power flow re-

sults [284], we determine the upper and lower bounds of these uncertain terms. Note

that we do not need to know their equilibrium values. The model is decomposed into

the points chosen from within the operating range of the system considered. Thus

the power system model is rewritten using these points or sets. Actually, each set

represents the known combination of the upper and lower bounds of the power system

model. If these uncertain terms drift over time between these a priori known con-

stants, we make sure that the proposed control behavior remains within acceptable

bounds. The controller is then designed for each generator such that the stability of

the system is guaranteed. Based on the stability conditions, stabilizing controllers are

designed as a convex optimization problem characterized by linear matrix inequali-

ties. Finally, the corresponding feedback gain of the voltage controller is constructed

based on a feasible solution of the LMIs optimization problem.
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3.2 Stability

The purpose of this section is to present basic definitions and theorems for our stability

analysis. Lyapunov theory is applied for the fundamental stability analysis. We

begin with a formal definition of stability [285],[286],[287]. The concept of stability

may be defined as the solutions of differential equations which, given a reference

solution x∗(t, t∗0, x
∗
0) of

ẋ(t) = f(t, x) (3.1)

with x∗0 = (t, t∗0, x
∗
0) for x, x∗0 ∈ Rn, where x, a scalar function of time t, is the state

variable, 0 ≤ t0 ≤ t, t, t0 ∈ R, and f(·, ·), is a known vector function, can be obtained

if the value of t and the function x are given. We consider that the system (3.1) sat-

isfies the standard conditions for the existence and uniqueness of solutions. Then,

using the system (3.1) given in any other time t0, we can compute the future of the

state x(t) at time t ≥ t0 that starts from the initial state x(t0) if t0 is understood. The

stability relative to any given solution starts from x(t, t0, x0), then flows to x∗(t, t∗0, x
∗
0),

letting t∗0 ≈ t0 and x∗0 ≈ x0, the given solution remains close to x∗(t, t∗0, x
∗
0) for latter

times. Indeed, the solution of (3.1) is often expressed as x(t, t0, x0), which exists for

all initial conditions (t0, x0) and involves a function x(t) which is the solution of the

system (3.1). Here, we need to know x(t) for all initial times t0. In addition, we can

say that there is at least one solution x(t) of the system (3.1) that lies in (t0, x0).

Fact 3.2.1. For the system (3.1), there exists a unique solution defined on some

(bounded) interval of the form [0,+∞). The unique solution can be determined at

initial time t0 that starts from x0 for the system (3.1), and we obtain x(t0) = x0 defined

in the interval [t0,+∞) for all x0 ∈ Rn.

Therefore, the state at time t0 appears to be a parameter of the infinite-dimensional

system (3.1). However, this accommodates the property of solution continuity in the

initial conditions that are sufficient for it. The case of a continuous x(t) in the ini-

tial conditions corresponds to sufficient conditions for a perturbed solution to remain

close to an unperturbed solution defined in a finite interval of time. However, a small

change in the initial conditions causes small changes in the system. It is worth noting

that it is always possible to go back in time and determine x0 from x(t).
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Assumption 3.2.1. Recall that in system (3.1), we assume that

f(t, 0) ≡ 0, (3.2)

where f is continuous and f(t, ·) is locally Lipschitz, uniformly in t. It is said that x =

0 is the equilibrium point of the system (3.1) which is at the origin of the state space.

Remark 3. If the equilibrium point is not the origin, a new origin is constructed

in Rn as the equilibrium of interest.

From these explanations, we arrive at the following formal definition of stability in

context of Lyapunov stability theory. Lyapunov deals only with the stability relative

to any given solution, a candidate function of any solution, with respect to a particular

reference solution. Stability in the sense of Lyapunov is described under the functions

of perturbed and unperturbed motions. Lyapunov gives a description for stability

motion for ordinary differential equations, thus stability of motion for a physical

dynamic system acts to keep its motion near a certain trajectory with respect to a

perturbation that refers to a small change in the initial condition, see [130].

Definition 3.2.1 (Lyapunov stability). For a system described by (3.1), the equi-

librium point x = 0 (or the origin is a stable equilibrium) is said to be stable if,

for any given ε > 0 and t0 ≥ 0, there exists δ > 0 such that ‖x(t0)‖ < δ im-

plies ‖x(t)‖ < ε for all t ≥ t0. It is stable if for any given t0 ≥ 0, there exists ϕ such

that ‖x (t, t0, x0) ‖ < ϕ(‖t0‖) for all t ≥ t0. It is said to be uniformly stable if it is

stable, and δ is independent of t0. It is said to be unstable if it is not stable.

In the above, ‖ · ‖ represents the vector 2-norm. The number δ is the function

of ε and t0, that is δ = δ(t0, ε). Lyapunov stability contains mild requirements that

rely on linearization about the equilibrium points. However, stability is defined at

the time t0. On the other hand, the Lyapunov theorem admits positive define and

negative define (Lyapunov) functions which are only defined locally. Therefore, we

can conclude the following definition.

Definition 3.2.2. A continuous function W : Rn → R+ is said to be locally positive

definite if W (0) = 0 and W (x) > 0 for small ‖x‖ 6= 0. A continuous function

W : Rn → R is said to be globally positive define (or positive define) if W (0) = 0 and
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W (x) > 0 for all x 6= 0. For a continuous differentiable function V : R+ × Rn → R+

in (3.1), which absolutely depends on time, and suppose that V (t, x) positive define

if V (t, 0) = 0 for all t ≥ 0, and V (t, x) ≥ W (x) for all t ≥ 0, x ∈ Rn where W (x) is

positive define function, in addition, V (t, x) also corresponds to Lyapunov function

for finite-dimensional systems.

3.2.1 Asymptotic Stability

We extend the concept of stability in the sense of Lyapunov to include asymptotic

stability. Primary interest in this subsection will be the asymptotic stability and

exponential stability in this subsection, see [288],[285] for details.

Definition 3.2.3 (Asymptotic Stability). For a system described by (3.1), the triv-

ial solution x = 0 is said to be asymptotically stable in the sense of definition 3.2.1 if it

is stable, and for any given t > t0 and ε > 0, there exists δ > 0 such that ‖x0‖ ≤ δ im-

plies lim
t→∞

x(t, t0, x0) = 0.

The definition of asymptotic stability as defined in above may be written by a

more precise statement such as ‖x0‖ < δ which implies that for any η > 0, there

exists T (η) > 0 such that

‖x0‖ < δ =⇒ ‖x (t, t0, x0) ‖ < η ∀t > t0 + T. (3.3)

From this, we arrive at the following definitions.

Definition 3.2.4. ] Let Definition 3.2.1 hold. We shall say that the origin of (3.1) is

said to be asymptotically stable if it is stable, and for any given η > 0, t0 ≥ 0,

there exists a δ > 0; there exists, in addition, a number T > 0, such that ‖x0‖ <
δ implies ‖x (t, t0, x0) ‖ < η for all t > t0 + T . It is uniformly asymptotically stable if

it is uniformly stable δ and T does not depend on t0.

In the above, δ is a function of t0, and T depends on t0, x0, and η, that is δ =

δ(t0) and T = T (t0, x0, η). From the above proposed definitions of asymptotic stabil-

ity, the definition of attractivity is defined as follows:

Definition 3.2.5. Consider the system (3.1), which is said to be (locally) attractive

for all t > t0 if there exists η > 0, and for any given x0 satisfying ‖x0‖ < η such
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that lim
t→∞

x(t, t0, x0) = 0 that is uniformly with respect to t0, x0. It is attractive if it is

globally attractive for all Rn.

Therefore,

‖x0‖ < δ =⇒ lim
t→∞

x(t, t0, x0) = 0. (3.4)

We conclude that x = 0 is uniformly locally attractive, and there exists δ indepen-

dent of t0 for which Eq. (3.4) holds. Furthermore, it is required that the convergence

in Eq. (3.4) is uniform. In the description that follows, Definitions 3.2.3 and 3.2.4 are

local, since they describe neighborhoods of the equilibrium point. We shall say that an

equilibrium point x = 0 is globally stable if it is stable for all initial conditions x0 ∈ Rn.

Thus, global asymptotic stability is a concept which guarantees the asymptotic stabil-

ity for all initial conditions or all initial states in the state space in Rn. Furthermore,

global stability is highly desirable, so we want to achieve it. We now focus on the

definitions of (local) asymptotic stability and indicate where it is extended to global

notions of stability. Therefore, with this and local definitions, we provide the following

theorem [285],[130],[131].

Definition 3.2.6 (Global asymptotic stability). For a system described by (3.1),

we take the equilibrium state to be the origin which is globally asymptotically stable

if it is stable in the sense of definitions 3.2.1 and 3.2.5 for any given δ > 0, η > 0,

and t ≥ 0 and there exists ‖x0‖ < δ implies ‖x (t, t0, x0) ‖ < η for all t > t0 + T . It is

said to be globally (uniformly) asymptotically stable if it is (uniformly) asymptotically

stable, and δ can be chosen to be arbitrary large.

The concept of uniform stability can apply to time-varying linear systems, as well

as to nonlinear systems. We now need the following definition [52].

Definition 3.2.7 (Uniform stability). The equilibrium point x = 0, is called a

uniformly stable equilibrium point of (3.1) if for any given ε > 0, there exist δ(ε) >

0 such that ‖x0‖ < δ ‖x (t, t0, x0) ‖ ≤ ε for all t > t0 and for all t0 ≥ 0. It is uniformly

locally attractive; there exists δ independent of t0.

In other words, δ in the above definition can be chosen independently of t0. How-

ever, the concept of stability for time-invariant systems implies uniform stability and,
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for time-varying systems, asymptotic stability is equivalent to uniform asymptotic

stability. Thus, if the equilibrium point of the system (3.1) is stable then it is uni-

formly stable. In addition, if it is asymptotically stable then it is said to be uniformly

asymptotically stable.

It is important to stress that the definitions of asymptotic stability cannot pose as

the speed of convergence of trajectories to the origin. Hence, the following definition

holds [130].

Definition 3.2.8. The equilibrium point x = 0 of system (3.1) is said to be (locally)

exponentially stable if there exists positive scalars k and α such that ‖x(t, t0, x0)‖ ≤
k‖x0‖e−α(t−t0) for all t > t0 and for all t0 ≥ 0.

Here, the constant α is (an estimate of) the rate of convergence.

We can conclude that the properties of uniform asymptotic stability are equiva-

lent to exponential stability for linear time-varying systems. In addition, exponential

stability and uniform asymptotic stability imply uniform stability and asymptotic

stability and correspond to Lyapunov stability. On the other hand, uniform asymp-

totic stability does not ensure exponential stability. Thus, the system (3.1) can be

uniformly asymptotically stable but not exponentially stable. We finally note that

the definition of asymptotic stability does not contain Lyapunov stability, and the

definition of exponential stability does not contain uniform stability.

3.2.2 Quadratic Stability

Quadratic stability analyzes the stability robustness for any (possibly infinite) time-

variation of the uncertain parameters where the stability is defined between the al-

lowable bounds of the uncertain parameters. Quadratic stability implies that the

quadratic Lyapunov functions depend on the uncertainties or perturbation terms.

Quadratic stability obviously guarantees robust stability when dealing with systems

that have parametric uncertainty, but on the other hand, the converse is not true. In

this case, it is often convenient to search for a quadratic Lyapunov function which is

independent of the uncertain parameters. In addition, the solutions are constructed

by the LMIs and computed using on convex optimization, see [52],[155],[147]. Then,

we introduce the following definition.
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Definition 3.2.9 (Quadratic Stability). Consider an uncertain linear system de-

scribed by

ẋ(t) = A(ρ)x(t), ρ ∈ Ω. (3.5)

The system in (3.5) is said to be quadratically stable, if there exists a positive definite

matrix P ∈ Rn×n such that for all p ∈ Ω

A(ρ)TP + PA(ρ) < 0. (3.6)

From this definition, it is also possible to write the dual form of the quadratic stability

of the system (3.5) as follows

A(ρ)TQ+QA(ρ) < 0, (3.7)

where Q is a positive define matrix and can be obtained from pre- and post-multiply

inequalities (3.6) by P−1 that is P−1 = Q.

Due to the uncertain parameters that are time-varying, the system matrix A(ρ) ob-

tained from Hurwitz stability criterion can no longer guarantee exponential stability.

Thus, we further need to expand Lyapunov functions, such as a parameter-dependent

Lyapunov function. Then, the system (3.5) has a positively defined solution. A

quadratic Lyapunov function can be formed from the solution P ,

V (t, x) = x(t)TPx(t) (3.8)

such that asymptotic stability of the uncertain system in (3.5) for all ρ ∈ Ω can be

proven by applying the Lyapunov approaches. In other words, the analytical expres-

sion (3.8) indicates that for any asymptotically stable system, we can always find the

stability condition that is referred to as a quadratic stability condition. Obviously,

the system (3.5) is quadracilally stable if there exists a quadratic Lyapunov function

which is used to ensure stability. Thus, the concept of quadratic stability implies

asymptotic stability of the uncertain system in (3.5). One reason to the quadratic

Lyapunov functions in the literature is to simplify analysis and synthesis of uncertain

systems. We also enlarge the concept of quadratic stability and quadratic stabiliz-

ability to the form of time-varying parameter uncertainties.
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For a Lyapunov function which depends on uncertain parameters, it is also possible

to construct a quadratic Lyapunov function V (t, x), and therefore, we may further

write

V (t, x) = x(t)TPx(t) > 0, (3.9)

which achieves

V̇ (t, x) = x(t)T(A(ρ)TP + PA(ρ))x(t) < 0. (3.10)

It is more convenient to use quadratic functions, such as a parameter-dependent

Lyapunov function

V (t, x) = x(t)TP (t)x(t), (3.11)

since the uncertainty in a system may cause changes in the location of the equi-

librium point. Therefore, the use of parameter-dependent Lyapunov functions is to

prove stability for a range of allowable uncertainty. A parameter-dependent Lya-

punov function P (t) is more general than a fixed Lyapunov function, and indeed less

conservative in all situations.

3.3 Stabilization

In this section, we deal with the stabilization problem for the systems subjected to

uncertain time-dependent parameters. The design of controllers is proposed such

that the closed-loop system is stable. Then, the design of both state feedback and

dynamic output feedback controllers is investigated. The stabilization process aims

to obtain a considered feedback controller that stabilizes the closed-loop system, with

the main feedback schemes being state and output feedback. To prove the stability

of the proposed control schemes, the concept of quadratic stability is considered

and thus the uncertain system with parameter uncertainties is handled. Algorithms

are provided for computing the convex optimization problem. Finally, the stabilizing

controller matrices are obtained using the corresponding feasible solution of the LMIs.

3.3.1 State Feedback Control

The aim of this subsection is to present the design problem of a state feedback con-

troller using the concept of quadratic stabilization [157]. We consider the uncertain
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system with parametric uncertainties described by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t), t ≥ 0 (3.12)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the input vector. In this case,

we assume that all state variables are mesurable (available). For the system in (3.12),

we assume a linear feedback control law:

u(t) = Kx(t), K ∈ Rm×n, (3.13)

where K is an appropriate gain matrix. Applying this controller in (3.12), a solution

of the closed-loop system is therefore given by:

ẋ(t) = (A(ρ) +B(ρ)K)x(t). (3.14)

We conclude that the state feedback controller matrix K found in this manner sta-

bilizes the system (3.14) locally. Clearly, the chosen controller matrix K determines

a dynamic behavior of the state vector x(t). Then, we have the following quadratic

stabilization result [159],[160].

Definition 3.3.1. The uncertain continuous system in (3.12) is said to be quadrat-

ically stabilizable via linear state feedback if there exists the matrix K such that the

eigenvalues of the closed-loop matrix A+BK all belong to a region

D = {z ∈ C : d0 + d1(z + z?) + d2zz
? < 0}

of the complex plane, where d0, d1, d2 ∈ R are given scalars. Typical choices are

d0 = d2 = 0, d1 = 1 for the left half of the complex plane (continuous-time stability)

and d2 = −d0 = 1, d1 = 0 for the unit disk center (discreet-time stability). Therefore

we conclude that the closed-loop system is quadratically stable.

To investigate the problem of state feedback for the linear parameter-varying

system (3.12) with given matrices A(ρ), B(ρ), and C(ρ), we find the stabilizing state

feedback matrix K such that all that eigenvalues of A(ρ) + B(ρ)K belong to the

stability region D, and are strictly negative. Here A(ρ) and B(ρ) are allowed to be

time-varying, and its eigenvalues are in the region D for all uncertainties ρ ∈ R. In

view of this, the main result of this section is the following theorem.
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Theorem 3.3.1. The uncertain continuous system in (3.12) is said to be quadratically

stable if and only if there exists a positive define matrix P � 0 and a matrix L such

that

A(ρ)P + PAT(ρ) +B(ρ)L+ LTBT(ρ) ≺ 0, ∀ρ ∈ R, (3.15)

where P ∈ Rn×n and L ∈ Rm×n is any matrix. In the following, there exists a

stabilizing control state feedback u(t) = Kx(t) with stabilizing linear feedback gain

matrix K = LP−1.

Proof. See [52] for a detailed proof.

Therefore this controller stabilizes the system (3.12).

3.3.2 Output Feedback Control

In this subsection, we deal with the design of dynamic output feedback in which all

state variables are not available for feedback [147]. Similar to the system in (3.12),

the system is defined as

ẋ(t) = A(ρ)x(t) +B(ρ)u(t),

y(t) = Cx(t), (3.16)

where y(t) ∈ Rp is the system output. For the system (3.16) with parametric un-

certainties, we propose dynamic output feedback controllers. The following dynamic

output feedback controller for a continuous time model is represented:

ξ̇(t) = Acξ(t) +Bcy(t),

u(t) = Ccξ(t) +Dcy(t), (3.17)

where ξ(t) ∈ Rnc is the internal state of the controller, and Ac, Bc, Cc, and Dc,

are the controller matrices. All controller matrices are real constant matrices with

compatible dimensions and Ac ∈ Rnc×nc . Following this, the controller is completely

determined by the selection of the matrix as a compact form:

K =

 Ac Bc

Cc Dc

 . (3.18)



59

Our aim is to design a dynamic output feedback controller with the following struc-

ture:

u(t) = Ky(t). (3.19)

We call K the dynamic controller matrix. The controller K has a fixed-structure

to be determined, and its order nc is prescribed by the user depending on design

requirements. It is also worth noting that we assume the full order controller, which

is the given order of the controller, and is greater or equal to the order of the actual

system, which is a restrictive condition for high-order cases. For simplicity, we deal

with controllers of the same order as the actual system. Then, applying the stabilizing

controller (3.17) to an uncertain system (3.16) results in a closed-loop system:

η(t) = Acη(t), (3.20)

where

η(t) =

x(t)

ξ(t)

 . (3.21)

We may conclude that there exists a dynamic output feedback controller in the form

of (3.17) that guarantees the stability of the resulting closed-loop system (3.20). By

following this line, one can show the closed-loop realization:

Ac(ρ) =

A(ρ) +B(ρ)Dc(ρ)C(ρ) B(ρ)Cc(ρ)

Bc(ρ)C(ρ) Ac(ρ)

 . (3.22)

Applying the Lypunov stability theory in [289], it can be seen that the matrix Ac(ρ) is

asymptotically stable if and only if there exists a positive define matrix P > 0,

P = PT of dimension n× n such that

AT
c (ρ)P + PAc(ρ) < 0. (3.23)

In order to solve the dynamic controller design problem, we have the following

lemma [161] and [290], which is used to present the output feedback stabilization

results.
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Lemma 3.3.2. Given symmetric matrices X ∈ Rn×n and Y ∈ Rn×n, there exist

symmetric matrices T ∈ Rn×n and Z ∈ Rn×n, and two nonsingular matrices M ∈
Rn×n and N ∈ Rn×n. Consider the problem of finding the matrices X and Y . Suppose

that the change of controller variables is implicitly described in terms of the (unknown)

Lyapunov matrix P . Let matrices P and its inverse be partitioned as

P =

 Y M

MT T

 , P−1 =

 X N

NT Z

 , (3.24)

and, together, these satisfy PP−1 = I. The inequality is thus:X I

I Y

 � 0. (3.25)

Proof. More details on the proof can be found in [147].

Now, using the linearization of LMIs [291], the following theorem is a consequence

of the previous lemma.

Theorem 3.3.3. Consider the uncertain system described by (3.16). There exists a

dynamic output state feedback controller in the form of (3.17) and which results in a

closed-loop system (3.20). The system is quadratically stable if and only if there exist

matrices X, Y and continuous matrix-valued function B̂c and Ĉc such that

A(ρ)X +XAT(ρ) +B(ρ)Ĉc(ρ) + ĈT
c (ρ)BT(ρ) ≺ 0, (3.26a)

Y A(ρ) + AT(ρ)Y + B̂c(ρ)C(ρ) + CT(ρ)B̂T
c (ρ) ≺ 0. (3.26b)

If (3.26) holds, then we can always find matrices X, Y , B̂c and Ĉc that satisfy (3.26),

and both M and N are nonsingular. The corresponding dynamic output feedback

controller in (3.17) can be chosen with the following parameters:

Ac = M−1

(
Âc(ρ)− Y B(ρ)Cc(ρ)NT −MBc(ρ)C(ρ)X

− Y
(
A(ρ) +B(ρ)Dc(ρ)C(ρ)

)
X

)
N−T, (3.27)

Bc = M−1
(
B̂c(ρ)− Y B(ρ)Dc(ρ)

)
, (3.28)

Cc =
(
Ĉc(ρ)−Dc(ρ)C(ρ)Y

)
N−T. (3.29)
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Proof. The proof can be found in [52].

Here, Âc, B̂c and Ĉc are the new controller variables which can be written as

Âc = MAc(ρ)NT +MBc(ρ)C(ρ)X + Y B(ρ)Cc(ρ)NT

+ Y
(
A(ρ) +B(ρ)Dc(ρ)C(ρ)

)
X, (3.30)

B̂c = MBc(ρ) + Y B(ρ)Dc(ρ), (3.31)

Ĉc = Cc(ρ)NT +Dc(ρ)C(ρ)X. (3.32)

Therefore, suppose that there exist some positive define matrices X � 0, Y � 0,

and the inequality in (3.25) together with (3.26) provides strict LMIs, ensuring that

the system in (3.16) is quadratically stable. Finally, the dynamic output feedback

problem can be solved by finding a feasible solution to the following optimization

problem:

X � 0, (3.33a)

Y � 0, (3.33b)

A(ρ)X +XAT(ρ) +B(ρ)Ĉc(ρ) + ĈT
c (ρ)BT(ρ) ≺ 0, (3.33c)

Y A(ρ) + AT(ρ)Y + B̂c(ρ)C(ρ) + CT(ρ)B̂T
c (ρ) ≺ 0, (3.33d)X I

I Y

 � 0. (3.33e)

In this case, M and N can be chosen to be full row rank, that is

MNT = I −XY. (3.34)

It is noted that the condition in (3.25) is a strict matrix inequality. To overcome this

difficulty, the inequality constraint that defines the variable should be formulated

such a way that the variable has a positive sign ε � 0X εI

εI Y

 � 0. (3.35)
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3.4 Uncertainty Analysis with Convex Programming

3.4.1 General Case of Uncertain Parameters

Let us assume that the uncertain system under consideration can be described by a

state-space representation of the following form:

ẋ(t) = A(ρ)x(t) +B(ρ)u(t), for t ≥ 0, (3.36a)

y(t) = C(ρ)x(t) +D(ρ)u(t) (3.36b)

where A(ρ) ∈ Rn×n, B(ρ) ∈ Rn×m, C(ρ) ∈ Rp×n are the system matrices. Here, the

real matrices A(ρ), B(ρ), C(ρ), and D(ρ) are not precisely known but are bounded,

and their unknown variations depend on time. In this case, they are assumed to

belong to a convex bounded uncertainty polytope domain defined by

Ω =

{[
A(ρ), B(ρ), C(ρ), D(ρ)

]
=

r∑
i=1

ρi
[
Ai, Bi, Ci, Di

]
;

r∑
i=1

ρi = 1; ρ ≥ 0

}
. (3.37)

With this, we define the system with uncertain parameters described in state-space

as

ẋ =

{
A0 +

r∑
i=1

ρiA1

}
︸ ︷︷ ︸

A(ρ)

x+

{
B0 +

r∑
i=1

ρiB1

}
︸ ︷︷ ︸

B(ρ)

u, y =

{
C0 +

r∑
i=1

ρiC1

}
︸ ︷︷ ︸

C(ρ)

x, (3.38)

where r is the number of uncertain parameters and the vector of parametric uncer-

tainties is ρ = (ρ1 . . . ρr)
T ∈ R ⊂ Ω. We consider that the set R is a hyber-box such

that

R : [ρ
1
, ρ1]× [ρ

2
, ρ2]× · · · × [ρ

r
, ρr] (3.39)

Then, Ω = {ρ : ρ
i
≤ ρi(t) ≤ ρi; ρi, ρi ∈ R; i = 1, . . . , r} is a set of admissible uncer-

tainties. Similarly, we only have information regarding the minimum and maximum

values of parametric uncertainties, that is Ω = {ρ : ρi ∈ [ρ
i
, ρi]}, which allow us to de-

fine a collection of 2r vertices of the admissible value of the parameter ρ. The bounds

of ρ
i

and ρi are known a priori, thus the uncertain parameter ρi(t) is to be assumed

to drift over time between given prior bounds, and possibly time-varying parameters.
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These parameters are affected by the uncertainties in the system (possibly state and

input dependent).

Remark 4. In this chapter, we assumed that uncertain parameters are time-varying.

A(ρ), B(ρ), and C(ρ) may be converted into constant matrices by the bounded values

of uncertain parameters as ρ
i
≤ ρi(t) ≤ ρi. On the other hand, the bounded time

derivatives or variations on the uncertain parameters are neglected.

When the time-varying parameter uncertainties appear in the system, the nega-

tivity of the real part of the eigenvalues may no longer be sufficient to guarantee the

Hurwitz stability criterion. Hence, it is known that the stability analysis succeeds

using the Lyapunov methods, which leads to the quadratic stability that implies the

exponential stability of the system for all allowable parameter bounds.

3.4.2 Basic Computations

The purpose of this subsection is to present the operating regions of the power system

model. Recall that the highly nonlinear equation of the terminal voltage is described

by

V̇ti(t) = h1i(t)δ̇(t) + h2i(t)ufi i ∈ G. (3.40)

Here, the notation ρ is replaced by h when no confusion arises. It can be seen that

the dynamic state equation of terminal voltage is modeled in terms of the uncer-

tain parameters (h1i, h2i), where the solution for this problem is provided under the

assumption that the pairs (h1i, h2i) can stabilize the system. So, these chosen param-

eters vary from one operating point to another, thus the system as a whole can be

stabilized. For that reason, we first introduce the rotor angle, electrical power, and

terminal voltage constraints

δi ∈
[
δi, δi

]
, (3.41a)

Pei ∈
[
P ei, P ei

]
, (3.41b)

Vti ∈
[
V ti, V ti

]
. (3.41c)
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In our analysis, the operating range of the electrical power outputs (p.u) and the

terminal voltages (p.u) for all generators can be chosen as

0.05 ≤ Pei(t) ≤ 1.2, (3.42a)

0.95 ≤ Vti(t) ≤ 1.05. (3.42b)

Following this, the operating range of rotor angle (degree) is assumed to be suitable

between

40◦ ≤ δi(t) ≤ 130◦. (3.42c)

It is worth mentioning here that the large rotor interval and increasing number of

uncertain parameters may cause significant computational cost. Consequently, to

calculate the stabilizing solution Eq. (3.40), one can restrict to the analysis using

these operating points.

Remark 5. The operating points between 10◦ < δi(t) < 40◦ and 130◦ < δi(t) < 170◦

can be accepted as the extreme operating intervals for a synchronous machine and are

omitted for this work.

The main difficulty here is to measure the uncertain parameters online. Thus,

we need a priori knowledge of these parameters regarding the bounds of uncertain

parameter vectors (h1i, h1i, h2i, h2i) for every i ∈ G. To do this, defining the certain

operating range of (δi(t), Pei(t), Vti(t)) as shown above and assuming the measurement

of (δi(t), Pei(t), Vti(t)), we apply a gridding technique to find all grid points between

these intervals via incremental value 0.1 for Pei(t), Vti(t), and 0.5 for δi(t). See our

previous work for further detail [292]. Therefore, we can grid the uncertain parameters

along these points. Furthermore, these time-varying parameters of the system are

specified separately using these grid points as
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h1i(t) = −P
2
e (t)X2

s cot δ(t)

Vt(t)V 2
s sin2δ(t)︸ ︷︷ ︸
h11

− Pe(t)X
′
dXs

Vt(t)X ′ds sin2δ(t)︸ ︷︷ ︸
h12

− X ′2diV
2
s sin 2δ(t)

2Vti(t)X ′2ds︸ ︷︷ ︸
h13

+
X ′2qiV

2
s sin 2δ(t)

2Vti(t)X ′2ds︸ ︷︷ ︸
h14

, (3.43a)

h2i(t) =
Pe(t)X

2
s

Vt(t)V 2
s sin2δ(t)︸ ︷︷ ︸
h21

+
X ′dXs cot δ(t)

Vt(t)X ′ds
·︸ ︷︷ ︸

h22

(3.43b)

As a consequence, we get

hΣ1i = h11i + h12i + h13i + h14i, (3.44a)

hΣ2i = h21i + h22i. (3.44b)

Then, using the MATLAB min and max commands, we finally obtain the upper and

lower operating ranges of uncertain parameters for the given the operating ranges:

h1 = min(min(min(hΣ1i))), (3.45a)

h1 = max(max(max(hΣ1i))), (3.45b)

h2 = min(min(min(hΣ2i))), (3.45c)

h2 = max(max(max(hΣ2i))). (3.45d)

The region of the parameter’s space is perceived as the upper and lower operating

range of uncertain parameters in the dynamic state equation (3.40), and also the

power system model.

We conclude that the state (3.40) is assumed to be available for control design. In

addition, the physical power plant to be controlled is admitted to have an unknown

nonlinearity from the given uncertain parameters, which may be known imprecisely.

For our problem, for the uncertain parameters h1i(t) and h2i(t) with the allowable

intervals (h1i, h1i, h2, h2i) such that for all h1i and h2i that satisfy h1i < h1i(t) <

h1i and h2i < h2i(t) < h2i, the system is stable. We determine bounds on uncertainty

ranges where the power system remains in stability regions, then we construct a

feasible solution to a set of LMIs that guarantees quadratic stability of the system
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for the time-varying parameters of the suggested feedbacks. At this point, one may

guarantee that all possible trajectories of the power system models are bounded. The

associated algorithms for the constructive treatment of the controller design problem

are also presented.

3.4.3 Case Study: 39-Bus System

Throughout this section, we use the IEEE 39-bus test system to illustrate decen-

tralized voltage control with the state feedback and output controllers. We assumed

that the operating ranges in (3.42) are the same for all generators. To obtain the

synchronous machine measurements, the single-line diagram of a 39-bus system is

given in Fig. 3.1. The voltage magnitudes and phase angles can be calculated us-

ing power-flow analysis [293],[284]. The rest of the system parameters can be found

in [74].

Figure 3.1: Single-line diagram of the 39-bus system

The inertia coefficients, the damping constants, initial voltage magnitude, and the

angle of the 39-bus test system are listed in Table 3.1.
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Table 3.1: The list of the generators data

Bus Gen M D V (pu) θ (deg)
30 G10 4 5 1.050 −7.37
31 G2 3 4 0.982 0.00
32 G3 2.5 4 0.984 −0.18
33 G4 4 6 0.997 −0.19
34 G5 2 3.5 1.012 −1.63
35 G6 3.5 3 1.049 1.77
36 G7 3 7.5 1.064 4.46
37 G8 2.5 4 1.028 −1.58
38 G9 2 6.5 1.027 3.89
39 G1 6 5 1.030 −14.53

Taking the definitions of h1i(t) and h2i(t) in (3.43) and (3.44) into account, we

define the uncertain parameters of h1i(t) and h2i(t) that are dependent on the region

of the parameter space. In doing so, based on the knowledge of these parameter

values, we aim to implement our controller design. Therefore, we can show the re-

sulting values for the allowable uncertainty range of these parameters. In Table 3.2,

these values are given. These parameters are not known exactly, but their instanta-

neous values are only available for measurements of time. The power system models

have continuous dependence on these parameters, and are uniformly bounded for the

uncertainty interval of these time-varying parameters.

Table 3.2: The uncertainity intervals for the model

Bus Gen h1 h1 h2 h2

30 G10 1.0142 1.1464 0.0101 0.0116
31 G2 0.9180 1.0851 0.0266 0.0330
32 G3 0.2614 0.3469 0.0221 0.0270
33 G4 2.1882 2.4713 0.0201 0.0246
34 G5 0.0287 0.1506 0.0438 0.0564
35 G6 0.3635 0.4470 0.0176 0.0207
36 G7 2.5375 2.8627 0.0222 0.0271
37 G8 0.2939 0.3805 0.0214 0.0257
38 G9 −0.0464 0.0118 0.0223 0.0270
39 G1 −0.0083 −0.0003 0.0032 0.0036
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3.5 Main Results

In preparing the solutions for for the design of a decentralized structure, each con-

troller utilizes its own local measurement only, and each control region utilizes mea-

surements for its own utility only. As indicated above, we first determine operating

conditions to guarantee the stability region in a given parameter space. The voltage

controllers allow us to regulate the voltage (and frequency) with complete a priori

knowledge of all parameters participating in the dynamic representation of the con-

sidered models. The design of the controller is not prescribed since it is to be found

during the control process. These controllers are also analyzed for power system mod-

els that include parametric uncertainties in the the system matrix and input matrix.

It is worth pointing out that the input matrix is uncertain, and all uncertainties in

the system are also bounded and thus restrict our consideration to operating ranges.

The stability is proven for a known range of uncertain parameters that allow us to

use online information which occurs in the control process.

The main objective of this section is to find stabilizing state feedback and output

feedback controllers for the power system. To do this, the quadratic stability for

the voltage regulation problem of synchronous machines is proposed. This process

corresponds to the decentralized solution of the convex optimization problem at each

allowable interval of the system. If the solutions are feasible, then the desired stabi-

lizing controllers that are able to operate online are constructed. Using the state and

output feedback controls, we propose to obtain all stabilizing gain matrices via LMIs

and encourage numerical results. The stabilizing controllers are stable and stabilize

the power system. Finally, this leads us to determine whether the power system is

stable for the allowable intervals of uncertain parameters without explicitly tracking

how the uncertainty changes the location of the equilibrium point. Furthermore, the

numerical results are performed using the YALMIP [294] and Matlab R2015b running

on an Intel i3 Core CPU(@2.50Ghz) with 8 GB memory. All solutions are also given

in terms of LMIs. We use version 1.3 of Sedumi to solve LMIs problems [53].
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3.5.1 Solving the State Feedback Problem

In this subsection, we consider a state feedback controller design for the decentralized

voltage control problem. A desired state feedback controller is constructed by solving

parameter uncertainties in the proposed power system model. Thus, the quadratic

stabilization problem of the power system is solved under the assumption that a full

state vector is available for measurements. The state feedback controllers are designed

such that the closed-loop system is asymptotically stable.

Suppose that we have two synchronous machine states and a control input, that

is, (ωi(t), Vti(t)) and ufi(t). The power system model with parametric (polytopic

type) uncertainties is described: ω̇i(t)
V̇ti(t)

 =

 −λi 0

h1i(t) 0

ω(t)

Vt(t)

+

 0

h2i(t)

uf (t) i ∈ G, (3.46)

where

Ai(ρ) =

 −λi 0

h1i(t) 0

 , Bi(ρ) =

 0

h2i(t)

 . (3.47)

Here, λi = Di/Mi is a constant term. We assume that both frequency and terminal

voltage are measurable for each generator. Throughout this chapter, the matrices

Ai(ρ) and Bi(ρ) may be linearly parametrized in ρ, which is not precisely known but

assumed to be constant.

In order to build up the given matrices (3.47), we need to evaluate the design

parameters (3.45) that are formed by the known bounds. The matrices describing

the system (3.46) are modeled around the collection of 2r known bounds chosen in

the operating range of the system considered. Consequently, the bound matrices are

given in the following forms:

A1
i =

−λi 0

h1i 0

 , B1
i =

 0

h2i

 i ∈ G, (3.48a)

A2
i =

−λi 0

h1i 0

 , B2
i =

 0

h2i

 i ∈ G, (3.48b)
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A3
i =

−λi 0

h1i 0

 , B3
i =

 0

h2i

 i ∈ G, (3.48c)

A4
i =

−λi 0

h1i 0

 , B4
i =

 0

h2i

 i ∈ G. (3.48d)

Next, we present the numerical results to illustrate the application of the proposed

method in Theorem 3.3.1. The detailed solution is only for the 10th generator (30th

Bus) of the test system. Based on the Theorem 3.3.1, the LMIs are solved such that

P � 0,

A(ρ(k))P + PAT(ρ(k)) +B(ρ(k))L+ LTBT(ρ(k)) ≺ 0 (3.49)

with k = 1, . . . , 2r. The resulting inequality (3.49) for generators can be found strictly

feasible in the given bounds in (3.42). Therefore, the positive define symmetric so-

lution with a matrix L can be found using MATLAB output in short precision as

follows:

P =

 0.4540 −0.0042

−0.0042 1.0001

 (3.50)

with eigenvalues [0.4539 1.0001], and

L =
[
−45.6338 −45.7009

]
. (3.51)

The solution of state feedback controller is

u(t) =
[
−100.9543 −46.1238

]
x(t), (3.52)

such that the closed-loop system is stable, where

K =
[
−100.9543 −46.1238

]
. (3.53)

Therefore, by Theorem 3.3.1, we conclude that the system is quadratically stabilizable

with a stabilizing state feedback. The resulting SDP relaxations of the generators are

presented in Table 3.3. We guarantee that all numerical solutions are strictly feasible.
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Table 3.3: The outcome of the SDP relaxations of the system

Generators 40◦ < δi(t) < 130◦

G1,. . . ,G10 strict feasible

The computations of the state feedback controller for the rest of generators in the

system are summarized in Table 3.4.

Table 3.4: Numerical results for all generators

Gen Eigenvalues Gain matrix

G1 0.6522, 1.0000 [1.2837 − 147.308]

G2 0.4275, 1.0005 [−34.9433 − 16.8236]

G3 0.3622, 1.0000 [−12.9185 − 20.3722]

G4 0.3812, 1.0012 [−108.227 − 22.6270]

G5 0.3333, 1.0000 [−1.9212 − 9.9787]

G6 0.6358, 1.0001 [−21.4955 − 26.1004]

G7 0.2370, 1.0009 [−117.165 − 20.4981]

G8 0.3622, 1.0000 [−14.8019 − 21.2262]

G9 0.1852, 0.9999 [0.7675 − 20.2743]

On the other hand, we also demonstrate the results of local area measurements

of the test system. For this system, areas are randomly chosen between the closest

generation units. We now present the solution of local area measuremets, including

generator unit G8, G9, and G10. With these generation units, we compute the matrix

P using LMI optimization

P =

 0.2560 −0.1438

−0.1438 1.0599

 (3.54)

with eigenvalues [0.2311 1.0849], and the matrix L

L =
[
−21.1078 −22.3804

]
. (3.55)
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The gain matrix is described as:

K =
[
−102.0795 −34.9657

]
. (3.56)

The strictly feasible solutions are shown for each local area in Table 3.5.

Table 3.5: The resuts for local areas

Local Areas Eigenvalues Gain matrix

G2, G3 0.3643, 1.0001 [−25.8392 − 18.6039]

G4, G5 0.2518, 1.0572 [−54.0072 − 18.3039]

G6, G7 0.2829, 1.0505 [−21.3103 − 29.0557]

The local areas can be seen in Fig. 3.2.

Figure 3.2: Generators in local areas

3.5.2 Solving the Output Feedback Problem

In this section, the decentralized voltage control problem is solved under the as-

sumption that not all states are measurable. In the same way as the state feedback

problem, the parametric uncertainties in the power system model are represented by

the known range of uncertain parameters. Again, we solve a convex LMI problem

for the output feedback problem. We consider a different method to solve the model
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that does not rely on the bound matrices in (3.48). Instead, we again restrict our

solutions to the known range of uncertain parameters (3.45) for the operating points

of the system (3.42), and solve the corresponding output feedback problem using the

linear paremeter varying (LPV) stabilization [294]. Then the numerical procedures

for designing the output feedback gain matrix are introduced. The feedback gain of

the desired output feedback controller is obtained with the quadratic stabilization

of the power system. Numerical results on the test system clearly demonstrate the

effectiveness of the suggested procedure with the proposed PSS.

As we mentioned before, a PSS is designed based on the power system model (3.46).

It is assumed that the proposed PSS is linear and decentralized. Its dynamics are

based on local interactions. We first write the additional dynamical equations of the

power system. Here, the additional states of the PSS are assumed to be unmeasurable

states. By introducing the unmeasurable states, we consider the extended model with

the following state-space representation:

ω̇i(t)

V̇ti(t)

ξ̇1

ξ̇2

ξ̇3


=



−λi 0 0 0 0

Ki ∗ h1i(t) 0 1 0 0

β2i 0 −c2i 1 0

β1i 0 −c1i 0 1

β0i 0 −c0i 0 0





ω(t)

Vti(t)

ξ1i

ξ2i

ξ3i


+



0

h2i(t)

0

0

0


ufi(t) i ∈ G, (3.57)

where

Ai(ρ) =



−λi 0 0 0 0

Ki ∗ h1i(t) 0 1 0 0

β2i 0 −c2i 1 0

β1i 0 −c1i 0 1

β0i 0 −c0i 0 0


, Bi(ρ) =



0

h2i(t)

0

0

0


. (3.58)

In the following our design, the power system model has two directly measurable

states (ωi, Vti) and three observable states (ξ1i, ξ2i, ξ3i). Therefore, we obtain a fifth-

order system. In order to simplify the notations, the constant terms {c2i, c1i, c0i} are

replaced by the Eqs. (2.69), (2.70), and (2.71), respectively. Then, the output matrix
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of the system is

C =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 . (3.59)

Clearly, from the above discussion, {c2i, c1i, c0i} is assumed to be constant for our

design. They can be calculated using the time constants {T1i, T2i, T3i, T4i, Twi} of the

PSS. On the other hand, the following parameters {β2i, β1i, β0i} depend on the system

behaviors at time t, so we do not mention them explicitly. These parameters need

to be optimized. We can perform the optimization method for our controller design

as follows. In the case of two uncertain parameters, such as in the model (3.57),

we rewrite the four points (h1(t), h2(t)) = (h1, h1, h2, h2) which denote the bounds

on the uncertainty range. It is clear that these parameters depend on the uncertain

parameters as:

β2i(h1i(t), h2i(t)) > 0,

β1i(h1i(t), h2i(t)) > 0,

β0i(h1i(t), h2i(t)) > 0.

These parameters are then optimized while the other coefficients {c2i, c1i, c0i} are

kept constant. The optimization problem with respect to the uncertain parame-

ters h1i and h2i is implemented as a computation procedure to find the design pa-

rameters of PSS. To find the design parameters {β2i, β1i, β0i}, we implement a bi-

section algorithm into the convex program. Then, we obtain the optimal values

of β2i(h1i(t), h2i(t)), β1i(h1i(t), h2i(t)), β0i(h1i(t), h2i(t)). Following this procedure,

these parameters multiply by a scalar coefficient, then we use the bisection algo-

rithm to find the maximum value of parameters {β2i, β1i, β0i} for which the solution

is feasible between the allowable intervals of the parameters h1i and h2i.

Remark 6. β0i has a small value, and is assumed to be zero for our calculations.

To integrate the parameter β0i into the algorithm increases the iteration number, thus

computation time.

Compared to the state feedback problem, we suppose numerical results for the 10th

generator (30th Bus) of the test system. The parameters of the PSS are tabulated in

Table 3.6.
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Table 3.6: Table of PSS parameters

T1 T2 T3 T4 Tw KPSS

1.5 4 0.07 4.75 7.5 30

In view of Theorem 3.3.3, we first write the our problem for k = 2r vertices

in (3.33)

X � 0, (3.60a)

Y � 0, (3.60b)

A(ρ(k))X +XAT(ρ(k)) +B(ρ(k))Ĉc(ρ(k)) + ĈT
c (ρ(k))B

T(ρ(k)) ≺ 0, (3.60c)

Y A(ρ(k)) + AT(ρ(k))Y + B̂c(ρ(k))C(ρ) + CT(ρ(k))B̂
T
c (ρ(k)) ≺ 0, (3.60d)X I

I Y

 � 0. (3.60e)

As a result of solving the problem (3.60), it is found that the LMIs in (3.60) are

feasible, and a set of solutions is obtained as follows:

X =



6.1051 −0.0546 −0.0623 −0.1073 −0.0069

−0.0546 13.6227 −5.6861 −0.9654 −0.3024

−0.0623 −5.6861 25.0461 3.0841 10.0828

−0.1073 −0.9654 3.0841 12.9254 1.5506

−0.0069 −0.3024 10.0828 1.5506 20.9996


, (3.61)

with eigenvalues {6.1021 9.3415 12.3014 16.0394 34.9145};

Y =



11.5944 −0.0423 0.1107 −0.0157 −0.0106

−0.0423 11.1418 −1.0180 0.3890 −0.1754

0.1107 −1.0180 21.7098 −4.1384 −7.2590

−0.0157 0.3890 −4.1384 8.9233 −4.4814

−0.0106 −0.1754 −7.2590 −4.4814 18.7323


(3.62)
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with eigenvalues {4.4683 11.0008 11.5949 17.3680 27.6696}, and

B̂c =



6.1678 −0.0000 −0.0000

−1.4345 −5.4748 0.0000

−0.0191 −11.6568 7.5711

−0.2334 1.0109 −23.7374

0.0372 −0.3968 −0.1970


, (3.63)

Ĉc =
[
−77.9348 −162.9619 −332.2961 141.7255 −927.6218

]
. (3.64)

To this end, we now investigate the controller matrices Ac, Bc, Cc, and Dc. We only

consider the case Dc = 0 to design the output feedback controller. Then,

Bc = B̂cM
−1, (3.65)

Cc = ĈcN
T, (3.66)

Ac(ρ) = −M−1
(
AT(ρ) + Y A(ρ)X + Y B(ρ)CcN

T +MBcCX
)
NT. (3.67)

Therefore, we can choose a nonsingular matrix N > 0, which is actually taken to

be a constant matrix. One can choose this matrix with appropriate weighting such

as N = 100I5, then M = (I5 −XY )N−T. Hence, we first determine all solutions

of (3.65),(3.66),(3.67):

Bc =



−8.8159 0.0771 0.4710

1.0533 6.1008 0.8791

0.3080 4.2327 −2.1659

0.2436 3.0383 27.9704

−0.0719 −0.0315 4.4928


, (3.68)

Cc =
[
−0.7793 −1.6296 −3.3230 1.4173 −9.2762

]
. (3.69)

To obtain the matrix Ac(ρ) is a more complicated process. We explain the ideas

below.

Bisection Algorithm

Basically, the model (3.57) is represented by the scalar uncertainties that are affine

functions with respect to the parameter-varying state transition matrix A(ρ) and the
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parameter-varying input matrix B(ρ). In this case, we pretend that measurements of

all states are not available to the controller, especially the states of the power system

stabilizer. Clearly, the unknown design parameters of {β2i, β1i} make the system

more uncertain. It is now necessary to resolve the voltage regulation problem to

obtain the PSS design parameters. Instead of tuning the stabilizer output limits, we

alternatively use a bisection algorithm to calculate the maximum values of the PSS

parameters {β2i, β1i}. The full parameterized matrix A(ρ) and B(ρ) seems to be

A(ρ) =



? 0 0 0 0

ρ 0 ? 0 0

τ ∗ β2i 0 ? ? 0

τ ∗ β1i 0 ? 0 ?

0 0 ? 0 0


, B(ρ) =



0

ρ

0

0

0


, (3.70)

where the sign (?) represents the constant terms and τ is an unknown coefficient.

As already mentioned above, we propose a convex optimization problem here. The

bounded uncertain parameter(s) ρ leads to a quasi linear parameter varying repre-

sentation of system (3.70) with the unknown coefficient τ acting with an objective

function.

Finally, the optimization algorithm which uses the bisection procedure consists of

some steps [294]. Firstly, the optimization process finds a lower bound on optimal τ ,

which means that any feasible τ that can be computed. Then, an upper bound on

optimal τ is obtained, and the lower bound is incremented until feasibility of the

iterates is maintained. In other words, the process is continued until an infeasible

solution is obtained for the fixed τ . When this is the case, the τ value between lower

and upper bounds is checked. If it is feasible, the lower bound is updated; otherwise, it

is not, and the upper bound is updated. This process is then repeated until the bounds

are sufficiently close to each other. In summary, we impose strict uncertain parameter

constraints on the model and solve the associated convex feasibility problem. These

uncertain parameters depend on the unknown coefficient τ on the system. If a solution

exists, we find values for the scalar decision coefficient τ which satisfies the allowable

parameter(s) uncertainty.
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Using 3.2, we recall that the allowable intervals of two uncertain parameters are

1.0142 ≤ h1(t) ≤ 1.1464, (3.71)

0.0101 ≤ h2(t) ≤ 0.0116. (3.72)

For these intervals, β1 = 11.7609 and β2 = 11.7814 for the 10th generator (30th

Bus) of the 39-Bus system. Neglecting the parameter β0i, the solution of the rest of

generators are shown in Table 3.7.

Table 3.7: The solutions of PSS design parameters

Gen β2 β1

G1 60.7768 11.2633

G2 5.3825 5.2831

G3 5.4786 5.3664

G4 5.4439 5.4439

G5 5.5382 5.5272

G6 40.9422 10.4563

G7 2.3557 5.7349

G8 5.4755 5.4755

G9 5.9358 5.7430

The optimized values for couples (β2, β1) of each generation unit are the maximum

values for which the constraints are feasible. The solutions are computed by using

YALMIP with Sedumi as its computational engine to solve the problem.

On the Matrix Ac

As we mentioned before, it is not easy to see the matrix Ac(ρ) immediately, because

the matrix Ac(ρ) consists of the system matrix A(ρ) and the input matrix B(ρ) and it

is linearly parameterized in the uncertainty, ρ is constrained to a polytope. Although

their bounded values are known, the controller is obtained online or known in advance.

In that case, the worst time-varying parameter realization is performed and the con-

troller matrix Ac(ρ) can be computed. In addition, the matrices A(ρ) and B(ρ) can
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be calculated for the normalized values of uncertain parameters, and the controller

matrix Ac(ρ) is then obtained. We calculate the worst-case infinity norm of the

matrix A(ρ). Nevertheless, maximizing the norm of a vector over a polytope is an

NP-hard optimization problem. However, we integrate an algorithm into our main

program to solve this problem. According to this algorithm, the infinity norm of

a matrix can be rewritten using the largest 1-norm of the rows. This needs to be

composed of every row, therefore the worst-case 1-norm of each row is computed. As

we will see in the sequel, the computation of worst-case 1-norm is a very difficult

task. The algorithm used to calculate the worst-case 1-norm numerically is outlined

in [294]. We again define a scalar decision coefficient τ . The algorithm computes the

worst-case τ over the uncertain parameter(s) ρ. According to this algorithm, we de-

scribe a matrix of size 2n×n that consists of all possible combinations of summing up

the elements in a row dealing +1 and −1. Then we take into account all upper-bound

constraints for the explicit representation of the 1-norm for all rows. We also use the

bounds in (3.71) to solve the problem. Doing this, the worst-case upper bound is

minimized. Our focus here is on upper bounds obtained using the scalar decision

coefficient σ.

In addition, we can also determine a shift of the eigenvalues of A(ρ) when the

worst case infinity norm is minimized. Again, we define a scalar decision coefficient ς.

Introducing this unknown coefficient, one can rewrite it in the form

A(ρ) = A(ρ) + ςI5 (3.73)

The solutions are obtained by using the external solver FMINCON via YALMIP. We

thus have the following results for each generator.
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Table 3.8: The solutions of coefficients τ , ς, τ̂

Bus Gen τ ς τ̂

G30 G10 1.5939 0.2019 1.3920

G31 G2 1.5939 0.2070 1.3869

G32 G3 1.6000 0.2430 1.3570

G33 G4 1.5939 0.0921 1.8018

G34 G5 1.7500 0.3180 1.4320

G35 G6 1.5939 0.2399 1.3540

G36 G7 2.5000 0.3127 1.9873

G37 G8 1.6000 0.2430 1.3570

G38 G9 3.2500 1.0680 2.1820

G39 G1 1.5939 0.2399 1.3540

Here, the obtained coefficients τ , ς, and τ̂ are the worst-case upper bound, a shift of

the eigenvalues of A(ρ) occurs, and the current value of τ̂ is minimized.

3.6 Conclusion

A first contribution of this chapter is the methodology we suggested for solving the

voltage regulation problem. The power system models have uncertain time-varying

parameters. Considering the terminal voltage and frequency as the state variables,

the power system model is represented as the stabilizing controller problem using a

decentralized calculation procedure. In addition, the model used in previous works is

slightly modified to measure only the terminal voltage and frequency. The solutions

to the voltage regulation problem are then obtained by the widely acceptable (and

secure) operating range of the power system. The control action takes into account

the known range of unknown uncertainties to determine a set of feasible solutions

to the optimization problem. In this case, we use a manual implementation, which

means that coefficient matrices are formed using upper and lower intervals of the

system. The voltage controller consists of a closed-loop full-state measurement struc-

ture, and the quadratic stability of the closed loop is thus analyzed. The resulting
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optimization problem is solved by using LMIs, and strictly feasible solutions are ob-

tained. Therefore, quadratic stability is guaranteed for the uncertainty interval for

the power system. For the power system model, the system remains quadratically

stable for parameters in the allowable uncertainty range. We illustrate the results

through single generating units and the units in local areas. From the numerical re-

sults, we notice that the controller is based on assumptions of the operating range of

the power system. We mainly present the Lyapunov stability analysis in this chapter.

A second contribution of this chapter is to propose an appropriate model (3.57) de-

scribing the power system. When such a model is considered, the power system adapts

a traditional controller such as a power system stabilizer. The model used to solve the

state feedback problem is enhanced with PSS states to solve the voltage regulation

problems with respect to the case of partial knowledge of state variables. Therefore,

the resulting optimization problem is called a dynamic output feedback problem. The

enhanced model is intended to be an exact representation of frequency and terminal

voltage, which will allow us to cope with time-varying parameter uncertainties, as well

as the unknown design parameters of a PSS. In fact, it is assumed that the dynamics

of the enhanced model are corrupted by uncertain parameters with the PSS design pa-

rameters. With the aim of Theorem 3.3.3, we obtain quadratically stabilizing output

feedback controller. Then we compute the feasibility of the problem (3.60) and find

the controller matrices. Another contribution of this section is the determination of

the PSS parameters in which the uncertain parameters guarantee quadratic stability

for the allowable uncertainty range. In order to achieve this objective, we use the bi-

section procedure to find the maximum value of the unknown PSS design parameters

in the model. In the section that follows, we introduce the analysis of the worst-case

norm for the matrices, including time-varying parameter uncertainties. Finally, we

calculate a shift of the eigenvalues of the system matrix A(ρ), and all results for the

test system are clearly reported.



Chapter 4

Observer-Based Control Using Contraction Theory

4.1 Introduction

In this chapter, we discuss an observer-based control methodology for the stabiliza-

tion of power systems. We use a multimachine power system model and construct

the proposed observer of this model. As in the previous chapter, the observer design

is characterized in a decentralized way. In the proposed decentralized scheme, we de-

sign the observer via locally available measurements associated with the synchronous

generator unit(s). The proposed model is first presented in this manner. Next, by

the observer-controller design, a deterministic observer for the power system model is

implemented [174]. This results in recontraction of the state information case among

the subsystems through the feature of control theory, which allows only measurement-

based subsystem states and outputs. The deterministic observer design relies on the

power system model and uses the full state measurements. Thus, the observer con-

vergence analysis is used to stabilize the power system. Furthermore, we propose a

state feedback problem for designing a Kalman observer. The main objective of this

chapter is to address observer-based control in state feedback design, and allow us to

stabilize a multimachine power system, especially by using the stability analysis with

contraction theory as a means to achieve contraction.

Contraction theory is a stability theory for nonlinear systems, and is the main sta-

bility analysis tool used in this chapter [48]. It guarantees an incremental stability for

uncertain nonlinear systems, especially time-varying systems. It is used for analyzing

the stability of nonlinear systems by highlighting the convergence of all trajectories

between two arbitrary systems. Here, we primarily focus on a contraction-based ap-

proach, which has some advantages over the Lyapunov-based stability analysis. After

establishing the attractive features of contraction theory, we analyze the decentralized

stability of the multimachine power system which can be stabilized by a deterministic

82
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observer. Then, we introduce the stability properties of the extended Kalman filter

based on contraction theory, which can be represented as a deterministic observer for

nonlinear power systems.

Since the fundamental works of Kalman and Bucy [55], as well as Luenberger [178],

state estimation of dynamical systems has been studied in the control theory litera-

ture. State estimation is a procedure to estimate the states of a dynamical system

caused by uncertainties in the model, as well as the output measurements that are

caused by predicable disturbances, so that each state exhibits the natural and un-

correlated behavior of each other state [181]. Well-known state estimators for linear

systems, such as the Kalman Filter and Luenberger observer, are certainly accu-

rate [175]. The Kalman filter described with a continuous-time linear model (i.e.,

time-varying) is implemented on the nonlinear model. In general, model uncertain-

ties (which are defined inconsistencies in dynamical behavior between the estimated

model and the actual model) cause poor performance of the observer, and thus, cause

erratic changes in the system behavior. In practice, the control signal is determined

by a nonlinear map. The approximate (but sufficiently accurate) solutions can be

obtained. This method is also known as the also extended Kalman filter in the litera-

ture [49]. The EKF is used in cases where accurate knowledge of the system nonlinear

model is unknown, and is indeed extended from the Kalman filter, which is widely

used in the framework of state estimation. However, the EKF is responsible for lin-

earizing the system, relying on its first order approximation along the estimated (i.e.,

trusted) trajectories. Therefore, we shall employ convergence of the continuous-time

EKF in this chapter. The basic idea of the EKF from the perspective of contraction

theory is to establish necessary conditions to guarantee contraction so that exponen-

tial convergence of the deterministic EKF is proved. Finally, the proposed solution

method is based on the convergence properties of the EKF and can also be used for

the deterministic case, similar to Lyapunov methods. Using the contraction analysis,

the linearisation-based method implies exponential convergence under certain con-

ditions. To this end, our goal is to analyze the stability of the multimachine power

system and ensure the exponential convergence of the EKF using contraction stability

analysis. The primary aim of this chapter is to study the convergence behaviors of

the EKF with the help of contraction theory [50]. We then propose to the use of the
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observer-based control method for the multimachine power system.

Contraction theory and Lyapunov stability theory are different approaches [183].

First of all, contraction theory provides an alternative description and solution method,

and is used to analyze the exponential convergence properties of nonlinear systems

or different problem structures. Contrary to Lyapunov, in contraction theory it is

not required to have an explicit knowledge of a specific equilibrium point, but the

stability analysis depends on differential displacements of the trajectories of nonlinear

systems, in which it assumed that the virtual displacements of system states (that

is, infinitesimal displacements) are fixed. Thus, terms that are not mainly related to

the convergent behavior of the system are eliminated by using virtual displacements.

Then, if initial conditions and disturbances of any kind vanish within an exponen-

tial manner-in other words, if the nonlinear system recovers its previous trajectory

exponentially when it is subjected to a perturbation-then it is called a contracting

system [56]. This theory does not depend on choosing a potential energy function

which leads only to stability analysis in the Lyapunov sense. However, contraction

theory leads to an incremental form of stability, and also implies an exponential form

of convergence [184]. As a result, the incremental stability guarantees exponential

convergence through the use of the incremental version of global exponential sta-

bility. Contraction theory-based stability analysis is also described as incremental

convergence between a pair of neighboring trajectories. From the incremental sta-

bility perspective, it enables the stability of trajectories with respect to one another

instead of respect to same attractor. As a matter of fact, the trajectories of a sys-

tem converge on one another exponentially in contrast with attraction, leading to

some equilibrium point or stability with respect to origin. In the sense of contrac-

tion theory, contraction analysis is evaluated using the stability properties of some

duplicated systems, such as virtual and actual (or true) systems. This analysis can

be made on the virtual system in which any pair of neighboring trajectories converge

on each other. Furthermore, the main attention here is focused on the observer as

well as the observer convergence analysis of EKF. We then turn to a consideration

of Kalman gain viewing as the linear observer gain or possibly time-varying gain,

which corresponds to a particular trajectory of the EKF with an arbitrary metric.

Consequently, from the contraction theory-based analysis point of view, the true state
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trajectory of a system becomes combined with particular trajectories of the virtual

system. The corresponding estimation error of the EKF tends to act exponentially

as the true state, and can be seen as the contraction properties of the virtual system

which render the incremental stability of the system. Finally, simulation results on

the multimachine power system model indicate that contraction analysis accurately

characterizes system behavior and provides all information on the state dynamics

with our theoretical results.

4.2 Review of Contraction Theory of Nonlinear Systems

Contraction theory provides an exponential convergence of observer states to the

real states of a given model. It is not required to have an explicit knowledge of a

stable equilibrium, but stability analysis depends on differential displacement such as

a virtual displacement on the trajectory of nonlinear systems, see [50] for details. To

compute the corresponding trajectories, we consider the following nonlinear system

ẋ(t) = f(t, x), (4.1)

and differentiate a virtual displacement operator δvx(t), which means an differential

variation with respect to a fixed time. We get

δvẋ(t) = (∂f/∂x)(t, x)δvx(t). (4.2)

A virtual transformation is defined by δvz(t) = Γ(t, x)δvx(t) with a square and non-

singular matrix Γ(t, x). Therefore, the distance of the virtual displacement is given

as

δT
v z(t)δvz(t) = δT

v x(t)M(t, x)δvx(t), (4.3)

where M(t, x) is a metric for the virtual system. The metric M is bounded in t.

Even thoughM tends to approach infinity as t→∞, the metric may be unbounded

in x and t, and the system trajectory x(t) may grow unboundedly. In this case,

having unboundedness of δT
v x(t)M(t, x)δvx(t) implies that δvx(t) converges to zero

exponentially and also requires that the metric is reestablished using coordinate trans-

formation. In addition, mathematically, δvẋ(t) leads to a linear tangent differential

form; then, we have the following well-known theorem about contraction theory [48].
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Theorem 4.2.1 (Contraction Theory). Consider the nonlinear deterministic sys-

tem ẋ(t) = f(t, x). For each time t, x is in Rn, where f is a continuous and

smooth nonlinear function. Let the Jacobian matrix of f with respect to its first

variable be J ′ = ∂f/∂x. If there exists a transformation matrix Γ(t, x) such that

a uniformly positive definite metric M(t, x) = Γ(t, x)TΓ(t, x) and the corresponding

generalized Jacobian matrix J = (Γ̇ + ΓJ ′)Γ−1 is uniformly negative definite, then

all trajectories converge exponentially to a single trajectory, with convergence rate

supt,x |λmax(J )| = λ > 0 where λmax is the largest eigenvalue of the symmetric part

of J , hence contraction.

Based on this theorem, contraction theory is used to investigate the stability of the

system through solutions which are independent of its initial conditions and regard-

less of nominal motion. In the case that a stable (or specific) equilibrium point has

stability does not need to be known explicitly, then the system will tend to converge

back to that equilibrium without variations in initial conditions. Next, all trajec-

tories converge to this equilibrium point, which is dedicated to global exponential

convergence. Similar to the definition in the previous chapter, we have the following

definition of global exponential stability [130].

Definition 4.2.1 (Global Exponential Stability). The system (4.1) is said to be

globally and exponentially stable if there exist two positive scalar k and β such that

‖x1(t)− x2(t)‖ ≤ k‖x1 − x2‖e−βt for all x1, x2 ∈ Rn, and all t ≥ 0.

We now express these two relations between Theorem 4.2.1 and Definition 4.2.1. If

we assume that the system (4.1) is globally contracting with the contraction rate λ and

there is a bounded, uniformly positive definite and bounded metric such thatM(t, x),

the following holds

σ2I ≤M(t, x) ≤ σ2I, (4.4)

where σ and σ are two positive scalars and therefore k = σ/σ. We conclude that if the

system (4.1) is globally and exponentially stable, then the system (4.1) is globally con-

tracting. Notice that our focus is on the system (4.1) whose trajectories exponentially

converge on one another, which is a stronger form than Lyapunov approaches which

define stability with respect to arbitrary initial conditions, as well as attractivity of

the origin for all solutions (i.e., for all initial conditions).
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Global asymptotic stability in the Lyapunov sense means that the asymptotic

stability holds for all initial conditions (states) in the state-space. Here, further dis-

cussion revolves around the distinction between asymptotic stability definitions and

properties, as well as basic theorems on Lyapunov stability theory, and a concise and

historical survey can be found in [285]. It is important to stress that the Krasovskǐı

theorem implies an asymptotic stability; in other words, Krasovskǐı’s generalized

asymptotic global convergence theorem respects a constant metric which allows ex-

ponential convergence.

Along the same lines, one of the main properties of contradiction theory-based

analysis, in contrast to stability in the Lyapunov sense, is that it is not known a

priori along which trajectory the system will converge. A notation of convergence,

rather than stability, can be seen here. It also follows from Theorem 4.2.1 that one

can use the metric to verify convergence on a unique trajectory, irrespective of the

initial conditions, and also to ensure the existence and/or uniqueness of equilibria.

Therefore, we conclude the following [183],[295].

Definition 4.2.2 (Contraction Metric). If a continuously differentiable (contrac-

tion) metric M(t, x) ∈ Rn×n is a symmetric, uniformly positive definite such that

(J ′)TM(t, x) +M(t, x)J ′ + Ṁ(t, x) is also uniformly negative definite, then it sat-

isfies the (strong) condition

(J ′)TM(t, x) +M(t, x)J ′ + Ṁ(t, x) < −βM(t, x) (4.5)

with a strictly nonnegative scalar β, and therefore the system (4.1) is said to be

exponentially contracting, has a unique finite equilibrium, and all trajectories converge

to this equilibrium.

The stability and the domain of attraction of an equilibrium point can be found

using a contraction metric. In particular, a contraction metric is evaluated from

a Riemannian metric which is the distance function between any two points at a

given time. Contrary to a contraction metric over a Lyapunov function, the con-

traction condition is robust to perturbations of the given system [296],[297]. It

follows immediately from Definition 4.2.2 that the exponential convergence on a

single trajectory is proved if the whole state space belongs to a finite region of
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contraction (4.5) such as (J ′)TM(t, x) +M(t, x)J ′ + Ṁ(t, x) with respect to the

contraction metric M(t, x) and convergence rate β. It also follows that the sta-

bility criteria from a contraction metric must satisfy M(t, x) > 0 and the condi-

tion (J ′)TM(t, x) +M(t, x)J ′+Ṁ(t, x) < 0. However, the metricM(t, x) with the

equation (4.3) defines a Riemann space. We then get the following consequence of

definition [56].

Definition 4.2.3 (Contraction region). Given the system equations (4.1), a region

of the state space is defined as a contraction region if the J ′ = ∂f/∂x is uniformly

negative definite under given metric M(t, x) in that region.

The convex contraction region has a most unique equilibrium point, since any

length between two trajectories is shrinking exponentially in that region. Thus,

global exponential convergence to the given trajectory is satisfied when the whole

state space lies in the region of contraction for given metricM(t, x). In addition, the

exponential convergence of δvz(t) to 0 also involves exponential convergence δvx(t) to

0 which can be contained in the region of contraction with uniformly positive defi-

nite M(t, x) and uniformly negative definite J . Indeed, for a constant metric M,

this exponential convergence establishes the Krasovskǐı theorem for global asymptotic

stability (convergence) of the systems. Here, we use the constant metric to reduce the

Krasovskǐı method. Thus, to obtain necessary and sufficient conditions for asymp-

totic stability, the Lypunov-Krasovskǐı method can be used. The finite dimensional

system ẋ = Ax(t) is asymptotically stable if (and only if), for any given positive

definite M matrix, the Lyapunov equation

MA+ ATM < 0 (4.6)

has a positive definite solution. Indeed, a Lyapunov-like function can be constructed

from the solution M,

V (x) = fT(x)M(t, x)f(x), (4.7)

which achieves

V̇ (x) = −fT(x)M(t, x)f(x). (4.8)
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Also,

V̇ (x) = fT(x)
(

(J ′)TM(t, x) +M(t, x)J ′ + Ṁ(t, x)
)
f(x) < 0, (4.9)

and it is said to be globally stable. Here, M(t, x) is a contraction metric for the

system ẋ = f(t, x) and V (x) is nonnegative for all points in the state space where

f(x) 6= 0.

An alternative to Lyapunov approaches is to generate a contraction metric. To

achieve stability robustness, the main difference is the fact that a Lyapunov function

expects to have a known equilibrium point. In this case, a contraction metric derives

the existence of a stable equilibrium indirectly. Note that this will be convenient if

the equilibrium point drifts away due to dynamics or uncertainty in the system.

In light of the results in this section, the following virtual system dynamics will

be of particular interest to us. Before discussing these results, in detail in the next

section, we define a virtual system of the form:

ż(t) = f(t, z) +K(y(t)− h(t, z)) (4.10)

with gain K and the measurement of y(t), which is continuously differentiable

δvż(t) = (A−KC)δvz(t), (4.11)

where A = (∂f/∂z)(t, z) and C = (∂h/∂z)(t, z). We assumed that f(0, t) = 0 for

every t ≥ 0, therefore the equilibrium is stable for A−KC. It is worth notice that A

and J ′ can be replaced. To this end, we define an observer of the form:

˙̂z(t) = f(t, ẑ) +K(t)(y(t)− h(t, ẑ)). (4.12)

Lemma 4.2.2 (Deterministic Contraction). Assume that the assumptions of The-

orem 4.2.1 and Definition 4.2.2 are fulfilled. If there exists a positive scalar for β > 0,

then the virtual system (4.10) contracts, and exponential convergence to a single tra-

jectory can be concluded in the region which is in an identical form discussed in (4.5).

Then,

ATM(t, z) +M(t, z)A+ Ṁ(t, z) ≤ −βM(t, z). (4.13)

Proof. This lemma is proved in the following section.
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The positive definite scalar β is deterministic, and verifies the regions of uniformly

negative definite J . The observer dynamics (4.12) of the virtual system (4.10) act

as a particular solution of the real system (4.1) [186],[185]. The observer dynam-

ics (4.12) can handle the properties of the system (4.10), and this leads to a global

exponentially nonlinear observer design.

The key concept of this approach is that nonlinear contraction theory can be made

exact, and at the same time, deals with global properties of nonlinear systems, refer-

ring to the case when global exponential convergence (stability) is guaranteed. The

rate of converge can be explicitly determined and expressed in terms of eigenvalues of

a well-defined symmetric matrix. We then derive the proposed metric for contraction

analysis of a power system model. By using the constant metric, corresponding con-

stant Γ, the explicit region of exponential convergence is obtained for our controller

design based on linearization about an equilibrium point. Therefore, the model is

contracting with respect to the proposed metric.

4.3 Contraction Analysis of EKF

The problem considered in this section consists of determining a Kalman observer

filter. We try to characterize the concept of contraction theory for the EKF that

corresponds to a deterministic Kalman observer. Under the above considerations,

the system can be represented by the following form:

ẋ(t) = f(t, x, u), (4.14a)

y(t) = h(t, x), (4.14b)

where x ∈ Rn is the state of the system; u ∈ Rm is the input; y ∈ Rp is the

measured output; f and h are smooth, which satisfies the conditions for existence

and uniqueness of the solution.

We are now ready for the definition of observer [178],[49].

Definition 4.3.1 (Observer). Let us consider a system (4.14). The structure of

observer dynamics is formally defined as

ẋ(t) = F (t, x, y, u), (4.15a)

x̂(t) = H(t, x, y), (4.15b)
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such that:

(i) x̂(0) = x(0)⇒ x̂(t) = x(t) for all t ≥ 0;

(ii) ‖x̂(t)− x(t)‖ tends to zero as t→∞
If (ii) holds, then for any given x(0), x̂(0), the observer is said to be global.

If (ii) holds with exponential convergence, the observer is said to be exponential.

If (ii) holds for exponential convergence with a convergence rate, the observer is said

to be tunable.

Here, x(0) is the initial value of the system (4.14), x(t) is a trajectory of the per-

turbed system (4.14), and x̂(t) is a observer trajectory of the same system. If we know

the initial value x(0) which belongs to the ball of the center x̂(0), then x(t) can be

obtained. On the other hand, if the initial x(0) is unknown, ẋ(t) can be estimated on-

line from some erroneous x̂(0), therefore x(t) converges exponentially to x̂(0) around

the observer trajectory x̂(t), allowing us to evaluate the estimation error generated

by the perturbation. However, the measured output y(t) of the system (4.14) is not

equal to h(t, x) and one cannot assume that ‖x̂(t) − x(t)‖ tends towards zero. The

Kalman filter state esmimation problem is given by the following definition [57],[49].

Definition 4.3.2 (Extended Kalman Filter). Given a nonlinear system of the

form (4.14), the following EKF observer is defined by

˙̂x(t) = f(t, x̂, u) +K(t, x̂)(y(t)− h(t, x̂)), (4.16)

where K(t, x̂) is the Kalman gain for some K > 1. Using the shorthand notation S

:= C(t, x̂)TW−1C(t, x̂), we get two EKF equations with respect to the dynamics:

˙̂x(t) = f(t, x̂, u) + P (t, x̂)C(t, x̂)TW−1(y(t)− h(t, x̂)), (4.17)

Ṗ (t, x̂) = A(t, x̂)P (t, x̂) + P (t, x̂)A(t, x̂)T + V − P (t, x̂)S(t)P (t, x̂), (4.18)

where A(t, x̂) = (∂f/∂x)(x̂(t), u(t)) and C(t, x̂) = (∂h/∂x)(x̂(t)). W and V are the

measurement noise and Gaussian noise covariance matrices, respectively, which are

assumed to be constant, and satisfy W = WT > 0, V = V T > 0. Consequently, the

continuous EKF gain is determined by K(t, x̂) = P (t, x̂)C(t, x̂)TW−1.

Assumption 4.3.1. x̂(t) is the estimated state, and the differential Riccati equation

(DRE) Ṗ (t, x̂) has a symmetric solution P (t, x) on [0,∞] and is defined uniformly
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positive definite. There exist two time-varying scalar α(t), α(t) > 0 such that α(t)I ≤
P (t, x̂) ≤ α(t)I for every t ≥ 0.

Using the Definition 4.3.2, we are interested in obtaining the estimated x̂(t) that

results from the the EKF equations (4.17) and (4.18), which are result in the solution

of the virtual system

ż(t) = f(t, z) +K(t, x̂)(y(t)− h(t, z). (4.19)

As a consequence, we have proved that this system (with respect to the distance

between two arbitrary trajectories) is equivalent to zero, and hence it follows that

the convergence of the estimation error x̂− x decreases to zero. Furthermore, x̂(t)−
x(t) → 0 as t → +∞. Since the estimation error tends towards zero, we then get

a contradiction through the virtual system (4.19). In order to prove the contraction

results, including Lemma 4.2.2, for the virtual system, we first assume a metricM =

P−1 using the Assumption 4.3.1 for the virtual dynamics (4.19). One is shown as the

squared length in the sense of metric:

‖Z(t, z)‖2 = ZT(t, z)P−1(t, x̂)Z(t, z), (4.20)

where Z(t, z) is a tangent vector at z(t) and allows us to verify

Ż(t, z) = [A(t, z)−K(t, x̂)C(t, z)]Z(t, z). (4.21)

We now show the contraction of the virtual system (4.19), see [50]. For this propose,

the derivative of the metric is first given by

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
=

ŻT(t, z)P−1(t, x̂)Z(t, z) + ZT(t, z)
d

dt

{
P−1(t, x̂)

}
Z(t, z) + ZT(t, z)P−1(t, x̂)Ż(t, z).

Recall that, by (4.11), we let Ż(t, z) = (A−KC)Z(t, z), then

ZT(t, z)

[
(A−KC)TP−1(t, x̂) +

d

dt

{
P−1(t, x̂)

}
+ P−1(t, x̂)(A−KC)

]
Z(t, z).

Finally,

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
=

ZT(t, z)P−1(t, x̂)
[
P (t, x̂)(A−KC)T − Ṗ (t, x̂) + (A−KC)P (t, x̂

]
P−1(t, x̂)Z(t, z)
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Next, we also need to show the d
dt
{P−1(t, x̂}.

Ṗ−1(t, x̂) = −P−1(t, x̂)Ṗ (t, x̂)P−1(t, x̂),

using the DRE (4.18) and gain matrix K(t, x̂), we can write

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
=

− ZT(t, z)CT(t, x̂)W−1C(t, x̂)Z(t, z)− ZT(t, z)P−1(t, x̂)V P−1(t, x̂)Z(t, z).

We know that W = W−1 > 0,

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
≤ −Z(t, z)P−1(t, x̂)V P−1(t, x̂)Z(t, z).

Again, from Asumption 4.3.1 using α, α, and v, which is the smallest eigenvalue of V ,

then

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
≤ (−v/α)ZT(t, z)P−1(t, x̂)Z(t, z)

and hence (4.19) is contracting which guarantees the ẑ converges exponentially to the

actual state x. We note that the metric introduced by (4.20) is defined as Euclidean

distance and is time-varying.

According to the above results, we obtain the following Lemma [48],[50].

Lemma 4.3.1. Consider the metric (4.20) running the EKF based on the dynam-

ics (4.17), (4.18) and the virtual dynamics (4.19). Taking A(t, x̂, z) = A(t, z) −
A(t, x̂) and C(t, x̂, z) = C(t, z)− C(t, x̂), we get

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
= ZT(t, z)P−1(t, x̂)M(t, x̂, z)Z(t, z)P−1(t, x̂)Z(t, z)

M = P (t, x̂)AT +AP (t, x̂)

+ P (t, x̂)HP (t, x̂)− P (t, x̂)NP (t, x̂)− V, (4.22)

where H = CTW−1C and N = C(t, z)TW−1C(t, z).

Proof.

Ż(t, z) =
[
A(t, z)−K(t, x̂)C(t, z)

]
Z(t, z)

=
[
A(t, z)− P (t, x̂)CT(t, x̂)W−1C(t, z)

]
Z(t, z)
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and

d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
=
[
Ż(t, z)

]T
P−1(t, x̂)Z(t, z)

+ Z(t, z)Ṗ−1(t, x̂)Z(t, z) + Z(t, z)P−1(t, x̂)Ż(t, z)

Therefore,
d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
= ZT(t, z)ΠZ(t, z),

where

Π = AT(t, z)P−1(t, x̂) + P−1(t, x̂)A(t, z) + Ṗ−1(t, x̂)− C(t, x̂)W−1C(t, z)

− CT(t, z)W−1C(t, x̂).

Finally,

Ṗ−1(t, x̂) = −P−1(t, x̂)Ṗ−1(t, x̂)P−1(t, x̂)

= −P−1(t, x̂)A(t, x̂)− AT(t, x̂)P−1(t, x̂)− V + CT(t, x̂)W−1C(t, x̂).

That is

CT(t, x̂)W−1C(t, x̂)− CT(t, x̂)W−1C(t, z)− CT(t, z)W−1C(t, x̂) =

− CTW−1C + CT(t, z)W−1C(t, z).

We choose two symmetric matrices Y1 and Y2, then describe a partial order im-

plying Y1 ≤ Y2 whereas Y2 − Y1 is positive semidefinite. We need the following

Lemma [50].

Lemma 4.3.2. Suppose 0 ≤ γ < v/(2α). For each t ≥ 0 and r(t) > 0 such that

all z satisfy ‖z − x̂(t)‖ ≤ r(t), we have

P (t, x̂)AT +AP (t, x̂) + P−1(t, x̂)CT(t, x̂, z)W−1C(t, x̂, z)P−1(t, x̂) ≤

V − 2γP (t, x̂) + P (t, x̂)CT(t, z)W−1C(t, z)P (t, x̂). (4.23)

Proof. One may choose z = x̂, in which case the right-hand side of (4.23) is considered

a positive definite matrix, and the left-side of (4.23) can be canceled as well.
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Given any time t, the vectors z away from x̂(t) with the maximum distance r(t) are

in the region of contraction, and equality of these vectors in Lemma 4.3.1 can be

written as
d

dt

{
ZT(t, z)P−1(t, x̂)Z(t, z)

}
≤ −2γ

(
P−1(t, x̂)Z(t, z)

)
(4.24)

which means differential inequality. This yields that the metric in (4.20) between

particular trajectories of the virtual system in this ball will tend to decay, with a rate

of γ.

4.4 Contraction Region for a Classical Model of Power System

In this section, we aim to describe the contraction region for the multimachine power

system. Full mathematical details and physical assumptions can be found in previous

chapters. The power system dynamics of ith generator can be written as follows:

δ̇i = ωi,

ω̇i =
1

Mi

(
Pmi − E ′qiIqi −Diωi

)
,

Ė ′qi =
1

T ′doi

[
Efdi − E ′qi(t) + (Xdi −X ′di)Idi

]
, (4.25)

where

Idi =
n∑
j=1

[Gij cos(δi − δj) +Bij sin(δi − δj)]E ′dj

+
n∑
j=1

[Bij cos(δi − δj)−Gij sin(δi − δj)]E ′qj (4.26)

and

Iqi =
n∑
j=1

[Gij cos(δi − δj) +Bij sin(δi − δj)]E ′qj

−
n∑
j=1

[Bij cos(δi − δj)−Gij sin(δi − δj)]E ′dj. (4.27)

We are interested in a two-machine system, since it is the simplest model to show the

contraction region. Assuming Pei = E ′qiIqi, the electrical equations of the currents
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can be expressed as:

Idi =
n∑
j=1

[
Bij cos(δi − δj)−Gij sin(δi − δj)

]
E ′qj, (4.28)

Iqi =
n∑
j=1

[
Gij cos(δi − δj) +Bij sin(δi − δj)

]
E ′qj. (4.29)

The above equations can be described for the two-machine system:

Id1 = B11E
′
q1

+B12E
′
q2

cos(δ1 − δ2)−G12E
′
q2

sin(δ1 − δ2), (4.30)

Id2 = B22E
′
q2

+B21E
′
q1

cos(δ2 − δ1)−G21E
′
q1

sin(δ2 − δ1), (4.31)

Iq1 = G11E
′
q1

+G12E
′
q2

cos(δ1 − δ2) +B12E
′
q2

sin(δ1 − δ2), (4.32)

Iq2 = G22E
′
q2

+G21E
′
q1

cos(δ2 − δ1) +B21E
′
q1

sin(δ2 − δ1). (4.33)

We write the equations for the model in the following state-space form:

δ̇1 = ω1,

ω̇1 =
1

M1

[
Pm1 −D1ω1 −G11E

′2
q1
−G12E

′
q1
E ′q2 cos(δ1 − δ2)−B12E

′
q1
E ′q2 sin(δ1 − δ2)

]
,

Ė ′q1 =
1

T ′do1

[
Efd1 − E ′q1 + (Xd1 −X ′d1)B11E

′
q1

+ (Xd1 −X ′d1)B12E
′
q2

cos(δ1 − δ2)

− (Xd1 −X ′d1)G12E
′
q2

sin(δ1 − δ2)
]
,

δ̇2 = ω2,

ω̇2 =
1

M2

[
Pm2 −D2ω2 −G22E

′2
q2
−G21E

′
q1
E ′q2 cos(δ1 − δ2)−B21E

′
q1
E ′q2 sin(δ1 − δ2)

]
,

Ė ′q2 =
1

T ′do2

[
Efd2 − E ′q2 + (Xd2 −X ′d2)B22E

′
q2

+ (Xd2 −X ′d2)B21E
′
q2

cos(δ2 − δ1)

− (Xd2 −X ′d2)G21E
′
q2

sin(δ2 − δ1)
]
,

(4.34)

The two-machine system dynamics can be greatly simplified by using the new vari-

ables, resulting in

v1 = δ1 − δ2 , v2 = ω1 − ω2 , v3 = E1 , v4 = E2.

We next discuss our assumption.
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Assumption 4.4.1. To investigate whether the power system is contracting, we sim-

ply make use of the formulation (2.47) with using a well-known approximate equation

Pi =
n∑
j=1

Bij(δi − δj). (4.35)

We make the following assumptions:

• For most power networks, G� B, thus G = 0.

• For normal operating conditions, |δi− δj| is less than 10−15 degrees; therefore:

– sin(δi − δj) ≈ δi − δj

– cos(δi − δj) ≈ 1

• In per unit, |Ei| and |Ej| are close to 1, that is

– |Ei||Ej| ≈ 1

These assumptions are used to prove contraction results. In our notation, we also

get D = D1 = D2 and M = M1 = M2. Next, we write the power system dynamics:

v̇1 = v2,

v̇2 =
1

M

[
Pm1 − Pm2 −Dv2 −G11v

2
3 +G22v

2
4 −G12v3v4 cos(v1)

+G21v3v4 cos(−v1)−B12v3v4 sin(v1) +B21v3v4 sin(−v1)
]
,

v̇3 =
1

T ′do1

[
Efd1 − v3 + (Xd1 −X ′d1)B11v3 + (Xd1 −X ′d1)B12v4 cos(v1)

− (Xd1 −X ′d1)G12v4 sin(v1)
]
,

v̇4 =
1

T ′do2

[
Efd2 − v4 + (Xd2 −X ′d2)B22v4 + (Xd2 −X ′d2)B21v3 cos(−v1)

− (Xd2 −X ′d2)G21v3 sin(−v1)
]
.

(4.36)

We now use the above assumptions with the neglecting conductances from the power
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system dynamics. One can write

v̇1 = v2,

v̇2 =
1

M

[
Pm1 − Pm2 −Dv2 −B12v3v4 sin(v1) +B21v3v4 sin(−v1)

]
,

v̇3 =
1

T ′do1

[
Efd1 − v3 + (Xd1 −X ′d1)B11v3 + (Xd1 −X ′d1)B12v4 cos(v1)

]
,

v̇4 =
1

T ′do2

[
Efd2 − v4 + (Xd2 −X ′d2)B22v4 + (Xd2 −X ′d2)B21v2 cos(v1)

]
.

(4.37)

We obtain the following results using the second and third assumptions under As-

sumption 4.4.1:

0 = v2,

0 = −Dv2 −B12v1 −B21v1,

0 = −v3 + (Xd1 −X ′d1)B11v3 + (Xd1 −X ′d1)B12v4,

0 = −v4 + (Xd2 −X ′d2)B22v4 + (Xd2 −X ′d2)B21v3. (4.38)

From this, we get B = B12 = B21, B1 = B11, and B2 = B22. Then, we obtain the

Jacobian matrix for the two-machine system:

J =


0 1 0 0

−2B −D 0 0

0 0 −1 +B1∆Xd1 B∆Xd1

0 0 B∆Xd2 −1 +B2∆Xd2

 , (4.39)

where ∆Xd1 = Xd1 −X ′d1 and ∆Xd2 = Xd2 −X ′d2 . The main result of this paper is

the following proposition.

Proposition 4.4.1. Under Assumption 4.4.1, we assume that the system has the

form (4.57) with a two-machine system of the form (4.59), and also consider the

system of the form (4.15) to present the basic form of the observer design. If the

system Si is contracting, it naturally inherits a metric Mi with rate βi

Mi = ΓT
i Γi. (4.40)
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Suppose also that the metric Mi is compatible with a given system operating point

in a feasible region. One can choose a diagonal positive definite metric Mi which is

compatible for the given system. Associated with our system, a contraction system is

induced by a constant diagonal metric which yields

Γi =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 . (4.41)

Therefore, the system (4.58) which is contracting in a constant metric Mi, is said to

be compatible with a convex feasible set.

Proof. The generalized Jacobian is of the form

F = (Γ̇i + ΓiJ)Γ−1
i , (4.42)

where matrix F is defined by

F =


−D 0 −2B 0

0 −1 +B1∆Xd1 0 B∆xd1

1 0 0 0

0 B∆Xd2 0 −1 +B2∆xd2

 . (4.43)

The symmetric part of the generalized Jacobian is:

Fs = F + FT. (4.44)

Therefore, we can show the principal minors of the matrix Fs

m1 = 2D,

m2 = −4D(−1 +B1∆Xd1),

m3 = 2(2B − 1)2(−1 +B1∆Xd1),

m4 = −(2B − 1)(−2B3∆X2
d1
− 4B3∆Xd1∆Xd2 − 2B3∆X2

d2
+B2∆X2

d1

+ 2B2∆Xd1∆Xd2 + 8B1B2B∆Xd1∆Xd2 − 8B1B∆Xd1 − 8B2BXd1

+ 8B − 4B1B2∆Xd1∆Xd2 + 4B1∆Xd1 + 4B2∆Xd2 − 4).

(4.45)
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As we know, the principal minors of the Jacobian matrix Fs are always positive.

Hence, the principal minor m1 is positive; m2 and m3 are negative. Here, m2 must

satisfy B1∆Xd1 < 1 and m3 must also satisfy B1∆Xd2 > 1. In this case, it is not

necessary to verify the last principle minor m4. Thus, we cannot prove the contraction

region of the uncontrolled case for model (4.25).

Let us write the Jacobian of the controlled system

Jc =


0 1 0 0

−2B −D 0 0

k1 k2 −1 +B1∆Xd1 B∆Xd1

0 0 B∆Xd1 −1 +B2∆Xd2

 . (4.46)

K is the gain vector of the proposed controller. We have:

K =

k1 0 0 0

0 k2 0 0

 . (4.47)

The generalized Jacobian for the controlled case is:

Fc =


−D 0 −2B 0

k2 −1 +B1∆Xd1 k1 B∆xd1

1 0 0 0

0 B∆Xd2 0 −1 +B2∆xd2

 . (4.48)

The principal minors of the Jacobian of the controlled system are:

m1 = 2D,

m2 = −k2
2 + 4D(1−B1∆Xd1),

m3 = −Dk2
1 + (2B − 1) {k1k2 − (2B − 1)(1−B1Xd1)} ,

m4 = B2(1 + 2Xd1Xd2(2B − 1)2

+ 4(1−B2Xd2)
[
−Dk2

1 + 2B − 1 {k1k2 − (2B − 1)(1−B1Xd1)}
]
.

(4.49)
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Then, we can easily see that the conditions are:

1 > B1Xd1 ,

B > 0.5,

k1k2 > (2B − 1)(1−B1Xd1),

k2
2 > 4D(1−B1Xd1),

Dk2
1 > (2B − 1) {k1k2 − (2B − 1)(1−B1Xd1)} . (4.50)

Finally, we conclude that all principal minors are positive, as desired. Therefore, the

contraction region is obtained for the controlled case only. Here, we only give the

proof for a two-machine system. Our detailed proof can be used for a three-machine

system. The results of our simulations show that the contraction region exists.

4.4.1 Computing of the Jacobian Matrix for Contraction Analysis: The

Three-Machine System

In this subsection, we determine the Jacobian matrix of the three-machine system for

contraction conditions. First, we write the system equations for the three-machine

system:

δ̇1 = ω1,

ω̇1 =
1

M1

[
Pm1 −D1ω1 −G11E

′2
q1
−G12E

′
q1
E ′q2 cos(δ1 − δ2)

−G13E
′
q1
E ′q3 cos(δ1 − δ3)−B12E

′
q1
E ′q2 sin(δ1 − δ2)−B13E

′
q1
E ′q3 sin(δ1 − δ3)

]
,

Ė ′q1 =
1

T ′do1

[
Efd1 − E ′q1 −∆Xd1G12E

′
q2

sin(δ1 − δ2)−∆Xd1G13E
′
q3

sin(δ1 − δ3)

+ ∆Xd1B11E
′
q1

+ ∆Xd1B12E
′
q2

cos(δ1 − δ2) + ∆Xd1B13E
′
q3

cos(δ1 − δ3)
]
,

δ̇2 = ω2,

ω̇2 =
1

M2

[
Pm2 −D2ω2 −G21E

′2
q2
−G21E

′
q2
E ′q1 cos(δ2 − δ1)

−G23E
′
q2
E ′q3 cos(δ2 − δ3)−B21E

′
q2
E ′q1 sin(δ2 − δ1)−B23E

′
q2
E ′q3 sin(δ2 − δ3)

]
,

Ė ′q2 =
1

T ′do2

[
Efd2 − E ′q2 −∆Xd2G21E

′
q1

sin(δ2 − δ1)−∆Xd2G23E
′
q3

sin(δ2 − δ3)

+ ∆Xd2B22E
′
q2

+ ∆Xd2B21E
′
q2

cos(δ2 − δ1) + ∆Xd2B23E
′
q3

cos(δ2 − δ3)
]
,
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δ̇3 = ω3,

ω̇3 =
1

M3

[
Pm3 −D3ω3 −G33E

′2
q3
−G31E

′
q3
E ′q1 cos(δ3 − δ1)

−G32E
′
q3
E ′q2 cos(δ3 − δ2)−B31E

′
q3
E ′q1 sin(δ3 − δ1)−B32E

′
q3
E ′q2 sin(δ3 − δ2)

]
,

Ė ′q3 =
1

T ′do3

[
Efd3 − E ′q3 −∆Xd3G31E

′
q1

sin(δ3 − δ1)−∆Xd3G32E
′
q2

sin(δ3 − δ2)

+ ∆Xd3B33E
′
q3

+ ∆Xd3B31E
′
q1

cos(δ3 − δ1) + ∆Xd3B32E
′
q2

cos(δ3 − δ2)
]
,

(4.51)

where ∆Xd3 = Xd3 −X ′d3 . Next, we describe the new states:

v1 = δ1 − δ2 , v4 = ω1 − ω2 , v7 = E1,

v2 = δ1 − δ3 , v5 = ω1 − ω3 , v8 = E2,

v3 = δ2 − δ3 , v6 = ω2 − ω3 , v9 = E3,

(4.52)

We assume that v3 = −v1 + v2 and v6 = −v4 + v5. Under Assumption 4.4.1, the

model can be written:
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v̇1 = v3,

v̇2 = v4,

v̇3 =
1

M

[
Pm1 − Pm2 −Dv3 −B12v5v6 sin(v1)−B13v5v7 sin(v2) +B21v5v6 sin(−v1)

+B23v5v6 sin(−v1 + v2)
]
,

v̇4 =
1

M

[
Pm2 − Pm3 −Dv4 −B12v5v6 sin(v1)−B13v5v7 sin(v2) +B31v5v7 sin(−v2)

+B32v6v3 sin(v1 − v2)
]
,

v̇5 =
1

T ′do1

[
Efd1 − v5 + ∆Xd1B11v5 + ∆Xd1B12v6 cos(v1) + ∆Xd1B13v7 cos(v2)

]
,

v̇6 =
1

T ′do2

[
Efd2 − v6 + ∆Xd2B22v6 + ∆Xd2B21v5 cos(−v1)

+ ∆Xd2B23v7 cos(−v1 + v2)
]
,

v̇7 =
1

T ′do3

[
Efd3 − v7 + ∆Xd3B23v7 + ∆Xd3B31v5 cos(−v1)

+ ∆Xd3B32v6 cos(v1 − v2)
]
.

(4.53)

Again, using Assumption 4.4.1, we obtain:

0 = v3,

0 = v4,

0 = −Dv3 −B12v1 −B13v2 −B31v1 −B23v1 +B23v2,

0 = −Dv4 −B12v1 −B13v2 −B31v2 −B32v2 +B32v1,

0 = −v5 + ∆Xd1B11v5 + ∆Xd1B12v6 + ∆Xd1B13v7,

0 = −v6 + ∆Xd2B22v6 + ∆Xd1B21v6 + ∆Xd2B23v7,

0 = −v7 + ∆Xd3B23v7 + ∆Xd1B31v5 + ∆Xd3B32v6.

(4.54)

We can write the above equations in a more compact form:
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0 = v3,

0 = v4,

0 = −Dv3 − v1(B12 +B31 +B23)− v2(B13 +B23),

0 = −Dv4 − v1(B12 +B32)− v2(B13 +B31 +B32),

0 = −v5(1−∆Xd1B11) + ∆Xd1B12v6 + ∆Xd1B13v7,

0 = −v6(1−∆Xd2B11) + ∆Xd1B21v6 + ∆Xd2B13v7,

0 = −v7(1−∆Xd3B11) + ∆Xd1B31v5 + ∆Xd3B32v6.

We assume that B = B12 = B21 = B31 = B23 = B13 = B23, B1 = B11, B2 = B22, and

B3 = B33. Finally, we write:

0 = v3,

0 = v4,

0 = −Dv3 − 3Bv1 − 2Bv2,

0 = −Dv4 − 2Bv1 − 3Bv2,

0 = −v5(1−Xd1B1) +Xd1Bv6 +Xd1Bv7,

0 = −v6(1−Xd2B2) +Xd2Bv5 +Xd2Bv7,

0 = −v7(1−Xd3B3) +Xd3Bv5 +Xd3Bv6.

(4.55)

Therefore, the Jacobian matrix of the three machine system is given:

J =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

−3B −2B −D 0 0 0 0

−2B −3B 0 −D 0 0 0

0 0 0 0 −1 +B1∆Xd1 B∆Xd1 B∆Xd1

0 0 0 0 B∆Xd2 −1 +B2∆Xd2 B∆Xd2

0 0 0 0 B∆Xd3 B∆Xd3 −1 +B3∆Xd3


.

(4.56)
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4.5 Decentralized Control Using Deterministic Kalman Observer

We start by discussing the role that observer-based control can play for the decen-

tralized control of power systems. As a representative model of a power system

application, we focus on model (2.60) related to power system dynamics. In this

section, we discuss the three-machine system, because its dimension is higher than

that of the two-machine system. The readers can follow the same procedure found

in the previous section. Unlike the model of the two-machine bus system, this model

has the relative angles δ1− δ3 and δ2− δ3, the angular velocities ω1−ω3 and ω2−ω3,

and the quadrature axis internal voltage E3. We also resort to numerical simulations

to carry out this analysis for the two-machine system and three-machine system.

Let δ be the power angle, ω the relative speed, and the transient electric potential

is E. The system equations to model SMIB are

δ̇(t) = ω(t),

ω̇(t) = −λω(t) + Pm(t)−GE(t)− E(t)Y sin(δ − θ),

Ė(t) = −aE(t) + bE(t) cos (δ + θ) + Ef + u.

(4.57)

The definition of the Kalman estimation problem is formulated in the previous sec-

tions. We now provide a deterministic nonlinear observer for the design of decentral-

ized control in power systems made of neighboring subsystems or machines, which

have access to local measurements and the measurements from neighboring subsys-

tems. Therefore, we first describe the idea of the observer design for a power network

governed by the dynamics equations with the case of three subsystems. The corre-

sponding observer design takes the form

(Σ)



ẋ1 = f1(x1, x2, x3, u),

ẋ2 = f2(x2, x1, x3, u),

ẋ3 = f3(x3, x2, x3, u),

y = (h1(x1), h2(x2), h3(x3)) = (y1, y2, y3)T.

(4.58)

With this respect, x = [x1, x2, x3]T = [δ, ω, E]T is the state vector.
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Using the model (4.57), the model structure for the three machine system can be

established:

δ̇1 = ω1,

ω̇1 = −D1ω1 + P1 −G1E
2
1 − E1E2Y12 sin(δ1 − δ2 + α12)− E1E3Y13 sin(δ1 − δ3 + α13),

Ė1 = −a1E1 + b1E2 cos(δ1 − δ2 + α12) + b1E3 cos(δ1 − δ3 + α13) +
1

τ1

(Ef1 − V1),

δ̇2 = ω2,

ω2 = −D2ω2 + P2 −G2E
2
2 − E2E1Y21 sin(δ2 − δ1 + α21)− E2E3Y23 sin(δ2 − δ3 + α23),

Ė2 = −a2E2 + b2E1 cos(δ2 − δ1 + α21) + b1E3 cos(δ2 − δ3 + α23) +
1

τ2

(Ef2 − V2),

δ̇3 = ω3,

ω̇3 = −D3ω3 + P3 −G3E
2
3 − E3E1Y31 sin(δ3 − δ1 + α31)− E3E2Y32 sin(δ3 − δ2 + α32),

Ė3 = −a3E3 + b3E1 cos(δ3 − δ1 + α31) + b3E2 cos(δ3 − δ2 + α32) +
1

τ3

(Ef3 − V3).

(4.59)

The main motivation for using contraction theory is that contraction properties of

the EKF are employed under the three-machine model of a power system. This case

study illustrates how our numerical results can be used in order to preserve both

contraction of the power system and diagonality of the metric.
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4.6 Simulation Results

4.6.1 Simulation Methodology

In preparing a simulation for observer-based control using the EKF, we considered a

power system represented by a multimachine power system. We are concerned with

several different models of power systems [54]. Parameter values of the two-machine

system are listed in Table 4.1.

Table 4.1: Parameter values of the two-machine bus system

Gen 1 Gen 2
a1 9.9854 a2 11.0906
b1 3.9168 b2 4.6220
Y12 16.3799 Y21 24.9939
G1 8.1542 G2 7.1505
α 0.5432 α 0.5432
Ef1 6.5 Ef2 7.1
P1 52.4412 P1 48.8031
D1 0.71 D2 0.71
τ1 1 τ2 1

In addition, parameter values of the three-machine system are shown in Table 4.2.

Table 4.2: Parameter values of the three-machine bus system

Gen 1 Gen 2 Gen 3
a1 9.9854 a2 11.0906 a3 12.1234
b1 3.9168 b2 4.6220 b3 4.4147
Y12 16.3799 Y21 24.9939 Y31 17.6127
Y13 21.1234 Y23 19.1234 Y32 23.2529
G1 8.1542 G2 7.1505 G3 6.3936
α12 0.51 α 0.5432 α31 0.49
α13 0.51 α23 0.52 α32 0.49
Ef1 6.5 Ef2 7.1 Ef3 6.1
P1 52.4452 P1 48.8031 P3 50.1234
D1 0.71 D1 0.71 D3 0.71
τ1 1 τ2 1 τ3 1

The performance of the simulation results confirm the stability of the multima-

chine system with nonlinear interconnections between different generators. Using the
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decentralized observer-based design method, the observation errors of the states of

the multimachine power system converge to zero. This implies the effectiveness of

the proposed observer. For simulations of the proposed control scheme, MATLAB is

used as a simulation tool.

In addition to the proposed control scheme based on a decentralized observer, the

original system dynamics (4.57) can be written in the nine-order model for the three

machine system. We begin by defining the new states {v1 . . . v9} as

v1 = δ1 − δ2 , v4 = ω1 − ω2 , v7 = E1,

v2 = δ1 − δ3 , v5 = ω1 − ω3 , v8 = E2,

v3 = δ2 − δ3 , v6 = ω2 − ω3 , v9 = E3,

(4.60)

and the model can be rewritten in the form

v̇1 = v4,

v̇2 = v5,

v̇3 = v6,

v̇4 = −Dv4 + P1 − P2 −G1v
2
7 +G2v

2
8 − Y12v7v8 sin(v1 + α)− Y21v7v8 sin(v1 − α)

− Y13v7v9 sin(v2 + α)− Y23v8v9 sin(v3 + α),

v̇5 = −Dv5 + P1 − P3 −G1v
2
7 +G3v

2
9 − Y12v7v8 sin(v1 + α)− Y32v8v9 sin(v3 − α)

− Y13v7v9 sin(v2 + α)− Y31v7v9 sin(v2 − α),

v̇6 = −Dv6 + P2 − P3 −G2v
2
8 +G3v

2
9 − Y21v7v8 sin(v1 − α)− Y23v8v9 sin(v3 + α)

− Y31v7v9 sin(v2 − α)− Y32v8v9 sin(v3 − α),

v̇7 = −a1v7 + b1v8 cos(v1 + α) + b1v9 cos(v2 − α) +
1

τ1

(Ef1 + V1),

v̇8 = −a2v8 + b2v7 cos(−v1 + α) + b2v9 cos(v3 + α) +
1

τ2

(Ef2 + V2),

v̇9 = −a3v9 + b3v7 cos(−v2 + α) + b3v8 cos(−v3 + α) +
1

τ3

(Ef3 + V3).

(4.61)

Finally, the model used for the implementation of the proposed control is obtained.
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4.6.2 Case Study: Two-Machine System

The simulation results for the two-machine system are grouped into two cases. We

simulate the behavior of the two-machine power system for both uncontrolled and

controlled cases.

4.6.2.1 Case 1

The first case demonstrates the uncontrolled cases. We simulate the behavior of the

states of the two-machine system.
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Figure 4.1: Rotor angle variations of the two-machine system
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Figure 4.2: Relative speed variations of the two-machine system for the uncontrolled
case
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Figure 4.3: Internal voltage of the first generator for the uncontrolled case
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Figure 4.4: Internal voltage of the second generator for the uncontrolled case

Here, the states are the relative angle δ1 − δ2, the relative speed ω1 − ω2, and

internal voltages E1 and E2. From these simulation results, we observe that the

settling time is greater for the uncontrolled case than for the controlled case. In this

case, the system is stable. In the theoretical direction, contraction theory for the

two-machine system can be investigated analytically. The contraction region is fully

analyzed in the model using some assumptions. Theoretical results for the model are

thus verified by our simulation results. In a large power system, the contraction region

may be unavailable to ensure stability over a wide range of operating conditions.
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4.6.2.2 Case 2

The second case presents simulations for the controlled case. In this case, the observer

errors of the states are also presented.
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Figure 4.5: Rotor angle variations of the two-machine system for the controlled case
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Figure 4.6: Relative speed variations of the two-machine system for the controlled
case
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Figure 4.7: Internal voltage of the first generator for the controlled case
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Figure 4.8: Internal voltage of the second generator for the controlled case

In Fig. 4.5–4.8, when the proposed control strategy is applied, it is clear that the

settling time is less for the controlled case than for the uncontrolled case. Thus, in

the controlled case, the system reaches equilibrium faster. The decentralized control

scheme is sufficient to enhance the stability of the two-machine system.
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Next, we demonstrate observer error dynamics. The dynamics of the state es-

timation error of rotor angles, relative speeds, and internal voltages are presented.
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Figure 4.9: The estimation error of rotor angles for the two-machine system
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Figure 4.10: The estimation error of relative speeds for the two-machine system
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Figure 4.11: The estimation error of internal voltages for the first generator
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Figure 4.12: The estimation error of internal voltages for the second generator

In Fig. 4.9–4.12, the observation errors for the four states of the two-machine

system converge rapidly to zero. The effectiveness of the design observer is thus

illustrated.

4.6.3 Case Study: Three-Machine System

The simulation results for the three-machine system are demonstrated by the two

cases presented. Again, we simulate the behavior of the three-machine power system

for the same two cases discussed in the previous subsection.
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4.6.3.1 Case 1

We start with the uncontrolled case. Similar to the two-machine system, we observe

the states of relative angle δ1− δ3 and δ2− δ3, the relative speed ω1−ω3 and ω2−ω3,

and internal voltage E3.
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Figure 4.13: Rotor angle variations of the three-machine system

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

Figure 4.14: Relative speed variations of the three-machine system
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Figure 4.15: Internal voltages of the three-machine system

In Fig. 4.13–4.15, the system without control is stable, but it exhibits significant

oscillations. In this case, the analytical investigation of a contraction region for the

three-machine system is a diffucult task. Instead, it is more practical and realistic for

our simulation results to present the contraction conditions.

4.6.3.2 Case 2

In this case, we present the simulations for the controlled case.
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Figure 4.16: Rotor angle variations of the three-machine system for the controlled
case
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Figure 4.17: Relative speed variations of the three-machine system for the controlled
case
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Figure 4.18: Internal voltage of the generators for the controlled case

From the simulation results in Fig. 4.16–4.18, it is clear that, despite the nonlin-

ear interactions among different generators, the proposed control scheme is sufficient

enough to enhance system stability and rapidly dampen the osculations for the three-

machine system.
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Finally, we present observer error dynamics for the three-machine system. The

corresponding figures show the behaviors of different observation errors of the states

of the system.
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Figure 4.19: The estimation errors of rotor angles for the three-machine system
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Figure 4.20: The estimation errors of relative speeds for the three-machine system
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Figure 4.21: The estimation errors of internal voltages for the three-machine system

Finally, the observation errors of the three-machine system tend towards to zero

with the desired convergence property. The estimation errors may lie outside in the

origin but the EKF is consistent. Therefore, the effectiveness of the desired observer

is established.



Chapter 5

The Integration of Renewables with Demand Participation

5.1 Introduction

Conic optimization is a powerful optimization technique that concerns the problem of

minimizing a linear function over the intersection of an affine set and a closed convex

cone, and is completely equivalent to convex optimization [298]. Many optimiza-

tion problems such as linear programs, second-order cone programs, and semidefinite

programs are convex optimization problems and can be recast in terms of conic op-

timization. Semidefinite optimization is an important class of conic optimization,

which includes a special case where the cone is selected as both the semidefinite and

the nonnegative matrices cone. Convex optimization problems are solved by primal-

dual interior-point methods in practice. This chapter mainly presents fundamental

results for solving the convex optimization problem that is applied to the optimal

power flow problem.

The OPF problem aims to determine a steady-state (or optimal) operating point

for an electric power system that minimizes an objective function which satisfies

the system’s different control schemes, operating constraints, and security require-

ments [299]. The variables of the OPF problem include both a set of dependent and

control variables. The dependent variables include the complex voltages, as well as

the reactive power, of generators performing voltage control at each bus. The control

variables may include the apparent power output of the generator connected to each

bus with a transformer and a phase shifter. The equality and inequality constraints

of OPF are summarized as network equality constraints, and mainly include the

power-flow equations that represent the relationship between bus voltages and power

injections (i.e., the power balanced constraints); operating and physical limits such as

inequality constraints on voltage magnitudes, active and reactive power generations,

transmission line flows, and transformer taps; and operating capacity constraints on

120
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shunt capacitors, reactors, etc. The sum of variable generation cost per unit time is

usually selected as a desirable or appropriate cost function corresponding to an objec-

tive function. The objective function of an OPF problem can be seen in many different

forms according to special-purpose applications. Despite the fact that the OPF prob-

lem is generally nonconvex, it is NP-hard in the worst case due to the nonlinearity

of power-flow equations involving active power, reactive power, and voltage magni-

tude. To solve the OPF problem, numerous solution techniques and algorithms have

been developed, including nonlinear programming (NLP), quadratic programming,

Newton’s methods, linear programming (LP) and mixed integer nonlinear program-

ming, Lagrange relaxation, interior-point methods, decomposition methods, genetic

algorithms, fuzzy logic, artificial intelligence, artificial neural networks, and particle

swarm optimization [58], [59].

Semidefinite optimization is an important class of optimization problems and has

been known as an efficient method in the theory and practice of approximation al-

gorithms for over a decade. However, the nonconvex NLP formulation of the OPF

problem, including certain constraints on power and voltage variables, entered the

field of power systems considerably earlier, through a fundamental paper [299] which

introduced a solution of nonconvexity of the OPF problem. The OPF problem is often

reformulated as an NLP problem and is solved by NLP solvers. The SDP technique

is used to reformulate the OPF problem into the SDP model to find a new solution

for the OPF problem using interior-methods for SDP [46]. The main advantage of

this techinique is to present an efficient approach to obtain Hessian and Jacobian-free

solutions for the OPF problem. Thus, an OPF problem that is a highly nonconvex

problem is accurately transformed into the SDP model, which is referred to as a

convex optimization problem. To obtain an approximation of the global optimum so-

lution, SDP relaxation in polynomial time is implemented for the OPF problem. The

SDP has a zero duality gap and the SDP relaxation guarantees a zero duality gap or a

strong duality; therefore, the SDP problem converges on the global optimum solution

of the original OPF problem [68]. In practice, it is often difficult to obtain the global

optimum solution for the OPF problem because the resulting SDP relaxation is too

large to solve, and the solutions are not numerically (or physically) meaningful.
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A few attempts demonstrate the failure of SDP relaxation in some of the test

cases [63]. One of the main difficulties of the OPF is to transform and relax into

SDP. The efficiency of solving the OPF problem by SDP mainly depends on two

requirements. The first is the size of the square matrix variables (or the size of the LMI

constraints), and the second is the number equalities (or the number of real variables).

Here, the number of real variables of the problem is quadratic with the number of

buses in the power system. To solve the larger square matrix variable for the SDP,

more elapsed time and memory are required [300]. SDP relaxation with a large

number of inequalities can be computationally intractable. From this perspective, the

size of the SDP increases with the square of the number of buses in the system, which

makes the solution of the OPF problem by the SDP computationally challenging for

large power systems. Also, from a semidefinite programming perspective, a significant

increase in the size of the SDP problem can be achieved by exploiting the sparsity of

data matrices through matrix completion [301],[302]. In addition, most power system

matrices are large and sparse. Power system matrices include large-scale semidefinite

constraints which can also be decomposed into reduced-size constraints [303]. If their

size is small, the SDP can be solved more efficiently. Moreover, if the reduced-size

matrices obtained from these decompositions satisfies a rank condition, the large-scale

semidefinite matrix also satisfies the rank condition. Then it is possible to find an

optimal solution.

Throughout this chapter, in order to avoid some mathematical nuisances, we con-

sider that all of the cones are closed convex cones and closed pointed convex cones

with nonempty interiors. We then use standard notation: S is the set of real numbers,

and S+ is the set of nonnegative integers. Sn denotes the real symmetric matrices of

dimension n× n. Sn+ is the cone of positive semidefinite matrices from Sn. Notation

� and � refer to matrix inequality signs in the positive semidefinite sense. We use

A � 0 to denote that A ∈ Sn (or Sn+) is a positive semidefinite matrix, and also

use A � 0 to indicate that A is positive definite matrix. When we mention that a

real matrix is positive semidefinite, we say that it is symmetric and has nonnegative

eigenvalues. If a complex matrix is positive semidefinite, therefore it is Hermitian

and has nonnegative eigenvalues. Tr(A) and A−1 trace and inverse a square matrix

A, and AT denotes a transpose of matrix A.
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5.2 Semidefinite Program

Semidefinite programming (SDP) is a specific kind of convex optimization problem

where a linear objective function of a symmetric matrix variable is optimized over the

cone of a positive semidefinite and nonnegative matrix, and additional constraints are

the positive semidefinite matrix [304]. All the matrices are restricted to be diagonal.

However, SDP contains linear programming, convex quadratic programming, etc. In

general, these problems cannot be formulated analytically. Rather, efficient methods

such as primal-dual interior-point methods should be used to solve the convex op-

timization problem in practice. SDP can be solved with the worst-case complexity

by using the primal-dual interior-point methods. In addition, we can easily solve

problems including a large number of variables and constraints in a short compu-

tation time. The structured sparsity can be exploited, thus a large-scale problem

with many thousands of variables and constraints can be solved using these meth-

ods. The major benefit of semidefinite programming is that optimization problems

can be solvable in polynomial time. SDP problems can be handled reasonably and

efficiently in practice using any installed solver package, or alternatively implemented

by the user. Moreover, SDP can be used to obtain approximate solutions referred to

as difficult problems, such as nonlinear or even nonconvex problems, for which one

can not expect to obtain meaningful numerical results. In such cases, one has to

rely on approximate solutions. SDP problems play a crucial role in a wide range of

practical applications in research areas such as control theory, graph theory, circuit

design, signal processing, and communication systems [305].

We can describe SDP relaxations using primal and dual methods referring to a

primal-dual relationship. The SDP problem, which is considered to be a primal-dual

pair of linear convex optimization problems, is formulated in matrix variables of the

following form:

minimize Tr(CX)

subject to Tr(AiX) = bi (i = 1, . . . ,m),

X ∈ C,

(5.1)

where C is the cone of semidefinite and nonnegative matrices. That is, C represents
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the matrices whose quadratic forms have nonnegative values on Sn+:

C = {A ∈ Sn : xTAx ≥ 0 for all x ∈ Sn+} (5.2)

Here, the constraint x can be replaced by the matrix variable X ∈ Sn (unknown).

Following this, the dual of (5.1)

maximize bTy

subject to
m∑
i=1

yiAi + S = C,

S ∈ C∗

(5.3)

where the matrix variable is S ∈ Sn; the coefficient matrix Ap and the input data

are a matrix C and may be considered to be symmetric without loss of generality;

and b ∈ Rm and y ∈ Rm are two vector variables. Notice that the primal pro-

gram (5.1) involves a corresponding dual program which is a maximization problem

over the dual cone C∗. To explain this concept in more detail, the triple {X, y, S} is

an optimal solution of SDP (5.1) and (5.3) if X is a minimum solution for a pri-

mal problem and {y, S} is a maximum solution of dual problem. We conclude

that X and {y, S} are feasible solutions for primal and dual problems, respectively.

X is the feasible solution for a primal problem and {y, S} is a feasible solution for a

dual problem that satisfies X � 0 and S � 0, respectively.

The equality standard form of SDP can equivalently be rewritten without using

the dual variable S:

maximize bTy

subject to C −
m∑
i=1

yiAi � 0
(5.4)

Therefore, the constraint (5.4) is a linear matrix inequality form of SDP. In contrast

to primal problem (5.1), the dual problem (5.4) belongs to the cone C∗ which is

completely composed of positive matrices. In this case, both C and C∗ are convex

cones, thus (5.1) and (5.4) are called convex optimization problems.

For convex optimization problems, a nonzero duality gap can exist when either

the primal or the dual problem is feasible. Duality in convex optimization problems

can be stated with two fundamental definitions [304].
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Definition 5.2.1 (Weak Duality). Any primal-dual pair of convex (and even non-

convex) programs can be expressed in the most common standard form (5.1) and

(5.3) as inf(P) and sup(D), respectively. The weak duality relation satisfies the in-

equality inf(P) ≥ sup(D).

For minimization and maximization, the notations inf and sup can be used, re-

spectively. If X̃ is feasible for (P), and {ỹ, S̃} for (D), then the optimal objective

values are denoted as P(X̃) and D(ỹ, S̃). The above equation implies that the duality

gap P(X̃) − D(ỹ, S̃) is nonnegative for feasible solutions. The primal (resp. dual) is

unbounded when P(X̃) = −∞ (resp. D(ỹ, S̃) = +∞); it is infeasible when there is

no feasible solution, which occurs when P(X̃) = +∞ (resp. D(ỹ, S̃) = −∞). One

problem can also be solved when its optimal value P(X̃) (resp. D(ỹ, S̃)) is obtained

by at least one feasible primal (resp. dual) solution [306].

Definition 5.2.2 (Strong Duality). The dual (resp. primal) problem guarantees a

strictly feasible solution, i.e., equality of the optimal values ensures P(X̃) = D(ỹ, S̃)

and the dual (resp. primal) problem is either attained or infeasible.

Following the LP case, if either the primal or the dual problem has a feasible

solution, then both have feasible solutions, and there is no duality gap. In other

words, the duality gap is zero, unless both problems are infesible. This implies strong

duality for LP. On the other hand, this may be infeasible for SDP problems. In

addition, even if the duality gap is zero, the optimal value cannot be attained for

primal or dual problems. To overcome these difficulties, the form of SDP and its dual

problem are satisfied by imposing a constraint qualification to get strong duality. The

goal of constraint qualification is to ensure the existence of Lagrange multipliers at

optimal conditions. The corresponding Lagrange multipliers are a feasible solution for

the dual problem; indeed, the constraint qualification considers that both problems

are feasible, and one of them is strictly feasible, and thus the constraint qualification

guarantees that strong duality holds. In this way, it is possible to achieve primal and

dual feasibility without admitting a zero duality gap. The most common constraint

qualification is the Slater’s constraint qualification which requires an interior point.

If the primal problem has an interior point, then there is no gap between the primal-

dual solution. Finally, it is easy to show that the Slater’s constraint qualification
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holds for an SDP problem, thus it attempts to generate a feasible matrix which is

positive definite for the SDP problem of interest, see [298] for details.

5.2.1 Positive Semidefinite Matrices

A square matrix A is said to be positive semidefinite or nonnegative definite if xTAx ≥
0. Similarly, the matrix A is said to be positive definite, which satisfies the condition

for strict positivity for all x 6= 0. Obviously, the space of positive definite matrices is

assumed from bounded sets Sn+ into bounded sets Sn, and the set Sn+ ⊂ Sn of positive

semidefinite matrices is called a closed convex cone which is symbolized by C.

Definition 5.2.3 (Positive Semidefinite Matrix). Positive semidefinite matrices

are the set of all positive semidefinite n× n matrices.

However, a positive semidefinite matrix is a real matrix A that is symmetric

(i.e., AT = A has only principal minors and eigenvalues that are nonnegative. In

other words, a symmetric matrix is positive semidefinite if, and only if, all its (real)

eigenvalues are nonnegative. The trace and determinant of a positive semidefinite

matrix are also non-negative. In addition, there exists matrix U such that A = UTU .

Indeed, when A is an n × n Hermitian matrix, it means that A > 0 if and (only if)

the determinant of every leading principal minor of A is positive, and A ≥ 0 if (and

only if) the determinant of every principal minor of A is nonnegative.

We can state one more important condition of positive semidefinite matrices.

Definition 5.2.4 (Shur Complements). The matrix A B

BT C

 (5.5)

is positive semidefinite definite if, and only if, A is positive definite and C−BTA−1B is

positive semidefinite definite.

The matrix C−BA−1BT is called the Shur Complement of A. We refer to [298],[304] for

other definitions, theorems, and references therein.
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5.3 Standard AC OPF Problem

We start with the definition of all buses along with the electric loads and generators

connected to them. The system is represented by a power network formed of n-buses,

with N = {1, 2, . . . , n}. Denote G and N − G as the set of generator buses and non-

generator buses (or load buses), respectively. L is all line flows, with the size ofN×N .

PGk
and QGk

are the active and reactive power of the generator at bus k ∈ G.

There is a known constant power load with the complex value SDk
= PDk

+ QDk
,

where PDk
and QDk

are the active and reactive demands at bus k ∈ N . Vk =

Vdk +jVqk represents the voltage phasors in rectangular form at each bus k ∈ N . Slm is

the apparent power on line (l,m) ∈ L. Y ∈ Cn×n is the network admittance matrix,

and is denoted as Y = G + jB, where G and B are conductance and susceptance

matrices, respectively. The standard formulation of a quadratic cost function can be

written for each generator k ∈ N ,

Ck(PGk
) =

n∑
k=1

(
αP 2

Gk
+ βPGk

+ γ
)
, (5.6)

where α, β, and γ are system cost coefficient parameters. The objective function

represents the cost minimization of active power generation to formulate the OPF

problem. The standard OPF problem can be represented using either polar or rectan-

gular forms. Here the vector of complex voltage is expressed by its real and imaginary

parts in the rectangular form. Thus, the general formulation of the standard OPF

problem in rectangular form is
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minimize
∑
k∈G

Ck(PGk
) (5.7a)

subject to PGk
≤ PGk

≤ PGk
∀k ∈ G, (5.7b)

Q
Gk
≤ QGk

≤ QGk
∀k ∈ G, (5.7c)

V k ≤ |Vk| ≤ V k ∀k ∈ N , (5.7d)

|Slm| ≤ Slm ∀(l,m) ∈ L, (5.7e)

Pk = Vdk

n∑
i=1

(GkiVdi −BkiVqi)

+ Vqk

n∑
i=1

(BkiVdi +GkiVqi) ∀k ∈ N , (5.7f)

Qk = Vdk

n∑
i=1

(−BkiVdi −GkiVqi)

+ Vqk

n∑
i=1

(GkiVdi −BkiVqi) ∀k ∈ N , (5.7g)

where the net active and reactive power injection

Pk = PGk
− PDk

∀k ∈ G , Pk = −PDk
∀k ∈ N − G ,

Qk = QGk
−QDk

∀k ∈ G , Qk = −QDk
∀k ∈ N − G ,

PGk
, PGk

, Q
Gk

, QGk
, V k and V k are given lower/upper network constraints for ac-

tive and reactive power limits and bus voltages, respectively. Slm is the maximum

limit of branch flow on line (l − m). The power-flow equations Pk and Qk-in other

words, the nodal power balancing equations- are nonlinear equality constraints. How-

ever, the variable limits include inequality constraints on the upper and lower limits

on all bus voltages, active and reactive sources, and branch flows. For the OPF

problem (5.7), unknown parameters (or optimization variables) are the vectors of

complex voltage Vk and the vectors of generator active and reactive power injections,

PGk
and QGk

. Pk and Qk are also known as independent control variables; Vk (here

the magnitude and phase angle of voltage at node k) is the dependent variable for

the optimization problem. The main objective of the standard OPF is to minimize

the objective function Ck(PGk
) over the unknown parameters subject to power-flow
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equations (5.7f) and (5.7g) for each bus by representing physical and operating con-

straints such as limits on branch flows or bus voltages. In the OPF problem (5.7),

the cost function is convex; the constraints on the active and reactive power gener-

ations, the complex voltages, and line flows are also convex, but the equality con-

straints (5.7f), (5.7g) are nonconvex; thus, the OPF problem (5.7) is nonconvex [222].

Alternatively, the nodal real and reactive power balancing equations are repre-

sented in the polar form. The variables are the voltage magnitude and phase angle

at each bus and the real and reactive power flows in polar form. Thus, we have

Pk = Vk

n∑
i=1

Vi (Gki cos(δk − δi) +Bki sin(δk − δl)) , (5.8)

Qk = Vk

n∑
i=1

Vi (Gki sin(δk − δi)−Bki cos(δk − δi)) . (5.9)

The voltage magnitudes must be nonnegative to maintain feasibility of the OPF

problem. The relationship between the OPF problem and the power-flow problem

is that solutions of the power-flow problem satisfy all transmission line limits and

include the bounds on voltages and active and reactive powers; thus, the solutions

specify a feasible solution for the OPF problem.

The power-flow problem is a nonlinear problem, which requires the solution of a

large set of nonlinear equations for bus voltages and bus phase angles [275]. Nonlinear

problems are usually numerically solved through a process of linearization and itera-

tive methods [246]. In solving a power-flow problem, the buses in the power system

can be classified into three types: load, generator, and slack buses. Firstly, at load

buses, which are also called PQ buses, P and Q are specified as known quantities,

and the equations (5.8), (5.9) are enforced at bus k; thus, the complex voltage (V , θ)

at bus k is to be determined. Secondly, for the generator buses, which are also called

PV buses, P and V are specified as known quantities, and enforces the active power

equation (5.8); thus, Q and θ at bus k are to be determined.

In addition, the generator buses may have some controllable reactive power sources,

and evaluating the reactive power is required at a bus to maintain voltage magnitude

at that bus. Power flows in the generator buses are also solved to obtain the change in

reactive power resulting from the change in voltage magnitude. As we have previously

stated, as part of the linearization methods, the power-flow problem constructs the
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Jacobian matrix, which results from linearization of nonlinear power-flow equations.

The Jacobian matrix gives the linearized relationship between small changes in volt-

age angle and voltage magnitude and the small changes in real and reactive power.

After finding a power-flow solution, power flows check whether a specified tolerance

is acceptable given the calculating power mismatches. In the case that the tolerance

is acceptable, then the calculated reactive power of each generator is checked to de-

termine whether it is within upper limits, and the columns and rows of the Jacobian

matrix that correspond to this generator bus are deleted because the voltage mag-

nitude of the generator bus is known. Otherwise, if the generator reactive limit is

reached, the generator bus will be changed into a load bus, keeping the columns and

rows of the Jacobian matrix that are corresponding to this generator bus. Similarly,

if generator bus violate their reactive power limits, they are considered to be load

buses.

Thirdly, in power systems, only one arbitrary bus is chosen as a slack bus. The

slack bus is an accepted fictitious idea. All loads are constant and all generator

outputs are fixed expect one bus that is slack. It is characterized a fixed voltage mag-

nitude and phase angle; thus, we do not know its active power injection. V and θ are

known quantities for a slack bus. P and Q need to be solved, and also can vary. The

generator bus is selected as slack supplies to the power network. The system losses

are not known until the final solution is calculated. The solution having the least

slack bus active power generation results in the solution with the lowest losses [223].

5.4 RESs Injection to the OPF Problem

Throughout this work, intermittent RESs are mainly considered as wind turbines and

PV generators. We neglect uncertainties due to intermittency in generation. RESs are

integrated to the power system using the power-flow equations of the standard OPF

problem in (5.7). The semidefinite relaxation of the OPF problem is enhanced through

demand-side participation for RESs which permits the reformulation of additional

variables, costs and/or constraints. In this regard, the power-flow equations including

conventional generators and RESs, may be written in rectangular form the OPF

problem.
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The electrical network can be modeled by power-flow equations with the rectan-

gular formulation as complex voltages Vdk + Vqk and the sum of the complex admit-

tance Gki + jBki. It is assumed that the bus power injections can be supplied by

both conventional generation and renewable generation. The power-flow equations at

bus k ∈ N are given by

PGk
+ P r

k,inj − PDk
= Vdk

n∑
i=1

(GikVdi −BikVqi)

+ Vqk

n∑
i=1

(BikVdi +GikVqi), (5.10)

QGk
+Qr

k,inj −QDk
= Vdk

n∑
i=1

(−BikVdi −GikVqi)

+ Vqk

n∑
i=1

(GikVdi −BikVqi), (5.11)

where P r
k,inj and Qr

k,inj denote active and reactive renewable power injections for some

k ∈ N . The voltage magnitude equation is

|Vk|2 = V 2
dk

+ V 2
qk

∀k ∈ N , (5.12)

and must be satisfied at all buses, and only two nonlinear equations (5.7f) and (5.7g)

are directly enforced for some bus k when solving the power-flow problem. For con-

ventional resources, the active powers are measured at all buses. The reactive powers

are measured at (N − G) buses, and voltage magnitudes are measured at all buses.

On the other hand, for unconventional resources, the G buses and/or (N − G) buses

may contain RESs. Then the active power generation P r
Gk

and the reactive power

generation Qr
Gk

are injected to the corresponding buses. The network constraints,

including both conventional and unconventional energy generation, are described by

the following equation

{PGk
}k∈G +

{
P r
k,inj

}
k∈N +

{
Qr
k,inj

}
k∈N−G =

{
|Vk|2

}
k∈N

+ {PDk
}k∈G + {SDk

}k∈N−G (5.13)

where PGk
is the active power generation in G buses produced from conventional

sources, P r
k,inj is the active renewable power generation for all N buses, Qr

k,inj is the
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reactive renewable power generation for (N − G) buses, PDk
is the active load demand

in G buses, and SDk
is the active and reactive load demand for all non-slack buses.

From now on, we will restrict our attention to renewable resource outputs for

only the active power generation. Therefore, we assume that the reactive power

generation Qr
Gk

is zero unless otherwise specified. The active renewable power is a

positive (random) value. The renewable power generation in each period T , and the

renewable generation estimations in a (T−1) period, are assumed to be known. Thus,

P̂ r
Gk

(T − 1) > 0 ∀k ∈ N , (5.14)

Q̂r
Gk

(T − 1) > 0 ∀k ∈ N − G, (5.15)

and its cost Cr(P
r
Gk

(T )) for some k ∈ G. Moreover, we assume real-time measurements

of the active renewable generation, where

P r
Gk

(T ) : = g
(
P̂ r
Gk

(T − 1)
)
, (5.16)

Q̂r
k(T ) : = g

(
Q̂r
k(T − 1)

)
, (5.17)

and where g(·) is a piecewise-defined function which bears all information on the non-

linearity of RESs dynamics. Next, the active and reactive renewable power generation

must lie between lower and upper bounds

P r
Gk
≤ P r

Gk
(T ) ≤ P

r

Gk
∀k ∈ N , (5.18)

Qr

Gk
≤ Qr

Gk
(T ) ≤ Q

r

Gk
∀k ∈ N − G. (5.19)

The variable P r
Gk

(T ) is denoted as the renewable generation and allows electric loads

to be satisfied, which is represented as a negative demand in practice [37],[208]. In-

deed, the P r
Gk

(T ) is assumed to be nondispatchable renewable generation for some k ∈
N − G. Again,

0 ≤ P r
Gk

(T ) ≤ P
r

Gk
∀k ∈ N . (5.20)

Similarly, the load-demand estimation is also assumed to be known as

PDk
(T ) = h

(
PDk

(T − 1)
)

∀k ∈ N − G, (5.21)
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where h(·) is the load estimation function, which can be obtained from the load

estimation techniques in relevant literature, see [307],[308],[309]. PDk
is the actual

loads for each k ∈ N − G. From this,

∆PDk
(T ) = PDk

(T )− P r
Gk

(T ) ∀k ∈ N − G, (5.22)

where ∆PDk
(T ) is the excess load demand (supply) and P r

Gk
(T ) appears on negative

loads. Then,
∑

k∈G PGk
= ∆PDk

(T ) unless ∆PDk
(T ) < 0 for every k ∈ N − G. Note

that,
∑

k∈G PGk
represents dispatchable (conventional) generation units. To this end,

the active load demand constrains are

PDk
≤ PDk

(T ) ≤ PDk
, (5.23)

PDk
≤
∑
k

PDk
(T ) ∀k ∈ N − G. (5.24)

Finally, the balancing active power including RESs is

Pbk(T ) =
∑
k∈G

PGk
−∆PDk

(T ) ∀k ∈ N . (5.25)

In view of the above expressions, results following the OPF problem, including demand-

side participation for RESs, can be written as follows:

minimize
∑
k∈G

Ck(PGk
)

subject to PGk
≤ PGk

≤ PGk
∀k ∈ G,

(5.14), (5.16), (5.20), (5.21), (5.22), (5.23), (5.24),∑
k∈G

PGk
=
∑
k

∆PDk
(T ) ∀k ∈ N − G.

(5.26)

5.5 SDP Reformulation

In this section, the standard OPF problem in (5.7) and the optimization problem

in (5.26) are transformed into the SDP problem [68],[62]. In order to describe our

results, one needs to represent the matrices used in the semidefinite programming

relaxation of the OPF problem. To do this, the following matrices are formulated for
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the active and reactive power injections, and the square of the voltage magnitude at

bus k, respectively. We obtain,

Yk = 0.5

Re(Yk + Y T
k ) Im(Y T

k − Yk)
Im(Yk − Y T

k ) Re(Yk + Y T
k )

 , (5.27)

Ŷk = −0.5

Im(Yk + Y T
k ) Re(Y T

k − Yk)
Re(Yk − Y T

k ) Im(Yk + Y T
k )

 , (5.28)

Mk =

ekeT
k 0

0 eke
T
k

 , (5.29)

where the matrix Yk = eke
T
kY and ek ∈ Rn has its kth entry equal to 1, and the

other entries have zeros. Therefore,

e1 = [1, 0, . . . , 0] , e2 = [0, 1, . . . , 0] , . . . , en = [0, 0, . . . , n] . (5.30)

The set {e1, . . . , en} is also known as the unit vector in the appropriate dimension.

Then we define the SDP variable matrix X ∈ R2n involving the vector of the real and

imaginary parts of bus voltages

X =
[
Re {V}T Im {V}T

]T

. (5.31)

Based on these definitions, the formulations of the OPF problem can be rewritten in

terms of the SDP variable matrix X, and it can be factorized as XXT . In this case, by

defining the variable (or loading vector), matrix X is lifted into a symmetric, positive

semidefinite, and rank-one matrix W ∈ R2n×2n-that is, W = XXT. Tr{YkW},
Tr{ŶkW}, and Tr{MkW} represent the active and reactive power injections, and

the square of the voltage magnitude at the bus k, respectively.

Using the matrices (5.27),(5.29), the net active power injection with each bus k can

be written in the following form:

PGk
− PDk

=
n∑
i=1

Re {Yki} (VdkVdi + VqkVqi)− Im {Yki} (VdkVqi − VqkVdi) . (5.32)

We can verify that PGk
− PDk

= Tr{YkW}. Hence, we give a proof.
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Proof.

Pk = Re {VkI∗k}

= Re



V1

...

Vn


∗ 
e1

...

en



e1

...

en


T 

Y11 · · · Y1n

...
. . .

...

Yn1 · · · Ynn



V1

...

Vn


︸ ︷︷ ︸

Re{V∗eke∗kI}

.

= Re



V1

...

Vn


∗ 
Y11 · · · Y1n

...
. . .

...

Yn1 · · · Ynn



V1

...

Vn


︸ ︷︷ ︸

Re{V∗YkV} where Yk= eke
T
k Y.

= Re



Vd1 + jVq1

...

Vdn + jVqn


∗ 
Y11 · · · Y1n

...
. . .

...

Yn1 · · · Ynn



Vd1 + jVq1

...

Vdn + jVqn




=
[
Vd1 · · · Vdn

]
Re {Yn}


Vd1
...

Vdn

+
[
Vq1 · · · Vqn

]
Re {Yn}


Vq1
...

Vqn



−
[
Vd1 · · · Vdn

]
Im {Yn}


Vq1
...

Vqn

+
[
Vq1 · · · Vqn

]
Im {Yn}


Vd1
...

Vdn

 .
(5.33)

The SDP variable matrix X can be written into a 2× 2 block structure including the

real and imaginary parts of the bus voltages:

X =


V 2
dk

VdkVqk VdkVdi VdkVqi

VqkVdk V 2
qk

VqkVdi VqkVqi

VdiVdk VdiVqk V 2
di

VdiVqi

VqiVdk VqiVqk VqiVdi V 2
qi

 . (5.34)

Thus, the active power injected at bus k is obtained as

XT

Re {Yk} −Im {Yk}
Im {Yk} Re {Yk}

X. (5.35)
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However, consider Eq. (5.35), and its symmetric Pk + PT
k . Following this, a sum of

the symmetric matrix Pk = 1/2(Pk + PT
k ), since

=
1

2
XT

Re(Yk + Y T
k ) Im(Y T

k − Yk)
Im(Yk − Y T

k ) Re(Yk + Y T
k )

X

= XTYkX (5.36)

where

Yk =
1

2

Re(Yk + Y T
k ) Im(Y T

k − Yk)
Im(Yk − Y T

k ) Re(Yk + Y T
k )

 .
Moreover, taking W = XXT and using the properties of the trace operator, we derive

the net active power injection

Pk = Tr{YkW}. (5.37)

In a similar way, the net reactive power injection can be rewritten as

QGk
− PDk

= −
n∑
i=1

Re {Yki} (VdkVqi − VqkVdi) + Im {Yki} (VqkVqi + VdkVdi) , (5.38)

and Tr{ŶkW} and Tr{MkW} can be proved in the same way. Based on these

analyses, the corresponding results are given in the following equations:

Qk = Tr{ŶkW} ∀k ∈ N , (5.39)

|Vk|2 = Tr{MkW} ∀k ∈ N . (5.40)

In conclusion, the power balance equation can be rewritten in terms of SDP reformu-

lation:

Pk + jQk = VkI
?
k = (e∗kV )(ekI

∗
k) = Tr{V V ∗Y ∗eke∗k} ∀k ∈ N . (5.41)

Now, both problems (5.7) and (5.26) are rewritten in terms of the matrix variable
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W as follows,

minimize
T∑
1

(∑
k∈G

sk

)
(5.42a)

subject to PGk
≤ PGk

≤ PGk
∀k ∈ G, (5.42b)

Pbk(T ) = Tr{YkW} ∀k ∈ N , (5.42c)

Q
bk
≤ Tr{ŶkW} ≤ Qbk

∀k ∈ N , (5.42d)

(V k)
2 ≤ Tr{MkW} ≤ (V k)

2 ∀k ∈ N , (5.42e)ak1 ak2

ak2 −1

 � 0 ∀k ∈ G, (5.42f)

W � 0, (5.42g)

rank(W) = 1, (5.42h)

where

ak1 = β [Tr{YkW}+ PDk
]− sk, (5.43a)

ak2 =
√
γ [Tr{YkW}+ PDk

] (5.43b)

for every k ∈ G, and

Q
bk

=
∑
k∈G

Q
Gk
−QDk

for all k ∈ N , (5.44)

Qbk
=
∑
k∈G

QGk
−QDk

for all k ∈ N . (5.45)

Here, if W is an optimal solution to the above problem, then W � 0 and rank(W) =

1 mean that we have W = XXT a with unit trace. In other words, the SDP variable

matrix X appears solely through W = XXT. We thus reformulate the OPF problem

in terms of X only, and XXT is equivalent to Tr(X) = 1, W � 0 and rank(W) = 1. In

addition, sk is a scalar; using the the equivalence (5.42f),
(
αP 2

Gk
+ βPGk

+ γ
)
� sk can

be seen using Schur’s complement formula [310],[66].

Remark 7. P r
Gk

is considered as negative load for every k ∈ N − G buses. It means

that P
r
Gk
, nondispatchable if k ∈ N − G;

dispatchable otherwise.
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Also, PDk
= 0 and QDk

= 0 for k ∈ G buses. In addition PGk
= 0 and QGk

= 0 for

every k ∈ N − G buses.

Remark 8. The renewable generation outputs P r
Gk

for every k ∈ G in optimization

problem (5.42) are not considered to be decision variables. The problem (5.42) without

renewable generation includes PGk
, k ∈ G and the number of generators corresponding

to the decisions being made. The solution of (5.42) specifies the optimal decisions PGk
,

QGk
and Vk to satisfy the excess demand ∆PDk

.

The problem (5.42) has a linear cost function and convex constraints. As ex-

pected, the constraint (5.42h) is nonconvex, hence we cannot expect to obtain a

global solution. To remove the rank constraint, we formulate the optimization prob-

lem (5.42) using SDP in the dual formulation. Then we make use of the fact that

the auxiliary variables, called Lagrange multipliers, are introduced. These multi-

pliers provide an optimal solution for the dual problem. Here, the triple Lagrange

multipliers {λk, γk, µk}k∈N are given by

Λk =

λk − λk + ak1 + 2
√
ak2 rk if k ∈ G ,

λk − λk otherwise .
(5.46)

Γk = γk − γk for all k ∈ N , (5.47)

Ψk = ψk − ψk for all k ∈ N . (5.48)

With these definitions, the cost function is

h = −
T∑
1

∑
i∈G

r2i −
∑
i∈Gr

ρi

+
T∑
1

∑
k∈N

{
Λk∆PDk

+ ΓkQDk
+ λkPGk

− λkPGk

+ γ
k
Q
Gk
− γkQGk

+ ψ
k
(V k)

2 − ψk(V k)
2 + ξ

k
P r
Gk

− ξkP
r

Gk

}
, (5.49)

where Gr is the number of renewable resources in the power grid.

Remark 9. We assume that the marginal cost of renewable power Cr(P
r
Gk

(T )) ≡
0 for every k ∈ Gr. We also assume that, for each period T , Pbk(T ) is the balancing
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power and Cb(Pbk(T )) is its cost for every k ∈ N . Cb(·, T ) is convex and continuously

differentiable with Cb(0, T ) = 0. The total cost consists of the cost Cb of the balancing

power from the conventional resources in the power grid.

Next, the nonconvex rank constraint (5.42h) is removed and we introduce the dual

formulation of the SDP relaxation for the OPF problem (5.42), which is defined as

follows:

maximize h (5.50a)

subject to
∑
k∈N

{
ΛkYk + ΓkŶk + ΨkMk

}
� 0, (5.50b) 1 r1k

r1k r2k

 � 0 ∀k ∈ G, (5.50c)

where rk is the symmetric matrix, and r1k and r2k are the optimization variables.

The dual OPF problem (5.50) also satisfies

λk, λk ≥ 0 for (5.42c), (5.51)

γ
k
, γk ≥ 0 for (5.42d), (5.52)

ψ
k
, ψk ≥ 0 for (5.42e). (5.53)

If a zero duality gap exists, it obviously yields a feasible (and physically meaning-

ful) solution of the SDP relaxation. Since if, and only if, the nullspace of the con-

straint (5.50b) has a dimension less than two– that is, the rank-one condition –it

always admits a zero duality gap. In addition, the matrix W corresponding to the gen-

eralized Lagrange multiplier of the constraint (5.50b) is expected to have a rank-one

solution with a zero duality gap for obtaining the global optimal solution. However,

a duality gap of zero means that the OPF (5.42) problem and its dual form (5.50b)

have the same optimal values. This is also called strong duality. In contrast, when

the duality gap is nonzero, the dual OPF problem is not solvable [258],[46].

Remark 10. The optimization problem (5.42) corresponds to a Lagrangian dual prob-

lem of (5.50) which guarantees strong duality but it does not have the rank con-

straint (5.42h).
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Remark 11. Adding additional constraints such as power flow and thermal line limits

to semidefinite relaxation of the OPF problem will not affect the modeling structure or

problem solving strategy. For the sake of simplicity, we neglect power flow and thermal

line limits in this chapter. The additional constraints to be added to the formulation

of OPF problem with SDP can be seen in [68],[62].

We conclude that the renewable power injection to the OPF problem does not

change the dual variables and dual formulation of the problem. Our results are

identical to the results in [68].

5.6 Methodology for Demand-Side Participation

The main contribution of this section is a program to solve OPF with renewable

generation. In this section, a practical algorithm is adopted to the OPF problem,

which is reformulated as SDP. In this way, random renewable generation is realized.

According to this algorithm, we choose the candidate non-generator buses. Random

renewable power is injected, and then maximized using the selected buses. To do

this, we give a random value, such as real power generation. In fact, real power

generation is treated as renewable power generation to the load buses. We first take

an initial renewable power value which corresponds to zero; this means that the initial

value equals the amount of the injected renewable power into the grid, which holds

the current value. The current value of penetrated renewable power is added to the

non-generator bus as a negative load. Problem (5.50) is solved for this case. If a

feasible solution is obtained, the penetration of renewable generation is increased

gradually. These penetrations, or non-negative random values, continue to add the

non-generator buses in each case. The process of increasing renewable generation for

the given buses has continued until the OPF problem with SDP no longer converges

on the global solution of the test system. At the end of this process, the maximum

value of the renewable power generation for the test system is obtained. It is clear

that there is no feasible solution for higher penetration of renewable generation. Thus,

after obtaining OPF solutions with SDP for the base case, we run the program for

scenarios in order to solve the OPF problem under various amounts of renewable

generation. The highest penetration rate for the test system is determined. Finally,
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the proposed program is summarized in Algorithm 1.

Algorithm 1 Algorithm for Demand Participation

1: Initially choose ∆P r
G

2: Select the candidate N − G buses

3: Initialize P r
G = 0 and converge flag = 1

4: P r
G = P r

G + ∆P r
G then PD = PD + P r

G

5: Add the initial value of P r
G to N − G buses

6: Solve the SDP relaxation for an optimal solution.

7: if converge flag=0 then

8: PD = PD −∆P r
G

9: P r
G = P r

G + ∆P r
G

10: else

11: Increment P r
G = P r

G + ∆P r
G

12: end if

13: Set converge flag=1

14: if converge flag=0 then

15: return step 4.

16: else

17: the total amount of renewable penetration, PD = PD −∆P r
G

18: end if
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5.7 Numerical Results

In this section, we investigated the effects of renewable generation of the OPF problem

by means of a semidefinite programming (SDP) relaxation. In order to carry out

these investigations, the penetrations of RESs are demonstrated as negative load

to provide the demand-side participation. Then we develop a program to inject

renewable power gradually. The resulting optimization problem is solved using the

SDP. We find the global optimum solution for each incremental change of renewable

generation. Numerical results confirm that the SDP fails to provide a physically

meaningful solution for the higher penetrations. Throughout this section, we have

reported our results regarding a base-case SDP solution of the OPF problem and

the SDP solution for the penetration of the RESs. The proposed methodology is

demonstrated on the IEEE 9-bus and IEEE 39-bus systems. All data can be found

in [293]. To solve the OPF problem we partially use MATPOWER [293] with the SDP

solver [62]. The numerical results are performed by YALMIP [294] and Sedumi [53].

5.7.1 Case Study: 9–Bus System

We first present the behavior of the IEEE 9-bus system. The single-line diagram of

the 9-bus test system is shown in Fig. 5.1.

Figure 5.1: 9-bus system

In addition, the active power generated by generators and active power consumed by

loads of the test system can be seen in Table 5.1.
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Table 5.1: Generation and demand data for the 9-bus system

Bus
PG Bus

PD
(MW) (MW)

1 0 5 90
2 163 7 100
3 85 9 125

Total 248 Total 315

The base-case SDP solutions are given in Table 5.2. The base-case solution in-

dicates the actual operating point. Under this condition, it satisfies necessary re-

quirements for the power transaction at each bus. The base case means that there is

no current flow from the power system. As a matter of fact, the base-case solution

gives information about the system’s operating condition. We start with solving the

base case so that we obtain an operating point before the random renewable energy

is penetrated. In this way, we calculate power-flow quantities such as power flows

from the transmission lines, line flows, bus voltage information and other power flow

in network components. Here the base-case solution treats the case where there is

no renewable energy supply, that is P r
G ≡ 0. To get the base-case solution, the OPF

problem starts iterations with an initial guess; that is, all bus voltage angles are set to

zero degrees, magnitudes of load-bus voltages are set to 1.0 per unit, and magnitudes

of generator-bus voltages are kept at the given values. The voltage limits are selected

between 0.95 and 1.05, then, the global solution is shown in Table 5.2.

Table 5.2: Base-case SDP solution of the modified 9-bus system

Bus V (p.u) δ(deg) PG(MW) QG(MVAr)
1 1.050 0.00 90.21 18.00
2 1.050 5.32 134.28 6.52
3 1.040 3.50 94.20 −18.29
4 1.041 −2.72
5 1.030 −4.40
6 1.050 0.61
7 1.038 −1.36
8 1.049 0.95
9 1.016 −5.11
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The optimal objective value for the SDP solution is $5306.38 per hour.

Next, we consider that the penetration of the RESs are located at the non-

generator buses 5, 7, 9, which can be seen in Fig. 5.2.

Figure 5.2: 9-bus system with renewable penetration

The procedure described above is followed to achieve the optimization problem in (5.42).

The random renewable power is injected to related load buses 5, 7, 9 as negative load.

An initial value has been set to 1 MW for this test system. This value can be chosen

by the user. Here, the amount of renewable generation for demand participation can

be considered to be 1 MW. This means that for any 1 MW injected at buses 5, 7,

and 9, the optimization problem is resolved for this incremental value and also meets

a convergent solution. Due to changing demand for the increasing renewable genera-

tion, the resulting power flow is not feasible. Thus, the maximum value of renewable

capacity using the demand-side participation has been obtained as 280 MW. The

global solution of the of the system can be seen in Table 5.3.
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Table 5.3: Global solution of the modified 9-bus system with renewable penetration

Bus V (p.u) δ (deg) PG(MW) QG(MVAr)
1 1.050 0.00 10.00 0.99
2 1.043 0.48 14.35 −9.19
3 1.037 0.58 10.77 −23.57
4 1.049 −0.30
5 1.049 −0.10
6 1.050 0.24
7 1.042 −0.07
8 1.048 0.00
9 1.034 −0.83

Here, the lowest voltage value is increased to 1.034. The optimal objective value

for this solution is $1205.72 per hour. However, there are constraints on the voltage

magnitude, active and reactive power at every bus, and also the apparent power at

every line. We deal with the voltage constraints, active and reactive power constraints.

Firstly, the voltage bounds at load and generator buses and the active and reactive

power limits are given by

V k = V k = 1 ∀k ∈ N − G, (5.54)

V k = 0.95 and V k = 1.05 ∀k ∈ G, (5.55)

P k = Q
k

= −∞ ∀k ∈ G, (5.56)

P k = Qk = +∞ ∀k ∈ G. (5.57)

In this case, we first seek the possible solution by modifying the constraints. The SDP

solution of the OPF problem fails to give physically meaningful results. On the other

hand, using MATLAB Interior Point Solver (MIPS), convergence is reached. Here the

lowest voltage is 0.962 p.u. As another scenario, we attempt to constrain the voltage

magnitudes at load buses below the base case results. Thus, the voltage bounds at

load buses are chosen between 0 and 0.95; P k is set as the base case condition and

P k is set to zero, then the SDP solution of the OPF problem converges. In addition,

the upper limit of the voltage magnitude is set to 1 and the lower limit of the voltage

magnitude is set to zero. The SDP finds multiple solutions for both scenarios, which

are summarized in Table 5.4.
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Table 5.4: The two solutions of the modified 9-bus system

Bus V (p.u) δ (deg) PG(MW) V (p.u) δ(deg) PG(MW)
1 0.985 0.00 90.89 1.000 0.00 90.53
2 0.966 6.46 134.30 1.000 5.87 134.34
3 0.961 4.27 94.26 0.995 3.80 94.27
4 0.965 −3.16 0.998 −3.02
5 0.947 −5.07 0.975 −4.87
6 0.967 0.86 1.000 0.62
7 0.950 −1.45 0.984 −1.54
8 0.963 1.30 0.996 1.03
9 0.931 −5.94 0.960 −5.69

We now attempt to solve the SDP problem with acceptable voltage profiles for

higher demands. To do this, all real loads are multiplied by a factor of 2.3 [311] while

other parameters are the same as the base case condition. If loads are increased even

further in the 9-bus system, the problem fails. The solution is shown in Table 5.5.

Table 5.5: Global solution of the modified 9-bus system with scaled demands

Bus V (p.u) δ (deg) PG(MW) QG(MVAr)
1 1.050 0.00 232.60 91.63
2 1.050 6.34 242.43 61.06
3 1.050 10.00 269.68 −50.16
4 1.008 −7.27
5 0.975 −11.26
6 1.033 1.62
7 1.004 −5.67
8 1.024 −1.76
9 0.956 −14.76

5.7.2 Case Study: 39–Bus System

We use the IEEE 39-bus test system with 10 generators to illustrate the effects of

RESs using the solution procedure discussed in previous sections. The single-line

diagram of the 39-bus test system is shown in Fig. 5.3.
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Figure 5.3: 39-bus system with three regions

The following Table 5.6 shows the generation and demand capacity of the system for

each region.

Table 5.6: Generation and demand capacity of regions

Region
PG PD

(MW) (MW)
Region 1 2327 2384
Region 2 790 1221
Region 3 3180 2648

Total 6297 6253

Now, we investigate the base-case solution for the 39-bus system [293], [62]. Again,

the voltage bounds are chosen between 0.95 and 1.05. The base-case solution is for

the 39-bus system is given in Table 5.7. Then, the optimal objective value is obtained

is $41901.14 per hour. In this case, if the load voltage limits at load buses are chosen

between 0 and 0.95, the solution is not feasible.
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Table 5.7: Base-case SDP solution of the modified 39-bus system

Bus V (p.u) δ (deg) Bus V (p.u) δ (deg) PG(MW) QG(MVAr)
1 1.034 −13.60 21 1.033 −4.80
2 1.044 −5.52 22 1.049 −0.21
3 1.035 −9.13 23 1.041 −0.37
4 1.024 −10.58 24 1.040 −7.17
5 1.033 −9.87 25 1.050 −4.61
6 1.037 −9.16 26 1.050 −7.69
7 1.025 −11.63 27 1.038 −9.20
8 1.023 −12.32 28 1.047 −6.30
9 1.049 −15.34 29 1.045 −4.20
10 1.049 −6.68 30 1.037 1.08 671.88 140.00
11 1.044 −7.52 31 1.029 0.00 646.00 300.00
12 1.031 −7.47 32 1.030 0.94 671.23 300.00
13 1.043 −7.30 33 0.999 2.86 652.00 119.46
14 1.034 −8.76 34 1.050 1.34 508.00 142.37
15 1.025 −8.86 35 1.050 4.83 661.44 222.80
16 1.035 −7.34 36 1.050 7.91 580.00 64.99
17 1.037 −8.47 37 1.022 2.56 564.00 10.79
18 1.035 −9.15 38 1.016 1.47 654.78 -24.16
19 1.050 −2.51 39 1.033 −17.22 691.16 100.50
20 0.988 −3.91

Next, we assume that the test system includes three regions and is penetrated

by renewables. Suppose further that renewable generation units are placed at non-

generator buses 4, 7, 8, 18, 20, 24, 25, 26, 27, 28, and 29 to achieve demand-side

participation. Simulations are performed to determine the global solution of the test

system for the penetration of RESs. The SDP solution returns a feasible solution only

if the generation capacity is adequate to satisfy and balance supply and demand in

response to temporal deviations in RESs and loads with the given security constraint

limits. The optimization values in this case are V, PG, and QG.

We start by investigating the feasible solution for the 39-Bus system. A diagram

of the buses with the penetration of renewable generation is shown in Fig. 5.4.
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Figure 5.4: 39-bus system with demand participation

Then, we adopt the following procedure to solve the optimization problem: the ran-

dom renewable power is injected to related load buses as mentioned before, and an

initial value has been set to 10 MW or any reasonable value. As a part of our al-

gorithm, the related load buses have been equally increased by 10 MW. The SDP

is run under the conditions of this change and provided with a convergent solution.

The process of increasing renewable generation to load buses has continued until the

solution no longer converges and the problem is not feasible due to line limits. At the

end of this process, the maximum value of renewable capacity using the demand-side

participation has been calculated as 720 MW, which is equal to slightly more than

10% of the total generation capacity. In this case, the reactive power limits are kept

at the given values. Again, this occurs when the voltage limits on load buses are

chosen between 0 and 0.95. The optimal objective value is found to be $31.020 per

hour. Finally, the global solution of the test system is given in Table 5.8.
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Table 5.8: Global solution of the modified 39-bus system with renewable penetration

Bus V (p.u) δ (deg) Bus V (p.u) δ (deg) PG(MW) QG(MVAr)
1 1.022 −13.38 21 1.032 −3.61
2 1.038 −3.90 22 1.049 0.30
3 1.031 −7.16 23 1.042 0.28
4 1.023 −8.83 24 1.038 −3.28
5 1.032 −8.46 25 1.050 −2.34
6 1.036 −7.86 26 1.046 −4.00
7 1.024 −10.00 27 1.035 −5.76
8 1.021 −10.72 28 1.046 1.36
9 1.040 −15.05 29 1.050 2.34
10 1.046 −5.73 30 1.033 1.60 553.10 140.00
11 1.041 −6.45 31 1.031 0.00 556.98 300.00
12 1.028 −6.40 32 1.017 0.65 553.32 282.00
13 1.041 −6.22 33 0.998 3.44 538.22 110.66
14 1.033 −7.35 34 1.007 3.49 508.00 145.83
15 1.016 −7.05 35 1.050 4.42 542.36 211.12
16 1.032 −5.48 36 1.050 7.98 540.04 58.02
17 1.034 −6.04 37 1.020 4.41 529.54 0.00
18 1.032 −6.68 38 1.027 6.81 526.01 12.86
19 1.050 −6.99 39 1.021 −17.84 571.31 109.04
20 0.989 −1.75

It is worth noting that all load buses are increased by the same amount of active

power injection. However, some load buses can be enforced under various amounts

of renewable generation. It is possible to find a global optimal solution which does

not have a duality gap between the original problem and the dual SDP problem. We

conclude that if the OPF problem is solved with the given voltage limits, then the

solutions can be infeasible. We show the solutions that lie within acceptable voltage

limits and converge to the global solutions.

5.7.3 Contingency Scenarios

In this subsection, we provide the contingency scenarios on the modified 39-bus sys-

tem. The contingency effect in each case is tested by the SDP relaxation of the test

system. We assume that the test system is operated under normal operating con-

ditions. The renewable energy injections at the load buses of interest are ignored.

These results can be found in our previous work [73]. The event of contingency is
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performed with various generation and transmission outages on the test system. For

all contingency scenarios in this section, voltage constraints remain within a range of

90 to 105% of nominal voltage on the test system. The transmission lines between

these regions are given in Table 5.9.

Table 5.9: Connection lines between the regions of the 39-bus system

Regions Line number

1− 2
4− 3

39− 1
1− 3 14− 15

2− 3
17− 16
26− 29
26− 28

5.7.3.1 Double Contingency Scenarios of Transmission or Generation

and Transmission Outages–Scheduled Cases

Line outages : In this scenario, we only consider the test system under transmission

line failures. With each transmission line loss, its outage increases the load on the

rest of the transmission lines, power flows are redispatched to another transmission

lines, and voltages on the remaining system are degraded. According to this scenario,

double transmission outages occur at transmission lines 14-15 and 26-28, then the

SDP is run on the system with the remaining transmission and generation facilities.

The unavailability of these transmission lines does not cause an unstable operating

condition; thus, a feasible solution is obtained. In addition, the transmission line 14-

15 is the central transmission line between the regional systems 1 and 3. After the

important line outages occur between the regional systems 1 and 3, these regional

systems can be operated safely. When an unplanned line outage occurs at line 39-1,

the test system is not able to safely withstand another contingency; this may lead

to a cascading outage so the power-flow model fails to solve. The loss of any triple

combination of transmission lines between the regions 1 − 2, 1 − 3, and 2 − 3 does

not jeopardize the remaining facilities in this system. The corrective active power

generation when two contingencies occur is given in Table 5.10. The last row of the
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table shows another double contingency combination of transmission outages at the

lines 14-15 and 26-29.

Table 5.10: The rescheduled active power generations for the line outages

Bus
Region PG(MW)
code Before cont. First cont. Second cont.

30 2 671.88 672.46 673.22
31 1 646.00 646.00 646.00
32 1 671.23 672.56 673.33
33 3 652.00 652.00 652.00
34 3 508.00 508.00 508.00
35 3 661.44 661.78 662.59
36 3 580.00 580.00 580.00
37 2 564.00 564.00 564.00
38 3 654.78 651.95 649.55
39 1 691.16 692.02 692.80

Following the corrective active power generation for each generator in case of con-

tingency, we observe that the rescheduled generation of the generation unit located at

bus 38 decreases by 3 MW. When the line 26-28 is tripped, the power flows through to

line 26-29. Similarly, the cause of transmission line contingency slightly decreases the

generation unit’s active power output at bus 38. On the other hand, the rescheduled

generation of the generating units, such as at bus 33, 34, and 36, remain the same

since these three generation units are independent from the rest of the system. How-

ever, the power generation in the remaining system is satisfied to its point of demand

within acceptable voltage limits. We also observe that the generating units at bus

30 and 39 increase from 671.88 MW to 672.46 MW and 691.16 MW to 692.02 MW,

respectively.

Line and generator outages : According to this scenario, the event of planned

contingency occurs at both transmission line and a generation unit in the system.

The possible events in this scenario are the loss of the single line 14-15 and a power

generation unit at bus 30. Thus, the lost generation is 250 MW in the system. If

only one generation unit is lost, the remaining generation units are able to meet the

demand of the system. The feasible solution is obtained.

When line 26−29 is lost as a second contingency, the system still remains feasible.
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Table 5.11: The rescheduled active power generations for the line and generator
outages

Bus
Region PG(MW)
code planned cont.

31 1 646.00
32 1 725.00
33 3 652.00
34 3 508.00
35 3 687.00
36 3 580.00
37 2 564.00
38 3 865.00
39 1 1076.61

The value of the active power generation at bus 39 increases to 1081.00 MW. Even

though line 3-4 or line 39-1 is lost, the SDP solution can be obtained. Finally, the

results of double contingency scenarios of transmission or generation and transmission

outages are summarized in Table 5.12.

Table 5.12: The results of the double contingency scenarios

First Cont. Second Cont. Solvability Third Cont. Solvability
Line 14-15 Line 26–28 feasible Line 39–1 infeasible
Line 14-15 line 26–29 feasible
Gen 30 Line 14–15 feasible
Gen 30 Line 26–29 feasible Line 39–1 feasible
Gen 30 Line 26–29 feasible Line 3–4 feasible

Finally, the contingencies of the transmission and generation facilities are shown

in Fig. 5.5
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Figure 5.5: 39-bus system with line and generator contingencies

5.7.3.2 The Worst Case Contingencies–Unscheduled Cases

In this subsection, we provide results for the worst-case contingency situations, as-

suming the unanticipated outages of generation units only, transmissions lines only

and generation-transmission combinations.

Line and generator outages : In this scenario, generation outage occurs at bus 30,

transmission line outage occurs line 26-29, and the system loses 250 MW. Here, power

generation is shifted to other lines, and the SDP method for OPF returns a feasible

solution. Thus, the system is operated securely before the second contingency. With

a third outage, the result of the outage of transmission line 10-13, the actual power

flows are infeasible. Note that transmission line 10-13 is not particularly important

for our scenario. Remaining generation capacity, transmission capacity, and fixed

loads and generator and line constraints in the system cause load/generation mis-

match. Finally, the SDP results become infeasible. To return the system to a secure

operating condition, the load-shedding scheme is designed to restore system voltage

and frequency to account for abnormal condition. In fact, the load shedding is to

address voltage decays and frequency declines, as well as stabilize frequency and volt-

age. In this way, load-shedding is intended to the load and generation balance in the

system. According to our load-shedding analysis, or in general, the loads are shed at
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the closest location of the generators and transmission lines that tripped. In this case,

the SDP returns a feasible solution, shedding 170 MW of load at bus 4 and 70 MW

at bus 26. Moreover, we observe that the loss of the generator at bus 30 and the loss

of the most important transmission facilities 26-29, 39-1, and 14-15 do not affect the

remaining facilities in the system. Therefore, the test system is still feasible.

Lines outages : This type of contingency involves a cascading lines failure in the

power network. In this case, the line contingencies occur at lines 14-15, 26-28. The

system still remains operational and safe. The new worst contingency occurs at

line 39-1. These transmission lines are critical for their control area. The tripping

of the generation unit at bus 30 or bus 37 is an alternative solution before the load-

shedding scheme. If load-shedding of 322 MW occurs at bus 30, the system can be

failed.

Generator outages : We consider that several generation units shut down for our

scenario. Generation outage occurs at bus 30 and 34. These generators are the

smallest units in the test system, and the loss of generation supply in the system

is approximately 758 MW in total. To maintain generation-demand balance, a total

of 485 MW has to be shed from bus 20. Finally, power transactions and the redispatch

of generation beyond the system are evaluated after load shedding has occurred.

Table 5.13: The results of the worst-case contingency scenarios

Case First Cont. Second Cont. Third Cont. Load Shed (MW)
1 Gen 30 Line 26–29 Line 10-13 240
2 Line 14-15 Line 26–28 Line 39-1 322
3 Gen 30 Gen 34 485

5.8 Conclusion

In this chapter, we aim to solve the OPF problem for integrating RESs with demand

participation in electric grids. The injections of renewable generation for the OPF

problem are performed by means of a SDP relaxation. Here, the penetrations of RESs

are demonstrated as negative load to provide the demand-side participation. In other

words, the demand participation is provided by demand-side resources to reduce the
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actual or aggregate load, which means that the penetration of renewable generation

is increased. To do this, the electric generation from renewables as a supplier is

randomly realized using an algorithm. The first contribution in this chapter is that

we have developed a practical algorithm to inject renewable power gradually. This

program is integrated to the SDP solver. The classical OPF problem is reformulated

for the penetrating RESs with demand-side participation in the power network. The

resulting optimization problem, accommodating the renewable generation, is solved

by using the SDP method. Additionally, the formulations of the SDP method are

explained clearly. Next, we find the global optimum solution for each incremental

change of renewable generation. We observe that the SDP fails to provide a physically

meaningful solution for the higher penetrations.

The second contribution of this chapter is our test of the SDP method for con-

tingency scenarios. Here, we use the 39-bus system as the test case to run an SDP

approach, and to find the amount of load to be shed. Our scenarios are performed to

better understand the impact of the contingency conditions on the grid. These contin-

gencies involve primary tasks such as shedding load, dropping or tripping generation,

or tripping transmission lines to maintain a reliable grid. All tasks intend to achieve

feasible power transactions, which are adjusted continuously to control frequency,

voltage, and line loadings. We introduce contingency scenarios in this chapter, in-

cluding generation unit failures or transmission lines outages (either individually or

in combination with one another). The effect of contingency in each case is measured

in terms of load shedding. This is necessary for the SDP approach to return a feasible

solution. After single and multiple contingency events, the SDP method for the OPF

problem returns a feasible solution only if the supply and demand match with the

existing transmission constraints. We conclude that the SDP method is fairly robust

and is capable of withstanding single or multiple contingency events.
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Conclusions

6.1 Contributions

The theoretical contributions of this dissertation are summarized under some titles.

6.1.1 Decentralized Voltage Control

This work enhances both our understanding and the crucial role of decentralized con-

trol in power systems. We implement decentralized control action in uncertain model

cases, and in this respect, seek to control both the terminal voltage and frequency

of generators. We suggest a methodology that provides successful analysis of power

systems under various uncertainties in the model.

6.1.1.1 Modelling

Power system models are represented as a set of parameter-dependent nonlinear differ-

ential equations with parameter variation. We identify these time-varying parameters

as an explanation for the nonlinear dynamical behaviors observed in power systems.

Then, power system states are defined by the generator rotor angles, generator veloc-

ity deviations (speeds), mechanical powers, field voltages, or electrical output power

of generators. Power plant dynamics are represented as a lower-dimensional model

and, as a consequence, the terminal voltage of synchronous generators is described as

a system state. In this case, the electrical output power acts as a control input. The

terminal voltage of the generator depends only on the parameters being varied, which

are referred to as uncertain parameters. The terminal voltage state is not only affected

by uncertain parameters, but is also a highly nonlinear function of the rotor angle and

the power output of the generator. These uncertain (or unknown) deterministic pa-

rameters capture the dynamic nature of synchronous generators. More precisely, any

change in the operating conditions of the power system will cause parameter changes,

157
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and thus the voltage will vary. In the present work, reasonable operating limits are

set for the power system models. These limits are used in defining uncertain parame-

ters and determining their allowable uncertainty ranges. The resulting decentralized

voltage control action allows us to ensure that these parameters shift in the interval of

interest within the operating range of the power system. Additionally, power system

dynamics are represented using a higher-order model which is used a power system

stabilizer. The extended dynamic model involves uncertain design parameters which

belong to the power system stabilizer. These design parameters are computed-in fact,

optimized-when the terminal voltage dynamics containing uncertain parameters are

changed.

6.1.1.2 Solving

In Chapter 3, we present state feedback control and output feedback control design

approaches. We first formulate the state feedback control problem, and discuss some

necessary mathematical concepts related to the linear feedback design for non-linear

systems subject to uncertain time-varying parameters. We show a technique to com-

pute the upper and lower bounds of these uncertain parameters. Subsequently, a

numerical algorithm including linear inequalities is presented; thus, the solution of

the decentralized voltage control problem is obtained using the known ranges of uncer-

tain parameters. We indicate that the structure of the controller design may vary in

time. We also confirm that the system is stable for certain ranges of uncertain param-

eters. The solution method is guaranteed to converge quadratically. In addition, we

present a novel approach for designing an output feedback controller. This approach

is illustrated by a much more complex model than the previous approach, effectively

enhancing the solution procedure of power system dynamics. We then implement a

bisection algorithm for solving the output feedback problem, since the model contains

some additional uncertainties or design parameters. Our goal is to find the maximum

values of design parameters when a feasible solution of the output feedback problem

is obtained. In this contribution, the design parameters are restated for unknown

variation of uncertain parameters which possibly depend on time and are bounded

as reliable and secure operation intervals of the power system. In both state and
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output feedback cases, we verify that the solution procedures allow us to take over all

existing parametric uncertainties while also determining the design parameters of the

power system stabilizer. Applying our procedure, the gain matrices for both cases

are finally obtained. We also present the numerical calculation for computing the

worst-case norm using time-varying parameter uncertainties in the model.

6.1.2 Observer Design for Power Systems

We have designed an observer-based control methodology for power systems. The

observer-based control enhances stability with a contraction theory-based analysis.

We then present a contraction theory to analyse the contraction alongside the con-

vergence properties of the Kalman filter when it is used as an observer for power

systems.

6.1.2.1 State Observer

We extend a decentralized control scheme using observer-based control for the mul-

timachine power system with respect to the nonlinear interconnections between gen-

erators. The decentralized control of the multimachine power system is made by a

deterministic observer. Thus, we have solved the state estimation and/or state ob-

servation problem. State estimates are obtained through the use of the extended

Kalman filter. The proposed observer characterizes the stability properties of the

deterministic EKF based on contraction theory. Contraction analysis is constructed

for the classical model of power systems, then it is applied to the problem of state

observation.

6.1.2.2 A Contraction Theory-Based Analysis of the Stability

We demonstrate the necessary conditions for the existence of contraction for EKF

underlying the proposed power system model. The state estimates are generated by

the proposed observer. A virtual and true system framework with contraction theory

is used. We explain the contraction properties of the virtual system, which is relevant

to a particular solution of the EKF and to the solution of the true system. The esti-

mation error (or trajectory) of the EKF exponentially converges to the true system’s
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state or the true trajectory of the system. Our simulation results, indeed, agree with

these convergence results. The contraction metric is defined for the classical model of

the power system. We seek the necessary conditions under which the multimachine

power system model is contracting in a diagonal metric with standard assumptions.

The Jacobian matrix corresponds to the model as a generalized Jacobian matrix; we

first show the principal minors of the generalized Jacobian matrix. For the uncon-

trolled case, these principal minors are unstable, since we observe that some principal

minors of the Jacobian matrix are not negative. We demonstrate that this case is very

similar to those used in our simulations; however, when we apply this method to the

controlled case, the region of contraction is obtained. In this case, we observe that

the principal minors are stable. To this end, we confirm that a contraction interval

is found for the classical model of power systems. The contraction theory is thus

proved.

6.1.2.3 Simulation Results for EKF

We design simulation results for EKF using a two-machine power system and a three-

machine power system model. We develop the programs to be used for simulation

results. These programs simulate the behavior of multimachine power system cases.

For the analytical investigation of obsever-based control for the models, analytical

results are obtained for power system models through the use of contraction theory.

Theoretically, the contraction theory is only described in detail for a two-machine

power system. Our research results confirm that necessary conditions for a Kalman

observer are provided, and that the state stability of nonlinear power system model

is guaranteed.

6.1.3 Integrating Renewables in Power Grids

We primarily solve the OPF problem for achieving renewable energy integration in

power grids. Demand-side participation is used to facilitate the integration of re-

newable generation resources. According to our scenario, we supply renewable pro-

duction or penetration as negative load from the demand sides; in other words, the

demand adapts to the variable generation. Renewable production units are enabled
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for the demand-side participation. Using the concept of demand participation, we

raise the demand participation for reducing and/or shifting usage peak load periods

and adapting elastic demand to fluctuating generations in electricity grids. In achiev-

ing our scenarios, we develop an algorithm to provide demand participation. This

algorithm is integrated into the SDP program. The integration of renewable genera-

tion is gradually increased using this algorithm , which enables a higher integration

of renewable energy. We assume that renewable power is a random variable. Each

penetration level is tested by the OPF problem, and is performed by means of an SDP

relaxation. We observe the feasibility of the solutions. If-and when-this penetration

reaches significant levels, the highest level of renewable energy generation is obtained

for our scenarios.

6.1.3.1 Semidefinite Optimization

We present the interior-point based semidefinite programming solutions for the op-

timal power flow problem when integrating renewables into power grids. The SDP

based OPF problem is redesigned for demand participation. The formulations of a

converted semidefinite program for OPF are investigated. The solutions of the SDP-

based OPF problem are obtained for each incremental change of renewable generation.

We guarantee the global optimal solution of the SDP-based OPF problem. However,

the semidefinite relaxation fails for higher penetrations. The results are tested for

both a 9-bus system and a 39-bus system.

6.1.3.2 Contingency Cases

We present the SDP solutions for contingency analyses. Contingency scenarios are

performed for the 39-bus system with three regions. According to our scenarios, con-

tingency analyses are performed by generation and line losses. Contingency scenarios

are considered to be possible events. These events may be single contingencies, such

as a generation unit failures or transmission line failures, or they may be double con-

tingencies. Transmission line contingencies occur with the loss of critical lines of the

transmission grid on the system. After single or multiple contingencies occur, it is

required to shed some load, drop or trip the generation, or trip transmission lines for
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maintaining secure grid operations. In our contingency scenarios, we basically deter-

mine the appropriate amount of load to be shed. In this case, the SDP based OPF

problem is tested for feasible transactions and generation dispatches in the system.

if such action is feasible, the global optimal solution of the SDP-based OPF problem

is guaranteed. In addition, the impact of worst-case contingency is examined for our

test system. The amount of load shedding required is thus obtained.

6.2 Further Study

6.2.1 Efficient Solution Ways to Solve Parameter Uncertainties

The uncertainty of the power system translates to uncertain parameters in the model.

The upper and lower bounds of these parameters are known and are varied within

an allowable bound. By specifying a range for the uncertain parameters, we no-

tice that the controller is based on assumptions of the operating range of the power

system. To find the largest intervals for uncertain parameters without using these

operating ranges is a central issue for decentralized control. The solution strategies

can be improved with nonconvex optimization methods. The model for synchronous

machine can also be expanded with wind turbine and photovoltaic system. In addi-

tion to parameter uncertainties, the model can involve state dependent parameters.

The deriving the model including both parameter uncertainty and state dependent

parameters should be a future direction. The Sum of Square (SOS) and polynomial

optimization methods can be used to solve multiple parameter uncertainties.

6.2.2 Power Network Synchronization

Contraction analysis has two fundamental approaches: nonlinear observer design and

synchronization. In this work, we choose the Extended Kalman Filter for nonlinear

observer design. This observer design is restricted to well-known structure and/or re-

liable knowledge of power systems. Instead of Kalman-like observer, the advanced ob-

server design can be used for nonlinear power systems, which do not a priori satisfy the

structure of power system. The observer design can be extended to interconnection-

based and transformation-based designs. Due to modelling errors in the different

forms of structured and unstructured uncertainties, the observer may not be already
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available. To do this, interconnected observers have ability to interconnected between

subsystems or hierarchical layers each of which would admit an observer if the states

of the other subsystems were known. Then a candidate observer for the interaction

with these subsystems has capability that interconnect available sub-observers. The

candidate observer running in nonlinear power system may be adequately incorpo-

rate into the model, and thus estimate the physical state of the system. On the other

hand, the transformation-based approach can be turned into one of these forms by an

appropriate transformation as well as changing of state coordinates. From this per-

spective, if the relation between decentralized agents or plants and the structure of

their interactions are not available or clear for an observer design, but are equivalent

to a system(s) which does have some appropriate structure, then the physical state of

the current system can be obtained using the original system. In the cyber-physical

systems such as smart grids, the power plant has not only physical states, but also

cyber states. The continuous physical state and the discrete cyber state of the system

can be integrated into the observer design. In addition, the synchronization is the

most efficient approach of Contraction theory. This approach aims to design robust

and resilient control for the physical power systems. The physical state of the sys-

tem such as frequency and terminal voltage is subject to a disturbance and can be a

control input. The cyber state is controlled by the attack/defense mechanism used

by the network administrator. Here, the physical state(s) is assumed a synchronous

state(s) for the model. The cyber state(s) can be defined non-synchronous state(s)

for all system. Here, we need synchrony or perfect correlation for both physical and

cyber states when disturbances and attacks occur. In other words, the physical states

must synchronize with cyber states. This indicates that they synchronize all in the

system. This approach can be use for real-time phase measurement unit (PMU) based

tools. The main target is a better control design for contributing to stable (synchro-

nized) grid, electromechanical response, and good frequency and voltage regulation.
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6.2.3 Virtual Power Plants

Today’s distribution system tends to accommodate a large number of distributed

generations, storage systems, and inelastic loads. These highly distributed units par-

ticipating with the transmission grid use modern information and communication

technologies, and have a high cost. Instead, decentralized control architectures with

increased penetration of DERs can reduce the high computational complexity of sys-

tem operation. To do this, the concept of Virtual Power Plant is introduced. A VPP

is called Virtual Utility, acting as a cluster of dispersed generating units, inelastic

loads, and storage units that are combined in order to operate as a single facility

or entity. The centralized and decentralized generating units in the VPP can fueled

from both fossil fuel (coal, gas), large hydro, nuclear fuel, and RESs such as photo-

voltaic, wind, small hydro, fuel cells, biomass fired generators and other RESs. Here,

VPP optimizes the energy production and consumption and maximizes the benefit of

consumers, and at the same time the provider’s benefit. Thus, it can be used to max-

imize the performance of the power grid. In addition to optimal and robust control,

stochastic programming techniques for optimal decision making under uncertainty

can be used for the basic different components of a VPP.
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