
3D RANGE SEARCHING USING CHAIN DECOMPOSITION

by

Yingda Guo

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2017

c© Copyright by Yingda Guo, 2017

To this wonderful world

ii

Table of Contents

List of Tables . v

List of Figures . viii

Abstract . xi

List of Abbreviations and Symbols Used xii

Acknowledgements . xv

Chapter 1 Introduction . 1

1.1 Related Work . 2
1.1.1 1-Dimensional Range Searching Data Structure 3
1.1.2 Multi-Dimensional Orthogonal Range Searching Data Structures 4

1.2 Our Work . 5

1.3 Overview . 7

Chapter 2 Background . 8

2.1 K-d Tree . 8

2.2 Range Tree . 13

2.3 2-Dimensional Chain Decomposition and Range Searching 17
2.3.1 Splitting the Points into Two Subsets 18
2.3.2 Supowit’s Algorithm . 19
2.3.3 Untangling the Chains . 20
2.3.4 Range Searching over the Chains 23

2.4 3-Dimensional Chain Decomposition 26

Chapter 3 3-Dimensional Chain Decomposition and Range Search-
ing . 27

3.1 Chains That Can Be Untangled In 3D 27

3.2 An Alternative Chain Untangling Algorithm 28

3.3 3D Untangled Monotonic Chain Decomposition 31

3.4 Two Chain Query Methods . 33

iii

3.5 3D Chain Range Searching . 35

Chapter 4 Experimental Evaluation 38

4.1 2D Experimental Evaluation . 38
4.1.1 Data Sets and Range Queries 38
4.1.2 K-d Tree Comparison . 41
4.1.3 Chain Decomposition . 45
4.1.4 Chain Untangling Comparison 45
4.1.5 Range Query Comparison . 46

4.2 3D Experimental Evaluation . 60
4.2.1 Data Sets and Range Queries 60
4.2.2 Chain Decomposition . 63
4.2.3 Range Query Comparison . 64

Chapter 5 Conclusion and Future Work 78

Bibliography . 80

Appendix A The 2D Range Query Results 84

Appendix B The 3D Range Query Results 89

iv

List of Tables

4.1 Data set sizes. 39

4.2 Chain decomposition results. 45

4.3 Chain untangling time (in seconds) comparison for different data
sets . 46

4.4 Rand_1M-imp-kd. 51

4.5 Rand_1M-bi-bi . 51

4.6 Rand_1M-bi-seq . 51

4.7 Kindle-imp-kd. 52

4.8 Kindle-bi-bi . 52

4.9 Kindle-bi-seq . 52

4.10 Hardware performance analysis of data set Rand_1M for query
type rand . 58

4.11 Hardware performance analysis of data set Kindle for query
type rand . 58

4.12 Data set sizes. 62

4.13 The chain decomposition comparison. For utga, we count the
number of chains generated in the xy-plane and the number of
chains generated in the xz-plane. 63

4.14 Rand_1M - imp-kd . 69

4.15 Rand_1M-bi-bi . 69

4.16 Rand_1M-bi-seq . 69

4.17 Rand_1M-lg . 70

4.18 Hardware performance analysis of data set Rand_1M for type
rand . 76

A.1 2M-imp-kd analysis . 84

A.2 2M-bi-bi analysis . 84

A.3 2M-bi-seq analysis . 84

v

A.4 China-imp-kd analysis . 85

A.5 China-bi-bi analysis . 85

A.6 China-bi-seq analysis . 85

A.7 World-imp-kd analysis . 85

A.8 World-bi-bi analysis . 85

A.9 World-bi-seq analysis . 86

A.10 Movies-imp-kd analysis . 86

A.11 Movies-bi-bi analysis . 86

A.12 Movies-bi-seq analysis . 86

A.13 Electronics-imp-kd analysis 86

A.14 Electronics-bi-bi analysis . 87

A.15 Electronics-bi-seq analysis . 87

A.16 CDs-imp-kd analysis . 87

A.17 CDs-bi-bi analysis . 87

A.18 CDs-bi-seq analysis . 88

B.1 2M-imp-kd analysis . 89

B.2 2M-bi-bi analysis . 89

B.3 2M-bi-seq analysis . 89

B.4 DC-imp-kd analysis . 90

B.5 DC-bi-bi analysis . 90

B.6 DC-dis-bi analysis . 90

B.7 DC-lg analysis . 90

B.8 Garalgly-imp-kd analysis . 91

B.9 Garalgly-bi-bi analysis . 91

B.10 Garalgly-bi-seq analysis . 91

B.11 Garalgly-lg analysis . 91

B.12 Movies-imp-kd analysis . 92

vi

B.13 Movies-bi-bi analysis . 92

B.14 Movies-bi-seq analysis . 92

B.15 Movies-lg analysis . 92

B.16 Electronics-imp-kd analysis 93

B.17 Electronics-bi-bi analysis . 93

B.18 Electronics-bi-seq analysis . 93

B.19 Electronics-lg analysis . 93

B.20 CDs-imp-kd analysis . 94

B.21 CDs-bi-bi analysis . 94

B.22 CDs-bi-seq analysis . 94

B.23 CDs-lg analysis . 94

B.24 Kindle-imp-kd analysis . 95

B.25 Kindle-bi-bi analysis . 95

B.26 Kindle-bi-seq analysis . 95

B.27 Kindle-lg analysis . 95

vii

List of Figures

1.1 Orthogonal range query examples. 2

1.2 1-dimensional balanced binary search tree for range searching. 3

1.3 Arroyuelo et al.’s chain decomposition algorithm. 5

2.1 2-dimensional pointer-based k-d tree. 9

2.2 A 1D range tree. 14

2.3 A 2D range tree. 14

2.4 Monotonic chains in 2D. 17

2.5 Tangles generated by Supowit’s algorithm. 21

3.1 Untangling the reversed v-tangles. 29

3.2 A chain query over an ascending chain. 33

3.3 The relationship between the values of b and query time. . . . 34

4.1 The 2D point distribution for all data sets. 40

4.2 The total range reporting time comparison of 3 different k-d
tree implementations for the 2D experimental evaluation. . . . 42

4.3 The total range counting time comparison of 2 different k-d tree
implementations for the 2D experimental evaluation. 44

4.4 The total range counting time comparison of 3 different range
query methods for the 2D experimental evaluation. 47

4.5 The total range reporting time comparison of 3 different range
query methods for the 2D experimental evaluation. 48

4.6 The relationship of range reporting time and output size for the
2D experimental evaluation. 50

4.7 The relationship of range counting time and the number of ac-
cessed nodes for the implicit k-d tree for the 2D experimental
evaluation. 53

4.8 The relationship of range counting time and the number of bi-
nary search steps for bi-bi for the 2D experimental evaluation. 54

viii

4.9 The relationship of range counting time, the number of binary
search steps and the number linear scanning steps for bi-seq
for the 2D experimental evaluation. 55

4.10 The relationship of the number of binary search steps and the
number of crossing chains for bi-bi for the 2D experimental
evaluation. 56

4.11 The relationship of the number of crossing chains, the number
of binary search steps and the number of scanning steps for
bi-seq for the 2D experimental evaluation. 56

4.12 The relationship of task-clock(msec), the number of instructions
and the number L1-dcache-load-misses for the 2D experimental
evaluation. 59

4.13 Point distribution for all data sets in 3D. 61

4.14 The total range counting time comparison of 4 different range
query methods for the 3D experimental evaluation. 65

4.15 The total range reporting time comparison of 4 different range
query methods for the 3D experimental evaluation. 66

4.16 The relationship of range reporting time, range counting time
and output size of four range query methods for the 3D exper-
imental evaluation. 67

4.17 The relationship of range counting time and the number of ac-
cessed nodes for the implicit k-d tree for the 3D experimental
evaluation. 71

4.18 The relationship of range counting time and the number of bi-
nary search steps for bi-bi for the 3D experimental evaluation. 71

4.19 The relationship of range counting time, the number of binary
search steps and the number linear scanning steps for the 3D
experimental evaluation. 72

4.20 The relationship of number of binary search steps and the num-
ber of crossing chains for bi-bi for the 3D experimental evaluation. 73

4.21 The relationship of the number of crossing chains, the number
of binary search steps and the number of scanning steps for
bi-seq for the 3D experimental evaluation. 73

4.22 The relationship of range counting time and the number of bi-
nary search steps for lg for the 3D experimental evaluation. . 74

ix

4.23 The relationship of task-clock(msec), the number of instructions
and the number L1-dcache-load-misses for the 3D experimental
evaluation. 77

x

Abstract

We propose the first data structure based on untangled monotonic chains for or-

thogonal range searching in 3-dimensional space. The idea is an extension of the

2-dimensional chain partition algorithm proposed by Arroyuelo et al. (Untangled

monotonic chains and adaptive range search, Theoretical Computer Science, 412(32),

2011). We also provide an improved algorithm for the chain untangling process, which

in practice runs 25% percent faster than the untangling algorithm proposed in the

experimental studies of Claude et al. (Range queries over untangled chains, SPIRE,

Springer 2010). In the experimental evaluations, we first re-examined the experimen-

tal studies conducted by Claude et al. for the 2-dimensional range searching algorithm

based on untangled monotonic chains and found that the k-d tree implementation in

CGAL, which is used as a reference for the experimental evaluation previously, is

inefficient for the task at hand. Therefore, we implemented k-d trees ourselves and

compared them against two range searching methods based on untangled chains. The

experimental results showed that, in 2D, the performance of range searching methods

based on untangled monotonic chains is similar to that of the k-d tree, which contra-

dicts the experimental results of Claude et al. We then performed similar experimental

studies in three dimensions. In 3D, the chain-decomposition-based range searching

methods were unable to match the performance of k-d trees, which is mainly due

to the difficulties in decomposing point sets into monotonic chains: our approaches

either generated too many chains or used too much time to construct when the point

set was large.

xi

List of Abbreviations and Symbols Used

AUX(v) Auxiliary tree associated with node v

BB(p) Bounding box stored in the node associated

with point p

Ci A monotonic chain with index i

Dis(p) Dimension discriminator associated p

LEFT (v) Left pointer of node v

NULL Empty pointer

P (v) Point set associated with the descendants of

node v

Qd(n) Total query time for a d-dimensional range

tree with n points

RIGHT (v) Right pointer of node v

Td(n) Total construction time on n points in d-

dimensional space

[a1 : b1]× ...× [ad : bd] An orthogonal range query where

a1, b1, ..., ad, bd ∈ R

∩ Intersection

∪ Union

∀ For all

∈ Set membership

R
d Euclidean space in dimension d

Z
+ natural numbers

B A bounding box

I The intersection of P and R
P(Ci) Point set of chain Ci

Pxy_as Point set associated with a set of ascending

chains in xy-plane

xii

Pxy_de Point set associated with a set of descending

chains in xy-plane

P A set of points

R A range query

S ′ Subset of S
Sxy_as An ascending chain set in xy-plane

Sxy_de An descending chain set in xy-plane

Sxz_as(Ci) An ascending sub-chain set derived from chain

Ci in the xz-plane

Sxz_de(Ci) A descending sub-chain set derived from chain

Ci in the xz-plane

S Chain set {C1, C2, ..., Cm}
\ Relative complement

imp Implicit k-d tree

ptr Pointer-based k-d tree

∅ Empty set

ck(pi) The coordinate of pi in the kth dimension

dim Parameter used for calculating the dimension

discriminator

pi A point in P
v A tree node

|S(Ci)| Number of sub-chains set derived from chain

Ci in the 1st-3rd coordinate plane

bi-bi Range searching methods using two steps of

binary searches

bi-seq Range searching methods using best checking

distance method after one binary search

cgal Implementation of k-d tree in CGAL

imp-kd Implicit k-d tree

xiii

lga Longest chain decomposition algorithm

lg Range searching method based on the longest

chain decomposition algorithm

utga Monotonic untangled chain decomposition al-

gorithm

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

CGAL Computational Geometry Algorithms Libary

MBRs Minimum bounding rectangles

mod Modulo operator

xiv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors Dr. Meng

He and Dr. Norbert Zeh for the continuous support of my Master study and research.

Besides the academic knowledge they offered me, I learnt a lot on how to become a

qualified computer scientist, which involves patience, enthusiasm and motivation.

I also want to thank Dr. Dirk Arnold and Dr. Vlado Keselj for being my readers.

Thanks for their detailed comments and suggestions to bring this research to this

level.

Besides my advisors, I would like to thank my wife Simeng Cao. Without her

support, I can not imagine how I could have got through these tough days. I also

would like to thank my parents for their endless love and support.

xv

Chapter 1

Introduction

Range searching is one of the most fundamental computational geometry problems

and has been studied extensively over the past decades [1, 2, 6, 7, 10, 12, 13, 17, 28].

The definition of range searching is described as follows. Let P be a set of n points

in d-dimensional Euclidean space R
d. Any point pi ∈ P can be represented as a

tuple (c1(pi), c2(pi), ..., cd(pi)), where ck(pi) denotes the coordinate of pi in the kth

dimension. We wish to preprocess the set P so that, for any given range query R of

a certain type, the set I = P ∩ R can be found efficiently. In this thesis, we study

orthogonal range searching, that is, each range query to be supported is a axis-parallel

box R = [a1 : b1] × ... × [ad : bd], where a1, b1, ..., ad, bd ∈ R and I = {p ∈ P|ak ≤
ck(p) ≤ bk, ∀1 ≤ k ≤ d}. Figure 1.1 shows two simple orthogonal range search queries

in R
2 (Figure 1.1(a)) and R

3 (Figure 1.1(b)). Other well studied types of range

queries include simplex range searching [12, 16], half-space range searching [1, 28]

and spherical space range searching [13].

In this thesis, we consider two types of orthogonal range searching: range counting

and range reporting. Range counting asks to report the size of I, whereas range

reporting asks to output all the points in I. From a complexity perspective, range

counting and range reporting should be treated separately since the query time is a

combination of both input size and output size. We could also ask if I∩P = ∅ (range

emptiness), or we can find the maximal point (maximum query) or minimal point

(minimum query) within R according to some weights associated with the points.

Our goal, in this thesis, is to design a simple and practical data structure that can

answer range counting and range reporting queries efficiently for any orthogonal range

query R in multidimensional space.

Many practical applications such as spatial databases [22, 35, 36], network infor-

mation systems [2, 10, 30] and cloud computing [26, 27] all involve implementations

of range searching. One simple example would be using Google Maps to find out

1

2

X

Y

(a) 2-dimensional orthogonal range query

Y

X

Z

(b) 3-dimensional orthogonal range query

Figure 1.1: Orthogonal range query examples. The dotted rectangle and cuboid rep-
resent orthogonal range queries in 2D and 3D respectively. The cross marks represent
the points that lie in the query range.

all the restaurants in a certain neighbourhood. Another example may come from a

university where the administrator may want to find all the students whose ages are

between 20 to 23 and whose GPAs lie between 3.5 and 3.8. Many more complicated

problems [11, 28] such as ray tracing and hidden-surface removal can also be reduced

to range search problems.

1.1 Related Work

If we only need to answer one single range query, it can be easily done by checking

whether each point in the point set P lies in the query range. This process takes linear

time and is in fact the best one can do for range reporting or range counting if the

query answer is to be exact. However in many applications, we would like to answer

many queries of a given shape over a given point set, and support other operations

like point insertion and deletion. If enough of these operations are to be carried out,

then this justifies even a high preprocessing cost to build a data structure that can

answer such queries (and support updates of P) quickly. It would be advantageous

to put some efforts into building such data structures to support fast range queries

and updates. Next, a range of existing data structures for range searching problems

in one and more dimensions will be reviewed.

3

2 4 5 8 10 13 15 16 18 21 23 25 26 28 30 32

2 5

4

8

10

13

15 18 23 26 30

28

25

21

16

xmin = 3 xmax = 24

{4}

{5,8}

{10,13,15,16}

{18,21}

{23}

Figure 1.2: 1-dimensional balanced binary search tree for range searching. The point
set P = {2, 4, 5, 8, 10, 13, 15, 16, 18, 21, 23, 25, 26, 28, 30, 32} and the range query r =
[3 : 24]. The subtrees that are enclosed by dashed lines represent the subtrees whose
leaf nodes need to be reported during the query but without any testing.

1.1.1 1-Dimensional Range Searching Data Structure

Balanced binary search tree. Balanced binary search trees can be used to answer

1-d range queries. The points in P are stored in the leaves of the tree sorted by their

corresponding coordinates. All the internal nodes of the tree are branching nodes

for search purpose. For each internal node v, we store two values: the number of

leaves that are descended from v and the median value of the coordinates stored

in v’s subtree. Given a range query R, we search down the tree for the minimal

and maximal coordinates within R, and then report all the leaves that lie between

the two. Because we store in each internal node the number of leaves descended

from it, the range counting cost is the same as the cost of searching for the minimal

and maximal coordinates, which is bounded by O(lg n) 1. The cost of reporting all

leaves in between is O(k), where k is the number of reported leaves. The range

reporting time for a balanced binary search tree is thus O(lg n + k). We can also

link all the leaves as a doubly linked list. When the first position in the range has

been located through a single tree traversal, the rest of the records can be easily

accessed by sequentially scanning the remaining records along the list, and thus the

range reporting performance can be improved. Balanced binary search trees are used

extensively in database systems that require insertion, deletion, and range searches.

Figure 1.2 shows an example for 1D range searching using a balanced binary search

tree.

1lg n represents the binary logarithm log2 n

4

1.1.2 Multi-Dimensional Orthogonal Range Searching Data Structures

K-d tree. A k-d tree [6, 8] (k-dimensional tree) is a data structure used for organizing

a point set in k-dimensional space. The k-d tree is a space-partition binary tree. Each

level of the tree is associated with one of the k dimensions and partitions the entire

space into sub-spaces. Each tree node at each level has an associated hyperplane that

splits the point set associated with this node into two subsets of the same size. These

two subsets are associated with the node’s children. The partition steps cycle through

the different axes in a predefined order until each sub-space contains one single point.

In practice, the k-d tree performs extremely well when the number of dimensions is

relatively small [17]. The k-d tree uses linear space and achieves a query bound of

O(d · n1−1/d) for range counting and a query bound of O(d · n1−1/d + k) for range

reporting, where k is the number of points to be reported.

Range tree. Similarly to the k-d tree, the multidimensional range tree [8] was

designed for fast range searching queries in multidimensional space. However, it offers

a different trade-off between its size and the cost of queries. It achieves a query bound

of O(lgd n) for range counting, at the expense of using O(n lgd−1 n) space. The key

to multidimensional range tree is reducing a range query in d dimensions to O(lg n)

queries in d− 1 dimensions. We will discuss more about range tree in Section 2.2.

R-tree. An R-tree [20] is a tree data structure used for spatial searching. An R-

tree and a k-d tree are based on similar ideas (space partitioning based on axis-

aligned regions), but nodes in k-d trees are associated with splitting hyperplanes that

partition the entire space into regions whereas nodes in R-trees are associated with

the minimum bounding rectangles (MBRs) of the data records that only partition

the subset of space containing the points of interest. The data records stored in R-

trees can be points, rectangles and polygons. Like the B-tree, the R-tree is a height

balanced tree that stores the data items at its leaf nodes. The query efficiency of an

R-tree depends mainly on two factors: the amount of overlap between the bounding

boxes of sibling nodes and the ratio of the number of points to the volume of the

bounding box of each node. A query needs to inspect every node whose bounding

box it intersects, because this subtree may contain objects that lie in the query

range. If the bounding boxes stored in a set of sibling nodes overlap with each other

heavily, then, many of these sibling nodes have to be examined after we visit the

5

parent of these nodes, which will decrease the range searching performance. It is also

undesirable to have many nodes with bounding boxes that only have several number

of points in it. When the ratio of the number of points to the volume of the bounding

box within each node is too small, a query may intersect the bounding box on its

empty area during the search and the tree traversal can not stop immediately, which

will bring in lots of unnecessary node accesses. Many variants of R-trees including

the R+-tree [32], R*-tree [5], and Priority R-tree [3] were designed to improve the

performance of R-trees. Even though the R-tree does not guarantee a good worst-case

performance (the worst case range searching time of an R-tree is O(n)), it performs

quite well in real-world implementations for a moderate number of dimensions [21].

1.2 Our Work

y

x

Figure 1.3: An example of reorganizing the point set into a set of monotonic chains.
The red chains are monotonic ascending chains in 2D and the blue chains are mono-
tonic descending chains in 2D.

In 2009, Arroyuelo et al. [4] proposed a static data structure for orthogonal range

reporting in 2-dimensional space. The key to the algorithm is to reorganize the

point set into a set of monotonic chains (as the 1st coordinates (x-coordinates) of

the points increase in a chain, the 2nd coordinates (y-coordinates) also increase or

6

decrease monotonically) (see Figure 1.3). Further improvements of the query per-

formance are achieved by untangling the chains, that is, by ensuring that no two

chains cross. Each range query can be answered in O(m lg n + k) time, where m

is the number of monotonic chains into which the point set can be partitioned and

k is the output size. The experiments [14] demonstrated the efficiency of the data

structure. In some practical data sets, its performance significantly exceeded that of

existing implementations of the k-d tree and range tree. Another advantage of the

data structure of Arroyuelo et al. is its space efficiency. Many range searching data

structures (described in the previous section) are hierarchical tree structures, which

means that in addition to the original point set, each node of the tree has to keep

two or more pointers to its children. In contrast, the data structure of Arroyuelo et

al. only stores the reorganized point set and the length of each chain. Because their

data structure performs extremely well in terms of space efficiency and range query

efficiency in 2D, it is natural to ask if we can extend it to 3-dimensional space.

In this thesis, we proposed and implemented the first data structure based on

untangled monotonic chains for orthogonal range searching in 3-dimensional space,

aiming at supporting efficient orthogonal range queries. We also compared our data

structure with some existing 3D range query data structures. During the implemen-

tation, we found that the existing k-d tree implementation in the CGAL [34] (also

used for comparison in [14]) is much slower than necessary for answering orthogonal

range queries over a static point set. As a result, we implemented k-d tree our-

selves as a reference for performance comparison. Moreover, we implemented another

3-dimensional chain decomposition algorithm proposed by Wei [37] and compared

it with ours. The experiments revealed that none of the range searching methods

based on these two chain decomposition methods is comparable with the range query

performance of the k-d tree for most of the cases. This is because the range query

method based on the chain decomposition algorithm proposed by us suffered from

its massive number of generated chains and the range query method based on the

chain decomposition algorithm by Wei [37] is impractical when the point set size gets

larger.

7

1.3 Overview

The rest of thesis is organized as follows. In Chapter 2, we discuss in detail two

data structures that we implemented for the range query problems and then describe

some previous work on the 2-dimensional chain decomposition methods and their

corresponding range searching algorithms. Chapter 3 first introduces an alternative

chain untangling algorithm, and then provides the entire 3D chain decomposition and

range query algorithms. Chapter 4 presents the experimental results and discussions.

Finally, in Chapter 5, we state our conclusions and discuss some interesting open

problems.

Chapter 2

Background

The k-d tree and the multidimensional range tree are described in Section 2.1 and

Section 2.2 respectively. Then, in Section 2.3, the 2-dimensional chain decomposition

algorithm and its corresponding range query method [4] are introduced. Finally, we

discuss the challenges on range searching in 3-dimensions.

2.1 K-d Tree

A k-d tree can be viewed as an extension of a binary search tree to k -dimensional

space. If a given n point set P is represented as a k-d tree, each point in P is stored

as a node in the tree. We assume no two points in P have the same coordinates in all

k dimensions. Since there is a one-to-one mapping between the points and tree nodes,

for convenience, we can refer to each node in the tree by the point it stores. Every node

pi ∈ P stores two pointers LEFT (pi) and RIGHT (pi) to pi’s left and right children.

In addition to these two pointers, each node has an associated dimension discriminator

Dis(pi), which is an integer between 1 and k. Let cj(pi) denote the coordinate of pi in

the jth dimension and let m = Dis(pi). Then for any node pl in LEFT (pi) (noting

that we can use the pointer to represent a subtree), cm(pl) < cm(pi); and for any node

pr in RIGHT (pi), cm(pr) > cm(pi). When multiple points with their coordinates at

dimension m are all equal to cm(pi), we define a superkey of pi at dimension m as

sm(pi) = cm(pi)cm+1(pi) ... ck(pi)c1(pi) ... cm−1(pi). For any node pl in LEFT (pi), we

then have sm(pl) < sm(pi); for any node pr in RIGHT (pi), we have sm(pr) > sm(pi).

In this way, the resulting k-d tree is a balanced tree and the height of the tree is at

most �lg n	.
For any given level of the tree, all nodes have the same dimension discriminator.

The root has dimension discriminator 1 and its two children have dimension discrimi-

nator 2. In d-dimensional space, any node pi at distance l from the root has dimension

discriminator Dis(pi) = 1 + (l mod d). Thus, the dimension discriminator of a node

8

9

P1

P2

P3

P4

P5

P6

P8

P9

P10

P11

l1

l2
l3

P7

l5

l4

l6

(a) 2D plane subdivision

P5

P2

P4 P7 P11 P9

P3

P1

P6

P10 P8

(b) Corresponding k-d Tree

Figure 2.1: 2-dimensional pointer-based k-d tree. The shaded rectangle in (a) indi-
cates a range query. The shaded nodes in (b) represent the nodes visited during the
tree traversal for the given range query in (a). The subtree that is enclosed by dashed
curves represents the subtree whose boundary box lies entirely in the query range.

does not need to be stored explicitly. Figure 2.1 gives an example of a 2-dimensional

k-d tree and its corresponding planar subdivison. Algorithm 1 shows how to con-

struct a k-d tree from a point set and the parameter dim is used for calculating the

dimension discriminators. In Algorithm 1, we first create a new node v for the current

point set P in line 1. If P contain only one point, we then assign it to v and return

(lines 2 to 3). Otherwise, we find the median point pm of P based on the current

dimension discriminator, assign it v and split P into two subsets (lines 5 to 11). After

that, we recurse on both subsets while increasing the dimension discriminator by one

(lines 12 to 13).

Next, let us consider the construction time. The most costly part during each

recursion is to find the median point of the current point set (see line 8 in Algorithm 1).

This median searching step can be done in O(n) time using linear-time selection [9].

An alternative is to maintain d presorted lists. Each list is presorted by each dimension

from 1 to d. Given d sorted lists, at each recursion, the current sorted point set can

be obtained in linear time based on the current depth and the median point can also

be found in constant time (this method works well when the dimension d is relatively

10

Algorithm 1 K-dTreeConstruction(P , dim)

Input: A set of d-dimensional points P = {p1, p2, ..., pn} and dim with initial value
1.

Output: A d-dimensional pointer-based k-d tree.
1: let v be a new node with LEFT (v) = NULL and RIGHT (v) = NULL
2: if P has only one point p then
3: v.point = p
4: else
5: num ← number of points in P
6: m = �num/2�
7: j = 1 + (dim mod d)
8: sj(pm) ← the mth smallest coordinate in {p ∈ P|sj(p)}
9: v.point = pm

10: P1 = {p′ ∈ P \ {pm}| m− 1 points with sj(p
′) < sj(pm)}

11: Pr = {p′ ∈ P \ {pm}| l −m points with sj(p
′) > sj(pm)}

12: LEFT (v) ← K-dTreeConstruction(Pl, dim+ 1)
13: RIGHT (v) ← K-dTreeConstruction(Pr, dim+ 1)
14: end if
15: return v

small). This gives the following recurrence for the construction time:

T (n) = O(n) + 2T (�n/2�) (2.1)

This recursion solves to T (n) = O(n lg n). By adding the running time for presorting,

the total running time for the construction is bounded by O(n lg n). Since each node

in the k-d tree is associated with a point in P , the total storage size is bounded by

O(n).

The k-d tree can also be represented implicitly. The construction steps are similar

to the pointer-based k-d tree mentioned above: we first store all the points in an array.

During the tree construction, at each recursion step, we find the median point pm and

place it at the middle position of current array. Let j = Dis(pm), we then move all

the points p with sj(p) < sj(pm) to the left part of the array and move all the points

p with sj(p) > sj(pm) to the right part of the array. After that, we continue recursing

on these two subarrays. Given that all splits in the tree are perfectly balanced, the

children of each node can be identified using index arithmetic.

A range query on a k-d tree can be answered by performing a tree traversal, which

is similar to the 1D range search. Given a range query R = [a1 : b1]×...×[ad : bd] and a

11

Algorithm 2 Implicit_k-dTreeRangeQuery(P, start, end,R, dim,B)
Input: An implicit k-d tree array P [1...n], a range query R = [a1 : b1]× ...× [ad : bd],

a bounding box B = [A1, B1] × ... × [Ad, Bd] where Ai = min{ci(p)|p ∈ P} and
Bi = max{ci(p)|p ∈ P}, and start, end and dim with initial values 1, n and 1,
respectively.

Output: All the points in Pi that lie in R.
1: if start > end then
2: return
3: end if
4: index = �(end+ start)/2	
5: if CONTAINED(R,B) = true then
6: return report all the points in P [start...end]
7: end if
8: if P [index] lies in R then
9: report P [index]

10: end if
11: Bl = [A1, B1]× ...[Adim, cdim(P [index])]...× [Ad, Bd]
12: Br = [A1, B1]× ...[cdim(P [index]), Bdim]...× [Ad, Bd]
13: dim′ = (dim mod d) + 1
14: if adim ≤ cdim(P [index]) then
15: K-dTreeRangeQuery(P, start, index− 1,R, dim′,Bl)
16: end if
17: if bdim ≥ cdim(P [index]) then
18: K-dTreeRangeQuery(P, index+ 1, end,R, dim′,Br)
19: end if

node p where Dis(p) = m, all points pl in LEFT (p) satisfy cm(pl) ≤ cm(p); similarly,

for any point pr in RIGHT (p), we have cm(r) ≥ cm(p). When accessing a node p

during the tree traversal, we first compare cm(p) with am and bm, if am ≤ cm(p) ≤ bm,

then both LEFT (p) and RIGHT (p) may contain points in the query range, so we

recurse on both children. Also, p may be in the query range, so we check the remaining

(d− 1) coordinates and report p if it is in the range; if am > cm(p), then only points

in RIGHT (p) can be in the query range, so we recurse on this child; if bm < cm(p), it

suffices to recurse on LEFT (p); Initially, the node p is set to be the root of the tree

with Dis(p) = 1. Figure 2.1(b) shows a range query example using a 2-dimensional

k-d tree. During this range query, Point P5, P6, P7, P9, P10 and P11 are reported and

point P8 is being tested but not reported.

We can improve the range query efficiency of the k-d tree further with an additional

data structure. For any node p in the tree, the points in each subtree with root p

12

are contained in a bounding box. Initially for the tree root pt, we define BB(pt) =

[A1, B1] × ... × [Ad, Bd] as the bounding box for pt, where Ai = min{ci(p)|p ∈ P}
and Bi = max{ci(p)|p ∈ P}. For any node p, the bounding boxes of LEFT (p)

and RIGHT (p) are obtained by splitting BB(p) at coordinate cm(p) in dimension

m = Dim(p). The bounding boxes can be computed on-line during the range query,

so we do not need to store them explicitly. For instance in Figure 2.1, BB(P10) =

[c1(P5), c1(P11)]× [c2(P10), c2(P6)]. This means the points stored in the subtree rooted

at P10 are bounded by the x-coordinates of P5 and P11 and by the y-coordinates of

P10 and P6. Given that definition, we can use the bounding box computed at each

node to determine whether all the points stored in the subtree rooted at this node

are entirely lying in the query range. As we can observe in Figure 2.1, the node P10

corresponds to a region that is fully contained in the query range, so the points P7,

P10 and P11 are reported immediately without any further tests. Algorithm 2 shows

the pseudocode to answer a range query using an implicit k-d tree. The tree is defined

by a node array P [1..n]. We use start and end (initially start = 1 and end = n)

to keep track of the subarray storing the points in the current subtree. When the

bounding box of current node is fully contained in range query R, then all points

stored in the subtree of this node need to be reported and the recursion stops (lines

5 to 7). For lines 11 and 12 in Algorithm 2, the current boundary box is split in two

based on the point stored in the current node. For lines 13 to 19, we recurse on the

children of current node based on the comparison of the coordinate of the point in

current node with the query range R.

D.T. Lee and C.K. Wong [25] showed that the cost of a single range query over

a d-dimension k-d tree with n points is O(d · n1−1/d + k) where k is the number of

reported points. The following theorem summarizes the properties of the k-d tree:

Theorem 1 A d-dimensional k-d tree can be constructed in O(n lg n) time using

linear space. An orthogonal range query can be answer in O(d · n1−1/d + k) time,

where k is the number of points in the range.

13

2.2 Range Tree

The query time of a balanced k-d tree in d-dimensional space is O(n1−1/d+ k), where

n is the total number of points and k is the number of reported points. Although

O(n1−1/d + k) is faster than a linear scan, it is possible to do better. In this sec-

tion, we will talk about the range tree, a multi-level tree that answers range queries

asymptotically faster than the k-d tree, but at the cost of higher space requirements.

Before we describe the higher-dimensional range tree, let us first examine the

1-dimensional range tree. A 1-dimensional range tree is a balanced binary search

tree. Each node v in the tree stores a point in P and two pointers LEFT (v) and

RIGHT (v) that point v’s left and right children. We define P (v) ⊆ P to be the

canonical subset of v, which is associated with the points stored in the descendants of

v. Given a range query R = [a1 : b1], we first identify the first node whose coordinate

lies in [a1 : b1], which we call the split node. We then continue the search using a1 at

the left child of the split node. For every node v, we check whether a1 is no greater

than the point p stored at v. If so, we output p and all the points in P (RIGHT (v))

and continue the search at v’s left child. Otherwise, the search continues at v’s right

child. Similarly, for the right child of the split node, we continue the search with b1.

At each node v, we check whether b1 is no less than the point p stored at v. If so,

we output p and all the points in P (LEFT (v)) and continue the search at v’s right

child. Otherwise, the search continues at v’s left child. Figure 2.2 shows an example

of a 1D range tree. As we can see from the figure, the points whose coordinates lie

in R can be expressed as a disjoint union of O(lg n) subtrees (shown as the shaded

areas in Figure 2.2) whose canonical subsets of the roots (like P (p6) and P (p10) in

Figure 2.2) lie in R. The range query time of a 1D range tree with n points is thus

O(lg n+ k), where k is the output size.

Given a point set P of size n in d-dimensional space, a d-dimensional range tree

can be constructed recursively. The construction starts with a primary tree (first

level tree), which is a balanced binary search tree built based on the 1st coordinates

of the points in P . Each internal node v in the primary tree has an associated

secondary tree AUX(v), which is a (d− 1)-dimensional range tree over the last d− 1

dimensions of the points in P (v) ordered by their second coordinates. We apply this

tree construction step recursively until we are left with points restricted to their dth

14

p1 p3 p5 p7 p9 p11 p13 p15

p2 p6 p10 p14

p4 p12

p8

p1 p2 p3 p5 p6 p7 p9 p10 p11 p13 p14 p15p4 p8 p12

a1 b1

Figure 2.2: A 1D range tree. A 1D point set P where n = 16 and a range query
R = [a1 : b1]. The subtrees that are enclosed by dashed lines represent the subtrees
whose canonical subsets of the roots need to be reported during the range query.

p1 p3 p5 p7 p9 p11 p13 p15

p2 p6 p10 p14

p4 p12

p8

p10

p9

p9

a1 b1

a2

b2

Figure 2.3: A 2D range tree. A 2D point set P with 16 points and a range query
R = [a1 : b1]× [a2 : b2]. The node p10 at the first level tree is associated with another
second level tree using a dashed arrow. The rectangle inclose all points lie in the
query range.

coordinates. Figure 2.2 gives an example of a 2-dimensional range tree.

Algorithm 3 gives the pseudocode for the construction of a d-dimensional range

tree. We adopt the superkey definition from Section 2.1. In each recursive call, we

first create a new node v (line 4). If the current point set contains only one point, we

assign it to v (lines 4 to 6). Otherwise, we find the median point pm based of current

dimension, assign it to v and split the current point set into two subsets (lines 7

to 13). We then recurse on both subsets while creating a secondary tree with one

dimension higher (lines 14 to 16).

Similarly to the k-d tree, the most costly step in each invocation is to find the

15

Algorithm 3 RangeTreeConstruction(P , dim)

Input: A d-dimensional point set P and dim with initial value 1.
Output: A d-dimensional range tree.
1: if dim > d then
2: return
3: end if
4: let v be a new node with LEFT (v) = NULL, RIGHT (v) = NULL and

AUX(v) = NULL
5: if P has only one point p then
6: v.point = p
7: else
8: num ← number of points in P
9: m = �num/2�

10: sdim(pm) ← the mth smallest coordinate in {sdim(p)|p ∈ P}
11: v.point = pm
12: P1 = {p′ ∈ P \ {pm}| m− 1 points with sdim(p

′) < sdim(pm)}
13: Pr = {p′ ∈ P \ {pm}| l −m points with sdim(p

′) > sdim(pm)}
14: LEFT (v) = RangeTreeConstruction(Pl, dim)
15: RIGHT (v) = RangeTreeConstruction(Pr, dim)
16: AUX(v) = RangeTreeConstruction(P , dim+ 1)
17: end if
18: return v

median point of the current point set. We can use linear-time selection [9] or maintain

d presorted lists to achieve a linear search time for this step. Let Td(n) be the total

running time for the range tree construction on n points in d-dimensional space. We

establish the recurrence as follows:

Td(n) = 2Td(�n/2�) + Td−1(n) +O(n) (2.2)

When using the presorted lists, the base case T1(n) = O(n). The recurrence solves

to Td(n) = O(n lgd−1 n). By adding the extra time for the pre-sorting steps, the total

construction time is bounded by O(n lgd−1 n). The size of storage is the same as the

construction time, which can be calculated using the same analysis method.

Next, we consider the range query. Given a d-dimensional range tree and a range

query R = [a1 : b1] × ... × [ad : bd], we apply a 1-dimensional range search on

the primary tree using the query interval [a1 : b1] to locate O(lg n) nodes whose

canonical subsets (P (v)) together contain all the points with their first coordinates

16

Algorithm 4 RangeSearching(v, dim,R)

Input: A d-dimensional range tree T , a range query R = [a1 : b1]× ...× [ad : bd] and
dim with initial value 1.

Output: All the points in R.
1: if dim > d then
2: return
3: end if
4: if v is a leaf node then
5: if CONTAINED(v,R) then
6: return point associated with v
7: end if
8: return
9: end if

10: if cdim(v) < adim then
11: RangeSearching(RIGHT (v), dim,R)
12: else if cdim(v) > bdim then
13: RangeSearching(LEFT (v), dim,R)
14: else
15: if CONTAINED(v,R) then
16: return point associated with v
17: end if
18: if cdim(v) ≥ adim then
19: RangeSearching(RIGHT (v), dim+ 1,R)
20: RangeSearching(LEFT (v), dim,R)
21: end if
22: if cdim(v) ≤ bdim then
23: RangeSearching(LEFT (v), dim+ 1,R)
24: RangeSearching(RIGHT (v), dim,R)
25: end if
26: end if

lie in [a1 : b1]. For each node v reported during the search of primary tree, we have

a1 ≤ c1(p) ≤ b1, ∀p ∈ P (v)). Thus, to decide which of these point in P (v) with their

second coordinates lie in [a2 : b2], it suffices to perform another 1-dimensonal range

search at the v’s second level range tree (AUX(v)) using the range query interval

[a2 : b2]. In AUX(v), we select O(lg n) nodes where all points descended from them

are with their second coordinates lie in [a2 : b2]. That means there are O(lg2 n) nodes

chosen in the second level trees in total. Together, all their descendants contain all

the points whose first and second coordinates lie in [a1 : b1] × [a2 : b2]. We recursive

apply this procedure until we reach the d-th level trees. In the d-th level trees, we find

17

all points whose last coordinates lie in [ad : bd] and report them. Algorithm 4 gives the

pseudocode for the d-dimensional range searching. The function CONTAIN(v,R) is

used to determine whether the point stored at node v lies in R. Lines 18 to 25 show

the recursive calls on the secondary trees given adim ≤ cdim(v) ≤ bdim for current node

v.

Let Qd(n) denotes the query time for a d-dimensional range tree with n points.

Then, for d = 1, we have Q1(n) = O(lg n). This gives the following recurrence for the

range query time:

Qd(n) = O(lg n) +O(lg n) ·Qd−1(n) (2.3)

This recursive function has the solution Qd(n) = O(lgd n). Based on the above

analysis, we have the following theorem.

Theorem 2 Given a set of point P in d-dimensional space, a d-dimensional range

tree can be constructed in O(n lgd−1 n) time using O(n lgd−1 n) space. Each range

query R can be answered in O(lgd n + k) time, where k is the number of reported

points.

2.3 2-Dimensional Chain Decomposition and Range Searching

y

x

(a) 2D ascending chain

y

x

(b) 2D descending chain

Figure 2.4: Monotonic chains in 2D.

18

Arroyuelo et al. [4] presented the first static adaptive data structure based on

untangled monotonic chains for orthogonal range searching in the plane. The data

structure is adaptive, which means when the point set is decomposed into a relatively

small number of chains, the range query time can be improved. If the number of

chains is o(
√
n), the data structure outperforms the optimal-time linear space data

structures [3, 24, 6]. The basic idea of Arroyuelo et al. algorithm is that given a point

set P in 2D, we partition the points in P into a number of untangled monotonic

ascending or descending chains. We define an ascending or a descending chain in

2D as follows: if we sort the points in the chain by increasing x-coordinates, and

by doing so their y-coordinates are sorted in ascending or descending order, we then

call it an ascending chain or a descending chain (see Figure 2.4). All the chains are

further divided into two sets: an ascending chain set and a descending chain set.

All chains in each set are untangled, which means no two chains intersect. Because

chains in each set are monotonic and untangled, each range query can be answered

through two steps of “searches”: first, we apply one search among the chains to find

all candidate chains that cross the query rectangle; and we apply another search on

each candidate chain to identify the points within the range. The data structure can

be constructed in O(n3) time and uses linear space. A range query can be answered

in O(lgm lg n + m′ lg n + k) time, where m is the total number of the chains, m′ is

the number of chains that cross the query box and k is output size [4]. Claude et

al. [14] implemented the data structure and compared it with the 2D range tree and

the 2D k-d tree. Their experimental results showed that the data structure is both

practical and efficient when dealing with a static data set. We will briefly introduce

Arroyuelo et al.’s algorithm in the following sections since that is the basis of our 3D

range search algorithm.

2.3.1 Splitting the Points into Two Subsets

The first step of Arroyuelo et al.’s algorithm is to partition the point set P into two

subsets: one consists of a set of ascending chains and the other one consists of a set of

descending chains. Unfortunately, finding the minimal number of monotonic chains

in 2-dimensional space is NP-hard [18], but there are algorithms [19, 38] that can

bound the maximum number of chains by O(
√
n). According to the experimental

19

results of Claude et al. [14], the greedy algorithm of Fomin et al. [39] obtained the

fewest number of chains among the methods they compared. The idea of Fomin’s

algorithm is quite straightforward. We first initiate two empty sets: one is for the

ascending chains; and the other is for the descending chains. In each iteration, we

use all the points in the current set to find both the longest ascending and descending

chain. The longer of the two is chosen and assigned to its corresponding set; in the

meantime, we remove its points from the current point set. We repeat this process

until no points are left. Calculating the longest ascending and descending monotonic

chains in each pass takes O(n lg n) time. Since the total number of chains is no greater

than O(
√
n) [37], the overall running time of Fomin’s greedy method is bounded by

O(n
3
2 lg n).

2.3.2 Supowit’s Algorithm

Algorithm 5 SupowitDescending(P)

Input: A set of 2-dimensional points P = {p1, p2, ..., pn}, where |P| = n.
Output: A partition S = {C1, C2, ..., Cm} of P into a minimal number of chains, for

any pr, pq ∈ Ci where ∀r < q ≤ n, we have c1(pr) < c1(pq) and c2(pr) > c2(pq).
1: S ← ∅

2: for i = 1...n do
3: S ′ = {C|C ∈ S and min2(C) ≥ c2(pi)}
4: if S ′ �= ∅ then
5: find the chain Cmin that has the point with the minimum 2nd coordinate

among all the chains in S ′

6: append pi to Cmin

7: else
8: generate a new chain Cp with only one point pi to S
9: end if

10: end for
11: return S

After the point splitting step, we obtain two subsets of points for both directions:

ascending and descending. When the direction is fixed, Supowit gives an algorithm

to find the minimal number of chains in optimal Θ(n lg n) time [33]. Since the total

number of chains is bounded by O(
√
n) from the first step and Supowit’s algorithm

offers the optimal chain partition, the total number of chains after Supowit’s algorithm

is still bounded by O(
√
n).

20

The reason we apply Supowit’s algorithm as the second step is because during

the chain construction step, there could be intersections generated between chains.

As discussed earlier, we want to get an untangled chain set without intersections to

achieve a faster range query. Even though Supowit’s algorithm may also produce in-

tersecting chains, those intersections are of a special form, which allows us to untangle

the chains efficiently.

Given a point set P = {p1, ..., pn} sorted based by increasing x-coordinates, the

algorithm processes the points in sorted order. Each point is either added to an

existing chain or assigned to a new chain based on whether it can be added to an

existing while maintaining the monotonicity. Algorithm 5 shows the case for the

descending set. The strategy is symmetric for the ascending set. We use Ci to

represent the chain with index i and let min2(Ci) = min{c2(p)|p ∈ Ci} where c2(p)

denotes the y-coordinate of point p. If we use a balanced binary search tree to store

the minimum y-coordinate of each chain, the query time of step 5 in Algorithm 5 is

bounded by O(lg n). Thus, the total running time of Supowit’s algorithm is O(n lg n).

2.3.3 Untangling the Chains

If we want an adaptive and efficient range query algorithm based on the chain de-

composition method, the chains should be untangled, that means, no two chains

cross. Arroyuelo et al. [4] introduced an algorithm to untangle the chains produced

by Supowit’s method. The main idea behind the untangling algorithm is that each of

the tangles (intersections) created by Supowit’s algorithm for both ascending and de-

scending chain sets forms a v-tangle. Figure 6(a) and 6(c) show v-tangles of ascending

and descending chains, respectively.

Definition 1 [Ascending tangles] Given an edge (pi, pj) in an ascending chain,

let H+(pi, pj) be the open half-plane containing the point (c1(pj) + 1, c2(pj) − 1) and

H−(pi, pj) be the open half-plane containing the point (c1(pj)−1, c2(pj)+1). Assuming

that we have two chains C1 and C2 with edges (p1, p2), ..., (pk−1, pk) ∈ C1 and (q1, q2) ∈
C2. We call a tangle a v-tangle if p1 ∈ H+(q1, q2), pk ∈ H+(q1, q2) and pi ∈ H−(q1, q2)

for all 1 < i < k. We call a tangle a reversed v-tangle if p1 ∈ H−(q1, q2), pi ∈
H−(q1, q2) and pi ∈ H+(q1, q2) for all 1 < i < k.[14]

21

q1
p1

p2

pk−1 pk

q2

(a) ascending v-tangle

q1

p1

p2

pk−1

pk

q2

(b) ascending reversed v-tangle

q1

p1 p2

pk−1

pk

q2

(c) descending v-tangle

q1

q2

p1

p2

pk−1

pk

(d) descending reversed v-tangle

Figure 2.5: Supowit’s algorithm may produce the tangles in Figures (a) and (c).
Untangling these by deleting the solid edges and adding dashed ones may produce
new tangles between other chains, which must be one of the form shown in Figures
(b) and (d).

Definition 2 [Descending tangles] Given an edge (pi, pj) in an descending chain,

let H+(pi, pj) be the open half-plane containing the point (c1(pi) + 1, c2(pi) + 1) and

H−(pi, pj) be the open half-plane containing the point (c1(pi)−1, c2(pi)−1). Assuming

that we have two chains C1 and C2 with edges (p1, p2), ..., (pk−1, pk) ∈ C1 and (q1, q2) ∈
C2. We call a tangle created by C1 and C2 a v-tangle if p1 ∈ H−(q1, q2), pi ∈ H−(q1, q2)

and pi ∈ H+(q1, q2) for all 1 < i < k. We call a tangle a reversed v-tangle if

p1 ∈ H+(q1, q2), pk ∈ H+(q1, q2) and pi ∈ H−(q1, q2) for all 1 < i < k. [14]

Each v-tangle can be eliminated by removing p2...pk−1 from C1 and inserting

22

Algorithm 6 2DUntangling (P)

Input: A set of 2-dimensional points P = {p1, p2, ..., pn}, where |P| = n.
Output: A set of 2-dimensional chains parition S ′ = {C1, C2, ..., Cm} with no inter-

section.
1: S ′ ← ∅

2: for l = 1...n do
3: Run Supowit(P) algorithm to get Cl, Cl+1, ..., Cm

4: for i = k...l do
5: for j = i− 1...l do
6: Find all the v − tangles between Ci and Cj and untangle them
7: end for
8: end for
9: P ← P \ Cl

10: S ′ = S ′ ∪ {Cl}
11: end for
12: return S ′

them to C2, shown in Figure 2.5(a) and Figure 2.5(c). While this process may create

new tangles, fortunately, these new tangles must be reversed v-tangles as shown in

Figures 2.5(b) and Figure 2.5(d).

Lemma 1 All tangles generated by Supowit’s algorithm are v-tangles. [4]

Lemma 2 All tangles created after one pass of untangling algorithm must be reversed

v-tangles. [4]

More importantly, Arroyuelo et al. [4] proved that given an order of the chains,

after one untangling pass, the lowest chain does not tangle with any other chains.

This allows us to untangle all the chains by running one untangling pass, extracting

the lowest chain, and then recursing on the remaining chains until no chains left.

Algorithm 6 gives the pseudocode of the Arroyuelo et al.’s untangling algorithm. It

is important to note that Supowit’s algorithm must be run in each iteration (line 3

in Algorithm 6) because the untangling process relies on the special structure of the

tangles produced by the this algorithm.

Claude et al. [14] gave another untangling method by transforming the reversed

v-tangles back to v-tangles. This eliminates the need to rerun Supowit’s algorithm

in each iteration. They didn’t prove the correctness of their untangling method, so

their implementation includes a function to check if all the chains are untangled at

23

the end of the untangling step. This test procedure, of course, requires extra time

compared with Arroyuelo et al.’s algorithm, but the experimental results show that

their algorithm is much faster than Arroyuelo et al.’s algorithm, due to not having to

reuse Supowit’s algorithm in each iteration.

2.3.4 Range Searching over the Chains

Consider an ascending chain C (symmetrically for a descending chain). For an or-

thogonal range query R, if there exists points of C that lie in R, they must be a

contiguous interval of the ordered list of points along the chain. This allows us to

answer any orthogonal range query by performing a binary search. During the search,

we use the range query R = [a1 : b1]×[a2 : b2] as the comparison to determine the next

step of the binary search. Let point p = (c1(p), c2(p)) be the median point during one

binary search step. The comparison between p and R has three possible outcomes: if

c1(p) < a1 or c2(p) < a2, we continue searching the upper part of the chain, because

all points stored in the lower part of the chain either have their x-coordinates less

than a1 or have their y-coordinate less than a2; if c1(p) > b1 or c2(p) > b2, we search

the lower part of the chain, since all points stored in the upper part of the chain either

have their x-coordinates greater than b1 or have their y-coordinate greater than b2; if

a1 ≤ c1(p) ≤ b1 and a2 ≤ c2(p) ≤ b2, we will return the point p and stop searching

since p lies inside R. Then we apply a linear scan along the chain to find the first and

last point in the range and report all the points in between. This takes O(lg n + k)

time, where n is the number of points in the chain and k is the number of reported

points. We call this procedure a chain query. Note that a single extension of this can

be used to determine the relative position between a chain and a point. Let p′ be a

point that does not lie in the chain. When applying a chain query on C for p′, the

search ends at two consecutive points pi and pi+1. We call p′ is to the left to C if the

cross product of p1, pi+1 and p′ is negative and call p′ is to the right of C if the cross

product of p1, pi+1 and p′ is positive. We further extend it to a range query box. A

query box R is to the left of a chain C if its four corner points are to the left of C,

R is to the right of a chain C if its four corner points are to the right of C and R
intersect a chain C if one or more corner points on the opposite side of C. Note that

a chain could intersect the query box without any point lies in the box.

24

Algorithm 7 2DRangeSearching (S,R)

Input: A set of untangled monotonic ascending chains S = {C1, C2, ..., Cm} in the
plane and a range query R = [a1 : b1]× [a2 : b2].

Output: All the points in R.
1: low = 1
2: high = m
3: while low ≤ high do
4: mid = �(low + high)/2	
5: if Cmid is to left of R then
6: low = mid+ 1
7: else if Cmid is to right of R then
8: high = mid− 1
9: else

10: pos = mid
11: while pos ≤ high do
12: perform a chain query on Cpos using R
13: if Cpos intersects R then
14: report all the points in Cpos that lie in R
15: pos++
16: else
17: break
18: end if
19: end while
20: pos = mid− 1
21: while pos ≥ low do
22: perform a chain query on Cpos using R
23: if Cpos intersects R then
24: report all the points in Cpos that lie in R
25: pos−−
26: else
27: break
28: end if
29: end while
30: end if
31: end while

Given a partition of P into a collection of ascending chains and a collection of

descending chains, a naive implementation of range reporting over P has to apply the

above binary search to each chain in turn. In general, this is the best one can do. If

the chains are untangled, however, we can do better. Without loss of generality, we

focus on the ascending chains.

25

Let S = {C1, C2, ..., Cm} be a set of untangled monotonic ascending chains, where

chains are ordered from left to right by their leftmost points. For each chain, we

add two extreme points to avoid special boundary cases: one is to the beginning

of the chain and the other is to the end of the chain. Note that because m < n,

adding these 2m extreme points does not affect the asymptotic running time of the

algorithm. Let li be the length (the number of points) of chain Ci. Given a query

range R = [a1 : b1]×[a2 : b2], we need to find all the chains that intersect R and report

all the points of each such chain that lie in R. Because chains in S are ascending,

untangled and sorted, we can apply binary search over the chains. Each chain access,

during the chain binary search, is equivalent to a chain query. This allows us to

discard all the chains to one side of current chain if it does not intersect the range

query. If it does, we then sequentially inspect it adjacent chains one by one until we

find the last chain Ci that is to the left of R and the first chain Ci+m′ that is to the

right of R. Algorithm 7 shows the range searching steps over the ascending chains.

Lines 5 to 8 represent the cases when the selected chain does not intersect the query

box. Lines 10 to 30 indicates the sequential inspection steps once we find a chain that

intersects the query box.

Next, we bound the query time. The binary search over chains takes O(lgm lg n)

time, where m is the total number of untangled chains, which is bounded by O(
√
n),

and n is the maximal length of all chains. Assuming that the number of chains that

intersect R is m′, then for each of the m′ chains, we need to perform a chain query.

This takes O(m′ lg n + k) time, where k is the number of reported points. The fol-

lowing theorem summarizes the properties of the 2-dimensional chain decomposition

algorithm and its range searching algorithm.

Theorem 3 A 2-dimensional point set P with n points can be partitioned into two

sets of untangled chains: an ascending chain set and a descending chain set with a

total number of chains at most O(
√
n). This process requires O(n2) time using linear

space. A range query can be answered in O(lgm lg n + m′ lg n + k) time using this

data structure, where m is the total number of chains, m′ is the number of chains

intersecting the query range, and k is the number of points within the range.

26

2.4 3-Dimensional Chain Decomposition

Given the practical efficiency of the 2D range query based on the chain decomposition

that are reported by Claude et al. [14], it is natural to ask whether the data structure

can be generalized to higher dimensions and whether its performance is as good as in

2D. However, there are three challenges that need to be addressed.

First, a monotonic chain in 2D that is sorted based on the increasing first coordi-

nates (x-coordinates) can only be ascending or descending in its second dimension. In

d dimensions, a chain can be ascending or descending in each of the d− 1 dimensions

after the first dimension. Thus, we obtain 2d−1, rather than two, “chain orientations”.

In 3D, this is probably not a major problem, as there are still only 4 possible chain

orientations.

The second issue presents a much greater challenge: there is no obvious notion

of untangling chains in d ≥ 3. Indeed, two arbitrary chains in dimension higher

than 3 are unlikely to intersect, but the key observation exploited in 2D is that non-

intersecting chains in 2D can be ordered so that, if one chain is to the left (symmetric

to the right side) of the query box, all chains on its left side can be discarded because

all chains are untangled. This is the key to the binary search for a chain that intersects

the query box. No such ordering exists in 3D.

The third and final challenge is the classical curse of dimensionality: as the di-

mension increases, the number of monotonic chains into which we need to partition

P also increases, which, in turn, increases the cost of producing the partition and the

query cost of the data structure.

Chapter 3

3-Dimensional Chain Decomposition and Range Searching

In this chapter, we will talk about decomposing a set of points in 3D into chains and

how to perform range queries over these chains. Section 3.1 discusses how to choose

a proper chain partition method in 3-dimensional space with the goal of achieving

efficient range query performance. In Section 3.2, we propose an alternative chain

untangling algorithm in 2D, which in practice runs 25% faster than the Claude et

al.’s algorithm [14]. Finally, the complete 3D chain decomposition and range query

algorithms are presented in Section 3.3.

3.1 Chains That Can Be Untangled In 3D

Two algorithms for computing a chain partition in 3-dimensional space have been

proposed by Wei [37]. The first one is an extension of Fomin et al.’s algorithm [39].

Without loss of generality, all the points are first projected into the plane defined by

their first two coordinates (xy-plane). After that, we find both the longest ascending

and descending chains in the xy-plane, choose the longer of the two, and then project

all points of the longer chain into the xz-plane (a plane defined by the 1st and 3rd co-

ordinates). Given the points found in the previous step, we find the longest ascending

and descending chains again on the xz-plane, choose the longer one, and extract the

points on the chain from the point set. We continue this process until no points are

left. This partition algorithm produces O(n
3
4) chains and takes O(n

7
4 lg n) time [37].

The second algorithm is an adaptation of Supowit’s algorithm, which was de-

scribed in Section 2.3.2. At the beginning, all the points are sorted based on their

x-coordinates. The algorithm process every point iteratively similarly to the 2-

dimensional version. Each point is either added to an existing chain, which has the

maximal length and satisfies the monotonic properties, or assigned to a new chain.

The running time of this algorithm is O(n2), which can be improved to O(n lg2 n) by

using a 2-dimensional range tree [37].

27

28

Recall that the reason we can apply an efficient range query based on the chain

decomposition in 2D is that the chains are monotonic, untangled and ordered. If we

want to achieve an efficient range query in 3D, the chains generated in 3D also need to

satisfy some properties that can speed up the range query performance. However, it

is unclear for us which properties the chains produced by the second algorithm have,

so that the range searching performance can be improved, like in 2D. The chains

produced by the first algorithm on the other hand suggest a natural query strategy:

first, we find the chains in the xy-plane that cross the xy-projection of the query box,

then find the subchains of these chains in the xz-plane that cross the xz-projection of

the query box, and finally search each of these subchains in the xz-plane using binary

search. Essentially, this algorithm is an extension of the 2D chain decomposition

algorithm. The projection steps convert a 3-dimensional case into two 2-dimensional

sub-cases. In this way, all the properties hold by the chains in the 2D decomposition

can be reserved in 3D, which allows us to perform efficient range queries over the

chains in 3D. Before we introduce the 3D chain decomposition and range searching

algorithms, in the next section, we propose an alternative chain untangling method

in 2D, which in practice outperforms Claude et al.’s algorithm [14] by avoiding the

transformation step at each iteration.

3.2 An Alternative Chain Untangling Algorithm

Given the chain decomposition algorithm described in the previous section, in

order to achieve an efficient range query performance in 3D, all chains generated in

either xy-plane or xz-plane must be untangled, so that we can apply adaptive range

queries over the resulting chains in 3D. Claude et al. [14] proposed a faster chain

untangling algorithm in 2D, which eliminates the need to rerun Supowit’s algorithm

in each iteration. Instead, Supowit’s algorithm is applied only once at the beginning

of the algorithm. However, this algorithm needs to apply a chain transformation

in each iteration. From Lemma 2, we know that after one pass of the untangling

procedure, all newly generated tangles must be reversed v-tangles. What Claude et

al.’s algorithm does is to use a mapping function to transform a set of chains that

only has reversed v-tangles into a set of chains that has only v-tangles. After the

transformation, since all tangles are v-tangles, we now able to untangle them through

29

q1

p1

p2

pk−1

pk

q2

(a) ascending reversed v-tangle

q1

q2

p1

p2

pk−1

pk

(b) descending reversed v-tangle

Figure 3.1: Two different types of the reversed v-tangles are shown in Figure (a) and
(b). The untangling process can be done by removing p2...pk−1 from their original
chain and inserting them to the chain containing points q1 and q2.

another untangling pass. Then, the mapping function is applied again to restore

the original position of the chains. However, this linear transformation can have a

huge impact on the running time if the point set is large, since we need to apply the

mapping function twice for every single point in the point set. In this section, we

introduce another chain untangling method, which eliminates the transformation in

each iteration while still applying Supowit’s algorithm only once. Instead of using

the mapping function twice for all points, we only apply the function to the points

corresponding to the reversed v-tangles, since the points on the chains that do not

intersect will never change after the mapping. This further leads us to an untangling

method to the reversed v-tangles while eliminating the need for the transformation.

Figure 3.1 shows how to untangle the reversed v-tangles for both ascending and

descending chains using the map function. Algorithm 8 gives the pseudocode for

our chain untangling algorithm. We divide each untangling iteration into two sub-

procedures. First, we untangle all the v-tangles and extract the lowest chain, which

is untangled, then symmetrically we untangle all the reversed v-tangles and extract

the highest chain. We apply this untangling procedure until no chains intersect.

We currently can not prove that when Algorithm 8 finishes, all chain are untan-

gled. Similarly to Claude et al.’s algorithm, we add a linear tangle checking method

30

Algorithm 8 2DUntangling_V2 (P)

Input: A set of points P = {p1, p2, ..., pn} in 2D, where |P| = n.
Output: A 2-dimensional chain partition S = {C1, C2, ..., Cm} where no two chains

intersect.
1: {C1, C2, ..., Cm} ← run Supowit’s algorithm using P
2: start = 1
3: end = m
4: while start < end do
5: for i = end...start do
6: for j = i− 1...start do
7: Find all the v-tangles between Ci and Cj and untangle them
8: end for
9: end for

10: start++
11: if all the chains are untangled then
12: break
13: end if
14: for i = start...end do
15: for j = i+ 1...end do
16: Find all the reversed v-tangles between Ci and Cj and untangle them
17: end for
18: end for
19: end−−
20: if all the chains are untangled then
21: break
22: end if
23: end while
24: return S

in each iteration in the advent of a failure. However, in practice, we found in no

cases Algorithm 8 fails. If there is a failure, we can run the original untangling al-

gorithm, since both algorithms have the same running time [14]. In practice, the

tangle checking method, however, turns out to be extremely effective to terminate

the entire untangling process, since the number of intersections drops dramatically

after one untangling pass, which means it is not necessary to execute all untangling

loops from start to end, thus the running time of the untangling algorithm can be

further reduced.

31

3.3 3D Untangled Monotonic Chain Decomposition

Algorithm 9 3DChainDecomposition(P)

Input: A point set P = {p1, p2, ..., pn} in 3-dimensional space.
Output: A set of untangled ascending chains and a set of untangled descending

chains in the xy-plane; each chain in the xy-plane is associated with a set of
untangled ascending chains and a set of descending chains in the xz-plane.

1: run Fomin’s algorithm on the xy-projection of P to obtain two point subsets:
Pxy_as and Pxy_de

2: let Sxy_as= {C1, C2, ..., Cm1} be the chain set in the xy-plane after running
2DUntangling_V2(Pxy_as)

3: for Ci ∈ Sxy_as do
4: run Fomin’s algorithm on the xz-projection of P(Ci) to obtain two point sub-

sets: Pxz_as and Pxz_de

5: Sxz_as(Ci) ← run 2DUntangling_V2(Pxz_as) in the xz-plane
6: Sxz_de(Ci) ← run 2DUntangling_V2(Pxz_de) in the xz-plane
7: end for
8: let Sxy_de={C1, C2, ..., Cm2} be the chain set in the xy-plane after running

2DUntangling_V2(Pxy_de)
9: for Ci ∈ Sxy_de do

10: run Fomin’s algorithm on the xz-projection of P(Ci) to obtain two point sub-
sets: Pxz_as and Pxz_de

11: Sxz_as(Ci) ← run 2DUntangling_V2(Pxz_as) in the xz-plane
12: Sxz_de(Ci) ← run 2DUntangling_V2(Pxz_de) in the xz-plane
13: end for
14: return

In this section, the algorithm for the 3-dimensional chain decomposition is pre-

sented. Algorithm 9 shows the pseudocode for this process. Unlike the chain de-

composition method described in Section 3.1 where the chains generated in either

xy-plane or xz-plane could intersect, our chain decomposition method eliminates all

the tangles generated during the partition by applying the untangling process men-

tioned in previous section, so that the resulting chain decomposition can support an

adaptive range query in 3D.

The algorithm is divided into two stages. In the first stage, all points are sorted

based on their x-coordinates and are projected on the xy-plane. Then, the greedy

algorithm of Fomin et al. [39] is applied to partition the point set P in the xy-plane

into two subsets: Pxy_as and Pxy_de where Pxy_as contains the points derived the

ascending chain set in the xy-plane and Pxy_de contains the points derived from the

32

descending chain set in the xy-plane (line 1 in Algorithm 9). For each subset, we first

apply Supowit’s algorithm to produce a new chain decomposition. Then, we apply

the chain untangling algorithm to the two sets of chains to make sure that all the

resulting chains in the xy-plane are untangled (line 2 and 8 in Algorithm 9).

In the second stage, we apply the same procedure to the points in each of the

chains produced in the first phase to partition these points into untangled chains

in the xz-plane. We denote Sxy_as and Sxy_de to be the untangled ascending chain

set and untangled descending chain set in the xy-plane. For each ascending chain

Ci ∈ Sxy_as, we first project all points in Ci (denote as P(Ci)) to the xz-plane and

then apply Fomin et al’s algorithm to obtain two subsets (Pxz_as and Pxz_de) of P(Ci)

that contain the points from the ascending chains and the descending chains in the

xz-plane (line 4 in Algorithm 9). After that, for each subset of points, we apply

the Supowit’s algorithm to get a new chain partition and apply the chain untangling

process to make sure all chains are untangled (lines 5 to 6). We denote Sxz_as(Ci) and

Sxz_de(Ci) to be the untangled ascending chain set and untangled descending chain

set in the xz-plane that are derived from P(Ci).

Next, we analyze the running time of Algorithm 9. In 2D, the total running time

for computing the chain decomposition and untangling the chains is O(m2n+n lg n),

where n is the total number of points and m is the number of resulting chains [4].

This bounds lines 1, 2 and 8 in Algorithm 9. Let |Ci| represents the number of points

in chain Ci and |S(Ci)| indicates the number of subchains generated by Ci in the xz-

plane. Let |Pas| and |Pde| be the total number points in Pxy_as and Pxy_de respectively

and mas and mde be the total number of subchains generated in the xz-plane for the

point sets Pxy_as and Pxy_as respectively. Then, the running time T (|Pas|) from lines

3 to 7 can be expressed as:

T (|Pas|) = |S(C1)|2|C1|+ |C1| lg(|C1|) + ...+ |S(Cm1)|2|Cm1 |+ |Cm1 | lg(|Cm1 |)

≤ ((mas)
2 + lg(|Pas|))(|C1|+ ...+ |Cm1 |)

≤ (mas)
2|Pas|+ |Pas| lg(|Pas|)

(3.1)

33

Symmetrically, the running time T (|Pde|) from lines 9 to 13 can be expressed as:

T (|Pde|) ≤ (mde)
2|Pde|+ |Pde| lg(|Pde|) (3.2)

Let m = mas +mde. Since |Pas|+ |Pde| = n, the total running time

T (n) ≤ O(m2n+ n lg n) (3.3)

In [37], the author proved that the upper bound for m is O(n
3
4), so the running time

for the chain decomposition and chain untangling in 3D is at most O(n
5
2).

3.4 Two Chain Query Methods

pl

start point

end point

Figure 3.2: A chain query over an ascending chain.

Recall that for the 2D chain-based range searching method discussed in Sec-

tion 2.3.4, given an ascending chain (symmetrically for a descending chain), we use

a binary search to find out whether it intersects the range query box or to deter-

mine the relative position between the chain and the query box. We call this a chain

query. Suppose a point pl is found that lies in the range box during a chain query,

see Figure 3.2. In order to find all points in the chain that lie in the query box, two

search strategies can be applied: first, after the point pl is located, a one-by-one linear

scanning step on the two opposite directions of the chain can be used to find all the

points on the path that lie in the query range; the second is to perform another two

binary searches to locate the first and the last points of the chain within the range.

34

0 5 10 15 20 25 30 35 40 45 50

2

2.5

3

3.5

Values of b

Q
ue

ry
T

im
e(

s)

Figure 3.3: One example of revealing the relationship between the values of b and
total query time (in seconds). For this one, the optimal value of b = 17.

However, in our experimental evaluations, the second method was consistently

faster than the first one, which means the cost of the two additional binary searches

was outweighed by the cost of checking for every point on the path until we reach out

of the query range. In an attempt to avoid the two additional binary searches while

not paying the penalty of checking for each point in the query range on the chain, we

improve the first method as follows. Given some parameter b, we scan forward and

backward from pl but inspect only every bth point. We apply this procedure until

we find the first point in each direction that does not lie in R. Let pb and pf be the

last points in each direction that lie in R during the inspection. Note that all points

between pb and pf lie in the query range, because the chain is a monotonic chain.

However, there may still be up to b − 1 points preceding pb and up to b − 1 points

succeeding pf that also lie in R. We then check each point in turn backwards from

pb and forward from pf to find all these points. The parameter b provides a trade-off:

a large value of b could potentially identify a large range of points in R with only

few comparisons, but it also increases the number of points before pb and after pf

that may be lie in R and all of these points require a one-by-one inspection; on the

other hand, with smaller values of b, the amount of inspections gets smaller, but the

potential savings in the search also get smaller.

We determine the optimal value of b as follows: we first set b = 1 and increase it

35

by 1 until we reach a predefined maximal value of d; we then choose the value of b

with minimal query time. In our experimental evaluation, we observed that, as the

value of b increased, the query time first decreased and then increased. Figure 3.3

shows one example of the relationship of the values of b and the total query time.

Since determining this value of b is costly and requires a characterization of the

queries, it can not be incorporated with any real-world use of the chain-decomposition-

based data structure. However, we determined b for two reasons: first, if b is fairly

independent of the data set and query type, then determining the optimal value of b is

a one-time learning step of the data structure for a given platform, which is reasonable

in practice; second, to determine which of the two chain query methods performs best,

it is useful to choose a value of b that maximizes the query performance.

3.5 3D Chain Range Searching

After the chain decomposition, the resulting monotonic chains in 3D could have 4

possible monotonic orientations (see details in Section 2.4). We define each of them

as follows: for any two points pi and pj on an ascending(y)-ascending(z) chain, if

c1(pi) ≤ c1(pj), then c2(pi) ≤ c2(pj) and c3(pi) ≤ c3(pj); for any two points pi and

pj on a ascending(y)-descending(z) chain, if c1(pi) ≤ c1(pj), then c2(pi) ≤ c2(pj) and

c3(pi) ≥ c3(pj); we call a chain in 3D a descending(y)-ascending(z) chain if for any two

points pi and pj on the chain, c1(pi) ≤ c1(pj), then c2(pi) ≥ c2(pj) and c3(pi) ≤ c3(pj);

finally, a chain is called a descending(y)-descending(z) chain, for any two points pi and

Algorithm 10 3DRangeSearching_Ascending(Sxy_as,R)

Input: A set of untangled monotonically ascending chains Sxy_as in the xy-plane,
where each chain C ∈ Sxy_as is associated with an untangled monotonically as-
cending chain set Sxz_as(C) and an untangled monotonically descending chain set
Sxz_de(C) in the xz-plane and a range query R = [a1 : b1]× [a2 : b2]× [a3 : b3].

Output: All the points within R.
1: apply the 2D range searching in the xy-plane to find all the candidate chains

Cl, Cl+1, ...Ck that intersect query range [a1 : b1]× [a2 : b2]
2: for i = l...k do
3: apply the 2D range searching over Sxz_as(Ci) and Sxz_de(Ci) in the xz-plane

and report all the points within R
4: end for

36

pj on the chain, if c1(pi) ≤ c1(pj), then c2(pi) ≥ c3(pj) and c3(pi) ≥ c3(pj).

After the chain decomposition process, we get two sets of untangled monotonic

chains in the xy-plane: Sxy_as and Sxy_de. For each chain C ∈ Sxy_as, we have two

sets of untangled monotonic subchains in the xz-plane: Sxz_as(C) and Sxz_de(C).

By adding the associated y-coordinates to the points of Sxz_as(C), we will get an

ascending(y)-ascending(z) chain set in 3D. By adding the associated y-coordinates to

the points of Sxz_de(C), we will get an ascending(y)-descending(z) chain set in 3D.

For the chains in Sxy_de, the situation is symmetric.

The 3D range searching using this chain decomposition can be considered as an

extension of the 2D range searching using the 2D chain decomposition, which was

described in Section 2.3.4. Algorithm 10 shows the range query steps over ascending

chains Sxy_as. Given a query range R = [a1 : b1]× [a2 : b2]× [a3 : b3], we first find all

the candidate chains in the xy-plane that intersect the query range [a1 : b1]× [a2 : b2],

since these are the chains containing all the points with their x and y coordinates lie

in the range (line 1). Then, for each candidate chain C in xy-plane, we apply another

secondary search on the subchains derived from C in the xz-plane and report all the

points that lie in the query range (lines 2 to 4). The only difference comparing to

the 2D range searching comes from the chain query method (binary search over a

single chain) in the xz-plane. Instead of using the x and z coordinates of the points

to perform binary search over the chain, we also need to consider the y-coordinates of

the points. Because all chains generated in the xz-plane are 3D monotonic (either an

ascending(y)-ascending(z) chain or an ascending(y)-descending(z) in our case), which

makes the binary search over the points of a chain by using all x, y and z coordinates

feasible.

Let us consider the query time. Let n be the total number of points and m be the

total number of monotonic chains in the xy-plane. Then, the 2D range searching for

the candidate chains in line 1 of Algorithm 10 takes O(lgm lg n+m′ lg n) time, where

m′ ≤ m is the number of chains that intersect xy-projection of R. For lines 2 to 4, we

assume that the total number of subchains of all the candidate chains in the xz-plane

is ms, then the binary search over these chains takes O(m′ lgms lg n). Let m′
s be

the number of chains in the xz-plane that intersect R. After adding the chain query

time for each intersected chain in the xz-plane, the total query time is O(lgm lg n+

37

m′ lgms lg n + m′
s lg n), where ms ≥ m′

s is bounded by O(n
3
4) [37]. The following

theorem summarizes the properties of the 3-dimensional chain decomposition and its

range searching algorithms.

Theorem 4 A 3-dimensional n-point set can be partitioned into at most O(n
3
4) un-

tangled monotonic chains in O(n
5
2) time using linear space. Each range query can

be answered in O(lgm lg n + m′ lgms lg n + m′
s lg n + k) time, where m is the total

number of chains in the xy-plane, m′ is the number of chains in the xy-plane that

intersect the xy-projection of the query range, ms is the total number of subchains in

the xz-plane and m′
s is the number of chains in the xz-plane that intersect R.

Chapter 4

Experimental Evaluation

The experimental evaluation conducted in this chapter has been divided into two

parts: the 2D experimental evaluation and the 3D experimental evaluation. In the

2D evaluation, we first examined the existing k-d tree implementation in CGAL [34]

and compared it with our k-d tree implementations. Then, we compared our chain

untangling algorithm with the previous untangling algorithm and demonstrated the

range query results for different data sets. In 3D, we started with a comparison of the

two different 3D chain decomposition algorithms and gave their range query results

while comparing them with the 3-dimensional k-d tree.

All the experiments were performed on a machine with an AMD Opteron (tm)

processor 4176E 1200MHz with 126K of L1 Cache, 512K of L2 Cache, 5118K of L3

Cache and 16GB of DDR3 main memory with 1333 MHz clock speed. It runs a

64-bit operating system in GNU/Linux-Debian with kernel 3.16.36-1-deb8u1. The

complier used was GNU/gcc version 4.9.2. All our implementations were compiled

with optimization level -O2. We used Perf (version 3.16.7-ckt20) as the profiler tool

for the hardware performance evaluation.

4.1 2D Experimental Evaluation

4.1.1 Data Sets and Range Queries

Three different types of data were used to measure the performance of each imple-

mented data structure: a uniform random data set, a real-world geographic data set,

and an Amazon review data set. For the first data set, we generated each uniform

random n-point set by setting each coordinate sequence (x-coordinate sequence or

y-coordinate sequence) to a uniform random permutation of {1, 2, ..., n} ⊆ Z
+. The

second data is a geographic mapping data used to evaluate "The Traveling Salesman

Problem" [15]. For data set World that we used in our implementation, each point is

38

39

Data type Data set Number of points
Random
data

Rand_1M 1,000,000
Rand_2M 2,000,000

Map
data

China 71,009
World 1,904,711

Amazon
review
data

Movies 1,697,523
Electronics 1,689,188

CDs 1,097,592
Kindle 982,617

Table 4.1: Data set sizes.

associated with a city on the map with its corresponding latitude (x-coordinate) and

longitude (y-coordinate) rounded to four decimals. For data set China, all points are

derived from the point set World with their GPS coordinates (see detail in [15]). The

third one is provided by "Web data: Amazon reviews" [23]. Each record represents

one review submitted on Amazon. We converted each review into a 2-dimensional

point with coordinates: asin and ReviewTime. asin is the integer representation

of the product ID and ReviewTime is derived from the time record that indicated

when the review was submitted, originally represented as a UNIX timestamp. The

ReviewTime of each record is obtained by first subtracting it by the minimal re-

view time of the data set and then dividing the result by 100. For the Amazon data

sets, we expect that numerous points share the same x-coordinate (since products are

likely to have more than one review), and it is possible that multiple points share the

same y-coordinate (because different products may be reviewed at exactly the same

time). We are able to handle the above circumstances where multiple points have

identical x or y coordinate in our implementation. However, we only kept one point

of each identical group with the same x and y coordinates 1. For each type of data, at

least two sets with different sizes were chosen. Table 4.1 shows the size of each data

set that was used during the experimental evaluation and Figure 4.1 shows the point

distribution of a small random samples (100 random points) from each data set.

To obtain a comprehensive analysis of the range query performance, 7 types of

range queries with different characteristics were used. For each point set P , we first

identified its bounding box as [a1 : b1] × [a2 : b2], where a1 = minp∈P(c1(p)), a2 =

1This does not favour the approaches based on chain decomposition as it will decrease the degree
of presortedness of the data set. It would however be interesting to rerun these experiments in the
future to see how much this affects the experimental results.

40

(a) Rand_1M (b) Rand_2M

(c) China (d) World

(e) Movies (f) Electronics

(g) CDs (h) Kindle

Figure 4.1: Point distribution for all data sets. For each data set, we select 100
points uniformly at random and plot them by their x-coordinates and y-coordinates.

41

minp∈P(c2(p)), b1 = maxp∈P(c1(p)) and b2 = maxp∈P(c2(p)). Then, we generated a

uniform random point pr = (c1(pr), c2(pr)) within this box. Each orthogonal range

query in 2D is a rectangle. We use two extreme points to represent each range query:

one is the point at the bottom left corner and the other one is the point at the upper

right corner, see Figure 1.1(a). The 7 different range query types are defined as

follows:

• rand: set the bottom left point to (c1(pr), c2(pr)) and generate the upper right

point uniformly at random in the range [c1(pr) : b1]× [c2(pr) : b2].

• tiny: set the bottom left point to (c1(pr), c2(pr)) and generate the upper right

point uniformly at random in the range [c1(pr) : c1(pr) +
(b1−c1(pr))

S
] × [c2(pr) :

c2(pr) +
(b2−c2(pr))

S
], where S = 50.

• small: same as tiny with S = 15.

• med: same as tiny with S = 5.

• large: choose the bottom left point uniformly at random from the range [a1 :

a1 +
(b1−a1)

3
]× [a2 : a2 +

(b2−a2)
3

] and the upper right point uniformly at random

from the range [b1 − (b1−a1)
3

: b1]× [b2 − (b2−a2)
3

: b2].

• tall: set the bottom left point to (c1(pr), c2(pr)) and generate the upper right

point uniformly at random from the range [c1(pr) : c1(pr)+
(b1−c1(pr))

25
]× [c2(pr) :

b2].

• wide set the bottom left point to (c1(pr), c2(pr)) and generate the upper right

point uniformly at random from the range [c1(pr) : b1] × [c2(pr) : c2(pr) +
(b2−c2(pr))

25
].

4.1.2 K-d Tree Comparison

We implemented both the pointer-based k-d tree and the implicit k-d tree, and com-

pared them with the k-d tree implementation in CGAL [34]. Because the CGAL

implementation does not support range counting, we only considered the range re-

porting time for the comparison including the k-d tree implementation in CGAL.

Figure 4.2 shows a comparison of the range reporting time of these three k-d tree

implementations across all the data sets and query types. imp, ptr and cgal refer

to the implicit k-d tree, the pointer-based k-d tree, and the k-d tree implementation

in CGAL, respectively. Each bar in each data set represents the ratio of the range

42

15
56
.6

3.8
8 29
.39 24

5.0
1 11
13
5.8

26
5.4
9

27
9.0
5

27
0.2
7

0.9
7

6.2
7

45
.45 18
74
.27

50
.9

55
.19

19
6.7
8

0.9
3

5.1
9

34
.45

12
96
.73

40
.89

45
.36

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(a) Rand_1M

34
51
.72

6.9
3

62
.57

54
5.7
9

24
60
4.8

57
8.5
9

59
7.2
1

53
5.9
2

1.6
3

11
.67 89
.55

37
32
.07

98
.42

10
3.8
7

37
9.9
6

1.5 9.3 65
.47

26
17

75
.76

82
.26

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(b) Rand_2M

47
.29

0.4
3

1.2
5

6.7
1 37
4.8
3

11
.56

5.8

28
.12

0.1
3

0.5
6

3.9
3

19
6.4
8

6.3
1 4.2

22
.65

0.1
1

0.5
7

3.5 15
8.6
7

5.9
3

3.0
2

0

1

2

3

4

5

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(c) China
26
73
.35

2.1
2

16
.47 19
5.5
4 18
71
7.3

15
8.3
7

27
6.2
4

88
1.5
7

0.9
4

7.7
7

82
.65 58
91
.22

75
.87

11
2.9
4

61
5.4
3

0.8
5

6.0
6

60 40
86
.42

58
.2

86
.8

0
1
2
3
4
5
6

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(d) World

19
71
.4

8.1
1

46
.56 33
1.0
3

14
29
1.7

24
3.8
4 39
5.8

43
1.5
4

1.5
3

10
.72

77
.74 29
49
.2

66
.32

80
.06

28
9.9
5

1.1
3

7.5 52
.44

19
23
.7

46
.46

57
.04

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(e) Movies

23
11
.2

6.6 41
.44 33
5.4
1 17
32
6.6

27
9 30
6.9
8

49
4.7
6

1.4
9

11 83
.19 36
90
.68

72
.95

75
.82

32
5.9
1

1.1
3

7.6
8

56
.31

22
85
.29

51
.18

54
.74

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(f) Electronics

11
79
.57

4.8
8

27
.77 19
6.3
5

93
64
.78

15
3.3
8 23
4.9
5

29
8.0
6

1.0
6

7.3
9

52
.9

21
15
.64

47
.54

53
.96

19
7.3
1

0.7
8

5.1
6

35
.82

13
82
.81

33
.04

38
.46

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(g) CDs

10
37
.23

3.3
7

20
.42 16
2.5
6 84
61
.53

11
8.3
2

14
1.2
9

28
9.3
7

0.9
6

6.8 50
.8

20
80
.76

40
.55

43
.56

19
7.0
8

0.7
4

4.8
1

34
.75

13
61
.81

28
.61

31
.84

0

2

4

6

8

10

rand tiny small med large tall wide

cgal/imp ptr/imp imp

(h) Kindle

Figure 4.2: Comparison of total range reporting time (in seconds) of 3 different k-d
tree implementations using 7 different query types with 10,000 queries of each type
and across 8 different data sets. The numbers above bars cgal/imp, ptr/imp and
imp represent the range reporting time of cgal, ptr and imp, respectively.

43

reporting time of two data structures. The bar with cgal/imp is the ratio of the

range reporting time of the k-d tree implementation in CGAL and the implicit k-d

tree. The number above the bar indicates the range reporting time of the k-d tree

implementation in CGAL in seconds. The bar with ptr/imp is the ratio of the range

reporting time of the pointer-based k-d tree and the implicit k-d tree. The number

above the bar indicates the range reporting time of the pointer-based k-d tree in

seconds. For the bar imp, the ratio is always 1 since it compares the reporting time

of imp to itself and the number above the bar represents the range reporting time

for the implicit k-d tree.

As observed from Figure 4.2, imp always performs the best among the three, and

cgal is the slowest. In most of the cases, ptr is roughly 1.5 times slower than imp

and cgal is at least five times slower than imp. As a result, we can first eliminate

the k-d tree implementation in CGAL from further experiments since it runs the

slowest among the three. The reason why the k-d tree implementation in CGAL is

much slower than our k-d tree implementations could be the "weight" of the library,

since the CGAL implementation supports not only simple orthogonal range queries,

but also some other operations such as point insertions, point deletions and nearest

neighbour searches. In order to support more advanced operations, more complex

structures are required, which could result in low range query efficiency. On the

other hand, for our k-d tree implementations, we only need to build a static k-d tree

that supports fast range queries. For our k-d tree implementations, the implicit k-d

tree always outperforms the pointer-based k-d tree for all the data sets for the range

reporting queries.

Because we eliminate the CGAL k-d tree implementation, we now can compare

the range counting time of our k-d tree implementations. Figure 4.3 shows this range

counting time comparison. Similarly to the range reporting time comparison, the

range counting time of imp is still much faster than that of ptr. The reasons why

the implicit k-d tree has better range query performance is that the implicit k-d

tree is allocated in a contiguous memory block and the allocation of each subtree

of a implicit k-d tree is also a single chunk of contiguous memory. This memory

allocation is cache friendly, since it can prefetch the data that needs to be assessed in

the future into the cache, thus increases the range query performance of the implicit

44

13
.8

0.6 1.8
8 5.5
7

36
.89

11
.27 15
.85

15
.65

0.6
3

2.0
2 6.0
5

40
.59

12
.46 17
.16

0

10

20

30

40

50

rand tiny small med large tall wide

imp ptr

(a) Rand_1M

20
.91

0.8
9

2.8
3 8.4
4

56
.18

17
.58 24
.12

22
.64

0.9
2

2.9
7 8.9
2

59
.96

18
.88 25
.67

0

20

40

60

80

rand tiny small med large tall wide

imp ptr

(b) Rand_2M

3.0
6

0.1
3

0.3
4 1.1

10
.34

2.4
4

1.8
53.3

0.1
5

0.3
5 1.1
2

11
.42

2.5
6

1.9

0

5

10

rand tiny small med large tall wide

imp ptr

(c) China
21
.48

0.4
6

1.5
7 6.3
6

60
.19

12
.53 19
.1622
.69

0.4
7

1.6
6 6.5
4

62
.28

13
.32 20
.13

0

20

40

60

80

rand tiny small med large tall wide

imp ptr

(d) World

13
.44

0.5
8

1.8 5.3
1

37
.03

10
.28 15
.8818
.98

0.7
8

2.4
5 7.3

50
.63

14
.31 22

.37

0
10
20
30
40
50
60

rand tiny small med large tall wide

imp ptr

(e) Movies

14
.63

0.5
8

1.8
6 5.7
8

38
.79

11
.3 16
.1120
.27

0.7
8

2.5
6 7.8
7

57
.29

16
.02 22
.9

0

20

40

60

80

rand tiny small med large tall wide

imp ptr

(f) Electronics

10
.39

0.4
7

1.4
7 4.3

30
.42

8.2
8 11
.9614
.35

0.5
9

1.9
1 5.6
2

40
.19

11
.06 16
.36

0

10

20

30

40

50

rand tiny small med large tall wide

imp ptr

(g) CDs

9.8
9

0.4 1.2
3 3.8
1

27
.16

7

10
.6

22
.6

0.5
3

1.7
1 5.2
7

37
.22

10
.04 14
.73

0

10

20

30

40

rand tiny small med large tall wide

imp ptr

(h) Kindle

Figure 4.3: Comparison of total range counting time (in seconds) of 2 different k-d
tree implementations using 7 different query types with 10,000 queries of each type
and across 8 different data sets. The numbers above bars represent the corresponding
range counting time of the two k-d tree implementations.

45

k-d tree. Moreover, the implicit k-d tree has zero structure overhead compared to the

pointer-based k-d tree where each node needs to store two pointers and a traversal

of the tree requires a pointer dereference, whereas an implicit k-d tree does not need

to store any extra information and such a tree traversal can be done using index

arithmetic, which can in fact be implemented using a bit shift. Based on the above

experimental results, we will use the implicit k-d tree as a reference for our evaluation

of the chain-decomposition-based range query algorithms.

4.1.3 Chain Decomposition

Data set Number of points Number of chains
Rand_1M 1,000,000 1256
Rand_2M 2,000,000 1780

China 71,009 319
World 1,904,711 1543
Movies 1,697,523 1233

Electronics 1,689,188 1079
CDs 1,097,592 1034

Kindle 982,617 613

Table 4.2: Chain decomposition results.

For our chain-decomposition-based range query algorithms, one of the factors that

could affect the range query performance is the number of chains that are generated

by the partitioning process. Table 4.2 shows the number of chains obtained from the

chain partitioning process for all data sets. The results show that the number of chains

varies depending on the point set, not just on its size. Even for roughly equal-sized

point sets (Rand_1M and Kindle), the difference could be significant. Moreover,

the real-world point sets generated fewer chains compared with the random point

sets. These differences in the numbers of generated chains could have a significant

impact on the range query time, which will be explained later.

4.1.4 Chain Untangling Comparison

In Chapter 3, we proposed an alternative algorithm for the 2-dimensional chain un-

tangling process. Table 4.3 shows a running time comparison of our chain untan-

gling algorithm against Claude et al.’s algorithm [14]. Our algorithm shows a 25%

running time improvement on average against the original one. The reason for the

46

Data set Time of original untan-
gling method [14] (s)

Time of our untan-
gling method (s)

Rand_1M 364.59 225.45
Rand_2M 1093.59 670.1

China 5.49 4.15
World 786.86 573.93
Movies 770.03 624.82

Electronics 701.05 568.66
CDs 380.17 303.4

Kindle 309.51 224.79

Table 4.3: Chain untangling time (in seconds) comparison for different data sets

improvement is that we eliminate the transformation process in each iteration from

the original algorithm, see details in Section 3.2.

4.1.5 Range Query Comparison

In this section, the complete range query results for all data sets and all query types

in 2D are presented. Three types of range query methods are considered. The first,

imp-kd, is the implicit k-d tree, which was discussed in Section 4.1.2. As discussed

in Section 4.1.2, the implicit k-d tree has the best range query performance and the

minimal space requirements compared with other k-d tree variants. The other two

are the two chain query methods based on untangled monotonic chains that were

discussed in Section 3.4: for each chain that is found with a point lies in the query

box after a binary search, the first one, bi-bi, applies two binary searches over the

points along the chain to find the first and last points in the chain within the range

and then reports all points in between; the second one, bi-seq, applies an iterative

scanning method by scanning forward and backward from the point we found along

the chain and finds all points in the chain within the range. Instead of scanning the

points one by one, we find the optimal parameter d and inspect every dth point along

the chain. Figure 4.4 shows the range counting results and Figure 4.5 shows the range

reporting results.

We keep using a bar chart to represent the query time comparison of different range

query methods of each data set, which is similar to the bar chart representations of

the k-d tree comparison discussed in Section 4.1.2. Each bar in a bar chart represents

the ratio of the range query time (range counting or reporting time) of two data

47

16
.99

0.9
7

2.5 7.1
2

43
.66

17
.63

18
.5718
.37 0.9

1

2.2
1

6.8
2 51
.08

15
.78

16
.75

13
.8

0.6 1.8
8

5.5
7

36
.89

11
.27

15
.85

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(a) Rand_1M

29
.12 1.4

6

4.1
1

12
.21

73
.4

30
.88

32
.7832
.22

1.3
5

3.6
4 11
.84 91
.49

27
.51

29
.06

20
.91

0.8
9

2.8
3

8.4
4

56
.18

17
.58

24
.12

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(b) Rand_2M

2

0.2
4

0.3
8

0.8
7

4.2
2

2.5
1

1.6
4

1.9
6

0.2
4

0.3
6

0.7
9

3.6
7

2.2
5

1.5
23.0
6

0.1
3

0.3
4

1.1 10
.34

2.4
4

1.8
5

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(c) China
25
.61

0.9

2.4
8

8.5
8

55
.61

20
.15

22
.6531

.85

0.8
7

2.4
3

8.8
7

71
.72

19
.52

23
.57

21
.48

0.4
6

1.5
7

6.3
6

60
.19

12
.53

19
.16

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(d) World

14
.93

0.9

2.2
6

6.1
2

36
.07 12

.6

17
.0816
.07 0.8

4

2.0
4

5.9
1

42
.45 12
.21

15
.3413
.44

0.5
8

1.8 5.3
1

37
.03

10
.28

15
.88

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(e) Movies

14
.15

0.8
5

2.1
3

5.9
1

34
.08 13

.21

15
.5315
.98 0.7

8

1.9
2

5.9
4

41
.61

11
.81

13
.1314
.63

0.5
8

1.8
6

5.7
8

38
.79

11
.3

16
.11

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(f) Electronics

10
.74

0.7
4

1.7
3

4.5
1

25
.57

9.7
4

11
.5211
.5

0.7

1.5
6

4.2
7

29
.59 9.0
2

10
.2710
.39

0.4
7

1.4
7

4.3 30
.42

8.2
8

11
.96

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(g) CDs

6.3
8

0.5
3

1.1
1

2.7
8

14
.75 5.1

4

7.6
2

7.7

0.5
1

1.0
5

3.0
4

19
.94

4.8
8

6.8
49.8

9

0.4 1.2
3

3.8
1

27
.16 7 10
.6

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(h) Kindle

Figure 4.4: Comparison of total range counting time (in seconds) of 3 different range
query methods using 7 different query types with 10,000 queries of each type and
across 8 different data sets. The numbers above bars bi-bi/imp, bi-seq/imp and
imp represent the range reporting time of bi-bi, bi-seq and imp, respectively.

48

20
0.0
5 1.2
9

5.7
7

36
.24

13
42
.87

47
.26

47
.9

20
2.9
6 1.2
2

5.4
9

36
.24

13
69
.2

45
.26

46
.13

18
9.5
7

0.9 5.0
9

33
.69

12
79
.94

40
.32

44
.67

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(a) Rand_1M

39
3.1
5 2.0
9

10
.83

71
.61

26
33
.68

91
.68

92
.31

39
5.5 1.9

5

10
.15

70
.99

26
45
.51

86
.58

87
.86

37
9.5
4

1.5 9.3
7

65
.84

29
51
.56

76
.22

82
.63

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(b) Rand_2M

21
.7

0.2
6

0.6 3.2
6

15
5.4
7

5.8
5

2.7
9

21
.71

0.2
5

0.5
7

3.2
1

15
4.5
6

5.6
2

2.6
622
.21

0.1
4

0.5
5

3.4
6

15
6.4
9

5.8
7

2.9
8

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(c) China
62
2.2
1 1.2

6

6.8
8

62
.35

40
73
.89

65
.41

88
.6563
9.7
5 1.2

3

6.8 63
.51

41
29
.33

64
.33

89
.42

61
7.4
4

0.8
3

6.0
5

60
.07

40
84
.66

57
.99

86
.17

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(d) World

28
6.0
5 1.4
3

7.8
6

53
.15

19
31
.96

48
.59

57
.3229
4..
85

1.3
7

7.7
3

54
.2

19
96
.14

47
.92

56
.6728
6.8
1

1.1
4

7.7
3

53
.49

19
46
.31

46
.69

57
.26

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(e) Movies

32
8.6
7

1.3
5

7.9
2

56
.72

23
09
.79

55
.24

56
.84

32
7.5
1

1.2
8

7.6
1

56
.38

23
02
.69

50
.4

51
.0632
8.1
5

1.1
7

7.9
2

57
.09

22
90
.41

52
.65

55
.91

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(f) Electronics

19
8.5
7 1.0
6

5.4
7

36
.31

13
87
.62

34
.37

37
.4319
9.2
1 1.0
1

5.2
5

36
.01

13
96
.25

33
.44

36
.4319
7.0
3

0.7
9

5.1
6

35
.74

13
79
.23

33
.02

38
.16

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(g) CDs

18
8.8
5

0.8
3

4.6 33
.58

13
50
.15

26
.46

28
.1418
9.6
5

0.8

4.4
9

33
.57

13
51
.44

25
.77

27
.3219
0.6
3

0.7
1

4.7
4

34
.35

13
61
.66

28
.12

31
.25

0

1

2

rand tiny small med large tall wide

bi-bi/imp-kd bi-seq/imp-kd imp-kd

(h) Kindle

Figure 4.5: Comparison of total range reporting time (in seconds) of 3 different
range query methods using 7 different query types with 10,000 queries of each type
and across 8 different data sets. The numbers above bars bi-bi/imp, bi-seq/imp
and imp represent the range reporting time of bi-bi, bi-seq and imp, respectively.

49

structures of a data set. The bar with bi-bi/imp is the ratio of the range query time

of the two-binary-search chain query method and the implicit k-d tree query method.

The number above the bar is the range query time for the two-binary-search chain

query method. The bar with bi-seq/imp is the ratio of the range query time of the

linear scanning chain query method and the implicit k-d tree query method. The

number above the bar is the range query time for the linear scanning chain query

method. For the imp bar, the ratio is always 1, since it compares the range query

time of imp to itself and the number above the bar represents the range query time

of the implicit k-d tree.

The range counting results from Figure 4.4 shows that imp-kd outperforms the

chain-decomposition-based range query methods (bi-bi and bi-seq) for the random

data sets (Rand_1M and Rand_2M) for all query types. The same observation

applies to the data set World, expect the query type large. For query type tiny,

imp-kd has better query performance compared to the other two query methods and

the same observation holds for query type small, expect for the data set Kindle. For

query type large on China and query types large, tall and wide on Kindle, the chain-

decomposition-based range query methods are faster than the implicit k-d tree. The

remaining query time differences where the chain-decomposition-based query methods

outperform the implicit k-d tree are insignificant, since those differences have little

impact on the overall range counting times, which makes the absolute impact small.

In most cases, the implicit k-d tree can achieve better range counting performance

compared with the chain-decomposition-based range query methods, but in some

cases (for certain types of queries of some data sets), the chain-decomposition-based

query methods still have the advantage over the implicit k-d tree.

As for the range reporting results shown Figure 4.5, except for the query type

tiny, all the three methods are competitive. This is because the range reporting

time is dominated by the output size (except for the query type tiny) and the search

cost has little impact on the overall query time. Figure 4.6 shows the graphical

representation of the relationship between the range reporting time and output size.

We calculated a linear fitting function for each range query method using linear

regression algorithm [31] and plotted it on a graph. We use the variance score [31] to

measure the fitting accuracy of each line and the best possible variance score is 1.0.

50

(a) imp-kd - the linear fitting function is y =
2.85× 10−8x+ 3.93 with the variance score 1.0.

(b) bi-bi - the linear fitting function is y = 2.86×
10−8x+ 6.15 with the variance score 1.0.

(c) bi-seq - the linear fitting function is y = 2.89×
10−8x+ 5.32 with the variance score 1.0.

Figure 4.6: The relationship of range reporting time and output size for three range
query methods for all data sets with the range reporting time on the Y axis and the
output size on the X axis. The coloured trend-line shows a linear relationship of the
two parameters for different range query algorithms.

51

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 13.8 196.78 420,619,247 46,664,010 11.09% 6,156,553,648 6,278,307,009 98.06%
tiny 0.6 0.93 16,512,457 1,012,931 6.13% 6,311,348 10,016,115 63.01%
small 1.88 5.19 55,270,339 5,146,022 9.31% 96,628,252 111,517,447 86.65%
med 5.57 34.45 167,865,573 17,926,068 10.68% 952,420,893 1,000,250,076 95.22%
large 36.89 1296.73 1,134,038,637 131,714,904 11.61% 44,094,543,930 44,427,772,735 99.25%
tall 11.27 40.89 357,906,427 43,795,402 12.24% 900,822,975 1,002,083,067 89.90%
wide 15.85 45.36 486,342,731 42,472,018 8.73% 857,812,894 998,722,545 85.89%

Count(s): range counting time in seconds.
Report(s): range reporting time in seconds.
Nodes visited: the total number of nodes visited during the tree traversals.
Nodes from subtree: the number of visited nodes where, for each node, all the points stored in the subtree

rooted at this node are reported.
Node ratio: the ratio of the number of visited nodes that return their subtrees to the total number

of visited nodes.
Points from subtree: the total number of points reported by the subtrees.
Total Points found: the total number of points found during the search.
Points ratio: the ratio of the total number of points returned by subtrees to the total number of points

found within the query range.

Table 4.4: Rand_1M-imp-kd.

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 16.99 200.05 45,805,333 761,026,714 142,018,135 619,008,579 6,278,307,009
tiny 0.97 1.29 2,182,485 38,962,272 27,616,828 11,345,444 10,016,115
small 2.5 5.77 6,846,859 105,794,775 46,322,584 59,472,191 111,517,447
med 7.12 36.24 19,234,594 309,361,627 80,567,201 228,794,426 1,000,250,076
large 43.66 1342.87 111,827,535 2,030,179,272 149,210,418 1,880,968,854 44,427,772,735
tall 17.63 47.26 62,129,417 857,755,905 350,100,222 507,655,683 1,002,083,067
wide 18.57 47.9 62,266,616 860,039,632 352,088,859 507,950,773 998,722,545

Chains found: the total number of chains that intersect the query boxes.
Binary search steps: the total number of binary search steps performed during the range query.
Binary search_I: the number of binary search steps that are performed to find out whether there exists a

chain that intersect the query box.
Binary search_II: the number of binary search steps performed on each intersecting chain to find all the

points on the chain that lie in the range.

Table 4.5: Rand_1M-bi-bi

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 18.37 202.96 45,805,333 142,018,135 20 1,257,251,848 6,278,307,009
tiny 0.91 1.22 2,182,485 27,616,828 2 6,385,658 10,016,115
small 2.21 5.49 6,846,859 46,322,584 2 61,695,261 111,517,447
med 6.82 36.24 19,234,594 80,567,201 10 292,234,210 1,000,250,076
large 51.08 1369.2 111,827,535 149,210,418 40 5,616,605,101 44,427,772,735
tall 15.78 45.26 62,129,417 350,100,222 4 443,242,068 1,002,083,067
wide 16.75 46.13 62,266,616 352,088,859 4 442,501,439 998,722,545

Best distance: the optimal checking distance.
Linear scan: the total number of checking steps performed during the range query.

Table 4.6: Rand_1M-bi-seq

52

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 9.89 190.63 415,344,775 48,937,486 11.78% 6,700,494,755 6,824,096,611 98.19%
tiny 0.4 0.71 15,115,501 965,276 6.39% 8,820,949 11,905,182 74.09%
small 1.23 4.74 49,926,351 4,638,596 9.29% 119,280,338 131,716,602 90.56%
med 3.81 34.35 156,438,210 16,938,997 10.83% 1,111,216,962 1,153,736,275 96.31%
large 27.16 1361.66 1,218,668,567 173,425,385 14.23% 49,482,520,863 49,921,352,711 99.12%
tall 7 28.12 299,871,046 34,242,595 11.42% 712,362,979 788,855,713 90.30 %
wide 10.6 31.25 449,489,719 37,192,048 8.27% 642,244,496 763,206,892 84.15 %
Columns are the same as on Table 4.4.

Table 4.7: Kindle-imp-kd.

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 6.38 188.85 21,345,319 375,010,605 74,632,343 300,378,262 6,824,096,611
tiny 0.53 0.83 1,133,753 25,193,764 18,406,645 6,787,119 11,905,182
small 1.11 4.6 3,589,764 60,570,835 27,834,381 32,736,454 131,716,602
med 2.78 33.58 9,817,874 165,179,820 44,614,205 120,565,615 1,153,736,275
large 14.75 1350.15 53,116,059 988,183,093 71,396,959 916,786,134 49,921,352,711
tall 5.14 26.46 20,755,587 316,567,613 130,695,668 185,871,945 788,855,713
wide 7.62 28.14 35,899,499 475,006,650 233,580,933 241,425,717 763,206,892

Columns are the same as on Table 4.5.

Table 4.8: Kindle-bi-bi

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 7.7 189.65 21,345,319 74,632,343 21 764,978,409 6,824,096,611
tiny 0.51 0.8 1,133,753 18,406,645 1 10,997,480 11,905,182
small 1.05 4.49 3,589,764 27,834,381 3 50,874,237 131,716,602
med 3.04 33.57 9,817,874 44,614,205 10 207,300,417 1,153,736,275
large 19.94 1351.44 53,116,059 71,396,959 51 3,558,329,675 49,921,352,711
tall 4.88 25.77 20,755,587 130,695,668 5 238,640,294 788,855,713
wide 6.84 27.32 35,899,499 233,580,933 5 260,675,693 763,206,892

Columns are the same as on Table 4.6.

Table 4.9: Kindle-bi-seq

Even though the search cost does not significantly affect the overall range reporting

time, the differences among the range reporting methods that do exist are due to

the search cost, which leads us to shift our attentions back to the range counting

time. In order to find out under what circumstances the chain-decomposition-based

range searching methods can achieve better range query performance, we chose two

representative data sets Rand_1M and Kindle to analyze in detail. Both of them

are of roughly equal size, but the range query results are quite different.

Tables 4.4, 4.5 and 4.6 show the range query analyses of imp-kd, bi-bi and bi-

seq for the data set Rand_1M, and Tables 4.7, 4.8 and 4.9 show the range query

analyses of imp-kd, bi-bi and bi-seq for the data set Kindle. For the analyses of

the implicit k-d tree (imp-kd), we use the number of nodes accessed during the range

53

Figure 4.7: The relationship of range counting time and the number of accessed
nodes for the implicit k-d tree for all data sets with the range counting time on the
Y axis and the number of accessed nodes on the X axis. The blue trend-line shows a
linear relationship of the two parameters using the function y = 2.77× 10−8x+0.067
that is calculated based on linear regression algorithm [31].

queries to evaluate its range query performance, since it is the most basic step of the

k-d tree range query algorithm. Among those node accesses, we also count the number

of accessed nodes where, for each node, all points stored in the subtree rooted at this

node are reported. One observation from the implicit k-d tree analyses for the data

sets Rand_1M and Kindle in Tables 4.4 and 4.7 is that the range counting time

increases with the increase of the number of accessed nodes, which means these two

could form a linear relationship. We calculate a linear function using linear regression

algorithm [31] and show the graphical representation of the linear relationship of the

two for all data sets in Figure 4.7. The variance score of the linear function is 0.96.

Another observation is that the differences of the number of accessed nodes for each

query type between the two point sets are less than 10%. For both data sets, the

number of nodes that report all the points stored in their entire subtrees only occupies

a small portion of the total number of accessed nodes, but they contribute the most

points within the range. Overall, the range query performance of imp-kd is similar

for both Rand_1M and Kindle and the behaviors of the query procedure on both

data sets are similar as well.

Tables 4.5 and 4.6 show the analyses of bi-bi and bi-seq for data set Rand_1M

54

Figure 4.8: The relationship of range counting time and the number of binary search
steps for bi-bi for all data sets with the range counting time on the Y axis and the
number of binary search steps on the X axis. The blue trend-line shows a linear
relationship of the two parameters using the function y = 2.09× 10−8x− 0.45.

and Tables 4.8 and 4.9 give the analyses of bi-bi and bi-seq for the data set Kindle.

In Tables 4.5 and 4.8 for bi-bi, we use the number of binary search steps to evaluate

the range query performance, since the binary search step is the fundamental step

of the range query method bi-bi. In tables 4.6 and 4.9 for bi-seq, instead of the

basic binary search steps, we also count linear scanning steps, since for the range

query method bi-seq, these two steps together constitute the basic query steps for

bi-seq. As we observe from the above analyses, for both Rand_1M and Kindle,

the range counting time of bi-bi is in a linear relationship with the number of binary

search steps, and the range counting time of bi-seq is in a linear relationship with

a combination of the number of binary search steps and the total number of linear

scanning steps. Figure 4.8 shows the graphical representation of the linear relationship

of the query time and number of binary search steps for bi-bi. Figure 4.9 shows

the graphical representation of the linear relationship of the query time and the

combination of binary search steps and linear scanning steps for bi-seq. The variance

scores of the linear functions for bi-bi and bi-seq are 0.96 and 0.94 respectively.

Another observation from the comparison of the chain-decomposition-based range

query methods between data sets Rand_1M and Kindle is that, for range query

method bi-bi, the number of chains crossing the queries is in a linear relationship with

55

(a) View angle 1

(b) View angle 2

Figure 4.9: The relationship of range counting time, the number of binary search
steps and the number linear scanning steps for all data sets with the range counting
time on the Z axis, the number of binary search steps on the X axis and the number
linear scanning steps on the Y axis. The coloured surface is drawn using the function
z = 3.99 × 10−8x + 7.99 × 10−9y − 1.24 that is calculated based on linear regression
algorithm [31].

56

Figure 4.10: The relationship of the number of binary search steps and the number of
crossing chains for bi-bi for all data sets with the number of crossing chains on the Y
axis and the number of binary search steps on the X axis. The blue trend-line shows
a linear relationship of the two parameters using the function y = 0.05x+4365210.01.
The variance score is 0.97.

(a) View angle 1 (b) View angle 2

Figure 4.11: The relationship of the number of crossing chains, the number of binary
search steps and the number of scanning steps for bi-seq for all data sets with the
number of crossing chains on the Z axis, the number of binary search steps on the
X axis and the number scanning steps on the Y axis. The coloured surface is drawn
using the function z = 0.14x+ 0.02y − 107900.31. The variance score is 0.98.

the total number of binary search steps, see Figure 4.10; for the range query method

bi-seq, the number of chains is in a linear relationship with a combination of the

number of binary search steps and number of linear scanning steps, see Figure 4.11.

Because the range counting time is also in a linear relationship with these basic steps,

there must exist a linear relationship between the range query time and the number

of chains crossing the quires. In Tables 4.5 and 4.6, we observe the number of chains

found in Kindle is roughly half of the number of chains found in Rand_1M for

57

all query types. We conjecture that the differences in the number of crossing chains

among different data sets can be further explained by the differences in the number

of chains generated during the chain partition steps. From Section 4.1.3, we know the

total number of chains generated for the Kindle data set is 612, which is half of 1256

chains from Rand_1M. For the data set China, the number of chains generated

during the partitioning step is only 319. The range query performance of the chain-

decomposition-based range query methods for the data sets Kindle and China is

as competitive as the performance of the implicit k-d tree and for range query large,

the chain-decomposition-based range query methods run two times faster than the

implicit k-d tree. This fewer number of chains generated during the partition can

provide one explanation for the few number of chains crossing the queries and for the

better range query performance.

Based on the above analysis, we can come to the conclusion that the range query

performance of the implicit k-d tree (imp-kd) is in a linear relationship with its

number of accessed nodes during the range quries and its query performance is not

very dependent on the types of data sets. On the other hand, the range query

performance of the chain-decomposition-based range searching methods (both bi-bi

and bi-seq) are largely affected by different point sets, since their basic steps (binary

search steps or linear scanning steps) are largely affected by the number of chains that

intersect the query boxes. With fewer chains generated from the partition step, the

chain-decomposition-based range searching methods tend to have better range query

performance.

Because the data structures implemented for the chain-decomposition-based range

searching methods are different from the range query method of k-d tree, it is not

easy to compare these two structures with a quantifiable measurement. Next, we in-

vestigate whether the observed correlation between the range query time and number

of elementary steps taken by the these algorithms can be linked to certain hardware

parameters, such as the number of cache-misses incurred by a search. Tables 4.10

and 4.11 show the profiling results for the data sets Rand_1M and Kindle with

range query type rand. As we observe, the chain-decomposition-based range query

algorithms (bi-bi and bi-seq) outperform the k-d tree in terms of task-clock for the

data set Kindle, while for the data set Rand_1M, the situation is reversed. The

58

Performance imp-kd bi-bi bi-seq
task-
clock(msec) 15061.39 17864.62 19110.14

cycles 36,063,961,665 42,757,857,503 45,704,887,000
context-
switches 4184 0.28 K/s 4797 0.27 K/s 5132 0.27 K/s

page-faults 4744 0.32 K/s 5345 0.3 K/s 5346 0.28 K/s

instruction 31,478,826,938
0.87 in-
sns/cycle 20,853,067,298

0.49 in-
sns/cycle 20,343,758,327

0.45 in-
sns/cycle

branches 5,145,718,316
341.65
M/s 3,454,336,260

193.36
M/s 4,473,999,895

234.12
M/s

branch-
misses 223,391,369 4.34% 393,508,940 11.39% 240,321,349 5.37%

L1-dcache-
loads 14,733,672,800

978.24
M/s 5,115,127,203

286.33
M/s 6,220,254,021

325.5
M/s

L1-dcache-
load-misses 111,820,094 0.76% 740,280,904 14.47% 792,194,599 12.74%

LLC-loads 170,545,634
11.32
M/s 860,509,980

48.17
M/s 1,080,021,328

56.52
M/s

LLC-load-
misses 102,928,316 60.35% 708,821,542 82.37% 772,596,998 71.54%

Note. K/s indicates kilobyte per seconds. M/s represents megabyte per seconds. insns/cycle indicates number of
instructions per cycle. The L1-dcache-loads and L1-dcache-load-misses represent the number of Level-1 data cache
loads and the number of Level-1 data cache-misses. The LLC-loads and LLC-load-misses represent the last level
(Level-3) cache loads and cache-misses. The percentage shown in branch-misses is the percentage of the number of
branch-misses out of the total number of branches. The percentage shown in L1-dcache-load-misses is the percentage of
the number of L1-dcache-load-misses out of the total number of L1-dcache-loads. The percentage of LLC-loads-misses
is the percentage of the number of LLC-load-misses out of the total number of LLC-loads.

Table 4.10: Hardware performance analysis of data set Rand_1M for query type
rand

Performance imp-kd bi-bi bi-seq
task-
clock(msec) 10476.52 6719.89 7811.51

cycles 25,089,042,312 16,033,750,647 18,666,028,018
context-
switches 2911 0.28 K/s 2114 0.32 K/s 2069 0.27 K/s

page-faults 2362 0.23 K/s 2957 0.44 K/s 2957 0.38 K/s

instruction 30,268,677,019
1.21 in-
sns/cycle 10,191,458,394

0.64 in-
sns/cycle 11,588,107,703

0.62 in-
sns/cycle

branches 4,315,793,720
411.95
M/s 2,039,843,540

303.55
M/s 2,848,846,802

364.7
M/s

branch-
misses 194,278,257 4.50% 239,456,140 11.74% 149,108,534 5.23%

L1-dcache-
loads 12,495,969,165

1192.76
M/s 2,760,828,356

410.84
M/s 3,736,924,600

478.39
M/s

L1-dcache-
load-misses 77,511,017 0.62% 336,262,618 12.18% 551,366,977 14.75%

LLC-loads 110,965,547
10.59
M/s 392,342,784

58.39
M/s 610,404,212

78.14
M/s

LLC-load-
misses 56,866,745 51.25% 269,107,528 68.59% 510,183,029 83.58%

Note. The columns are the same as on Table 4.10.

Table 4.11: Hardware performance analysis of data set Kindle for query type rand

59

(a) View angle 1

(b) View angle 2

Figure 4.12: The relationship of task-clock(msec), the number of instructions and
the number L1-dcache-load-misses for all data sets with the task-clock(msec) on the Z
axis, the number of instructions on the X axis and the number L1-dcache-load-misses
on the Y axis. The coloured surface is drawn using the function z = 4.14× 10−7x+
1.22× 10−5y − 331.22 that is calculated based on linear regression algorithm [31].

60

chain-decomposition-based range query methods performs roughly 30% instructions of

the k-d tree on Kindle, while for Rand_1M, the percentage increases to 66%. Even

though the chain-decomposition-based range query algorithms requires fewer number

of instructions, the number of instructions per cycle for the chain-decomposition-

based range query algorithms is much lower than the k-d tree. In our experiment, we

found nearly half of the cycles are wasted on retrieving the data from the memory

which may due to the cache-misses and can be reflected from the high percentage rate

of L1-dcache-load-misses for the chain-decomposition-based range query algorithms

compared to the k-d tree (nearly 20 times higher).

Based on the above analysis, the hardware performance in term of task-clock

(equivalent to the range query time) is mainly dependent on the number of instruc-

tions and number of L1-dcache-load-misses. We may conjecture that the task-clock

is a linear relationship with a combination of instructions and L1-dcache-load-misses.

Figure 4.12 shows the graphical representation of this linear relationship and the

variance score is 0.99.

To sum up, in 2D, the range query performance of the chain-decomposition-based

range searching methods (bi-bi and bi-seq) is largely dependent on the point set

itself. In most of the cases, the implicit k-d tree data structure (imp-kd) can still

outperform the chain-decomposition-based range searching methods. We attached all

the experimental results in Appendix A for reference.

4.2 3D Experimental Evaluation

4.2.1 Data Sets and Range Queries

Similarly to the 2D experimental evaluation, we introduce three different types of data

to achieve a comprehensive evaluation in 3-dimensional space. The first type is the

3D random data. We generated each uniform random n-point set by setting each co-

ordinate sequence (x,y, and z-coordinate sequence) to a uniform random permutation

of {1, 2, ..., n} ⊆ Z
+. The second data type is from "A Benchmark for Surface Re-

construction" in the Computer Science Department of University of Utah [29]. The

data sets were generated by synthetically scanning the surfaces of different shapes

61

(a) Rand_1M (b) Rand_2M

(c) DC (d) Garalgly

(e) Movies (f) Electronics

(g) CDs (h) Kindle

Figure 4.13: Point distribution for all data sets. For each data set, we select 100
points uniformly at random and plot them by their x, y and z-coordinates.

62

Data type Data set Number of points
Random
data

Rand_1M 1,000,000
Rand_2M 2,000,000

3D Object
data

DC 468,020
Garalgly 481,351

Amazon
review
data

Movies 1,697,523
Electronics 1,689,188

CDs 1,097,592
Kindle 982,617

Table 4.12: Data set sizes.

of 3D objects. The third type, similarly to the 2D case, was acquired from Ama-

zon review data set [23]. In addition to the product ID (asin) and the review time

(ReviewTime), we added the third coordinate "overall rating" (overall) where the

rating value is an integer ranging from 1 to 5. To avoid having multiple identical

points, we kept only one of each group of points with identical x, y and z-coordinate.

Table 4.12 shows the size of each data set and Figure 4.13 shows the point distribution

of a small random samples (100 random points) of each data set.

8 different types of range queries were used for our 3D evaluation. Similarly to the

range query generation in 2D, for each point set P , we first identify its bounding box

as [a1 : b1]× [a2 : b2]× [a3 : b3], where a1 = minp∈P(c1(p)), a2 = minp∈P(c2(p)), a3 =

minp∈P(c3(p)) and b1 = maxp∈P(c1(p)), b2 = maxp∈P(c2(p)), b3 = maxp∈P(c3(p)).

Then, let point pr = (c1(pr), c2(pr), c3(pr)) be a random point uniformly generated

within the bounding box. Each range query in 3D can be viewed as a rectangular

cube defined by two extreme points: one is the point from front bottom left corner

and the other one is the point from back upper right corner, see Figure 1.1(b). Then,

8 types of range queries are defined as follows:

• rand: set the front bottom left point to (c1(pr), c2(pr), c3(pr)) and generate the

back upper right point uniformly at random in the range [c1(pr) : b1]× [c2(pr) :

b2]× [c3(pr) : b3].

• tiny: set the front bottom left point to (c1(pr), c2(pr), c3(pr)) and generate the

back upper right point uniformly at random in the range [c1(pr) : c1(pr) +
(b1−c1(pr))

S
] × [c2(pr) : c2(pr) +

(b2−c2(pr))
S

] × [c3(pr) : c3(pr) +
(b3−c3(pr))

S
], where

S = 10

• small: same as tiny with S = 5.

63

• med: same as tiny with S = 2.

• large: choose the front bottom left point uniformly at random from the range

[a1 : a1 +
(b1−a1)

4
] × [a2 : a2 +

(b2−a2)
4

] × [a3 : a3 +
(b3−a3)

4
] and the back upper

right point uniformly at random the from [b1 − (b1−a1)
4

: b1] × [b2 − (b2−a2)
4

:

b2]× [b3 − (b3−a3)
4

: b3].

• long: set the front bottom left point to (c1(pr), c2(pr), c3(pr)) and generate the

back upper right point uniformly at random from the range [c1(pr) : c1(pr) +
(b1−c1(pr))

4
]× [c2(pr) : c2(pr) +

(b2−c2(pr))
4

]× [c3(pr) : b3].

• tall: set the front bottom left point to (c1(pr), c2(pr), c3(pr)) and generate the

back upper right point uniformly at random from the range [c1(pr) : c1(pr) +
(b1−c1(pr))

4
]× [c2(pr) : b2]× [c3(pr) : c3(pr) +

(b3−c3(pr))
4

].

• wide: set the front bottom left point to (c1(pr), c2(pr), c3(pr)) and generate the

back upper right point uniformly at random from the range [c1(pr) : b1]×[c2(pr) :

c2(pr) +
(b2−c2(pr))

4
]× [c3(pr) : c3(pr) +

(b3−c3(pr))
4

].

4.2.2 Chain Decomposition

Data set utga lga
Construction
time(s)

Number of chains
in the xy-plane

Number of chains
in the xz-plane

Construction
time(s)

Number of
chains

Rand_1M 327.64 1256 42,691 493341.13 9839
Rand_2M 968.54 1780 72,060 - -

DC 89.26 872 15,246 39006.29 3127
Garalgly 121.94 842 15,437 38412.94 3170
Movies 660.27 1233 6472 99923.95 5956

Electronics 582.85 1079 5644 84067.08 6064
CDs 331.08 1034 5297 45223.62 2884

Kindle 211.12 613 3068 17592.25 2310

Note. - indicates the running time exceeds 10 days.

Table 4.13: The chain decomposition comparison. For utga, we count the number of
chains generated in the xy-plane and the number of chains generated in the xz-plane.

We implemented both the untangled chain decomposition algorithm discussed in

Section 3.3 and the longest chain decomposition algorithm in [37]. We use utga

and lga to represent them in the result tables, respectively. Table 4.13 shows the

experimental results of the two chain decomposition methods. We are unable to give

the partition results of the point set 2M for lga since its running time exceeded

64

10 days. In Section 2.4, we mentioned that the running time for the longest chain

decomposition method is O(n2 lg2 n). Compared with O(n
7
4 lg n) for the untangled

chain decomposition method, the time difference will increase significantly as the size

of the data set grows. That explains why the longest chain decomposition method

takes more than 10 days as the size of the point set reaches to two million. Even for

relatively small point sets like DC (468020 points) and Garalgly (481351 points), the

untangled chain decomposition method is at least 300 times faster than the longest

chain decomposition method, which makes the longest chain decomposition method

impractical in real-world scenario. Note that even the untangled chain decomposition

can achieve much faster construction time compared to the longest chain decomposi-

tion, it is still much slower than the k-d tree, which takes O(n lg n) for construction.

On the other hand, the number of chains generated by lga is much fewer than

that generated by utga for data sets Rand_1M, Rand_2M, DC and Garalgly.

This difference in the number of generated chains could have an significant impact

on the range query performance. Based on the experimental results in 2D, with

fewer generated chains, the range query performance tends to have better query

performance. But, as mentioned in Section 2.4, the chains generated by lga could

potentially be tangled, so a query needs to inspect every single chain from the partition

to make sure all the points within the range are found. For utga, on the other hand,

the range searching can be performed adaptively based on the scale of the queries,

since all the generated chains are untangled. In the next section, we present the range

query results based on these two partition methods and compare them against the

3-dimensional k-d tree.

4.2.3 Range Query Comparison

In this section, we discuss the range query results for all data sets and all query

types. Similarly to the range query comparison in 2D, the implicit k-d tree (imp-kd)

is used as a reference for the performance comparison, since the implicit k-d tree in

3D still outperforms both the pointer-based k-d tree and the CGAL k-d tree in our

experimental evaluation. For the untangled chain decomposition method, we keep

the two different chain search methods bi-bi and bi-seq, where the search strategies

are the same as in 2D. We use lg to represent the range searching method for the

65

20
6.9
5

25
.04

55
.7

20
0.2
3

10
50
.79 11
4.1
2 18
8.5
5 34

5.4
2

21
4.5
6

24
.8

54
.46

19
9.7
8

11
56
.15 13
6.7
2 21
3.4

37
2.8
7

23
8.0
7

21
5.2
9

22
0.7
1

24
1

40
2.9
2

23
1.4
7

23
3.6
1

23
2.8
1

41
.4

1.8
9

6.1
9

14
1.8
5

38
7.5
2

26
.39

29
.14

32
.48

0

3

6

9

12

15

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(a) Rand_1M

36
9.0
4

41
.41

94
.35

36
1.3
3

19
07
.28 20
7.5
2 33
1.4
1

61
7.6

37
9.1
4

40
.83

92
.13

35
3.2
6

19
88
.71 19
6.1
3 32
0.9
4

59
3.7
2

68
.99

3.0
6

11
.4 69
.57

63
8.5
8

42
.86

49
.73

53
.74

0

5

10

15

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp imp

(b) Rand_2M

70
.91

11
.84

25
.58

78
.14

38
6.6
4 39
.77 62
.6 10

10
.77

72
.88

11
.9

25
.51

79
.23

39
5.5
5 39
.46 62
.75 10
1.7
3

58
.18

51
.98

53
.91

59
.88

11
2.5
9

56
.3

57
.12

56
.89

20
.83

1.2
1

4.4
2

25
.63

24
2.3
5

12
.35

13
.73

16
.8

0

3

6

9

12

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(c) DC
84
.59

12
.66

29
.66

92
.3

40
3.7
2

50
.74 83
.92

10
6.0
5

85
.61

12
.41

28
.97

92
.05

40
1.8
7

49
.32 82

.6

10
4.0
4

58
.18

50
.49

52
.59

60
.24

11
6.1
4 57

.29

56
.27 55
.16

24
.75

1.1
3

4.5
1

28
.14

25
4.9
4

16
.71

18
.59

14
.76

0

3

6

9

12

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(d) Garalgly

63
.69

11
.8

22
.1

54
.15

16
7.8
4

36
.96

64
.76 76
.17

61
.66

11
.29

21
.35

52
.83

17
7.3
1

34
.68

63
.51 73
.8

12
6.3
1

10
3.6
2

10
6.3
5

11
9.3
5

19
4.5
7

12
5.6
2 11

3.2
8

11
2.9
1

47
.93

2.7
5

7.4
3

32
.05

18
9.5
7

42
.08 25
.1

26
.25

0
1
2
3
4
5
6

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(e) Movies

58
.51

10
.76

21
.32

53
.47

15
0.0
2

36
.05

65
.78 69
.64

60
.01

10
.5

20
.58

52
.01

15
3.8
6

34
.58

64
.11 67
.57

11
6.5
3

95
.75

98
.6

11
0.4
3

17
0.6
7 11

6.7
1 10

5.1
5

10
4.9
9

49
.83

2.5
7

7.1
4

33
.81

18
6.6
8

45
.4

25
.3

25
.87

0
1
2
3
4
5
6

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(f) Electronics

44
.47

8.7
7

16
.43

39
.69

11
3.8

27
.05

46
.6 56
.36

45
.03

8.5
7

15
.97

38
.81

10
9.7
8

25
.55

45
.72 54
.87

68
.11

53
.95

55
.55

62
.33

94
.02

69
.56

58
.77 58
.92

34
.87

1.7
8

4.9
1

24
.01

13
7.6
9

31
.14

17
.78

17
.14

0
1
2
3
4
5
6

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(g) CDs

26
.36

5.3
4

10
.01

25
.65

66
.38 20

27
.08 37
.96

27
.8

5.2
2

9.7
1

23
.99

64
.38

16
.11

24
.97 35
.54

48
.4

38
.82

39
.99

45
.34

68
.18

49
.94

41
.98

42
.74

32
.97

1.6
9

4.6
5

22
.36

12
5.1
9

29
.6

14
.91

16
.7

0

1

2

3

4

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(h) Kindle

Figure 4.14: Comparison of total range counting time (in seconds) of 4 different
range query methods using 8 different query types with 10,000 queries of each type
and across 8 different data sets. The numbers above bars bi-bi/imp, bi-seq/imp,
lg/imp and imp represent the range counting time of bi-bi, bi-seq, lg and imp,
respectively.

66

26
3.4
8

25
.57

59
.57

25
7.1
8

24
72
.02 14
3.0
3

21
7.1
6 37
4.9
3

26
9.3
2

25
.47

58
.56

25
4.5
4

25
57
.02 16
4.5
3

24
1.8
2 40
0.0
8

29
3.6
7

21
8.6
7

22
7.2
1 29
6.2
5

18
39
.26

26
0.9
2

26
3.8

26
2.1
1

91
.4

2.3
1

10
.11

91
.83

17
90
.43

51
.24

54
.07

56
.88

0

3

6

9

12

15

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(a) Rand_1M

48
6.2
2

42
.63

10
2.6
9

47
7.3
6

48
82
.09 26
6.9 39
1.1
8 68
2.2
9

49
3.3
2

42
.48

10
0.7
9

46
8.6
9

49
07
.45

25
2.2
2

38
1.0
2 66
1.1
3

18
2.4
7

3.8
8

17
.95

17
3.0
2

34
14
.49

93
.56

10
0.6

10
5

0

5

10

15

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp imp

(b) Rand_2M

99
.16

12
.21

28
.24

11
5.2
1

12
62
.76 52
.09 77
.06 11
9.3
5

10
2.2
3

12
.32

28
.22

11
6.8
9

12
88
.58 51
.82 77
.42 11
8.8
9

86
.32

53
.2

57
.42

96
.94

99
2.4
1

69
.46 72
.25 75
.84

46
.38

1.5 6.8
9

58
.78

10
97
.44

24
.09

27
.33

33
.47

0

2

4

6

8

10

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(c) DC
11
9.5
2

12
.9

32
.04

13
1.9
3

13
95
.91

67
.95 10
4.4
6 12
0.0
4

12
3.5
9

12
.74

31
.55

13
0.6
6

14
20
.9

68
.9 10
3.1
3 12
0.3

92
.83

51
.75

56
.09 99

.62

11
10
.72 74
.84

77
.09 69
.66

57
.33

1.4
1

6.9
3

64
.87

12
31
.13

32
.9

37
.58

27
.92

0

2

4

6

8

10

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(d) Garalgly

18
5.3
4

13
.48

30
.71

12
2.4

13
82
.91

11
1.4
7

11
2.1
8

11
2.8
6

18
9.2
5

13
.52

30
.56

12
4.6
7

14
37
.19

11
2.0
8 11
4.1
2

11
2.5
5

26
1.6
8

10
5.9

11
4.4
1

18
7.4
4

14
85
.35 21
0.2
7

15
9.9
9

14
9.2
8

17
1.4
8

4.5
7

15
.51

10
0.0
2

14
11
.56

11
8.1
6

72
.47

62
.48

0

1

2

3

4

5

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(e) Movies

18
8.0
7

12
.37

28
.52

12
0.6
6

13
49
.35

11
8.7
2 10
7.5
4

10
5.9
7

19
3.2
2

12
.39

28
.69

12
2.8
2

13
57
.18

12
0 10

9.4
1

10
5.6
2

25
6.9
7

98
.61

10
7.1
1

18
1.9
9

13
85
.54 21
0.2 14

8.5
2

14
3.4
9

18
7.7
8

4.2
5

14
.65

10
2.7
6

13
60
.03

13
7.4
7

68
.6

63
.52

0

1

2

3

4

5

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(f) Electronics

12
9.5
4

9.7
5

20
.97

84
.79

86
8.5
1

80
.48 74

.82 77
.84

13
0.1
2

9.7
4

21
.04

85
.44

87
4.1
9

86
.75 80

.86 79
.99

15
7.1
4

55
.66

60
.4

10
6.5
6

89
6.4
9

12
7.9
1

85
.46 80
.28

11
9.2

2.7
7

9.4
7

68
.69

87
9.6
8

84
.89

46
.04

38
.6

0

1

2

3

4

5

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(g) CDs

10
7.0
9

6.3
5

14
.29

66
.53

73
7.0
9

70
.17 47
.38 57
.98

11
0.4
5 6.3

3

14
.44

68
.12

75
5.6
5

69
.55 46
.28 57
.74

13
3.9
6

40
.12

44
.2

88
.07

79
6.4
7

10
7.1
4

61
.3

63
.58

11
4.9
9

2.7 9.0
6

66
.15

80
5.7
2

83
.19

35
.36

38
.05

0

1

2

3

4

5

rand tiny small med large long tall wide

bi-bi/imp bi-seq/imp lg/imp imp

(h) Kindle

Figure 4.15: Comparison of total range reporting time (in seconds) of 4 different
range query methods using 8 different query types with 10,000 queries of each type
and across 8 different data sets. The numbers above bars bi-bi/imp, bi-seq/imp,
lg/imp and imp represent the range reporting time of bi-bi, bi-seq, lg and imp,
respectively.

67

(a) imp - view angle 1 (b) imp - view angle 2

(c) bi-bi - view angle 1 (d) bi-bi - view angle 2

(e) bi-seq - view angle 1 (f) bi-seq - view angle 2

(g) lg - view angle 1 (h) lg - view angle 2

Figure 4.16: The relationship of range reporting time, range counting time and
output size of four range query methods for all data sets with range reporting time
on the Z axis, range counting time on the X axis and output size on the Y axis.

68

longest chain decomposition method 2.

Figure 4.14 shows the range counting results and Figure 4.15 shows the range

reporting results. We keep using a bar chart to represent the query time (range

counting or reporting time) comparison of different range query methods for each

data set. Each bar in the chart represents the ratio of the range query time of two

query methods. For instance, the bar with lg/imp is the ratio of the range query time

of the longest chain decomposition range query method and the implicit k-d tree query

method. The number above bar represents the range query time for the longest chain

decomposition range query method. For the range counting results, imp-kd out-

performs all the other three chain-decomposition-based range searching methods for

most cases. Even though in some cases, the chain-decomposition-based range query

methods have the advantage over k-d tree, , like lg in data sets DC and Garalgly and

bi-seq in data set Kindle for query type large, the overall range query performance

of the chain-decomposition-based range searching methods are still unable to match

the performance of k-d tree. On the other hand, for the chain-decomposition-based

range searching methods, the difference of the range query performance between bi-

bi and bi-seq is not that obvious. Even though lg does not support the adaptive

range search like the other two, it still can achieve good range query performance for

the query type large.

Figure 4.16 shows that the range reporting time in 3D is in a linear relationship

with a combination of the search cost (equivalent to the range counting time) and

the output size. Figure 4.16 shows the graphical representations of this relationship

for four different query methods and we calculate four fitting functions for each query

methods using the linear regression algorithm [31]: the linear fitting function of imp

is z = 1.27x+3.05×10−8y−5.44 with the variance score 1.0; the linear fitting function

of bi-bi is z = 1.12x + 3.21 × 10−8y − 10.77 with the variance score 1.0; the linear

fitting function of bi-seq is z = 1.07x+ 3.26× 10−8y − 5.29 with the variance score

1.0; the linear fitting function of bi-bi is z = 0.99x + 3.3 × 10−8y + 1.82 with the

variance score 1.0, where the z-coordinate represents the range reporting time, the

x-coordinate represents the range counting time and the y-coordinate indicates the

output size. Similarly to the 2D case, the differences in range reporting time among
2The chain query method used in lg is bi-bi, since in our experiment, it has better range query

performance compared to bi-seq.

69

Q
ue

ry
ty

pe
C

ou
nt

(s
)

R
ep

or
t

(s
)

N
od

es
vi

si
te

d
N

od
es

fr
om

su
bt

re
e

N
od

e
ra

ti
o

P
oi

nt
s

fr
om

su
bt

re
e

T
ot

al
P
oi

nt
s

fo
un

d
P
oi

nt
s

ra
ti

o
ra

nd
41

.4
91

.4
1
,1
4
2
,0
5
5
,5
3
9

6
1
,4
9
1
,8
9
2

5.
38

%
1
,2
7
5
,2
4
5
,5
5
7

1
,5
6
5
,5
6
9
,5
5
0

81
.4

6%
ti

ny
1.

89
2.

31
4
6
,8
7
6
,6
6
0

1
,0
1
5
,8
0
1

2.
17

%
4
,2
9
1
,3
1
9

1
2
,4
5
9
,7
5
3

34
.4

4%
sm

al
l

6.
91

10
.1

1
1
8
3
,8
6
2
,2
9
6

7
,2
5
7
,3
7
0

3.
95

%
5
9
,0
7
2
,6
8
4

1
0
0
,1
8
1
,4
9
3

58
.9

7%
m

ed
41

.8
5

91
.8

3
1
,1
6
2
,7
4
1
,7
0
0

6
4
,0
0
6
,2
3
0

5.
50

%
1
,2
6
5
,3
6
0
,2
1
6

1
,5
6
1
,8
5
2
,1
8
5

81
.0

2%
la

rg
e

40
3.

66
17

49
.4

3
1
0
,6
6
7
,9
1
6
,2
3
5

6
9
3
,2
8
0
,5
6
8

6.
5%

3
9
,2
3
8
,8
6
5
,2
2
6

4
2
,1
4
2
,3
7
4
,1
8
8

93
.1

1%
lo

ng
26

.3
9

51
.2

4
7
3
1
,7
2
3
,6
7
5

3
8
,4
2
7
,2
0
7

5.
25

%
5
9
2
,0
0
2
,5
9
0

7
8
0
,5
3
1
,8
5
9

75
.8

5%
ta

ll
29

.1
4

54
.0

7
8
1
3
,5
7
3
,6
2
0

4
9
,1
7
5
,9
4
8

6.
04

%
5
7
8
,9
5
8
,6
9
1

7
7
7
,9
3
1
,7
0
1

74
.4

2%
w

id
e

32
.4

8
56

.8
8

8
9
1
,5
9
9
,5
3
6

3
7
,5
3
3
,6
4
5

4.
21

%
5
5
8
,2
2
5
,6
9
7

7
7
8
,3
3
5
,6
9
1

71
.7

2%

Ta
bl

e
4.

14
:

R
an

d_
1M

-
im

p
-k

d
Q

ue
ry

ty
pe

C
ou

nt
(s

)
R

ep
or

t
(s

)
x
y
-p

la
ne

ch
ai

ns
fo

un
d

T
ot

al
x
y

bi
-s

ea
rc

he
s

x
z
-p

la
ne

ch
ai

ns
fo

un
d

T
ot

al
x
z

bi
-s

ea
rc

he
s

B
i-
se

ar
ch

_
I

T
ot

al
P
oi

nt
s

fo
un

d
ra

nd
20

6.
95

26
3.

48
4
6
,5
5
0
,5
3
9

1
4
2
,7
1
8
,5
5
7

7
3
9
,4
5
5
,0
2
8

6
,0
2
7
,8
5
2
,6
6
2

4
,9
3
6
,4
6
4
,3
7
2

1
,5
6
5
,5
6
9
,5
5
0

ti
ny

25
.0

4
25

.5
7

1
0
,2
5
0
,2
5
3

5
6
,8
1
7
,1
6
1

3
5
,6
2
3
,7
4
4

4
9
8
,8
5
0
,1
1
1

4
8
5
,7
5
0
,8
9
7

1
2
,4
5
9
,7
5
3

sm
al

l
55

.7
7

59
.5

7
1
9
,6
5
3
,0
8
8

8
1
,0
0
5
,3
3
9

1
2
9
,3
9
6
,2
7
7

1
,3
1
5
,8
4
2
,5
8
7

1
,2
1
1
,5
9
5
,4
4
5

1
0
0
,1
8
1
,4
9
3

m
ed

20
0.

23
25

7.
18

4
5
,9
3
5
,5
6
1

1
2
2
,5
1
7
,5
3
9

6
8
8
,5
4
5
,4
2
5

5
,9
8
3
,6
1
8
,6
2
0

4
,7
7
4
,5
9
9
,7
0
9

1
,5
6
1
,8
5
2
,1
8
5

la
rg

e
10

50
.7

9
24

72
.0

2
1
2
0
,1
2
1
,8
5
2

1
4
3
,2
1
9
,2
5
4

3
,9
2
5
,3
6
5
,6
2
1

3
6
,7
4
4
,8
1
8
,5
5
2

2
2
,4
1
2
,6
4
4
,9
7
7

4
2
,1
4
2
,3
7
4
,1
8
8

lo
ng

11
4.

12
14

3.
03

2
4
,2
1
6
,2
1
4

9
0
,3
9
7
,9
6
0

4
8
0
,2
3
4
,5
1
7

3
,6
8
9
,3
5
5
,9
4
4

2
,9
5
2
,0
3
2
,4
2
5

7
8
0
,5
3
1
,8
5
9

ta
ll

18
8.

55
21

7.
16

6
8
,4
1
8
,7
6
1

2
2
9
,8
1
6
,7
8
5

4
5
6
,5
7
1
,6
4
4

4
,8
0
6
,4
7
4
,1
3
2

4
,1
6
8
,2
9
3
,0
6
6

7
7
7
,9
3
1
,7
0
1

w
id

e
34

5.
42

37
4.

93
6
8
,8
7
0
,2
5
3

2
3
3
,0
3
9
,0
8
4

1
,6
1
2
,3
6
7
,0
0
3

1
0
,2
3
7
,3
7
5
,5
2
2

9
,4
8
1
,0
7
9
,1
4
3

7
7
8
,3
3
5
,6
9
1

x
y
-p

la
ne

ch
ai

ns
fo

un
d:

th
e

to
ta

l
nu

m
be

r
of

ch
ai

ns
in

th
e
x
y
-p

la
ne

th
at

in
te

rs
ec

t
th

e
x
y
-p

ro
je

ct
io

ns
of

th
e

qu
er

y
bo

xe
s.

T
ot

al
x
y

bi
-s

ea
rc

h:
th

e
to

ta
l
nu

m
be

r
of

bi
na

ry
se

ar
ch

st
ep

s
ap

pl
ie

d
in

th
e
x
y
-p

la
ne

du
ri

ng
th

e
ra

ng
e

qu
er

ie
s.

x
z
-p

la
ne

ch
ai

ns
fo

un
d:

th
e

to
ta

l
nu

m
be

r
of

ch
ai

ns
in

th
e
x
z
-p

la
ne

th
at

in
te

rs
ec

t
th

e
x
z
-p

ro
je

ct
io

ns
of

th
e

qu
er

y
bo

xe
s.

B
in

ar
y

se
ar

ch
_

I:
th

e
nu

m
be

r
of

bi
na

ry
se

ar
ch

st
ep

s
ap

pl
ie

d
in

th
e
x
z
-p

la
ne

to
fin

d
ou

t
w

he
th

er
th

er
e

ex
is

ts
a

ch
ai

n
th

at
in

te
rs

ec
t

th
e
x
z
-p

ro
je

ct
io

n
of

th
e

qu
er

y
bo

x.

Ta
bl

e
4.

15
:

R
an

d_
1M

-b
i-
b
i

Q
ue

ry
ty

pe
C

ou
nt

(s
)

R
ep

or
t

(s
)

x
y
-p

la
ne

ch
ai

ns
fo

un
d

T
ot

al
x
y

bi
-s

ea
rc

he
s

x
z
-p

la
ne

ch
ai

ns
fo

un
d

B
i-
se

ar
ch

_
I

B
es

t
-d

is
L
in

ea
r

sc
an

T
ot

al
P
oi

nt
s

fo
un

d
ra

nd
21

4.
56

26
9.

32
4
6
,5
5
0
,5
3
9

1
4
2
,7
1
8
,5
5
7

7
3
9
,4
5
5
,0
2
8

4
,9
3
6
,4
6
4
,3
7
2

10
1
,8
7
1
,2
8
3
,0
2
5

1
,5
6
5
,5
6
9
,5
5
0

ti
ny

24
.8

25
.4

7
1
0
,2
5
0
,2
5
3

5
6
,8
1
7
,1
6
1

3
5
,6
2
3
,7
4
4

4
8
5
,7
5
0
,8
9
7

1
3
,1
0
9
,7
7
0

12
,4
5
9
,7
5
3

sm
al

l
54

.4
6

58
.5

6
1
9
,6
5
3
,0
8
8

8
1
,0
0
5
,3
3
9

1
2
9
,3
9
6
,2
7
7

1
,2
1
1
,5
9
5
,4
4
5

1
4
6
,4
7
7
,4
6
5

1
0
0
,1
8
1
,4
9
3

m
ed

19
9.

78
25

4.
54

4
5
,9
3
5
,5
6
1

1
2
2
,5
1
7
,5
3
9

6
8
8
,5
4
5
,4
2
5

4
,7
7
4
,5
9
9
,7
0
9

5
1
,1
8
2
,5
3
3
,0
8
6

1
,5
6
1
,8
5
2
,1
8
5

la
rg

e
11

56
.1

5
25

57
.0

2
1
2
0
,1
2
1
,8
5
2

1
4
3
,2
1
9
,2
5
4

3
,9
2
5
,3
6
5
,6
2
1

2
2
,4
1
2
,6
4
4
,9
7
7

24
2
3
,8
6
4
,4
5
6
,7
6
2

4
2
,1
4
2
,3
7
4
,1
8
8

lo
ng

13
6.

72
16

4.
53

2
4
,2
1
6
,2
1
4

9
0
,3
9
7
,9
6
0

4
8
0
,2
3
4
,5
1
7

2
,9
5
2
,0
3
2
,4
2
5

1
4
7
8
,6
8
2
,2
9
3

7
8
0
,5
3
1
,8
5
9

ta
ll

21
3.

4
24

1.
82

6
8
,4
1
8
,7
6
1

2
2
9
,8
1
6
,7
8
5

4
5
6
,5
7
1
,6
4
4

4
,1
6
8
,2
9
3
,0
6
6

1
4
6
6
,0
5
8
,0
9
8

7
7
7
,9
3
1
,7
0
1

w
id

e
37

2.
87

40
0.

08
6
8
,8
7
0
,2
5
3

2
3
3
,0
3
9
,0
8
4

1
,6
1
2
,3
6
7
,0
0
3

9
,4
8
1
,0
7
9
,1
4
3

1
4
6
1
,7
0
6
,0
8
7

7
7
8
,3
3
5
,6
9
1

B
es

t-
di

s:
th

e
op

ti
m

al
sc

an
ni

ng
di

st
an

ce
fo

r
th

e
ch

ai
ns

in
th

e
x
z
-p

la
ne

.
L
in

ea
r

sc
an

:
th

e
to

ta
l
nu

m
be

r
sc

an
ni

ng
st

ep
s

pe
rf

or
m

ed
in

th
e
x
z
-p

la
ne

du
ri

ng
th

e
ra

ng
e

qu
er

ie
s.

Ta
bl

e
4.

16
:

R
an

d_
1M

-b
i-
se

q

70

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 238.07 293.67 108,919,676 8,890,653,344 1,565,569,550
tiny 215.29 218.76 4,321,207 8,512,403,339 12,459,753
small 220.71 227.21 18,337,540 8,543,102,748 100,181,493
med 241 296.25 110,681,280 8,917,582,021 1,561,852,185
large 449.92 1839.26 846,754,921 12,814,032,134 42,142,374,188
long 231.47 260.92 91,918,707 8,776,154,257 780,531,859
tall 233.61 263.8 91,421,435 8,776,071,416 777,931,701
wide 232.81 262.11 92,767,121 8,788,482,355 778,335,691

Chains found: the total number of chains in 3D that intersect the range query boxes.

Table 4.17: Rand_1M-lg

the four query methods for each data set are mainly due to the search costs. To sum

up, the implicit k-d tree range query method outperforms all the chain-decomposition-

based range searching methods for both range counting and range reporting queries

in nearly all cases. Next, we use one data set to analyze in detail and explain why the

range query performance of the chain-based range query methods is unable to match

the range query performance of the implicit k-d tree.

The data set we choose is Rand_1M. Tables 4.14, 4.15, 4.16 and 4.17 show

the analysis results for the range query methods imp-kd, bi-bi, bi-seq and lg,

respectively. The k-d tree analysis in 3D is similar to the analysis in 2D. For the

untangled chain decomposition range query method (bi-bi and bi-seq), the partition

process in 3D has been divided into two steps. Without lose of generality, we first

run the chain decomposition and untangling processes in the xy-plane, then for each

chain in the xy-plane, we project all points on the chain to the xz-plane and apply the

chain decomposition and untangling processes again in the xz-plane. For the range

query method lg, we count the total number of chains that intersect the query boxes

and the total number of binary search steps during the range queries.

We first analyze each table individually. For range query method imp-kd in

Table 4.14, the range counting time for the implicit k-d tree is in a linear relationship

with the number of accessed nodes during range queries, which is similar to the

2D case. Figure 4.17 gives the graphical representation of this linear relationship.

Compared to the 2D case, except for the range query type large (roughly 10 times

greater 2D), the total number of accessed nodes in 3D is roughly 3 times greater

than that in 2D. The number of nodes in the tree that report all points stored in

their subtrees is still only a small fraction of the total number of visited nodes, but

71

Figure 4.17: The relationship of range counting time and the number of accessed
nodes for the implicit k-d tree for all data sets with the range counting time on the
Y axis and the number of accessed nodes on the X axis. The blue trend-line shows a
linear relationship of the two parameters using the function y = 2.34× 10−8x+ 4.89
that is calculated based on linear regression algorithm [31] and the variance score is
0.97.

Figure 4.18: The relationship of range counting time and the number of binary search
steps for bi-bi for all data sets with the range counting time on the Y axis and the
number of binary search steps on the X axis. The blue trend-line shows a linear
relationship of the two parameters using the function y = 2.93 × 10−8x + 6.19 with
the variance score is 0.99.

72

(a) View angle 1

(b) View angle 2

Figure 4.19: The relationship of range counting time, the number of binary search
steps and the number linear scanning steps for all data sets with the range counting
time on the Z axis, the number of binary search steps on the X axis and the number
linear scanning steps on the Y axis. The coloured surface is drawn using the function
z = 3.93× 10−8x+ 9.78× 10−9y − 0.72 with variance score 1.0.

73

Figure 4.20: The relationship of number of binary search steps and the number of
crossing chains for bi-bi for all data sets with the range counting time on the Y axis
and the number of crossing chains on the X axis. The blue trend-line shows a linear
relationship of the two parameters using the function y = 0.11x− 14346874.72. The
variance score is 0.98.

(a) View angle 1 (b) View angle 2

Figure 4.21: The relationship of the number of crossing chains, the number of binary
search steps and the number of scanning steps for bi-seq for all data sets with the
number of crossing chains on the Z axis, the number of binary search steps on the
X axis and the number scanning stepson the Y axis. The coloured surface is drawn
using the function z = 0.16x+ 0.01y − 47683559.09. The variance score is 0.99.

these nodes contribute most of the found points for each type of range queries. As

for the untangled chain based range query methods (bi-bi and bi-seq), the range

counting time of bi-bi is in a linear relationship with the number of binary search

steps performed in the xz-plane and the range counting time of bi-seq is in a linear

relationship with a combination of the total number binary searches steps and total

74

Figure 4.22: The relationship of range counting time and the number of binary
search steps for lg for all data sets with the range counting time on the Y axis and
the number of binary search steps on the X axis. The blue trend-line shows a linear
relationship of the two parameters using the function y = 4.04× 10−8x− 60.52. The
variance score is 0.95.

number linear scanning steps performed in the xz-plane. Figures 4.18 and 4.19 show

the graphical representations of these two linear relationships. Compared to the 2D

case, the number of basic steps performed for the two query methods, especially

binary search steps, is at least 5 times greater than in 2D for nearly all query types.

For query type large, the number of binary search steps is roughly 20 times greater

than in 2D. The explanation for this low range query performance is the large number

of chains in the xz-plane that cross the query boxes. Figure 4.20 and 4.21 show the

relationship of the number of crossing chains and the number of basic steps for the

two untangled chain based range query methods. The reason for this large number of

crossing chains is likely due to the large number of chains generated in the xz-plane.

The number of chains generated in the xz-plane is much greater than the number

of chains generated in the xy-plane (5 times greater for the Amazon point sets, 20

times greater for the 3D object point sets and 35 times greater for the random point

sets, see Table 4.13). This large number of generated chains in the xz-plane may

result in a large number of crossing chains in the xz-plane. For range query method

lg in Table 4.17, we can observe that the query time differences among different

types of queries (except large) are not that obvious and its range counting time is

75

in a linear relationship with the number of binary search steps performed during the

range searching, see Figure 4.22. For lg, the query type has less impact on the query

time, since we need to check every single chain to find whether there exists any point

on the chain that lies in the range query box. The longer range query time of large

is because more binary search steps (looking for the first and last points that lie in

the range) need to apply on each chains that intersects the range query boxes (the

number of chains found by large type is at least 10 times greater than the others, see

Table 4.17).

Next, we compare these four range query methods using their hardware perfor-

mance results. As shown in Table 4.18, imp-kd outperforms all the chain-decomposition-

based range query methods in all aspects. For the chain decomposition range query

methods (bi-bi, bi-seq and lg), the noticeable differences comparing to the implicit

k-d tree are the number of instructions and L1-dcache-load-misses. We conjectured

that the task-clock (equivalent to the range query time) is mainly dependent on the

number of instructions and number of L1-dcache-load-misses, which is similar to the

2D case.

One thing worth mentioning is that the slightly improved performance of chain-

decomposition-based range searching methods for the Amazon point sets (especially

for query types large and long) is due to its lower number of generated chains in the

xz-plane. This relatively small number of generated chains is due to the z-coordinates

for the Amazon point sets being the integers ranging from 1 to 5 and this small range

scale makes the z-coordinate have little impact on the chain partition (most of the

z-coordinates have the same value). Based on the experimental results and analysis

mentioned above, we are able to conclude that the performance of the existing chain-

decomposition-based range searching methods are unable to match the performance of

k-d tree in 3-dimensional space. The reasons are the large number of chains generated

by the chain partition steps and their significant number of basic query steps. We

attached all the experimental results in Appendix B for reference.

76

P
er

fo
rm

an
ce

im
p
-k

d
b
i-
b
i

b
i-
se

q
lg

ta
sk

-
cl

oc
k(

m
se

c)
43

08
7.

71
21

03
93

.0
2

21
63

67
.9

4
24

18
44

.8
6

cy
cl

es
1
0
3
,1
3
4
,8
6
2
,3
5
9

5
0
3
,5
6
9
,2
8
9
,9
1
3

5
1
7
,8
7
4
,6
1
2
,7
3
3

5
7
8
,6
2
8
,9
2
6
,6
3
6

co
nt

ex
t-

sw
it

ch
es

1
1
,3
2
2

0.
26

K
/s

5
4
,2
4
7

0.
26

K
/s

5
5
,3
0
0

0.
25

K
/s

5
9
,0
4
6

0.
24

K
/s

pa
ge

-f
au

lt
s

7
0
8
6

0.
16

K
/s

1
4
,1
5
3

0.
07

K
/s

1
4
,1
5
3

0.
07

K
/s

1
7
,4
6
8

0.
7

K
/s

in
st

ru
ct

io
n

8
9
,5
7
0
,2
7
8
,6
2
3

0.
87

in
-

sn
s/

cy
cl

e
3
0
6
,1
0
0
,4
2
2
,3
3
8

0.
61

in
-

sn
s/

cy
cl

e
3
0
6
,8
7
3
,9
8
6
,2
6
1

0.
59

in
-

sn
s/

cy
cl

e
2
4
3
,9
0
5
,6
3
7
,3
2
2

0.
42

in
-

sn
s/

cy
cl

e

br
an

ch
es

1
3
,5
9
3
,7
7
9
,7
0
0

31
5.

49
M

/s
5
4
,1
4
3
,0
3
4
,0
4
4

25
7.

34
M

/s
5
6
,4
0
6
,9
6
8
,0
6
8

26
0.

7
M

/s
4
4
,0
4
5
,1
5
3
,4
5
6

18
2.

12
M

/s
br

an
ch

-
m

is
se

s
7
0
2
,9
8
2
,3
7
4

5.
17

%
4
,4
7
3
,5
5
7
,0
5
6

8.
26

%
4
,5
2
4
,6
7
2
,9
4
1

8.
02

%
4
,4
2
9
,6
0
9
,0
3
8

10
.0

6%

L
1-

dc
ac

he
-

lo
ad

s
4
7
,0
7
8
,4
7
6
,3
1
8

10
92

.6
2

M
/s

1
1
0
,1
5
4
,9
3
7
,7
5
7

52
3.

57
M

/s
1
1
4
,4
1
7
,0
6
1
,7
1
5

52
8.

81
M

/s
6
6
,0
2
2
,2
2
4
,2
2
9

27
3

M
/s

L
1-

dc
ac

he
-

lo
ad

-m
is

se
s

2
9
7
,6
8
0
,4
3
2

0.
63

%
4
,4
5
2
,8
5
1
,9
2
6

4.
04

%
4
,6
9
3
,4
9
0
,0
8
8

4.
1%

8
,3
2
5
,0
8
0
,1
2
5

12
.6

1%

L
L
C

-l
oa

ds
4
4
3
,8
9
7
,2
3
4

10
.3

M
/s

5
,6
3
0
,7
8
0
,2
3
3

26
.7

6
M

/s
5
,8
0
8
,8
8
2
,6
5
9

26
.8

5
M

/s
1
0
,9
8
9
,1
8
0
,2
2
9

45
.4

4
M

/s
L
L
C

-l
oa

ds
-

m
is

se
s

2
8
8
,8
6
2
,9
1
0

65
.0

7%
4
,4
5
4
,3
2
1
,8
9
0

79
.1

1%
4
,6
9
5
,7
1
2
,8
5
1

80
.8

4%
8
,3
3
8
,9
7
9
,1
3
1

75
.8

8%

N
ot

e:
K

/s
in

di
ca

te
s

ki
lo

by
te

pe
r

se
co

nd
s.

M
/s

re
pr

es
en

ts
m

eg
ab

yt
e

pe
r

se
co

nd
s.

in
sn

s/
cy

cl
e

in
di

ca
te

s
nu

m
be

r
of

in
st

ru
ct

io
ns

pe
r

cy
cl

e.
T

he
L
1-

dc
ac

he
-l
oa

ds
an

d
L
1-

dc
ac

he
-l
oa

d-
m

is
se

s
re

pr
es

en
t

th
e

nu
m

be
r

of
L
ev

el
-1

da
ta

ca
ch

e
lo

ad
s

an
d

th
e

nu
m

be
r

of
L
ev

el
-1

da
ta

ca
ch

e-
m

is
se

s.
T

he
L
L
C

-l
oa

ds
an

d
L
L
C

-l
oa

d-
m

is
se

s
re

pr
es

en
t

th
e

la
st

le
ve

l
(L

ev
el

-3
)

ca
ch

e
lo

ad
s

an
d

ca
ch

e-
m

is
se

s.
T

he
pe

rc
en

ta
ge

sh
ow

n
in

br
an

ch
-m

is
se

s
is

th
e

pe
rc

en
ta

ge
of

th
e

nu
m

be
r

of
br

an
ch

-m
is

se
s

ou
t

of
th

e
to

ta
l
nu

m
be

r
of

br
an

ch
es

.
T

he
pe

rc
en

ta
ge

sh
ow

n
in

L
1-

dc
ac

he
-l
oa

d-
m

is
se

s
is

th
e

pe
rc

en
ta

ge
of

th
e

nu
m

be
r

of
L
1-

dc
ac

he
-l
oa

d-
m

is
se

s
ou

t
of

th
e

to
ta

l
nu

m
be

r
of

L
1-

dc
ac

he
-l
oa

ds
.

T
he

pe
rc

en
ta

ge
of

L
L
C

-l
oa

ds
-m

is
se

s
is

th
e

pe
rc

en
ta

ge
of

th
e

nu
m

be
r

of
L
L
C

-l
oa

d-
m

is
se

s
ou

t
of

th
e

to
ta

l
nu

m
be

r
of

L
L
C

-l
oa

ds
.

Ta
bl

e
4.

18
:

H
ar

dw
ar

e
pe

rf
or

m
an

ce
an

al
ys

is
of

da
ta

se
t
R

an
d
_

1M
fo

r
ty

pe
ra

nd

77

(a) View angle 1

(b) View angle 2

Figure 4.23: The relationship of task-clock(msec), the number of instructions and
the number L1-dcache-load-misses for all data sets with the task-clock(msec) on the Z
axis, the number of instructions on the X axis and the number L1-dcache-load-misses
on the Y axis. The coloured surface is drawn using the function z = 4.07× 10−7x+
2.12× 10−5y − 18710.8 that is calculated based on linear regression algorithm [31].

Chapter 5

Conclusion and Future Work

We proposed the first data structure based on untangled monotonic chain for or-

thogonal range searching in 3-dimensional space. The idea is an extension of the

2-dimensional chain partition algorithm mentioned in [4].

In the experimental evaluation, we first re-evaluated the experimental studies con-

ducted for the 2-dimensional range searching algorithm based on untangled monotonic

chains in [14] and found that the k-d tree implementation in CGAL [34], which was

used as a reference for the experimental evaluation in [14], is inefficient for the task at

hand. Therefore, we implemented k-d trees ourselves with limited functionality (our

implementation only supports fast orthogonal range queries over static point sets) and

compared them against the chain-decomposition-based range searching methods. The

experimental results showed that the performance of the chain-decomposition-based

range searching methods is largely dependent on the number of chains generated dur-

ing the partition steps, which could vary even for equally-sized point sets. Even with

relatively few chains, the chain-decomposition-based range searching methods were

only as competitive as the k-d tree, which contradicts the experimental results in [14].

Then, we implemented three different 3-dimensional chain-decomposition-based range

query methods and compared them against the 3D k-d tree. The experimental results

revealed that none of them are comparable with the range query performance of the

k-d tree. The range searching method based on untangled chains suffered from its

large number of generated chains and the longest chain range searching method is

impractical due to its significant amount of construction time as the point set size

gets larger.

The future improvement regarding the 3-dimensional chain decomposition method

would be to design an efficiency partition algorithm, which could result in the fewer

number of chains. Moreover, in [4], the authors mentioned that using the fractional

cascading technique, the range query time of the untangled monotonic chain based

78

79

range query method in 2D can be improved to O(lg n+m+ k) time, where m is the

total number of chains and k is the output size. It would be interesting to see whether

we can apply this technique to the range searching methods based on the monotonic

chains in 3D.

Bibliography

[1] Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its rela-
tives. Contemporary Mathematics, 223:1–56, 1999.

[2] Artur Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid in-
formation services. In Peer-to-Peer Computing, 2002.(P2P 2002). Proceedings.
Second International Conference on, pages 33–40. IEEE, 2002.

[3] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. The priority r-tree:
A practically efficient and worst-case optimal r-tree. ACM Transactions on Al-
gorithms (TALG), 4(1):9, 2008.

[4] Diego Arroyuelo, Francisco Claude, Reza Dorrigiv, Stephane Durocher, Meng He,
Alejandro López-Ortiz, J Ian Munro, Patrick K Nicholson, Alejandro Salinger,
and Matthew Skala. Untangled monotonic chains and adaptive range search.
Theoretical Computer Science, 412(32):4200–4211, 2011.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: an efficient and robust access method for points and rectangles. In
ACM SIGMOD Record, volume 19, pages 322–331. Acm, 1990.

[6] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[7] Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of
the ACM, 23(4):214–229, 1980.

[8] Jon Louis Bentley and Hermann A. Maurer. Efficient worst-case data structures
for range searching. Acta Informatica, 13(2):155–168, 1980.

[9] Manuel Blum, Robert W Floyd, Vaughan Pratt, Ronald L Rivest, and Robert E
Tarjan. Time bounds for selection. Journal of computer and system sciences,
7(4):448–461, 1973.

[10] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. Maan: A multi-attribute
addressable network for grid information services. Journal of Grid Computing,
2(1):3–14, 2004.

[11] Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data struc-
turing technique. Algorithmica, 1(1):133–162, 1986.

[12] Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for
simplex range searching and new zone theorems. Algorithmica, 8(1-6):407–429,
1992.

80

81

[13] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of
finite vc-dimension. Discrete & Computational Geometry, 4(5):467–489, 1989.

[14] Francisco Claude, J Ian Munro, and Patrick K Nicholson. Range queries over
untangled chains. In International Symposium on String Processing and Infor-
mation Retrieval, pages 82–93. Springer, 2010.

[15] William Cook. The Traveling Salesman Problem. http://www.math.
uwaterloo.ca/tsp/data/index.html, 2009. [Online; accessed 19-March-2016].

[16] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Simplex
range searching. Computational Geometry: Algorithms and Applications, pages
335–355, 2008.

[17] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational geometry. In Computational geometry, pages 1–
17. Springer, 2000.

[18] Gabriele Di Stefano, Stefan Krause, Marco E Lübbecke, and Uwe T Zimmer-
mann. On minimum k-modal partitions of permutations. In Latin American
Symposium on Theoretical Informatics, pages 374–385. Springer, 2006.

[19] Fedor V Fomin, Dieter Kratsch, and Jean-Christophe Novelli. Approximating
minimum cocolorings. Information Processing Letters, 84(5):285–290, 2002.

[20] Antonin Guttman. R-trees: a dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[21] Sangyong Hwang, Keunjoo Kwon, Sang K Cha, and Byung S Lee. Performance
evaluation of main-memory r-tree variants. In International Symposium on Spa-
tial and Temporal Databases, pages 10–27. Springer, 2003.

[22] Ji Jin, Ning An, and Anand Sivasubramaniam. Analyzing range queries on spa-
tial data. In Data Engineering, 2000. Proceedings. 16th International Conference
on, pages 525–534. IEEE, 2000.

[23] Jure Leskovec, Polo Chau and Ana Pavlisic. SNAP Datasets. http://jmcauley.
ucsd.edu/data/amazon/, 2013. [Online; accessed 23-May-2016].

[24] KV Ravi Kanth and Ambuj Singh. Optimal dynamic range searching innon-
replicating index structures. In International Conference on Database Theory,
pages 257–276. Springer, 1999.

[25] Der-Tsai Lee and CK Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta
Informatica, 9(1):23–29, 1977.

82

[26] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy
keyword search over encrypted data in cloud computing. In INFOCOM, 2010
Proceedings IEEE, pages 1–5. IEEE, 2010.

[27] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private key-
word search over encrypted data in cloud computing. In Distributed Computing
Systems (ICDCS), 2011 31st International Conference on, pages 383–392. IEEE,
2011.

[28] Jiří Matoušek. Geometric range searching. ACM Computing Surveys (CSUR),
26(4):422–461, 1994.

[29] Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin, and
Claudio T. Silva. A Benchmark for Surface Reconstruction. http://www.
cs.utah.edu/~bergerm/recon_bench/point/, 2013. [Online; accessed 2-April-
2016].

[30] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing
in spatial network databases. In Proceedings of the 29th international conference
on Very large data bases-Volume 29, pages 802–813. VLDB Endowment, 2003.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[32] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dy-
namic index for multi-dimensional objects. 1987.

[33] Kenneth J Supowit. Decomposing a set of points into chains, with applications
to permutation and circle graphs. Information Processing Letters, 21(5):249–252,
1985.

[34] Hans Tangelder and Andreas Fabri. dD spatial searching. In CGAL User and
Reference Manual. CGAL Editorial Board, 4.2 edition, 2013.

[35] Boyang Wang, Ming Li, and Haitao Wang. Geometric range search on en-
crypted spatial data. IEEE Transactions on Information Forensics and Security,
11(4):704–719, 2016.

[36] Boyang Wang, Ming Li, Haitao Wang, and Hui Li. Circular range search on
encrypted spatial data. In Communications and Network Security (CNS), 2015
IEEE Conference on, pages 182–190. IEEE, 2015.

[37] Xinjing Wei. 3D chain decomposition and range search. Master’s thesis, Dal-
housie University, 6299 South St, Halifax, NS B3H 4R2, 7 2015.

83

[38] Bing Yang, Jing Chen, En-Yue Lu, and Si-Qing Zheng. Design and performance
evaluation of sequence partition algorithms. Journal of Computer Science and
Technology, 23(5):711–718, 2008.

[39] Reuven Bar Yehuda and Sergio Fogel. Partitioning a sequence into few monotone
subsequences. Acta Informatica, 35(5):421–440, 1998.

Appendix A

The 2D Range Query Results

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 20.91 379.54 595607326 70400525 11.82% 12351370551 12523213300 98.63%
tiny 0.89 1.5 23316052 1809570 7.76% 14384606 19939312 72.14%
small 2.83 9.37 78526521 8194858 10.44% 201237941 222696159 90.36%
med 8.44 65.84 238051302 27393822 11.51% 1928871952 1996683853 96.6%
large 56.18 2591.56 1604165680 196174433 12.23% 88408238114 88876613481 99.47%
tall 17.58 76.22 513314029 49652492 9.67% 1857755238 2010372899 92.41%
wide 24.12 82.63 696933666 85976430 12.34% 1803103335 1998483230 90.22%

Table A.1: 2M-imp-kd analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 29.12 393.15 64743029 1141168778 198584515 942584263 12523213300
tiny 1.46 2.09 3081187 53870571 34888004 18982567 19939312
small 4.11 10.83 9674346 156223725 62123349 94100376 222696159
med 12.21 71.61 27222755 463855445 111478205 352377240 1996683853
large 73.4 2633.68 158443790 3038902104 210503374 2828398730 88876613481
tall 30.88 91.68 88418456 1309091092 498396894 810694198 2010372899
wide 32.78 92.31 88508063 1309492826 500928698 808564128 1998483230

Table A.2: 2M-bi-bi analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 32.22 395.5 64743029 198584515 21 1984267130 12523213300
tiny 1.35 1.95 3081187 34888004 2 12123967 19939312
small 3.64 10.15 9674346 62123349 3 95364923 222696159
med 11.84 70.99 27222755 111478205 10 469087116 1996683853
large 91.49 2645.51 158443790 210503374 41 8708653719 88876613481
tall 27.51 86.58 88418456 498396894 4 781966827 2010372899
wide 29.06 87.86 88508063 500928698 4 776589160 1998483230

Table A.3: 2M-bi-seq analysis

84

85

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 3.06 22.21 121477428 12957501 10.67% 645127571 682196174 94.57%
tiny 0.13 0.14 4318247 64414 1.49% 225696 599988 37.62%
small 0.34 0.55 12352275 557915 4.52% 5125818 7274131 70.47%
med 1.1 3.46 42558015 3184381 7.48% 71882088 82323621 87.32%
large 10.34 156.49 422030508 63308423 15% 5071427875 5243195626 96.72%
tall 2.44 5.87 98501900 8672257 8.8% 92440307 114819141 80.51%
wide 1.85 2.98 71771939 2694500 3.75% 24480792 38083901 64.28%

Table A.4: China-imp-kd analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 2 21.7 13277300 162654594 55992968 106661626 682196174
tiny 0.24 0.26 491100 13628697 12800605 828092 599988
small 0.38 0.6 1611822 23631779 18030816 5600963 7274131
med 0.87 3.26 4870599 59775656 29685930 30089726 82323621
large 4.22 155.47 31332759 445643690 36545422 409098268 5243195626
tall 2.51 5.85 19009748 191826648 115561693 76264955 114819141
wide 1.64 2.79 12177431 117531145 85068119 32463026 38083901

Table A.5: China-bi-bi analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 1.96 21.71 13277300 55992968 21 224145117 682196174
tiny 0.24 0.25 491100 12800605 3 478974 599988
small 0.36 0.57 1611822 18030816 1 6362631 7274131
med 0.79 3.21 4870599 29685930 11 45166482 82323621
large 3.67 154.56 31332759 36545422 41 717215905 5243195626
tall 2.25 5.62 19009748 115561693 2 65560471 114819141
wide 1.52 2.66 12177431 85068119 1 32126444 38083901

Table A.6: China-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 21.48 617.44 720115282 94562551 13.13% 20578346231 20807251013 98.9%
tiny 0.46 0.83 14025120 700576 5% 10063671 12256895 82.11%
small 1.57 6.05 49488214 3960595 8% 141400495 152220939 92.89%
med 6.36 60.07 198787698 22350318 11.24% 1811793567 1867805110 97%
large 60.19 4084.66 2151183537 377921993 17.57% 139965387077 140828409413 99.39%
tall 12.53 57.99 418303773 32181559 7.69% 1457728773 1555687563 93.7%
wide 19.16 86.17 631149556 52679070 8.35% 2155793177 2286821545 94.27%

Table A.7: World-imp-kd analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 25.61 622.21 66700631 1107293907 277199596 830094311 20807251013
tiny 0.9 1.26 1992325 38690130 32080688 6609442 12256895
small 2.48 6.88 6888319 101971273 64254625 37716648 152220939
med 8.58 62.35 23517401 356702422 143474555 213227867 1867805110
large 55.61 4073.89 151164398 2901719554 185406698 2716312856 140828409413
tall 20.15 65.41 63824718 862078454 457992516 404085938 1555687563
wide 22.65 88.65 65586344 897191313 463778869 433412444 2286821545

Table A.8: World-bi-bi analysis

86

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 31.85 639.75 66700631 277199596 39 2375513440 20807251013
tiny 0.87 1.23 1992325 32080688 2 6788096 12256895
small 2.43 6.8 6888319 64254625 4 49864306 152220939
med 8.87 63.51 23517401 143474555 16 373990284 1867805110
large 71.72 4129.33 151164398 185406698 59 7093831871 140828409413
tall 19.52 64.33 63824718 457992516 4 513723613 1555687563
wide 23.57 89.42 65586344 463778869 4 699517692 2286821545

Table A.9: World-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 13.44 286.81 536838528 60810664 11.33% 9899175508 10057787200 98.42%
tiny 0.58 1.14 21034363 1424429 6.77% 15877587 20550886 77.26%
small 1.8 7.73 68228483 6212956 9.11% 192890218 210395422 91.68%
med 5.31 53.49 208922948 21291535 10.19% 1691598759 1748354644 96.75%
large 37.03 1946.31 1524351421 203488975 13.35% 69354533337 69869697854 99.26%
tall 10.28 46.69 407141119 39539158 9.71% 1212235369 1327876857 91.29%
wide 15.88 57.26 649718148 63800789 9.82% 1326400819 1501859838 88.32%

Table A.10: Movies-imp-kd analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 14.93 286.05 42689253 748256443 143663114 604593329 10057787200
tiny 0.9 1.43 2229979 41629622 27783864 13845758 20550886
small 2.26 7.86 6840701 111249236 47102240 64146996 210395422
med 6.12 53.15 18707415 315090176 82370783 232719393 1748354644
large 36.07 1931.96 104718057 1997753309 144390100 1853363209 69869697854
tall 12.6 48.59 47015950 695729841 291279407 404450434 1327876857
wide 17.08 57.32 66583588 928142125 421285062 506857063 1501859838

Table A.11: Movies-bi-bi analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 16.07 294.85 42689253 143663114 28 1547299670 10057787200
tiny 0.84 1.37 2229979 27783864 1 18678528 20550886
small 2.04 7.73 6840701 47102240 4 73518828 210395422
med 5.91 54.2 18707415 82370783 16 400345779 1748354644
large 42.45 1996.14 104718057 144390100 48 6198023189 69869697854
tall 12.21 47.92 47015950 291279407 5 444533425 1327876857
wide 15.34 56.67 66583588 421285062 5 525974727 1501859838

Table A.12: Movies-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 14.63 328.15 575589873 64519560 11.21% 11424479366 11593777650 98.54%
tiny 0.58 1.17 20801027 1424916 6.85% 14946269 19621599 76.17%
small 1.86 7.92 70181405 6505798 9.27% 197812602 216213883 91.49%
med 5.78 57.09 220211820 22707638 10.31% 1817621064 1878794798 96.74%
large 38.79 2290.41 1582575478 200798013 12.69% 82839010227 83346437539 99.39%
tall 11.3 52.65 448095679 43983894 9.82% 1333845732 1461951892 91.24%
wide 16.11 55.91 645664532 65308885 10.11% 1222013619 1399257235 87.33%

Table A.13: Electronics-imp-kd analysis

87

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 14.15 328.67 40644339 725235338 130126090 595109248 11593777650
tiny 0.85 1.35 1920716 37750372 25202187 12548185 19621599
small 2.13 7.92 6204468 103441112 42930014 60511098 216213883
med 5.91 56.72 17871135 304755106 76290790 228464316 1878794798
large 34.08 2309.79 98945085 1915294375 122206060 1793088315 83346437539
tall 13.21 55.24 46468613 704843102 280803802 424039300 1461951892
wide 15.53 56.84 58222402 822331704 361116158 461215546 1399257235

Table A.14: Electronics-bi-bi analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 15.98 327.51 40644339 130126090 25 1485770898 11593777650
tiny 0.78 1.28 1920716 25202187 1 17986837 19621599
small 1.92 7.61 6204468 42930014 4 73242346 216213883
med 5.94 56.38 17871135 76290790 12 365455348 1878794798
large 41.61 2302.69 98945085 122206060 42 5944901969 83346437539
tall 11.81 50.4 46468613 280803802 7 488790100 1461951892
wide 13.13 51.06 58222402 361116158 5 477581944 1399257235

Table A.15: Electronics-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 10.39 197.03 427585249 48411392 11.32% 6848943446 6976514085 98.17%
tiny 0.47 0.79 16437344 1064512 6.48% 9263708 12714492 72.86%
small 1.47 5.16 54124674 5012926 9.26% 126658305 140285275 90.29%
med 4.3 35.74 164575578 17151572 10.42% 1140727921 1185088370 96.26%
large 30.42 1379.23 1265507620 169239194 13.37% 50022144965 50468181700 99.12%
tall 8.28 33.02 326491816 36758300 11.26% 848791738 934245421 90.85%
wide 11.96 38.16 486911828 39666212 8.15% 844029077 976704146 86.42%

Table A.16: CDs-imp-kd analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Binary
search_I

Binary
search_II

Total Points
found

rand 10.74 198.57 36759489 611956743 124854107 487102636 6976514085
tiny 0.74 1.06 1892280 35435705 25107981 10327724 12714492
small 1.73 5.47 6003246 93832657 41773441 52059216 140285275
med 4.51 36.31 16322037 261760337 71026129 190734208 1185088370
large 25.57 1387.62 91710848 1665159118 125847531 1539311587 50468181700
tall 9.74 34.37 40305074 568571697 245600549 322971148 934245421
wide 11.52 37.43 53230471 713446330 318329922 395116408 976704146

Table A.17: CDs-bi-bi analysis

88

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Best
distance

Linear scan Total Points
found

rand 11.5 199.21 36759489 124854107 20 1071747334 6976514085
tiny 0.7 1.01 1892280 25107981 1 11155045 12714492
small 1.56 5.25 6003246 41773441 3 58591028 140285275
med 4.27 36.01 16322037 71026129 16 328519171 1185088370
large 29.59 1396.25 91710848 125847531 43 4854630023 50468181700
tall 9.02 33.44 40305074 245600549 5 342632446 934245421
wide 10.27 36.43 53230471 318329922 5 386714392 976704146

Table A.18: CDs-bi-seq analysis

Appendix B

The 3D Range Query Results

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 68.99 182.47 1823438735 103153067 5.66 2657862097 3134932819 84.78
tiny 3.06 3.88 73362909 2045640 2.79 10705804 25079503 42.69
small 11.4 17.95 291814395 12945111 4.44 131388916 200559494 65.51
med 69.57 173.02 1850613592 106735372 5.77 2644014683 3129512255 84.49
large 638.58 3414.49 16944443753 1112336160 6.56 79797179204 84471760631 94.47
long 42.86 93.56 1161599532 80423026 6.92 1262744966 1557587529 81.07
tall 49.73 100.6 1321427590 56955367 4.31 1219568671 1561371848 78.11
wide 53.74 105 1407496834 75267223 5.35 1204277309 1570310105 76.69

Table B.1: 2M-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 369.04 486.22 65598606 198736728 1249770468 10595771209 8543363754 3134932819
tiny 41.41 42.63 14444021 77078622 60526974 822560418 795617274 25079503
small 94.35 102.69 27634038 111487957 217884650 2226589317 2020755949 200559494
med 361.33 477.36 64654126 170376137 1162447195 10487577858 8219759350 3129512255
large 1907.28 4882.09 169312607 200549610 6621030060 65140076747 39375526558 84471760631
long 207.52 266.9 34002182 124852573 808733783 6552025463 5134086857 1557587529
tall 331.41 391.18 97010097 324732812 772006327 8242235167 7008035045 1561371848
wide 617.6 682.29 96908092 328788676 2734356977 18174785922 16710191822 1570310105

Table B.2: 2M-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 379.14 493.32 65598606 198736728 1249770468 8543363754 10 3458071435 3134932819
tiny 40.83 42.48 14444021 77078622 60526974 795617274 1 7424879 25079503
small 92.13 100.79 27634038 111487957 217884650 2020755949 2 104050817 200559494
med 353.26 468.69 64654126 170376137 1162447195 8219759350 5 2161880906 3129512255
large 1988.71 4907.45 169312607 200549610 6621030060 39375526558 25 45987050664 84471760631
long 196.13 252.22 34002182 124852573 808733783 5134086857 1 1022474280 1557587529
tall 320.94 381.02 97010097 324732812 772006327 7008035045 1 1007617665 1561371848
wide 593.72 661.13 96908092 328788676 2734356977 16710191822 1 1009273672 1570310105

Table B.3: 2M-bi-seq analysis

89

90

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 20.83 46.38 668,545,953 41,436,217 6.20% 641,481,364 819,508,008 78.28%
tiny 1.21 1.5 34,835,660 839,257 2.41% 3,758,362 9,142,559 41.11%
small 4.42 6.89 134,909,952 5,783,631 4.29% 46,148,547 74,887,609 61.62%
med 25.63 58.78 825,314,563 51,192,629 6.20% 863,060,921 1,081,054,895 79.84%
large 242.35 1097.44 8,099,917,366 790,684,301 9.76% 22,986,109,745 26,055,333,561 88.22%
long 12.35 24.09 396,930,581 18,939,661 4.77% 267,204,667 360,431,602 74.13%
tall 13.73 27.33 436,521,290 24,956,762 5.72% 317,789,753 423,378,443 75.06%
wide 16.8 33.47 536,952,171 33,770,143 6.29% 402,365,475 527,725,051 76.25%

Table B.4: DC-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 70.91 99.16 31,798,716 99,860,254 242,132,940 2,039,855,101 1,723,546,637 819,508,008
tiny 11.84 12.21 7,937,997 42,459,303 13,122,249 240,248,572 233,699,037 9,142,559
small 25.58 28.24 14,718,186 59,574,693 51,045,943 596,784,519 554,135,281 74,887,609
med 78.14 115.21 33,943,935 92,734,002 265,664,336 2,346,112,395 1,920,012,771 1,081,054,895
large 386.64 1262.76 84,519,538 103,191,935 1,457,176,376 14,010,643,367 8,156,052,115 26,055,333,561
long 39.77 52.09 18,105,559 66,960,766 137,728,491 1,136,135,839 962,733,404 360,431,602
tall 62.6 77.06 36,064,691 116,221,434 142,908,393 1,600,383,333 1,409,087,392 423,378,443
wide 100.77 119.35 40,443,124 132,103,007 427,774,821 2,972,816,478 2,717,733,535 527,725,051

Table B.5: DC-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 71.72 100.15 31,798,716 99,860,254 242,132,940 1,723,546,637 10 404,323,194 819,508,008
tiny 11.74 12.14 7,937,997 42,459,303 13,122,249 233,699,037 1 6,414,513 9,142,559
small 25.16 27.87 14,718,186 59,574,693 51,045,943 554,135,281 1 59,608,214 74,887,609
med 78.14 114.74 33,943,935 92,734,002 265,664,336 1,920,012,771 5 431,702,253 1,081,054,895
large 490.56 1269.05 84,519,538 103,191,935 1,457,176,376 8,156,052,115 28 6,468,125,514 26,055,333,561
long 48.25 51.16 18,105,559 66,960,766 137,728,491 962,733,404 2 186,203,083 360,431,602
tall 74.79 76.37 36,064,691 116,221,434 142,908,393 1,409,087,392 2 219,285,545 423,378,443
wide 126.19 117.69 40,443,124 132,103,007 427,774,821 2,717,733,535 1 444,613,008 527,725,051

Table B.6: DC-dis-bi analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 58.18 86.32 28,465,707 2,917,204,806 819,508,008
tiny 51.98 53.2 1,399,619 2,812,336,801 9,142,559
small 53.91 57.42 6,229,677 2,825,264,515 74,887,609
med 59.88 96.94 36,235,489 2,957,992,589 1,081,054,895
large 112.59 992.41 286,112,111 4,315,948,770 26,055,333,561
long 56.3 69.46 19,721,904 2,873,271,488 360,431,602
tall 57.12 72.25 21,366,983 2,877,433,978 423,378,443
wide 56.89 75.84 26,842,474 2,908,214,087 527,725,051

Table B.7: DC-lg analysis

91

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 24.75 57.33 783659811 50825999 6.49% 793711625 1008288397 78.72%
tiny 1.13 1.41 32555177 813377 2.5% 3500126 8351519 41.91%
small 4.51 6.93 137229955 6231241 4.54% 44903505 74336271 60.41%
med 28.14 64.87 895804422 58570331 6.54% 900184218 1140684391 78.92%
large 254.94 1231.13 8543146065 910351143 10.66% 26264600776 29601868455 88.73%
long 16.71 32.9 529289573 25538194 4.82% 375012795 503123286 74.54%
tall 18.59 37.58 585584529 37673162 6.43% 437680976 586037805 74.68%
wide 14.76 27.92 467009973 29640511 6.35% 297166943 408917456 72.67%

Table B.8: Garalgly-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 84.59 119.52 32007711 107615682 311216761 2518713106 2097823595 1008288397
tiny 12.66 12.9 8376807 43955230 14904646 258310139 251734643 8351519
small 29.66 32.04 15885643 65463253 64005618 700889798 653512565 74336271
med 92.3 131.93 33483623 96175011 342082005 2868728943 2340006494 1140684391
large 403.72 1395.91 82314606 98567576 1515133709 14927974718 8474145681 29601868455
long 50.74 67.95 19424358 73358199 196930536 1552565930 1284987449 503123286
tall 83.92 104.46 42995033 149761200 198002012 2182991027 1906343791 586037805
wide 106.05 120.04 37394981 130500684 471356916 3067659734 2839547318 408917456

Table B.9: Garalgly-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 85.61 123.59 32007711 107615682 311216761 2097823595 10 529745630 1008288397
tiny 12.41 12.74 8376807 43955230 14904646 251734643 1 5587340 8351519
small 28.97 31.55 15885643 65463253 64005618 653512565 1 57302561 74336271
med 92.05 130.66 33483623 96175011 342082005 2340006494 5 509617907 1140684391
large 401.87 1420.9 82314606 98567576 1515133709 8474145681 27 6172541037 29601868455
long 49.32 68.9 19424358 73358199 196930536 1284987449 2 261181555 503123286
tall 82.6 103.13 42995033 149761200 198002012 1906343791 1 485119109 586037805
wide 104.04 120.3 37394981 130500684 471356916 2839547318 1 332983446 408917456

Table B.10: Garalgly-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 58.18 92.83 37333882 2360069578 1008288397
tiny 50.49 51.75 1246164 2223300028 8351519
small 52.59 56.09 6377855 2236494978 74336271
med 60.24 99.62 44917225 2396184488 1140684391
large 116.14 1110.72 303632232 3838818504 29601868455
long 57.29 74.84 28663775 2309536315 503123286
tall 56.27 77.09 30826488 2326014321 586037805
wide 55.16 69.66 24437704 2303918176 408917456

Table B.11: Garalgly-lg analysis

92

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 47.93 171.48 1929518758 118393467 6.14% 3471658508 4007810458 86.62%
tiny 2.75 4.57 108946850 4081994 3.75% 33933427 56321844 60.25%
small 7.43 15.51 306042679 14053528 4.59% 186526019 258356689 72.2%
med 32.05 100.02 1351827991 74001582 5.47% 1839948291 2208888875 83.3%
large 189.57 1411.56 8289099139 600789292 7.25% 35977515122 38821847881 92.67%
long 42.08 118.16 1688539244 103078222 6.1% 2015515133 2429830204 82.95%
tall 25.1 72.47 1093823780 57575899 5.26% 1245555549 1519737827 81.96%
wide 26.25 62.48 1087045383 55185398 5.08% 866096441 1157068453 74.85%

Table B.12: Movies-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 63.69 185.34 46131589 143907945 121748695 2112695963 1118028838 4007810458
tiny 11.8 13.48 11856878 57965213 10412094 303831709 251803490 56321844
small 22.1 30.71 21357780 82374879 26791987 649589178 483014689 258356689
med 54.15 122.4 44240009 122444103 96977568 1885828842 1098427538 2208888875
large 167.84 1382.91 111240006 139247198 480721504 7221436206 2218254017 38821847881
long 36.96 111.47 25739029 91946035 87495500 1341405756 533660504 2429830204
tall 64.76 112.18 60579675 203766281 80740285 2005936489 1427936350 1519737827
wide 76.17 112.86 74903505 329734283 257057077 2874361966 2218972809 1157068453

Table B.13: Movies-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 61.66 189.25 46131589 143907945 121748695 1118028838 5 1227673872 4007810458
tiny 11.29 13.52 11856878 57965213 10412094 251803490 1 48665662 56321844
small 21.35 30.56 21357780 82374879 26791987 483014689 3 126605741 258356689
med 52.83 124.67 44240009 122444103 96977568 1098427538 4 810722517 2208888875
large 177.31 1437.19 111240006 139247198 480721504 2218254017 30 11436314476 38821847881
long 34.68 112.08 25739029 91946035 87495500 533660504 3 974707141 2429830204
tall 63.51 114.12 60579675 203766281 80740285 1427936350 3 645513347 1519737827
wide 73.8 112.55 74903505 329734283 257057077 2218972809 3 540348186 1157068453

Table B.14: Movies-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 126.31 261.68 85865549 5004278867 4007810458
tiny 103.62 105.9 3738538 4700854538 56321844
small 106.35 114.41 11352906 4723128512 258356689
med 119.35 187.44 55860019 4897622326 2208888875
large 194.57 1485.35 348268777 6323157245 38821847881
long 125.62 210.27 66416546 4918873893 2429830204
tall 113.28 159.99 53544189 4865032677 1519737827
wide 112.91 149.28 53169912 4870732118 1157068453

Table B.15: Movies-lg analysis

93

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 49.83 187.78 2004248790 124772790 6.23% 3658899417 4231156591 86.48%
tiny 2.57 4.25 100972387 3645048 3.61% 27846345 48941966 56.9%
small 7.14 14.65 293702890 13154022 4.48% 160813403 231703690 69.4%
med 33.81 102.76 1435044546 77873437 5.43% 1793277514 2201334451 81.46%
large 186.68 1360.03 8341287948 605740306 7.26% 34357066173 37358273481 91.97%
long 45.4 137.47 1795038722 113742425 6.34% 2268619383 2717713204 83.48%
tall 25.3 68.6 1104456243 57109730 5.17% 1065153094 1354211598 78.65%
wide 25.87 63.52 1073325391 54331978 5.06% 882894262 1174777244 75.15%

Table B.16: Electronics-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 58.51 188.07 43034438 130367634 116405862 2030665235 1067049250 4231156591
tiny 10.76 12.37 10488261 53076900 9796040 287492084 238415962 48941966
small 21.32 28.52 19576146 76350256 26768379 635097454 473424795 231703690
med 53.47 120.66 42643696 111197160 96508269 1865785741 1084449056 2201334451
large 150.02 1349.35 102896939 115068365 436456418 6706276067 2008825626 37358273481
long 36.05 118.72 23877742 85315834 86308972 1307680711 517881259 2717713204
tall 65.78 107.54 57450524 189964866 82526283 2065377394 1476910761 1354211598
wide 69.64 105.97 66879797 282517730 233165973 2641648550 2022795709 1174777244

Table B.17: Electronics-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 60.01 193.22 43034438 130367634 116405862 1067049250 5 1258588140 4231156591
tiny 10.5 12.39 10488261 53076900 9796040 238415962 1 41778470 48941966
small 20.58 28.69 19576146 76350256 26768379 473424795 3 116579138 231703690
med 52.01 122.82 42643696 111197160 96508269 1084449056 5 786706618 2201334451
large 153.86 1357.18 102896939 115068365 436456418 2008825626 30 10109376443 37358273481
long 34.58 120 23877742 85315834 86308972 517881259 3 1065934910 2717713204
tall 64.11 109.41 57450524 189964866 82526283 1476910761 4 561107587 1354211598
wide 67.57 105.62 66879797 282517730 233165973 2022795709 3 535280160 1174777244

Table B.18: Electronics-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 116.53 256.97 80287060 4732988348 4231156591
tiny 95.75 98.61 3345820 4438074953 48941966
small 98.6 107.11 9935269 4459435393 231703690
med 110.43 181.99 50507056 4639905025 2201334451
large 170.67 1385.54 291367748 5842952465 37358273481
long 116.71 210.2 77053205 4677006195 2717713204
tall 105.15 148.52 44462037 4588552292 1354211598
wide 104.99 143.49 44426159 4598965266 1174777244

Table B.19: Electronics-lg analysis

94

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 34.87 119.2 1449507053 88945560 6.14% 2280675110 2690820885 84.76%
tiny 1.78 2.77 72835061 2423869 3.33% 15675943 29916591 52.4%
small 4.91 9.47 207028860 9566576 4.62% 93348924 142064090 65.71%
med 24.01 68.69 1043992023 61276996 5.87% 1143805959 1437435789 79.57%
large 137.69 879.68 6233368513 515816691 8.28% 21581803972 23955197149 90.09%
long 31.14 84.89 1267842307 70996319 5.6% 1388471428 1700575275 81.65%
tall 17.78 46.04 795961471 51753686 6.5% 692118133 895381126 77.3%
wide 17.14 38.6 733933436 32204882 4.39% 482165271 677117563 71.21%

Table B.20: CDs-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 44.47 129.54 40821209 125516990 100224570 1611052652 894931703 2690820885
tile 3.43 3.62 5152667 38265097 3573879 100223501 92914894 5115278
tiny 8.77 9.75 10704073 51509192 8565101 228351971 195870900 29916591
small 16.43 20.97 19457471 72254909 22013965 488625012 379209407 142064090
med 39.69 84.79 40191450 107694340 80121197 1445090677 880488429 1437435789
large 113.8 868.51 97247362 120024939 398457265 5597002766 1861140709 23955197149
long 27.05 80.48 23387896 79972878 73581654 1029861839 425634783 1700575275
tall 46.6 74.82 53241774 168709043 64016996 1482326334 1092915270 895381126
wide 56.36 77.84 61076429 240889377 212289413 2189237567 1770068129 677117563

Table B.21: CDs-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 45.03 130.12 40821209 125516990 100224570 894931703 5 871966640 2690820885
tiny 8.57 9.74 10704073 51509192 8565101 195870900 1 24107676 29916591
small 15.97 21.04 19457471 72254909 22013965 379209407 1 125344014 142064090
med 38.81 85.44 40191450 107694340 80121197 880488429 3 614244459 1437435789
large 109.78 874.19 97247362 120024939 398457265 1861140709 31 7932151034 23955197149
long 25.55 86.75 23387896 79972878 73581654 425634783 3 698846457 1700575275
tall 45.72 80.86 53241774 168709043 64016996 1092915270 3 399156318 895381126
wide 54.87 79.99 61076429 240889377 212289413 1770068129 3 332240915 677117563

Table B.22: CDs-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 68.11 157.14 44954831 2779021874 2690820885
tiny 53.95 55.66 2411147 2592753925 29916591
small 55.55 60.4 7094779 2607595442 142064090
med 62.33 106.56 33286297 2721749350 1437435789
large 94.02 896.49 188462518 3575827478 23955197149
long 69.56 127.91 39917171 2752498568 1700575275
tall 58.77 85.46 27424580 2688512251 895381126
wide 58.92 80.28 28591671 2688390448 677117563

Table B.23: CDs-lg analysis

95

Query
type

Count
(s)

Report
(s)

Nodes visited Nodes from
subtree

Node
ratio

Points
from subtree

Total Points
found

Points
ratio

rand 32.97 114.99 1399676958 88059261 6.29% 2245054703 2639375760 85.06%
tiny 1.69 2.7 70130960 2415372 3.44% 17090525 31155828 54.85%
small 4.65 9.06 198891734 9352948 4.7% 93723235 140607534 66.66%
med 22.36 66.15 991380796 61212003 6.17% 1126199050 1406367169 80.08%
large 125.19 805.72 5701057099 489683726 8.59% 20126227925 22270828738 90.37%
long 29.6 83.19 1231537571 70657021 5.74% 1404158971 1711647362 82.04%
tall 14.91 35.36 671520727 40550104 6.04% 489331138 654064276 74.81%
wide 16.7 38.05 727155475 34122348 4.69% 490236522 685179912 71.55%

Table B.24: Kindle-imp-kd analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Total xz
bi-searches

Bi-search_I Total Points
found

rand 26.36 107.09 24789186 74719764 55725601 1010499126 542174812 2639375760
tiny 5.34 6.35 7214993 33080924 4964438 151164344 126825069 31155828
small 10.01 14.29 12819956 44658703 12540893 322026973 245487407 140607534
med 25.65 66.53 24314563 62873309 44497840 935329045 559325410 1406367169
large 66.38 737.09 56573053 69688530 231241781 3393553432 1088607262 22270828738
long 20 70.17 15209047 49111612 43370149 656933117 254357400 1711647362
tall 27.08 47.38 29823393 90825878 32409945 871510637 642841692 654064276
wide 37.96 57.98 42010615 187402077 118182169 1415199837 1115423487 685179912

Table B.25: Kindle-bi-bi analysis

Query
type

Count
(s)

Report
(s)

xy-plane
chains found

Total xy
bi-searches

xz-plane
chains found

Bi-search_I Best
-dis

Linear scan Total Points
found

rand 27.8 110.45 24789186 74719764 55725601 542174812 5 728694232 2639375760
tile 2.1 2.29 2875273 25898598 2018724 57890939 1 3585351 4686627
tiny 5.22 6.33 7214993 33080924 4964438 126825069 3 16630394 31155828
small 9.71 14.44 12819956 44658703 12540893 245487407 3 65722641 140607534
med 23.99 68.12 24314563 62873309 44497840 559325410 5 448998781 1406367169
large 64.38 755.65 56573053 69688530 231241781 1088607262 24 4734721180 22270828738
long 16.11 69.55 15209047 49111612 43370149 254357400 5 512243759 1711647362
tall 24.97 46.28 29823393 90825878 32409945 642841692 3 273470236 654064276
wide 35.54 57.74 42010615 187402077 118182169 1115423487 3 299099117 685179912

Table B.26: Kindle-bi-seq analysis

Query
type

Count
(s)

Report
(s)

Chains found Binary search
steps

Total Points
found

rand 48.4 133.96 38334005 2146332262 2639375760
tiny 38.82 40.12 1976026 1987519117 31155828
small 39.99 44.2 5699934 2000155612 140607534
med 45.34 88.07 28475296 2102140927 1406367169
large 68.18 796.47 154207100 2788257446 22270828738
long 49.94 107.14 34388770 2122803846 1711647362
tall 41.98 61.3 18400440 2052706706 654064276
wide 42.74 63.58 25113617 2075699412 685179912

Table B.27: Kindle-lg analysis

