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Abstract

Contact matrices have been widely used to represent proteins structures. They are

transformed to protein contact networks to determine key functional residues, analyze

effects of ligand binding, and protein protein interaction. We extend the approach of

contact matrices to the aggregation of contact matrices across homologous samples

of proteins by defining the frequency contact matrix (FCM). A FCM encodes the fre-

quency of a contact between the side chains of structurally aligned sites. Using this

approach, we analyzed the general sitewise contact entropy of a set of protein struc-

tures with and without a ligand-bound for residues close to the active site (≤ 10 ) and

farther from the active site. Dataset comprised of enzymes from enolase, mandelate

racemase, and muconate cycloisomerase subgroups within the enolase superfamily

were constructed. The results show that the median of contact entropy of hydropho-

bic residues is higher than that for hydrophilic residues. A significant relationship

was also observed between the mean contact entropy of residues and their respective

properties such as size and hydrophobicity, which indicated that as the hydropho-

bicity or size of residues increases, the contact entropy of residues also increased.

On comparing the contact entropy of residues in the ligand-bound and ligand-free

structure, no change was observed for the enolase superfamily. It was also observed

that the information obtained from the residue contact entropy values has significant

relationship with sequence entropy values. Sequence entropy values indicate the un-

certainty of residue type at structurally aligned positions. For some datasets, the

residue contact entropy values were found to be sensitive to distance from the active

site. The same entropy value distribution for ligand-bound and ligand-free datasets

may be due to the dataset collection method and choice of sub-optimal parameters.

x
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Chapter 1

Introduction

1.1 Structure of Proteins

Proteins are the macromolecules which act as one of the building blocks of life. They

are of great importance in almost all biological functions. Proteins are classified

by their purpose and the results of their binding; for example structural proteins,

enzymes, lectins, proteins of motility, receptors, repressors, immunoglobulins, hor-

mones, and membrane-bound transfer proteins. They are produced in ribosomes of

living cells with the help of RNA (ribonucleic acid) which acts as a blueprint for

the type of protein that needs to be produced. These RNA blueprints are referred

to as transcripts. Proteins are polypeptides i.e., they are long chains of individual

units called residues of which there are 20 types with a general structure as shown in

Figure 1.1 [14]. Amino acids contain amine (−NH2) and carboxyl (-COOH) groups

which form the backbone of the amino acid. The R group of each amino acid, also

known as the side chain, may be hydrophilic (water attracting) or hydrophobic (wa-

ter repelling). The former are generally found on the surface of protein and latter

are generally buried inside the protein. The side chains give amino acids its proper-

ties, function and localization. For example, the side chain determines the relative

hydrophobicity and molecular weight (size) of an amino acid (Table 1.1) [34].

Figure 1.1: Structure of an amino acid. The backbone for all amino acids are the
same but the R group varies for different amino acids [43].

1
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Amino Acid Name Size Hydrophobicity

G glycine 75.0669 -0.4
A alanine 89.0935 1.8
S serine 105.093 -0.8
P proline 115.131 -1.6
V valine 117.1469 4.2
T threonine 119.1197 -0.7
C cysteine 121.159 2.5
I isoleucine 131.1736 4.5
L leucine 131.1736 3.8
N asparagine 132.1184 -3.5
D aspartate 133.1032 -3.5
E glutamine 146.1451 -3.5
K lysine 146.1882 -3.9
Q glutamate 147.1299 -3.5
M methionine 149.2124 1.9
H histidine 155.1552 -3.2
F phenylalanine 65.19 2.8
R arginine 174.2017 -4.5
Y tyrosine 181.1894 -1.3
W tryptophan 204.2262 -0.9

Table 1.1: The molecular weight (size in Dalton) and hydrophobicity values (KD) of
common amino acids [34].

1.1.1 Primary Structure of Proteins

The amino acids form a peptide bond between each other as shown in Figure 1.2

thereby forming a sequence which is known as the protein’s primary structure (Figure

1.3). When two amino acids combine like this to form peptide bonds, the reaction

releases a water molecule and the amino acids are now referred to as amino acid

residues or just residues. Protein polypeptide chains vary in length, e.g., 50 to 25000.

However, most protein polypeptide chains contain 200 to 500 residues [14].

1.1.2 Secondary Structure of Proteins

Polypeptides have specific local conformations or secondary structures which depend

on hydrogen bonding between the residues. There are two main types of secondary

structures: α-helices and β-sheets which are linked by loops as shown in Figure
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Figure 1.2: Peptide bond between the two residues [51]. During the formation of
peptide bond a water molecule is released (blue).

Figure 1.3: Primary structure of proteins [40]. This primary structure is a three
residue polypeptide chain.
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1.4. α-helices are a righthand-coiled conformation which is formed by donation of

a hydrogen bond. β-sheets are pleated sheets connected laterally by two or three

backbone hydrogen bonds. Helices are often represented by cylinders and coiled

ribbons and β-sheets are represented by arrows.

Figure 1.4: Example of yeast enolase secondary structure (PDB ID: 1L8P chain: A).
α-helices (red), β-sheets (yellow) and loops (green).

1.1.3 Tertiary Structure of Proteins

The residues and secondary structural features interact with each other forming the

three-dimensional shape of proteins i.e., the tertiary structure. The folding of proteins

allow for the interaction of residues that may be distant from each other in the primary

sequence of the protein. This 3D structure is roughly spherical or partially compact

for globular proteins [14]. The residues buried inside the protein core are primarily

hydrophobic, so that they avoid contact with aqueous medium that most proteins

generally exist within [55]. Acidic or basic residue sidechains will generally be exposed

on the surface of the protein as they are hydrophilic. The structures of most of the

proteins that have more than 200 residues have two, three, or more structural units

called domains. Quite often, a single chain of polypeptides connects different domains

in the protein. A domain is a conserved part of the protein structure that can evolve,

function and exist independently. Small proteins tend to have only one domain and
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Figure 1.5: Example of the tertiary structure of yeast enolase (PDB ID: 1L8P chain:
A).

are grouped in the same group; large proteins, on the other hand, often have more

than one domain and can be classified individually [44]. The definition of domain and

the division of proteins into domains is very subjective and lacks clear rules. Figure

1.5 shows the typical tertiary structure of a protein.

1.1.4 Quaternary Structure in Proteins

Proteins can consist of multiple polypeptide chains, which can be either identical or

different depending on the type and functionality of the protein. Different polypeptide

chains are referred to as subunits, monomers, chains, or protomers. These subunits

may be the same (homo) or different (hetero). The number of chains can vary,

which makes a protein homodimer (two identical chains) or heterodimer (two different

chains), homotrimer (three identical chains) or heterotrimer (three different chains)

or even higher order combinations of identical or different chains. Such combinations

of the chains make the quaternary structure of the protein [14]. The quaternary

structures refers to how these chains interact with each other and arrange themselves

to form protein complexes. Figure 1.6 shows a typical quaternary structure of a

protein.
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Figure 1.6: Quaternary structure of enolase1 (PDB ID: 2PSN). This structure com-
prises of 4 chains (A,B,C, and D) coloured green, blue, yellow, and pink respectively.

1.1.5 Protein Structure and its Relation to Functionality

The 3D structure of proteins plays an important role in determining their function,

and it is the amino acid sequence of the protein that determines the function and the

structure of a given protein. One characteristic that affects the function of a protein

is its hydrophobicity; determined largely by primary and secondary structure, for

example, the regions of membrane proteins that interact with lipids (hydrophobic in

nature) mostly comprises of hydrophobic residues (water repelling) or the mutated

haemoglobin in red blood cells found in sickle cell disease have high hydrophobicity

which causes the protein molecules to stick to each other. Most proteins perform their

specific function when they are folded into an ordered and stable structure called its

native state. The sequence of changes that the protein undergoes to reach its native

structure is known as protein folding. The native state can be perturbed by a number

of external factors such as temperature, pH, absence of water as solvent, presence of

a hydrophobic surface such as a membrane, and presence of metal ions [6].
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Figure 1.7: The blue circle shows homologous structures that have evolved from the
same ancestor (root).

1.2 Homologous Proteins

The protein structures that have common ancestry across the evolutionary time-

line [45] are said to be homologous proteins. They may have statistically signifi-

cant similarity. For example, the three-dimensional structure of horse and human

haemoglobin is homologous even though 43 of their residues are different [14]. Figure

1.7 shows the evolution of protein sequences. The similarity of the sequence is de-

termined by a sequence alignment. There are numerous software programs that are

available for aligning the sequences, e.g., BLAST [4] and HMMER [22].

1.3 Families, Subfamilies, and Subgroups in Proteins

Evolutionarily related proteins may be grouped together in a family. Some studies

suggest that if two protein sequences share 30% sequence similarity or have similar

structure or similar function, they are usually grouped in a family [44]. A superfamily

is comprised of families that have different sequences, but the similar structure and
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function of these families suggest the possibility of common evolutionary origin. If

the secondary structures are in the same arrangement for families and superfamilies,

then these are grouped in common folds. The folds are grouped into classes for

convenience [44]. For example, in this research, we examine the enolase superfamily

of enzymes which consists of a common fold called a TIM barrel. This superfamily is

composed of members with high sequence and structural similarity (see Section 1.6).

1.4 Types of Databases

Known protein structures are generally referred to by their PDB ID. The Protein

Data Bank (PDB) is a repository of information about the structures of large biolog-

ical molecules. Currently the Research Collaboratory for Structural Bioinformatics

(RSCB) is responsible for maintaining the repository [18]. The data is available pub-

licly as a free open-access resource.

The Structural Classification of Proteins (SCOP) database for the investigation of

sequences and structure provides a detailed and comprehensive description of struc-

tural and evolutionary relationships of proteins whose three-dimensional structures

have been determined. It includes all the proteins in the current version of PDB. The

proteins in SCOP are classified by visual inspection and comparison. The unit of

classification in SCOP is the protein domain, that is the conserved part of the protein

which can fold independently from the rest of the protein.

For this research, the Structure-Function Linkage Database (SFLD) was used to

identify and classify protein structures. The SFLD is a manually curated database

that classifies functionally diverse enzymes on the basis of structure-function rela-

tionships. In other databases, some of the members of a superfamily may seem to be

homologous or evolutionarily related due to fact that they share all or part of their

functions. This sometimes leads to misannotation of these members. SFLD tackles

such misannotation by manual curation of the superfamilies of enzymes with diverse

functionality [3]. In the SFLD, the enzymes are divided into superfamilies that may

or may not have functional and evolutionary relationships. On the basis of sequence,

these superfamilies are divided into subgroups. Enzymes belonging to one subgroup
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are evolutionarily related enzymes and have more shared features than the superfam-

ily as a whole, however the enzyme may still catalyse different reactions. Lastly, the

database is divided into families, if two enzymes perform same function using the

same mechanism they are categorized into the same family [3].

1.5 Structural Alignment of Proteins

Structural alignment of protein structures is important to understand the underly-

ing similarity of the structures. There are multiple software programs available for

preparing structural alignments of proteins. Multiple Alignment with Translations

and Twists (MATT) is among the most commonly used [41]. MATT is an aligned

fragment pair chaining algorithm that allows for local flexibility between the frag-

ments. Local flexibility implies that small translations and rotations are allowed to

bring the set of aligned fragments closer using dynamic program assembles. It super-

imposes mostly the backbone of a protein structure in close spatial alignment to every

other structure. In a rigid body transformation, such flexibility is not possible [41].

MATT considers fragments of five to nine amino acid residues for each structure. For

each fragment pair from two different structures, an alignment score (based on the

p-value of the minimum RMSD (root mean square deviation) achievable by the rigid

body transformation) is calculated. MATT builds up sets of aligned fragments of

increasing length using dynamic programming. Structural alignment can reveal areas

that have a high degree of superimposition: such areas can indicate functionally im-

portant parts of proteins such as catalytic sites or highly conserved structural folds.

Figure 1.8 shows the structural alignment of mandelate racemases using MATT and

visualized using PyMOL [17].

1.6 Enolase Superfamily

The enolase superfamily comprises a group of enzymes which catalyse a range of

reactions, yet are related by their common partial chemical mechanism: abstrac-

tion of the α-proton of a substrate to form an enol(ate) intermediate. The catalysis

by enzymes of this superfamily is performed by a conserved set of residues located
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Figure 1.8: Structure alignment of proteins using MATT. The image of alignment
was generated using the visualization software PyMOL and the proteins aligned are
mandelate racemases (1MDR chain A (red) and 2MNR chain A (blue))

in the active site. Enzymes in this superfamily have an important structural do-

main called the triosephosphate isomerase (TIM) barrel - a conserved protein fold

consisting of eight α-helices and eight β-sheets [3, 57]. The enolase superfamily in-

cludes enolase as well as other metabolically specialized enzymes which are catego-

rized into other subgroups: mandelate racemase, galactarate dehydratase, glucarate

dehydratase, muconate-lactonizing enzyme, β-methylaspartate ammonia-lyase, and

D-mannoate dehydratase [8]. One important member of the superfamily is enolase,

also known as phosphopyruvate hydratase. It acts as a catalyst in the penultimate

step of glycolysis (breakdown of glucose into pyruvate molecules). Like other mem-

bers of the superfamily, it also contains a TIM barrel. Although the TIM barrel fold

is common to many other superfamilies, none of these superfamilies have as signifi-

cant level of sequential and functional similarity as the enolase superfamily [8]. Since

the enzymes belonging to this superfamily catalyse a range of imperative reactions,

numerous studies have been conducted on this superfamily [48, 58]. The enolase su-

perfamily is known to be mechanistically diverse and studies have been conducted to

assign functions to its members which can be used as a template to assign functions

to other superfamilies [26]. The diversity and number of enzymes included in the

enolase superfamily were one of the prime reasons of choosing it for this study. The

number of structures in enolase superfamily increased the breadth of our sampling.
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Figure 1.5 shows the structure of enolase from yeast (PDB ID: 1L8P chain: A).

1.7 File Format of Protein Structures

The secondary and tertiary structures of proteins are represented in the form of

Cartesian coordinates with each atom of an individual amino acid having its respec-

tive x, y, and z coordinates. These coordinates, along with variables such as the

occupancy (conformation of side chain or main chain atoms) and the temperature

factor (displacement of atomic position from the mean value) are stored in a file for-

mat called PDB (http://www.rcsb.org/pdb/home/home.do). The PDB file format

contains metadata of the protein structure. It also gives the position of ligands that

are bound to the protein, which include ions, water molecules, and substrates. The

primary structure of the protein is a sequence of amino acids or the residues that can

be computationally represented in the form of a string. The FASTA file format of

proteins contains the sequence of residues that make up the protein. FASTA files can

also represent alignments both sequential and structural, where ‘-’ is used to represent

gaps in the alignment. A gap simply means that no matching residue was found in a

given position of the query sequence when aligned to a reference sequence.

Using Python scripts, the FASTA file format can be parsed into a string to perform

an analysis. PDB files, however, require more elaborate parsing. Some PDB files do

not have a standard format hence retrieval of the coordinates of residues or ligands

requires extensive parsing. The presence of blank spaces and the non-conventional

format of the meta data can also make parsing challenging. In addition to the FASTA

and PDB formats, the protein can also be represented in XML format. The descrip-

tion of the XML format is provided in the XML schema of PDB Exchange Data

Dictionary [56].

1.8 Contact Matrices and Contact Entropy

1.8.1 Contacts

The structure of proteins can be represented as a three-dimensional model. As de-

scribed in Section 1.1.3, residues interact with each other by forming contacts, which
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gives shape to the protein structure. In the present study the word contacts is used

to refer to the distance between two residues due to London-van der Waals forces [7]

which can be used to investigate the protein structures. The definitions of residue

contacts used in literature are very diverse and various researchers have used multiple

definitions. In some cases, the residues are said to be in contact if one of the atoms

of two residues are at a distance of ≤ 5 [7]. This makes the contact calculation quite

sensitive because all of the atoms of a residue are involved in the determination of

contact. The cut-off threshold distance to determine a contact depends on the method

of inter-residue distance calculation. In some studies, the α-carbon of the residues

(first carbon that attaches to functional group) is used to calculate the distance, with

a cut-off threshold of 7 [9]. In other studies contacts are determined by the β-carbon

of the residue (second carbon atom that attaches to functional group), with a cut-

off distance of 8.5 [7]. Measurement of distances using α and β-carbons are fast to

compute due to the fact that only one distance comparison is made. The centroid of

a residue can also be used; however, as stated earlier, to increase the sensitivity of

the contacts, the minimum distance between any of the atoms from the amino acid

is used. The cut-off in such cases is ≤ 5 [42] [2] or 4.5 [37]. Using all of the atoms

of the residue or the centroid requires more comparisons and calculations.

1.8.2 Contact Matrices

The contacts between the residues may be used to construct a contact map or contact

matrix. A contact matrix is a binary matrix M where Mij = 1 if there is a contact

between residue i and residue j, or else Mij = 0. Contact matrices may also be

used as an adjacency matrix to generate amino acid networks or protein contact

networks. Applications of contact matrices are diverse. For example, they may be

used for prediction of 3D structures of proteins which is difficult using only the residue

sequence [53]. A heuristic algorithm called contact map reconstruction (COMAR) has

been used for this purpose [53]. Some studies have also employed contact matrices

to cluster the contacts in order to identify secondary structures. The folding of

proteins allows for the interaction of residues that may be distant from each other in

the primary sequence of the protein. These clusters of contacts are able to capture

non-local interactions to aid prediction of tertiary structures [29]. Contact matrices
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can also be used to analyze protein folding pathways (the physical process by which a

protein acquires its native 3D structure) [29], interactions at protein-protein interfaces

(when two proteins interact as a result of biochemical event caused by electrostatic

forces such as hydrophobic effects) [16], protein dynamics by identifying core residues

[7], and key functional residues in protein structures, i.e., the residues that act at the

active site of enzymes [5].

Some studies convert contact matrices into contact networks, residue interaction

graphs, or protein contact networks [5]. In contact networks, residues act as nodes and

contacts between them are edges. These networks are usually undirected and possess

small-world properties, i.e., each node (residue) can be reached from other nodes by

passing along a small number of edges (contacts) [20]. Graph properties such as

degree distribution (probabilities of number of contacts associated with each residue

over the whole protein network), shortest path length and average shortest path

(average number of steps along the shortest path for all possible pairs of residues in

the network), clustering coefficient (measure of degree to which residues in the protein

network tend to cluster together), and closeness centrality of residues have been used

to identify functionally important residues. Contact matrices have also been used to

create a hierarchical classification of amino acids in a protein network into successive

layers from the core (having high density and contacts) to the periphery (having low

density and contacts) of the protein [33].

The diverse implementation of contact matrices makes them essential in the field

of structural bioinformatics. However, the information provided by a contact matrix

encompasses the structural property of a single protein. In this study, we explored the

use of contact matrices to characterize sets of homologous protein structures which

have common ancestry. This new contact matrix calculated over a set of homologous

structures is called a frequency contact matrix (FCM). The calculation of a FCM is

discussed in the methodology section (see Section 2.5). The examination of contacts

in the entire homologous set of proteins represents the uncertainty of residue-residue

contact across a sample of related protein structures. The contact information of all

the structures in a homologous set of proteins makes FCMs informative as compared

to single contact matrices.
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1.8.3 Contact Entropy

Entropy is a thermodynamic concept which refers to the degree of uncertainty or

disorder within a system. Shannon entropy is an information theory interpretation

of entropy [49] and is often used as a measure of unpredictability of a state. Shannon

entropy has been used for various applications of bioinformatics where disorder needs

to be analyzed. It is used to determine the information content of protein sequences,

where the most probable protein sequences derived from the substitution of amino

acids can be calculated [50]. In this study the contacts of structurally aligned residues

are examined and the concept of Shannon entropy is used to measure the conserved

contacts across the dataset. Shannon entropy for each structurally aligned site is

calculated using the values of a FCM. Low entropy values suggest that the contacts

of structurally aligned sites are similar in all the structures. On the other hand, high

entropy values imply that contacts are non-existent in some structures and variable

across the dataset. In other words, high contact entropy residues have high side chain

freedom across the dataset in comparison to low contact entropy residues.

Predicting contact maps is a challenge in the field of bioinformatics. There are

numerous machine learning algorithms or evolutionary approaches used to predict the

contact matrix of a protein structure [39]. Some studies use the physicochemical prop-

erties of amino acids to predict the contact matrices such as hydrophobicity, polarity,

charge, and size [13]. The prediction model in such studies is based on an evolution-

ary algorithm and consists of a set of rules. These rules obtained from the model

impose a set of conditions on amino acid properties to predict the contacts [13, 39].

Similar to our method, these studies also use the Kyte-Doolittle hydropathy profile

for the hydrophobicity of amino acids. The values of hydrophobicity are normalized

to a range between -1 and 1. Such studies indirectly indicate a relationship between

the contact matrices and physicochemical properties of amino acids. In this study,

we also aim to analyze this relationship. We aim to observe the relationship between

contact entropy values of residues and their properties. We hypothesize that a sig-

nificant relationship exists between the contact entropy values of residues and their

respective hydrophobicity and size.
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Figure 1.9: The structure of yeast enolase (PDB ID: 1EBG). The ligands (Mg2+ and
Phosphonoacetohydroxamic acid) are shown in space-filling representation.

1.9 Ligands and Ligand-binding in Proteins

The function of a protein is dependent on its interaction with other molecules. Ligands

are generally small molecules that form a complex with proteins. A ligand can also

be another protein, or an inorganic ion such as manganese (Mn2+) or magnesium

(Mg2+). Most ligands interact at specific sites on proteins, indeed often only one site

per polypeptide chain. Figure 1.9 shows a ligand-bound to a protein. Ligands may

bind at the surface of proteins or in deep clefts [14]. The sites where the ligand binds

to a protein is called the binding site. Such binding sites are known as an active site

if the protein is an enzyme and catalyses the chemical change of the ligand to the

product. Thus, in enzymes these active site residues are where the enzymatic reaction

takes place. The residues located at the active site are very specific [1]. The binding

of a ligand may change the conformation of a protein’s structure [21]. A ligand binds

to a protein by intermolecular forces such as ionic bonds, hydrogen bonds, and van

der Waals forces (distance-dependent interaction between atoms). Ligand binding

can be characterized by binding affinity, and high-affinity binding can produce the

binding energy required to effect a change in the conformation of a protein [1]. As

stated in the previous section, protein contact networks are a direct implementation

of the contact matrices. Variation observed in these contact networks are a reflection
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of the variation in the contact matrix of the structure. It is shown through various

studies that ligand binding affects the protein contact networks [21]. Studies have

found that ligands act as network bridges in protein contact networks connecting

components of protein contact graphs together [30]. These contact networks were

used to identify functionally important residues using graph centrality. It is often

found that the highly central residues are conserved and in close proximity to ligands

[19, 20, 33]. In other studies, it was found that the central residues were often active

site residues or residues in close proximity of active sites [15]. This implies that the

most important residues in the contact network are the ones that interact with ligands.

Ligands bound to an enzyme were also shown to affect the closeness centrality of the

protein network [19]. Some studies have also suggested that ligand binding affects

the flexibility of certain parts of proteins wherein some parts become stiffer than

others [21] and therefore may alter residue contacts. The residue contacts in the

stiff part of the proteins do not fluctuate significantly [21] and have fixed contacts.

This analysis indicates that ligand binding makes some contacts in the contact map

more stable than the other contacts hence changing the way a contact map looks for

ligand-bound protein structure. Our study focuses on using residue contact entropy

as a measure to determine the effect of ligand binding on the residue contacts with

a goal of analyzing the conservation of residue contacts across the set of homologous

protein structures. We hypothesize that the contact entropy value distribution of

residues close to the active site or otherwise (see section 2.8) for ligand-bound and

ligand-free structures are different.

1.10 Statistical Analysis using K-S test

The Kolmogorov-Smirnov or K-S test is a non-parametric test that compares proba-

bility distributions . I has been in used in various studies of structural bioinformatics

suc as analyzing the protein network properties. For example, K-S test has been

implemented to show the difference between the shortest path length and clustering

coefficient for real protein networks and randomly generated networks [19]. In this

study we also use K-S test to compare the difference between distributions. The
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Figure 1.10: ECDF of two distributions shown in red and blue

reason of using K-S test for statistical analysis is that the distribution of residue con-

tact entropy values of protein structures is not known and is continuous in nature.

K-S test is a robust non-parametric test which does not depend on non normality of

the distributions [27]. For a set of data points x1, x2, x3, .....xN empirical cumulative

distribution function (ECDF) is defined as:

EN = n(i)/N (1.1)

where n(i) is the number of values that are greater than xi. Figure 3.10 shows the

ECDF for two distributions. K-S test is based on the maximum vertical distance be-

tween the two curves. The null hypothesis of the test is that the two distributions are

identical, i.e., the sample distribution does not differ from the reference distribution.

The p-value obtained from the test is then used to determine the significance of our

results. A small p-value (typically < 0.05) indicates sufficient evidence to reject the

null hypothesis [23].

1.11 Our Contributions

In this chapter, we have discussed the basics of protein structures, homology, ligand-

binding at the active sites, and contact matrices. Contact matrices may be used to
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analyze a variety of characteristics related to protein structure and function, including

the formation of protein contact networks, determination of functionally important

residues, effects of ligand binding, protein-protein interactions, prediction of tertiary

structures, etc. While contact matrices have diverse applications, our study aims to

extend the use of contact matrices to FCM which incorporates the contact informa-

tion of homologous sets of structures. In the subsequent chapter, we describe the

calculation of the FCM and contact entropy. In Chapter 3, we show the results of

applying this approach to the enolase superfamily dataset. We describe the use of

frequency contact matrices to find relationships between residue contact entropy and

different properties of amino acid residues. We also show effect of ligand binding

on side chain freedom of conserved contacts using contact entropy as a measure. In

the final chapter, we discuss possible extensions of our approach using alternative

methods.



Chapter 2

Methodology

In this section, the compilation of data, calculation of contact matrices, and calcula-

tion of frequency contact matrices is described. This section also provides the details

for the calculation of the residue contact entropy and the method to statistically ana-

lyze results. An explanation of the simulation of data that was conducted to test the

sensitivity of the K-S test employed to determine the statistical significance of real

datasets is also provided. An overview of the workflow is shown in Figure 2.1.

2.1 Dataset

2.1.1 Database

The enolase superfamily was chosen for study because it is a widely studied dataset,

comprises multiple subgroups and structural information is avalible for a number of

its members. To choose the structures in the enolase superfamily and divide them

into subgroups, the Structure-Function Linkage Database (SFLD) was used [3]. As

described in Section 1.4 the SFLD is a manually annotated database which increases

the reliability of datasets obtained from it. The enzyme structures are divided into

subgroups that are homologous. The enzyme structures were downloaded from the

RCSB PDB (http://www.rcsb.org/pdb/home/home.do) in PDB format and XML

format (see Section 1.7).

2.1.2 Compilation of the Description File

XML formatted PDB structure files were parsed to retrieve a variety of properties

characteristic of the proteins (see below). The information from parsing was saved into

a CSV (comma separated values) file, description file. This file holds the description

of each structure, subgroup, PDB ID of the structure, number and names of chains,

organism to which the protein structure belongs, and the number and name of ligands

19
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bound to each chain.

2.1.3 Division of Dataset

The enolase superfamily is divided into seven subgroups by the SFLD: mandelate race-

mase, mannonate dehydratase, glucarate dehydratase, o-muconate cycloisomerase,

enolase, D-galactarate dehydratase, and β-methylaspartate ammonia-lyase. The num-

ber of structures in the three subgroups examined in the present work is shown

in Table 2.1. The remaining four subgroups consisted of less than 45 quaternary

structures and were therefore eliminated from the dataset. Most structures in each

subgroup were quaternary structures and consisted of multiple polypeptide chains

that may or may not be structurally similar to each other. The structures in each

subgroup belong to different organisms. For each subgroup, the multimeric struc-

tures were divided into individual chains or monomers which were then treated as

individual samples in the final dataset. Chains were segregated on the basis of the

presence or absence of ligands. If the monomer had only Mg2+ and Mn2+ ion bound

at the active site, the chain was categorized into a ligand-free SU set. However,

other monomers or chains had other molecules bound to their Mg2+ and Mn2+ ions,

and such structures were added to the set of ligand-bound structures SL. The de-

termination of ligands binding to the active site was done manually using RCSB

PDB (http://www.rcsb.org/pdb/home/home.do) [18]. The ligand information for

each structure stored in description file was also used to determine if the structures

are ligand-bound or ligand-free (unbound).

Subgroups Total no. of No.chains in No. of chains in
structures SL SU

enolase 66 68 43
mandelate racemase 46 65 38

muconate cycloisomerase 77 78 63

Table 2.1: Number of structures in each subgroup of the enolase superfamily included
in this analysis, where SL is the set of structures that have a ligand-bound at its active
site and SU is the set of structures that are ligand-free.
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Figure 2.1: Overview of the our method. Input structures were divided into subgroups

and then into SL and SU ; the structures in each of the dataset were structurally

aligned using MATT. The contact matrix and frequency contact matrix for each

dataset is calculated. The residue contact entropy was then measured for reference

structure in each dataset. These residue contact entropy values were compared using

the K-S test.

2.1.4 Determination of the Location of the the active site

This study aimed to analyze the side chain freedom of residues in the structure that

are close to the active site and farther from the active site. Thus it is important to

determine the location of the active site in each structure. The position of either mag-

nesium ion (Mg2+) or manganese ion (Mn2+) was used to determine the coordinates

of the active site since these metal ions are essential for catalysis in the enolase su-

perfamily. To maintain consistency the structures that did not have the above stated

metal ions were eliminated from the dataset. Such structures constituted only 5-7%

of the dataset.

2.2 Reference Structures

A reference structure was randomly chosen for the ligand-bound set SL. The reference

for SU was the ligand-free form of the chosen reference structure for SL. Hence, for

each subgroup, the reference structure for SL and SU was the same protein derived

from the same organism in its ligand-bound and ligand-unbound form respectively.

The reference structures are compiled in Table 2.2. One of the chains in these struc-

tures acts as the reference SR for structural alignment. In this research, chain A of

all the structures was chosen as the reference structure.

2.3 Structural Alignment

For each subgroup, the protein structures for both the ligand-bound dataset SL and

the unbound dataset SU were structurally aligned using the pairwise alignment tool
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Subgroups PDB ID SL PDB ID SU

enolase 1ELS 1EBH
mandelate racemase 1MDR 2MNR

muconate cycloisomerase 2P8B 2P88

Table 2.2: PDB IDs of reference structures (SR) of all subgroups for the ligand-bound
and ligand-unbound datasets. These reference structures are used for structural align-
ments.

MATT [41] (see Section 1.5). This alignment generated the set of structurally aligned

sites in SR. The alignment produced a FASTA format file and a PDB format file.

The PDB file contained the Cartesian coordinates for all the structures in the dataset.

The FASTA file was used to determine structurally aligned sites, i.e., the residues that

are located at structurally aligned positions.

2.4 Calculation of the Contact Matrix

A contact matrix (C) is the representation of the 3D structure of proteins in the

form of contacts that exist between each of the residues. There have been numerous

studies conducted using contact matrices to find the functionally important residues

of proteins [33]. The matrices can also be mapped back to the tertiary structure

of the protein. Such matrices can be generated by parsing the PDB format file of

the protein structure and extracting all the Cartesian coordinates, and then testing

the coordinates for contacts. Contacts are determined by the distance between the

residues. There are numerous ways to calculate the distance as described in Section

1.8.1. However, in this study residue i and residue j are said to be in contact if the

distance D between any of their atoms is ≤ 4.5 [42]. The choice of 4.5 as a threshold

was also empirically determined in the lab in past as being an optimal atom to atom

distance. This is a more sensitive way of calculating the contacts. If the protein

has r residues, then the contact matrix C will have the dimensions r × r. After

structural alignment, only structurally aligned residues or positions were taken into

consideration. The structurally aligned sites or residues for each dataset are defined

as strictly gap-less positions in the structural alignment. Hence, for a dataset SU with

k aligned positions, all C will be k×k matrices. A contact matrix is a binary matrix.
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All the residues are tested for contacts with each other; if residue i and residue j are

in contact with each other then the value of Cij = 1 or else Cij = 0.

2.5 Calculation of the Frequency Contact Matrix (FCM)

A frequency contact matrix (FCM) is organized in a similar manner as that of the

contact matrix, but each matrix entry contains the frequency of the contact for a

set of structurally aligned residues. If there are n protein structures in a dataset

SU , a contact matrix C is calculated for each structure. The contact matrices are

aggregated by adding all the respective contacts to create an aggregate contact matrix

Ca using equation 2.1.

Ca =
n−1∑
i=0

Ci (2.1)

The aggregate matrix Ca is normalized to [0,1] range to calculate the frequency con-

tact matrix Cf in accord with equation 2.2.

Cf =
Ca

n
(2.2)

2.6 Calculation of the Residue Contact Entropy

Residue contact entropy, Ec, is used to identify residues with an unusual level of side

chain contact freedom. Shannon contact entropy of a residue i serves as an estimate

of the uncertainty of contacts of that particular residue. The contact entropy for a

residue i is calculated using equation 2.3, where n is the number of structures in the

dataset and Cf
ij is the value of Cf for residue i and residue j.

Ec
i = −

n−1∑
j=0

(Cf
ij)log2(C

f
ij) (2.3)

High value of Ec
i indicates that the contacts of structurally aligned residue i are not

stable across the dataset. Hence the sidechains of such residue forms different contact

across the dataset.
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2.7 Calculation of the Residue Sequence Entropy

The structurally aligned sites or structurally homologous sites are tested for their

sequential variability using sequence entropy. The residues are represented by their

one letter amino acid code in a FASTA format file. The set aa is a set of 20 amino

acids A,C,D......Q,P,Y. The sequence entropy Es for each aligned position i in n

number of structures is calculated using equation 2.4, where count(aa, i) is the count

of a particular residue at aligned site i.

Es
i = −

∑
aa

(
count(aa, i)

n
)log2(

count(aa, i)

n
) (2.4)

High value of Es
i indicates that the residue at structurally aligned site i are aligned

to different types of residues.

2.8 Determination of the Residues Located Close to the Active Site

If the Euclidean distance D between the coordinates of either the Mg2+ or Mn2+ ion

and the coordinates of residues in the structure (SR) is less than or equal to a certain

determined distance DA, then the residue is said to be a component of the set of

residues that are close to the active site. Alternatively, they become part of the set

of residues located farther from the active site. The value of DA ≤ 10 was chosen by

visually analyzing the surface area covered by various distances. Figure 2.2 shows the

surface area covered by residues at a distance of 10 and 15 . 10 sufficiently covers the

active site and its boundary confines to the residues within the TIM barrel. However,

to understand the relationship of DA with contact entropy distribution, the values of

DA ranging from 8 to 15 were examined.
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Figure 2.2: Surface area covered by the residues that are at a distance of A: 10 and
B: 15 for yeast enolase (PDBID: 1ELS Chain: A). The structure is visualized using
PyMOL.

2.9 Statistical Analysis

The difference between the entropy distributions was evaluated using the Kolmogorov-

Smirnov test (K-S) test. A non-parametric test was used because the distribution

of the entropy values was unknown. The distributions are considered significantly

different from each other if the p-value is ≤ 0.05 (see Section 1.8).

2.10 Simulation of Data

To check the sensitivity of the K-S test, a controlled set of data was simulated.

Simulated aggregate matrices Ca
′
were generated as follows:

• The number of simulations was set to r = 100 and the standard deviation (σ)

values ranged from 0 - 1 at an interval of 0.05

• Generate random values for Ca
′
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– The value of Ca
′

ij between residue i and residue j is shown in equation

2.5, where ⌊gauss(0, σ)⌋ is a random value from a Gaussian distribution

with mean equal to 0 and a standard deviation equal to σ. If the value of

⌊gauss(0, σ)⌋ is less than 1 then the value is rounded to 0 (using a floor

function).

– The value of Ca
′

ij must be greater than 0 and less than the number of

structures in the dataset (0 < Ca′ij < n)

• Calculate FCM Cf
′
from Ca

′
using equation 2.2.

• Calculate the contact entropy values Ec
′

i from Cf
′
by applying equation 2.3.

• For each σ value repeat r times

The contact entropy values calculated using the simulated aggregate matrices Ca
′

close to the active site were compared to real entropy values for residues close to the

active site in each dataset using the K-S test.

Ca
′

ij = Ca
ij + ⌊gauss(0, σ)⌋ (2.5)

2.11 Scripting

The experiments were performed using the Python language environment [52]. Sim-

ulations of the matrices were also done using scripts written in Python. PDBnet; a

Python 2.7 library was used to organize PDB files of enzyme structures into easily

accessible data structures [11]. PDBnet; a collection of Python objects intended to

model and contain PDB protein data [11]. The K-S test was performed in the R

language environment for statistical computing [46]. Plots were generated using a

Python library called Matplotlib [32].

2.12 Visualization of Structures

All the structures in this study were visualized using multiple open source tools such

as PyMOL [17] and Visual Molecular Dynamics (VMD) [31].



Chapter 3

Results and Discussion

In this section we demonstrate the utility of using the FCM and residue contact

entropies to analyze a set of homologous proteins. A set of structures belonging

to the enolase superfamily were divided into their respective subgroups using the

SFLD. They were then segregated into monomers (individual chains), and categorized

as ligand-bound or ligand-free as described in Section 2.1.1. The contact matrix,

aggregate contact matrix, and FCM were calculated using the equations presented

in Sections 2.4 and 2.5. For each dataset, contact entropies of all of the structurally

aligned residues with respect to the reference structure SR were calculated. In this

chapter we describe the experiments that were conducted on FCMs, the relationship

between contact entropy and different properties of residues, and the application of

contact entropy as a measure of sidechain freedom for residues close to the active site

(or otherwise) after ligand binding.

3.1 Residue Contact Entropy Mapping

While contact matrices give information about the structural semantics of a single

protein stucture, the FCM encompasses the information of the entire homologous

set of structures. Contact entropy values calculated from the FCM for each aligned

residue in a structure serves as a measure of the contact freedom of side chains.

Values of the residue contact entropy were observed to be variable across the protein

structure. Higher contact entropy values imply that the aligned site or residue has

higher side chain freedom, i.e., the side chain of the residue forms contacts with

different neighbours, whereas lower contact entropy values indicates otherwise. The

distribution of contact entropy values across the structure helped us determine if

any relationship exists between the contact entropy values and the 3D position of the

residues in the structure. To show the position of high contact entropy and low contact

28
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entropy residues, the contact entropy values were mapped onto structures using VMD

(see Section 2.12). The temperature factor for each atom was replaced by its contact

entropy value, which was then used to colour the structure. The mapping shows

(Figure 3.1) that for some of the residues located in the interior of the protein, higher

entropy values are observed as opposed to polar or surface residues. However, as the

mapping in the Figure 3.1 shows, the difference is not consistent. Some of the surface

residues also have high entropy values (indicated by green in Figure 3.1). Regardless

of the location of high entropy residues, the mapping indicates that sidechain contacts

across structurally aligned sites are not always same. Mapping of the other subgroups

is shown in Appendix A.1

3.2 Contact Entropy Values for Hydrophobic and Hydrophilic Residues

The visual observation of the residues located in the core of protein structure ap-

pear to have higher contact entropy values. The visual observation however was not

adequate to establish the relationship between contact entropy values of residues,

their 3D location, and their properties. In this section, we examine the possibility

that contact entropy values of residues may be related to the physical properties

of the amino acid residues and their 3D location in the structure. For a set of 20

residues, the contact entropy values of the whole structure were compared on the

basis of residue identity. Figure 3.2 shows the box plot of contact entropy values of

amino acids in order of decreasing hydrophobicity. From the plot it appears that

the hydrophobic residues have higher median values of contact entropies on average

relative to other residues (see Appendix A.3 for the individual subgroup plots). For

further analysis, the residues were divided into hydrophobic and hydrophilic residues

using Kyte-Doolittle (KD) hydrophobicity values [34]. Residues such as isoleucine,

valine, leucine, phenylalanine, cysteine, methionine, and alanine have positive KD

hydrophobicity values (see Table 1.1); hence, they were categorized as hydrophobic

residues while the others were categorized as hydrophilic. Hydrophobic residues are

generally located in the core of protein structures [55]. A box plot was generated for

the entropy distributions for both sets of amino acid residues. The median entropy

values of the hydrophobic residues (2.3) is higher than the median entropy of the



30

Figure 3.1: Contact entropy values (bits) mapped onto the reference structure in
the enolase subgroup (PDB ID: 1EBG chain: A). The scale ranges from 0 bits to 8
bits (approx). Some of the high entropy values (green) are found in the interior of
protein structure. The location of the high entropy residues is not necessarily in in
the interior of the protein.
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hydrophilic residues (1.5) (Figure 3.3). The box plot also shows that 50% of the data

in hydrophobic residues is in the range of 1.5 to 3.9 while for hydrophilic residues the

range of 50% data is 1 to 2.5. It can also be seen in the box plot that the upper whisker

for the hydrophobic residues (3.5-6.5) is greater than that of the hydrophilic residues

(2.5-4.5), which implies that the quartile group 4 (25% of values greater than upper

quartile) is significantly higher for the hydrophobic residues. These results indicate

that the contact entropy distributions of hydrophobic residues are not the same as

those of hydrophilic residues.

The spread of the boxes do not statistically imply the difference in variance. To

statistically analyze this we performed Levene’s test which is a more robust form of

F-test of equality of variance [36]. The F-test of equality of variance, which is normally

applied to compare the variance of distributions, however, cannot be implemented on

our distributions because it is very sensitive to non-normality of distributions and

our data values are not normally distributed. Levene’s test assesses the hypotheses

that the population variances are equal. The p-value of Levene’s test for hydrophobic

and hydrophilic residue contact entropy values for aggregation of all the subgroups

showed that the variance of hydrophobic contact entropy distribution is different from

hydrophilic distribution (p = 0.002). When Levene’s test was performed on individual

subgroups, we found that for the enolase and mandelate racemase subgroup, the

variance of hydrophobic and hydrophilic contact entropy values is not different with

p-values equal to 0.79 and 0.46, respectively. The high p-value signifies that null

hypothesis of Levene’s test cannot be rejected and that the two distributions have

same the variance. However, for the muconate cycloisomerase subgroup, the p-values

are low (p = 0.01), implying a difference in variance. The aggregate dataset collected

using all the subgroups is statistically more robust due to large sampling size. The

box plots for the entropy values of hydrophobic and hydrophilic residues for each

individual subgroup are shown in Appendix A.4.

To determine the difference in two entropy distributions we performed a Mann-

Whitney U test. The test is used to test the distributions, especially central ten-

dencies of the distributions (such as the median) [38]. One of the other reasons for

using the Mann-Whitney U test instead of Wilcoxon signed-rank test was that the size

of our distributions are not the same. For aggregate data values of all the subgroups
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Figure 3.2: Box plot for the entropy values calculated for all the residues in all
subgroups as a function of decreasing hydrophobicity. The residues I,V,L,F,C,M are
mostly hydrophobic because of positive KD hydrophobicity values and have on an
average higher median entropy values.

in the enolase superfamily, it was observed that the two contact entropy distributions

were not the same (Mann-Whitney U; p = 0.001); hence, the two contact entropy

distributions are not the same (see Appendix A.4 for other subgroups).

These results imply that there is more contact freedom in the side chains of hydrophilic

residues which are generally located in the core [55]. This may be due to two reasons:

firstly the structurally aligned sites are aligned to different residue types, secondly

the residues in the interior of the protein generally have a higher degree of contacts

in a contact network. Such residues due to their location in the interior of the protein

structure tend to have more neighbours, which they may form contacts with.
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Figure 3.3: Box plot for the entropy values calculated for hydrophobic and hydrophilic
residues for all subgroups in the enolase superfamily. Levene’s test p = 0.002, Mann-
Whitney U test p = 0.0001

3.3 Relationship Between Residue Contact Entropy and Residue

Sequence Entropy

The high contact entropy values of some of the structurally aligned sites might be

either due to the residue having more neighbours to interact with or the residue

having high sequence entropy values (see Section 2.7). In this section, we analyze

the relationship between contact entropy and sequence entropy values of structurally

aligned sites. Sequence entropy of aligned sites or residues serves as an estimate for

the number of different residues at that site. A high sequence entropy value of an

aligned site indicates that the residue at the site is aligned to different residues, while

low sequence entropy values indicates otherwise. Once the chains in the dataset

were structurally aligned using MATT, the sequence entropy of each aligned site

was calculated using equation 2.4. The two entropy values were plotted using a

Python script. Figure 3.4 shows that there is a significant but weak relationship

between the two entropy values (R2 = 0.192, p = 0.007, slope = 0.260). Thus, the

information obtained from the residue contact entropy values may be dependent on

sequence entropy values. It also implies that a high value of contact entropy for

some residues might be due to its respective sequence entropy. However, the high
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Figure 3.4: Relationship between the contact entropy and sequence entropy for all
subgroups in the enolase superfamily. The plot shows a significant but weak co-
relationship between the two entropies (R2 = 0.19, p = 0.0006, slope = 0.260).

contact entropy value of residues may also be dependent on other factors such as the

number of neighbours that the residue is surrounded by. We know that in the core

of a protein, the residues are more tightly packed, which could also explain the high

entropy values for such residues. The relationship between the contact entropy and

the sequence entropy for the individual subgroups is shown in Appendix A.2.

3.4 Relationship Between the Contact Entropy and Properties of

Residues

The mean contact entropy value of each amino acid was compared to the properties

of the amino acids such as molecular weight and hydrophobicity [34]. The contact

entropy values were divided on the basis of residue identity. A mean of all the contact

entropy values was calculated for each residue and plotted against its hydrophobicity

and molecular weight. As shown in Figure 3.5A, a significant correlation is observed
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between the hydrophobicity and the mean contact entropy of residues; however, this

correlation was weak (p = 0.044, R2 = 0.335). The size of the amino acid residues also

had significant but weak correlation with the mean contact entropy values (p = 0.007,

R2 = 0.206) (Figure 3.5B). The significant correlation implies that as the size and

hydrophobicity of the amino acids increases, their mean contact entropy also increases.

This relationship of contact entropy values derived from FCM are consistent with

the relationship between contact matrix and residue properties assumed in various

studies [13,39]. However, for the size of residues it is important to take the 3D location

of residues into consideration, residues that have high molecular weight (size) such

as tryptophan can have low contact entropy if they are located away from the core

of protein structure. The low density of residues close to the surface of the protein

structure gives such residues fewer number of neighbours to form contact with. Hence,

the relationship between contact entropy and size of amino acids does not exist in

void and is dependent on various other factors such as the location of residues. This

may not be the case with hydrophobicity and contact entropy relationship because

generally the hydrophobic residues are found in the core of protein structure [55]. All

subgroups generate the same results and their plots are presented in Appendices A.5

and A.6.
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Figure 3.5: Relationship between mean residue contact entropy of amino acids and
their respective A: hydrophobicity (R2 = 0.335, p = 0.044 ), and B: molecular
weight (R2 = 0.206, p = 0.007) for structures of all three subgroups in the enolase
superfamily. The correlation between size and entropy values and hydrophobicity and
entropy values is significant but weak.
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3.5 Difference Between Ligand-bound and Ligand-free Entropy

Distributions

3.5.1 Residue Contact Entropy Along the Protein Sequence

Our study also aimed to examine the effects of ligand binding on protein structures.

Ligands are molecules that bind at the active site of enzymes and are often substrates

or inhibitors. Residues close to the active site are most affected by ligand binding

through electrostatic effects and may alter the conformation of the proteins thereby

affecting the semantics of the protein contact networks as a whole [21]. The relation-

ships between the 3D location and the properties of amino acids and their contact

entropy values were established in the previous section. In this section, we analyze

the effects of ligand binding on contact entropy values. To achieve this, all three sub-

groups were divided into ligand-bound SL and ligand-unbound SU sets of structures

as described in Section 2.1.3. For ligand-bound and ligand-free datasets, a reference

structure was chosen as described in Section 2.2 for each of the three subgroups.

The reference structures for SL and SU were structurally aligned using MATT to

obtain structurally homologous sites. Figure 3.6 shows the running average (window

size = 10) of the contact entropy values of all the aligned sites for the two reference

structures in the enolase subgroup. The curves on the plot show that the contact

entropy values along the sequence of the reference structures for SL and SU are not

exactly the same. The peaks in the plot were investigated to find if they correspond to

any secondary structural elements (α-helices and β-chains). The secondary structure

identification scale was taken from RCSB and merged with the plot. In the plot, the

upper scale belongs to ligand-free structure and lower scale belongs to ligand-bound

structure. Some of the peaks correspond to α-helices (shown by red rods) while others

point to β-sheets (shown by the yellow rods). The merging of secondary structure

with the contact entropy plot might not be the optimal way of mapping the peaks to

secondary structural elements. Hence, the peaks of the graph were mapped on ligand-

bound structure using PyMOL and it was observed that for enolase subgroup these

peak entropy values belong to α−helices (as shown in Figure 3.8 in orange). We also

observe that the high entropy residues are not in the immediate vicinity of ligands

(Figure 3.8 shown in red). The contact entropy plots for ligand-bound and ligand-free
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structures tend to show a similar pattern, however, for some of the residues, a clear

difference is observed. To further investigate this we plotted the difference between

the two curves. Figure 3.7 shows that the entropy values differ at every aligned site

however the difference in some cases is not significant. Similar to the previous plot,

the peaks and troughs (significant difference) of the plot were mapped to the protein

structure and it was observed that for the enolase subgroup, the maximum difference

is found in the loops. We also observe that some of the residues that have high ab-

solute difference value are in close vicinity of ligands (Figure 3.9). Our results are

parallel to previous studies in which the high centrality residues are in close vicinity

of ligands and active site [19,20,33]. Residues close to the active site (residues marked

by red) in the ligand-bound reference structure and the ligand-free reference struc-

ture were structurally homologous because reference structures for SL and SU were

the same proteins belonging to same organism in its ligand-bound and ligand-free

form. Reference structures that belong to other subgroups also show similar results

(Appendix A.7).
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Figure 3.6: Running average (window size = 10) of contact entropy values along the sequence of the reference structure
for SL (blue) and SU (green) (structurally aligned sites) in the enolase subgroup. The upper scale for secondary structure
identification belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The peaks in
the plot correspond to different secondary structural elements such as alpha helices (red rods), beta sheets (yellow rods) and
coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.
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Figure 3.7: Difference between the running average of contact entropy values for structurally aligned sites in the reference
structure for SL and the reference structure for SU in the enolase subgroup. The upper scale for secondary structure identifi-
cation belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The peaks and the
troughs in the plot correspond to different secondary structural elements such as alpha helices (red rods), beta sheets (yellow
rods) and coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.
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Figure 3.8: Mapping of the peaks (orange) of the contact entropy distribution for
ligand-bound and ligand-free structures in enolase subgroup (Fig 3.6). The high
entropy residues mostly correspond to α- helices on the surface away from the ligands
(red spheres). The figure was generated using PyMOL (PDB ID: 1ELS Chain: A)



42

Figure 3.9: Mapping of the peaks (orange) and troughs (magenta) of difference be-
tween contact entropy values of ligand-bound and ligand-free structures in enolase
subgroup (Figure 3.7). The high difference determines the highest effect of ligand
binding on the structures and mostly the loops are found to have an effect of ligand
binding. Some of the maximum difference residues are found in close proximity to
the ligands (red spheres). The figure was generated using PyMOL (PDB ID: 1ELS
Chain: A)

3.5.2 Difference Between Ligand-bound and Ligand-free Entropy

Distributions Close to the the Active Site and Far from the Active

Site

A difference in entropy distributions was observed between the ligand-bound and

ligand-free reference structures. The results indicate that peaks in the corresponding

plots do not map to a particular secondary structure or location. Further investigation

was performed to understand the difference in entropy distributions of ligand-bound

and ligand-free structures. For all datasets, the residues were divided into a set of

residues close to the active site (AS; at DA ≤ 10 from Mg2+ or Mn2+) and far from

the active site (¬AS) as described in Section 2.8. Let Ec be a set of contact en-

tropy values. Ec(SL, AS) and Ec(SU , AS) are the contact entropy values close to the
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active site for SL and SU structures, respectively. Ec(SL,¬AS) and Ec(SU ,¬AS)
are the sets of entropy values of residues that are farther from the active site for

the SL and SU structures, respectively. We tested the difference between the en-

tropy distributions using the K-S test. The null hypothesis of the K-S test states

that the two compared distributions are identical to each other (derived from same

reference distribution). For each subgroup, four residue contact entropy distributions

for Ec(SL,¬AS), Ec(SU ,¬AS), Ec(SU , AS), and Ec(SL, AS) were compared in the

following pairs:

1. Ec(SL, AS) and Ec(SU , AS)

2. Ec(SL, AS) and Ec(SL,¬AS)

3. Ec(SU , AS) and Ec(SU ,¬AS)

4. Ec(SL,¬AS) and Ec(SU ,¬AS)

Empirical cumulative distribution function (ECDF) plots were used to visualize the

differences in the distributions. As shown in Table 3.1, most of the p-values obtained

from the K-S test for different distributions for all subgroups are greater than the a

significance cut-off threshold of α = 0.0041, which indicates that the null hypothesis

cannot be rejected. The cut off threshold was taken to be α = 0.0041 instead of α

= 0.05 for multiple test correction (Bonferroni correction α/n where n is the number

of tests [54]). The only p-value obtained from the K-S test that was smaller than

the threshold was for Ec(SL,¬AS) and Ec(SU ,¬AS) in the muconate cycloisomerase

subgroup (Figure 3.10). This suggested that for the above stated distribution the null

hypothesis is rejected and the distributions are different from each other. However,

this result does not provide enough evidence to universally reject the null hypothesis

since the p-values for other distributions are higher than the threshold. This implies

that for most of the datasets, the contact entropy values of SL and SU structures are

similar to each other or, in other words, the side chain contact freedom of residues

close to the active site (or otherwise) does not change subsequent to ligand binding.

The ECDF plots for other subgroups are shown in Appendix A.8. Biologically, ligand

binding changes protein structures. Previous studies have shown that ligand binding

affects the protein conformation [21]. The study conducted by Erman (2015) states
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p-values Ec(SL, AS) Ec(SL, AS) Ec(SU , AS) Ec(SL,¬AS)
Ec(SU , AS) Ec(SL,¬AS) Ec(SU ,¬AS) Ec(SU ,¬AS)

Enolase 0.3457 0.8727 0.6811 0.3949
Mandelate racemase 0.9725 0.5525 0.8965 0.335

Muconate cycloisomerase 0.5907 0.0127 0.732 0.0009*

Table 3.1: p-values obtained from the K-S tests on the indicated pairs of residue
contact entropy distributions. Significant differences are indicated by an asterisk (*)

that, when a ligand binds on activated CDC42 kinase 1, some parts of the protein

contact network derived from contact matrix become stiffer than the others [21]. The

closeness centrality of the contact network is also shown to be different prior to ligand

binding [19]. As stated earlier, protein contact networks are an implementation of

contact matrices. The changes in the contact networks are a reflection of changes in

the contact matrices, which determines the effect of ligand binding on the contact

matrices of protein structures. However, our results show otherwise, and there can be

many reasons for our results being contradictory. One reason may be that the contact

entropy within the enolase superfamily actually does not change due to ligand binding.

It may be possible that the contact entropy calculated using FCM of the homologous

proteins of other superfamilies shows a difference between ligand-bound and ligand-

free structures. Since none of the above mentioned studies have used the enolase

superfamily as the dataset, it will be informative in the future to analyze the contact

entropy for other superfamilies. However, it is also possible that even the enolase as a

superfamily may show difference in contact entropy values after ligand binding if the

distributions compared are generated using different criteria. In this study, residues

close to the active site are defined as those residues within a sphere of radius ≤ 10

from Mg2+ or Mn2+. This may not be the optimal way to determine residues close

to the active site. There may be an alternative method to determine the active site

and an optimal distance from the active site. Homologous sets of protein structures

might not be the best way to aggregate a FCM; for future studies, we can use a

set of protein structures such as ones derived from molecular dynamic simulation to

calculate a FCM. It is also possible that the concept of contact entropy might not be

a satisfactory approach to determine the effect of ligand binding.
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Figure 3.10: ECDF of the contact entropy values of residues for Ec(SL,¬AS) (red)
and Ec(SU ,¬AS) (blue) (p-value = 0.0009) for the muconate cycloisomerase sub-
group.

3.6 Relationship Between p-values and DA

The residues close to the the active site often have high centrality values in protein

contact networks [19]. In this research, the distance from the active site DA is taken

to be ≤ 10 to define the residues "close" to active site, as described in Section 2.8.

In the previous section, it was shown that the distribution of contact entropies for

residues close to the active site for SL and SU structures is the same. The p-values

were observed to be higher than the determined threshold (> 0.004); hence, the null

hypothesis that these distributions are the same could not be rejected. The choice of

10 as the distance from the active site was made by visual mapping of residues close

to the active site (Section 2.8). It was important from the perspective of this study

to examine the relationship between the results obtained and DA. In this section,

we investigate the relationship between p-values obtained from the K-S test and the

active site distance DA. This analysis is essential to determine if the contact entropy

distribution depends on the value of DA. Once the contact entropy of residues was
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calculated, sets of Ec(SL, AS) and Ec(SU , AS) were collected for multiple values of

DA (8 - 15 ). Any distance less than 8 would make the Ec(SL, AS) too small to

make statistically meaningful interpretation. This would lead to uneven partitioning

of residues into "close to active site" and "farther from active site" making the results

statistically weak. P-values were obtained by comparing residues at a distance of ≤
DA from the active site for ligand-bound and ligand-free reference structures using

the K-S test. These p-values were plotted as a function of increasing DA. The results

reveal that the curve of p-value versus DA does not show any obvious pattern or

trend for the enolase and mandelate racemase subgroups (see Figure 3.11 A and

B). However, for the muconate cycloisomerase subgroup, a significant relationship

was observed where the p-values increase as DA increases (Figure 3.11 C) (R2 =

0.825 p = 0.00004). For the muconate cycloisomerase subgroup, it was also observed

that for DA ≤ 8.2 the p-values obtained from K-S test are lower than the threshold

(0.004), implying a clear difference in the distributions. This implied that the p-values

are sensitive to the distance from the active site for the muconate cycloisomerase

subgroup. It may also be possible that for other subgroups, the p-values obtained

from the K-S test of contact entropy values close to the active site (Ec(S, AS)) or

farther from the active site (Ec(S,¬AS)) are also sensitive to the distance from the

active site when the DA is taken to be ≤ 8 . However, as mentioned earlier in this

section, any distance below 8 would lead to less number of residues in the "close to

active site" dataset. In our study, we observe that optimal value of DA differs from

one subgroup to another in the same superfamily, which makes it possible that value

of DA which is ideal for one superfamily may not be ideal for the other superfamilies.

This reiterates our previous assumption that the results obtained in this study might

be negative due to the lack of ideal parameter values and definitions.

3.7 Data Simulation and Sensitivity of the K-S Test

Simulation may be used to assess the validity of a method, tool, or algorithm in a

controlled fashion. To ensure that the K-S test was sufficiently sensitive to detect the

differences between the datasets, we conducted tests using simulated datasets where

the difference in a contact entropy distribution was known to exist. This experiment
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Figure 3.11: p-values after comparison of the contact entropy distribution of SL and
SU structures in A: enolase B: mandelate racemase, and C: muconate cycloisomerase
subgroups at multiple DA values (8 - 15 ). The plot shows no pattern for the
enolase and mandelate racemase subgroup; however, in the muconate cycloisomerase
subgroup a trend is evident (linear regression line) R2 = 0.825 p = 0.00004.
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was also performed to determine minimum detectable effect size, i.e., how different

should the two distributions be for the K-S test to detect a difference. As described

in Section 2.10, values in aggregate matrices Ca
′
were simulated using equation 2.5.

The simulation was approximated to actual data as much as possible. For each σ,

100 instances of randomized Ca
′
were generated (see Section 2.10), which was later

converted to Cf
′
. Ec

′
was calculated from the simulated Cf

′
. The K-S test was

performed on actual contact entropy distributions of residues close to the active site

Ec(SL, AS) and 100 instances of the simulated contact entropy distribution of residues

close to the active site Ec
′
(SL, AS). For each value of σ, we plotted the total number

of p-values obtained from the K-S test that were < 0.05. As shown in Figure 3.12,

for all simulated datasets the count of p-values < 0.05 increased as the value of the

standard deviation σ increased. In other words, the number of simulated entropy

distributions different from real distribution increases with increasing σ. The K-S

test did not find the difference between the distributions when σ < 0.5. This may

be due to the fact that the number of values in Ca
′
different from Ca is quite low.

Furthermore, we observed that at σ < 0.5, most of the values retrieved from the

Gaussian distribution were less than 1, which were rounded to 0 (due to use of the

floor function). As shown in equation 2.5, the simulated values of Ca
′
are generated

by adding the original value of Ca to the value retrieved from the normal distribution

⌊gauss(0, σ)⌋; hence, the simulated data value = the original data value + 0. At σ ≥
0.5, 5% of the data values in Ca

′
are different by at least 1 from the data values in Ca.

The change in the remaining 95% of the data values is less than 1. This implies that

if the two distributions have only 5% of their data values different from each other

(0.5 σ), then the K-S test will detect the difference and the p-value obtained will be

low. This suggests that the K-S test is sensitive to a 5% change in distributions and

the minimum detectable effect size is 5%. Such low minimum detectable effect size

indicated that the test was very sensitive and the number of false negatives was low.
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Figure 3.12: Count of p-values < 0.05 when a real distribution of frequency contact
matrix at a DA ≤ 10 is compared to simulated distribution at sigma ranging from
0 to 1. For all datasets, the count of p-values < 0.05 obtained from the K-S test
increases drastically at a σ of 0.5, which implies that the null hypothesis of the K-S
test is rejected if 5% of the data values of the two distributions are different from
each other.



Chapter 4

Summary and Conclusions

Primary structures of proteins are long polypeptide chains of individual amino acids

called residues. This sequence of amino acids folds into secondary and tertiary struc-

tures. Some residues that are not consecutive in the primary sequence of a protein

may interact with each other in the tertiary structure. The “interaction” between

residues, often known as contacts, may be determined by the physical distance be-

tween the residues. Two residues are said to be in contact if the distance between

them is less than a particular threshold value. There are multiple ways to calculate

the contacts; one of the most sensitive ways is to calculate the distance between all

the atoms of each residue. These contacts can be used to construct protein contact

matrices, which may be used to understand various processes of protein folding path-

ways [29] and protein-protein interactions [16]. Contact matrices act as adjacency

matrices for the formation of contact networks. Contact networks are small world

networks and may be used to determine some important structural properties of pro-

teins such as functionally important residues [19, 20, 33], residues that interact with

ligands [7], and the location of the active site if the protein is an enzyme [5].

Homologous proteins are the set of proteins that reflect common ancestry and may

have statistically significant similarity. The structural relationships inherent to a ho-

mologous set of proteins can be used to determine important information such as

structural and sequential conservation of proteins. As stated above, the contact ma-

trices of individual protein structures may be used for numerous applications, however

examination of contacts with a homologous set of structures may provide more in-

sight into the function and structure of these proteins. This study explores the use

of frequency contact matrices (FCM) which are the normalized form of an aggregate

of all contact matrices with the set of homologous protein structures. Structurally

aligned sites or residues are determined by structural alignment of all the structures in

the dataset. Low residue contact entropy values suggest that the structurally aligned

50
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sites have conserved contacts throughout the homologous dataset, while high contact

entropy values suggest that the contacts of structurally aligned sites are varied across

the dataset.

4.1 Application to the Enolase Superfamily

This study aimed to extend the concept of contact matrices to frequency contact

matrices and contact entropy. While contact matrices provide information about the

structural semantics of an individual protein structure, we surmised that FCMs and

residue contact entropy values, which encompass all the contact information for a set

of homologous structures, would provide more insight into the protein structure for

a related family of proteins. In this study, we implemented FCMs to investigate the

relationship between residue contact entropy and the different properties of amino

acids, as well as the effect of ligand binding on the conservation of side chain contact

freedom across a set of homologous protein structures.

The proposed method was applied to the enolase superfamily. To identify the struc-

tural sets within the enolase superfamily, the structure-function linkage database

(SFLD) was used [3] (see Section 2.1.1). The enolase superfamily is comprised of

multiple subgroups, and members that belong to each subgroup are evolutionarily

related and have more shared features than the superfamily as a whole. All the struc-

tures in each subgroup were structurally aligned using pairwise alignment (MATT)

(see Section 2.3). The pairwise alignment generates structurally aligned sites. Each

subgroup was divided into ligand-bound and ligand-free sets (Section 2.1.3). For each

dataset, a reference structure was chosen in both the ligand-bound and the ligand-free

form (Section 2.2). The residue contact entropy for each structurally aligned site was

calculated (see Section 2.6). The residues were divided into a set of those residues

that are close to the active site and that are farther from the active site on the basis

of a threshold distance of ≤ 10 from the active site’s Mg2+ or Mn2+ ion (Section

2.1.4).

The visual mapping of contact entropy values on residues in the protein structure

showed that some of the residues buried inside the protein structure, which are gen-

erally more hydrophobic, had high contact entropy values (Figure 3.1). This figure
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however was not enough to clearly determine the location of high entropy residues.

This figure also established that for structurally aligned sites, an uncertainty of con-

tact exists, i.e. FCM values across the dataset are not always equal to 1. After the

division of residues into hydrophobic and hydrophilic on the basis of KD hydrophobic-

ity, it was found that the median entropy values of hydrophobic residues was higher

when compared to hydrophilic residues. Using Levene’s test to analyze the variance

showed that for aggregate data values of all subgroups, there was a difference be-

tween variances of hydrophobic and hydrophilic residues with p-values lower than

the threshold (0.05). When contact entropy values for hydrophobic and hydrophilic

residues were compared using the Mann-Whitney U test, the p-values obtained were

low for all the subgroups. Our study also showed a significant relationship between

residue contact entropy values and properties of the amino acids such as molecular

weight (R2 = 0.206) and hydrophobicity (R2 = 0.335) (see Figure 3.5). Our study

showed that when the hydrophobicity of residues increases, the contact entropy value

also increases. It was also discussed that when size of the residues increases, it might

not increase the entropy of residues. The location of residues in the protein struc-

ture plays an important role in determining the residue’s entropy. The relationship

between the FCM values of residues and properties was found to be in concordance

with the relationship observed in the study conducted by Chamarro et. al (2011),

where the values of contact matrix for protein structures were predicted using differ-

ent properties of amino acids. The reasons for high contact entropy values of some

residues were examined. It was observed that the sequence entropy value of high con-

tact entropy residues was high. On analysis of residue contact entropy and residue

sequence entropy, a significant relationship was found between the two (Figure 3.4).

Hydrophilic residues which are generally present in the core of the protein were found

to have higher contact entropy values as compared to hydrophilic residues. The high

contact entropy of such residues may be also due to a higher density of residue packing

at the protein core, which puts them in the vicinity of more neighbours for interaction.

The contact entropy of ligand-bound and ligand-free structures were observed to be

different with some peak entropy values. The peak entropy values were mapped on

the actual structure and for some of the subgroups showed that the high contact
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entropy values are located on α−helices. For other subgroups, like mandelate race-

mase, the high contact entropy values were mostly found to be on loops whereas for

muconate cycloisomerase no particular pattern was observed. The difference between

the entropy values was also plotted. The highest absolute value of difference of a

particular residue shows that the ligand binding has maximum effect on that residue.

We observed that high difference values were in close vicinity of ligands when peaks

of the entropy difference plot were mapped to the actual structure. The results agree

with to previous studies where highly central residues were found interacting with

ligands or as close neighbours to the active site [19, 20, 33]. To further analyze the

effect of ligand binding, the difference in entropy values of residues close to the active

site for ligand-bound and ligand-free structures was analyzed using the Kolmogorov-

Smirnov (K-S) test (Section 2.9). The p-values obtained suggested that for two of

the three subgroups the distribution of contact entropy values for ligand-bound and

ligand-free structures was not significantly different; hence, the freedom of side chains

in structurally aligned sites does not change across these datasets subsequent to lig-

and binding (Table 3.1). However, for the muconate cycloisomerase subgroup, there

was a significant difference between the Ec(SL,¬AS) and Ec(SU ,¬AS) distributions

of residue contact entropies. This, however, was not sufficient to universally support

the hypothesis that subsequent to ligand binding the contact entropy of residues close

to active site or otherwise changes. The literature in this field of study indicated oth-

erwise. The study conducted by Erman et. al (2015) showed that ligand binding

affects the protein’s stiffness, i.e., some contacts in the contact matrix become more

stable while as others fluctuate. Other studies also show that the centrality of protein

contact networks is affected after ligand binding [19]. The reasons for the contrast

between our results and previous studies were discussed. It was discussed that the

dataset used in previous studies does not comprise of enolase superfamily which im-

plied that the effect of ligand-binding might be different for different superfamilies.

However, the FCM values of enolase superfamily members may also be affected by

ligand binding if the parameters of the experiment like active site distance, active

site definition, even different method of calculating FCM are optimized. There is

also a possibility that the above stated parameters are optimal, but contact entropy
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is not the right measure to differentiate between ligand-bound and ligand-free struc-

tures. The dependence of contact entropies on the distance from active site was also

examined. It was shown that for the enolase and mandelate racemase subgroups,

the results obtained were independent of the active site distance (DA); however, sta-

tistical tests comparing distributions in the muconate cycloisomerase subgroup were

sensitive to the choice of DA. An optimal active site distance of ≤ 8.2 was observed.

For the other subgroups, there may be a possibility of ideal active site distance to be

< 8 . The variation of optimal active site distance in the same subgroup also signifies

that there may be variation in different superfamilies. Simulation were conducted

to check the sensitivity of the K-S test as a non-parametric test and to determine

the minimum detectable effect size. Comparison between the real distribution and

the simulated distributions suggested that the K-S test for two distributions with

5% difference between their data points, generates low p-values (Figure 3.12). The

sensitivity of the K-S test was observed to be very high which decreases the chances

of false positives.

4.2 Extensions and Future Work

At the beginning of this study two hypotheses were framed. One was that the contact

entropy values are related to different properties of amino acid residues, and second

was that the contact entropy can be used to determine the effects of ligand binding

on the protein structure. The results have not indicated a strong support for either

of the framed hypotheses. A significant but weak relationship was observed between

contact entropy values of residues and its properties and no difference was observed

between ligand-bound and ligand-free structures. The future work that succeeds

this study should focus on identifying the reasons why there appears to be little

difference in protein structure subsequent to ligand binding in three subgroups of the

enolase superfamily studied in the present work. This can be done by addressing

three questions:

1. Can a different method be used?

2. Is it possible that ligand binding does not affect the structure of a protein? Is

this trait dependent on the superfamily?
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3. Are homologous sets of structures the best way to assemble the dataset?

The methodological approach can be addressed in multiple ways. First, is to find the

optimum number of structures required to test the hypothesis. Datasets with larger

quantities of structures might provide a better estimate of entropy values, which could

be more informative. Second, as stated earlier the active site may be redefined. In this

study, the active site was determined by a sphere around the metal ion (magnesium

and manganese). It would be informative to investigate a better way to define the

active site. An optimal distance from the active site also needs to be assessed which

may be different for different superfamilies. Also, the contact between two residues

was determined by the least distance between any of their atoms. Other ways to

calculate the contacts, such as centroid-based calculation could be implemented to

examine if it is a more appropriate approach than the one used in this study. Third,

the ligand-bound datasets used in this study were not homogeneous in nature, i.e.,

the ligands bound to structures in the same dataset are different and the protein

structures belong to different organisms. The question that needs to be addressed

is: Should the two structures that belong to the same subgroup, but having different

ligands bound to them, be a part of the same dataset? Fourth, is there a better

database other than the SFLD to organize our data and categorize the structures

into different subgroups or families?

It might be possible that the basis of the hypothesis of this study is not valid for

some superfamilies and ligand binding does not actually affect the protein structure

in the enzyme of enolase superfamily. It is also possible ligand binding does affect the

structure of proteins in enolase superfamily but contact entropy calculated over FCM

(from homologous protein structures) may not be the right measure to determine the

difference. The question then arises, what are the results of other superfamilies? In

the future we would like to extend this method to other superfamilies and observe

the effect of ligand binding on residues close to the active site.

This study leverages homologous sest of structures to calculate FCM because they

give information about the structures, functions, and sequences of member proteins.

Our work can be extended to sets of structures assembled in a different way, such

as structures collected using molecular dynamic (MD) simulations. MD simulations

can give a dynamic evolution of a protein folding into its native state. Two protein
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structures can be selected in their ligand-bound and ligand-free forms. The datasets

in the end will be comprised of "transient" protein structures, i.e., before the respec-

tive proteins fold into their native state. The time interval can be a microsecond or

even a sub-microsecond between the structures. Such datasets could be used to cal-

culate contact matrices, FCM, and contact entropies. The resulting contact entropy

distributions could then be compared using the K-S test.
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Appendix A

A.1 Protein Mapping

Figure A.1: Residue contact entropy mapping A: mandelate racemase (PDB ID:
3UXK chain B) B: muconate cycloisomerase (PDB ID: 3K1G chain A). The loca-
tion of high entropy values is spread across the protein structures (red and yellow
hotspots).
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A.2 Contact Entropy and Sequence Entropy
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Figure A.2: Relationship between contact entropy and sequence entropy for enolase
(top) (R2 = 0.16, p = 0.0007, slope = 0.37), mandelate racemase (middle) (R2 = 0.07,
p = 0.0009, slope = 0.12), and muconate cycloisomerase (bottom) (R2 = 0.002, p
= 0.64, slope = 0.036) subgroups. The plots show that the two distributions are
dependent on each other.
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A.3 Contact Entropy Values of Individual Amino Acid Residues
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Figure A.3: Box plots for entropy values for all the residues in the enolase (top),
mandelate racemase (middle), and muconate cycloisomerase (bottom) subgroups as
a function of decreasing hydrophobicity. The median entropy values (marked by red
lines) of hydrophobic residues (I,V,L,C,M) is higher than those of other amino acid
residues.
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A.4 Contact Entropy Values of Hydrophobic and Hydrophilic Residues
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Figure A.4: Box plots for entropy values for hydrophobic and hydrophlic residues in
the enolase (top) Levene’s test p = 0.79, Mann-Whitney U test p = 0.0005, mandelate
racemase (middle) Levene’s test p = 0.46, Mann-Whitney U test p = 0.0001, and
muconate cycloisomerase (bottom) Levene’s test p = 0.01, Mann-Whitney U test p =
0.0005 subgroups. The median entropy values of the hydrophobic residues is higher
than those for hydrophilic residues. The spread of the hydrophobic residue entropy
distribution is larger showing higher variance than the spread of hydrophilic residues.
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A.5 Relationship Between Residue Contact Entropy and Amino Acid
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Figure A.5: Plots of average entropy values of residues as a function of amino acid
size in the enolase R2 = 0.68 (p = 0.004)(top), mandelate racemase R2 = 0.261 (p
= 0.265) (middle), and muconate cycloisomerase R2 = 0.297 (p = 0.216) (bottom)
subgroups. A significant but weak correlation is evident in all three subgroups.
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A.6 Relationship Between Residue Contact Entropy and Amino Acid
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Figure A.6: Plots of average entropy values of residues as a function of hydrophobicity
in the enolase R2 = 0.483 (p = 0.031) (top), mandelate racemase R2 = 0.65 (p
= 0.002) (middle), and muconate cycloisomerase R2 = 0.48 (p = 0.038) (bottom)
subgroups. A significant but weak correlation is evident in all three subgroups
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A.7 Residue Contact Entropy Along the Sequence

Figure A.7: Running average (window size = 10) of contact entropy values along the sequence of the reference structure for
SL (blue) and SU (green) (structurally aligned sites) in the mandelate racemase subgroup. The upper scale for secondary
structure identification belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The
peaks in the plot correspond to different secondary structural elements such as alpha helices (red rods), beta sheets (yellow
rods) and coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.
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Figure A.8: Difference between the running average of contact entropy values for structurally aligned sites in the reference
structure for SL and the reference structure for SU in the mandelate racemase subgroup. The upper scale for secondary
structure identification belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The
peaks and the troughs in the plot correspond to different secondary structural elements such as alpha helices (red rods), beta
sheets (yellow rods) and coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.
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Figure A.9: Mapping of the peaks (orange) of the contact entropy distribution for
ligand-bound and ligand-free structures in the mandelate racemase subgroup (Fig
A.7). The peaks mostly correspond to loops. Some of the high entropy residues are
in the vicinity of ligands (red spheres). The figure was generated using PyMOL (PDB
ID: 1MDR Chain: A)
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Figure A.10: Mapping of the peaks (orange) and troughs (magenta) of difference be-
tween contact entropy values of ligand-bound and ligand-free structures in the mande-
late racemase subgroup (Figure A.8). The peaks and the troughs mostly correspond
to loops with some parts of helices and beta sheets. The high difference determines
the highest effect of ligand binding on the structures and mostly the loops are found
to have an effect of ligand binding. Some of the maximum difference residues are
found in close proximity to the ligands (red spheres). The figure was generated using
PyMOL (PDB ID: 1MDR Chain: A)
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Figure A.11: Running average (window size = 10) of contact entropy values along the sequence of the reference structure for
SL (blue) and SU (green) (structurally aligned sites) in the muconate cycloisomerase subgroup. The upper scale for secondary
structure identification belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The
peaks in the plot correspond to different secondary structural elements such as alpha helices (red rods), beta sheets (yellow
rods) and coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.



69

Figure A.12: Difference between the running average of contact entropy values for structurally aligned sites in the reference
structure for SL and the reference structure for SU in the muconate cycloisomerase subgroup. The upper scale for secondary
structure identification belongs to the reference structure in SU and lower scale belongs to the reference structure in SL. The
peaks in the plot correspond to different secondary structural elements such as alpha helices (red rods), beta sheets (yellow
rods) and coil (grey thin rods). The residues close to the active site are shown by red coloured ticks.
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Figure A.13: Mapping of the peaks (orange) of the contact entropy distribution for
ligand-bound and ligand-free structures in the muconate cycloisomerase subgroup
(Fig A.11). The peaks do not correspond to a particular type of secondary structure
or location. Some of the high entropy residues are in the vicinity of ligands (red
spheres). The figure was generated using PyMOL (PDB ID: 2P8B Chain: A)
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Figure A.14: Mapping of the peaks (orange) and troughs (magenta) of difference
between contact entropy values of ligand-bound and ligand-free structures in the
muconate cycloisomerase subgroup (Figure A.12). The peaks do not correspond to
a particular type of secondary structure. The high difference determines the highest
effect of ligand binding on the structures. The loop close to ligand (red spheres) is
found to have an effect of ligand binding. The figure was generated using PyMOL
(PDB ID: 2P8B Chain: A)



72

A.8 Comparison of Contact Entropy Distributions for Ligand-bound

and Ligand-free Structures

Figure A.15: ECDF for the enolase subgroup A: Ec(SL, AS) and Ec(SU , AS) B:
Ec(SL, AS) and Ec(SL,¬AS) C: Ec(SU , AS) and Ec(SU ,¬AS) D: Ec(SL,¬AS),
and Ec(SU ,¬AS). No apparent difference in the distributions is evident.
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Figure A.16: ECDF for the mandelate racemase subgroup A: Ec(SL, AS) and
Ec(SU , AS) B: Ec(SL, AS) and Ec(SL,¬AS) C: Ec(SU , AS) and Ec(SU ,¬AS) D:
Ec(SL,¬AS), and Ec(SU ,¬AS). No apparent difference in the distributions is evi-
dent.
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Figure A.17: ECDF for the muconate cycloisomerase subgroup A: Ec(SL, AS) and
Ec(SU , AS) B: Ec(SL, AS) and Ec(SL,¬AS) C: Ec(SU , AS) and Ec(SU ,¬AS) D:
Ec(SL,¬AS) and Ec(SU ,¬AS). No apparent difference in the distributions is evident
except for Ec(SL, AS) and Ec(SL,¬AS) and Ec(SL,¬AS), and Ec(SU ,¬AS).
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