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Abstract

High dynamic range (HDR) images provide the capacity to represent the luminance in
real scenes with much higher precision than standard image formats. With advances
in hardware and computer graphics technologies, HDR images are rapidly becoming
more commonplace. To visualize HDR images on contemporary display devices, the
dynamic range needs to be adapted to the much smaller range of the devices. This is
accomplished through tone mapping, with the goal of reproducing the visual appear-
ance of HDR scenes. Tone mapping has attracted much attention and several dozens
of tone mapping operators have been proposed.

Nevertheless, it remains challenging to objectively evaluate the quality of tone
mapped images and optimize tone mapping operators with automated algorithms.
Using virtual photographs to bridge the gap of dynamic ranges for feature analysis, we
propose two feature-based quality metrics for tone mapped images, which measure the
distortion of important image features that affect the perceived quality. We present an
image quality metric called visual saliency distortion predictor (VSDP) that measures
the distortion in visual saliency for quality assessment. Additionally, by incorporating
multiple feature-based measures to predict the quality of tone mapped images, we
introduce another quality metric: perceptual distortion predictor (PDP). Subjective
and numerical experiments indicate that the proposed feature-based quality metrics
can yield more reliable prediction than the alternative approaches.

Once suitable quality metrics are defined, there emerges an opportunity to auto-
mate the tuning of existing tone mapping operators. By minimizing the distortion in
visual saliency predicted by the quality metric VSDP, we developed an automatic pa-
rameter tuning algorithm for tone mapping operators. Moreover, based on the quality
prediction of PDP, we propose an automated blended tone mapping algorithm which
blends images from multiple operators with varying weights to leverage the strengths
of each of operators considered. Experiments with a broad range of HDR images and
statistical analysis demonstrate the effectiveness of the tone mapping optimization

algorithms.

x1
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Chapter 1

Introduction

The dynamic range of illumination in a real-world scene is on the order of 10,000 to 1
from highlights to shadows, and even higher for the scenes including both an outdoor
area illuminated by sunlight and an indoor area illuminated by interior light [86, 9].
The development of High Dynamic Range (HDR) images capture a greater dynamic
range between the lightest and darkest areas of real-world scenes. Compared with
standard dynamic range (SDR) or low dynamic range (LDR) images, HDR images
allow more intensity levels which enables them to represent real world visual data in
a more accurate way (We don’t distinguish between luminance and intensity in the
thesis). Usually, HDR images are generated by taking multiple-exposed photographs
of the same scene and merging their data with developed algorithms [18]. Because of
the limitation of display contrast, HDR images cannot be displayed on regular display
devices such as LCDs and CRTs directly, and tone mapping is needed to fit their high
dynamic range into the displayable range of conventional devices. The algorithms of

tone mapping is called tone mapping operator (TMO) [86].

Figure 1.1 shows an example of HDR imaging. The left image is the photograph
sequence with various exposures which are subsequently combined into an HDR im-
age, and the right image is a tone mapped image of the generated HDR scene. As we
can see, the tone mapped image can have plausible exposure and detail preservation
in both bright and dark areas, such as the sky in the background and the woods
in the foreground, while any single exposure in the photograph sequence cannot. A
thorough review of HDR imaging can be found in the books by Reinhard et al. [86]
and Banterle et al. [9]. In this chapter, we introduce the research problems that will
be addressed in current context (Section 1.1), the research objectives (Section 1.2),
and the major contributions (Section 1.3), and then we outline the structure of the

thesis (Section 1.4).



Photograph sequence Tone mapped image

Figure 1.1: An example of HDR imaging on the HDR image “Sequoia Remains”.
Left: image sequence with various exposures that can be used to generate the HDR
image. Right: tone mapped image from the HDR image. The images are from Mark
Fairchild’s HDR Photographic Survey (©) 2006-2007 Mark D. Fairchild.

1.1 Research Problems

HDR images provide the capacity to represent the luminance in the real scenes ranging
from bright sunlight to faint starlight with much higher precision than standard image
formats allow. Typically, HDR images are categorized as scene-referred images whose
luminance levels correspond to that of real scenes, while LDR images are display-
referred with luminance variants matching the dynamic range of display devices.
HDR images are becoming increasingly commonplace, and they have successfully been
used for many applications such as digital photography, physical-based rendering, and
virtual reality.

Tone mapping is one of the core problems in HDR imaging and corresponding
applications, and it is the topic of interest in the thesis. According to Reinhard et
al. [86], the ultimate goal of tone mapping is to reproduce the visual appearance of

HDR scenes when displayed with low dynamic range. Although an extensive body
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of research has focused on tone mapping, it remains an open question to measure
and quantify visual appearance reproduction during tone mapping. Due to the huge
difference in luminance levels, conventional image analysis algorithms and quality
evaluation methods designed for LDR images cannot be applied to HDR images di-
rectly. It is fundamental and essential to establish a framework to bridge the gap of
dynamic range between LDR and HDR images and build new approaches for objec-
tive quality evaluation of tone mapped images, which will provide deeper insight to
understand and exert the strength of TMOs.

In this thesis, we mainly focus on three research problems: visual saliency analysis
on HDR images, objective image quality assessment of tone mapped images, and tone

mapping optimization.

1.1.1 Visual Saliency Analysis on HDR Images

The human visual system can obtain a rich stream of visual data (10%-10° bits per
second) from the real world [42]. Rather than processing the data in parallel, the
mechanism in our brain prioritizes the important parts over the others to guide our
gaze, which is known as selective attention [31]. Based on the mechanism of selective
attention, computational visual attention systems have been designed to detect re-
gions of interest in digital images [11]. Although the computational models can lead
to satisfying results for LDR images, they do not usually perform well when applied
to HDR images [13]. Because HDR images allow a much higher dynamic range, if
the saliency detection models are applied to HDR images directly, the dynamic range
will be scaled, which can lead to the loss of HDR content that in turn makes salient
regions appear not salient or vice versa. Also, Narwaria et al. [74] have found that
TMOs “can [...] modify human attention and fixation behavior significantly”, thus
rendering the approach of applying salience analysis techniques after tone mapping
unreliable. In this thesis, we concern ourselves with visual saliency analysis on HDR
images. As an important image feature, visual saliency can be used for various ap-
plications that involve HDR image understanding and tone mapping, such as visual
saliency guided tone mapping, and image quality assessment of tone mapped images.
Moreover, visual saliency analysis could be used as an example to explore the possible

solutions for image feature analysis on HDR images.



1.1.2 Objective Image Quality Assessment

Because any process applied to images may cause information loss or quality reduc-
tion, image quality assessment plays an important role in many image processing
problems, such as image acquisition, synthesis, enhancement, restoration, and re-
production [12]. Objective image quality assessment provides quantitative measures
that can automatically predict the perceived image quality. Compared with subjec-
tive assessment, objective assessment is more economic, faster, more consistent, and
applicable in optimization of image processing systems. Due to these advantages,
it has been widely used in image processing applications [12]. With the develop-
ment of HDR images and tone mapping algorithms comes a need for image quality
evaluation of tone mapped images. Unfortunately, the typical image quality metrics
assume that reference and test images have the same dynamic range [100], and they
cannot be applied to quality evaluation of tone mapped images. More specifically,
the quality metrics calculate visible distortion based on the difference of intensity
or contrast values, and thus not applicable for image pairs with significant different
dynamic ranges. In comparison with conventional methods, the quality evaluation of
tone mapped images should focus on the reproduction of important image features
relevant to image quality judgement, rather than the optical match between reference

and test images [7].

1.1.3 Tone Mapping Optimization

During the last two decades, several dozens of TMOs have been proposed to reproduce
the visual appearance of HDR images, ranging from the use of simple sigmoidal
functions [88] to more complicated gradient domain operations [13]. Many of the
TMOs depend on parameters that significantly impact the quality of the tone mapped
images. Choosing an appropriate operator and setting its parameters for a particular
HDR image often requires careful tuning, which could be tedious and time-consuming
even for knowledgable users. Several user interfaces have been introduced to assist in
this manipulation process. Lischinski et al. [57] present an interactive tool for users
to indicate regions of interest with brush strokes and make local adjustments of visual
parameters. In the work of Chisholm et al. [16], users can iteratively select the best

image among a set of blended tone mapped images for parameter optimization. These
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interfaces enable rapid and intuitive manual manipulation, but they still need user
interaction to achieve satisfying performance. In this thesis, we apply the objective
image quality assessment to automatic tone mapping optimization, and problems

including parameter tuning and blended tone mapping are addressed.

1.2 Objectives

The main objectives are to develop objective image quality metrics for tone mapped
images and apply the image quality metrics for automatic tone mapping optimization
in terms of parameter tuning of TMOs and blended tone mapping. More generally, we
would like to explore the solutions for image feature analysis and comparison across
different dynamic ranges, which could serve as the basis for various applications in

HDR imaging.

1.3 Contributions

The main contributions of the thesis are summarized as follows:

e We introduce a novel algorithm for visual saliency analysis of HDR images [33].
The algorithm decomposes HDR images into multi-exposed LDR images, which
are referred to as virtual photographs, and then incorporates them for visual
saliency analysis. We demonstrate that our method can produce more consis-
tently reliable results than existing methods. The algorithm is general and can

be easily tailed for other image feature analysis on HDR images (Chapter 3).

e Based on the assumption that regions of interest predicted by bottom-up vi-
sual attention models should be preserved during tone mapping, we propose
a new feature-based quality metric called visual saliency distortion predictor
(VSDP) [34, 35]. The quality metric measures the distortion in visual saliency
for quality predictions of tone mapped images. We have evaluated the quality
metric by applying it to a number of test images and found that it yields more

accurate evaluation than prior work (Chapter 4).

e Derived from perceptual studies, we then present a more comprehensive feature-

based quality metric called perceptual distortion predictor (PDP) [38, 32]. The
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quality metric measures the distortions of tone mapped images in terms of
brightness, visual saliency, and detail reproduction in light and dark areas, and
assigns an overall distortion value to each image. Validation using a subject-
rated image database indicates the proposed metric is more consist with sub-

jective evaluation results than alternative approaches (Chapter 4).

e We employ the proposed quality metrics to tone mapping optimization, and
develop an automatic parameter tuning algorithm that can optimize the param-
eters of arbitrary TMOs by minimizing visual saliency distortion [34, 35]. The
minimization is accomplished by employing an evolutionary algorithm (EA). Ex-
periments using several TMOs demonstrate the effectiveness of our parameter
tuning algorithm. Statistical analyses are conducted to assess the improvement

over default parameter settings and previous methods (Chapter 5).

e With the perceptual distortion predictor, we develop an automated blended
tone mapping algorithm to leverage the strengths of different operators for any
particular HDR image [36]. The blended tone mapping is solved as an opti-
mization problem, where the operators’ parameters and the weights are tuned
with an EA to generate the optimal solution. With a variety of HDR images,
we demonstrate its superiority over the conventional global and local TMOs

(Chapter 5).

e Using parameter space of TMOs as solution space and quality metrics as ob-
jective, EA provides a universal solution for objective quality assessment based
tone mapping optimization. We conduct a comparison between EA and an al-
ternative gradient-based optimization under a common platform, which shows

that EA results in significantly reduced computational effort [37] (Chapter 6).

1.4 Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 describes the research
topics and the existing methods that serve as the background of the thesis which cov-
ers human visual attention, high dynamic range imaging, quality assessment of tone

mapped images, and evolution strategies. Chapter 3 presents the visual photograph
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based saliency detection method for HDR images. Chapter 4 focuses on objective
image quality metrics for tone mapped images, and two feature-based quality met-
rics VSDP and PDP are introduced and validated against prior works. Chapter 5
presents the application of the proposed quality metrics for tone mapping optimiza-
tion. Tone mapping optimization problems, including automated parameter tuning
of TMOs, and blended tone mapping, are addressed. Chapter 6 describes the com-
parison between EA and gradient-based optimization for tone mapping optimization,

and Chapter 7 concludes the thesis and discusses the directions for future research.



Chapter 2

Background

This chapter provides an overview of the various fields related to research topics
found throughout the thesis. First of all, we describe the concept of human visual
attention, computational attention models, and improved method for application to
HDR images (Section 2.1). Then, we discuss high dynamic range imaging, including
visual adaptation models, TMOs, and recent directions (Section 2.2). After that, we
outline the objective image quality assessment of tone mapped images and the state-
of-the-art methods (Section 2.3). Finally, we discuss evolution strategies in terms of

the optimization algorithm and parameter control (Section 2.4).

2.1 Visual Attention Models

Visual attention can be defined as the process of selecting a subset of the all the
available information for further processing. Since human needs to deal with a large
amount of information at each moment and the amount can be too high to be com-
pletely processed in its entirety at once, the brain tends to allocate the processing
resources to certain regions to obtain the most significant information, which is known
as the mechanism of selective attention [31]. By understanding and simulating the
selection mechanism, computational attention models analyze the regions of interests
(ROIs) which can attract more visual attention for their distinctive features compared
with others in the images. The computational models have a wide variety of appli-
cations in computer vision and image processing, such as object detection [97, 70,
human-robot interaction [41, 73], image and video compression [43], and image resiz-
ing [6, 99].

Visual attention can be categorized into two types: bottom-up and top-down
attention [19]. Bottom-up attention, also known as saliency-based attention [46], is
driven by purely visual data. The regions with sufficiently discriminative features

with respect to surrounding features can attract visual attention in a bottom-up
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manner. On the other hand, top-down attention is driven by cognitive phenomena,
such as knowledge, expectations, and the current task. For instance, it is more likely
for car drivers to see gas stations in a street than other targets. Because data-driven
stimuli can be easier to control than cognitive factors, bottom-up attention are more
thoroughly investigated than top-down attention [31]. We focus on bottom-up visual

attention in this thesis.

2.1.1 Related Concepts and Theory

This section introduces some concepts of visual attention and psychological theory

which are related to computational attention models.

e Visual Saliency: Visual saliency (or visual salience) “is the distinct subjective
perceptual quality which makes some items in the world stand out from their
neighbors and immediately grab our attention” [44]. To address the inability of
our brain to fully process all locations in parallel, visual attention is attracted
to visually salient stimuli, and processes one region at one time. This raises
a question: how to select the targets of attention? Visual saliency, which is a
bottom-up and stimulus-driven perceptual quality in the early stage of visual
processing, is capable of helping the brain to make reasonable and efficient
selections. In visual attention models, computing saliency is the detection of
the regions whose visual features such as intensity, orientation, and color are

discriminative with respect to surrounding regions.

e Saliency Map: A saliency map is an explicit two-dimensional map that rep-
resents visual saliency of any location in the corresponding visual scenes. The
concept of saliency map was first introduced by Koch and Ullman [50] for visual
attention deployment. Once the saliency map is established, the most salient
targets that attract visual attention can be calculated by a Winner-Take-All
(WTA) network. A saliency map can be generated by analyzing the saliency
map of each individual feature (called conspicuity maps) [31] in parallel and
then integrating the maps together into a single map. Since saliency map is a
computationally tractable representation of visual saliency, it has been widely

used in computational visual attention models.
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e Feature Integration Theory: Feature integration theory developed by Treis-
man and Gelade [92, 93] has been one of the most influential psychological
theories of human visual attention. The theory claims that “different features
are registered early, automatically and in parallel across the visual field, while
objects are identified separately and only at a later stage, which requires fo-
cused attention” [92]. A demonstration of feature integration theory is shown
in Figure 2.1. In the pre-attentive stage, primitive features, such as color, and
orientation, will be automatically and unconsciously analyzed resulting in to-
pographical maps, which highlight the conspicuities from various features. In
the focused attention stage, the conspicuity maps of features are collected in
a master map of location, and serially scanning the master map focuses visual

attention on the selected salient regions.

2.1.2 Computational Model

Because visual attention provides a selection mechanism to determine the most rel-
evant targets within visual data, there is a significant interest in visual attention
models in computer vision and robotics. In the last two decades, many computa-
tional attention models have been developed, which greatly improve existing vision
systems [31]. Most models are built on feature integration theory introduced by
Treisman and Gelade [92], whose core idea is to extract several types of features and
combine their saliency to generate a saliency map.

A milestone is the computational model developed by Itti et al. [47]. Based on
the behavior and the neuronal architecture of the primates’ early visual system, Itti
et al. [47] proposed a visual attention model to predict bottom-up attention in static
color images. Their model uses a center-surround mechanism to generate the feature
maps for color, intensity, and orientation, and then combine the maps into a unified
saliency map. Later on, the model was revised by Itti and Koch [46], who introduced a
within-feature competition scheme for feature combination. Itti et al.’s model [47, 46]
is the best-known attention system, and it serves as the basis for many research into
visual attention [31]. Most recent visual attention models share a similar structure
but suggest various improvements. Some of the models focus on the selections of

visual features, and other features such as skin color [56, 41], motion [62, 45, 94],
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Figure 2.1: Demonstration of the Feature Integration Theory [93].

depth [14, 30], optical flow [96], flicker [45], corner [29, 78], and symmetry [41] are
adopted for visual attention analysis. Also, some works address the representation
of visual attention. More advanced approaches that integrate image segmentation
on feature [98] or saliency maps [30] are developed to determine irregularly-shaped
attention regions. A thorough review of current computational attention models can

be found in the survey paper by Borji and Itti [11].

Most of computational visual attention models share a very similar structure
originally adopted from psychological theories such as the feature integration the-
ory [92, 93]. We use Itti et al.’s model [47, 46] as an example to introduce the general

structure of visual attention models. Since the revised model [46] is employed in the
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thesis, we will refer to the model as “Itti and Koch’s model” in the following context.

The architecture of their model is demonstrated in Figure 2.2.

First, Itti and Koch’s model extracts low-level visual features including intensity,
color, and orientation from the original images at several spatial scales. The different
scales are generated using Gaussian pyramid to avoid explicitly applying large filters
that could be slow. Each feature is computed with a center-surround operation.
Inspired from retinal ganglion cells in the visual receptive fields [80], the operation
compares the intensity values in center regions with those of surrounding regions. It is
implemented by calculating the difference between fine and coarse scales. Usually, the
finest scale of pyramids is ignored to reduce the influence of noise. Three commonly

used features are used in Itti and Koch’s model: intensity, color, and orientation.
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Figure 2.3: Results from Itti and Koch’s model [46]. First column: the test images.
Second column: the saliency maps calculated from the color feature. Third column:
the saliency maps calculated from the intensity feature. Forth column: the saliency
maps calculated from the orientation feature. Fifth column: the combined saliency
maps. Sixth column: the predicted visual attention (red circles).

The intensity is calculated as on/off intensity contrast, color is computed on double-
opponent red/green and blue/yellow, and orientation is measured on the local contrast

of orientations of 0°, 45°, 90°, and 135°.

Afterwards, the cross-scale feature maps are combined into the conspicuity map
for each feature. To solve the signal-to-noise problem during combination, Itti and
Koch [46] introduced a within-feature spatial competition scheme. According to op-
tical imaging [105] and human psychophysics [110], the interaction of long-range
cortico-cortical connections are thought to result from a balance of excitation and
inhibition between neighboring neurons. By simulating the structure of the interac-

tion, the within-feature spatial competition scheme is realized by a two dimensional
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difference-of-Gaussians (DoG) approach. Each feature map is iteratively convolved
with the DoG filter, which yields local excitation at each visual location counteracted
by broad inhibition from neighboring location.

Finally, the conspicuity maps of intensity, color, and orientation are linearly
summed into a single saliency map. The saliency map could already be regarded as
the final output of computational models since it is capable of showing the saliency
of each location in the input scene. Nevertheless, computational models usually com-
pute the trajectory of visual attention as well to mimic human saccade (the movement
of eyeball) which starts with the target with the highest saliency value, in which a
winner-take-all (WTA) network can be used to select the image regions with local
saliency maxima. A fixed size disk is applied to represent the focus of attention
(FOA) since visual attention is usually on a region rather than a single point [46].
When a winner is found, the FOA shifts to the winning location. The shifting acti-
vates inhibition which can prevent the network from returning to its initial state: the
inhibitory center is at the location of the winner; the winner and its neighbors are
inhibited in the saliency map.

Figure 2.3 demonstrates several examples of saliency detection from Itti an Koch’s
model. As shown in the examples, the model is capable of recognizing the salient
targets which are discriminative for their unique visual features relative to the sur-
rounding fields, such as the balloons (First row), faces (Second row), water skiing
person (Third row), airplanes (Forth row), boats (Fifth row), and elephants (Sixth

row).

2.1.3 Improved Model for HDR images

Because of the huge difference in the dynamic range of luminance, conventional models
using contrast-based feature analysis is not suitable for saliency detection on HDR
images. When applying the models for HDR images directly, the significant reduction
of contrast will cause inaccurate predictions, in which salient regions may appear not
salient or vice versa. As shown in the example of Figure 2.4, only the sun can be
detected while other eye-catching targets such as the tree and stone are missed.
Brémond et al. [13] proposed a visual attention model for HDR images. Based

on the observation that saliency can be better preserved for color features than the



HDR scene Saliency map Focus of attention

Figure 2.4: Applying Itti and Koch’s model on the HDR image “Sunol8”. Left: false
color map of the HDR image. Middle: saliency map generated from Itti and Koch’s
model [46]. Right: focus of attention (red circle) predicted from the saliency map.
HDR image from High Dynamic Range Imaging, published by Morgan Kaufmann
Publishers, (©) 2006 Elsevier Inc.

other features when applying Itti and Koch’s model [46] directly for HDR images,
they hypothesize that the better preservation of saliency for color features is due to
the normalization of color features. Therefore, they modify Itti and Koch’s model by
adding normalization to other visual features as well. More specifically, the cross-scale
differences in terms of intensity and orientation are normalized over the intensity, for
which the authors suggest that normalization may be seen as a gain modulation,
which is the physiological mechanism of visual adaptation.

In eye tracking experiments with human subjects, they find that their approach
provides more accurate saliency maps than that of Itti and Koch [46] when the latter
is applied either directly to the HDR image or after dynamic range compression
with tone mapped images from six TMOs. Before our approach was proposed [33],
Brémond et al.’s model was the only method for visual attention analysis on HDR

images.

2.2 HDR Tone Mapping

The problem of HDR tone mapping is to reproduce real-world scenes on existing dis-
play devices with lower dynamic ranges. It was first recognized by early artists to
faithfully depict natural scenes on canvas. Because the light intensity levels in the
environment may be completely beyond the levels that the pigments can provide,

artists make use of some techniques such as drawing all objects with middle range
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Figure 2.5: Pictorial outline of HDR tone mapping. The image is from High Dynamic
Range Imaging, published by Morgan Kaufmann Publishers, (¢) 2006 Elsevier Inc.

colors [60] to overcome the limited dynamic range. Today, the focus of the problem
has shifted to rendering HDR images on conventional display devices or media with
limited luminance levels. HDR tone mapping addresses the significant contrast reduc-
tion from the scene intensities to the display intensities with the goal of achieving a
visual match between the observed scene and the tone mapped images on the display
(see the illustrated outline in Figure 2.5). Since Tumblin and Rushmeier [95] formally
introduced the “display range” problem and used human visual models to solve the
problem, HDR tone mapping has become an active research area in the community

of computer graphics and many TMOs have been proposed.

2.2.1 Visual Adaptation Models

The human visual system addresses a similar problem to HDR tone mapping. The
signal-to-noise of in individual channel in the visual pathway (from retina to brain)
is less than 2 orders of magnitude [20]. In spite of the limited dynamic range, the
human visual system enable us to perceive the detailed contrast under a wide range
of illumination. Therefore, it would be informative to understand the mechanisms
of the human visual system when solving the problem of tone mapping. Two of the
most relevant visual adaptation models, including threshold versus intensity function,

and photoreceptor responses relation, are briefly discussed. These visual adaptation
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Figure 2.6: Threshold versus intensity (TVI) function. The plot illustrates the no-
ticeable threshold A, at various background intensity I,. The image is from High
Dynamic Range Imaging, published by Morgan Kaufmann Publishers, (¢) 2010 Else-
vier Inc.

models are used as theoretical supports by most existing TMOs [86].

In psychophysics, human visual adaptation is studied by measuring the minimum
light increment that can be noticed by observers from the background intensity. The
minimum amount of increment is called just-noticeable difference (JND). The thresh-
old versus intensity (TVI) function, which provides the relation between JND denoted
by A, and background intensity given by Iy, is illustrated in Figure 2.6. As shown in
the function curve, the ratio of Al,/I}, over much of the intensity range of background
is roughly constant. Since the rule was first discovered by Ernst Heinrich Weber, it
is known as the Weber’s law, and the ratio is called Weber constant. Weber law
indicates that visual adaptation scales the scene intensity according to that of the
background in order to preserve our ability for contrast perception within a large

range of intensity levels.

Human visual adaptation to various illumination conditions is accomplished with
the coordinated action of the pupil, the rod-cone cells, and the photoreceptor mech-
anism [86]. After light passes through the pupil and reaches the retina, it will be
absorbed by photoreceptor cells including rods and cones, which function in varying

lighting conditions. The photoreceptor cells convert the absorbed light energy into
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Figure 2.7: Response curve of dark-adapted rod and cone cells to various intensities
in arbitrary units. The image is from High Dynamic Range Imaging, published by
Morgan Kaufmann Publishers, (¢©) 2010 Elsevier Inc.

neural responses, and the process is referred as the photoreceptor mechanism. Even
though the human visual system performs over a wide range of background intensi-
ties, it always maintain its log-linear property for about 3 log units of intensity range.
The photoreceptor response curves of dark-adapted rod and cone cells are given in
Figure 2.7. The response curve of rods cells appears in the left position because of its
higher sensitivity to light. Independent measures have verified that the S-shaped re-
sponse curve remains the same for different background intensities [86]. The position
of the curve will shift horizontally along the intensity axis with varying background
intensities, which means that human visual system adapts to new environments and

retains local contrast.

2.2.2 Tone Mapping Operators

TMOs aim to compress the dynamic range of HDR images to fit into the available
display range of a particular device or medium. TMOs can be roughly classified into

two categories: global operators [104, 88, 23, 83], and local operators [24, 27, 5, 85].
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Global operators handle images as a whole and apply the same transformation to every
pixel. The transformation could be realized with logarithmic curve, sigmoid curve,
or others derived from characteristics of the human visual system. On the other
hand, local operators simulate the visual adaptation mechanism and apply spatially
variant transformation for each pixel. Since local operators reduce scene contrast
according to neighborhood intensities, they can better preserve local contrast than
global operators. Nevertheless, local operators are computationally more expensive,
and may introduce artifacts such as halos, which impair the perceived naturalness of
tone-mapped images. A good review of existing TMOs can be found in the books
by Reinhard et al. [86] and Banterle et al. [9]. Although this is not exhaustive, we
briefly describe a number of TMOs that are frequently used [55, 15, 52, 16]. Some of
the operators will be adopted in the following chapters.

e Linear Mapping: A simple method for tone mapping is to linearly scale the
contrast levels of HDR images into the displayable ranges. Linear tone map-
ping usually causes significant content loss, making it insufficient to accurately

reproduce the visual appearance of the original scenes.

e Drago Logarithmic Mapping [23]: Drago’s logarithmic operator is derived
from the log-linear curve of photoreceptor response function. To preserve details
while compressing contrast, the algorithm improves the logarithmic compression
by introducing an adaptive adjustment of logarithmic bases for different pixel

values.

e Schlick Uniform Rational Quantization [88]: Schlick’s operator applies
an uniform rational quantization for the purpose of dynamic range reduction.
Compared with other more complete perceptually-based operators, the algo-
rithm provides a simple yet efficient solution to generate realistic looking images

on display devices.

e Ashikhmin Spatially Variant Operator [5]: Ashikhmin’s operator is a local
operator based on human visual adaptation. For local contrast preservation,
the algorithm calculates the local world adaptation as the average luminance of
neighboring pixels, and then employs a perceptual capacity function to compute

the local display adaptation and display values.
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e Durand and Dorsey Bilateral Filtering [24]: The bilateral operator uses
an edge preserving smoothing filter, known as a bilateral filter, to separate
the HDR scenes into different frequency components. Then, the low-frequency
component is compressed and recombined with the high-frequency component

to generate the final output results.

e Reinhard Photographic Tone Reproduction [85]: The photographic oper-
ator mimics the techniques developed in conventional photography for dynamic
range compression. The method employs a sigmoid function to compress the
contrast of HDR scenes, and replicates the photographic dodging and burning

to increase pixel contrast relevant to the surrounding areas.

e Image Color Appearance Model (iCAMO06) [51]: iCAM was originally
proposed as an image color appearance model [27]. Later, Kuang et al. in-
corporated an edge preserving spatial filter and light adaptation functions into
the color appearance model, and utilized the revised model for HDR images

rendering.

e Reinhard and Devlin Photoreceptor Model [83]: The photoreceptor op-
erator simulates the mechanisms of photoreceptor adaptation to solve tone map-
ping problem. Several user parameters are provided that allow control of inten-

sity, contrast, and the adaptation level in terms of light and color.

e Fattal Gradient Domain Compression [28]: By performing dynamic range
compression in gradient fields, Fattal’s operator identifies gradients at varying
spatial scales, attenuates their magnitudes with a compressive function, and

then integrates the compressed gradients by solving a Poisson equation.

Figure 2.8 illustrates tone mapped images generated by the above-mentioned
TMOs with default parameter settings. Since the operators address tone mapping
with a variety of methods and goals, they usually lead to images that look quite dif-
ferent from each other. Because different TMOs even parameters yield different tone
mapped images, one of most challenging tasks in the domain of tone mapping is to

select an appropriate operator and parameter settings for a particular HDR image.
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Figure 2.8: Tone mapping images from various operators on the HDR image “Lab
Window”. The HDR image is from Mark Fairchild’s HDR Photographic Survey (©)
2006-2007 Mark D. Fairchild.

2.2.3 Recent Directions

More recent approaches to HDR tone mapping offer several new directions, such as
user-assisted tone mapping [57, 16|, styled rendering [8, 2], display conditions aware
tone mapping [65, 84], and tone mapping optimization based on objective image
quality assessment [108, 34, 35, 36]. Since the development of objective equality
metrics and tone mapping optimization algorithms will be discussed in the following

context, here we focus on the other three directions.

The TMOs with default parameter settings usually cannot guarantee good results
and manual adjustment is required for further improvement. Several user interfaces
are introduced to assist in the manipulation process, which allows interactive con-

trol. Lischinski et al. [57] present an interactive tool for users to indicate regions
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of interest with brush strokes and make local adjustments of tone values and other
visual parameters in an image. In the work of Chisholm et al. [16], users are able
to iteratively select one of several alternative tone mapped images provided in the

interface for parameter optimization rather than tweaking parameters directly.

While conventional TMOs target a natural and faithful rendering of real-world
scenes, some algorithms are proposed to learn artistic styles from the predefined
examples and generate the results with personal taste and preference. Based on a
two-scale non-linear decomposition of an image, Bae et al. [8] adjust visual qualities
such as the tonal balance and detail amount to explore various styles on tone mapped
images. Also, Akyiiz et al. [2] propose an algorithm to learn the style from a set of

manipulated images and transfer the learned style for new images.

Display devices can differ dramatically in their peak brightness, contrast, and
black level. It can be expected that the same tone mapped image shown on various
devices will have different appearances. In order to have accurate representation
on a particular device, Mantiuk et al. [65] introduce a novel algorithm which takes
ambient illumination and display characteristics into consideration for tone mapping.
Moreover, inspired from color appearance model, Reinhard et al. [84] propose an
appearance reproduction method to produce HDR images and video for display under

specific viewing conditions of environment and devices.

2.3 Image Quality Assessment of Tone Mapped Images

Tone mapped images vary across different TMOs and parameter settings. Therefore,
a natural question is which tone mapped image most faithfully reproduces the visual
appearance of an HDR scene. Generally speaking, the image quality of tone mapped
images can be evaluated with both subjective and objective methods. Subjective
evaluation can be carried out with psychophysical experiments, where human subjects
are asked to make judgements of image quality. On the contrary, objective evaluation
is implemented with computational models based on image processing theories or

assumptions, which can make quality prediction in an automated manner.

A number of subjective studies have been conducted to compare the existing

TMOs and analyze the features that contribute to good image quality. Drago et
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al. [21, 22] compare six TMOs by asking subjects to judge the similarity and dissim-
ilarity of pairs of tone-mapped images. The statistical analysis reveals that image
quality is most related to apparent naturalness (the degree of resembling realistic
scenes) and apparent level of details (the visibility of scene content). Ledda et al. [55]
validate six TMOs with HDR scenes displayed on a HDR device. In their experiments,
human subjects are asked to make quality assessment based on overall similarity and
detail reproduction respectively. Kuang et al. [52] perform a series of experiments
to evaluate seven TMOs for their performance in overall preference and reproduc-
tion accuracy. Also, Cadik et al. [15] conduct a more comprehensive assessment in
which observers are asked to rank the tone mapped images from fourteen operators.
Their study suggests an approximation of overall image quality based on the mea-
surement of image features including brightness, contrast, detail reproduction and

color appearance.

Subjective methods can have reliable performance for quality evaluation. Nev-
ertheless, they suffer from some fundamental drawbacks. First of all, subjective
assessment is built on psychophysical experiments which could be expensive and
time-consuming. Secondly, it cannot be incorporated in an automatic framework
for tone mapping optimization. Although the limitations could be addressed by ob-
jective methods, the conventional image quality metrics commonly assume that the
compared image pairs have a similar dynamic range [100], and they are not suitable
for quality evaluation of tone mapped images where the assumption does not hold.
In an attempt to overcome the drawbacks of conventional methods, several objective
quality assessment methods for tone mapped images have been proposed. Using a
new definition of visible distortion, Aydin et al. [7] compute an image quality met-
ric for image pairs with arbitrary dynamic ranges. Also, by measuring structural
fidelity and statistical naturalness, Yeganeh and Wang [108] propose an objective
assessment method called tone mapped image quality index (TMQI). More recently,
Ma et al. [61] modify the measurement used in TMQI and introduce TMQI-II as an

improved variant.

In this section, we focus on the objective quality assessment of tone mapped

images. The current methods, such as dynamic range-independent quality assess-
ment [7], TMQI [108], and TMQI-II [61], are discussed.
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2.3.1 Dynamic Range-Independent Image Quality Assessment

Based on advanced models of human visual system, contrast distortion metric such
as visible difference predictor (VDP) [17] can capture the near threshold differences
and scale them in just noticeable difference units. Mantiuk et al. [66] propose an
HDR extension of VDP (HDR-VDP) to make prediction of perceivable difference in
the full luminance range of HDR images. Taking two HDR images as reference and
test images, HDR-VDP uses threshold fidelity measure to analyze the visibility of
distortion and output a probability map of detection. Based on the measurement of
HDR-VDP, Aydin et al. [7] propose a dynamic range-independent quality evaluation
methods for tone mapped images shown on displays. The central idea of the metric is
a new definition of visible distortion based on the classification of structural changes,

in which three types of distortion can be detected (illustrated in Figure 2.9):

e Loss of visible contrast: the contrast that is visible in the reference image be-

come invisible in the test image, which commonly happens during tone mapping.

e Amplification of invisible contrast: the contrast that is invisible in the refer-
ence image become visible in the test image, and it can be caused by contrast

stretching in inverse tone mapping.

e Reversal of visible contrast: the contrast can be seen in both reference and test
images but with different polarity. This strong distortion is usually related to

noticeable artifacts.

The three types of distortion are visualized as an in-context distortion map [17]
with an arbitrary color, and the magnitude of detection probability is denoted by the
scale of saturation. A sample of the distortion visualization is provided in Figure 2.10,
where the loss of visible contrast, amplification of invisible contrast, and reversal of
visible contrast are represented with color green, blue, and red respectively. Aydin et
al. [7] conduct perceptual experiments to validate the proposed quality metric, and
the results show that the maps of contrast distortion have good correlations with
the subjective assessment of image distortion types. However, since it is not obvious
how the quality maps could be condensed into a single score for an entire image, the

metric is not immediately applicable for tone mapping optimization.
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Figure 2.9: Three types of contrast distortion that the quality metric classifies as a
structural change (left) or a lack of structural change (right). The solid and dashed
lines denotes the reference and test signals, and the horizontal lines depict the visi-
bility threshold [7]. The image is from High Dynamic Range Imaging, published by
Morgan Kaufmann Publishers, (©) 2010 Elsevier Inc.

2.3.2 Tone Mapped Image Quality Index

A milestone in the development of objective quality assessment is the introduction of
the Tone Mapped Image Quality Index (TMQI) by Yeganeh and Wang [108]. TMQI
measures the image quality in terms of structural fidelity and statistical naturalness,
and assigns a single quality score to each image, which makes it suitable for the

application of quality improvement in an optimization framework.

The structural fidelity is an improved SSIM index [102, 101] for the comparison
of image pairs with various dynamic ranges. Based on the assumption that the per-

ceived changes in structure information can be used as predictor of image quality,
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Figure 2.10: Distortion maps that are partially shown and saturation scales that
indicate the magnitude of detection probability [7]. Green depicts loss of visible
contrast; blue denotes amplification of invisible contrast; red represent reversal of
visible contrast.

SSIM calculates the similarity between two images based on their spatial dependen-
cies of pixels. The original SSIM algorithm consists of three comparison components
including luminance, contrast, and structure. Since tone mapping causes significant
changes in luminance and contrast, the direct comparison of these components is
inappropriate for quality assessment of tone mapped images. To address that, the
structural fidelity modifies the SSIM algorithm by discarding the luminance compo-
nent and redefining the contrast component. In the new definition, the difference of
signal strength will not be penalized if the signal strengths of the HDR and LDR
images are both significant (above a visibility threshold) or both insignificant (below
a visibility threshold). The measurement of structural fidelity is performed on two
local image patches from the HDR and the tone mapped LDR images and a slid-
ing window is adopted to run across the entire image space. Inspired by multi-scale
SSIM [103], the structural fidelities are analyzed at multiple scales, where the images
are iteratively processed by low-pass filtering and downsampling to create an image
pyramid. A quality map that reflects the variation of structural fidelity across the
image space is generated at each scale, and the maps of different scales are averaged
into a score S; where [ denotes the number of the scale. The quality score S; can be

described as follows,
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Figure 2.11: Framework of multi-scale structural fidelity measurement [108].

1

S = N ; Stocal (Tiy i) (2.1)

In the equation, x; and y; denote the ¢ — th patch of the HDR reference and LDR test
images respectively, and N; denotes the number of patches. Afterwards, the overall

structural fidelity S is computed by combining the scores of different scales

L
S=1[s" (2.2)
=1

in which L denotes the total number of scales and 3; denotes the weight assigned to
the | — th scale. Based on the psychophysical experiment [103], L is set to 5 and
{Ai} is set to {0.0448,0.2856,0.3001,0.2363,0.1333}. The framework of the multi-
scale structural fidelity measurement is demonstrated in Figure 2.11. It is worth
mentioning that the measure is performed only on the luminance channel for color
images.

Assuming that good quality tone mapped images should should look as “natural”
as possible, Yeganeh and Wang [108] also introduce a scene-independent measurement
named as statistical naturalness, which calculates the similarity of brightness and
contrast between the tone mapped images and natural images. They assert that the
measurement, of statistical naturalness can best complement the structural fidelity
where brightness modeling and evaluation are missing. The statistical naturalness is
built upon a large data set consisting of about 3000 8 bits/pixel gray-scale images that
represent many different types of natural scenes. As shown in Figure 2.12, the means

and standard deviations of the images are analyzed to indicate the overall brightness
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Figure 2.12: Histograms of means fitted by Gaussian PDF (left) and standard devi-
ations fitted by Beta PDF (right) of natural images [106].

and contrast of “natural scenes”, and a penalty is given to tone mapped images with
different brightness and contrast. In order to quantify the distortion, the histograms
of means m and standard derivations d are fitted with a Gaussian probability density
function P,,(m) and a Beta probability density function P,(d) respectively, which are

formulated as follows,

Pm(m):\/%a exp{—%} (2.3)

(1 — d)Pa—tgea—t
B(aq, Ba)
where B() denotes the Beta function. The parameters used in the formula are esti-

mated with regression: u,, = 115.94, o, = 27.99, ag = 4.4, and B4 = 10.1. The fitted

Py(d) =

(2.4)

curves of these two functions are given in Figure 2.12. With the estimations of dis-
tortions in brightness and contrast, the statistical naturalness measure N is defined

as the product of P,,(m) and Py,(d):

1
N =—=P,F, 2.
PP (25

where K is a normalization factor computed as K = max{P,,P,}.
With the structural fidelity measure S and the statistical naturalness measure N,
the TMQI measure () is defined as a three-parameter function to combine these two

measures:
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Q=aS"+ (1 —a)N” (2.6)

In this function, a controls the relative importance of the two components, while «
and [ adjust their sensitivities respectively. Since both S and N are upper-bounded
by 1, the overall quality measure () is upper-bounded by 1 as well. With an iterative
learning process, the parameters are tuned to best fit the subjective evaluation data
provided by Song et al. [90], and the settings are a = 0.8012, « = 0.3046, and
B =0.7088.

The TMQI was then validated by comparing the objective quality assessment re-
sults with subject-rated image data, and the results show good correlation between
the TMQI measure and subjective ranking scores. Nevertheless, the TMQI suffers
from several drawbacks which could lead to inaccurate prediction. First of all, the vis-
ibility threshold used in the structural fidelity is too sensitive, and any tiny changes
in local patch in HDR images could cause a significant difference in quality mea-
sure [61]. Secondly, the statistical naturalness measurement always favors the images
with “average” brightness and contrast, and that bias towards “average” images is too
coarse to make accurate quality prediction for HDR scenes under a broader range of
illuminations [34, 35, 61]. The drawbacks of the statistical naturalness in the quality
evaluation and application of tone mapping optimization will be further discussed in

the following chapters.

2.3.3 Tone Mapped Image Quality Index II

Most recently, the limitations of TMQI have been recognized by Ma et al. [61], and
they propose an improved variant of the quality measure named TMQI-II, in which
the original measurement of structural fidelity and statistical naturalness are updated
for better accuracy.

Using a sliding window across the image space, the structural fidelity of TMQI can
generate a quality map that indicates the preservation of local structural information.
Compared with the original SSIM index [102, 101], the measurement modifies the
contrast comparison by suggesting that the HDR and tone mapped images patches
should have the same visibility of local contrast. To access the contrast visibility,

they apply a nonlinear function derived from the contrast sensitivity model for the
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Figure 2.13: Structural fidelity map on the HDR image “Belgium house” (brighter
indicates higher quality) [61]. Left: tone mapped image from photographic oper-
ator [85]. Middle: structural fidelity map generated by TMQI. Right: structural
fidelity map generated by TMQI-II.

contrast which is calculated as the local standard deviation. However, as mentioned
earlier, the threshold determined by the function suffers from the problem of over
sensitivity, which in turns mistakenly marks the invisible contrast as visible contrast.
The phenomenon is illustrated in Figure 2.13. The structural fidelity measure of
TMQI incorrectly recognizes the homogeneous wall areas as contrast visible in HDR
images, and then applies quality penalties for these areas of the tone mapped image
resulting in inaccurate predictions. Assuming that the contrast visibility function
should be adapted to the local luminance levels of HDR images, Ma et al. employ
the coefficient of variation as an approximation of the local contrast in HDR image
patches rather than the standard deviation. They assert that the modification is
consistent with Weber’s law and remains invariant to linear contrast stretching. The
quality map generated by the updated structural fidelity is shown in Figure 2.13
(right). In the same fashion with TMQI, the single quality score for the entire image

is computed as the weighted average of the quality maps across multiple scales.

The statistical naturalness in TMQI is built on the statistical average of brightness
and contrast derived from a large set of natural images. Using a Gaussian density
function P,, and a Beta density function Py is used to indicate the naturalness qual-
ities of brightness and contrast respectively, the overall quality score of statistical
naturalness is calculated as the normalized product of these two density functions.
The measure of statistical naturalness is completely independent of the image con-

tent of reference HDR scenes, which is an over simplification. The model suggests
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Figure 2.14: Surfaces of the functions P, (left) and P, (right) [61].

that statistically natural tone mapped images of dynamic range [0, 255] should have
an average brightness around 116 and a contrast around 65 which correspond to the
peaks in the density functions. However, each tone mapped image should have differ-
ent brightness and contrast values to look natural depending on the original scenes.
In order to overcome the limitation, Ma et al. propose an image dependent natural-
ness model. They compress the luminance of HDR images based on the logarithmic
average, and calculate the mean p. and standard deviation o, of the compressed lumi-
nance as the estimation of brightness and contrast for naturalness. Asserting that the
measures should remain in certain ranges to be “natural”, they introduce acceptable
boundaries [p, pr] and [0y, 0, for brightness and contrast respectively. Afterwards,
with the approximated values and boundaries of the two components, the functions
P,, and P, in statistical naturalness are redefined using Gaussian cumulative distri-

bution functions, which are described as follows,

( 1 ® (t—Tl)Q
Voo, SN )

1 Zur—p (t — TQ)2>
exp | ———=— | dt > e,
| V270, /_oo p( 263 e
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( 1 7 (t — 7'3)2)
exp | ————— | dt <o,
vV 27’(‘93 /—oo b ( 29% 7=
P = (2.8)

1 2or—0 (t — ’7‘4)2)
—_— exp| ————|dt o> o,
\ V 271'64 /oo P ( 203

where the parameters 7; and 6; (i € [1,2,3,4]) are determined by points on the

curve; see [61] for details. Figure 2.14 illustrates the surfaces of the two functions. It
can be observed that heavy penalties will be applied for tone mapped images whose
brightness or contrast is outside of the acceptable boundaries.

The overall quality of TMQI-II is defined as the weighted average of the mea-
sures of updated structural fidelity and statistical naturalness. Instead of learning
weights from subjective data, TMQI-II emphasizes the equal importance and em-
ploys the same weights for these two components. The comparison of TMQI and
TMQI-IT is conducted with a subject-ranked database, and the experiment shows
that the updated measurements can have improved correlation with respect to sub-
jective evaluations. As the improved variant of TMQI, TMQI-IT has been used as a

baseline to compare our feature-based quality metric against.

2.3.4 Other Methods

Other than the state-of-the-art methods discussed in the previous sections, a few other
image quality assessment approaches for tone mapped images have been proposed,
and most of them use partially or completely scene-independent measures.

Derived from the TMQI [108], Nasrinpour and Bruce [75] propose a saliency
weighted tone mapped quality index that use visual saliency to further align the
human adjustments of image quality. They modify the measurement of structural
fidelity in TMQI by introducing visual saliency in the pooling strategy to compute
the overall score. Since the statistical naturalness component remains the same, their
method inherits the limitations of TMQI regarding the over-simplification of quality
judgement in terms of brightness and contrast. A similar saliency-based modifica-
tion of TMQI has also been presented by Liu et al. [59] which suggests a new pooling
method for the structural fidelity using visual saliency while having the statistical nat-

uralness unchanged. Based on the local phase information of images, Nafchi et al. [72]
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use the locally weighted mean phase angle map for quality evaluation, and incorpo-
rate the phase-based measure in TMQI as an improved quality metric. This approach
still uses the scene-independent statistical naturalness to make explicit constraints on
brightness and contrast, which could introduce artifacts in quality predictions. Also,
asserting that higher quality tone mapped images should maintain much more de-
tails, Gu et al. [39] propose a totally blind quality metric by estimating the amount
of local details, in which the details are quantified as the entropies in the brightened

and darkened tone mapped images.

Although no-reference measures provide an easy solution when reference images
are not immediately available for comparison, they are too coarse to make accurate
prediction for the breadth of real world images. Some discussion of the limitations can
be found in the prior works [35, 61]. Considering the ultimate goal of tone mapping
is to reproduce the visual appearance of HDR scenes [86], we mainly focus on the
full-reference objective quality assessment for tone mapped images, which calculates

the distortion between compressed LDR and original HDR images.

2.4 Evolution Strategies

Evolution strategies (ESs) [81, 89], also referred to as evolutionary strategies, are
optimization techniques based on the principles of biological evolution. They belong
to a general class of evolution methodologies that take the candidate solutions to the
optimization problem as individuals in a population and select the better individuals

in each generation.

ESs are most commonly used for black-box optimization problems where derivative
information is not available. They are relatively robust with regard to the ruggedness
of the objective function (rugged fitness landscape). In the present context, evolution
strategies are useful as the quality of a tone mapped image can only be evaluated
through application of the TMOs, and no convenient mathematical assumptions re-
garding the objective can be made. This section briefly introduces the main principles
of the optimization algorithm and parameter control. A thorough survey of evolution

strategies was conducted by Hansen et al. [40].
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2.4.1 Algorithm Description

From the algorithmic viewpoint, ES are stochastic optimization algorithms that iter-
ate variation and selection in populations of candidate solutions. The search space is
the continuous domain R™ and the solutions is search space are n-dimensional vectors.
We assume a population of individuals. Each individual represents a candidate solu-
tion, and consists of a parameter vector z € R"™ and an associate fitness value f(x).
In some cases, there is only one individual in the populations. Depending on the roles
of individuals in a generation, they can also be denoted as parents or offspring.

For each generation, one or several parents are selected from the current popula-
tion, which is called mating selection, and offspring are generated from the selected
parents by duplication and recombination. Then, the offspring undergo mutation
which introduces small, random, and unbiased changes to these individuals. The av-
erage size of the changes are adapted over time, and the parameters that allow the
control of adaption is called control parameters. For instance, the step-size o deter-
mines the notion of “small”. Although the method of parameter control is not always
directly inspired by biological evolution, it can be a central feature for evolution
strategies. After mutation, the offspring become new members, and the size of the
population grows accordingly. Next, based on the fitness value, environment selection
reduces the population to its original size, in which only the best individuals can sur-
vive and become the parents for next generation. There exist two basic strategies for
the environment selection: plus- and comma- selection. In plus-selection, individuals’
age is not considered, and the best individuals are selected from both parents and
offspring. Comma-selection takes age into account, and only the offspring can survive

to the next generation.

2.4.2 Parameter Control

Controlling the parameters of mutation is key to the design of ES [40]. The step-size
o is a scaling factor for the random vector perturbation, and it plays an important
role in parameter control. To a large extent, the step-size controls the convergence
speed of the algorithms. When larger step-sizes lead to larger expected improve-
ment, the step-size control techniques should increase the step-size to meet the target.

Conversely, when smaller step-sizes contribute to better performance, the techniques
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should decrease its value instead. The control of the step-size can be performed on
different levels: the step-size can have different values for various individuals, or a

single step-size value can be applied to all individuals.

Algorithm 1 The (1 + \) — ES with the Chisholm et al.’s Strategy
1. given n, A € N, v € [0, 1]

2: initialize P = {(x, 0, f(x)),x € R",0 > 0
3: while not happy do

4: for k € {1,...,\} do

5: xr =x+ 0 x N(0,1)

P+ PU{(xk,0,f(xx)) | 1