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ABSTRACT

Phytoplankton produce approximately 40% of the world’s oxygen and play a critical role
in regulating global climate by the drawdown of atmospheric carbon dioxide and, as
suggested by increasing evidence, through the emission of climate-relevant volatile
organic compounds (VOCs). Currently, there is a gap in knowledge surrounding long-
term emissions of phytoplankton related VOCs under field conditions. In a first of its
kind, this study combined continuous measurements of total and specific VOCs on Sable
Island throughout 2016 with the Hybrid Single-Particle Lagrangian Integrated Trajectory
model, meteorological and remote sensing data to allocate measured compounds into
three different upwind source sectors. 48% of VOCs were found to originate from marine
phytoplankton emissions, 40% from terrestrial biogenic sources and 11% from
anthropogenic activity. These results challenge current methods and assumptions of in
situ measurements and shed light on the likelihood of various other sources interfering

with remote marine VOC measurements.
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CHAPTER 1 INTRODUCTION

Approximately 2.3 billion years ago, planet Earth experienced an event that
shifted its journey through the universe forever. The successful evolution of the first
photosynthetic microorganisms, the cyanobacteria, created The Great Oxygenation Event,
and within a relatively short period of time, the previously anaerobic planet transitioned
to having an atmosphere composed of 35% oxygen. This caused a huge imbalance in the
already functioning anaerobic systems; it reshaped the atmosphere by forming ozone, and
initiated one of the most significant mass extinction events our planet has witnessed
(Shields-Zhou and Och, 2011). Fast forward to today, Earth has stabilized at a 21%
atmospheric oxygen composition with an ozone layer protecting the planet from harmful
UV-radiation and allowing the DNA-containing biota to flourish. The ancient
photosynthetic microorganisms have evolved into hundreds of species of phytoplankton
inhabiting virtually every aquatic region of the globe and producing approximately half
of the free oxygen that supports life (Falkowski et al., 2004). The sheer enormity of
phytoplankton presence on Earth also makes them a key component of bio-geochemical

cycles, the basis of aquatic food webs and an important regulator of global climate.

Other than producing oxygen, phytoplankton absorb a large portion of carbon
dioxide from the atmosphere and release key gases that control climate. Some of these
gases, such as halomethanes, directly impact the atmosphere by reaching the stratosphere
where they can catalyze the destruction of ozone (Colomb et al., 2008) while others, such

as dimethyl sulfide, have indirect effects linked to the formation of clouds and scattering



of sunlight (Malin and Kirst, 1997). Nonetheless, it is not a secret that the survival of our

planet’s biota is dependent on the survival of phytoplankton.

Unfortunately however, anthropogenic activity is drastically changing our
planet’s climate, and with that, have introduced a suite of complex alterations to oceanic
phytoplankton (Barton et al., 2016). In some regions, the water column has become more
strongly stratified, leading to warmer, more nutrient poor conditions that favour the
growth of smaller phytoplankton species (Li and Glen Harrison, 2008; Li et al., 2006).
The likely effects of these shifts are two-fold: unlike small cells, large cells are more
likely to sink and bury their carbon in the deep ocean for climate-relevant time scales;
smaller cells are associated with longer, less efficient food webs that may ultimately
affect the success of higher trophic levels such as fisheries species. In other regions, long-
term data records show statistically significant increases in phytoplankton primary
productivity (Mackas, 2011) thought to be related to increased phytoplankton metabolic

rates with increasing temperature (Rasconi et al., 2017; Sénchez et al., 2008).

These multi-facetted alterations can be studied from several angles, one of which
1s to measure marine emissions of volatile organic compounds (VOCs) to help understand
the relationship between phytoplankton and the atmosphere. Many of these VOCs are
produced by phytoplankton as a result of physical or biological stress, such as the
changing conditions of the world’s oceans (Loreto and Velikova, 2001). However, the
majority of studies inspecting these compounds are performed under laboratory
controlled environments, which have been shown to poorly reflect conditions in the wild

(Sabolis, 2010; Sinha et al., 2006). Field studies, even though having their own



complexities and challenges, are therefore crucial for our understanding of phytoplankton

produced VOCs.

Evidence of anthropogenic pollution and long range transport of terrestrial
compounds have been detected even in the most remote regions of the world (Monks et
al., 2009; Moore, 2000). This introduces errors in the measurements of marine produced
VOCs as samples may contain several sources of compounds. As a result, and in
collaboration with a 5-year National Aeronautics and Space Administration (NASA)
project entitled the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES,
https://naames.larc.nasa.gov/), this research project aimed to achieve two main
objectives; to quantify temporal variations in marine biogenic emissions in the field, and

to recognize other (non-marine) contributing sources of VOCs on Sable Island.

Photoionization detection was used for continuous real-time measurements of
total VOCs. Thermal desorption tube sampling with  gas chromatography-mass
spectrometry was used to identify VOC species, and the National Oceanic Atmospheric
Association (NOAA)  Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model was utilized to reproduce twice-daily air mass back trajectories on
Sable Island. Additionally, remote sensing data of chlorophyll-a concentrations were
used to support and contextualize on-island measurements. Despite all the complications
associated with remote-region research, this study confirmed important temporal trends in
marine VOC emissions and the likelihood of multiple, non-marine sources being

associated with remote marine measurements of VOCs.



CHATPER 2 LITERATURE REVIEW

In 1987, Nature published one of the most controversial journal entries of this
century. In this publication, Charlson et al. (1987) describe their ‘CLAW’ hypothesis, in
which they proposed a negative-feedback-loop mechanism where phytoplankton play a
role in regulating Earth’s climate through the production of dimethyl sulfide (DMS).
Their argument stated that with increased solar irradiance (and therefore temperature), an
increased amount of DMS is released by phytoplankton into the atmosphere. DMS would
then undergo a series of chemical reactions that would result in increased cloud
formation, which would cool down the Earth via the albedo effect. Additionally,
according to the hypothesis, the opposite is true with decreased irradiance (Charlson et
al., 1987). This instigated a great number of studies and publications from various
scientific branches to inspect these mechanisms. However, with mounting evidence
against the CLAW hypothesis (Quinn and Bates, 2011; Woodhouse et al., 2010), we are
left with large uncertainties surrounding the effects of phytoplankton on the atmosphere

and how a changing climate may affect phytoplankton dynamics.

2.1 Ocean-Atmosphere Interactions

Oceans cover 71% of the Earth’s surface and therefore play a key role in shaping
our climate by having significant biotic and abiotic influences on biogeochemical cycling
(Bigg, 2005). For example, more than a quarter of all anthropogenic CO, produced in the
last decade was absorbed by the oceans, adding up to 2.5 Pg annually (Le Quere et al.,

2012).



The interactions between oceans and other regions of the lower troposphere are
multi-dimensional (absorption and/or reflection of radiation, release of climate relevant
substances etc.) and can be viewed in terms of exchanges in energy (heat and light),
humidity and a multitude of organic and inorganic compounds and particles. Even though
each of these interactions is significant in its own way, this thesis will focus mainly on

the uni-directional flow of VOCs from the ocean to the atmosphere.

2.1.1 Ocean Surface-Atmosphere Interaction

In order to understand the atmospheric chemistry of marine emissions, it is
beneficial to understand the mechanisms through which compounds are released from
ocean surfaces to the atmosphere. This happens via two main processes; the bursting of

surface bubbles and surface evaporation.

The formation of surface bubbles has long been studied and recognized for its
importance in the release of salts and other aerosols, also known as sea-spray. The
breaking of the bubble film that forms on the surface also carries with it the release of
compounds present in the upper layer of water at the time of breaking (biogenic VOCs,
inorganic salts, oxygen etc.) (Cochran et al., 2017). Bubbles are formed when wind
interacts with surface water, creating waves which break into visible “white caps”. Less
visible, sub-millimeter bubbles are also formed as a result of precipitation (rain and
snow) hitting and disturbing the ocean surface (Blanchard and Woodcock, 1957; Zhao et
al., 2003). In another study inspecting the release of dimethyl sulfide (DMS), it was noted
that the transfer velocity of DMS from the water to the atmosphere was larger at higher
winds speeds and greater amount of wave breaking (Turner et al., 1996). The formation

of surface bubbles and subsequent release of aerosols was also shown to increase in



supersaturated, hyperoxic (130% air saturation) seawater (e.g. during periods of
phytoplankton blooms) irrespective of wind speed (Stramska et al., 1991). Temperature
also plays an important role in bubble formation and compound release. More surface
bubbles were formed at 23.5°C than at 12.9°C (Woolf et al., 1987) with Turner et al. also

observing a decreased rate of DMS release at lower temperatures (Turner et al., 1996).

These effects are governed by the ideal gas law (PV=nRT) and Boyl’s law (P,V;
= P,V,), which state that an increase in temperature causes and increase in partial
pressure of dissolved gases. This reduces their solubility and ultimately results in

increased flux of gases from seawater to the atmosphere.

Regardless of bubble formation, an increase in kinetic energy due to an increase
in temperature would facilitate the release of VOCs and other gases from surface waters
(Wiebe and Gaddy, 1940). There is a gap in the literature in regards to specifically
describing mechanisms in which biogenic VOCs are released from the oceans through
evaporation. However, many of these VOCs have low boiling points, for example,
chloromethane boils at -24.2°C and would evaporate readily even in the middle of winter
in the northern Atlantic (Hilal et al., 2003) . With that said, other conditions such as water
salinity and the chemical/physical properties of specific compounds should also be taken

into consideration when studying ocean-atmosphere interactions.

2.2 Phytoplankton — Biology and Ecology
It is not possible to have a good understanding of biogeochemical cycles and
ocean-atmosphere interactions without considering the role played by phytoplankton; a

group of hundreds of different taxa and species of photosynthetic and -generally-



immotile marine algae (WHOIL, 2017). Due to their dependence on sunlight,
phytoplankton inhabit the upper layers of the oceans where they drift and form seasonal
‘blooms’ during which they rapidly reproduce in response to suitable temperatures,
sufficient solar irradiance, and adequate nutrient availability (von Dassow and Montresor,

2011).

These primary producers are at the center of all marine food webs and
ecosystems. By fixing inorganic carbon through photosynthesis, they become the source
of chemical energy in the oceans, supporting small zooplankton, which are fed on by
virtually every marine animal, from whales, to fish and shellfish (Christaki et al., 2014;
Danielsdottir et al., 2007). Carbon fixation by phytoplankton is also responsible for the
removal of 35% to 55% CO, from the atmosphere (Behrenfeld et al., 2005, 2006;
Jardillier et al., 2010) and the production of approximately 40% of the world’s oxygen
(Hader and Schafer, 1994; Jenkins and Goldman, 1985). More relevant to this project,
phytoplankton produce a suite of atmospherically relevant gases, such dimethyl sulfide,
halomethanes and other hydrocarbons; which influence air chemistry and cloud formation

(Monks et al., 2009). These are discussed in more detail in Section 2.3.

2.2.1 Phytoplankton in the North Atlantic / Scotian Shelf

Phytoplankton inhabit virtually all marine and aquatic regions in the world.
However, the northern Atlantic / Scotian Shelf play host to one of the largest
phytoplankton blooming events on Earth due to nutrient richness and ideal water
temperatures (Fournier et al., 1977; Siegel et al., 2002). This has caught the attention of

researchers for decades (Riley, 1957), providing a wealth of knowledge about



oceanography, biogeochemistry, phytoplankton ecology as well as prompting new and

novel methods for phytoplankton research (Craig et al., 2012; Soja-Wozniak et al., 2017).

In situ measurements in the northern Atlantic show distinct seasonal/temporal
patterns in phytoplankton blooms. A spring bloom composed mainly of diatoms was
observed, followed by an assemblage of pico- and nanophytoplankton around May-
August, and a bloom of dinoflagellates in September (Craig et al., 2015; Riley, 1957,
Ross et al., 2017). Additionally, a smaller autumnal bloom is often observed and occurs
as a result of increased wind-driven mixing that entrains nutrient rich deeper water into
the upper sunlit water column (Craig et al., 2015). These blooms correspond to periods of
high nutrient availability in the area due to deep ocean mixing and advection (Fournier et
al., 1977; Strain and Yeats, 2005), increasing light availability (Friedland et al., 2016) and
seasonal conditions conducive to the growth of certain algal classes (Craig et al. 2015).
Having previous knowledge of phytoplankton blooming patters is extremely useful in
designing and timing experiments concerned with marine emissions because it allows

researchers to setup instrumentation and adjust models accordingly.

2.3 Phytoplankton-Related Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) are carbon-based molecules with a low
boiling point and therefore evaporate readily at relatively low temperatures (Liu et al.,
2008). Tens of thousands of VOC species have been identified and are mainly produced
by anthropogenic (factories, oil rigs, cement manufacturing etc.) and biogenic (terrestrial
and marine organisms etc.) sources (ECCC, 2013). Phytoplankton are responsible for the
production of the majority of marine-emitted VOCs and more than one third of total

global VOC emissions (Palmer and Shaw, 2005; Paul and Pohnert, 2011; Sinha et al.,
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2006). This is significant as many of the VOCs they produce have strong impacts on

climate and atmospheric conditions.

In a similar way to terrestrial plants (Holopainen and Gershenzon, 2010),
phytoplankton produce and release VOCs in response to physical (oxidative, thermal,
photolytic etc.) and biological (defence against predators, inter/intraspecific competition)
stress (Ekdahl et al., 1998), as well as an indirect by-product of intracellular metabolism
(Loreto and Velikova, 2001; Moore and Tokarczyk, 1993; Moore et al., 1994; Palmer and
Shaw, 2005). Nonetheless, marine emitted biogenic VOCs can be divided into two main
categories, halogenated hydrocarbons, such as halomethanes and longer-chained
halocarbons, and non-halogenated hydrocarbons, such as monoterpenes and the widely

known dimethyl sulfide (Colomb et al., 2008; Liu et al., 2008).

2.3.1 Halocarbons

Halogenated hydrocarbons or halocarbons are organic compounds containing one
or more halogen atoms such as chlorine, bromine, or iodine within their structures (Liu et
al., 2008). These compounds have several environmental and climate changing effects
(Monks et al., 2009; Palmer et al., 2013). Stable marine halocarbons with a relatively
long life time, such as chloromethane and bromomethane (life time ~ 1-3 years) (Lof et
al., 2000) can travel to the stratosphere and cause ozone destruction through photolysis
(Moore and Tokarczyk, 1993), and shorter-lived halocarbons such as iodomethane, can

form 1odine radicals that catalyze lower tropospheric ozone destruction (Colomb et al.,

2008).



These two effects are fundamentally different: depletion of stratospheric ozone
causes an increase in the amount of harmful UV radiation entering the biosphere (Herman
et al., 1996), leading to cancers through inducing DNA replication errors, crop damage
and severe ‘sun burn’ on humans and animals alike (Martinez-Levasseur et al., 2013;
Ravanat et al., 2001; Teramura, 1983). Conversely, tropospheric ozone is a powerful air
pollutant that causes respiratory problems and its reduction is seen as beneficial
(Lelieveld and Dentener, 2000). With that said, increased UV radiation reaching the
troposphere due to low stratospheric ozone shielding causes an increase in biospheric
ozone levels in the presence of anthropogenic pollutants such as NOx and other VOCs
(Gibson et al., 2009a; Pickering et al., 1992). It should also be noted that the majority of
marine halocarbons are washed out of the atmosphere with precipitation; hence,
stratospheric ozone destruction remains largely due to anthropogenic causes (Goodwin et

al., 1997; Moore, 2000).

The chemistry and mechanisms in which specific compounds affect the
atmosphere have been well studied, however, questions regarding the collective
magnitude and temporal variations of their production from phytoplankton are yet to be

answered.

2.3.2  Dimethyl sulfide (DMS)

Contrary to common knowledge, the majority of DMS (CH;-S-CH;) 1s not directly
produced by phytoplankton but is a breakdown product of dimethylsulfoniopropionate
(DMSP). This is a two-step process in which DMSP is released into surface water, and is
then converted into DMS. Only a small fraction of DMSP is converted into DMS

intracellularly with the use of the enzyme DMSP-lyase (Malin and Kirst, 1997)
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Phytoplankton cells directly excrete DMSP into surface water as a means of
controlling cell buoyancy; however, this mechanism is believed to be of little significance
to the overall DMSP budget (Belviso et al.,, 1990; Reisch et al., 2011). The main
mechanism in which DMSP is released into the water is via cell rupturing resulting from
grazing by zooplankton, wave breaking or natural death. This allows for aerobic and
anaerobic bacterial degradation and the use of bacterial DMSP-lyase to convert DMSP
into DMS (Andreae and Crutzen, 1997). During periods of phytoplankton blooms,
surfaces waters become supersaturated with DMS, which is then released from the water
into the atmosphere through evaporation and rupturing of surface bubbles (Turner et al.,
1996).

DMS released into the atmosphere is quickly (lifetime ~1 day) oxidized by OH
radicals and to a small extent NOs, to form sulfur dioxide (SO;) and methane sulfonic
acid (MSA). Oxidation by NOj is insignificant in clean and remote ocean regions making
OH the main driver of oxidation. This reaction is light dependent as the production of OH
depends on the photolysis of Os. This has been shown by measurements that indicated
increased levels of DMS on cloudy days and decreased DMS levels on sunny days
(O’Dowd et al., 1997). Further oxidation of SO, forms sulfuric acid (H,SO4), which
nucleates and/or deposits on sea salt aerosols to form sulfate aerosols. These aerosols
scatter and reflect solar radiation, causing a cooling effect. Further deposition and
nucleation of sulfuric acid forms cloud condensation nuclei (CCN), which act as initial
sites for water vapor to form cloud droplets. An increase in DMS causes an increase in

sulfuric acid concentrations and hence an increase in clouds/cloud optical thickness and
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solar reflection (Andreae and Crutzen, 1997; Ayers et al., 1997; Buckley and Mudge,
2004; O’Dowd et al., 1997).

It has be estimated that about 30% of CCN originate from oceanic DMS (Mahajan
et al., 2015), making it a substantial source of global cooling. Further evidence of the
cooling negative-feedback-loop is shown in Malin and Kirst’s work where the production
of DMSP in phytoplankton cells is increased with increased solar irradiance and
decreased with a decrease in solar irradiance (Malin and Kirst, 1997).

With that said, there is contradicting evidence to the research mentioned above. A
temperature increase by 1°C can directly affect phytoplankton metabolism and has been
shown to drastically reduce the number of zooplankton, which are responsible for
releasing most of the DMSP into surface waters and ultimately to the atmosphere
(Reisch et al., 2011). Increasing temperatures can also cause ocean stratification where
deep ocean mixing is reduced, bringing with it a reduction in nutrients entrained into the
upper sunlit layers and causing weaker phytoplankton blooms with less DMS emissions
(Capotondi et al., 2012).

DMS may certainly have important climate forcing effects, but many questions
regarding its atmospheric chemistry and production still need to be answered before the

extent of its effects are fully understood.

2.3.3  Other Non-Halogenated Marine Hydrocarbons

Phytoplankton also produce many other non-halogenated compounds, including
isoprene, limonene, a-pinene, and 1-hexanol (Colomb et al., 2008; Meskhidze et al.,
2015; Moore and Tokarczyk, 1993; Moore et al., 1994; Palmer and Shaw, 2005). In

addition to halocarbons and DMS, these compounds play important roles climate forcing.
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Substantial isoprene (CsHg) production by phytoplankton cultures was first
discovered in the early 1990s (Bonsang et al., 1992; Moore et al., 1994) and was later
confirmed by models and some field studies to amount up to 10 Tg of the annual
atmospheric isoprene budget (Meskhidze et al., 2015; Palmer and Shaw, 2005; Shaw et
al., 2010; Sinha et al., 2006). These are important discoveries, because like DMS, the
oxidation of isoprene forms secondary organic aerosols (SOAs) such as glycolic acid and
oxalic acid, which act as CCNs and assist in cloud formation or become particulate
organic matter that can induce negative radiative forcing by reflecting and scattering

sunlight (Carlton et al., 2009; Lim et al., 2005).

Biogenic, marine monoterpenes (CjoHi¢) such as limonene and a-pinene also
undergo oxidation to form SOAs, which have the ability to further nucleate and become
CCNs and have similar climate forcing effects as isoprene and DMS (Engelhart et al.,
2008; Yu et al., 1999). However, it has also been shown that in the presence of isoprene,
particle formation by monoterpenes is decreased, adding to the complexity of the
interactions between marine emissions and the atmosphere (Kiendler-Scharr et al., 2009).
Similarly, phytoplankton-produced alcohols and aldehydes including hexanol and
hexanal form their own SOAs, but may cause inhibition of SOA formation when mixed

with terpenes (Liyana-Arachchi et al., 2014; Waza, 2014).

2.4 Non-Marine VOCs

When trying to distinguish marine VOCs from others, it is important to be aware
of the different sources of VOCs and the overlap in emissions of similar VOC species by
more than one source. This study examined terrestrial and anthropogenic sources that

may influence marine VOC measurements and analysis.
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2.4.1 Natural Terrestrial Sources

Terrestrial VOCs from natural sources such as vegetation and forest fires can
travel long distances through the atmosphere and interfere with marine VOC
measurements. Mainland Nova Scotia is the closest major source of terrestrial biogenic
VOCs to Sable Island, with other possible sources such Maine and close maritime /
northern Atlantic regions. These areas are rich in coniferous vegetation including
numerous species of spruce, pine and hemlock, as well as many species of deciduous
trees like birch, oak and maple. Several studies have identified the VOC species produced
by these forests/trees and were found to be heavily composed of monoterpenes such as
camphene, p-cymene, a-pinene and limonene (Holopainen, 2004; Holopainen and
Gershenzon, 2010; Spanke et al., 2001; Trabue et al., 2008). Isoprene was also found to
be a key VOC produced by virtually all terrestrial plants, contributing to more than one
third of all biogenic hydrocarbon emissions on Earth (Kiendler-Scharr et al., 2009; Loreto

and Velikova, 2001).

Green leaf volatiles (GLV) including as 1-hexanol, hexane and Z-3-hexenyl
acetate are also widely emitted by plants in the north Atlantic region (Copolovici et al.,
2012; Jactel et al., 1996). These are produced as a defense mechanism when a plant is
subjected to mechanical stress, such as grazing by animals or insects (Scala et al., 2013),
a common occurrence on Sable Island by the feral horses and the leaf beetle
Trichlochmaea sablensis. This, combined with their short atmospheric lifetime, makes
on-island emissions from local grasses and foliage the most likely source of terrestrial
GLVs measured on Sable Island. Additionally, it should be noted that there are no known

terrestrial biogenic sources of halocarbons.
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Forest fires are another major source of natural terrestrial VOCs. Every year since
1990, 2.5 million hectares of land are consumed by wild fires in Canada (NRC, 2017).
These fires are a significant source of CO,, CO, methane, ethane, ethene, propene,
hydrogen cyanide, benzene and naphthalene -to name a few compounds (Simpson et al.,
2011). Wild fire plumes can travel over long distances and cause spikes in measurements
thousands of kilometers away. For example, emissions from boreal forest fires and fires
in western Canada have been shown to reach Atlantic Canada and Europe (Forster et al.,

2001; Gibson et al., 2015; Palmer et al., 2013).

2.4.2 Anthropogenic Sources

Anthropogenic VOCs can act as greenhouse gases with negative impacts on
human health and the environment. A report by Environment and Climate Change
Canada showed a 50% nationwide reduction in anthropogenic VOC emissions since 1990
(ECCC, 2016), however, anthropogenic sources still dominate urban regions and

contribute to approximately one quarter of global VOC emissions (Borbon et al., 2013).

In Canada, the majority of anthropogenic VOCs are released from the oil and gas
industry, followed by paints and solvents. This is especially relevant because Sable Island
is surrounded by six major offshore oil and gas drilling platforms (Waugh et al., 2010).
VOC measurements on petroleum wells show the emissions of a variety of compounds
including toluene, benzene, alkanes, CFCs and a variety of other aromatic hydrocarbons
such as cumene (Harrison et al., 1975; Warneke et al., 2014). Fossil fuel combustion also
contributes to the release of many VOC species including naphthalene, benzene, xylene,
styrene and several chlorinated hydrocarbons such as tetrachloromethane, 1,4- and 1,2-

dichlorobenzene (Elbir et al., 2007; Monks et al., 2009; Walker et al., 2000). With that
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said, long range transport from industrialized regions of Canada and the United States can

have sizeable impacts on VOC measurements on Sable Island.

2.5 VOC Detection

Generally, a two-step process is applied to detect VOCs; collection and
subsequent measurement. Some instruments combine these two steps into real-time/near-
real time measurements, where collection and detection are completed in one continuous

step.

2.5.1 Collection Methods

Solid-phase micro extraction (SPME): Developed in the early 1990s, this
technique involves the use of a thin fibre that can be coated with a variety of different
sorbents. A range of VOCs are attracted to specific sorbents and adhere to the fibre as a
result (Arthur and Pawliszyn, 1990). Even though SPME is a quick and easy method to
use, the fibres are often very fragile and unsuitable for long term storage (Nardi, 2003).
An individual would also have to manually ‘expose’ each fibre for every collection
period, as there are no portable automated SPME samplers on the market. This made the
use of SPME incompatible with long term measurements and the harsh transport

conditions of samples to/from Sable Island.

Whole air sample (WAS) canisters: As the name suggests, these are containers
which are used to store a volume of air for later analysis. Unlike SPME, WAS canisters
are rugged and non-selectively collect VOCs present in the sampled air (Schmidbauer
and Oehme, 1988). They have been used extensively for industrial hygiene monitoring,

indoor and outdoor pollution studies as well as measurements of biogenic VOCs
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(Holopainen and Gershenzon, 2010; Wheeler et al., 2011). However, canisters are bulky
in size and the sample inside is prone to relatively quick degradation. This, combined
with the large size of their auto sampler equipment made them unsuitable for use in this

study.

Thermal desorption tubes (TDTs): These stainless steel cylinders contain a variety
of sorbent powders and molecular sieves which adsorb VOCs as air actively or passively
travels through the tube. TDTs are compact, reusable up to 300 times and can be stored
with marginal sample loss for up to 3 years under proper conditions. They are commonly
used in environmental monitoring programs as well as biogenic VOC sampling
(Asamany et al., 2017; Dohoo et al., 2015; Batterman et al., 2002; Tholl et al., 2006;
USEPA, 1999), making them an ideal collection tool for VOCs on Sable Island. It should
also be noted that to my knowledge, there have been no previous publications on the use
of TDTs to sample marine biogenic VOCs in the wild, making this study a first in its

field.

2.5.2 Detection Methods

Gas-chromatography (GC) coupled with various detectors are widely utilized in
analytical chemistry for VOC measurements. GC is used to separate complex mixtures
into precise narrow bands of individual compounds that are injected into a detector. Many
types of detectors are used for different applications, for example, an electron capture
detector (ECD) 1is typically used for measuring halocarbons at extremely small
concentrations, which would be ideal for many of the marine biogenic VOCs. However,
its detection limit drops significantly when analyzing other non-halogenated VOCs

(Maggs et al., 1971). Flame ionization detectors (FIDs) are also widely used for VOC
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quantification, and are relatively inexpensive, robust and require low maintenance.
However, they lack the ability to identify VOCs and have relatively high detection limits,
making them less than ideal for the exploratory research performed in this study (Liu et
al., 2005). Mass spectrometers (MS) are another type of detectors frequently used for
VOC measurements. Even though they are relatively costly and challenging to maintain
and operate, they provide suitably low detection limits and can be used to quantify and
identify compounds. Through the use of electron ionization or chemical ionization, MS
detectors can measure the mass/charge ratio (m/z) of fragmented ions and ‘reconstruct’ an
identification of the original VOC in question. This is very useful when measuring
unknown VOCs, and can later be supplemented with certified standards for proper
quantification and a better identification match (Asamany et al., 2017; Batterman et al.,
2002; Dohoo et al., 2015; van Drooge et al., 2009). GC-MS was therefore the most
suitable instrument to use for identification and quantification of marine biogenic VOCs

in this study.

2.5.3 Real-Time Detection

The collection and storage step involved in VOC detection can be omitted through
the use of real-time/near-real time detection. The principle behind this is that VOCs are
measured frequently and constantly in the field (or experimental setup), providing a
continuous record of temporal fluxes. GC-MS coupled with direct air intake (i.e. air
server-Unity 2-TD-GC-MS) would be the most ideal option to use in this study,
providing near-real time identification and quantification of VOCs. However, due to its
high power consumption and need for frequent maintenance, it was unmanageable to

install such an instrument in a remote location such as the Sable Island supersite. Smaller
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FID instruments like the Thermo 551 have been previously used on Sable Island for total
VOC detection but were found to have unsuitably high detection limits for trace gases
(Hayes, 2014). A photo ionization detector (PID), the ppbRAE 3000, replaced the
Thermo 55i as a result. The ppbRAE has a low detection limit with a wide dynamic range
of detection (1ppb-10,000ppm), is lightweight and requires low maintenance. PIDs are
most commonly used for industrial exposure, indoor and ambient air quality
measurements and have been utilized for biogenic VOC measurements in the field (He et

al., 2005; Karlik et al., 2002; Su et al., 2007).

2.6 Source Sector Analysis (SSA)

Fluxes in VOCs on Sable Island may be attributed to several sources: biogenic
marine, natural terrestrial sources from the island itself or the mainland, anthropogenic
sources from nearby oil and gas rigs and long range transport of pollutants. With the
combination of meteorological data and models, remote sensing, VOC measurements and
atmospheric chemistry/biological knowledge, it is possible to deduce the likely sources of

these VOCs and the fraction contributed by each source.

2.6.1 Air Mass Back Trajectories

As the name suggests, these models are used to compute the path an air parcel
takes before arriving at a specified location. The National Oceanic and Atmospheric
Administration’s (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT) model (http://www.arl.noaa.gov/HYSPLIT info.php) is used extensively to

track the three dimensional movement history of air masses over predefined periods of
time, altitudes and atmospheric conditions (Gibson et al., 2009b, 2013; Palmer et al.,

2013; Ryoo et al., 2011). Common uses of HYSPLIT include tracking sources of air
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pollution or predicting the future path of air parcels leaving volcanic eruptions or forest
fires. It is therefore a valuable tool to utilize in this study to trace back the sources of air

arriving at Sable Island during period of VOC measurements.

2.6.2 Remote Sensing

Due to phytoplankton’s location in the upper layers of the water column and the
fact that they strongly absorb blue and red wavelengths of light, it is possible to observe
phytoplankton activity by measuring the amount and spectral quality of light reflected by
the ocean, i.e. ocean color, using spectroradiometers mounted on orbiting satellites. For
example, the Moderate Resolution Imaging Spectroradiometer (MODIS) mounted on
NASA’s Aqua and Terra satellites is able to measure ocean color, as well as capture
images in the visible light spectra of clouds and long range transport plumes of pollution
(NASA-MODIS, 2016). Satellites are routinely used in the detection of phytoplankton
blooms and can give invaluable data about seasonality, size and even the type of algal
species in a bloom (Behrenfeld et al., 2005; Craig et al., 2006; Soja-Wozniak et al.,

2017).

All  photosynthetic  organisms, including phytoplankton, contain the
photosynthetic pigment, chlorophyll-a, and chlorophyll-a concentration (Chl-a; mg m )
is the most commonly used proxy for phytoplankton biomass. Estimates of Chl/-a can be
made from satellite ocean color using the so-called blue-green band ratio algorithms
(O’Reilly et al., 1998). However, it is fully acknowledged that these estimates may be
inaccurate, especially in waters where other non-covarying optically active water
constituents (e.g. colored dissolved organic matter, non-algal particles) are present, such

as coastal and shelf waters (Craig et al., 2006, and references therein). In an ideal
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scenario, satellite estimates of phytoplankton biomass should be validated with other
measurements such as Chl estimation from water samples (microscopy, flow cytometry
or DNA analysis). Alternate ocean color algorithms may also be employed to obtain more
accurate Chl estimates (Craig et al., 2012). However, for the purposes of this study,
satellite Chl were used as a semi-quantitative tool that provided vital context for
interpreting the complex spatiotemporal history of the air masses that were measured and

analyzed at the Sable Island supersite.
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CHAPTER 3 MATERIALS AND METHODS

3.1 Experimental Setup

All measurements in this study were conducted on Sable Island (43.9337° N,
59.9149° W) located in the Northwest Atlantic, approximately 300 km southeast of
Halifax, Nova Scotia, Canada. Figure 1 provides a Google Earth image of Sable Island
with some of its main land marks labelled. Named after the French word for sand (/e
sable), this narrow sandbar island has been considered a Canadian National Park Reserve
since 2011 (CBC, 2011). Sable Island is world famous for being home to hundreds of
feral horses, which were brought to the island in the mid-1700s during the Acadian

Expulsion (Nova Scotia Museum of Natural History, 2016).

The island has been used for decades as a meteorological monitoring site and hub for
scientific research ranging from studies on the wild horses and seals to environmental
geology. This prompted the construction of several buildings/sheds to house instruments
and ‘field laboratories’ as well as lodging for visiting researchers, students, tourists and

its approximately five fulltime residents.

Sable Island was chosen as the study site for several reasons. Notably, the island’s
location in a nutrient-rich zone along the Scotian Shelf provides a highly productive
environment for phytoplankton populations to flourish (Craig et al., 2012; Fournier et al.,
1977; Strain and Yeats, 2005) (Figure 2). The island’s remoteness also contributes to a
relatively clean environment in which marine emissions can be measured and
differentiated from anthropogenic / terrestrial sources (Duderstadt et al., 1998; Gibson et

al., 2009b, 2013; Waugh et al., 2010). Additionally, the island provides a fixed location
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for long-term continuous measurements of ocean emissions (as opposed to a ship) and is
equipped with facilities required for this study, such as insulated buildings and power

generators.

Except for the meteorological services weather station, all field instruments used in
this study were operated out of the Environment and Climate Change Canada air
chemistry building (Figure 3). This building was strategically placed on the west side of
the island, upwind of diesel generators, furnaces and other possible sources of on-island
anthropogenic emissions. The building is also insulated and air conditioned to maintain
the year-round environmental conditions required for instruments to operate at their

optimum.

Site visits were conducted using a fixed-wing airplane operated by Maritime Air
Charter Limited/Sable Aviation out of Halifax Stanfield International Airport. The island
can also be reached via boat or helicopter, neither of which was used due to prohibitive
costs and inopportune travel times and schedules. A typical site visit would begin with an
approximately 50-minute flight from the airport and landing on a 10 km stretch of beach
on Sable Island, followed by a 30-minute drive to the study site/compound. With that
said, it is important to mention that unsuitable weather conditions, scheduling conflicts,
mechanical failures with the aircraft and other unforeseen obstacles made field visits

difficult and less frequent than desired.
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Figure 1. A Google Earth satellite image of Sable Island showing its location relative to
mainland Nova Scotia, the Scotian Shelf, and a satellite image of labelled
landmarks on the island (Paul Rogers, 2012. www.sableisland.info)
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Figure 2. NASA MODIS' satellite image showing phytoplankton blooms around Sable
Island in  July, 2010. Adapted from NASA, retrieved from
http://modis.gsfc.nasa.gov/gallery.

Figure 3. Photograph of the air chemistry building on Sable Island (Photo: Loay Jabre).

The island was visited on average once every two months between May and

December, either by me or other members of Dr. Gibson’s Atmospheric Forensics
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Research Group (AFRG) for instrument maintenance, calibrations and data download.
Full-time technicians living on the island also assisted with downloading data on a bi-
weekly basis and were communicated with regularly to facilitate instrument
programming and troubleshooting when needed. Aside from direct field measurements,
samples were also collected from Sable Island and analyzed at the AFRG laboratory on
Dalhousie University’s Sexton campus. Table 1 shows a full list of instruments used in
this study and their location. A detailed description of operations and procedures of

instruments and software is also provided in subsequent sections of the Materials and

Methods.

Table 1. List of instruments and equipment used, with manufacturing company and
location during the study.

Instrument Company Location
ppbRAE 3000 Handheld RAE Systems Sable Island, inside air
VOC Monitor chemistry shed with
outside inlet through wall
MTS-32™ Markes International Sable Island, outside air

chemistry shed on roof

Unity 2 Thermal Desorption Markes International AFRG laboratory
Unit
TRACE™ 1300 Gas Thermo Fisher AFRG laboratory
Chromatograph Scientific™
ISQ™ Series Single Thermo Fisher AFRG laboratory
Quadrupole Mass Scientific™
Spectrometer
SVI Thermal Desorption Perkin Elmer N/A
Tubes
Carbotrap® 217 Thermal Supelco/Sigma-Aldrich N/A
Desorption Tubes
TC-20 ™ Tube Conditioner Markes International AFRG laboratory
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3.2 Meteorological Data

A weather station (Climate Identifier: 8204703) located approximately 100 meters
from the air chemistry shed at a 1.2 meter elevation was used to measure temperature
(°C), wind speed (m/s) and wind direction (10’s of deg.). Data were recorded hourly for
the entirety of the year 2016 and were used to generate wind-rose plots and temperature

time series plots.

3.3 ppbRAE 3000 Portable VOC Monitor

Continuous, real-time, total volatile organic compound (VOC) concentrations were
measured in parts per billion (ppb) via photo ionization detection (PID) using a ppbRAE
3000 Portable VOC Monitor (RAE Systems, 2015), placed inside the temperature
controlled air chemistry shed to minimize measurement error. A Krypton, 10.6 eV
ultraviolet (UV) lamp was used to ionize VOCs at 1 ppb resolution with a measurement
range of 1 ppb-10,000 ppm. This instrument uses an internal pump to draw air into an
ionization chamber at a flow rate of 0.5 L/min where the UV lamp ionizes incoming
VOCs, separating them into positively charged ions and negatively charged electrons.
After ionization, a cathode and an anode attract the ions and electrons respectively to
generate an electric current, which is then converted into a ppb concentration. It should
also be noted that most (but not all) VOCs are ionized at 10.6 eV, therefore giving a good
representation of total VOCs in the ambient air. Figure 4 is a schematic diagram showing

the underlying process of PID detection.

The ppbRAE 3000 was mounted on a wall inside the air chemistry through which a
hole was drilled and Tygon® anti-static tubing was passed through to the exterior. An air

inlet with a bug screen cover was then constructed on the outside to prevent insects and
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course debris from entering the tube. A water trap was installed on the inside before the
ppbRAE 3000 to capture condensation and any water that may have gotten drawn into the
tube. The tubing was then connected to the ppbRAE inlet, which was outfitted with a
RAE 0.45 mm External Filter to prevent dust from entering the system (Figure 5).
Measurements were continuously recorded in 15 minute intervals for the entirety of year

2016 and data were downloaded bi-weekly using ProRAE Studio software.

Calibrations were performed with 10 ppm and 20 ppm Isobutylene calibration gas
and instrument zeroing was achieved using RAE’s VOC Zeroing Tubes. Other
maintenance procedures, such as inlet and lamp cleaning were performed as suggested by

the instrument’s manual (RAE Systems, 2015).

Anode
e
UV Lamp S
¢ o
In T
Air molecule |‘
VOC
Cathode
+ |lonised VOC
€ Electron

Figure 4. Schematic diagram of an ionization chamber showing the flow path of VOCs
and their ionization by the UV lamp (Sysmatec, 2017).
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T Water Trap
RAE 0.45mm External Filter

PpbRAE 3000

Figure 5. Photograph of the ppbRAE 3000 mounted on the wall inside the air chemistry
building on Sable Island (Photo: Yunchen Li).

3.4 Thermal Desorption Tubes / TC-20 ™ Tube Conditioner

Time integrated sampling of VOC species were also performed on Sable Island via
air sampling on thermal desorption tubes (TDTs). The TDTs were then analyzed by
thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). TDTs are
narrow, glass or stainless steel tubes that can be packed with one or more of a variety of
sorbent materials and used to sample a wide range of volatile and semi-volatile organic
compounds in various applications (Dohoo et al., 2015). Figure 6 shows a diagram of a

typical TDT.

Two types of TDTs were used in this study, the multi-bed Soil Vapor Intrusion™

(SVI) from Perkin Elmer and the CarboTrap® 217 from Supelco (Figure 7); both of
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which made of stainless steel, 89 mm in length, 6.4 mm o.d. and meet USEPA TO-14
and USEPA TO-17 regulations. The SVI tubes contained three sorbents: Carbograph 1™,
Carbograph 2™ and a Carboxen 1003™ molecular sieve, while the CarboTrap® 217
tubes contained Carbotrap B® graphitized black carbon and a Carboxen 1000® molecular

sieve. Sorbents in both tube types were separated by 3 mm of silanized glass wool.

The TC-20™ Tube Conditioner (Markes, 2015) was used to clean and bake out
(condition) all TDTs prior to sampling (Figure 8). This instrument was operated with
ultra-pure nitrogen (99.999% purity) to simultaneously flush 20 TDTs, while at the same
time maintaining a specific bake out temperature for a predefined period of time. SVI
tubes were conditioned at 350°C for four hours, and CarboTrap® tubes were conditioned
at 400°C for one hour as prescribed by their operations manuals. The tubes were allowed
to cool under ultra-pure nitrogen flow to avoid contamination by passive sampling and
were then immediately sealed with air tight, brass Swagelok caps to ensure an
uncontaminated environment inside the tube until sampling. The caps were cleaned by
soaking in deionized water over night followed by flushing with a methanol-deionized

water mixture, then allowed to air dry for 24 hours before use.

All handling of TDTs was conducted while wearing powder-free nitrile gloves and

great care was taken to avoid touching the ends of the tubes.
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Figure 6. Diagram of a generic TDT with two different sorbents, separated and held
together by glass wool, with a fine wire mesh on either end of the tube to prevent

debris from entering.

Figure 7. Photograph of Carbotrap” (left) and SVI™ (right) TDTs (Photo: Loay Jabre)
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Figure 8. Photograph of the TC-20™ Tube Conditioner, with the tube holder resting on
top of the instrument (Photo: Loay Jabre)

3.5MTS-32™

A Multi-Tube Sequential Sampler for thermal desorption tubes (MTS-32™) (Figure
9) was used for active VOC sampling on Sable Island (Markes, 2015). This instrument is
designed for unattended, sequential sampling of air on 32 different TDTs at an adjustable
flow rate for a programmable period of time. All parts of the MTS-32™ were inside a
heated, low-emitting, weather proof box, allowing for year-round outdoor placement of
the instrument for direct exposure to outside air. In this study, the sampling process began
by fitting 32 TDTs with diffusion-locking caps (DiffLok™ caps) on the outflow end and
inserting the sampling end into numbered (1 through 32) slots on a rotating pump

manifold. Difflok™ caps only allow one-way flow of air through the tube when negative
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pressure is applied, i.e. when air is drawn through the tube during sampling (Figure 10).
The manifold rotates to place one TDT in the sampling port position where air from the
outside is drawn into the MST-32 by an internal pumped attached to the current sampling
tube. The DiffLok™ caps keep all the tubes sealed when not connected to the internal
pump (Markes, 2015). To maximize the capture of VOCs, TDTs were sampled at a 100
mL/min flow rate for 24 hours per tube with two blank tubes (un-sampled) kept as a
control. After the completion of each sampling episode, TDTs were removed from the
instrument, fitted with Swagelok caps, and transported back to the laboratory to be stored

at 0 - 4°C for subsequent analysis.

Figure 9. Photograph of the MTS-32™, with one TDT placed in the rotating pump
manifold (Photo: Loay Jabre).
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Figure 10. Photograph of a TDT with a DiffLok "™ show on the top of the tube (Photo:
Loay Jabre).

3.6 Thermal Desorption — Gas Chromatography — Mass Spectrometry

A Unity-2 Thermal Desorption (Markes, 2012) — Trace 1300 Gas Chromatography—
ISQ Elite Mass Spectrometry system (TD-GC-MS) (Thermo Scientific, 2012) was used
for TDT sample analysis (Figure 11). These three instruments were used in synchrony as
one unit to thermally desorb, chromatographically separate and analyse VOC species
previously collected on TDTs on Sable Island using the MTS-32"™. All TDTs were

allowed to warm up to room temperature prior to analysis.

The Unity-2 thermal desorption unit was operated by first purging a TDT with
ultrapure nitrogen (99.999% purity) for 10 minutes at room temperature to remove
moisture and any residual ambient air. The TDT was then heated (SVI: 325°C,
CarboTrap™: 330°C) for 10 minutes to liberate VOC species from the sorbents into a flow
of ultrapure helium (99.999% purity) carrier gas. The carrier gas then transports VOC

species onto a pre-conditioned, air toxics cold trap, which functions to create a narrow
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band of compounds required at the start of GC analysis. Afterwards, the cold trap was
heated to 330°C at a rate of 40°C/s and ultrapure helium was used to transfer VOCs from

the cold trap to the GC.

The Trace 1300 Gas Chromatograph was used with a Restek fused silica, 40 meter
long, 0.18 mm i.d. , 1 pm df, RTX® -VMS column to separate the mixture of compounds
entering the column into distinct bands of VOC species. Initial oven temperature was set
to 45°C and held for 6.55 minutes followed by an increase to 100°C at 8.4°C/min with a
1.45 minute hold. Finally, an increase to 240°C at 17.3°C/min with a 1.9 minute hold was
programmed at the end of the run to clear the column from any contaminants. A
continuous flow rate was set to 1.01 mL/min throughout the run, following EPA Method
524.2 and VOCs were transferred to the ISQ via a heated transfer line kept at 250°C to

prevent condensation.

The ISQ™ Series Single Quadrupole Mass Spectrometer was used for compound
identification and quantification. All analyses were conducted using electron ionization
with the ion source temperature held constant at 300°C. The electron multiplier (detector)
and filament (ion source) were turned off for the first 8 minutes of each analysis to reduce
consumption by unwanted compounds/contaminants, and the quadrupole was

programmed to scan at a mass range of 35-300 amu with a scan time of 0.2 seconds.

A non-naturally occurring, deuterium-labelled 1,4-dichlorobenzene was used as an
internal standard to normalise daily variations in GC-MS operations, and a master-
mixture of 72 different compounds including biogenic marine and terrestrial VOCs as

well as anthropogenic VOCs was used as an external standard to identify and quantify
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samples. Deuterated internal standards are used because they provide a signal similar to
that of the analytes of interest, but are slightly heavier and therefore distinguishable. All
standards were serially diluted with GC-grade methanol into 1 ng/uL, 5 ng/uL, 10 ng/uL,
50 ng/uL, 100 ng/uL, 1 pg/ul and 10 pg/pL concentrations and were stored in the freezer
at -18°C until use. To create a TDT standard, a 10 uL capacity gastight precision syringe
(Hamilton Company, Nevada, USA) was used to transfer 1 puL of standard of each
concentration into a TDT under a 100 mL/min flow of ultra-pure helium using a Markes’
Calibration Solution Loading Rig (Figure 12). External standards were loaded on pre-
conditioned TDTs and internal standards were loaded on sample tubes in addition to pre-
conditioned TDTs for comparison. Standards were analyzed using TD-GC-MS following
the same methods for sample analysis discussed above, and retention times, m/z ratios
and peak integration were extracted in conjunction with a built-in NIST library to

quantify and identify compounds.

At the beginning of each day and before any sample analyses were conducted, an air
and water test, a leak check and general system health checks were completed, followed
by one control run and one ‘empty’ run to ensure a contamination free system. To ensure
consistency in the results, internal standards were run once a day and external standards

were run bi-weekly.
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Figure 11. Photograph inside the AFRG laboratory showing the TD-GC-MS setup
(Photo: Loay Jabre).

Figure 12. Markes’ Calibration Solution Loading Rig with a 10 pL capacity gastight
syringe and TDT attached
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3.7 Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model

A Hybrid Single Plot Lagrangian Integrated Trajectory (HYSPLIT) model was used
to create 5-day air mass back-trajectories to track possible sources of VOCs on Sable
Island (ARL-NOAA, 2005). This computer model creates a 3-dimensional representation
(vertical and horizontal) of selected air parcel trajectories by applying turbulence and
wind field components to a hypothetical ‘packet of particles’, in this case, VOCs.
HYSPLIT runs were compiled twice a day, at 0000 and 1200 UTC for the entirety of
2016, with 500 m chosen as the arrival height to avoid the simulation of air parcels hitting
the ground before reaching Sable Island as the final destination. The model was
programmed to produce full 5-day backward trajectory with 5-hour intervals between
each point on the path. Meta-analysis of HYSPLIT mass back trajectories was also
performed to separate the sources into four different zones: Marine, SW, NW, and North.
Figure 13 is a Google image map adapted from Dr. Gibson’s EVE3800: Air Quality

course showing the location of these zones relative to Sable Island (Gibson, 2017).
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Figure 13. Different zones relative to wind direction. Adapted from ENVE3800:Air
Quality. By Dr. Mark Gibson (Gibson, 2017).

3.8 Remote Sensing

Images of chlorophyll-a concentration around Sable Island were obtained from
the MODIS Aqua satellite, at a 5-day average and 4 km resolution. Images were only
downloaded for periods where VOC spikes were observed. These level-3 data (images)

are publicly available for use (http://oceancolor.gsfc.nasa.gov).
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3.9 Statistical Analysis / Graphing

Statistical software R configured with RStudio (R Studio, 2016) and OpenAir
Package (Carlsaw, 2015) were used to plot data and produce descriptive and inferential
statistics. Descriptive statistics included mean, median, mode, standard deviation, data
completeness (%) and 25th and 75th percentiles. Inferential statistics included One-Way
Analysis of Variance (ANOVA), Tukey HSD and Kruskal-Wallis tests and X* tests where
applicable, all of which were performed at a significance level of a= 0.05. Wind rose
plots were created using WRPLOT View™ (Lakes Environmental, 2016) to produce a

visual representation of wind speed and direction.
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CHAPTER 4 RESULTS

4.1 Meteorological Conditions

Temperature, wind direction and wind speed were measured hourly on Sable
Island during 2016. Comprehensive descriptive statistics of these parameters are provided
below in Table 2. Descriptive statistics of temperature, wind direction and wind speed on

Sable Island for 2016.

Table 2. Descriptive statistics of temperature, wind direction and wind speed on Sable

Island for 2016.
Temp. (°C)  Wind Direction (°) Wind Speed (km/hr)
n 8414 8414 8535
n missing 370 343 249
Completeness 95.79 96.10 97.17
(%)

Mean 943 205.8 25.36
Std. Deviation 7.35 96.73 12.79
Minimum -9.7 100 0

25" Percentile 3.8 140 17

Median 9.4 220 24

75" Percentile 15.2 280 34

Maximum 53.8 360 91

I.Q.R 11.4 140 17
Temperature

The mean annual temperature for 2016 on Sable Island was 9.43°C + 7.35°C.
January, March and February were the coldest months respectively while August,
September and July were the warmest months, respectively. Mean monthly temperatures

are shown in Table 3 with a visual representation in Figure 14.
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Table 3. Mean monthly temperatures in °C on Sable Island for 2016.

Month Temperature (°C) Standard Deviation (°C)
January 1.64 3.03
February 2.12 4.01
March 1.75 3.40
April 11.06 12.92
May 8.35 2.23
June 11.76 2.29
July 15.99 2.05
August 18.94 1.81
September 17.66 2.76
October 12.94 3.19
November 9.09 2.72
December 2.66 3.90
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Figure 14. Mean monthly temperature (°C) on Sable Island for 2016. Error bars represent
95% confidence intervals.
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As expected, winter was the coldest season of the year, followed by autumn,
spring and summer respectively (Table 4, Figure 15) (p = 2.2 x10™'%). In this, and
subsequent sections, the 2016 seasons were defined as follows: Summer: July -

September, Autumn: October -December, Winter: January-March, Spring: April - June.

Table 4. Mean seasonal temperatures in °C on Sable Island for 2016.

Season Temperature (°C) Standard Deviation (+°C)
Summer 17.53 1.21
Autumn 8.23 3.69
Winter 1.84 3.48
Spring 10.39 5.82
25
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Figure 15. Mean seasonal temperature (°C) on Sable Island for 2016. Error bars
represent 95% confidence intervals.
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Wind
The 2016 mean annual wind direction and speed measured on Sable Island were
205.8° £ 96.73° and 25.36 km/hr + 12.79 km/hr respectively. Wind-rose analyses show a

mean annual wind direction of 256°, translating to a predominantly WSW wind blowing

into the island (Figure 16, 17).

WIND SPEED
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B >-1.10
Bl cc0-11.10
W :0:=
B :e0-570
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—_—

256 deg

Figure 16. Wind rose plot of mean annual wind directions and speeds blowing into Sable
Island for 2016.
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Google Earth

Figure 17. Google map image of Sable Island with a superimposed wind rose diagram.
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4.2 Total Volatile Organic Compounds (VOCs)
Total VOC concentrations were measured in 15 minute intervals during 2016,
with temporal measurements presented in UTC standard. Overall, the summer season had

the highest VOC concentrations, followed by spring, autumn and winter respectively

(Table 6, Figure 18) (p =2 x107'°).

Table 5. Descriptive statistics of Total VOC concentrations (ppb) on Sable Island for

2016.
Total VOC
(ppb)
n 32173
n missing 2963
Completeness 91.57
(%)
Mean 1871
Std. Deviation 2097.97
Minimum 0
25™ Percentile 200
Median 1871
75™ Percentile 3394
Maximum 20030
I.Q.R 3194

Table 6. Mean seasonal VOC concentrations (ppb) on Sable Island for 2016.

Season Mean Total VOC Standard Deviation (£ ppb)
Concentration (ppb)

Summer 3918.20 1455.81

Autumn 349.49 322.05

Winter 170.36 44.03

Spring 2921.27 1104.02
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Figure 18. Mean seasonal VOC concentrations (ppb) on Sable Island for 2016. Error bars
represent 95% confidence intervals.

As predicted, monthly mean VOC concentrations also followed seasonal trends.
January and December had the lowest mean VOC concentrations of 6.6 ppb + 30.47 ppb
and 7.28 ppb £ 53.41 ppb respectively while July and August had the highest
concentrations of 4060.95 ppb + 845.09 ppb and 5384.58 ppb £ 2385.15 ppb respectively
(Table 7. Mean monthly VOC concentrations (ppb) on Sable Island for 2016.; Figure 19). To
minimize short temporal fluctuations, Figure 20 also provides an average trend-line of

mean monthly VOC concentrations.
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Table 7. Mean monthly VOC concentrations (ppb) on Sable Island for 2016.

Month Total VOC (ppb) Standard Deviation (= ppb)
January 6.60 30.47
February 202.21 48.84
March 302.28 52.79
April 1257.42 1049.19
May 3849.52 1421.98
June 3656.88 840.90
July 4060.95 845.09
August 5384.58 2385.15
September 2309.06 1137.19
October 684.02 565.34
November 357.19 347.38
December 7.28 53.41
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Figure 19. Mean monthly VOC concentrations (ppb) on Sable Island for 2016. Error bars

Mean Total VOC Concentration

represent 95% confidence intervals.
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Figure 20. A moving average trend-line of mean monthly VOC concentrations (ppb) on

Sable Island for 2016. Error bars represent 95% confidence intervals.
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Diurnal / time-dependant changes in VOC concentrations were also observed in
several months throughout 2016. January, February, March, April and December did not
have noticeable changes in VOC concentrations (Figure 21, 22, 24) and September
showed a relatively small diurnal change (Figure 23). May, June, July, August, October
and November showed the most time-dependent variation in VOCs, with concentrations
peaking around mid-day/early afternoon (Figure 22, 23, 24). Table 8 provides times at
which VOC concentrations begin to noticeably increase, reach peak concentrations and

then start to tail off.

Table 8. Time of day (hh:mm) (UTC) during which VOC concentrations begin to
increase, reach a peak and decline for every month during 2016 on Sable Island

Month Start Time Highest Peak End Time
(hh:mm) Time (hh:mm) (hh:mm)
January - - -
February - - -
March - - -
April - - -
May 08:30 14:00 17:15
June 08:30 13:15 16:45
July 09:15 12:45 18:00
August 09:15 13:00 17:45
September 10:00 13:45 17:00
October 10:45 14:30 22:15
November 11:15 16:15 20:00
December - - -
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Figure 21. Hourly mean VOC concentrations (ppb) for January, February and March,
2016 on Sable Island.
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Figure 22. Hourly mean VOC concentrations (ppb) for April, May and June, 2016 on
Sable Island.
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Figure 23. Hourly mean VOC concentrations (ppb) for July, August and September,
2016 on Sable Island.
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Figure 24. Hourly mean VOC concentrations (ppb) for October, November and
December, 2016 on Sable Island.
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Even though monthly and seasonal trends were observed when VOC
concentrations were analyzed for the entire year at once, a visual inspection of the trend
revealed ‘spikes’ in concentrations throughout the entire year (Figure 25). Table 9 also
provides the time at which the highest concentration in each observed spike was

measured.

Table 9. Date, Peak Time, and Total VOC concentration for each of the observed spikes

in Figure 25.
Spike Date (yyyy-mm-dd) Peak Time — Total VOC
UTC (hh:mm) (ppb)
1 2016-05-08 14:15 11455
2 2016-05-24 13:45 9843
3 2016-06-08 13:15 9623
4 2016-06-13 14:00 7461
5 2016-06-29 12:00 7285
6 2016-07-08 21:00 6416
7 2016-07-16 14:15 7568
8 2016-07-29 13:00 10849
9 2016-08-14 19:00 17786
10 2016-08-22 13:45 20029
11 2016-08-27 14:00 9787
12 2016-09-08 14:00 7850
13 2016-09-20 13:30 3811
14 2016-09-28 13:45 2608
15 2016-10-10 14:00 2464
16 2016-10-22 16:00 1914
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Figure 25. Total VOC concentrations (ppb) measured every 15 minutes in 2016 on Sable

Island. Blue numbers represent spikes in VOC concentrations that were analyzed
in detail.

4.3 Long-range and local airflow over Sable Island using the NOAA HYSPLIT
Model.

Analysis of long-range and local air flow impacting Sable Island from far and
near source regions was conducted using the National Oceanic Atmosphere
Administration (NOAA), Hybrid Single Particle Lagrangian Integrated Trajectory
(HYSPLIT) model. Five-day air mass back trajectories were performed twice a day
(ending at 0000 and ending at 1200 UTC) for Sable Island for the entirety of 2016. The
trajectory was then categorized into four different zones, Marine, South West, North

West and North as shown below (Figure 26).
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NOAA HYSPLIT MODEL
Backward trajectory ending at 0000 UTC 01 Jan 16
GDAS Meteorological Data

Source % at 43.95N 59.96W

-
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1000
500 W

18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00 18 12 06 00
12/31 12/30 12/29 12/28 12/27

Meters AGL

Job [0; 14866 Job Start. Il Sep @ 161026 UTG 2016
Source 1 lat.: 43.946111  lon.: -59.958722 height: 500 m AGL

Trn“ﬂ:l Direction: Backward Duration: 120 hrs
Vertical tion Calculation Method: Madal Vertical Valocity
Meteorology: 0000ZL 1 Jan 2016 - GDAS1

Figure 26. Example of HY SPLIT model output showing the four characterization zones.
SW = South West, NW = North West, N = North. This example shows a 5-day air
mass back trajectory that would be classified as associated with Northerly airflow.

Over all in 2016, air masses travelled mostly from the North (31.64%) and North
West (28.9%) to Sable Island and approximately one quarter of the time from marine
regions (26.03%). Air masses travelled from the South West direction least frequently
(13.42%), as shown in Figure 27. The entire, twice daily HYSPLIT model outputs are

provided in the Appendix.
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South West
13.42%

Figure 27. Frequency (percentage) of air mass sources into Sable Island for 2016,
derived from HYSPLIT analyses.

Seasonal analysis of HYSPLIT showed that winter and autumn were dominated
by North and North West wind trajectories (winter: 32% N, 33% NW; autumn: 40% N,
34% NW). Spring and summer seasons were dominated by marine trajectories, with the
North being the second most frequent trajectory in the spring and North West for the
summer (spring: 35% Marine, 32% N; Summer: 36% Marine, 29% NW). Except for the
winter season, the South West trajectory was the least frequent in all seasons. Figure 28

provides a breakdown of the trajectory frequencies during all four seasons.
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Figure 28. Seasonal analysis of air mass sources to Sable Island in 2016. SW = South
West, NW = North West, N = North. Error bars represent 95% confidence
intervals.

Monthly analysis of HYSPLIT showed that October had the highest source of
Northern air masses followed by November and January respectively, while July had the
smallest sources of Northern air masses, followed by August and September respectively.
NW air masses were most frequent in December, followed by February and October
respectively, and least frequent in May, followed by June and September respectively.
Marine sources were most frequent in September, followed by May and April
respectively, and least frequent in January, followed by October and December
respectively. South West sources were most frequent in January, followed by February
and July respectively, and least frequent in November, followed by September and
October respectively. Figure 29 shows a percentage breakdown for each of the four

sources for every month in 2016.
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Figure 29. Monthly analysis of air mass sources to Sable Island in 2016. SW = South
West, NW = North West, N = North.

4.3.1 HYSPLIT Analysis for Select VOC Spikes
16 distinct “spikes” in total VOC concentrations were observed in 2016 (Figure
25)marine. Trajectories that passed over several source areas were characterized

temporally, according to the most time spent over one trajectory.

Table 10 provides the dates during which these spikes were observed, the HYSPLIT
trajectory for each spike as well as the “source”. To categorize the source, each
trajectory’s path was examined, and if the trajectory passed over a populated area (i.e.

city or industrial zone), it was considered to be industrial, if it passed over forest/areas of
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low population, it was considered terrestrial, and if it was a marine trajectory, the source
was considered marine. Trajectories that passed over several source areas were

characterized temporally, according to the most time spent over one trajectory.

Table 10. Source sectoring of air-mass back trajectories on Sable Island for select days
during 2016. HYSPLIT = Trajectories following zones in Figure 25. Source =
Trajectories characterized by population density/industrial activity. SW = South
West, NW = North West, N = North.

Spike  Date (yyyy-mm-dd) HYSPLIT Source
1 2016-05-08 Marine Marine
2 2016-05-24 Marine Marine
3 2016-06-08 SW Anthropogenic
4 2016-06-13 NW Terrestrial
5 2016-06-29 Marine Marine
6 2016-07-08 Marine Marine
7 2016-07-16 SW Anthropogenic
8 2016-07-29 NW Terrestrial
9 2016-08-14 N Anthropogenic
10 2016-08-22 Marine Marine
11 2016-08-27 Marine Marine
12 2016-09-08 Marine Marine
13 2016-09-20 Marine Marine
14 2016-09-28 Marine Marine
15 2016-10-10 Marine Marine
16 2016-10-22 Marine Marine
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Overall, the spikes in total VOC concentration were mostly associated with
marine sources (68.75%), followed by anthropogenic (18.75%) and terrestrial (12.5%)

sources respectively (Figure 30).

Anthropogenic
18.75%

Figure 30. Sources of air mass back trajectories on Sable Island for select days with
spikes in VOC concentrations in 2016.

Identical HYSPLIT analyses were conducted for the time period during which
VOC species were measured (April, 15, 2016 - May 9™, and August 13" - 14" 2016).
During that period, marine sources were most common (44.44%) followed by terrestrial

(25.93%) and anthropogenic (29.63%) sources respectively (Figure 31).
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Anthropogenic
29.63%

Terrestrial
25.93%

Figure 31. Sources of air mass back trajectories on Sable Island for days during which
VOC species measurements were conducted.

4.4 VOC Species Meta-Analysis

TD-GC-MS was used to identify VOC species through m/z ratio, retention time,
NIST libraries and standards. Figures 32-36 provide examples of sample runs, including a
control showing no VOCs, an internal standard run showing deuterated 1,4-
dichlorobenzene, a calibration curve for Toluene, and two sample runs showing dimethyl
disulfide and bromomethane. Where applicable, the top panel (Relative Abundance vs
Time) shows the chromatogram produced, and the bottom panel (Relative Abundance vs
m/z) shows the mass spectrum. In cases where compounds are present (Figures 34-36), a
third window is opened (bottom right of the figure), showing a library of possible
compounds, the chemical structure of the identified compound and the probability of a

correct match.
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The most commonly detected VOCs are listed alphabetically in Table 11 and
assigned to one or more likely sources; marine, anthropogenic, or terrestrial, based on
previously published literature. A “(?)” was used to indicate the best possible source
based on chemical composition when the literature survey was insufficient in determining

the source.
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Figure 36. Enlarged mass spectra of a full sample run, showing Bromomethane.

Table 11. Possible sources of the most commonly detected compounds on Sable Island.
A = Anthropogenic, M = Marine, T = Terrestrial, (?) = Most likely source.

VOC Source Citation
1,2-Dichlorobenzene A/M (Colomb et al., 2008; Howard, 1990)
1-Hexanol M/T (Evans, 1994; Holopainen, 2004)
1-Trichlorotrifuoroethane A (Walker et al., 2000)
2-Bromoheptane M (?) N.A
2-Bromooctadecanal A (Kaska et al., 1991; Yang et al., 2015)
2-Chlorooctane M (Sabolis, 2010)
3-Chlorobenzotrifluoride M (?) N.A
4-Chloroheptane M (?) N.A
a-methylstyrene A (Miller et al., 1994)
a-pinene M/T (Palani et al., 2011; Sabolis, 2010)
Benzene A (Wallace, 1990)

Benzene-1-chloro-4- A (Lee et al., 2015)

trifluoromethyl

Bromodichloromethane M (Goodwin et al., 1997)

Bromomethane M (Kladi et al., 2004; Moore and Tokarczyk, 1993)
Camphene M/T (Meskhidze et al., 2015; Sabolis, 2010)

Carbon disulfide M (Kim and Andreae, 1987).

Cumene A (Harrison et al., 1975)
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Decane
Dichloromethane
Dimethyl disulfide
Dimethyl trisulfide
Ethylbenzene
Heptanal

Hexanal

m-xylene
Naphthalene
Nonane

Octanal

p-cymene

Styrene

Tetrachloroethene
Tetrachloromethane
Thiophene

Toluene
Trichloroethene
Tricyclene

A

M

T/M (?)
T/M (?)
A

T/M (?)
M/T

2 x> 24>
<

=
~
<
=
=

(Harrison et al., 1975)

(Kladi et al., 2004; Moore and Tokarczyk, 1993)
(Trabue et al., 2008)

(Trabue et al., 2008)

(Liu et al., 2005)

(Dabrowska et al., 2014)

(Evans, 1994; Holopainen and Gershenzon, 2010)
(Liu et al., 2005)

(Harrison et al., 1975)

(Harrison et al., 1975)

(Holopainen, 2004)

(Holopainen, 2004)

(Juttner et al., 1986; Miller et al., 1994)
(Colomb et al., 2008; Meskhidze et al., 2015;
Sabolis, 2010)

(Walker et al., 2000)

(Sumpter, 1944)

(Gelencsér et al., 1997; Liu et al., 2005; White et
al., 2009)

(Abrahamsson et al., 1995)

(Juttner et al., 1986; Spanke et al., 2001)

From the probable emission sources listed above, it was found that marine

emissions contributed the most to the VOC species (41%), followed by anthropogenic

and terrestrial sources respectively (Figure 37).
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Figure 37. Percent contribution per category of VOC species based solely on literature
survey of emission sources.

When literature-based source emissions were combined with HYSPLIT air mass
back trajectories, the contribution of both marine and anthropogenic sources were
equivalent at 38% each, while terrestrial sources contributed to 24% of all measured

VOC species (Figure 38).
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Figure 38. Percent contribution per category of VOC species, based on literature survey
of emission sources combined with HYSPLIT air mass back trajectories.

HYSPLIT air mass back trajectory analyses were also conducted along with VOC
species source emissions to calculate the percent contribution of each source to every
VOC species (Figure 39). 48% of all emissions were attributed to marine sources, 40% to

terrestrial sources and 11% to anthropogenic sources.
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Figure 39. Percent contribution of the three sources to each VOC species analyzed.

Additionally, total VOC concentrations in ng/m’ and pg/m’® were calculated for

each VOC species analyzed, and attributed to one or more of the three sources depending

on its air mass back trajectory and possible emission sources (Figures 40, 41).
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Figure 40. VOC source contributions to ng/m’ concentrations of Thiophene,
Naphthalene, p-Cymene, cis-1,2-Dimethylcyclopentane, Octanal, Eicosanoic
Acid, a-Methylstyrene, Heptanal, Trichloroethene, 3-Chlorobenzotrifluoride,
Benzene-  m-diisopropenyl, = Styrene, @ Nonane, 4-Chloroheptane, 2-
Bromooctadecanal, Dichloromethyl ether, Dimethyl trisulfide, Tricyclene,
Octadecane, 6-methyl, Camphene, a-Pinene, m-Xylene, 2-Bromoheptane, 6-
Methyloctadecane and Benzene-1-chloro-4-trifluoromethyl.
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Figure 41. VOC source contributions to ;,tg/m3 concentrations of 1-
Tricholortrifuoroethane, Cumene, Tetrachloroethene, Dimethyl disulfide,
Bromomethane, Bromodichloromethane, Hexanal, Ethylbenzene, Fluoroethylene,
1,4-Dichlorobenzene, Toluene, Benzene-1-ethyl-3-methyl, 1-Hexanol, Benzene,
2-Chlorooctane, Tetrachloromethane, Decane and Carbon disulfide.
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4.5 Remote Sensing

The images below capture Chl-a concentration around Sable Island,
corresponding to spikes in VOC concentrations measured on the island. Warmer colors
(e.g. yellows, oranges and reds) signify high photosynthetic activity, while colder colors

(e.g. blues and violets) represent low photosynthetic activity (Figure 42).

8.a1 mg/m*3 1¢

2016-05-12 (Spike 1)
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2016-05-23 (Spike 2)

2016-06-03 (Spike 3)
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2016-06-18 (Spike 4)

2016-07-01 (Spike 5)
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2016-07-13 (Spike 6)
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2016-07-25 (Spike 8)

2016-08-11 (Spike 9)
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2016-08-24 (Spike 10)

2016-08-27 (Spike 11)
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2016-09-12 (Spike 12)

2016-09-18 (Spike 13)
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2016-09-26 (Spike 14)

2016-10-10 (Spike 15)
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2016-10-22 (Spike 16)

Figure 42. 16 separate MODIS-Aqua chlorophyll-a concentration images around Sable
Island for periods corresponding to spikes in VOCs.
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CHAPTERS DISCUSSION

The purpose of this study was to analyze long-term temporal trends in total
marine volatile organic compound (VOC) emissions on Sable Island and to use an
amalgamation of scientific tools to identify and separate VOC species into their

appropriate emission sources.

5.1 Meteorology

The temperature profile on Sable Island was relatively mild during winter months
considering its Northern Atlantic location (Table 3). This is in part due to the island’s
proximity to the Gulf Stream, which exposes the island to warmer waters and wind
(Taylor and Stephens, 1998). A similar temperature trend was also observed in 2015
(Qadoumi, 2016), except the mean annual temperature in 2016 (9.43°C) was 0.4°C

warmer than in the 2015 study.

Interestingly, the seemingly unnatural maximum temperature of 53.8°C also
appeared in 2015, and a review of online weather data sources confirmed this unusual
value. With that said, an instrument malfunction is a probable cause for this error (Forbes,
2017- personal communication), and outliers were taken into consideration during data

analysis.

As expected, local wind blew in a general WSW direction into Sable Island
(Figure 16), consistently with previous wind patterns experienced on Sable Island and the
Maritimes (Barnett, 2016; Qadoumi, 2016; Waugh et al., 2010). This is also confirmed
with the HYSPLIT model for long range wind direction, showing that local wind often

blew from a WSW direction, regardless of the previous pathway taken (Figure 43). Wind
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speed was not fully examined in this study; however, it may be beneficial to inspect the
relationship between wind and marine emissions as higher wind speeds can cause an
increased rate of wave breaks, contributing to a higher release of VOC from the ocean’s

surface (Turner et al., 1996).

NOAA HYSPLIT MODEL
Backward trajectory ending at 0000 UTC 01 Jan 16
GDAS Meteorological Data

Source * at 43.95N 59.96 W

3000
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12i31 12/30 12/29 12/28

12/27

Job |D: 148

Source 1

Job Start: Fri Sep 9 16:10:26 UTC 2016

66
lat.:43.946111 lon.:-59.959722  height: 500 m AGL

Trajectory Direction: Backward ~ Duration: 120 hrs
Vertical Motion Calculation Methed: Model Vertical Velocity
Meteorology: 0000Z 1 Jan 2016 - GDAS1

Figure 43. An example of NOAA HYSPLIT model showing a northern long range
direction with a local WSW direction.

5.2 Temporal Patterns in VOC Concentrations

To my knowledge, this is the first study to examine long-term temporal trends of
total marine VOC emissions. Distinct seasonal variations were measured where spring
and summer had significantly higher VOC concentrations than autumn and winter. The
increase in VOCs during the spring coincides with the annual northern Atlantic
phytoplankton spring bloom, which has been observed for many years (Craig et al., 2015;
Mahadevan et al., 2012; Siegel et al., 2002). Remote sensing data also show a substantial

amount of chlorophyll-a around Sable Island on May 12", 2016 (Figure 44), signifying
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high phytoplankton presence. This occurs around the same time period during which the
first sharp increase in VOC concentrations was observed (Figure 25). Additionally,
laboratory and mesocosm studies show that increases in phytoplankton populations carry
with them a rise in physiological and chemical reactions (Turner et al., 1996), further
supporting the relationship between total VOCs and phytoplankton observed in this

study.

P
8.01 mg/m*3 1€

Figure 44. MODIS-Aqua chlorophyll-a concentrations showing substantial
phytoplankton presence around Sable Island on May 12, 2016.
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Following the spring season, summer had the largest spikes and highest VOC
concentrations of all seasons, with the highest concentration peaking at 20,029 ppb on
August 22", 2017. Interestingly however, remote sensing data show a marked decrease in
chl-a concentration during this period (Figure 42), suggesting that phytoplankton
presence is reduced. This decrease in chl-a was also observed by Craig et al. (2015), and
they noted that the comparatively low chl-a concentration during this period (< 1 mg m™)
does not reflect the maximum numerical abundance of small cells and dinoflagellates
observed consistently over the long-term Atlantic Zone Monitoring Program (AZMP;
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html). In other
words, the intracellular chlorophyll concentration of small cells is very low compared to
the large diatom cells that dominate the spring bloom. Therefore, even when present in
very high numbers, bulk chlorophyll concentration will remain relatively low.
Dinoflagellate numerical abundance also reaches its maximum in this period, but their
numbers are orders of magnitude less than the small cells. It is probable that the high
numerical abundance of these small cells contributes to the peak VOC concentrations

observed in this late summer period.

It should also be noted that the shallow mixed layer depth (~9 m) during the
summer period (Craig et al. 2015) forces the phytoplankton to stay in high irradiance
conditions near the surface and may induce photo-acclimation that is known to reduce
intracellular chlorophyll (Maclntyre et al., 2002; Moore et al., 2006). This is a common
phenomenon also exhibited by terrestrial plants when exposed to strong sunlight (Jstrem

etal., 2015).
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Strong diurnal fluctuations of total VOCs were most apparent during summer
months, with concentrations peaking during the day and early afternoon (Figures 21-24).
This can be explained by phytoplankton’s dependence on light and their increased
photosynthetic activity with light availability. However, a large portion of phytoplankton
emissions are not released by regular metabolic activity, but instead when cells are under
physical, chemical or biological stress (Meskhidze et al., 2015). Tamburic et al. found
that phytoplankton exhibit photosystem damage around mid-day due to intense sunlight
and temperatures, better explaining the diurnal spikes in VOC concentrations seen in this
study (Tamburic et al.,, 2014). Furthermore, a somewhat puzzling “bump” was
consistently observed later in the afternoon in diurnal total VOC plots (Figure 45). These
spikes coincide with periods of high physiological activity by phytoplankton and
increased cell death, which can cause phytoplankton to release more volatile compounds
(Berges and Falkowski, 1998; Veldhuis et al., 2001). The phytoplankton assemblage
during this period is also strongly associated with a recycling system (Ward et al., 2012)
with high rates of grazing by micro-zooplankton that, along with the likely stress caused

by high irradiance and low nutrients, may contribute to the VOC inventory.
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Figure 45. Example of VOC “bumps” in the later afternoon hours in July, August and
September.

Further evidence of phytoplankton emission of VOCs is seen in the close
relationship between temporal variations in temperature and changes in total VOC
concentrations (Figure 46). This is further supported by the positive correlation between
small (pico- and nano-) phytoplankton concentration and temperature shown by Craig et
al. (2015) and the increased rate of gas emissions in warmer water (Wiebe and Gaddy,

1940).
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Figure 46. Temperature (°C) and Total VOC (T-VOC) concentration (ppb) in 2016
plotted against a common timeline (month).

Nevertheless, increases in temperature during the spring and summer seasons also
bring with them a rise in terrestrial biogenic emissions (Seco et al., 2011), forest fires and
anthropogenic activity; all of which can be sources of VOCs on Sable Island. Further

inspection of VOCs and source sector analysis is, therefore, required.

5.3 Source Sector Analysis

A twice-daily Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model showed that only 26.03 % of air trajectories passed solely over marine
environments before reaching Sable Island in 2016 (Figure 27), with the rest of the
trajectories passing over terrestrial and anthropogenic sources of VOCs; however, spring
and summer seasons had significantly higher marine trajectories (~35%) than the other
seasons (Figures 28, 29). When total VOC spikes were cross-examined with HYSPLIT

analyses, it was shown that they were mostly associated with marine sources (68.75%),
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followed by anthropogenic (18.75%) and terrestrial (12.5%) sources respectively (Figure
30). When HYSPLIT air mass back trajectories were cross-examined with specific VOC
species identified using GC-MS, it was found that marine and anthropogenic sources
contributed to 38% each to the total emissions and terrestrial sources contributed to 24%

(Figures 38, 39). This apparent discrepancy can be due to several reasons.

The presence of offshore oil and gas platforms around Sable Island is likely to
contribute to the total VOC concentrations measured in this study. Platforms Deep Panuk,
Alma and Thebaud are located up wind of the island (based on wind patterns discussed
previously) (Figure 47), and would be considered as ‘Marine’ sources using HY SPLIT
analysis. Nonetheless, crude oil and refined fuel related compounds such as 2-
bromooctadecanal, cumene and thiophene do not have natural marine sources, and it

would therefore be incorrect to consider them as marine emissions.
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Figure 47. Map of oil and gas platforms surrounding Sable Island. (Canada-Nova Scotia
Offshore Petroleum Board,
http://www.cnsopb.ns.ca/pdfs/sable area platforms.pdf

Many VOC species also have several sources of emission and complex chemistry.
For example, a-pinene is a compound produced widely by coniferous trees, has been
shown to be emitted by marine algae (Sabolis, 2010); and 1-hexanol, a compound known
for its “freshly cut grass” scent, can be produced by terrestrial and marine photosynthetic
organisms (Evans, 1994); with air mass back trajectories showing both a-pinene and 1-
hexanol to originate mostly from marine and mainland sources. While all of these sources
are viable, both of the compounds have relatively short atmospheric lifetimes
(Montenegro et al., 2012), which greatly reduces the amount reaching Sable Island from
far terrestrial sources and increasing the likelihood of them being local emissions.
Additionally, 1-hexanol may be released from damaged grass on the island due to grazing
by horses or local insects (Scala et al., 2013), and some sulfur containing compounds

including dimethyl disulfide may be emitted by horse feces; especially considering the
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regular close proximity of horses to the instruments used in this study (Garner et al.,
2007) (Figure 48). With that said, it is difficult to determine the true sources of
compounds without considering all possible emitters, keeping in mind that all of the air
mass back trajectories pass over at least 290 km of marine environments before reaching

Sable Island, regardless of their original source.

Figure 48. Sable Island horses only meters away from the air chemistry building and air
measurement instruments (Photo: Loay Jabre).

Marine biogenic VOCs are also notoriously difficult to analyse. Not only are they
difficult to collect (i.e. chloromethane); many of them undergo rapid and complex
chemical reactions when released into the atmosphere. For example, carbon disulfide,
identified in this study as a mostly terrestrial VOC with substantial marine emissions
(Figure 41), has been found in north Atlantic marine environments but has presented

challenges in its identification and separation from DMS since it was first detected in
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1971 (Kim and Andreae, 1987) - DMS was not detected in this study, but its presence is

synonymous with phytoplankton blooms.

There is noteworthy phytoplankton activity in the winter months in the north
Atlantic due to the uptake of nutrients in deep-ocean mixing (Behrenfeld, 2010; Eppley,
1972; Mahadevan et al., 2012). However, VOCs from these populations were not
detected by our instruments. In addition to the relatively small phytoplankton
concentration in winter, this can be explained by the less frequent calibration and
maintenance trips during the winter because of bad weather, and several malfunctions of
the instrument in December and January. Continuous, real-time identification and
quantification of VOC species combined with Positive Matrix Factorization (PMF)
models would help resolve these discrepancies, but due to logistical and technical issues
and lack of funding, it was impossible to install an appropriate instrument on Sable Island

for this study.
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A year-long study of total VOCs and air mass back trajectories as well as an
intensive inspection of VOC species and remote sensing data were conducted on Sable
Island, Nova Scotia, for 2016. Monthly and seasonal trends in VOC concentrations
correlated strongly with temperature trends and phytoplankton blooming patterns, and
were further supported by distinct diurnal patterns, showing elevated VOC concentrations
during daytime and afternoon hours. Air mass back trajectories for periods of total VOC
spikes throughout the year concluded that 68.75% of sources were from marine paths,
while 18.75% originated from anthropogenic sources and 12.5% from natural terrestrial
emissions. However, due to the presence of oil and gas platforms around Sable Island
and the multi-source emissions of several compounds inspected, a meta-analysis of
source emissions and HYSPLIT was conducted and concluded that 48% of emissions

were marine, 11% were anthropogenic, and 40% were from natural terrestrial sources.

These results highlight the complex nature of air measurement studies, and offer
useful insight into the presence of various compounds from numerous sources, even when
performing remote region research. The tantalizing evidence of phytoplankton
contribution to climate relevant VOCs along with obvious seasonal patterns in marine
biogenic emissions show a possible link to water column structure and/or dominant
phytoplankton species. This could provide insight into future ocean scenarios and may
help future researchers in reaching more accurate decisions regarding the relationship

between phytoplankton emissions and atmospheric chemistry.
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6.2 Recommendations

It would be especially beneficial for this study to have real-time or incremental
(i.e. 15 minutes) measurements of VOC species on Sable Island. This can be achieved by
using an Air Server-Unity2-TD-GC-MS instrument or a Proton Transfer Reaction — Mass
Spectrometer (PTR-MS), which sample air directly from the environment as opposed to
collection on TDTs for 24 hours and subsequent analysis. This would provide a better
temporal resolution of VOC species and would aid in the collection of highly volatile

species that were not detected in this study (e.g. chloromethane).

It is also recommended that quantification and peak identification to be processed
with newer and more powerful software such as TraceFinder ™ to increase the reliability,

precision and efficiency of data collection from mass spectra.
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