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7.2 Comparison of von Kármán and Kaimal spectra . . . . . . . . . . 123

7.3 Difference between streamwise and cross-stream variances . . . . 127

7.4 Average pairwise-summed beam velocity spectra . . . . . . . . . 129

7.5 Vertical profiles of LvK, LK and LIw . . . . . . . . . . . . . . . . 131

x



7.6 Comparison of Sbb to predicted curves . . . . . . . . . . . . . . . 133

7.7 Parameters used to non-dimensionalize the spectral fits . . . . . . 134

7.8 Errors between measured spectra and predicted forms . . . . . . . 134

7.9 Spectral comparisons and errors for variable σu/u∗ . . . . . . . . 135

7.10 Vertical profiles of best-fit σu/u∗ values . . . . . . . . . . . . . . 136

7.11 Errors between measured spectra and best-fit Kaimal form . . . . 136

A.1 Instrument coordinate system . . . . . . . . . . . . . . . . . . . . 149

B.1 ADCP Attitude: Site 1 . . . . . . . . . . . . . . . . . . . . . . . 150

B.2 ADCP Attitude: Site 2a . . . . . . . . . . . . . . . . . . . . . . . 151

B.3 ADCP Attitude: Site 2b . . . . . . . . . . . . . . . . . . . . . . . 151

B.4 ADCP Attitude: Site 3 . . . . . . . . . . . . . . . . . . . . . . . 152

B.5 Speed-bin averaged amplitude, correlation and noise levels . . . . 153

C.1 Time series of wind, current and wave metrics at Site 1 . . . . . . 155

C.2 Spectra for surface wave occurences at Site 1 . . . . . . . . . . . . 156

C.3 Variance ratios and wind conditions at Site 1 . . . . . . . . . . . . 156

C.4 Time series of wind, current and wave metrics at Site 2a . . . . . . 157

C.5 Spectra for surface wave occurences at Site 2a . . . . . . . . . . . 158

C.6 Variance ratios and wind conditions at Site 2a . . . . . . . . . . . 158

C.7 Time series of wind, current and wave metrics at Site 2b . . . . . . 159

C.8 Spectra for surface wave occurences at Site 2b . . . . . . . . . . . 160

C.9 Variance ratios and wind conditions at Site 2b . . . . . . . . . . . 160

C.10 Time series of wind, current and wave metrics at Site 3 . . . . . . 161

C.11 Spectra for surface wave occurences at Site 3 . . . . . . . . . . . . 162

C.12 Variance ratios and wind conditions at Site 3 . . . . . . . . . . . . 162

D.1 Estimate of noise level from velocity spectrum . . . . . . . . . . . 164

D.2 Vertical profiles of σei . . . . . . . . . . . . . . . . . . . . . . . . 164

E.1 Numerical grid used for FVCOM simulations . . . . . . . . . . . 166

xi



ABSTRACT

Measuring oceanic turbulence in a high Reynolds number flow is a challenge for several

reasons: strong flows generate high drag on instrument support structures, turbulent

fluctuations are intermittent and irregular, and available instrumentation techniques are

limited by the spatial and temporal scales they can accurately resolve. Despite these

challenges, field measurements are needed to characterize the dynamics of these energetic

flows because Reynolds numbers of O(108) are not yet achievable in either numerical

simulations or laboratory experiments.

This thesis presents the analysis and discussion of turbulence measurements that were

acquired in Grand Passage, Nova Scotia, which is a tidal channel where the flow speed

reaches 2.5 m s−1 and the Reynolds number is 8 × 107. The data were collected during

three separate field campaigns that included the deployment of four bottom-mounted

acoustic Doppler current profilers (ADCPs) and an underwater, streamlined buoy “flown”

at mid-depth. The data were used to: (1) assess the capabilities and limitations of both

instrumentation techniques and analysis methods for turbulence measurements in high-

flow environments, (2) characterize the spatial and temporal variability in turbulence and

boundary layer parameters, and (3) investigate the validity of existing theoretical and

empirical relationships.

The results indicate that speed-bin averaged dissipation rates, ε, computed from ADCP

data, agree to within a factor of two with direct estimates obtained from the shear probes.

At all sites, the dissipation rate is log-normally distributed, and spectral and second-order

structure function (SF2) methods yield estimates of ε from the ADCP data that agree

to within 16%. Doppler noise levels—estimated using a modified SF2 method—are

speed-independent and in agreement with those obtained from the velocity spectra.

Spatial variability and ebb/flood asymmetries in both the velocity profiles and the second-

order turbulence statistics are attributed—in part—to the upstream bottom roughness.

Imbalances in the local rates of production and dissipation are attributed to streamwise

advection, and the degree of anisotropy is shown to vary throughout the water column. A

modified form of the Kaimal spectrum is shown to predict the ADCP velocity spectra at

large scales.
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CHAPTER 1

INTRODUCTION

Turbulent flows are ubiquitous in both natural systems (e.g., atmospheric and oceanic

boundary layers) and engineering applications (e.g., pipe flow, wake generation). Despite

its universality, turbulence is difficult to define. Instead, it is described as a syndrome

characterized by a set of symptoms (Stewart, 1969). In this sense, all turbulent flows can

be described as (Tennekes and Lumley, 1972; Lesieur, 1990; Pope, 2000):

1) irregular: Turbulent flows are disordered, unsteady, and chaotic in that the velocity

field varies significantly and irregularly in both position and time. The kinetic energy

is concentrated into bursts that are separated by comparatively quiescent regions.

2) rotational: Turbulent flows possess three-dimensional vorticity appearing as identifi-

able structures (e.g., eddies) that exist over a broad range of length scales. Large

quasi-two-dimensional structures are generated by gradients in the mean flow (e.g.,

at boundaries), and evolve into smaller scale three-dimensional features through

nonlinear processes.

3) diffusive: Turbulent flows cause rapid mixing. Transfer rates of momentum, heat and

other scalar properties are much higher than if only molecular diffusion processes

are involved.

4) dissipative: Turbulent flows lose kinetic energy to heat through the action of viscosity

on the smallest scales.

Turbulent flows are further characterized by a high Reynolds number, which is the ratio of

inertial and viscous forces acting within a fluid. Mathematically, the Reynolds number is
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defined as

Re =
UL

ν
, (1.1)

where U is a velocity scale, L is a length scale and ν is the kinematic viscosity of the

fluid.

At high Reynolds numbers, the advection terms in the Navier-Stokes equations are

significant, resulting in a set of nonlinear equations for which no analytical solution is

known. Under the mathematical assumptions of existence and uniqueness, the governing

equations describe a deterministic phenomenon; however, the nonlinearity of the system

implies that the solutions evolve with time in a complicated way that is—as of yet—

impossible to predict theoretically (Lesieur, 1990). Recent advances in computing power

have enabled fully-resolved numerical solutions to the Navier-Stokes equations in certain

conditions. These direct numerical simulations (DNS) have been implemented for flows

with moderate Reynolds numbers of O(104) in both boundary layers (Borrell et al., 2013;

Jabbari et al., 2015) and channels (Alfonsi et al., 2016). At higher Reynolds numbers,

the small scale motion present in the flow cannot be resolved, and thus, the simulation

of a deterministic solution is not yet possible. Through the parameterization of the

sub-grid scale motions, large eddy simulations (LES) can be used to model flows with

Reynolds numbers up to O(1011) (Cheng and Samtaney, 2014); however, inaccuracies in

the simulations generate errors that are amplified by the nonlinear terms, and thus, the

simulated flow quickly deviates from the exact solution (Lesieur, 1990). More specifically,

LES simulations resolve the general shapes of the large scale patterns, but they do not

accurately predict the phase or position of the turbulent structures.

Stochastic approaches to describe turbulent flows are also useful. The first statistical the-

ories of turbulence in high Reynolds number flows were developed over 75 years ago (e.g.,

Taylor, 1935; Kolmogorov, 1941b), and were subsequently supported by measurements

collected by Grant et al. (1962) in a tidal channel where the Reynolds number exceeded

108. Additional insight into the small scale properties of highly turbulent flow was gained

from the 1968 Kansas Plains Experiment where velocity and temperature measurements

were made at three heights within the atmospheric boundary layer (Wyngaard and Cote,

1971).

Early attempts to test the statistical theories of turbulence using laboratory experiments

within both pipes (Laufer, 1954) and boundary layers (Klebanoff , 1955) were largely
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unsuccessful because sufficiently high Reynolds numbers could not be achieved (Grant

et al., 1962). In such experiments, the maximum resolvable scale is limited by the physical

size of the experimental domain, and thus, even today the largest pipes and wind tunnels

can only generate flows having Reynolds numbers of O(106) (Talamelli et al., 2014; Örlü

et al., 2017). In addition, these high experimental Reynolds numbers are typically achieved

using pressurized gas, which has lower viscosity than air at standard atmospheric pressure.

This reduction in viscosity is associated with a reduction in the size of the smallest

eddies in the flow, and hence, the flow conditions do not perfectly model those in natural

systems. Recently, the construction of the Long Pipe Facility at the Center for International

Cooperation in Long Pipe Experiments (CICLoPE) was completed (Örlü et al., 2017).

The objective of the facility is to attain higher Reynolds number flows using unpressurized

air. The test section has a diameter of 0.9 m and the maximum achievable wind speed is

60 m s−1. Thus, the highest attainable experimental Reynolds number (3.6 × 106) is still

one to two orders of magnitude smaller than the Reynolds number in many natural flows.

1.1 Importance and Timeliness

Since Grant et al.’s benchmark study in 1962, additional measurements of oceanic turbu-

lence in high Reynolds number flows have been sparse (Fig. 1.1). Because stratification

inhibits the generation of large eddies, Reynolds numbers of O(108) are typically found

in well-mixed regions with strong currents. Data collection in these areas is challenging

because strong flows generate significant drag on instrument support structures, and instru-

mentation techniques are limited by the spatial and temporal scales they can accurately

resolve. Grant et al. (1962) overcame these challenges in a 1.5 m s−1 tidal current using

a hot-film anemometer mounted on a 4 m-long paravane that was towed 50 m below the

surface. Despite the success of the field campaign, several technical problems were encoun-

tered: (1) temperature fluctuations frequently contaminated the velocity measurements, (2)

plankton were occasionally caught on the probes, and (3) violent manoeuvres of the ship

affected the stability of the towed body. These issues—particularly the latter—are largely

responsible for the lack of subsequent ship-towed measurements in high flow regions

(Lueck et al., 2002).

In the 1980s, the introduction of acoustic Doppler current profilers (ADCPs) enabled

the remote measurement of velocity throughout the water column, thus reducing the need
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Figure 1.1: Summary of previous measurement campaigns in tidal channels. The markers
are used to distinguish between studies that were (circles) and were not (squares) motivated
by tidal energy developments. The colours and contours represent the maximum Reynolds
number at each site.

for shipboard measurements. The broadband versions of these instruments—which were

100-fold more precise than the narrowband versions (Gordon, 1996)—were first used in

high flow regions in the late 1990s and early 2000s (Stacey et al., 1999; Lu and Lueck,

1999; Lu et al., 2000; Rippeth et al., 2002; Wiles et al., 2006). The measurements were

primarily used to estimate turbulence characteristics related to first- and second-order

statistical moments (i.e., mean and variance) in tidal channels where the flow speeds

reached 1.2 m s−1 (Fig. 1.1, squares). More recently, the development and deployment

of in-stream tidal turbines has resulted in additional turbulence measurements in tidal

channels (Osalusi et al., 2009; Thomson et al., 2012; Milne et al., 2013; Gunawan et al.,

2014; McCaffrey et al., 2015). The flow speeds in these latter investigations typically

exceeded 2 m s−1 (Fig. 1.1, circles).

In-stream tidal turbines harness the kinetic energy in the flow, and operate under the same

fundamental principles as wind turbines. Estimates of turbulence quantities at hub-height

(i.e., the range of depths swept out by the turbine blades) are needed to address concerns

related to the hydrodynamic loading on a turbine, and to assess device survivability
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(Blunden and Bahaj, 2007). Several studies in the wind industry (e.g., Moriarty et al.,

2002; Wächter et al., 2012) have shown that increased turbulence levels, the presence

of coherent structures, and intermittency (i.e., gustiness) of the flow can affect both the

extreme- and fatigue-loading of a turbine. Turbulent fluctuations can also affect overall

power generation (Chamorro et al., 2013; Mycek et al., 2014) and properties of the turbine

wake (Mycek et al., 2014; Blackmore and Batten, 2014). Because future developments are

expected to involve arrays of devices, a better understanding of the impact of turbulence

would help reduce cost and financial risk.

In addition to providing necessary information about a proposed development site,

accurate turbulence measurements are required to validate and improve the numerical

simulations used to estimate turbine performance and hydrodynamic loading (Wächter

et al., 2012). To date, tidal turbine models typically implement inflow conditions where

turbulent fluctuations are represented simply as a percentage of the mean flow (e.g.,

McCann, 2007). Thus, the distribution of turbulent kinetic energy (TKE) across a range

of spatial scales is misrepresented in the simulations. More sophisticated models, which

are capable of reproducing measured spectral densities, are frequently used in the wind

industry (e.g., Morales et al., 2012); however, the applicability of the same input conditions

in tidal flows has yet to be investigated. While flows in tidal channels are expected to have

similar dynamics to flows in the atmospheric boundary layer, fundamental differences arise

due to the finite water depth in a tidal channel that limits the vertical scale of the turbulent

eddies. Furthermore, the bathymetry is highly variable throughout a tidal channel, which

may result in turbulence statistics—and hence, input conditions—that are site-specific.

Accurate turbulence measurements are also required to validate and improve regional-

and channel-scale numerical models. Such models can provide valuable insight into the

dynamics of the flow that cannot be achieved through the use of measurements alone.

However, due to computational limitations, the full range of scales present in an O(108)

Reynolds number flow cannot be simulated directly. Regional-scale models with a resolu-

tion of approximately 1 km to 100 km solve the Reynolds-averaged Navier Stokes (RANS)

equations by implementing a closure model to parameterize the small-scale turbulent

fluxes. Several closure models of varying complexity and accuracy exist, and the choice

of model is highly dependent on the questions being addressed (Pope, 2000). Recently,

Detached Eddy Simulations (DES) have been used to efficiently simulate tidal flows at

5



a resolution of O(1) m by concurrently implementing RANS solutions where very high-

spatial resolution is needed (i.e., near the solid boundaries) and LES elsewhere in the

domain (Wilcox et al., 2017). This approach allows the turbulent fluctuations in the centre

of a channel to be fully resolved to the grid scale, thus capturing variability in the flow

on O(1) m scales. Because these models implement realistic bathymetry, site-specific

comparisons to turbulence measurements can be used for validation. The model can then

be used to simulate the turbulent flow at other locations in the same channel for which

such measurements do not exist.

1.2 Objectives and Thesis Outline

The overall objective of this thesis is to characterize the turbulent properties of the flow in

highly energetic tidal channels with a specific focus on assessing the limitations of standard

instrumentation techniques, as well as determining the validity of existing theoretical and

empirical relationships. The O(108) Reynolds numbers that exist in energetic passages

are not attainable in either lab experiments or numerical simulations. Therefore, high-

fidelity measurements are required to better describe the dynamics of the turbulent flows.

Measurements at multiple locations within a channel are used to address the following

questions:

1) Can existing measurement techniques—specifically, acoustic Doppler current pro-

filers and shear probes—be used to obtain turbulence measurements at mid-depth?

(Chapter 4)

2) What analysis method best resolves the intermittency in the turbulent fluctuations?

(Chapter 5)

3) How do upstream conditions drive the spatial variability in the TKE balance? (Chap-

ter 6)

4) Can the velocity spectra in the production range be better described by von Kármán

or Kaimal forms? (Chapter 7)

5) Under what conditions do existing empirical and theoretical relationships governing

boundary layer turbulence accurately predict second-order turbulence quantities?

(Chapters 4–7)
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These questions are addressed using a comprehensive dataset obtained in Grand Passage,

Nova Scotia where the Reynolds number is 8 × 107 during strong tidal flow. Turbulence

measurements were obtained using shear probes and four acoustic Doppler current profilers

positioned along the centreline of the passage. The maximum separation distance of

the instruments was 1 km. High resolution bathymetry measurements and numerical

simulations were also obtained as part of concurrent studies.

The thesis is organized as follows. In Chapter 2, the relevant background material is

presented: key theories pertaining to high Reynolds number turbulence are summarized,

and various approaches used to measure oceanic turbulence are discussed. In Chapter 3, the

data and mean flow dynamics of the study site are described. The turbulence characteristics

of the flow are then presented in Chapters 4–7. The focus—particularly in Chapters 4

and 5—is on the estimation of the rate of dissipation of TKE, ε, which is an important

second-order parameter used to assess the turbulence level. In Chapter 4, dissipation

rates, estimated using both an acoustic Doppler current profiler (ADCP) and horizontally

mounted shear probes, are compared. The work is then extended in Chapter 5 where

two different analysis methods are applied to the ADCP data to estimate the variability

in ε on 5-minute time scales at multiple locations. An examination of the TKE energy

balance is then presented in Chapter 6 and the influence of the upstream bottom roughness

is quantified. In Chapter 7, the ADCP velocity spectra are compared to the von Kármán

and Kaimal forms, and modifications to the empirical coefficients are made to incorporate

a variable anisotropy ratio. Final conclusions are summarized in Chapter 8.

Parts of this thesis have been published in two conference papers (McMillan et al.,

2013, 2015) and two peer-reviewed articles (McMillan et al., 2016; McMillan and Hay,

2017). The content of the original papers has been re-organized and expanded upon for

the purposes of continuity and completeness. The majority of Chapter 4 is published as

McMillan et al. (2016)1, and the bulk of Chapter 5 is published as McMillan and Hay

(2017)2. Both manuscripts are in the Journal of Atmospheric and Oceanic Technology. As

the lead author on the papers, I was responsible for the development and implementation

1McMillan, J. M., A. E. Hay, R. G. Lueck, and F. Wolk, Rates of dissipation of turbulent kinetic energy in
a high Reynolds number tidal channel, J. Atmos. Oceanic Technol., 33, 817–837, 2016. c©American
Meteorological Society. Used with permission.

2McMillan, J. M., and A. E. Hay, Spectral and structure function estimates of turbulence dissipation rates
in a high-flow tidal channel using broadband ADCPs, J. Atmos. Oceanic Technol., 34, 5–20, 2017.
c©American Meteorological Society. Used with permission.
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of the analysis methods, and the interpretation of the results. I also prepared the figures,

and wrote and edited the corresponding text. The co-authors provided help and advice on

both the research and the manuscript. The contents of Chapters 6 and 7 are currently being

prepared for publication.
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CHAPTER 2

BACKGROUND

Turbulent flows are highly chaotic and unpredictable; however, standard procedures are

used to both describe and measure the properties of the flow. In this chapter, the key

ideas and assumptions surrounding existing theoretical and empirical models that pertain

specifically to well-mixed, highly energetic flows are presented. Instrumentation techniques

used to measure oceanic turbulence are also described.

2.1 Theory

2.1.1 Turbulent Kinetic Energy

In the absence of surface or internal gravity wave motions, Reynolds decomposition can be

invoked to write a velocity component, ui, at a given location as the sum of time-averaged

(angle brackets) and fluctuating (prime) components, according to

ui(t) = 〈ui〉+ u′
i(t), (2.1)

where t is time and i is an index. The separation of timescales is chosen such that, over the

averaging interval, the mean flow is statistically stationary and 〈u′
i〉 = 0. For orthogonal

coordinates, i = 1, 2 or 3. The convention that is used throughout this thesis is that u1, u2

and u3 are equivalent to u, v, and w, corresponding to the streamwise (x1 or x), lateral (x2

or y), and vertical (x3 or z) directions, respectively.

The turbulent kinetic energy (TKE) is related to the total variance of the fluctuating flow
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and is defined as

TKE =
q2

2
=

1

2

[〈
u′2〉+ 〈v′2〉+ 〈w′2〉] = 1

2
〈u′

iu
′
i〉 , (2.2)

where summation over repeated indicies is implied. By taking the dot product of u′
i and the

Navier-Stokes equations, it can be shown that the evolution of the TKE in an unstratified

fluid is governed by
D

Dt

(
q2

2

)
= −∇ · �F + P − ε, (2.3)

where D/Dt is the mean material derivative, and �F , P and ε are related to the transport,

production and dissipation of TKE, respectively (Kundu and Cohen, 2002). The first term

on the right hand side of Eq. (2.3) represents the spatial redistribution of TKE by both the

turbulence itself and the viscous forces. The j th component of the TKE flux, �F , is given

by

Fj =
1

2

〈
u′
iu

′
iu

′
j

〉
+

1

ρ

〈
P ′u′

j

〉− 2ν 〈u′
isij〉 , (2.4)

where P ′ is the fluctuating pressure, ρ is the density, and sij is the strain rate tensor for the

fluctuating component defined by

sij ≡ 1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
. (2.5)

The rate of shear production is defined as

P = − 〈u′
iu

′
j

〉 ∂ 〈ui〉
∂xj

, (2.6)

and represents the generation of TKE by the interaction of the Reynolds stresses, − 〈u′
iu

′
j

〉
,

with the mean velocity gradient, ∂ 〈ui〉 /∂xj . The rate of dissipation of TKE is defined as

ε = 2ν 〈sijsij〉 , (2.7)

and represents the removal of TKE by viscosity.

2.1.2 Turbulent Boundary Layers

In a boundary layer, it can be assumed that the horizontal gradients of the turbulent

quantities are much smaller than the vertical gradients, and thus, the TKE equation
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(Eq. 2.3) can be simplified to

D

Dt

(
q2

2

)
= Tp + Td + Ph − ε, (2.8)

where the vertical transport has been separated into a pressure transport term, Tp and a

diffusive transport term, Td, which are given by

Tp = −1

ρ

∂

∂z
〈w′P ′〉 , (2.9)

Td = −1

2

∂

∂z

〈
w′q2

〉
. (2.10)

In the boundary layer, the rate of shear production is dependent on the vertical shear of the

horizontal velocity components, i.e., Eq. (2.6) simplifies to

Ph = −〈u′w′〉 ∂ 〈u〉
∂z

− 〈v′w′〉 ∂ 〈v〉
∂z

. (2.11)

In a high Reynolds number tidal channel, Ph is typically highest in the bottom boundary

layer where friction at the sea bed generates a large vertical gradient in the mean velocity.

If it is assumed both that variations in the streamwise direction of time-averaged quantities

are small, and that the channel is relatively straight (i.e., no secondary circulation), then

the velocity profile is expected to be self-similar near the bed where there is a constant

stress layer (Yaglom, 1979; Pope, 2000). The mean flow speed in the boundary layer, UBL,

can then be described by the universal “law-of-the-wall” given by

UBL(z) =
u∗
κ

ln

(
z

z0

)
, (2.12)

where z is the height above the bottom, z0 is the bottom roughness length scale, u∗ is the

friction velocity, and κ = 0.4 is the von Kármán constant. The friction velocity is defined

by the bed shear stress, τb, as

u∗ ≡
√

τb
ρ
. (2.13)

For wall-bounded shear flows, Eq. (2.11) can be simplified to

Ph = −〈u′w′〉 dUBL

dz
, (2.14)
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and within the constant stress layer, the Reynolds stress, −〈u′w′〉, can be equated to τb/ρ

to yield

−〈u′w′〉 = u2
∗. (2.15)

Eqns. (2.12), (2.14) and (2.15) can then be combined to obtain an estimate for P in the

boundary layer according to

Ph =
u3
∗

κz
. (2.16)

2.1.3 Turbulent Scales and the Energy Cascade

The production of turbulence occurs at large scales where large eddies, which are charac-

terized by a length scale �0, extract energy from the mean flow. Spatial gradients within

these eddies are weak and, hence, the direct effect of viscosity is negligibly small. In 1922,

Richardson suggested that there exists an energy cascade in which the TKE is transferred

from these large eddies to smaller and smaller scales, until eventually, the smallest eddies

are dissipated as heat by viscosity. At the largest scales, the flow is spatially inhomoge-

neous and is directionally dependent on the gradients in the mean flow (i.e., anisotropic);

however, as the eddies interact with each other and pass their energy to the smaller scales,

the directional biases are lost and the motions become “locally isotropic”: i.e.,

〈
u′2〉 = 〈v′2〉 = 〈w′2〉 . (2.17)

Kolmogorov was first to hypothesize that for sufficiently high Reynolds number flows, an

“inertial subrange” (ISR) exists where the assumption of local isotropy holds over a range

of length scales, L . Pope (2000) suggests that the ISR is confined to

60η < L <
1

6
�0, (2.18)

where η is the Kolmogorov microscale, defined as

η ≡
(
ν3

ε

)1/4

, (2.19)

corresponding to the size of the smallest eddies in the flow.

The energy cascade can be depicted graphically in the form of an energy spectrum where

the velocity variance density, φii, is represented as a function of eddy size, 2πk−1, where k
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Figure 2.1: Schematic of a turbulence velocity spectrum. The typical regions resolved by
each instrumentation technique are highlighted for ε∼ 10−4 W kg−1.

is the wavenumber in the direction of the mean flow. A sketch of the typical shape of the

spectrum is shown in Fig. 2.1. For high Reynolds number flows, the energy spectrum can

be sub-divided into three distinct regions:

1) the production range where the spectral maximum occurs, and large eddies contribute

significantly to the total velocity variance

2) the inertial subrange where φii falls off at a constant rate proportional to k−5/3, and

3) the dissipation range where viscosity acts on the smallest eddies, rapidly converting

the kinetic energy of the smallest scales to heat.

2.1.4 Inertial Subrange and Local Isotropy

For high Reynolds number turbulence, the ISR is broad with the largest eddies being

several orders of magnitude larger than the smallest eddies. Within the ISR, TKE is neither

13



generated nor destroyed, and the motions are assumed to be locally isotropic. The formal

development of the statistical theory of isotropic turbulence arguably began with Taylor’s

1935 paper, in which it was shown for the first time that ε can be expressed in terms of the

mean square value of any component of the velocity gradient, i.e.,

ε = 15ν

〈(
∂u′

i

∂xi

)2
〉

=
15

2
ν

〈(
∂u′

i

∂xj

)2
〉
, (2.20)

where the latter relationship holds if i 	= j. Taylor based his statistical description on the

two-point longitudunal, F , and transverse, G, autocorrelation functions. For two points on

the x axis that are separated by a distance r, F and G are defined as

F (r, t) =
〈u′(x+ r, t)u′(x, t)〉

〈u′2〉 , (2.21)

G(r, t) =

〈
u′
j(x+ r, t)u′

j(x, t)
〉〈

u′2
j

〉 , (2.22)

where j = 2, 3.

Using the Navier-Stokes equations, von Kármán and Howarth (1938) derived an evolu-

tion equation for F given by

∂

∂t

(〈
u′2〉F)− 〈u′2〉3/2

r4
∂

∂r

(
r4κ
)
=

2ν 〈u′2〉
r4

∂

∂r

(
r4
∂F

∂r

)
, (2.23)

where κ is the triple velocity correlation defined by

κ(r, t) =
〈u′(x, t)2u′(x+ r, t)〉

〈u′2〉3/2
. (2.24)

Structure Functions

The fourth of Taylor’s nine conclusions in his 1935 paper states that the Eulerian length

scale of turbulence can be estimated from “simultaneous values of velocity obtained along

a line”. The structure function (SF) description—i.e., velocity differences “along a line”—

of isotropic turbulence was then introduced by Kolmogorov (1941a, 1941b) in a pair of

benchmark studies. In the longitudinal direction, the n-th order structure function at the

14



position r0 is defined as

DLn(r, t) ≡ 〈[u′(r0 + r, t)− u′(r0, t)]
n〉

, (2.25)

where u′ is the fluctuating velocity component in the r direction. It can be shown that the

second- and third-order structure functions, DLL and DLLL, are related to the two-point

correlations by

〈
u′2〉F (r, t) =

〈
u′2〉− 1

2
DLL(r, t), (2.26)〈

u′2〉3/2 κ(r, t) = 1
6
DLLL(r, t), (2.27)

and thus, the Kármán–Howarth equation (2.23) can be re-expressed in terms of structure

functions to give the Kolmogorov (1941b) result,

∂DLL

∂t
+

1

3r4
∂

∂r

(
r4DLLL

)
=

2ν

r4
∂

∂r

(
r4
∂DLL

∂r

)
− 4

3
ε, (2.28)

where it has been assumed that ∂(u′2)/∂t = −(2/3) ε, i.e., both production and transport

of turbulence are small. Under the assumption of local isotropy in the inertial subrange,

the unsteady and viscous terms in Eq. (2.28) can be neglected. The resulting equation can

then be integrated to give the Kolmogorov “four-fifths law”, i.e.,

DLLL(r, t) = −4

5
εr. (2.29)

According to Kolmogorov’s second similarity hypothesis, the second-order structure

function for r within the inertial subrange must be independent of viscosity. Dimensional

analysis can be used to show that DLL must satisfy the “two-thirds law”, i.e.,

DLL(r, t) = C2ε
2/3r2/3, (2.30)

where C2 is a universal constant.

Velocity Spectra

The spectral representation of the two-thirds law was obtained independently by Obukhov

(1941) and gives the now familiar −5/3 dependence of the velocity spectral density on k in

the inertial subrange: i.e., the range of scales for which the turbulence is locally isotropic.
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In one-dimension, the spectra are given by

φii = αiε
2/3k−5/3, (2.31)

where the index i corresponds to the longitudinal (i = 1) and transverse (i = 2, 3)

directions. The Kolmogorov constants, αi, are universal, and satisfy α2 = α3 = 4/3α1.

Universal Constants

The structure function and spectral constants, C2 and α1, are related. Kolmogorov (1941b)

argued that the skewness of the velocity differences, given by Sk ≡ DLLL D
−3/2
LL , is

constant in the inertial subrange, allowing C2 to be expressed as

C2 =

(
− 4

5Sk

)2/3

. (2.32)

Pond et al. (1963) showed that Sk can be written as Sk = −0.1α
−3/2
1 . Thus Eq. (2.32)

yields

C2 = 4α1. (2.33)

The above relationships between the spectral and structure function forms are outlined by

Monin and Yaglom (1975) [pp. 364, 462–485], who also provide a comprehensive summary

of the then-available measurements to suggest C2 = 2.0. More recently, Sauvageot

(1992) used Doppler radar measurements of turbulence in the atmosphere to conclude

that C2 = 2.1 ± 0.1. A similar range of C2 = 2.0 ± 0.1 was estimated by Saddoughi

and Veeravalli (1994) using measurements obtained in a wind tunnel. Sreenivasan (1995)

compiled the results from experimental studies of both grid turbulence and shear flows

to conclude that the best overall agreement with the spectral ISR equation (Eq. 2.31) was

obtained with α1 = 0.5, and therefore with C2 = 2.0. Despite this finding, in recent

oceanographic studies, a value of C2 = 2.1 is often adopted (e.g., Wiles et al., 2006; Lorke,

2007; Simpson et al., 2011; Thomson et al., 2012; Simpson et al., 2015).

Shear Spectra

The variance of a signal is equal to the integral of its spectrum, thus, Eq. (2.20) can be

expressed as

ε =
15

2
ν

∫ ∞

0

ψ(k)dk, (2.34)

16



where ψ(k) is the spectral density of the velocity shear. An empirical function governing

ψ was developed by Nasmyth (1970) and an analytical fit was initially obtained by Wolk

et al. (2002). A slight modification of the mathematical model, which ensures that the

integral of the spectrum is equivalent to the variance of the velocity shear, was obtained by

Lueck (2013) and is given by

ψ(k̃) =

(
ε3

ν

)1/4
8.05k̃1/3

1 + (20.6k̃)3.715
, (2.35)

where k̃ is a non-dimensional wavenumber defined as k̃ = 2πηk. This form of the shear

spectrum spans both the inertial subrange and the dissipation range, i.e., η < L < 1
6
�0.

2.1.5 Intermittency

While “intermittency” is not precisely defined in the turbulence literature, it is generally

used to describe localized variations in turbulent fluctuations: i.e., the motion sporadically

varies between more and less turbulent, in both space and time. Such variations occur at

both large and small scales. At large scales, coherent structures extract energy from the

mean flow and contribute to the “external intermittency”, whereas, at small scales, eddies

are dissipated as heat by viscosity and contribute to the “internal intermittency” (Pope,

2000).

The phenomenon of internal intermittency has been an active area of research since

the 1960s when adaptations to Kolmogorov’s similarity hypothesis were made to account

for localized regions of strong dissipation. Kolmogorov (1962) and Obukhov (1962)

hypothesized that the dissipation rate was log-normally distributed, which has since been

shown to generally describe measurements made in the atmospheric boundary layer;

however, the theoretical model may not accurately predict the probability of the highest

and lowest values (Stewart et al., 1970; Van Atta and Chen, 1970). Despite this limitation,

the log-normal model has been used to predict the higher order moments (skewness and

kurtosis) of the velocity derivatives in a turbulent flow (Van Atta and Antonia, 1980). The

results, which are dependent on the Reynolds number of the flow, are consistent with both

laboratory and field measurements (Van Atta and Antonia, 1980), and thus, a log-normal

distribution is a good approximation for the variability in the dissipation rate.

Intermittency at the largest scales occurs as coherent eddies are swept past the measure-

ment site, causing significant variability in the flow velocity. The variance associated with
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these transient structures or “gusts” contributes to the shape of the spectra in the production

range. Two of the frequently used semi-empirical spectral models in atmospheric and

aeronautical simulations are the von Kármán and Kaimal spectra. The von Kármán spectra

are consistent with the analytical equations governing the autocorrelation functions for

isotropic turbulence (von Kármán, 1948; Diedrich and Drischler, 1957). The longitudinal

component, Φuu, is given by

Φuu(f) =
4σ2

uLvK

|U |
1[

1 + 70.8
(

fLvK

|U |

)2]5/6 , (2.36)

where U is the velocity of the mean flow, σ2
u is the variance of the longitudinal velocity, and

LvK is the longitudinal integral length scale. The Kaimal spectra were obtained using data

from the 1968 Kansas Experiment and are applicable to anisotropic turbulence (Kaimal

et al., 1972). For neutral atmospheric conditions, the universal form for the longitudinal

component is given by

Φuu(f) =
zu2

∗
|U |

102[
1 + 33

(
fz
|U |

)]5/3 . (2.37)

At high frequencies, both the von Kármán and the Kaimal spectra converge to f−5/3,

as expected for the inertial subrange (see Eq. 2.31) since f = (2π)−1|U |k by Taylor’s

Hypothesis (Section 2.2.4). Additional properties of both the von Kármán and Kaimal

forms—including the predicted forms for the transverse components—are discussed in

Chapter 7.

2.2 Turbulence Measurements

The measurement of turbulent fluctuations is nontrivial due, in part, to the broad range of

scales that are present in the flow. Previous studies in tidal channels have primarily used

broadband acoustic Doppler current profilers (ADCPs) (Stacey et al., 1999; Lu et al., 2000;

Rippeth et al., 2003; Wiles et al., 2006; Thomson et al., 2012; Osalusi et al., 2009; Hay

et al., 2013) and acoustic Doppler velocimeters (ADVs) (Thomson et al., 2012; Milne et al.,

2013; Gunawan et al., 2014). Despite their widespread use, these acoustic instruments

are unable to accurately measure the smallest scale velocity fluctuations due to high
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Doppler noise (i.e., errors) that are O(0.1) m s−1 for ADCPs and O(0.01) m s−1 for ADVs.

As an alternative—or perhaps a complementary—approach to acoustic measurements of

turbulence, shear probes can be used to measure turbulent fluctuations at dissipation scales.

2.2.1 Acoustic Doppler Velocimeters

While the higher sampling rates (ca. 32 Hz) and improved accuracy of ADVs allow a better

resolution of turbulent fluctuations than ADCPs, ADVs measure the flow at only one point

in space. Thus, to obtain mid-depth measurements, ADVs must be mounted on either tall

frames (Thomson et al., 2012; McCaffrey et al., 2015) or long mooring lines (Thomson

et al., 2014). ADV measurements are also sensitive to the concentration of scatterers in the

water, which can lead to very low data quality in water with low particulate concentrations

(Hay et al., 2013).

2.2.2 Acoustic Doppler Current Profilers

ADCPs can be used to remotely measure the turbulent flow throughout the water column.

However, low sampling rates (ca. 2 Hz), high noise levels, and divergent beam geometry of

standard ADCPs (Fig. 2.2) place fundamental limitations on the estimation of turbulence

parameters. In particular, temporal averages are needed to reduce the influence of noise,

and the computation of second-order turbulence statistics (Reynolds stress, dissipation,

TKE) requires the assumption that the fluctuations in the flow are statistically homogeneous

over the horizontal scale of the beam separation (Lu and Lueck, 1999). The estimation of

some parameters also relies on empirical anisotropic ratios that are not well constrained.

Uncertainties and biases in the ADCP estimates can also be introduced due to instrument

tilt angles as low as 2◦ (Lu and Lueck, 1999). To overcome some of these limitations, others

(Mohrholz et al., 2008; Whipple and Luettich, 2009; Simpson et al., 2011; Thomson, 2012;

Lucas et al., 2014; Simpson et al., 2015) have used pulse-coherent ADCPs which provide

high-accuracy measurements at the cost of a reduced profiling range. Other investigators

have implemented modified ADCP configurations (Vermeulen et al., 2011; Gargett, 1994).

Recent advances in ADCP technology have led to instruments that sample at 8 Hz along a

vertical beam that potentially provides more precise estimates of turbulence quantities.

2.2.3 Shear Probes

In the open ocean, in situ turbulence measurements are frequently obtained using airfoil

shear probes that consist of an O(1) cm piezo-ceramic element embedded in a hollow
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Figure 2.2: Schematic of a diverging-beam acoustic Doppler current profiler where ϑ is the
beam angle relative to the vertical axis. Under the assumption of homogeneity, along-beam
velocities, v1 and v2, can be transformed to instrument coordinates where uI and wI are
horizontal and vertical components, respectively (Appendix F).

stainless steel support sting (Fig. 2.3a). The probes have a flexible, bullet-shaped, silicone

rubber tip that encases the free end of the probe and forms an axially symmetric airfoil.

As water flows axially across the probe at speed, Up, the broadside component of the

turbulence velocity, u′
b, contributes to the total resultant velocity, UA. The angle of attack

of the flow, θA, causes the probe to bend, inducing a voltage, Ev = spUpu
′
b, that depends on

the sensitivity of the probe, sp. The rate-of-change of the turbulent component is therefore

given by
∂u′

b

∂t
=

1

spUp

∂Ev

∂t
. (2.38)

A measurement of the velocity shear in the axial direction can then be obtained by applying

Taylor’s Hypothesis (see below).

Shear probes have been used to measure small-scale turbulence in many environments

since they were introduced in the 1970s (Osborn, 1974; Lueck et al., 2002). They have

been mounted on various platforms, including—but not limited to—vertical profilers,

mooring lines, gliders, and autonomous underwater vehicles. With low noise levels of

O(0.001) m s−1 and high sampling rates up to 2048 Hz, shear probes can obtain precise,

high resolution measurements. The minimum resolvable length scale is O(1) mm and is

set by the finite size of the probe (Macoun and Lueck, 2004). The largest measurable

scale is limited by the length of the body upon which the probe is mounted. Larger eddies
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Figure 2.3: (a) Schematic of a shear probe. (b) Picture of a shear probe (red circle) mounted
in the nose of a MicroRider.

will simply move the entire body and thus the turbulent fluctuations will not be resolved.

These limitations imply that, at high dissipation rates of 10−4 W kg−1, the turbulent velocity

spectrum can be resolved at the upper end of the inertial subrange as depicted in Fig. 2.1.

For lower dissipation rates, the measured spectrum will extend into the viscous dissipation

range.

2.2.4 Taylor’s Hypothesis

Turbulence properties are often described in terms of spatial scales (i.e., eddy scales);

however, the instrumentation used in this study—ADCPs and shear probes—make temporal

measurements of fluctuating quantities. Because turbulent eddies evolve slowly in time,

the properties of the flow are assumed to be essentially “frozen” as the turbulent field is

advected past a sensor by the mean flow. If the measurement interval is short compared to

the time-scale of the evolution of the eddies, then Taylor’s Frozen Field Hypothesis can be
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invoked which allows the time (T ) and length scales (L ) to be related by

L = |U |T . (2.39)

Taylor’s hypothesis is valid provided that u′2/|U |2 
 1, and is thus most applicable for

small scale fluctuations.
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CHAPTER 3

DATASET

In this chapter, an overview of the study site and the measurement campaigns is provided.

The instrument configurations and performance are summarized and the mean flow mea-

surements are discussed. The purpose is to highlight the spatial and temporal variability in

the flow because it will aid in the interpretation of the turbulence measurements presented

in Chapters 4–7.

3.1 Study Site

Grand Passage, Nova Scotia is located at the mouth of the Bay of Fundy, between Brier

Island and Long Island (Fig. 3.1). The passage is about 4 km long and varies in width

between 800 m and 2 km. Along the channel centreline, the water depth ranges from

ca. 10 to ca. 30 m and there are several bathymetric features that affect the flow. Most

notably, a cross-channel ridge (“CC”, Fig. 3.1) near the northeast entrance to the passage

generates pronounced ebb/flood asymmetry in the turbulence characteristics (Hay et al.,

2013). In addition, Peter’s Island, which is located at the southern end of the passage (“PI”

in Fig. 3.1), generates large eddies that are advected downstream during strong tides.

The tidal range in Grand Passage is approximately 5 m, with the M2 constituent having

the largest amplitude. The flow is highly turbulent with maximum depth-averaged speeds

reaching 2.5 m s−1 (Fig. 3.2) and Reynolds numbers up to 8 × 107. The current flows

northward on the flood tide and southward on the ebb and is nearly rectilinear in the centre

of the passage. The water density varies on both seasonal and tidal timescales; however,

at any given time, the water column is predominantly unstratified. CTD measurements

in July 2012 revealed a maximum density difference of 0.25 kg m−3 over the entire water
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Figure 3.1: Grand Passage location and bathymetry. In the left panel, “PI” is an abbrevia-
tion for “Peter’s Island” and “CC” highlights the location of a cross channel ridge.

column (Malinka, 2013).

The passage is sheltered from easterly and westerly winds, and opens into fetch-limited

basins to the north and south, such that surface waves tend to be small, especially during the

summer. While waves did not dominate the variability in the flow during the measurement

campaigns, they were occasionally observed—typically when the current opposed the

wind. The identification of surface waves is summarized in Appendix C. For this thesis,

data and results affected by wave motion were either rejected or flagged and the dynamics

associated with wave-current interactions were not investigated.

3.2 Turbulence Measurements

3.2.1 Bottom-Mounted ADCP Frames

Four bottom-pods carrying one or more acoustic Doppler profiling instruments and an RBR

Ltd. pressure sensor were deployed near the northern extent of Grand Passage (Fig. 3.3)

during three distinct measurement campaigns in 2012 and 2013. The duration of the

deployments varied between 3 and 18 days (Table 3.1) and the naming convention follows
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Figure 3.2: Snapshots of the depth-averaged flow speed as simulated by a 2D Finite
Volume Coastal Ocean Model during an (a) ebb tide, and (b) flood tide. Positive and
negative speeds correspond to northward and southward flows, respectively.

sites labelled sequentially from north to south, with Sites 2a and 2b identifying pods that

were deployed concurrently. Each of the low-profile frames were ballasted using three

45-kg lead feet and were constructed from solid fibreglass rods and a fibreglass grating

base (Fig. 3.4a). They were retrieved using an acoustic release and float line recovery

system.

A 600 kHz RDI Workhorse ADCP was mounted in the centre of each frame. The

ADCPs, with four beams oriented at 20◦ from the vertical (Janus configuration), recorded

two-ping averaged along-beam velocities at sampling rates between 1.49 and 1.82 Hz

(Table 3.1). The ADCP at Site 1 operated in burst mode to avoid interference with another

acoustic instrument mounted on the frame. At this site, approximately 7 minutes of data

were collected every 15 minutes. At the other sites, the measurements were acquired

continuously. The ADCPs were configured to have 0.5-m range bins with the first bin

located 2.1 m above the bottom and the uppermost bin extending beyond the surface at high

tide. For these settings (i.e., 0.5-m range bins and 2-ping ensembles), the manufacturer’s

software specifies an accuracy of σU = 9.6 cm s−1 for the horizontal speed, thus the

expected accuracy for the along-beam measurements is σvi = (
√
2 sinϑ)σU = 4.7 cm s−1.

At Site 1, a beta version of the Nortek 1 MHz Signature 1000 AD2CP (henceforth
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Figure 3.3: Detailed map of the bathymetry in Grand Passage. In the right panel, the
cross-channel (CC) ridge is highlighted and the instrument locations are represented by
the symbols. Maroon markers correspond to the ADCP deployments and the orange circle
is the location where the shear probes (SP) were deployed as part of the Nemo turbulence
system. Contours (black) are in 2 m intervals. In the left panel, the pink marker shows the
position of Environment Canada’s (EC) meteorological station.
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Figure 3.4: (a) Photograph of the bottom-mounted ADCP frame at Site 1 which contains
both the ADCP (orange, centre) and the AD2CP (black, back right). (b) The orientation
of the frame with respect to magnetic north (NM ) is shown with the frame coordinates
denoted by the green arrows. The circled numbers on the instruments correspond to the
transducer faces for the diverging beams. The principal direction of the depth-averaged
flood and ebb currents are shown by the red and blue arrows, respectively.

referred to as the AD2CP) was also mounted on the bottom pod (Fig. 3.4a) and operated

for 3.5 days before its battery died. The AD2CP has five transducers, with four beams

diverging at 25◦ from the vertical and one beam oriented vertically. The four divergent

beams recorded along-beam velocities at 1 Hz in forty 0.5-m range bins with the first bin

located 0.6 m above bottom. The vertical beam was sampled at 8 Hz in forty 12.5-cm

range bins to provide high resolution measurements of vertical velocity over the lowest

5 m of the water column. The AD2CP operated in burst mode with five minutes of data

collected every fifteen minutes.

A Nortek Aquadopp was also installed on the frame at Site 1. Its heading measurements

were used to determine the orientation of the frame (Fig. 3.4b and Fig. 3.6a) because the

compasses on both the ADCP and the AD2CP failed to calibrate properly. At the time of

deployment, the AD2CP did not have a battery calibration protocol and the ADCP would

not calibrate with its installed battery.

3.2.2 The Nemo Moored Turbulence System

Between 06 and 08 August 2013, a streamlined, instrumented underwater buoy (Fig. 3.5a)

was deployed about 40 m east of the ADCP frame at Site 1 (Fig. 3.3, orange marker). The

entire system, consisting of the buoy and its instrumentation is referred to as Nemo. The

coordinate system is aligned with the body of the buoy: +xN points forward into the
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Table 3.1: Summary of the fast-sampling RDI 600 kHz ADCP deployments in the northern
region of Grand Passage.

Site Start Date
Long. Lat. Depth Duration Sample Sampling

(deg) (deg) (m) (days) Rate (Hz) Method

1 2013-07-30 -66.3391 44.2799 28 7† 1.49 Burst
2a 2013-06-27* -66.3395 44.2778 29 11.5 1.67 Continuous
2b 2013-06-27* -66.3391 44.2761 23 11.8 1.67 Continuous
3 2012-09-04 -66.3380 44.2743 22 3 1.82 Continuous
† The ADCP was deployed for 9 days, but the last two days were omitted from analysis

due to low correlations.
* The ADCPs were deployed 7 days earlier, but shifted after 1 week. The most stable

interval was chosen for analysis.

oncoming flow, +yN is to port, and +zN is nominally upward (Fig. 3.5b, inset). A similar

system was used by Fer and Paskyabi (2014) in the calm waters of a Norwegian fjord and

by Lueck et al. (2015) in an energetic tidal channel in Scotland.

The buoy is about 4.5 m long and composed mostly of syntactic foam. Nemo had a net

buoyancy of 1334 N and was “flown”, kite-like, at a nominal height of 10 m (Fig. 3.5b).

The buoy was free to rotate about both its horizontal and vertical axes allowing it to pivot

into the oncoming flow. Due to a design error, it was necessary to add weight to the front

of the buoy and flotation to the back. This shifted the centres of mass and buoyancy so that

the net torque about the yoke axle was near zero.

Nemo carried three main instrument systems to measure the characteristics of the

turbulent flow: a Rockland Scientific MicroRider in the nose (Fig. 3.5a, #1), a Nortek

acoustic Doppler velocimeter (ADV) attached to the top (Fig. 3.5a, #2); and a downward-

looking Nortek Signature 1000 AD2CP (beta version) just aft of the yoke axle (Fig. 3.5a,

#7). A battery pack, powering both the MicroRider and the ADV, was mounted in the cavity

just aft of the ADV. The ADV electronics and pressure sensor were located immediately

forward of the lifting ring. A satellite beacon and a JFE Avantech electromagnetic current

meter were also installed. The data from the electromagnetic current meter were in general

agreement with the ADV data, but they were not used for further analysis.

The MicroRider was the primary turbulence sensor onboard Nemo. This self-contained

instrument carried a fast-response thermistor probe and four airfoil shear probes that had

the “mantle” design described by Macoun and Lueck (2004). Two probes sensed the
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Figure 3.5: (a) A photograph of the Nemo turbulence measurement system prior to
deployment. The numbers correspond to the on-board instrumentation and components:
(1) MicroRider, (2) ADV, (3) battery pack, (4) ADV pressure transducer, (5) satellite
beacon, (6) electromagnetic current meter, (7) AD2CP, (8) extra lead weight, and (9)
flotation buoys. (b) A schematic of the mooring line used to anchor Nemo. The inset in the
red box shows the coordinate system as viewed facing the MicroRider and the positions
and orientations of the shear probes.
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zN -component of velocity shear fluctuations and two sensed the yN -component (Fig. 3.5b).

Two vibration sensors with their axes of sensitivity aligned with those of the probes were

used to measure the inertial accelerations of the shear probes, so that vibration-related

contamination could be removed from the shear probe signals. The thermistor, shear

probes and the vibration sensors were all sampled at a rate of 2048 Hz.

The MicroRider also contained several other sensors that measured the motion of Nemo

at a sampling rate of 256 Hz. The mean water depth and heaving motion of the buoy were

obtained using a pressure transducer. The system’s pitch and roll were measured using a

high-accuracy two-axis inclinometer and the yaw was obtained using a magnetometer. A

three-axis rotation rate sensor and a three-axis accelerometer were also contained within

the MicroRider.

The ADV was used to obtain a measurement of the mean flow speed past Nemo. Results

from previous experiments in Grand Passage (Hay et al., 2013) indicated that high water

clarity and a lack of scatterers resulted in low echo correlation values at high sampling

rates, thus the ADV was sampled at the minimum rate of 1 Hz. The ADV was set to

use the maximum transmit power, maximum transmit pulse length (8 mm) and maximum

sampling volume (22 mm). The ADV was mounted on the buoy such that its velocity

components were aligned with the Nemo-defined coordinate system (xN ,yN ,zN ).

The downward-looking 1 MHz AD2CP was operated in bottom tracking mode with the

vertical beam sampling at 8 Hz and the diverging beams sampling at 1 Hz. The size of the

range bins was 0.5 m with the centre of the first bin located 0.1 m from the transducers.

3.3 Instrument Performance and Data Quality

3.3.1 Bottom-Mounted ADCP Frames

The bottom-pods at all four sites remained fairly stable throughout the deployments,

however, some movement did occur, particularly during strong spring tides. The analysis

interval was therefore chosen to be the longest period over which the pods were stable. The

attitude parameters (heading, pitch and roll) as measured by the RDI ADCPs are plotted in

Appendix B and the averages for the analysis intervals are summarized in Table 3.2. The

orientation of the ADCPs relative to true north (0◦) is shown in Fig. 3.6.

Ensemble averages of the correlation and backscatter amplitude of the ADCP mea-

surements were computed for each 7-minute burst (Site 1) and 5-minute interval (Sites
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Table 3.2: Summary of the attitude parameters for the ADCP deployments.
Site θH (◦) θP (◦) θR (◦)

1 202.5 ± 0.4 3.87 ± 0.05 -4.40 ± 0.10
2a 342.8 ± 0.3 -3.31 ± 0.10 -7.02 ± 0.05
2b 196.0 ± 0.2 3.80 ± 0.02 2.55 ± 0.01
3 289.5 ± 0.3 -7.88 ± 0.03 0.30 ± 0.03

Figure 3.6: Instrument orientation relative to true north (0◦). Principal flow directions of
the depth-averaged velocity, Ud, are shown in red and blue for the flood and ebb tides,
respectively. The site-dependent coordinate system (x, y) is shown in purple and the frame
coordinate system (xF , yF ) is shown in black (Appendix F). The transducer faces are
indicated by the yellow circles, and numbered according to the RD Instruments convention.
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2a, 2b, 3). The averages were used to qualitatively assess data quality. At all sites, the

mean correlations for all four beams were typically within 95% of the level expected (128

counts) for high-quality velocity estimates (Gordon, 1996), which indicates that there was

sufficient signal-to-noise ratio to generate high-fidelity ADCP data. The backscatter ampli-

tude decreased with height above bed, as expected, due to transmission losses; however,

the signal was always strong enough for high fidelity measurements. The variation of the

backscatter amplitude and correlation as a function of flow speed at 10 m above bottom is

included in Appendix B. Sporadically, there were instances of low correlations within one

or more of the beams (not shown) which is likely associated with the presence of seaweed,

or some other transitory obstruction, on the transducer face. These measurements were

flagged and removed from subsequent analysis.

The AD2CP measurements at Site 1 were also of high quality with 4% of the flow data

being rejected due to erroneous measurements (identified by the error flag generated by

Nortek’s software). However, spectra of the roll angles measured during ebb tides had a

significant peak near 0.1 Hz, possibly caused by the vibration of the instrument due to an

unstable mounting bracket. The enhanced vibrations on the ebb tide—compared to the

flood—were likely generated because, on the ebb tide, the AD2CP was in the wake of

the ADCP (Fig. 3.4a). Due to the poor data quality on the ebb tide, only the flood tide

measurements were used to estimate turbulence parameters from the AD2CP data.

3.3.2 Nemo Buoy

The average flow speed, uN , past the buoy was computed in two-minute ensembles from

the ADV data, discarding measurements with correlations below 70%. The maximum

speed on both the flood and ebb tides reached approximately 2.2 m s−1 (Fig. 3.7a). Velocity

measurements from the second range bin of the downward looking AD2CP were only 5%

less than the ADV measurements (not shown), confirming that the ADV measurement

volume was positioned outside of the boundary layer of the buoy and therefore provided

an accurate measurement of the upstream flow speed.

The bearing computed from the MicroRider magnetometer (Fig. 3.7a) indicates that the

buoy spun around quickly at the turn of each tide (approximately 10 minutes for a full 180◦

rotation). The MicroRider roll angle remained nearly constant throughout the deployment

with an average value of 6.4 ± 0.5◦ (Fig. 3.7b, θX). This uniform deviation from zero is

an artifact caused by a misalignment in the mounting of the MicroRider, confirmed by the
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Figure 3.7: Timeseries of the performance of Nemo throughout its deployment. (a) The
signed flow speed, uN , registered by the ADV with positive representing flood (northward)
flow and negative representing ebb (southward) flow. The bearing angle of the buoy as
determined from the MicroRider magnetometer is plotted in green. (b) The pitch, θY , and
roll, θX , angles from the MicroRider inclinometers. (c) MicroRider accelerometer records.
(d) The MicroRider pressure measurements (black) and the estimated blow-down distance
of the Nemo (green).
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mean roll of 0.3 ± 0.4◦ of the downward looking AD2CP . The MicroRider pitch angle, on

the other hand, was strongly correlated with flow speed, varying from ca. −4◦ during strong

flows to ca. −35◦ at slack water (Fig. 3.7b, θY ). During flows stronger than 0.7 m s−1, the

magnitude of the pitch angle was typically less than 10◦. The sense of rotation for the

right-handed coordinate system is such that a negative pitch angle corresponds to the nose

of the buoy being above the tail.

The MicroRider accelerometer signals, which are composed of the sum of inertial and

gravitational acceleration, are small in all three directions and have mean values of 0.7, 1.1

and −0.08 m s−2 for AX , AY and AZ − 9.81, respectively. These means are consistent with

the inclinometer signals. There were some short time scale fluctuations, however, these

motions did not contaminate the shear probe signals as they were removed from the shear

spectra using a cross-correlation technique (Goodman et al., 2006).

The mean water depth above the buoy was estimated from the MicroRider pressure data,

PMR (Fig. 3.7d, black line). Near slack water, abrupt pressure drops of approximately

0.5 dbar correspond to the ca. 35◦ pitching motion of the buoy with the nose (and hence the

pressure sensor) being above the tail (Fig. 3.7d). During strong flows, the buoy experienced

significant “blow-down” due to flow-induced drag. The associated vertical displacement of

the buoy, ΔzN , was estimated by first removing the dominant tidal signal using the pressure

measurements obtained at the ADCP frame, and then calculating the mean water depth

above the axle location, taking into account the pitch angle of the buoy. The resulting ΔzN

estimates (Fig. 3.7d, green line) indicate that, at maximum flow, the vertical displacement

was about 1 m, corresponding to a maximum mooring line angle of about 26◦ from the

vertical.

To avoid possible contamination of the measurements by buoy tilt, data for which the

absolute pitch, |θY |, of Nemo was greater than 10◦ were rejected. This resulted in the

removal of 15% of the measurements. However, the buoy inclination was less than 10◦ for

99% of the measurements at flow speeds greater than 0.8 m s−1.

3.4 Mean Flow

3.4.1 Methods

Depending on the sampling scheme, ensemble averages of the ADCP velocity measure-

ments were computed for each 7-minute burst (Site 1) or 5-minute interval (Sites 2a,
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2b, and 3). The along-beam velocities were transformed into earth coordinates (i.e.,

east-north-up), and a signed horizontal current speed, U , was defined as

U = ±
√

u2
E + u2

N , (3.1)

where uE and uN are the eastward and northward velocities, respectively. The sign is used

to distinguish between flood (positive) and ebb (negative) tides. The depth-averaged flow

speed, Ud, and its variance, σ2
Ud

, were computed by vertically averaging from the lowest

range bin to 95% of the total water depth. The principal direction of Ud was determined

using empirical orthogonal functions for flow speeds greater than 0.5 m s−1.

Vertical profiles of the flow speed were determined by sorting the data into 0.2 m s−1

speed bins based on a reference speed Ur measured at z = 10 m above bottom. A non-

linear least squares best fit to the law-of-the-wall (Eq. 2.12) was performed for z < 6 m

to determine u∗ and z0. The bottom drag coefficient, Cd, was then estimated from the

least-squares regression of

u2
∗ = CdU

2
1m, (3.2)

where U1m is the speed at 1 m above bottom based on the fitted profile.

Time-variability in the three-dimensional velocity field was examined by introducing a

site-specific coordinate system defined such that u was directed along the principal axis of

Ud on the flood tide (Fig. 3.6). The transverse, v, and vertical, w, velocities were such that

a right-handed coordinate system was obtained with +w opposing the direction of gravity.

3.4.2 Results

The properties of the mean flow are highly site-dependent and occasionally exhibit pro-

nounced ebb/flood asymmetry. The variability can be attributed largely to differences

in the upstream bathymetry at each site. High-resolution bathymetric data were used to

compute transects of the water depth in the principal flow direction (Fig 3.8).

A discussion of the mean flow dynamics at each site follows. The properties defined in

the previous section are illustrated in Figs. 3.9 and 3.10. The time series that are shown

span one-day intervals where the subset of data is highlighted by the yellow boxes in

Appendix B. The principal directions, speed-bin averaged velocity profiles, and bottom

drag coefficients were determined using the entire analysis interval (Table 3.1).
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Figure 3.8: (Left panels) Bathymetry transects in the principal flow directions. Flood and
ebb tides propagate to the right and left, respectively. (Right panels) Local bathymetry
near the instrument sites, where the black contour lines are in 1 m intervals about the
low-low-water depth at the ADCP site. The yellow line represents a section of the transect
path shown in the corresponding left panel.
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Site 1

At Site 1, the ADCP frame was situated toward the western side of the passage where

the mean water depth is 28 m. The recorded GPS position indicates that the ADCP was

deployed on a downward slope on the flood tide (Fig. 3.8); however, a note in the lab

book indicates that the position was logged a few minutes before the instrument frame hit

bottom. Because the vessel was drifting during deployment, it is possible that the actual

position of the ADCP was different by several tens of metres.

The depth-averaged current speed at Site 1 reaches a maximum of 2.0 m s−1 on the

flood tide, and 2.1 m s−1 on the ebb tide (Fig. 3.9a). There is little variation in the flow

direction (Fig. 3.9i) and the principal directions on the ebb and flood tides are within 1◦ of

being perfectly bidirectional (i.e., 180◦ out of phase). The depth-averaged variance, σ2
Ud

, is

almost four-fold larger on the flood tide than on the ebb (Fig. 3.9e), likely due to strong

flow passing over the complex bathymetry to the south of the site (Fig. 3.3).

The ebb/flood asymmetry in the flow is also apparent in the speed-bin averaged velocity

profiles (Fig. 3.11). On the flood tide, the logarithmic boundary layer extends beyond

z = 18 m, whereas it is limited to 5–6 m above bottom on the ebb tide. The corresponding

drag coefficients are 5.6 × 10−3 and 14.8 × 10−3 on the flood and ebb tides, respectively

(Table 6.1).

Time series of the three-dimensional velocities are illustrated in Fig. 3.10. As expected

for strong tidal flow, u is near-uniform with depth, with a maximum magnitude of approx-

imately 2.1 m s−1 near the surface (Fig. 3.10a). The magnitude of v is small throughout

the water column reaching a maximum of 0.25 m s−1 (Fig. 3.10e). On the flood tide, v is

negative near the bed and positive near the surface, indicating a slight counterclockwise

veering of the current with height above bottom; whereas, on the ebb tide, a consistent

pattern in v over all tidal cycles was not observed. The vertical velocity, w, is positive on

the flood tide and negative on the ebb, and has a typical magnitude of about 0.10 m s−1

throughout the water column (Fig. 3.10i). The direction of the vertical flow is inconsistent

with the local bathymetric gradient, indicating that the recorded location of the ADCP may

be inaccurate.

Site 2a

At Site 2a, the ADCP was situated in the centre of the passage, about 150 m northwest of

the cross-channel (CC) ridge. The bathymetry transect (Fig. 3.8) indicates that there is
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also a 2 m ridge located 90 m upstream of the site on the flood tide.

The depth-averaged current speed reaches 2.2 m s−1 on both the flood and the ebb tides

(Fig. 3.9b), and the principal directions are within 1◦ of being bidirectional (Fig. 3.9j).

The depth-averaged variance is approximately a factor of two higher on the flood tide

compared with the ebb (Fig. 3.9f), which is consistent with the asymmetry at Site 1, but of

smaller magnitude.

The speed-bin averaged velocity profiles are logarithmic to about 8 m on the ebb and

beyond 22 m on the flood (Fig. 3.11). Fits to the law-of-the-wall yield drag coefficients of

8.5 × 10−3 and 9.9 × 10−3 on the flood and ebb tides, respectively (Table 6.1).

Time series of the three-dimensional velocities reveal very strong near surface currents

with the maximum in u reaching 2.2 m s−1 (Fig. 3.10b). The transverse velocities on the

flood tide have a similar tendency as observed for v at Site 1—i.e., the current veers slightly

counterclockwise with height above bed (Fig. 3.10f). On the ebb tide, the pattern in v

is negative near the bed, positive at mid-depth and then negative again near the surface.

During some ebb tides (e.g., day 180.9), v is strongly positive near the surface. Vertical

velocities are fairly uniform throughout the water column (Fig. 3.10j). The direction of the

flow is predominantly downward on the flood tide and upward on the ebb, consistent with

the local bathymetry shown in Fig. 3.8.

Site 2b

Site 2b is situated on a relatively flat region about 60 m southwest of the CC ridge (Fig. 3.8).

There is also a prominent feature located approximately 200 m to the south of the site.

The depth-averaged current speed is slightly stronger on the ebb tide reaching a maxi-

mum of 2.4 m s−1, compared to 2.2 m s−1 the flood (Fig. 3.9c). The variability in the flow

direction is very small and the principal axes are directed to true north and true south on

the flood and ebb tides, respectively (Fig. 3.9k). The variance in the depth-averaged flow

is high on both phases of the tide, reaching 0.05 m2 s−2 (Fig. 3.9g).

Despite the ebb/flood symmetry in σ2
Ud

, the velocity profiles are shaped differently

on each phase of the tide. During the flood tide, the logarithmic region extends toward

the surface, whereas the log-layer is terminated near z = 5 − 6 m on the ebb. The

drag coefficients are 4.4 × 10−3 and 15.4 × 10−3 on the flood and ebb tides, respectively

(Table 6.1). Interestingly, on the ebb tide, the flow speed near the surface is slower than

that at mid-depth due to the entrainment of slower surface water to the northeast of the site
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(see Chapter 6).

The three-dimensional velocity measurements indicate streamwise velocities that reach

2.3 m s−1 (Fig. 3.10c), and transverse velocities that are slightly westward near the surface

and eastward at depth (Fig. 3.10g). Consistent with Sites 1 and 2a, the cross-channel

currents are more irregular on the ebb tide. As expected based on the bathymetry, the

vertical velocities are weak (Fig. 3.10k). Upwards flow is observed on the flood tide, and

downward on the ebb, consistent with the local bathymetric gradient.

Site 3

Site 3 is located about 300 m due south of the CC ridge on a flat region where the

bathymetric contours are nearly parallel with the principal flow direction. The water depth

is approximately 20 m and the bathymetry slopes downward toward the west.

The depth-averaged speed reaches a maximum of 1.5 m s−1 on the flood tide and 1.4 m s−1

on the ebb tide (Fig. 3.9c), making Site 3 the least energetic of the ADCP deployment

locations. There is very little variation in the flow direction and the principal axes are

approximately 2.5◦ from being perfectly bidirectional (Fig. 3.9l). The variance in the

depth-averaged flow is typically 0.03 m2 s−2 on the flood tide and 0.05 m2 s−2 on the ebb

(Fig. 3.9h). The increased variability on the ebb tide is generated because the flow passes

over the CC ridge, which is located upstream of the site.

The velocity profiles have the opposite asymmetry relative to the other sites. On the

ebb tide, the logarithmic layer extends beyond z = 18 m for all speed-bins except for

Ur = 1.4 m s−1, where the log-layer terminates around z = 12 m. On the flood tide, the

logarithmic layer is present only in the lowest 5-6 m, whereas there is very little shear

elsewhere in the water column. The drag coefficients are 8.0 × 10−3 and 6.7 × 10−3 on the

flood and ebb tides, respectively (Table 6.1).

The three-dimensional velocity measurements indicate streamwise velocities that reach

1.6 m s−1 (Fig. 3.10d). On the flood tide, the flow veers slightly westward toward the surface

and eastward toward the bed (Fig. 3.10h). On the ebb tide, v is typically negative throughout

the water column, however, there are occasional intervals where the flow direction changes.

The vertical velocity is low on both the flood and the ebb tides (Fig. 3.10l), reaching a

maximum magnitude of 0.05 m s−1. The slight upward flow on the flood tide and downward

on the ebb is consistent with the local bathymetric gradient.
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Figure 3.11: Speed-bin averaged velocity profiles during flood (red) and ebb (blue) at each
site. The light grey region identifies the depth range over which the dissipation rates are
calculated for the results presented in Chapter 5.

Table 3.3: Drag coefficients, Cd, at each of the ADCP sites determined using Eq. (3.2).

Site
Flood Ebb

(×10−3) (×10−3)
1 5.6 14.8
2a 8.5 9.9
2b 4.4 15.4
3 8.0 6.7
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Figure 3.12: Bottom drag coefficients at the ADCP sites. Values determined from the lines
of best fit are summarized in Table 6.1.

43



3.5 Summary

In this chapter, the measurements collected in Grand Passage were summarized. The

strong flow speeds caused three of the bottom frames to shift significantly during spring

tides, limiting the analysis intervals. However, the backscatter amplitude and correlations

indicated that the ADCP data were of good quality. The strong flows also caused a 1 m

blow-down of the Nemo moored turbulence system; however, the buoy remained fairly

level for current speeds exceeding 0.8 m s−1.

Using the ADCP data, a description of the mean flow conditions at each site were

provided. Several commonalities emerged, including:

1) The depth-averaged flow was essentially bi-directional at all sites, with little variation

in the flow direction.

2) The variance of the depth-averaged flow was site-dependent and the highest variabil-

ity was observed at Site 2b. There was significant ebb/flood asymmetry in σ2
Ud

at

Sites 1, 2a, and 3. Higher variability was observed on the ebb tide at Site 3, and on

the flood tide at Sites 1 and 2a. The enhanced variance is attributed to the presence

of bathymetric features upstream of the sites which generate macroturbulence that is

advected downstream.

3) Speed-bin averaged velocity profiles at all sites were logarithmic for z < 6 m. At

Sites 1, 2a, and 2b the log-layer extended to the surface on the flood tide, whereas,

a thick log-layer was only observed on the ebb tide at Site 3. Reversed shear (i.e.,

slower flow at the surface than at mid-depth) was observed only at Site 2b.

4) Bottom drag coefficients, Cd, were highly variable. At Sites 1 and 2b, the Cd values

on the ebb tide were 14.8 × 10−3 and 15.4 × 10−3, respectively. The corresponding

values on the flood tide were approximately a factor of three smaller. The Cd values

at Sites 2a and 3 were comparable on both phases of the tide and ranged between

6.7 × 10−3 to 9.9 × 10−3. At all sites, the Cd value was higher on the tidal phase

(ebb/flood) that was associated with a thinner log-layer.

5) One-day time series of three-dimensional currents showed that the along channel

currents were fairly uniform throughout the water column, consistent with the

speed-bin averaged profiles. At all sites, the transverse currents are typically less

than 30 cm s−1. On the flood tide, v > 0 near the surface and v < 0 near the
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bed, indicating a slight counterclockwise veering of the current with height above

bed. The same directional variation was observed on the ebb at Sites 1, 2a, and

2b, however, the transverse currents were more variable in comparison with the

flood. On the ebb tide at Site 3, v was slightly negative throughout the water column.

Vertical velocities at all sites were fairly uniform throughout the water column and

consistent with the bathymetric gradients, except at Site 1 where the GPS location

may have been inaccurate. The vertical velocities were the largest at Site 1, where

they exceeded 10 cm s−1.
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CHAPTER 4

RATE OF DISSIPATION OF TKE FROM

SHEAR PROBES AND BROADBAND

ADCPS

In this chapter1, the ability of both shear probes and ADCPs to measure turbulence in a

high Reynolds number tidal channel is assessed. Speed-bin averaged estimates of ε at

mid-depth, obtained directly using the shear probes mounted in the nose of the Nemo

turbulence system (Fig. 3.5 and Sec. 3.2.2), are compared to estimates of ε made remotely

using the ADCP and AD2CP at Site 1 (Fig. 3.4 and Sec. 3.2.1). The instruments were

deployed concurrently and separated by about 40 m (Fig. 3.1, Site 1 and Site SP) in the

cross-channel direction.

Diverging-beam ADCPs are limited in their ability to measure turbulence because they

require the assumption of statistical homogeneity across the beam spread (Section 2.2.2).

In addition, high Doppler noise places a fundamental constraint on the accuracy of the

instantaneous velocity estimates. Despite these limitations, ADCPs are often the instrument

of choice for several reasons, particularly for tidal energy resource assessments. The

ability to measure the flow remotely enables the characterization of the undisturbed flow

throughout the water column. In addition, they can be deployed for long intervals (months

to years), allowing an assessment of variability over a wide range of time scales.

Several previous studies have used ADCP data to estimate ε by implementing a variety

of methods. Using a customized ADCP with a vertical beam, Gargett (1994) implemented

1The majority of this chapter was first published in:
McMillan, J. M., A. E. Hay, R. G. Lueck, and F. Wolk, Rates of dissipation of turbulent kinetic energy
in a high Reynolds number tidal channel, J. Atmos. Oceanic Technol., 33, 817–837, 2016. c©American
Meteorological Society. Used with permission.
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a large eddy method to estimate ε from the energy containing scales. A similar approach

was recently applied to ship-board data by Greene et al. (2015). Other studies have relied

on the assumption that turbulent production and dissipation are appoximately equal in

well-mixed conditions. Thus, by applying a variance method (Lohrmann et al., 1990),

an estimate of Ph can be made, which is assumed to be comparable to ε (Rippeth et al.,

2003). Structure function approaches—discussed in more detail in Chapter 5—have been

implemented in most other studies (Wiles et al., 2006; Lorke, 2007; Whipple and Luettich,

2009; Simpson et al., 2011; Collignon and Stacey, 2013; Thomson et al., 2012; Simpson

et al., 2015; Lucas et al., 2014; Thomson, 2012).

The small size and high sampling rate of shear probes allow for a more accurate mea-

surement of the turbulent fluctuations—particularly at small scales. Previous studies have

compared ADCP and shear probe estimates of ε (Rippeth et al., 2003; Wiles et al., 2006;

Lucas et al., 2014; McMillan et al., 2015); however, the shear probes in the cited studies

were mounted on vertical profilers that can only capture the instantaneous dissipation rates

at a given depth. Vertical profiles near a deployment site can be averaged together, but

care must be taken to obtain meaningful averages due to the strong temporal and spatial

variability of the flow. Shear probe measurements obtained using a horizontal profiler

were previously compared to ADCP measurements by Lu et al. (2000); however, the

comparisons were made between estimates of Ph from the ADCP and ε from the shear

probes.

In this chapter, a direct comparison of ε estimated from the ADCP and shear probe

data is made. In doing so, the velocity and shear spectra are shown to agree well with

the theoretical forms, thus confirming that the turbulent fluctuations were accurately

measured (Moum and Rippeth, 2009). The dissipation rate is computed from the ADCP

measurements by fitting averaged along-beam velocity spectra to the theoretical forms

derived specifically for the orientation of the ADCP relative to the mean flow. This

method takes advantage of the broad inertial subrange that is present in a high Reynolds

number flow. Adaptations to the spectral method that account for both the pitch and roll

of the instrument and the aliasing present in the measured signals are also explored. The

dissipation rate is computed from the shear probe measurements by first correcting the

spectra to remove the vibrational signals caused by buoy motion. The resulting spectra

are then used to estimate ε using standard methods (Lueck, 2013). The shear probe
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measurements are also used to investigate the variability in ε on 1-minute timescales by

comparing the probability distribution of ε to the expected form. Spatial variability and

ebb/flood asymmetry in the results are discussed.

4.1 Methods

The velocity registered along the i-th beam of an ADCP is the sum of a mean velocity 〈v̂i〉
and a fluctuating velocity v̂′i. The measured fluctuations are composed of both the true

turbulent velocity v′i and an error ei associated with Doppler noise (i.e., v̂′i = v′i + ei). It is

assumed that ei has a Gaussian distribution with variance σ2
ei

and that the spectrum of ei is

white with constant spectral density Ni, given by

Ni =
σ2
ei

fN
, (4.1)

where fN is the Nyquist frequency. It is also assumed that ei and v′i are uncorrelated.

Due to the beam geometry, the along-beam velocity variances, σ2
vi

, at a given range, can

be expressed as

σ2
v1

= σ2
uI
sin2 ϑ+ σ2

wI
cos2 ϑ+ 2 〈u′

Iw
′
I〉 sin 2ϑ+ σ2

e1
, (4.2)

σ2
v2

= σ2
uI
sin2 ϑ+ σ2

wI
cos2 ϑ− 2 〈u′

Iw
′
I〉 sin 2ϑ+ σ2

e2
, (4.3)

σ2
v3

= σ2
vI
sin2 ϑ+ σ2

wI
cos2 ϑ+ 2 〈v′Iw′

I〉 sin 2ϑ+ σ2
e3
, (4.4)

σ2
v4

= σ2
vI
sin2 ϑ+ σ2

wI
cos2 ϑ− 2 〈v′Iw′

I〉 sin 2ϑ+ σ2
e4
, (4.5)

where ϑ is the beam angle with respect to the vertical (20◦), and uI , vI and wI are velocity

components in instrument coordinates (xI , yI , zI) as defined in Appendix F. Because the

ADCP at Site 1 was oriented with beams 3 and 4 nearly aligned with the along-channel (x)

direction (Fig. 3.6), Eqs. (4.4) and (4.5) can be added to yield,

σ2
v3
+ σ2

v4
= 2σ2

u sin
2 ϑ+ 2σ2

w cos2 ϑ+ σ2
e3
+ σ2

e4
, (4.6)

where the approximations σ2
vI

≈ σ2
u and σ2

wI
≈ σ2

w are used. Following Hay et al. (2013),

the velocity variances can be replaced by the spectral densities and Eqs. (2.31) and (4.6)
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can be combined to give

ŜT (k) = Cε2/3k−5/3 +NT , (4.7)

where ŜT and NT are the summed wavenumber spectral densities and Doppler noise levels,

respectively, which are determined using Taylor’s hypothesis, i.e.,

ŜT =
|U |
2π

[
Ŝ33(f) + Ŝ44(f)

]
, (4.8)

NT =
|U |
2π

(N3 +N4) , (4.9)

where Ŝii(f) is the spectral density of the measured ith beam velocity (v̂′i) and U is the

mean flow speed. The constant C in Eq. (4.7) is dependent on the beam geometry and is

given in Table 4.1 (“2 beam” approach). Rearranging Eq. (4.7) yields

ε =
[
C−1

(
ŜT −NT

)
k5/3
]3/2

. (4.10)

A “4 beam” approach was also implemented where Eqs. (4.2)–(4.5) were summed to

give
4∑

i=1

σ2
vi
= 2(σ2

u + σ2
v) sin

2 ϑ+ 4σ2
w cos2 ϑ+

4∑
i=1

σ2
ei
, (4.11)

where σ2
uI

≈ σ2
v represents the variance in the cross-stream direction. By replacing the

variances with the spectral densities, Eq. (4.7) can again be obtained with modified forms

of ŜT , NT and C as given in Table 4.1.

4.2 Results

4.2.1 Dissipation Rates from ADCP data

The along-beam frequency spectral densities, Ŝii(f), were computed for each 7 minute

burst of data (600 points) within each 0.5 m vertical bin. Hanning windowed intervals of

60 points with 50% overlap were used to give 36 equivalent degrees of freedom for each

estimate (Nuttall, 1971) and a frequency resolution of ca. 0.025 Hz. The resulting spectra

were then ensemble-averaged over three adjacent bins in the vertical (corresponding to

1.5 m). Representative frequency spectra for beam 3 velocities are illustrated in Fig. 4.1a,

where the spectra have been averaged into 0.4 m s−1 speed bins. The 95% confidence
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Ŝ
1
1
+
Ŝ
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Ŝ
ii
=

Ŝ
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Figure 4.1: Speed-bin averaged frequency and wavenumber spectra from the ADCP (beam
3, a and b) and AD2CP (beam 5, c and d) at z = 4.6 m. The speed bin width is 0.4 m s−1

with central values denoted by Uc. The vertical bars in (a) and (c) correspond to the widest
(yellow) and narrowest (red) 95% confidence intervals. The grey areas in (b) and (d)
correspond to the (2π)−1 cpm region of the inertial subrange over which the εIM values
were determined. The legend applies to all subplots.

intervals were determined using the chi-square distribution with 36 degrees of freedom,

taking into account the reduction in error by a factor of
√
ns, where ns is the total number

of spectra in the speed-bin ensembles. The widest and narrowest confidence intervals are

provided as vertical lines in Fig. 4.1a with the yellow and red colours corresponding to

speed bins with the smallest and largest ns values, respectively.

Near the 0.74 Hz Nyquist frequency (fN ), the spectra in Fig. 4.1a level out and approach

the noise floor, N3, represented by the black line. At this particular depth (z = 4.6 m) there

is evidence of aliasing for the highest flow speeds (|Uc| > 1.4 m s−1): i.e., the spectral level

remains above the noise floor as f approaches fN . At distances farther from the sea floor,

and hence lower turbulence levels, aliasing was not observed (not shown). For each depth

and beam, the noise floor was estimated by computing the average spectral level from
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f ∈ [0.5fN , fN ] for the lowest flow speeds (|Uc| < 0.2 m s−1). The noise floor was nearly

independent of beam and depth with a mean of (2.9 ± 0.2) × 10−3 m2 s−2 Hz−1 amongst

all estimates (Appendix D). Given the Nyquist frequency of 0.74 Hz, the measured noise

level corresponds to a beam velocity standard deviation of 4.7 cm s−1, which is very close

to the manufacturer-specified accuracy of 4.6 cm s−1 based on 2-ping averages and 0.5 m

range bins. By subtracting the computed noise floor from the frequency spectra and

implementing Taylor’s hypothesis, the denoised wavenumber spectra (i.e., Ŝii −Ni) can

be obtained. The resulting spectra for beam 3 velocities are provided in Fig. 4.1b as a

function of the cyclic wavenumber, k̂ = (2π)−1k. It is apparent that the inertial subrange,

where Ŝ33 ∼ k̂−5/3, is present for a narrow range of wavenumbers, confirming that the

expected spectral shape given by Eq. (4.7) was observed with the ADCP data.

From the along-beam velocity spectral densities, ŜT and NT were calculated, and the

dissipation rate was estimated from Eq. (4.10) as

εIM =
[
C−1

〈(
ŜT −NT

)
k5/3
〉

ISR

]3/2
, (4.12)

where 〈·〉ISR represents a mean over the inertial subrange, i.e., the sum divided by the

number of spectral values, and is denoted the “Integral Method” (IM). The k̂ limits of the

integration region were chosen to be the (2π)−1 cpm wide region that best conformed to

the expected spectral shape.

Speed-bin averaged vertical profiles of εIM were obtained using the “4 beam” approach

where the depth-averaged velocity, Ud, was used to sort the data (Fig. 4.2a). Estimates

of εIM with high uncertainty (black markers) were flagged based on at least one of the

following two criteria:

1) High variability of Z =
(
ŜT −NT

)
k5/3 within the inertial subrange, i.e.,

σZ > 0.1Z. (4.13)

2) Deviation of the spectral shape of ŜT − NT from the expected -5/3 slope in the

inertial subrange, i.e.,
|ζ|
5/3

> 0.2, (4.14)

where ζ is defined such that (ŜT −NT ) ∼ k−5/3+ζ .
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Figure 4.2: Dissipation rate, εIM , as a function of height above the bottom. Profiles have
been averaged into 0.4 m s−1 speed bins based on the depth-averaged speed, Ud. The thick
horizontal grey lines correspond to the nominal height of Nemo. Black markers are used to
indicate points with high uncertainty (See Fig. 4.3 for vertical profiles of the measures of
error).

Vertical profiles of the error measures in the εIM estimates are presented in Fig. 4.3. Near

the bed, during strong flows, ζ > 0.2 indicating that the aliasing generated by a low

sample rate and high turbulence levels causes the spectra to deviate from the expected

k−5/3 shape. Near the surface on the ebb tide, the measurements are contaminated by wave-

induced effects (Appendix C). Measurements at the Environment Canada meteorological

station (“EC” in Fig. 3.3) indicated that the wind speed varied between 1 and 5 m s−1,

and the direction was predominantly southerly or southwesterly. Therefore, wind waves

propagated against the southward current on the ebb, leading to wave height amplification

on the ebb tide and not on the flood. Because the wave periods were small (ca. 5-6 s peak

period) they are deep water waves and the increased variance associated with the wave

motion does not penetrate to depths greater than 10 m.

The vertical profiles of the dissipation rate (Fig. 4.2a) indicate that turbulence levels

are significantly higher on the flood tide compared with the ebb throughout the water

column. For each profile, the highest dissipation rates are found near the bed, consistent

with turbulence production in the bottom boundary layer. In Fig. 4.2b, the dissipation

rates are scaled by the theoretical turbulent production given by Eq. (2.16) using u∗ values
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Figure 4.3: Vertical profiles of the measures of error in the εIM estimates. Profiles have
been averaged into 0.4 m s−1 speed bins based on the depth-averaged speed, Ud. Grey lines
correspond to the thresholds used to identify uncertain estimates, and black markers denote
bins where at least one of the two criteria was not satisfied.

determined from fits to the law-of-the-wall (Eq. 2.12). On the flood tide, the profiles

collapse to a constant value of about 0.3 to 0.6 for 5 < z < 15 m, as expected for flow

within a constant stress layer. In contrast, the ebb tide profiles do not collapse because the

constant stress layer was very thin and not resolved by the ADCP, despite the logarithmic

layer extending to 5 m above the bed. The observation of a near bed log-layer with

non-uniform Reynolds stress has been observed both in Grand Passage (Hay et al., 2013)

and in other tidal channels (Stacey et al., 1999; Lu et al., 2000). Furthermore, using an

ADCP positioned south of the ridge (Fig. 1), Hay et al. (2013) showed that when the

log-layer was thin u2
∗ ∼ −0.4 〈u′w′〉 at z = 2.1 m, as opposed to extending beyond 15 m,

the expected result for a constant stress layer was obtained: i.e., u2
∗ ∼ −〈u′w′〉.

Dissipation rates were also estimated from the AD2CP vertical velocities, measured

directly with beam 5. Spectra for the five minute bursts (2394 points) were obtained

for each 12.5 cm vertical bin. Hanning windowed intervals of 300 points with 50%

overlap were used, corresponding to 28 equivalent degrees of freedom (Nuttall, 1971) and

a frequency resolution of 0.027 Hz. The resulting spectra were then averaged over 12

adjacent range bins to obtain a 1.5 m vertical average (as for the ADCP). Representative
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Figure 4.4: Speed-bin averaged dissipation rates from the ADCP and AD2CP at z = 3.1 m
(circles) and 4.6 m (squares) height on the flood tide. Colours indicate the mean speeds
over the 1.5 m vertical averaging intervals. The black line is the 1:1 line and the red line is
the least-squares best fit where the proportionality constant is 1.06.

frequency and wavenumber spectra are shown in panels (c) and (d) of Fig. 4.1. Because of

its higher sampling rate, the AD2CP spectra exhibit no sign of aliasing and a noise floor

is apparent at 2.6 × 10−3 m2 s−2 Hz−1 for all speed bins. Again, the inertial subrange is

clearly evident and is resolved up to k̂ ∼ 3 cpm at the highest flow speeds. The dissipation

rate was estimated from the AD2CP data using Eq. (4.12), where ŜT and C are equivalent

to Ŝ55 and α3 because the AD2CP directly measures the vertical velocity. This approach is

termed “vertical beam” in Table 4.1.

The dissipation rates estimated via the Integral Method (IM) from the ADCP (“4 beam”

approach) and the AD2CP (“vertical beam” approach) at 3.1 and 4.6 m above bottom are

compared in Fig. 4.4. The εIM values from the two instruments are comparable, and a

least-squares fit yields a proportionality constant of 1.06. This agreement indicates that

errors introduced by the low sample rate and divergent beam geometry of the ADCP are

small.

4.2.2 Dissipation Rates from Shear Probe Data

The one-minute mean dissipation rate was estimated from the shear probe measurements

by averaging the frequency spectra computed from 119 one-second (2048 points) intervals
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with 50% overlap. The frequency spectra were then converted to wavenumber spectra using

Taylor’s hypothesis with U in Eq. (2.39) equated to the average flow speed past the buoy,

|uN |, as interpolated from the two-minute ensembles of the velocity measurements from

the ADV which was situated just aft of the MicroRider. Corrections to the spectra were

made for both the spatial averaging due to the physical size of the shear probe (Macoun

and Lueck, 2004) and for the vibration of the instrument (Goodman et al., 2006). The 95%

confidence intervals were estimated using the residual based bootstrapping method in the

frequency domain with 1000 resamples (Paparoditis, 2002).

Representative shear spectra are shown in Fig. 4.5a for both a weakly-turbulent (lower

curves) and a strongly-turbulent time interval (upper curves). It is clear that the spectral

densities were nearly independent of probe number. The velocity spectra (Fig. 4.5b) were

obtained by dividing the shear spectra by (2πk̂)2 (Wolk et al., 2002). For the smaller

wavenumbers (k̂ < 30 cpm), the spectra for both low and high turbulence intensity exhibit

a well-defined inertial subrange where ψ ∼ k̂1/3 and (2πk̂)−2ψ ∼ k̂−5/3. For the weakly-

turbulent case, the dissipation range—where ψ rolls off with k̂—was observed, but only

the ISR was resolved in the highly-turbulent example because the smallest eddies were not

measured by the probes. For k̂ > 150 cpm, both spectra were dominated by the attenuation

effects of the anti-aliasing filters. The inertial subrange was much better resolved in

the shear probe data than in the ADCP data, spanning nearly two decades in Fig. 4.5b

compared to less than one decade in Fig. 4.1b.

As outlined by Lueck et al. (2013), ε can be computed from the shear spectra using

one of two methods. For dissipation rates smaller than 2 × 10−5 W kg−1, the spectrum

is integrated up to a maximum wavenumber, k̂max, to estimate the total variance using

Eq. (2.34). For higher turbulence levels—since the dissipation range is not captured—the

best proportional fit to the Nasmyth spectrum (Eq. 2.35) is obtained over the inertial

subrange, i.e., k̂ ∈ [0, k̂max]. The dissipation estimates were deemed reliable if the

following criteria were satisfied:

1) The largest ratio between the ε estimates from the four probes was 100.8, i.e.,

max(εj)
min(εj)

< 100.8 = 6.3, (4.15)

where j is the probe number, i.e., j = 1, 2, 3 or 4.
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Figure 4.5: One-minute averaged (a) shear spectra and (b) velocity spectra for both a
strongly turbulent region (upper curves) and a weakly turbulent region (lower curves). The
triangles indicate the maximum wavenumbers, k̂max, that were used in the determination
of ε for each method. The black lines represent the Nasmyth curves (Eq. 2.35) for the
corresponding dissipation rates (ε ≈ 1 × 10−4 W kg−1 for the strongly turbulent region
and ε ≈ 6× 10−6 W kg−1 for the weakly turbulent region). The error bar in the upper right
hand corner of (a) represents the mean size of the 95% confidence interval in the inertial
subrange region.
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2) The mean absolute deviation (MAD) of the spectra for all four probes was less than

0.4. This parameter, defined by Ruddick et al. (2000), is the average absolute devia-

tion between the measured spectrum and the Nasmyth spectrum (Eq. 2.35), where

the average is computed over all k̂ up to a cutoff wavenumber, k̂max. Mathematically,

the MAD value is given by

MAD =
1

nk

nk∑
i=1

∣∣∣∣∣ ψmeas(k̂i)

ψNasmyth(k̂i)
− 1

∣∣∣∣∣ , (4.16)

where nk is the number of discrete wavenumbers up to k̂max.

The time series of the four-probe-average dissipation estimates is presented in Fig. 4.6.

The tidal variation of ε is clearly evident, with the flood tide values being significantly

higher than those on the ebb (Figs. 4.6 and 4.7), which is qualitatively consistent with the

ebb/flood asymmetry of the ADCP dissipation rates. The arithmetic mean of the values

within 0.2 m s−1 speed bins are illustrated as the blue markers in Fig. 4.7. The error bars

represent the range in the mean values amongst the probes and not the standard deviation

of the raw measurements, which is clearly much larger. On the flood tide, ε is proportional

to |uN |3 for |uN | > 1 m s−1. This scaling is consistent for flow in the boundary layer where

turbulent production and dissipation are expected to be approximately in balance. The

proportionality constant was estimated to be 7.8 × 10−6 from a least-squares fit to the

mean values. A |uN |3 dependence of ε on flow speed is not apparent during the ebb tide.

4.3 Discussion

4.3.1 Inter-instrument Comparison of Dissipation Rates

The mean values of the dissipation rate at z = 10.1 m, computed from the ADCP data

using the 4-beam Integral Method, are illustrated as black squares in Fig. 4.7. These points

exhibit the same general trends as the shear probe results on both ebb and flood, but are

higher by a factor of 1.3 to 2.1 (with one exception). There are a number of possible

explanations for this systematic difference:

1) an error in the estimate of the mean velocity used in Eq. (2.39) due to the position of

the ADV and flow distortion created by the Nemo
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Figure 4.6: (a) The signed flow speed registered by the ADV (also shown in Fig. 3.7a).
(b) The average dissipation rate computed from the four shear probes over one-minute
intervals. High dissipation rates on the ebb tide are marked by the blue squares.

2) the tilt of the bottom mounted ADCP relative to the flow

3) aliasing of the ADCP spectra

4) the factor of 2 difference is real, and a consequence of the spatial separation of the

two instrument platforms

The simplest of the above possibilities is an error in the mean velocity estimate used

in the implementation of Taylor’s hypothesis. The flood tide results in Fig. 4.7a indicate

that 20% error in |uN | at the Nemo location would account for the difference in ε values.

However, such a correction would lead to misalignment of the ebb results (Fig. 4.7b).

Furthermore, the values of |uN | from the ADV differ from those computed from the

downward looking AD2CP on Nemo by 5% on average. Thus, the possibility of an error

in the estimate of mean velocity can be reasonably dismissed.

In the derivation of Eq. (4.7) it is assumed that the streamlines are orthogonal to the

vertical axis of the instrument coordinates. If instead it is assumed that the angle between

the instrument coordinates and the streamlines is non-zero and represented by β, Eq. (4.6)
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Figure 4.7: Dissipation rate as a function of flow speed on the (a) flood and (b) ebb
tides. The grey points represent the one-minute averages from all four shear probes.
The blue markers are the mean values within speed bins 0.2 m s−1 in width, and the
error bars represent the range of mean estimates from the four probes. The red line is
ε = 7.8× 10−6|u|3, which is the least-squares fit to the flood tide estimates. The square
markers correspond to the ε values computed from the ADCP data at z = 10.1 m using
the 4-beam IM (black), 2-beam IM (green), 2-beam IM with tilt correction (cyan), and LS
method (yellow).
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becomes

(
σ2
v3
+ σ2

v4

)
+Γ
(
σ2
v3
− σ2

v4

)
=

σ2
u

[
2
(
sin2 ϑ cos2 β + cos2 ϑ sin2 β

)− cos 2ϑ sin 2β tan 2β
]

+σ2
w

[
2
(
cos2 ϑ cos2 β + sin2 ϑ sin2 β

)
+ cos 2ϑ sin 2β tan 2β

]
+
(
σ2
e3
+ σ2

e4

)
+ Γ
(
σ2
e3
− σ2

e4

)
, (4.17)

where

Γ =
tan 2β

tan 2ϑ
. (4.18)

Replacing the variances with spectral densities and assuming that β is small, Eq. (4.7) can

be obtained with ŜT and NT given by

ŜT =
U

2π

[(
Ŝ33 + Ŝ44

)
+ Γ
(
Ŝ33 − Ŝ44

)]
, (4.19)

NT =
U

2π
[(N3 +N4) + Γ (N3 −N4)] , (4.20)

valid to O(β2). The constant, C, is unchanged (Table 4.1). Thus, the effect of a non-zero

β enters through a correction term applied to ŜT and NT . This term, because it involves

the product of β and the difference in spectral densities, is expected to be small.

For the Site 1 data, β ≈ 0.1 rad, as determined from the slope of the speed-bin averaged

estimates of wI versus vI . The corrected εIM values are illustrated in Fig. 4.7 by the cyan

points and are indistinguishable from the values with β = 0 (green markers).

The effect of aliasing on the dissipation rates was also considered by performing a

least-squares fit to the speed-bin averaged spectra, taking into account the folding about

the Nyquist frequency. Eq. (4.7) can be written in the form ŜT (ki) = ak∗
i +NT , where k∗

i

is a summation over M folds of the wavenumber given by

k∗
i =

[
M∑

m=0

k−5/3
m

]
, (4.21)

where

km =

⎧⎨⎩mkN + ki if m even

(m+ 1) kN − ki if m odd
, (4.22)
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kN is the Nyquist wavenumber and ki is the wavenumber in the resolved range, i.e.,

ki ∈ [0, kN ]. With the noise level, NT , known, the value of a minimizing the error in the

fit is

a =

ni∑
i=1

ŜT (ki)k
∗
i −NT

ni∑
i=1

k∗
i

ni∑
i=1

(k∗
i )

2

, (4.23)

where ni is the total number of discrete wavenumbers in the fitting region. The dissipation

rate can then be computed by

εLS =
(
aC−1

)3/2
, (4.24)

where the subscript LS denotes “least-squares”. Using a fitting region of f ∈ [0.3, 0.72] Hz,

the εLS estimates at z = 10.1 m are in good agreement with the εIM values (Fig. 4.7, red

points) with the mean percent difference for all speed bins being less than 4%. It should

also be noted that the minimum error in the fit was achieved with M = 0, thus indicating

that the variance associated with the smaller, unresolved scales does not affect the spectral

shapes at this depth. Closer to the bed, where aliasing is clearly prevalent (Fig. 4.1a), the

best fits for the highest flow speeds are acquired with M = 1 (not shown).

It is possible that the differences between the ADCP and the shear probe measurements

can be attributed to the 40 m cross-channel separation of the instruments. As was presented

in McMillan et al. (2015), there is significant east-west variability in the dissipation

rates near the deployment locations. A transect with a vertical microstructure profiler

(VMP) during strong ebb flows indicated that dissipation rates at mid-depth were about

5 × 10−6 W kg−1 near the ADCP site and 2 × 10−6 W kg−1 near the Nemo location, which is

consistent with the factor of two difference observed in Fig. 4.7. This east-west variability

on the ebb tide is also consistent with visual observations that were made during the

deployment period. Shear lines were visible at the surface originating at the northern point

of Brier Island on the ebb flow, possibly bisecting the ADCP and Nemo locations. Similar

spatial variability is expected on the flood tide.

4.3.2 Ebb/flood Asymmetry

The speed-bin averaged rates of dissipation on the flood and ebb tide are significantly

different at both the ADCP and Nemo deployment locations (Figs. 4.2, 4.6, and 4.7).

During strong flows, ε is about 10 fold higher on the flood tide than on the ebb. There

is also a well-defined linear relationship between the dissipation rate and |U |3 for flow
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speeds greater than 1 m s−1 during the flood (Fig. 4.7a). On the ebb, however, the ε values

are more scattered and the average is comparatively independent of flow speed (Fig. 4.7b).

Insight into this asymmetry can be gained from the velocity profiles obtained from the

ADCP measurements (Fig. 3.11). On the flood tide, the logarithmic layer—and arguably

the boundary layer—is thick and extends nearly all the way to the surface. Within a

boundary layer, a balance between production and dissipation rates is expected, and hence,

ε ∼ |U |3 as observed. On the other hand, the logarithmic layer is very thin on the ebb tide,

so the same assumption regarding the balance cannot be made.

The channel shape also affects the dissipation rates. On the northward flowing flood

tide, the flow passes over several bathymetric features—including the CC ridge (Fig. 3.3)—

before reaching the deployment locations. The complex bathymetry generates macro-

turbulence near the bed which then propagates upward in the water column and results in

high turbulence levels at the deployment locations. On the southward flowing ebb tide,

the flow converges due to the channel shape. The associated acceleration suppresses the

turbulence and hence results in lower dissipation rates. In addition, the bathymetry at

the north entrance (upstream on ebb) to the channel is less variable than that within the

passage to the south (upstream on flood) of the deployment locations.

The dissipation rates at the Nemo location on the ebb tide typically range between

2× 10−6 and 2 × 10−5 W kg−1 (Figs. 4.6b and 4.7b). However, there are intermittent bursts

where ε remains high for several minutes at a time. One such example occurs on all three

ebb tides as the flow accelerates from 1 to 1.2 m s−1 (Fig. 4.6, blue squares). The bearing

of the buoy, and hence, the incoming flow direction, is about 15◦ from true north at the

time, in contrast to the mean flow direction of 5◦ during the stronger flows. This indicates

that the flow becomes more turbulent if it passes over the shallow region to the NNE of the

Nemo location. Greater insight into the dependence of dissipation rate on flow direction

can be seen in Fig. 4.8, where ε is shown as a function of the buoy pitch and the colours of

the markers correspond to the bearing direction. This figure therefore indicates that the

dissipation rate is primarily related to the pitch of the buoy which appears to be loosely

correlated to the flow direction. As the incoming flow deviates from true north, turbulence

is generated by the shallow shoal, and the updrafts associated with this motion cause the

nose of the buoy to pitch upward. The indication of higher turbulence levels on the eastern

side of the passage is consistent with the VMP measurements that were made during the
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Figure 4.8: Dissipation rate on the ebb tide as a function of inclination angle, θY . The
colours of the markers correspond to the bearing of the buoy relative to true north.

deployment period (McMillan et al., 2015).

4.3.3 Intermittency in the Dissipation Rate

The scatter in the one-minute estimates of ε (grey points in Fig. 4.7) is associated with

small-scale intermittency, as demonstrated by the probability density functions (PDFs) of

ε (Fig. 4.9). These PDFs, which were computed for |uN | > 1.8 m s−1, are lognormal on

both the flood and ebb tide. The most probable values of ε differed by 20% amongst the

probes. The differences cannot be attributed to anisotropy because probes 1 and 3 measured

fluctuations in the vertical velocity, whereas probes 2 and 4 measured fluctuations in the

horizontal velocity (Fig. 3.5).

The flood/ebb asymmetry discussed in Sec. 4.3.2 is again apparent in the PDFs. The

broader probability distribution on the ebb tide (Fig. 4.9c)—indicating a higher degree of

intermittency—is likely due to the log-layer being much thinner on the ebb compared to

the flood (Fig. 3.11). On the ebb tide, the mean log-layer is about 5 m thick, however, large

scale turbulence generates time variations in the boundary layer thickness that could cause

it to periodically extend beyond 10 m. Thus, the Nemo float could have intermittently

moved in and out of the boundary layer on the ebb tide, generating a greater spread in the ε

values. On the other hand, the presence of an 18 m high log-layer on the flood tide resulted

in reduced variability in ε because the measurements were all made within the boundary

64



�

�

�

�

�

�
��

�

�

�

�

�

��
��

��
��

��
��

��
�

�
��

�

��� ��� ��� ��� ��� ���

�����
��
���

���

���

���

���

�
��

�

� � � � � � �

�

��
��

��
��

��
��

��
�

�
��

�

� �

� �

Figure 4.9: Probability density functions of the dissipation estimates from the four shear
probes for flow speeds greater than 1.8 m s−1. The distributions for the flood (a) and ebb (c)
tides were based on 1143 and 1021 one-minute estimates, respectively. The standardized
versions of (a) and (c) are shown in (b) and (d), respectively, where Y = σ−1

X (X −X),
with X and σX being the mean and standard deviation of X = log10(ε). The black curves
in the right panels are the normal distribution.
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layer. Because the ε values conform to the lognormal distribution (Fig. 4.9b), the factor

of 8 spread in the one-minute estimates for u > 1.8 m s−1 (Fig. 4.7a) is attributable to the

small-scale intermittency in the boundary layer of a high Reynolds number flow.

The intermittency in the ADCP estimates of the dissipation rate was not investigated

because the accuracy of the instantaneous velocity measurements is compromised by the

Doppler noise. Both to properly estimate the noise level and to constrain the confidence

intervals of the spectral densities, sufficient averaging of the spectra was required, allowing

for an assessment of the speed bin averaged ε values. The variability of ε at small time

scales is beyond the capability of the both the IM and LS methods presented in this chapter.

4.4 Conclusions

Speed-bin averaged rates of dissipation of TKE at mid-depth in a high flow tidal channel

were estimated from bottom-mounted ADCP measurements (Site 1) and from shear probe

measurements obtained using a horizontal profiler mounted on the Nemo turbulence system.

The two sets of ε estimates agreed to within a factor of two, but the ADCP values were

consistently higher. It was shown that the discrepancy cannot be explained by (1) errors

in the estimation of the mean speed of the flow past the shear probes, (2) bias induced

by the tilt of the ADCP frame relative to the streamlines, or (3) aliasing in the ADCP

velocity spectra due to the low sampling rate. Thus, the differences were likely caused

by the spatial separation of two instrument platforms. This argument is consistent with

the cross-channel variation in ε that was observed by McMillan et al. (2015) using VMP

measurements. Furthermore, comparisons between the estimates of ε from the standard,

divergent beam ADCP were within 6% with those made by a co-located 1 MHz AD2CP

(beta-test version) which collected velocity measurements along its vertical beam at a

sampling rate of 8 Hz for z < 5 m.

The ADCP data captured both the variation of ε with flow speed and the ebb/flood

asymmetry in the turbulence levels at mid-depth, consistent with the shear probe results.

On the flood tide, the dissipation rate at z = 10 m—the nominal height of the buoy—

varies with |U |3 for flow speeds greater than 1 m s−1, reaching a maximum value of

5 × 10−5 W kg−1 (as computed from the shear probe data) within the 1.9 m s−1 speed

bin. On the ebb tide, the convergence of the flow in the narrowing channel resulted in

lower dissipation rates with the maximum speed-bin averaged value of 9 × 10−6 W kg−1.
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The dissipation rates on the ebb tide are comparatively independent of flow speed. The

ebb/flood asymmetry was also apparent in probability density functions of ε computed

from the shear probe measurements for |U | > 1.8 m s−1. A broader distribution on the ebb

tide suggested that the dissipation rates reflected the time variations of the boundary layer

thickness generated by the large scale turbulence.

The ADCP data were used to obtain vertical profiles of ε and, hence, the ebb/flood

asymmetry in the flow throughout the water column. On the flood tide, complex bathymet-

ric upstream of the site generates macro-turbulence causing the (logarithmic) boundary

layer to extend beyond z = 18 m. Within this region, scaling the dissipation rates by

Ph = (κz)−1 u3
∗ yields vertical profiles which are independent of height, and ε/Ph ∼ 0.4.

In contrast, on the ebb tide the logarithmic layer is much thinner and the ε/Ph ratios

were much lower and dependent on height above the bed—the maximum values were

0.1 near the bed, and decayed quasi-exponentially with height. Near the surface, the ebb

tide estimates were contaminated with wave motion identified by the presence of a local

maximum between 0.1 and 0.2 Hz in the velocity spectra.

The proven ability of standard, divergent beam ADCPs to make remote estimates of

turbulence levels in a high Reynolds number flow is particularly promising for the tidal

energy industry, which relies heavily on these instruments for assessments of the resource

potential. Using the methods presented in this chapter, speed-bin averages of the dissipation

rate can be quantified, however, the low sampling frequency and high Doppler noise levels

of the ADCP limit its ability to resolve the small-scale variability in ε. On the other hand,

the small physical size and fast response times of shear probes enable the high frequency

fluctuations to be resolved. The present results using the MicroRider-Nemo combination

demonstrate that time series measurements of high resolution velocity shear are attainable

at mid-depth in high Reynolds number tidal flows. The high-sampling rate time series,

spanning several tidal cycles, give rise to ε estimates that—for |U | > 1.8 m s−1—are

lognormally distributed and exhibit a factor of 8 spread within the boundary layer.
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CHAPTER 5

SPECTRAL AND STRUCTURE

FUNCTION ESTIMATES OF

DISSIPATION RATES OF TKE USING

BROADBAND ADCPS

In the previous chapter, it was shown that the shear probe estimates of the dissipation

rate were log-normally distributed, suggesting that the intermittent nature of small scale

turbulence was accurately captured. The same conclusion could not be made from the

ADCP measurements because the implementation of the spectral method yielded only one

estimate of ε per speed bin. In this chapter1, the four-beam integral method is applied over

shorter time intervals in an attempt to estimate ε on ca. 5-minute time scales. The use

of structure functions (SF)—which were introduced in Chapter 2—is also explored as a

possible means of estimating the temporal variability in ε.

In principal, ε can be estimated from diverging-beam ADCP data using either spectral or

structure function methods. Both methods require the measurement of velocity fluctuations

in the inertial subrange (ISR) where the assumption of local isotropy holds. Spectral

methods require a high sampling rate to ensure that the ISR is captured in time, whereas

structure function (SF) methods require the flow to be isotropic over the range of spatial

scales included in the spatial differences. At high Reynolds numbers, the ISR spans several

wavenumber decades, implying that the assumption of local isotropy should hold over a

1The majority of this chapter was first published in:
McMillan, J. M., and A. E. Hay, Spectral and structure function estimates of turbulence dissipation
rates in a high-flow tidal channel using broadband ADCPs, J. Atmos. Oceanic Technol., 34, 5–20, 2017.
c©American Meteorological Society. Used with permission.
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correspondingly wide range of spatial scales. Thus, both spectral and SF methods should

be applicable in high tidal flow environments.

Second-order structure functions appear to have been first used to compute ε from

along-beam ADCP velocity measurements by Wiles et al. (2006). The method has been

implemented in several subsequent turbulence investigations using Doppler profilers

positioned in bottom-mounted configurations (Lorke, 2007; Whipple and Luettich, 2009;

Simpson et al., 2011; Collignon and Stacey, 2013; Thomson et al., 2012; Simpson et al.,

2015), on mooring lines (Lucas et al., 2014; Simpson et al., 2015), and on drifting platforms

(Thomson, 2012). The method has been shown to give ε values that are in good agreement

with those obtained using acoustic Doppler velocimeters (Mohrholz et al., 2008) and

microstructure profilers (Wiles et al., 2006; Lucas et al., 2014). Mohrholz et al. (2008)

also found the ε values obtained from the third-order structure function to be consistent

with the second-order estimates.

The application of SF methods specifically to broadband ADCP data warrants caution

as Doppler noise levels may contribute to high standard deviations in the instantaneous

velocity differences. In addition, bin sizes of O(1) m may not adequately resolve the

ISR and the assumption of isotropy may only be applicable over a few range bins. This

isotropy assumption is particularly limiting in sheared flows where anisotropy is argued to

generate large discrepancies in the ε estimates obtained along the individual beams (Wiles

et al., 2006). For similar reasons, stratified conditions also limit the range over which SF

methods can be applied because the production scale is limited by the Ozmidov scale. To

overcome these challenges, previous studies (Mohrholz et al., 2008; Whipple and Luettich,

2009; Simpson et al., 2011; Thomson, 2012; Lucas et al., 2014; Simpson et al., 2015) used

pulse-coherent ADCPs which provide high-accuracy measurements using smaller bin sizes

at the price of a reduced profiling range.

Spectral methods may be less affected by Doppler noise than structure function methods

because the mean square sum of two positively correlated random variables is larger in

amplitude than the mean square difference. Therefore, one might expect the dissipation

estimates from a spectral method to be less noisy than those from a structure function

approach. Spectral methods, however, are typically applied to point measurements of two-

or three-dimensional current velocities, and the application to ADCP data is limited by

the orientation of the diverging beams. In standard operation, the ADCPs do not directly
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measure the along-stream or cross-stream velocity fluctuations, for which the theoretical

spectral forms are known. Lorke and Wüest (2005) applied the inertial dissipation method

to both 3-beam and 4-beam ADCP data to obtain an upper limit on ε by fitting the along-

beam velocity spectra in the inertial subrange to the expected form for cross-stream

fluctuations. The method showed good agreement with microstructure measurements,

however, a pulse-coherent mode was needed to capture the low turbulence levels (ε <

10−8 W kg−1). In Chapter 4, it was shown that, at higher turbulence levels, dissipation rates

could be estimated from broadband ADCP measurements by using a spectral “integral

method” that accounted for both Doppler noise and the orientation of the ADCP relative

to the mean flow. Speed-bin averaged dissipation rates were shown to agree—to within

a factor of two—with ε values obtained using shear probes moored at mid-depth for 2.5

days.

In this chapter, the dissipation rates estimated using the spectral integral method and

structure function methods are compared. The analysis is carried out using mid-depth

measurements acquired at all four ADCP locations (Fig. 3.3). The only other known

comparison is that by Lorke (2007), who compared ε estimated from ADCP data via both

the inertial dissipation method (i.e., a spectral method) and the second-order SF method

to results from co-located, single-point measurements obtained with an acoustic Doppler

velocimeter. In contrast to the results presented here, Lorke’s data were acquired in a low

dissipation rate (ε < 10−8 W kg−1), bottom boundary layer, lacustrine environment at short

O(1) m range, using a Doppler profiler in pulse-coherent mode.

In addition to the comparisons of ε, spectral and structure function methods are used to

address the following questions:

1) Do estimates of ε obtained using structure functions explain the factor of two dis-

crepancy between the ADCP and shear probe measurements presented in Chapter 4?

2) Can intermittency in ε be assessed using broadband diverging-beam ADCPs?

3) Do the broadband Doppler noise levels estimated from the structure function and

spectral methods agree?

4) Do broadband Doppler noise levels depend on mean flow speed?
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5.1 Methods

Spatial differences in the along-beam velocity fluctuations, v̂′i, lead directly to longitudinal

structure function estimates. Recalling that v̂′i = v′i + ei, and letting D̂LL be the mean

square difference in the measured velocities, then Eqs. (2.25) and (2.30) can be combined

to yield

D̂LL(r) = air
2/3 + bi, (5.1)

where, under the assumptions of local isotropy and homogeneity of the turbulence,

ai = C2ε
2/3
i and bi = 2σ2

ei
. A least squares regression of D̂LL versus r2/3 can be used to

give

εi =

(
ai
C2

)3/2

, (5.2)

for each of the beams. The four εi estimates when averaged give εS2, i.e., the estimate of

dissipation rate from the second-order structure function method.

Similarly, Eqs. (2.25) and (2.29) can be combined to show that if the Doppler noise

is uncorrelated with v̂′i, the third-order moments of the along-beam velocity differences

D̂LLL are

D̂LLL(r) = mir, (5.3)

where mi = −4
5
εi for locally isotropic turbulence. A least squares regression of D̂LLL

versus r yields

εi = −5

4
mi, (5.4)

for each beam. Again, the four estimates of εi when averaged give εS3.

As in Chapter 4, the frequency spectra, Ŝii(f), of the along-beam fluctuations v̂′i can be

used to determine the dissipation rate using an integral method (IM). Here the “4 beam”

approach is implemented where the theoretical form of the spectra, based on Eq. (2.31), is

given by

ŜT (k) = Cε2/3k−5/3 +NT , (5.5)

where

ŜT =
|U |
2π

(
Ŝ11 + Ŝ22 + Ŝ33 + Ŝ44

)
, (5.6)

NT =
|U |
2π

(N1 +N2 +N3 +N4) , (5.7)
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and |U | is the mean flow speed. The constant C in Eq. (5.5) is

C =

(
14

3
sin2 ϑ+

16

3
cos2 ϑ

)
α1, (5.8)

where ϑ is the angle of the beams with respect to the vertical and α1 is the streamwise

Kolmogorov constant. The dissipation rate can then be expressed as

εIM =
[
C−1

〈
(ST −NT ) k

5/3
〉

ISR

]3/2
, (5.9)

where 〈·〉ISR represents an average over the inertial subrange and the IM subscript is used

to identify the method.

5.2 Results

In this chapter, the analyses are focused on the measurements at mid-depth, which was

chosen to be 10 m above bottom at all sites. A vertical averaging interval of 5 m (i.e., 9

range bins) was used (Fig. 3.11, grey region), and the depth-averaged horizontal velocity

over this interval is denoted by Ur. This depth interval was chosen because along-beam

velocity spectra (Fig. 4.1b) for |Ur| > 1 m s−1 exhibit a k−5/3 range for scales below 5 m,

thus the assumption of local isotropy—which is fundamental for both the spectral and

structure function methods—is applicable over this depth interval.

The principal flood and ebb directions based on the depth-averaged flow are shown

relative to both true north and the ADCP beam axes in Fig. 3.6. With the exception of

Site 2a, the frames were well aligned with the streamwise flow. The deviations between

the mean flow direction and the axis of the closest beam pair at Sites 3, 2b and 1 were

0.04◦, 1.3◦, and 15◦, respectively.

5.2.1 Dissipation Rates from a Second-Order SF Method

For each ensemble (7-minutes at Site 1, 5-minutes otherwise), along-beam differences in

the velocity fluctuations were computed to obtain estimates of D̂LL at z = 10 m. Because

the velocities measured in adjacent bins are not independent (Gordon, 1996), differences

were computed for all possible combinations of along-beam distance, r, ranging from

1.1 m (2 bins) to 4.3 m (9 bins) within the averaging region. This method resulted in

28 values of D̂LL and differs from the centre-differencing scheme described by Wiles
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Table 5.1: Percentage of data rejected for flows with |Ur| > 0.8 m s−1.
Site IM method SF2 method SF3 method

1 44 34 84
2a 42 21 77
2b 40 10 72
3 58 4 76

et al. (2005) and subsequently implemented by others (e.g., Wiles et al., 2006; Mohrholz

et al., 2008; Lanckriet and Puleo, 2013). It was confirmed that the centre-differencing

scheme, which would have yielded only 10 values of D̂LL, gives comparable estimates

of the dissipation rate. However, because the approach adopted here makes use of all

possible values of D̂LL at a given separation, it results in tighter confidence intervals for

the estimates of εi and σei . Using all possible values at a given separation is also consistent

with the assumption that the turbulence properties are homogeneous and isotropic.

A least-squares regression to Eq. (5.1) was performed for each ensemble and the εi

value for each beam was obtained using Eq. (5.2) with C2 = 2.0. An example is shown in

Fig. 5.2b. The averages of the four εi values are shown as purple points in Fig. 5.1. The

uncertainty, Δεi, was estimated from the 95% confidence intervals on the slope and data

were rejected if Δεi/εi > 0.6. Values were also rejected if bi < 0, which corresponds to a

negative estimate of σei . When taking the average of εi computed from all four beams, the

data rejection rate for |Ur| > 0.8m s−1 ranged from 4% to 34% (Table 5.1).

5.2.2 Dissipation Rates from a Spectral Method

For each ensemble (7-minutes at Site 1, 5-minutes otherwise), along-beam frequency

spectral densities, Ŝii(f), were computed for each vertical bin using Hanning-windowed

intervals of 20 points (approximately 11-13 s) with 50% overlap. This resulted in spectra

with a frequency resolution of approximately 0.075 Hz and up to 100 degrees of freedom

(Nuttall, 1971). Spectra were then averaged over the 4.5 m range interval centred at

z = 10 m.

For each beam, the Doppler noise floor, Ni, was estimated by computing the average

spectral density from f ∈ [0.5fN , fN ] for the lowest flow speeds (|Ur| < 0.25 m s−1). The

corresponding σei values were computed using Eq. (4.1) and the four-beam mean, σei , and

standard deviation, Δσei , at each site are summarized in Table 5.2. These values are all

within 6% of the expected accuracy of 4.66 cm s−1.
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Figure 5.1: The computed dissipation rates over three tidal cycles at each location. In all
subpanels, t = 0 coincides with the start of a flood tide and the corresponding year days
are 212.1 (Site 1), 180.0 (Sites 2a and 2b), and 249.0 (Site 3). Gaps in the data correspond
to ensembles for which the data were rejected (see Table 5.1).

Table 5.2: Summary of the computed Doppler noise levels. The IM column gives the
four-beam mean σei and standard deviation Δσei as computed from the velocity spectra at
low flow speeds. The SF2 column gives the corrected values determined via Eq. (5.18),
where the statistics are amongst all beams and all speed bins. The manufacturer-specified
accuracy is 4.66 cm s−1.

IM SF2
σei ±Δσei σ̃ei ±Δσ̃ei

Site [cm s−1] [cm s−1]
1 4.58±0.08 4.55±0.12
2a 4.66±0.04 4.64±0.11
2b 4.81±0.03 4.77±0.09
3 4.92±0.02 4.98±0.08
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Figure 5.2: Representative data at Site 2a for |Ur| = 2 m s−1 on flood (red) and ebb
(blue). The left panel shows the denoised velocity spectra with fits to Eq. (5.5) shown
by the solid lines. The right panel shows the second-order structure functions (beam
3) with fits to Eq. (5.1) and 95% confidence intervals plotted as solid and dashed lines,
respectively. The green square at r = 0 corresponds to the expected y-intercept based on
the manufacturer-specified Doppler noise level.

The dissipation rate εIM was computed by applying Eq. (5.9) over the inertial subrange

given by k ∈ [1.1, 2.1] rad m−1. The same wavenumber interval was used for all ensembles.

Examples of the computed spectra are shown in Fig. 5.2b, and time series of the εIM values

are shown in Fig. 5.1 (green points). A clear tidal modulation is apparent at all sites.

At low flow speeds, the low frequency resolution of the spectra resulted in only one

spectral value in the inertial subrange. Consequently, data for these flow speeds were not

given further consideration. Data were also rejected for ensembles for which the spectral

shape of ŜT −NT deviated from the expected -5/3 slope in the inertial subrange by more

than 20%, i.e.
3

5
|ζ| > 0.2, (5.10)

where ζ is defined such that (ŜT −NT ) ∼ k−5/3+ζ . For all sites, nearly half the data for

|Ur| > 0.8 m s−1 were rejected on the basis of spectral shape (Table 5.1).

5.2.3 Comparison of Dissipation Rates from IM and SF2 Methods

The time series of the ε values (Fig. 5.1) from the second-order structure function method

(purple points) and the spectral integral method (green points) track each other closely.
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Figure 5.3: Comparison of the dissipation rates at each site as computed from the second-
order structure function (εS2) and the integral method (εIM ). Averages within 0.2 m s−1

speed-bins are plotted in red and blue for the flood and ebb tides, respectively. The values
of the best-fit slope, a, to the speed bin averages are shown in the legend. The 1:1 line is
solid black, whereas the 1:2 and 2:1 lines are dashed.

These estimates are plotted one against the other in Fig. 5.3 (gray points). The points

corresponding to individual estimates are scattered about the 1:1 line, and are typically

within a factor of two of each other (dashed lines). Speed-bin averaged dissipation rates

were determined by averaging the ε values within 0.2 m s−1 speed-bins (Fig. 5.3, red and

blue markers). The least-squares best fit lines indicate that the εS2 values tend to be within

16% of the εIM values, with the tendency that εS2<εIM . The agreement between εIM

and εS2 at all four sites indicates that the methods are insensitive to the orientation of the

ADCP relative to the flow direction. This is somewhat surprising as the IM method was

derived under the assumption that one of the beam pairs is oriented close to the streamwise

direction (Chapter 4).
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Table 5.3: Mean X and standard deviations σX of X = log10 ε. Values are given with
reference to 1 W kg−1. The “SP” site is the location of the shear probe measurements
(Fig. 3.3.)

Site ε
Flood Ebb

X σX X σX

SP - -4.28 0.12 -5.11 0.26

1
εIM -4.16 0.15 -4.88 0.22
εS2 -4.17 0.17 -4.87 0.14

2a
εIM -3.99 0.11 -4.50 0.33
εS2 -3.96 0.13 -4.52 0.26

2b
εIM -3.98 0.12 -4.26 0.24
εS2 -4.00 0.12 -4.27 0.24

3
εIM -4.20 0.09 -4.01 0.14
εS2 -4.29 0.11 -4.03 0.12

5.2.4 Probability Density Functions of the Dissipation Rate

The probability density functions of X = log10 ε—computed for |Ur| > 0.75 max(|Ur|)—
are provided in Fig. 5.4. The values for the mean, X , and standard deviation, σX , of

the PDFs are very similar for the IM and SF2 methods at each site (Table 5.3). In a

similar comparison between the inertial dissipation method and the SF2 method, Lorke

(2007) obtained log-normal distributions of ε using 21-minute temporal averages of pulse-

coherent Doppler profiler data. The distributions for both methods had the same variance,

however the mean value was 2.5 fold greater for the SF2 method. For the Grand Passage

data, however, the mean values from the two methods are in close agreement (Table 5.3),

differing in linear space by at most 23% in one instance (Site 3, flood) and by less than 5%

in the remaining seven, with no systematic bias.

The variance, σ2
X , of the PDFs is dependent on both the site and the tidal phase (i.e.,

ebb/flood). The widest distributions occur on the ebb tide at Sites 1, 2a and 2b. At these

locations the vertical averaging region is just above the logarithmic layer on the ebb tide

(Fig. 3.11), suggesting that time variations in the boundary layer thickness lead to increased

variability in ε. The intermittency exponent µ is also larger because σ2
X = lnA+µ ln(L /r)

where A is a positive constant (Pope, 2000).

Standardized PDFs are shown in Fig. 5.5 for two speed ranges, and compared to the

log-normal distribution that is expected for a high Reynolds number flow. For each site,

tidal phase, and speed range, Y —given by Y = σ−1
X (X −X)—was computed. The values
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Figure 5.4: Histograms of dissipation rates for |Ur| > 0.75 max(|Ur|). Solid lines and
filled circles indicate the IM method, dashed lines and open circles the SF2 method. Blue
and red indicate ebb and flood, respectively. The number of ensembles n for each PDF is
indicated in the legend.
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Figure 5.5: Standardized PDFs of Y = σ−1
X (X −X) for (a) 1.4 < |Ur| < 1.8 m s−1, and

(b) 1.8 < |Ur| < 2.2 m s−1, where X = log10 ε. Solid lines and filled circles indicate the
IM method, dashed lines and open circles the SF2 method. The number of ensembles n is
indicated in the legend and the black curves are the normal distributions.

for ebb and flood at all four sites were then combined to yield better statistics. The resulting

PDFs for both the IM and SF2 methods agree well with the log-normal distributions for

both speed ranges. This further indicates that the intermittency in the dissipation rate is

detectable in high speed flows using diverging-beam ADCP data.

5.2.5 Dissipation Rates from a Third-Order SF Method

Third-order structure functions, D̂LLL, were computed using the same method and depth

range described in Section 5.2.1. The values were regressed against Eq. (5.3) to determine

εi using Eq. (5.4). The four εi values were then averaged to give εS3, and are shown as

yellow squares in Fig. 5.1. The εS3 values track the εS2 estimates reasonably well. Data

were rejected if mi > 0, which gives a negative value for εi. This criterion resulted in

72% to 84% of the εS3 estimates being rejected, indicating that, for these data, the third-

order method is much less robust, despite the form of D̂LLL—given by Eq. (5.3)—being

independent of σei .

Despite the high percentage of data rejected for the third-order method, a comparison of

εS3 and εS2 is relevant. The estimates from all four sites are shown one against the other in

Fig. 5.6. The data are scattered about the 1:1 line, with the tendency that εS3>εS2. This

bias was exhibited at all four sites. Because the theoretical form of the third-order structure

function, given by Eq. (2.29), is known exactly and D̂LLL is independent of noise, these

results validate the use of C2 = 2.0. The εS2 estimates would be 7% lower—resulting in a

larger discrepancy between εS3 and εS2—if a value of C2 = 2.1 had been used.
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Figure 5.6: Comparison of the dissipation rates at all sites as computed from the third-order
(εS3) and second-order (εS2) structure functions. Averages within 0.2 m s−1 speed-bins
were computed separately for each site and are plotted in red and blue for the flood and ebb
tides, respectively. The 1:1 line is solid black, whereas the 1:2 and 2:1 lines are dashed.

5.3 Discussion

5.3.1 Discrepancy with Shear Probe Estimates

One of the objectives of work related to this chapter was to determine whether the factor

of two discrepancy between the estimates of ε from the shear probe and ADCP data

(Chapter 4) could be attributed to the use of a spectrum-based method. The agreement

between the IM and SF2 methods in both the means (Fig. 5.3) and the PDFs (Fig. 5.4)

indicates otherwise. In addition, the third-order estimates—which are unaffected by noise

and do not involve a universal constant—were higher than εS2 (Fig. 5.6) and thus in greater

disagreement with the shear probe results. These conclusions are further evidence that the

observed differences are real and are likely explained by the 40 m spatial separation of the

instruments.

The mean, X , and standard deviation, σX , of the shear probe estimates of X = log10 ε

are included in Table 5.3 for additional comparison. The statistics are more different

between the shear probe site and nearby Site 1 than between the SF2 and IM methods

applied to the Site 1 data. However, the observation of a higher mean and lower variance

on the flood tide compared to the ebb, is consistent with both the shear probe and ADCP
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Figure 5.7: Comparisons of εi determined using the SF2 method for the upstream (εU ) and
downstream (εD) facing beams. The coloured markers and lines correpond to speed-bin
averaged values and lines of best fit on the flood (red) and ebb (blue). The legend indicates
best fit values of the slope, a, obtained by regression: i.e. εU = a εD. The solid black line
is the 1:1 line and the dashed lines show the 4:1 and 1:4 relationships.

estimates of ε. Spatial variability in ε within the passage is also apparent in the differences

between ADCP Sites 2a and 2b. The ADCPs at these sites were deployed concurrently

about 190 m apart in the streamwise direction (Fig. 3.3). On the flood tide, both X and σX

are comparable, whereas on the ebb tide, the dissipation rates are lower, but more variable,

at Site 2a.

5.3.2 Streamwise Biases in SF2 Estimates

Wiles et al. (2006) found that dissipation rates were consistently higher for the upstream-

facing beam. Dissipation estimates from the upstream- and downstream-facing beams in

the Grand Passage data are compared in Fig. 5.7. Speed-bin averaged εi estimates from

the upstream-facing beam tend to be greater than the downstream-facing beam by a factor

ranging from 1.27 to 1.71, consistent with the observation by Wiles et al. (2006). Thus,

there is a tendency for dissipation rates estimated via the SF2 method to be biased high in

the upstream-facing direction relative to the downstream facing direction. An explanation

for this result is provided below.

Consider an ADCP oriented such that beam 1 faces upstream into the flow and beam 2
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downstream, then from Eq. (2.25), DLL for each beam is given by

D11 = Duu sin
2 ϑ+Dww cos2 ϑ− 2Duw sinϑ cosϑ, (5.11)

D22 = Duu sin
2 ϑ+Dww cos2 ϑ+ 2Duw sinϑ cosϑ, (5.12)

where Duu and Dww are the second-order moments of the streamwise and vertical velocity

differences, respectively, and Duw is given by

Duw = 〈u′
0w

′
0〉+ 〈u′

rw
′
r〉 − 〈u′

rw
′
0〉 − 〈u′

0w
′
r〉 , (5.13)

where u′ and w′ are the turbulent velocities at the positions denoted by the subscripts (e.g.,

u′
0 = u′(r0)). Because the correlations at spatially-separated points are expected to be less

than the correlations at the same point, Duw can be approximated as

Duw ≈ 〈u′
0w

′
0〉+ 〈u′

rw
′
r〉 ≈ 2 〈u′w′〉 . (5.14)

Invoking the standard assumption of horizontal homogeneity of second-order moments of

the turbulence (e.g., Stacey et al., 1999), Eqs. (5.11), (5.12), and (5.14) can be combined

to give D11 − D22 ∼ −4 〈u′w′〉. Since 〈u′w′〉 < 0 within the log-layer, the upstream

facing beam is expected to yield a higher dissipation rate than the downstream facing

beam. This result is consistent with the lines of best fit shown in Fig. 5.7: high Reynolds

stresses of −〈u′w′〉 ∼ 3× 10−3 m2 s−2 are associated with the flood tides at Sites 1 and

2b, and with the ebb tide at Site 3. These high Reynolds stresses—which yield equivalent

dissipation rates of approximately 3 × 10−5 W kg−1 via Eq. (2.30)—occur when the mid-

depth location (z = 10 m) is within the logarithmic layer (Fig. 3.11).

Assuming statistical homogeneity across the beams, the average of Eqs. (5.11) and

(5.12) can be computed to eliminate the Duw terms. This demonstrates that averaging the

along-beam estimates of εi is important for achieving accurate results when implementing

the structure function methods for diverging-beam ADCPs in situations where the Reynolds

stress is significant.

5.3.3 Doppler Noise Levels

In the implementation of the IM method, the standard deviation of the Doppler noise σei

is determined for each beam from the spectral levels at high frequencies and low flow
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Figure 5.8: Normalized Doppler noise standard deviations, σNi
, as a function of flow speed

(Ur, left) and dissipation rate (εS2, right) for beam 2 at Site 2a. Averages within 0.2 m s−1

speed-bins are plotted in red and blue for the flood and ebb tides, respectively. The black
dashed line represents σNi

= 1, i.e. the expected value based on the velocity spectra at low
flow speeds.

speeds (Table 5.2). To estimate εIM via Eq. (5.9), σei is assumed to be constant—i.e.,

speed-independent. On the other hand, the SF2 method yields an estimate of σei for each 5-

to 7-min data record via σei =
√
bi/2. Scatter plots of σNi

—i.e., σei normalized by the IM

estimate for the appropriate beam—are shown in Fig. 5.8 as a function of both flow speed

(left panel) and dissipation rate (right panel). Fig. 5.8 is representative of σNi
computed

for all the beams at all ADCP locations, and not only shows that the speed-bin averages

are all below the expected value of unity, but also that the σNi
estimates decrease with

increasing flow speed and increasing dissipation rate. The 95% confidence limits on σNi

increase significantly with flow speed (not shown), and typically include unity. However,

the increased uncertainty during strong flows cannot account for the observed systematic

bias in the apparent noise levels.

The variation of the Doppler noise is the opposite of the expected trend: flow-speed

dependent decorrelation mechanisms—advection and turbulence—are expected to yield

higher Doppler noise levels at higher flow speeds (e.g., Brumley et al., 1991). In addition,

the correlations (see Appendix B) were essentially independent of flow speed and near the

value of 128, which is the expected level for high quality velocity measurements (Gordon,

1996). The backscatter amplitude (see Appendix B) did increase slightly with increasing

flow speed, however, the signal strength was nearly equal on both phases of the tide. Thus,

the variation in the amplitude does not explain the flood/ebb asymmetry in σNi
that is

apparent in Fig. 5.8 (and at other sites).
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Insight into the low values of σNi
was obtained by applying the SF2 method to synthetic

time series generated by a linear superposition of sinusoids of frequency fi and amplitude

Ai = Csf
−5/6
i , where Cs is a constant dependent on the flow speed and dissipation

rate. The phases of the frequency constituents were randomly distributed with uniform

probability between 0 and 2π. The resulting time series yielded Gaussian-distributed

velocities and spectral densities proportional to ε2/3f−5/3, as in real, locally isotropic,

homogeneous turbulence (Batchelor, 1953, p. 169). Additional noise with a Gaussian

distribution and variance σ2
vb

was added to the time series to simulate the influence of

Doppler noise. To apply the SF2 method, spatial lags, r, were computed using Taylor’s

hypothesis and the εi and σei values were determined via Eq. (5.1) for r < 6 m. The

resulting noise levels σNi
, based on 500 realizations for each specified dissipation rate, are

shown in Fig. 5.9. The σNi
values follow the same trend with dissipation rate as the ADCP

estimates, but—notably—the results from the synthetic time series are also dependent on

the maximum frequency fM included in the Fourier series. The dependence of σNi
on fM

indicates that the exclusion of the small scale motion may be influencing the value of the

SF2 y-intercept.

Exactly how truncating the Fourier series affects the DLL results is not readily obvious.

Using the same notation as Section 5.3.2, the second-order structure function defined in

Eq. (2.25) can be written as

DLL =
〈
u′2
0

〉
+
〈
u′2
r

〉− 2 〈u′
0u

′
r〉 ≈ 2

〈
u′2
0

〉− 2 〈u′
0u

′
r〉 , (5.15)

where the assumption of homogeneity has been invoked. The influence of fM on both 〈u′2
0 〉

and 〈u′
0u

′
r〉 was determined using the synthetic time series (described above) without the

addition of Gaussian noise. For a given dissipation rate εo and flow speed |U |, decreasing

fM yielded a smaller variance, whereas the covariance remained constant (Fig. 5.10).

Using values of ε0 = 10−4 W kg−1 and U = 2 m s−1 for the synthetic time series, 〈u′2
0 〉 was

about 1% smaller for fM = 2 Hz compared to fM = 16 Hz. However, the corresponding

decrease in DLL was approximately 10%. Because the variance is independent of r, this

decrease corresponds to a downward shift of the DLL versus r2/3 curve, yielding smaller bi
values, while the slopes, and hence εi, remain unaffected. This is consistent with the results

shown in Fig. 5.11, where the dissipation rates computed from the noise-free synthetic

time series are within 2% of the specified value ε0. The y-intercepts, on the other hand, are
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Figure 5.9: Normalized noise levels as a function of dissipation rate computed from the
SF method applied to ADCP data (black markers) and the synthetic time series (coloured
circles and lines). The ADCP markers represent averages amongst the four beams and
within 0.2 m s−1 speed bins. The coloured circles represent the average values from 500
realizations of the synthetic time series. The legend indicates the maximum frequency, fM ,
of the Fourier series (in Hz) and the ADCP deployment sites.

less than zero and strongly dependent on fM and ε0.

Given the maximum frequency in the time series is fM , let rm = |U |f−1
M be a represen-

tative scale of the unresolved eddies. A modified SF2 method is introduced by assuming

that the velocity fluctuations associated with an eddy of size rm scale as

u′
m ∼ (εrm)

1/3 , (5.16)

with a corresponding variance 〈u′2
m〉 = 0.5|u′

m|2 = 0.5K (εrm)
2/3, where K is a scaling

factor of order one. Writing the true variance as the sum of the resolved and unresolved

components, yields

D̂LL(r) = C2ε
2/3
i r2/3 + 2σ̃2

ei
−K(εrm)

2/3, (5.17)

where the tilde is used to distinguish the corrected Doppler noise standard deviation σ̃ei

from the value determined via Eq. (5.1).

The value of K was determined by applying the SF2 method to synthetic time series
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Figure 5.10: Effects of truncating the Fourier series on the second-order structure function
as determined using 100 realizations of synthetic time series generated with U = 2 m s−1

and ε0 = 10−4 W kg−1. (Top panel) The variance 〈u2
0〉, covariance 〈u0ur〉 and DLL terms

evaluated at r = 2 m where each term TN is normalized by its value at 16 Hz. (Bottom
panel) Computed DLL curves as a function of r.
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Figure 5.11: Average dissipation rate (εi, left) and y-intercept (bi, right) computed by
applying the SF2 method to 500 realizations of a synthetic time series generated with a
mean flow speed |U | = 2m s−1, dissipation rate ε0, and maximum frequency fM .

86



� � � � � � �

��
�
������� ���� ������ �� ��� �

�

�

�

�

�

�
�

�
�
�
�
�
�
�

�
�
�
�
�

Figure 5.12: Average y-intercept, bi, computed by applying the SF2 method to 500
realizations of a synthetic time series with mean flow speeds of 2 m s−1 (circles) and 3 m s−1

(squares). The colours correspond to the fM values given in Fig. 5.11. The solid black line
is bi = −K

(
ε0|U |f−1

M

)2/3 with K = 0.764 determined using a least-squares regression.
The inset highlights the data near the origin. The dashed black line is bi = 0.

with various |U |, ε0, and fM . Since no noise was added, then σ̃2
ei
= 0, and it is expected

that bi = −K (ε0rm)
2/3. The results from all combinations of input parameters are shown

in Fig. 5.12. It is clear that a linear relationship holds for the range of values considered.

By least squares regression, K = 0.764, and importantly, this value is independent of the

mean speed, maximum frequency, and dissipation rate.

Because of the finite ADCP pulse length, eddies smaller than twice the range bin size

cannot be resolved. Thus, an ADCP acts as a low-pass filter, having a similar effect to the

truncation of a Fourier series. Using K = 0.764 and rm = 1.06 m—i.e., the minimum

resolvable scale along the beam axis with a 0.5-m user-specified vertical cell size and 20◦

beam angle—the corrected Doppler noise levels from the ADCP data are determined via

σ̃ei =

√
σ2
ei
+

K

2
(εirm)

2/3. (5.18)

Applying this correction yields σ̃Ni
values that range between 0.96 and 1.02 for all sites

and—importantly—show no systematic trend with dissipation rate (Fig. 5.13). The average

and standard deviation of σ̃ei amongst all beams and speed bins are reported in Table 5.2.

For all sites, the values agree with the estimates determined from the IM method.
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Figure 5.13: Normalized Doppler noise standard deviations for all four sites. The plotted
values are averages amongst the four beams where the black and green markers correspond
to the uncorrected (σNi

) and corrected (σ̃Ni
) values, respectively. The marker shapes

correspond to the sites as indicated in the legend. The solid black line is the expected value
of σNi

based on the modified SF2 method and the manufacturer-specified accuracy, i.e.
σNi

=
[
1− 0.5σ−2

vi
K(εS2rm)

2/3
]1/2 with K = 0.764.

5.4 Conclusions

Broadband ADCP data from mid-depth at four locations within a high flow tidal channel

have been used to compare dissipation rates computed using spectral and structure function

methods. The results indicate that the spectral integral method (IM) and the second-order

structure function (SF2) method yield speed-bin averaged dissipation rates that agree to

within 16%, depending on the location and flow direction (ebb vs. flood) with the tendency

that εS2<εIM . The agreement between the methods appears to be independent of the

orientation of the ADCP relative to the mean flow direction.

The dissipation rate estimates from the IM and SF2 methods provide the following

answers to the questions posed in the introduction:

1) Because the εIM and εS2 estimates agree to within 16%, the factor of two discrepancy

between the ADCP and shear probe measurements found in Chapter 4 cannot be

attributed to a particular analysis method. Consequently, spatial (i.e., cross-channel)

variability in turbulence statistics remains the likely explanation for the observed
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discrepancy.

2) The dissipation rate computed from broadband ADCP measurements is log-normally

distributed as expected for high Reynolds number flows, indicating that the intermit-

tency in ε on 5-minute time scales can be captured using broadband diverging-beam

ADCPs.

3) The apparent Doppler noise levels σei computed using the traditional SF2 method

decrease with increasing dissipation rate and are lower than the values determined

from the IM method. It is shown that the low-pass filtering effect associated with

the finite ADCP pulse length (and therefore cell size) results in a O(1%) reduction

in the measured variance, which in turn shifts the D̂LL versus r2/3 curve downward,

yielding smaller σei values, while not affecting εi. A modified SF2 method—that

accounts for the unresolved variance and involves a constant factor K—yields noise

levels that are in agreement with the estimates from the IM method. The 0.764 value

of K used to correct the ADCP noise levels was determined from synthetic time

series generated by a Fourier series representation of inertial subrange turbulence.

4) The corrected SF2 noise level estimates show no dependence on flow speed or

dissipation rate. This result is consistent with the use of a constant spectral noise

level in the IM method.

The results of this work validate the use of C2 = 2.0 for the SF2 universal constant,

which is consistent with the estimate of α1 = 0.5 obtained by Sreenivasan (1995) for the

Kolmogorov constant in the streamwise velocity spectrum. Had a value of C2 = 2.1—

frequently used in previous studies—been implemented, the εS2 values would have been

7% lower and resulted in greater discrepancy with the εIM estimates. In addition, the

third-order SF—which does not involve an empirical constant—showed good agreement

with the εS2 estimates, with the tendency that εS2<εS3. The SF3 method, however, was

less robust with a rejection rate that exceeded 72% at all sites.

The results of this work indicate that the SF2 method can be more robust in comparison

to the IM method when estimating ε on 5-min time scales from broadband ADCP data in

high speed tidal flows. For these data, the SF2 method yields reliable estimates of ε for up

to 90% of the ensembles, compared with a maximum of 60% for the IM method.

Regardless of the choice of method, broadband ADCPs can be used to estimate ε

remotely, provided stratification and vertical velocity shear are both sufficiently weak. It is
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expected that these results—which specifically considered the estimation of ε on shorter

time scales corresponding to intermittency (in the statistical sense)—can be extended to

examine variability on longer time scales corresponding to tidal frequencies.
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CHAPTER 6

TEMPORAL AND SPATIAL VARIATIONS

IN THE TKE BALANCE

In this chapter, insight into the dynamics that drive the spatial and temporal variability

in ε and other turbulence parameters is obtained by estimating the dominant terms in the

turbulent kinetic energy (TKE) equation at the four ADCP locations. The TKE, production,

dissipation, and transport terms are computed throughout the water column, and the energy

balance during peak flood and ebb conditions is discussed. Spatial variability and ebb/flood

asymmetries are shown to be related to the RMS upstream bottom roughness, and temporal

variability at Site 2b is shown to be dependent on the upstream flow direction.

The governing equation for TKE in an unstratified boundary layer (Section 2.1.2) is

given by
D

Dt

(
q2

2

)
= Td + Tp + Ph − ε. (6.1)

For steady conditions over a uniform bed, it is typically assumed that the left hand side

and the transport terms (Tp and Td) are small, yielding a balance between Ph and ε.

The validity of Ph = ε in tidal flows has been investigated in several studies using a

variety of approaches and instrumentation (Lu et al., 2000; Rippeth et al., 2003; Walter

et al., 2011; Thomson et al., 2012; Korotenko et al., 2013; Talke et al., 2013). The results

from the cited studies are inconclusive and site-dependent. Lu et al. (2000) and Thomson

et al. (2012) used measurements at z = 15 and 5 m, respectively, to show that there was

significant scatter in Ph/ε, with the rates agreeing to within a factor of 5. On the other

hand, Rippeth et al. (2003) concluded that the production rate was consistently 1.5 fold

greater than the dissipation rate for z > 4 m, whereas Walter et al. (2011) found that Ph
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was consistently smaller than ε by a factor of 3 at z = 1 m. The most recent measurements

by Korotenko et al. (2013) and Talke et al. (2013), both yielded Ph/ε ratios that varied

through the water column: for strong flows, Ph/ε ranged from 5–10 near the bed and

decreased with height to unity near mid-depth.

An imbalance between Ph and ε suggests that other terms in the TKE equation are

significant. In particular, for a high Reynolds number flow in a channel with variable

bathymetry, advection in the streamwise direction is expected to be significant, and greater

than that in the lateral and vertical directions. In addition, the vertical diffusive transport,

Td, is likely non-negligible, whereas the pressure transport term, Tp—i.e., the vertical

gradient of 〈P ′w′〉 (Eq. 2.9)—is expected to be small, except near the surface where

pressure fluctuations may be correlated with upwelling motion (Stacey, 2003). Direct

numerical simulations of channel flow over smooth walls yield Tp that is an order of

magnitude smaller than both Ph and ε for z < 15ν/u∗, and Td is negligible at greater

distances from the bed (Kim et al., 1987; Alfonsi et al., 2016). These assumptions allow

Eq. (6.1) to be written as

∂

∂t

(
q2

2

)
+ U

∂

∂x

(
q2

2

)
= Td + Ph − ε. (6.2)

For steady flows it can be further assumed that the time derivative is small, yielding a

balance between advection, production, dissipation and transport.

In this chapter, the time rate of change in TKE and the terms on the right hand side of

Eq. (6.2) are computed. Relevant background information is presented in Section 6.1 and

the methods for estimating the turbulence parameters from ADCP data are outlined in

Section 6.2. The results are presented in Section 6.3. More specifically, the time variability

in the turbulence parameters is described, and averages of Td, Ph, and ε are computed for

the one-hour interval centred on peak ebb and flood conditions. In Section 6.4, the results

are compared to previous studies, and the influence of the upstream roughness and flow

direction is discussed. Concluding remarks are given in Section 6.5.

6.1 Background

The vertical variation in turbulence parameters in open channels and boundary layers has

been examined in previous studies. At high-Reynolds numbers, the turbulence structure

92



over smooth- and rough-walls is self-similar outside of the region nearest the bed (Raupach

et al., 1991). In particular, second-order turbulence statistics reduce to universal forms

when scaled by the friction velocity, u∗, and a relevant length scale. The appropriate

scaling is dependent on the height above bed and is shown schematically in Fig. 6.1.

The framework used here combines that used by Nezu and Nakagawa (1993) for open

channel flows, and by Raupach et al. (1991) for rough wall turbulent boundary layers. The

fundamental properties of each of the layers are as follows:

1) Roughness sublayer: The turbulence parameters are controlled by viscosity and

the properties of the roughness elements. The relevant velocity scale is u∗. For

a smooth wall, the corresponding length scale is ν/u∗, whereas for a rough wall,

additional length scales associated with the dimensions of the roughness elements

are required to characterize the flow. The height of the bathymetric features, h, is

referred to as the roughness height. In tidal channels with high Reynolds number

flows, h >> ν/u∗, and hence, viscous effects are negligible throughout most of

the roughness sublayer. The vertical extent of the layer is dependent on h, as well

as both the lateral dimension and the spacing between the roughness elements. A

typical range of z ≈ 2h to 5h has been observed in wind tunnel experiments with

uniform roughness elements (Raupach et al., 1991). This region is also called the

“wall region” (Nezu and Nakagawa, 1993) or “surface layer” (Tennekes and Lumley,

1972).

2) Equilibrium layer: An intermediate region where the turbulence dynamics are

neither controlled by the small roughness elements or the boundary layer thickness,

δ. Thus, the relevant scales are z and u∗. Within the equilibrium layer, the Reynolds

stress is constant, and the rates of production and dissipation are approximately

equal. Raupach et al. (1991) used measurements in wind tunnels to conclude that

the constant stress region was confined to z < 0.2δ, where δ is defined as the height

at which the Reynolds stress reduces to zero. It is expected that the thickness of the

equilibrium layer is dependent on the Reynolds number, i.e., this region is analogous

to the inertial subrange in the spectral distribution (Tennekes and Lumley, 1972).

This region is also referred to as the “intermediate region” (Nezu and Nakagawa,

1993, e.g) or “inertial sublayer” (Tennekes and Lumley, 1972).

3) Log-layer: The velocity profile is logarithmic and the Reynolds stress decreases
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Figure 6.1: Subdivision of the water column into regions referred to in the text. The
relevant velocity and length scales are given in blue and the approximate height of each
layer is based on Raupach et al. (1991).

linearly with height above bottom, reducing to zero at z = δ. The turbulence proper-

ties are not strongly influenced by the properties at the bed and the characteristic

eddies scale with δ and u∗. In boundary layer flows—where a free surface does not

exist—the “outer region” consists of the log-layer only.

4) Free surface region: The velocity profile is nearly uniform and the relevant scales

are the mean velocity, U , and the flow depth, H . Turbulence is expected to be low in

this region in the absence of breaking surface gravity waves.

6.2 Methods

The along-beam ADCP velocity measurements were used to estimate the turbulence

parameters (q2, Ph, ε, Td) throughout the water column at each of the ADCP locations. The

dissipation rate was estimated using the modified second-order structure function method

introduced in Chapter 5 (Eq. 5.17). The TKE and production terms were computed using

the variance method (see Section 6.2.1), and the vertical diffusive transport was estimated

by summing the third order moments of the along-beam velocity measurements (see

Section 6.2.2). Because these methods rely on assumptions regarding both the anisotropy

of the flow, and the statistical homogeneity of the velocity moments across the beam spread,
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they provide a first-order approximation to the turbulence quantities. Quantification of

the errors and uncertainties is limited to assessing the variability in the estimates across

multiple tidal cycles.

6.2.1 Variance Method (Reynolds Stresses, Production, and TKE)

The variance method was first introduced by Plueddemann (1987) and Lohrmann et al.

(1990), and has been implemented in many studies to estimate the Reynolds stresses and

TKE using standard diverging-beam ADCP data (e.g., Stacey et al., 1999; Lu et al., 2000;

Rippeth et al., 2003). Assuming that (1) the second-order statistical properties of the flow

are homogeneous across the beam spread, and (2) that differences in the along-beam noise

levels are small, then differences of the along-beam velocity variances (Eqs. 4.2–4.5) yield

−〈u′
Iw

′
I〉 =

σ2
v2
− σ2

v1

2 sin 2ϑ
, (6.3)

−〈v′Iw′
I〉 =

σ2
v4
− σ2

v3

2 sin 2ϑ
, (6.4)

which are the Reynolds stresses in instrument coordinates (defined in Appendix F). By

computing the vertical shear of the mean velocity components, 〈uI〉 and 〈vI〉, the total

turbulent production, Ph, can be estimated by

Ph = −〈u′
Iw

′
I〉

∂ 〈uI〉
∂z

− 〈v′Iw′
I〉

∂ 〈vI〉
∂z

. (6.5)

The sum of the along beam velocity variances (Eqs. 4.2–4.5) yields

4∑
i=1

(σ2
vi
− σ2

ei
) = 2 sin2 ϑ(σ2

uI
+ σ2

vI
) + 4 cos2 ϑσ2

wI
, (6.6)

which gives an estimate of the TKE

q2

2
=

γ2 + 1

4 sin2 ϑ

[
1 +

2γ2
tan2 ϑ

]−1
(

4∑
i=1

(σ2
vi
− σ2

ei
)

)
, (6.7)

where

γ2 =
σ2
w

σ2
u + σ2

v

, (6.8)

is a measure of the anisotropy, ranging from 0 for highly anisotropic turbulence to 0.5 for
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Figure 6.2: Coefficients Cq and CT for the estimation of (a) TKE and (b) Td as a function
of the appropriate anisotropy ratio with ϑ = 20◦. The blue markers indicate the values
used in this thesis.

fully isotropic conditions. For an ADCP with a beam angle of ϑ = 20◦, the coefficient, Cq,

defined as

Cq =
γ2 + 1

4 sin2 ϑ

[
1 +

2γ2
tan2 ϑ

]−1

, (6.9)

varies by a factor of five over the possible range of γ2 values (Fig. 6.2a), thus the TKE

estimates are sensitive to the value of γ2. Using two coupled ADCPs in a 17 m deep tidal

river, Vermeulen et al. (2011) showed that γ2 increased with distance away from the bed.

On the ebb tide, the mean values ranged from 0.15 to 0.21, whereas the corresponding

range on the flood tide was 0.2 to 0.4. A constant value of 0.2 has been used in several

studies in tidal channels (Stacey et al., 1999; Lu and Lueck, 1999; Osalusi et al., 2009).

The TKE estimates must include a correction for the Doppler noise variance, σ2
ei

,

estimated here using a spectral method. For each depth and beam, the velocity spectra

for the lowest flow speeds (|Uc| < 0.2 m s−1) are computed, and the average spectral

level, Ni, from f ∈ [0.5fN , fN ] is determined, where fN is the Nyquist frequency (see

Appendix D for details). The variance is then given by σ2
ei
= NifN .

6.2.2 Vertical Diffusive Transport

The vertical diffusive transport, Td, was defined in Eq. (2.10) as

Td = −1

2

∂Fd

∂z
, (6.10)
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where Fd = 〈w′q2〉 is the vertical diffusive flux of TKE. For energetic conditions where

the signal-to-noise ratio is high, Stacey (2003) introduced a method to estimate Td from the

third-order moments of the along-beam velocities, showing that the flux can be written as

Fd = −CT

[〈
v′31
〉
+
〈
v′32
〉
+
〈
v′33
〉
+
〈
v′34
〉]

, (6.11)

where CT is a coefficient that involves triple products of cosϑ and sinϑ. For a four-beam

ADCP with a beam angle of ϑ = 20◦, CT is given by

CT =
1 + γ3

0.6595 + 3.3191γ3
, (6.12)

where γ3 is an anisotropy factor for the third-order moments defined as

γ3 =
〈w′3〉

〈w′u′2〉+ 〈w′v′2〉 . (6.13)

Stacey (2003) used the results from the DNS simulations of Briggs et al. (1998) to suggest

that γ3 ranges between 0.5 for perfectly isotropic conditions to 1.5 for the highly anisotropic

conditions within a density interface. For ϑ = 20◦, the corresponding CT values span

a range of 1.5 (Fig. 6.2b). An upper limit for Fd can be obtained using γ3 = 0.5, and

thus CT = 0.65. The estimate of Td can then be obtained from Eq. (6.10), using a centre

differencing approach to compute the vertical derivative.

Stacey (2003) showed that the estimates of Td obtained using Eqs. (6.10) and (6.11)

agreed well with those made directly using measurements from a nearby ADV; however,

sufficient averaging was required to reduce the large uncertainties generated by high

Doppler noise levels. Using a pulse-coherent ADCP, which has lower noise levels than

a standard broadbeam ADCP, Talke et al. (2013) obtained estimates of Td that were

comparable to Ph − ε, as expected for steady flow in a boundary layer where advection is

small (Eq. 6.2).

6.3 Results

6.3.1 Time Series of TKE, Production, Dissipation, and Transport

For each 5- or 7-minute ensemble, the Reynolds stresses and Fd, Ph, and ε were computed

using the methods described in Section 6.2. One-day time series of these parameters at
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each of the sites are shown in Fig. 6.3. To allow comparison among the sites, the Reynolds

stresses were converted to frame coordinates—i.e., (xF , yF , zF )—which are identical to

instrument coordinates, except for a 90-degree rotation at Sites 1 and 2b to preserve u > 0

on the flood tide (See Fig. 3.6, Table A.1). Because the ADCPs at Sites 1, 2b, and 3 were

well-aligned with the flow direction (Fig 3.6), the along-channel and transverse Reynolds

stresses can be approximated by −〈u′
Fw

′
F 〉 and −〈v′Fw′

F 〉, respectively. At Site 2a, the

ADCP was oriented at about a 45◦ angle to the flow and thus both stress components are

oblique to the principal flow direction. Blank regions in the time series of Ph (Fig. 6.3m–p)

correspond to Ph < 0, which often arise during the turning of the tide and near the surface

when turbulence levels are low.

The corresponding TKE and its time derivative are shown in Fig. 6.4. The estimates of

TKE were obtained using Eq. (6.7) with γ2 = 0.2. The time derivative was computed using

a centre-differencing scheme. The TKE estimates do not extend to the surface because the

variances associated with Doppler noise were only realistic to within approximately 90%

of the lowest water level.

Several common patterns emerge in the time series in Figs. 6.3 and 6.4. Most notably,

the parameters track each other well and exhibit variations on tidal time scales. Significant

ebb/flood asymmetries are also apparent at all sites. Other commonalities include:

1) The estimates of Ph and ε vary by more than two orders of magnitude. The high-

est values are approximately 10−3 W kg−1 near the bed, whereas values less than

10−5 W kg−1 occur near slack water.

2) On the ebb tides at Sites 1, 2a, and 2b, the highest values of Ph are confined to a

thin region near the bed. For z > 12 m, the production of turbulence is reduced

because the velocity shear is much lower (see Fig. 3.11 for velocity profiles). The

same pattern is observed in ε at Sites 1 and 2a (on ebb), but the decrease is less

abrupt, due in part to the use of 4.5 m range intervals in SF2 method to compute ε.

3) On the flood tide at Sites 1, 2a, 2b, and ebb at Site 3, the turbulence parameters

decrease with height above bed, but remain high throughout the water column. Thick

log-layers are observed during these flow conditions (Fig. 3.11).

4) Near the bed, the dissipation rate tends to be lower than the production rate and

Fd > 0, indicating a flux of TKE away from the bed.
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5) At Sites 1, 2b, and 3, the transverse Reynolds stresses are significantly less than the

along-channel stresses.

6) The time derivative of TKE is always less than 10−5 W kg−1. This implies, that

during strong flows, when Ph and ε are high, the assumption of statistically steady

turbulence is appropriate.

Two noteworthy, site-specific features also emerge in the time series. At Site 2b,

turbulence appears to be generated near the surface on the ebb tide and transported

downward because Fd < 0 (Fig. 6.3k). The velocity profiles on the ebb tide at this site

(Fig. 3.11) have a maximum near z = 10 m, which coincides with a region of reversed

shear near the surface, thus allowing for the production of turbulence. Interestingly, this

production mechanism is essentially shut off during the strongest ebb flows on day 180.4.

This variability was observed at 10 m above the bottom in Fig. 5.1 and is present throughout

the 12 day period that was analyzed. Further discussion is presented in Sec. 6.4.3.

A similar production mechanism may be generating high Ph and ε values throughout

the water column at Site 3 on the flood tide. At this site, the log-layer only extends to 5 m

above the bed, thus—based on the results at the other sites—it would be expected that

the highest turbulence levels would be confined to a thin region near the bed. However,

near the surface, −〈u′
Fw

′
F 〉 is negative at the onset of the flood tide (Fig. 6.3k), and the

velocity profiles exhibit a region of reversed shear near the surface (Fig. 3.11), leading to

the production of turbulence.

6.3.2 Velocity, TKE, and Reynolds Stresses At Peak Flow

The time series in Fig. 6.3 show that the turbulence levels are asymmetric with respect to

the ebb/flood tides and are arguably dependent on the thickness of the log-layer (see points

2 and 3 in Section 6.3.1). To examine this behaviour in more detail, mean velocity profiles

were computed for the 60-minute interval centred on the peak flood and ebb flows (red

and blue segments in Fig. 6.3). An average over all tidal cycles was then computed and a

least-squares best fit to the law-of-the-wall (Eq. 2.12) was obtained for z < 5 m (Fig. 6.5,

left panels). The resulting u∗ and z0 values are listed in Table 6.1.

The thickness of the log-layer, δL, was estimated as the height at which the measured

profile deviated from the law-of-the-wall fit by 1%. The subscript L is used to distinguish

δL from δ, which is the height at which the Reynolds stress goes to zero. The values of δL
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ranged from 5.1 m on the ebb tide at Site 1 and the flood tide at Site 3 to 25 m on the flood

tide at Site 2a (Fig. 6.5, circular markers).

Reynolds stresses were averaged over the same intervals, and normalized using the u2
∗

values determined from nonlinear least squares best fits to the law-of-the wall (Fig. 6.5,

right panels). At all sites, the normalized streamwise Reynolds stresses are less than

unity throughout the water column, indicating that the bottom stress estimated via the

law-of-the-wall is higher than that estimated using the variance method, consistent with

previous studies in tidal channels (Lu et al., 2000; Rippeth et al., 2002). At Sites 1, 2b and

3—which were all well-aligned with the flow—the transverse Reynolds stresses are near

zero at the bed and remain negligible throughout the water column on the ebb tide. On the

flood tide, however, the transverse stresses peak above mid-depth and are comparable in

magnitude to the streamwise stresses near the surface at Sites 1 and 2b.

A constant stress region, ranging in thickness from 3–7 m, exists when the log-layer

extends beyond z = 6 m (flood at Sites 1, 2a, 2b, and ebb at Sites 2a, 2b, and 3). The

magnitude of the normalized stress ranges from 0.2 at Site 2a (ebb, solid blue line) to 0.8

at Site 3 (ebb, solid blue line). Above this region, the stress decreases toward zero at the

surface, except on the ebb tide at Site 2b where the stress goes to zero at mid-depth. On

the other hand, when the log-layer is confined to z < 6 m (ebb tide at Sites 1 and flood

tide at Site 3), the along-channel stresses have a near-linear dependence on z, indicating

that the constant stress layer is confined to the region below the first ADCP bin.

The averaged vertical profiles of TKE during peak flow conditions are dependent on the

site and tidal phase (Fig. 6.5, middle panels). The highest TKE occurs in the lowest range

bin at all locations, except on the ebb tide at Site 3, where the maximum is at z = 8 m.

The magnitude of the normalized TKE is highest (4.5) on the ebb tide at Site 3. In all

other cases, the maximum values of TKE/u2
∗ range between 0.9 and 3. Above the lowest

range bin, TKE decreases with height, remaining greater than u2
∗ throughout the water

column except on the ebb tides at Sites 1, 2a, and 2b. The TKE profiles are discussed

further in Chapter 7, in relation to the best-fit energy spectra spanning low and high

wavenumbers—i.e., including both the production and inertial subranges.

6.3.3 Turbulent Kinetic Energy Balance At Peak Flow

Near peak flood and ebb flows, the current is quasi-stationary, and the time rate of change

of TKE is small (Fig. 6.4e-h) compared to Ph and ε (Fig. 6.3m-t). The terms in the TKE
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Figure 6.5: Vertical profiles of velocity (left), TKE (middle), and Reynolds stresses (right).
Red and blue lines correspond to the flood and ebb tides, respectively. TKE and Reynolds
stresses have been normalized by u2

∗, determined from fits to the law of the wall (left panel,
black lines). The circular markers in the left panels correspond to the computed thickness
of the log-layer, δ. Shaded regions identify the standard errors in the estimates based on
the number of tidal cycles included in the average.
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Table 6.1: Friction velocity, u∗, and roughness length scale, z0, determined from nonlinear
least squares regression to the law-of-the-wall (Eq 2.12).

Site

u∗ z0
[10−2 m s−1] [10−2 m]

Flood Ebb Flood Ebb

1 9.1 16.1 0.4 4.7
2a 10.7 12.1 1.2 1.6
2b 9.0 15.0 0.2 3.9
3 9.8 7.0 1.6 0.8

equation were therefore examined using the same averaging approach described for the

velocity profiles: i.e., the data for 60-minute intervals centred on the peak flood and ebb

flows (red and blue dots in Fig. 6.3) were extracted and an average for all tidal cycles was

computed.

The resulting vertical profiles of Ph, Td, ε, and Ph/ε are shown in Fig. 6.6. For z < 5 m,

Ph/ε > 1 and reaches a maximum of 3.7 on the ebb tide at Site 2b. Near mid-depth,

Ph/ε ≈ 1, except on the ebb tide at Site 1, where Ph = 2.4 × 10−5 W kg−1 and is a factor

of two larger than ε. Near the surface, the dissipation exceeds production at all sites on

the flood tide, yielding Ph/ε < 1. The near-surface ratio on the ebb tide is much more

variable, likely due to the presence of waves during several tidal cycles (Appendix C).

The local imbalance in Ph and ε at a given height cannot be accounted for by vertical

transport of TKE from the boundary layer because, given the standard errors, the Td values

are rarely significantly different from zero (Fig. 6.6, yellow lines). This is somewhat

surprising given that Fd is consistently greater than zero near the bed (Fig. 6.3), indicating

an upward flux of TKE from the boundary layer. However, at most sites, because the

magnitude of Fd is nearly uniform, Eq. (6.10) yields Td ≈ 0 and hence there is no net

export of TKE from the boundary layer. There are three exceptions (i.e., cases for which

|Td| > 0): on the ebb tides at Sites 1, 2a, and 2b. At Site 1, Td > 0 for z < 7 m, indicating

that TKE is being imported into the near-bed layer. A layer of positive vertical transport

also occurs on the ebb tides at Sites 2a and 2b for z ranging from 5 to 10 m, although the

magnitude of Td is much smaller at Site 2a than 2b. At Site 2b, the influx of TKE arises

from both the downward flux from the surface (Fig. 6.3k, blue regions) and the upward flux

from the near bed layer (Fig. 6.3k, red regions). At Sites 2a and 2b, Td < 0 for z < 5 m,

indicating that TKE is being exported upward and out of the near-bed layer.
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Table 6.2: Depth-averaged dissipation, production, and transport terms. Values are given
in units of 10−5 W kg−1. The averages were computed from z = 3 m to ca. 90% of the
water depth.

Site

Flood Ebb

ε Ph ε Ph T d

1 7.6 8.6 2.2 4.6 1.5
2a 11.4 15.9 3.9 6.4 0.9
2b 11.3 10.6 9.4 18.8 2.1
3 5.9 6.3 9.2 7.9 -

At most sites, Ph(z) + Td(z)− ε(z) 	= 0, particularly as the bed is approached (Fig. 6.6,

black lines). Although the terms are not in balance locally, a balance in the depth-averaged

sense may exist. Due to the condition of no normal flow at the sea bed and at the surface,

the integral of the diffusive transport term is expected to approach zero. Thus, averaging

Eq. (6.2) over the water depth, H , yields

1

H

H∫
0

U
∂

∂x

(
q2

2

)
dz = Ph − ε, (6.14)

where Ph and ε are the depth-averaged rates of production and dissipation, respectively.

The vertical integrals of Ph and ε were computed from z = 3 m to 90% of the surface

(Table 6.2). On the flood tide at Sites 1, 2b, and 3, and on the ebb tide at Site 3, Ph

and ε are within 15% of each other, whereas, the depth-averaged production exceeds the

dissipation on the flood at Site 2a and on the ebb tide at Sites 1, 2a, and 2b, by up to a factor

of two, indicating that the streamwise advection term could be significant and greater than

zero (Eq. 6.14).

The depth-averaged Td was also computed for the profiles for which Td was significantly

different from zero (Table 6.2). While the T d values are smaller than Ph and ε, they are

nonzero—in contrast to the results obtained by Talke et al. (2013)—likely because, in part,

the z < 3 m region is not captured in the ADCP data.
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Figure 6.6: Balance of the terms in the TKE equation at each of the sites during maximum
flood (left panels) and ebb (middle panels) tides. The corresponding ratios of production
and dissipation are also shown (right panels). Shaded regions in the left and middle panels
identify the standard errors in the estimates based on the number of tidal cycles included
in the average.
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6.4 Discussion

6.4.1 Comparison to Previous Studies

The velocity profiles and Reynolds stresses presented in Fig. 6.5 demonstrate that the

ADCP measurements resolve the outer region (Fig. 6.1), including the log-layer, at all

sites. Because a constant stress region was not resolved on the ebb tide at Site 1 or on the

flood tide at Site 3 (Fig. 6.5c and l), it is assumed that, at these locations, the equilibrium

layer was thinner than 2.1 m, which is the height of the lowest range bin. Furthermore,

the velocity profiles do not deviate from the law-of-the-wall fits near the bed, indicating

that the roughness sublayer was also thinner than 2.1 m at all sites. This is not surprising

because the roughness height scales with h ≈ 30z0 (Raupach et al., 1991), which—using

a typical value of z0 = 0.01 m (Table 6.1)—yields h = 0.3 m. Thus, the maximum height

of the roughness sublayer, i.e., 5h, is approximately 1.5 m.

6.4.1.1 Reynolds Stresses

Previous field campaigns carried out in unstratified tidal channels using ADCPs have

not consistently revealed the presence of a constant stress layer. Instead, the Reynolds

stresses have been shown to vary linearly away from the bed (Stacey et al., 1999; Rippeth

et al., 2002; Osalusi et al., 2009), consistent with the theoretical expectation outside the

constant stress region (Nezu and Nakagawa, 1993). Other studies (e.g., Lu et al., 2000)

have obtained more complex profiles of Reynolds stress that were neither constant nor

linear. With the exception of the study by Osalusi et al. (2009), these earlier investigations

were carried out in channels where the Reynolds number was approximately half that in

Grand Passage (Fig. 1.1). Thus, it is likely that the constant stress region was not resolved,

as is argued for the ebb tide at Site 1 and the flood tide at Site 3.

For high Reynolds number flows over rough walls in wind tunnels, Raupach et al.

(1991) showed that a constant stress region was consistently resolved for z < 0.2δ. Above

this region, the stress decreased linearly toward zero at the top of the boundary layer at

z = δ. In the Grand Passage data, the Reynolds stress typically approaches zero near the

surface (Fig. 6.5), thus for δ ≈ 20 m, a constant stress region is expected to extend to 4 m,

consistent with the 3 to 4 m upper limit observed on the flood tides at Sites 1, 2a, and 2b

and ebb tides at Sites 2a and 2b. On the ebb tide at Site 3, the constant stress region extends

to approximately 7 m, possibly due to greater influence of the upstream bathymetry. This

possibility is discussed further in Section 6.4.2.
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6.4.1.2 Production, Dissipation, and Transport

In the constant stress layer—i.e., the equilibrium layer—the rates of production and

dissipation are expected to be in balance; however, this balance was not observed in the

Grand Passage data (Section 6.2.3). Instead, production exceeds dissipation near the bed

at all sites, and Ph/ε approaches unity near mid-depth. The precise height at which this

balance is observed is seemingly independent of the estimated log-layer thickness, δL.

Two previous field campaigns in tidal flows have obtained comparable results. Using

ADCP measurements in the English Channel, where the mean water depth was 17 m and

the maximum current speed was 1.5 m s−1, Korotenko et al. (2013) found that the vertical

profiles of Ph/ε were asymmetric with respect to the flood and ebb tides. On the flood,

Ph/ε > 10 at z = 1.5 m and decreased with height, with the ratio remaining larger than

unity throughout the 6 m measurement region. On the ebb tide, however, Ph/ε ≈ 2 at

z = 1.5 m and approached unity near z ≈ 4 m.

The second relevant study was carried out by Talke et al. (2013) in a shallow tidal

river with a maximum water depth of 5 m. Using measurements from an ADCP and an

ADV, they showed that production exceeded dissipation by more than a factor of two in

the lower half of the water column, above which the production was insignificant while

the dissipation remained high. This variation of ε and Ph with height is consistent with

the observations in Grand Passage, particularly on the flood tide at all sites and on the

ebb tide at Site 3 (Fig. 6.6, right panels). Furthermore, Talke et al. (2013) obtained a

depth-integrated value of Ph that exceeded that of ε, a result in agreement with all of the

Grand Passage sites, except the flood tide at Site 2b and the ebb tide at Site 3 (Table 6.2).

The diffusive transport term estimated by Talke et al. (2013) is also qualitatively consis-

tent with the observations at Sites 2a and 2b. Talke et al. (2013) obtained a negative value

for z < 0.3H and a positive value—approximately three fold smaller in magnitude—for

z > 0.45H . However, unlike the present results, Talke et al. (2013) found that the mag-

nitude of Td was comparable to Ph − ε near the bed, thus closing the local TKE balance.

Based on the Td estimates, and the vertical variation of Ph and ε, Talke et al. (2013)

suggested that excess TKE was being removed from the near bed region and transported

upward where it was subsequently dissipated.

Additional insight into the vertical structure of Ph, ε, and Td, can be gained from

DNS simulations of channel flow. Because of computing power limitations, to date,
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Figure 6.7: Turbulent kinetic energy budget in the viscous wall region of channel flow
as determined from the DNS data of Kim et al. (1987) with Reτ = 395. The wall
coordinate is defined as y+ = u∗z/ν, where z is the height above bottom. The rel-
evant terms discussed in the text are: production (Ph), dissipation (ε), and turbulent
convection, (Td). This figure is Fig. 7.18 in Pope (2000), and is available online at
https://pope.mae.cornell.edu/TurbulentFlows/popefigures/pdf/chapter7Figures.pdf (Ac-
cessed on Feb. 15, 2017).

the highest attainable Reynolds number—based on the boundary layer properties—is

Reτ = u∗δ/ν ≈ 600 (Alfonsi et al., 2016; Moser et al., 1999). In comparison, the

equivalent Reynolds number for the Grand Passage dataset is O(106). Thus, the DNS

models resolve turbulence that is significantly less energetic than in a tidal channel. Despite

this limitation, however, the simulations reveal a thin constant stress layer (Alfonsi et al.,

2016) and a region over which the production and dissipation rates are in balance (Moser

et al., 1999). Furthermore, the thickness of this equilibrium layer is shown to increase for

increasing Reτ .

Closer to the wall, but above the viscous sublayer—i.e., in the region analogous to

the roughness sublayer—production, dissipation and vertical diffusive transport vary

significantly as shown in Fig. 6.7 for a simulation with Reτ = 395 (Kim et al., 1987).

For y+ = u∗z/ν < 7, Td (i.e., turbulent convection) is positive, whereas, for y+ > 7, Td

is negative and Ph > ε. Because the ADCP measurements do not resolve a maximum

in production (Fig. 6.6, left and middle panels), the relevant region for comparison is

y+ > 10, where Ph > ε, consistent with the near bed observations in Grand Passage.
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Furthermore, for y+ > 10 the DNS simulation indicates that Td < 0, in agreement with

the observations at Sites 2a and 2b for z < 5 m. The observation that Td > 0 near the bed

at Site 1, and for z ∈ [5, 10] m at Sites 2a and 2b is not consistent with the DNS results.

These comparisons indicate that the fundamental properties of the turbulent flow in

Grand Passage are qualitatively consistent with previous studies in both natural systems

and virtual channels. Significant differences arise, especially regarding the thickness of the

constant stress layer and the height at which a balance between production and dissipation

is observed. These differences, in addition to the ebb/flood asymmetry and site-dependence

of the turbulence parameters, indicate that the streamwise advection is non-negligible and

positive (via Eq. 6.14)—a result that is not surprising for a high Reynolds number flow in

a passage with significant variability in the bottom roughness and water depth along the

flow path.

6.4.2 Dependence on Upstream Roughness

The variability in the upstream bathymetry was estimated using 2 m resolution multibeam

data. The demeaned water depths, H −H , along transects in the principal flow direction

(Fig. 3.8) are shown as a function of normalized upstream distance, xU/H0, where H0 is

the depth at the ADCP site (Figs. 6.8a,b). The roughness was quantified by first applying

a moving average filter over 40 m scales to obtain a smoothed transect, HSM , and then

computing the root-mean-square of h′ = H −HSM for xU/H0 < 20 (Figs. 6.8c,d). The

resulting h′
rms values range from 0.15 to 0.35 m (Fig. 6.9a).

At Sites 2a, 2b, and 3, the thickness of the log-layer, δL, is positively correlated with

h′
rms, i.e., the larger the upstream roughness, the thicker the boundary layer (Fig. 6.9a, filled

markers). For the range of values that were observed, the relationship between h′
rms and

δL appears to be linear; however, the y-intercept would yield a non-physical δL value for

h′
rms = 0. Other roughness metrics, weighted to account for proximity, such as

∫
h′x−1

U dxU

and
∫
h′x−1/2

U dxU , were also investigated, yielding similar trends with δL, but greater

scatter was observed (not shown). In addition, both of these integral metrics were small

for the ebb tide at Site 3, where the presence of the cross-channel (CC) ridge (Fig. 3.3)

at xU/H0 = 15 is considered to have a significant effect on the flow (Hay et al., 2013),

despite its distance far upstream.

The thickness of the log-layer is shown as a function of the drag coefficient, Cd, (refer-

enced to the velocity at z = 1 m, Section 3.4.2) in Fig. 6.9b. Although there is substantial
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scatter among the data, the overall trend is that δL decreases with increasing Cd. In Fig. 6.5,

it is also apparent that larger δL values coincide with thicker constant stress regions. Thus,

for a given mean flow speed, the presence of a thick log-layer allows the frictional force

imparted by the bed to be distributed over a larger range of depths, thus reducing the

velocity shear at the bed and lowering the value of Cd.

The effects of variable topography on turbulence in the atmospheric boundary layer

have been considered by Kaimal and Finnigan (1994). In the turbulent wake in the lee

of a topographic feature like a hill, increased vertical mixing thickens the boundary layer

and reduces the velocity shear near the bed. Consequently, within the wake of a prominent

bathymetric feature like a ridge, the bottom stress, and hence Cd, are lower than obtained

for a similar flow speed over a flat bottom.

The largest Cd values occur on the ebb tides at Sites 1 and 2b (Fig. 6.9b), which also

correspond to the greatest imbalances in Ph and ε (Table 6.2). In these instances, the

log-layer is also thin, thus the region over which significant production and dissipation

occur is below the resolvable range of the ADCP. It is likely that, in these cases with high

bottom drag, other terms in the TKE equation are significant.

6.4.3 Temporal Variability on the Ebb Tide at Site 2b

The turbulence parameters on the ebb tide at Site 2b vary with time and depth differently

than at the other sites. Near the surface, Ph and ε are high and Fd < 0 as the flow

accelerates and decelerates (Figs. 6.3k,o,s), but, the turbulence levels occasionally drop

off abruptly during peak flows (e.g., day 180.4). These “peak flow ε minima” are also

captured at z = 10 m using both the spectral and structure function approaches (Fig. 5.1,

third panel), and are present in 14 of the 23 ebb cycles that were analyzed (not shown).

Importantly, this temporal variability on the ebb tide is not present at Site 2a (Figs. 6.3j,n,r),

which was deployed concurrently about 190 m to the north of Site 2b (Fig. 3.3). Surface

waves were present at both sites during the deployment period (Appendix C), and thus the

influence of waves alone cannot explain the variability at Site 2b.

The high production and dissipation rates near the surface are driven by vertical shear

in the mean flow velocity, i.e., both speed and direction. A time series of the dissipation

rate averaged over z = 12 to 17 m is shown in Fig. 6.10 (top panel). The chosen interval

includes two ebb tides—one ebb cycle with a peak flow ε minimum (year day 180.4)

and one without (year day 179.9). Profiles of flow speed and direction are shown for the
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Figure 6.8: Demeaned water depths, H −H , and roughness metric, h′, as a function of
normalized upstream distance, xU/H0, on the flood (a, c) and ebb (b, d) tides. The colours
correspond to the sites given in the legend. The curves have been vertically offset by 10 m
in (a) and (b) and by 1 m in (c) and (d).
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Figure 6.9: Log-layer thickness, δ, as a function of (a) upstream roughness (h′
rms) and (b)

local drag coefficient, Cd. Red and blue markers correspond to flood and ebb tides for the
sites indicated in the legend. In the left panel, unfilled markers are used for Site 1 because
the exact location of the ADCP is not known, and hence h′

rms is likely not representative of
the upstream conditions.

acceleration (green), maximum flow (blue), and deceleration (red) phases of the ebb tide.

Five of the six profiles show the presence of vertical shear in the flow speed and direction

in the top 10 m of the water column. More specifically, the flow at the surface is slower

and from a direction approximately five degrees east of that at mid-depth. The solid blue

lines, on the other hand, indicate a comparatively uniform speed and direction during the

peak flow ε minimum near day 180.4.

The observed tidal variation of ε on the ebb tide at Site 2b is consistently like that

observed near day 180.4. At the onset of the ebb tide, the dissipation rate increases rapidly

due to the presence of reversed shear at the surface, then ε falls off near peak flow when

the velocity becomes uniform. As the flow decelerates, the reversed shear then redevelops

leading to an increase in ε, but, the formation of the reversed shear on the deceleration

phase is less consistently observed than on the the acceleration phase.

The reversed shear is likely caused by lateral entrainment of slower surface water just

to the northeast of Site 2b on the upstream side of the cross-channel (CC) ridge. The

direction of the flow at the surface is typically 200-205◦ from north (Fig. 6.10), however,

when the reversed shear is not present, the flow direction is 197◦. The deviation of 3-8◦

degrees significantly affects the turbulence levels in the upper water column.

Additional insight into the spatial variability of the surface flow is obtained using a
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3D simulation of the region performed with the Finite Volume Community Ocean Model

(FVCOM, Appendix E), which was validated for the Grand Passage region by O’Flaherty-

Sproul (2013). Snapshots of the simulated velocity field for two instances on an ebb tide

are shown in Fig. 6.11. The panels in the top (bottom) row correspond to an instance

when reversed shear was (was not) present at the surface in the model results. The left and

middle panels illustrate relative flow speeds near the surface (U2) and near mid-depth (U5),

respectively. The reference speed, Ur, is equivalent to U2 at the ADCP location (black

circle). The right panels show the difference between the flow at these two depths, i.e.,

|U5| − |U2|. In Fig. 6.11a, Site 2b is located very close to a region of high lateral shear.

The flow speed varies by more than 0.5 m s−1 over a cross-channel distance of O(100)

m. The position of the front varies with both time and depth. When reversed shear is

present in the velocity profile (top row), a near-surface, lateral velocity gradient is present

Site 2b (Fig. 6.11a), whereas the front at mid-depth is to the east of Site 2b (Fig. 6.11b).

A local vertical velocity gradient is therefore generated with slower flow at the surface

than at mid-depth (Fig. 6.11c). On the other hand, when the reversed shear is not present

(bottom row), the front is to the east of Site 2b, both near the surface (Fig. 6.11d) and near

mid-depth (Fig. 6.11e).

These results suggest that the variability in the turbulence levels on the ebb tide at Site 2b

arises because the position of the ADCP is near the edge of the main current. As the flow

accelerates and decelerates, the position of this lateral shear zone shifts relative to the

ADCP site and is accompanied by significant negative vertical shear in the upper half of

the water column. The position of this front at the surface will be further affected by the

wind direction. For example, on day 179.9, the winds were approximately 25 km h−1 and

south-south-easterly (Appendix C). The easterly component of the wind was pushing the

front westward, and hence, the reversed shear at Site 2b was present throughout the tidal

cycle and the peak flow ε minimum did not occur. The opposite conditions occurred on day

178.9 (not shown) when the wind was approximately 10 km h−1 and north-north-westerly.

Because the front was pushed eastward, the initial increase in ε during the accelerating

flow did not occur, and the dissipation rate remained below 5 × 10−5 W kg−1 in the top half

of the water column throughout the entire ebb tide.
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Figure 6.10: (a) Surface elevation (purple), and average dissipation rate from z = 12
to 17 m (black, grey). Ebb tides are shown in black and the flood tides are in grey. The
circular markers indicate the times of the profiles shown in the bottom two panels. Open
and closed circles correspond to dashed and solid lines, respectively. (b) Velocity profiles
at the times highlighted in the top panel. The solid lines have been shifted to the right by
1 m s−1. (c) Profiles of the flow direction at the times highlighted in the top panel.
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Figure 6.11: Snapshots of the simulated flow speed on the ebb tide computed using the
FVCOM model. The left (a,d) and middle (b,e) panels illustrate relative flow speeds
near the surface (U2) and near mid-depth (U5), respectively. The reference speed, Ur, is
equivalent to U2 at Site 2b (black circle). The red (blue) colours indicate that the flow is
moving faster (slower) that at Site 2b. The right panels show the difference in the flow
speeds at the two depths. Reversed shear at Site 2b is present for the results shown in the
top row (a-c) and absent for the results shown in the bottom row (d-f). Black arrows are
velocity vectors and grey lines are bathymetric contours in 2 m intervals.
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6.5 Conclusions

ADCP data at four locations in Grand Passage have been used to assess the TKE balance

throughout the water column during peak flood and ebb flows. Rates of production and

dissipation are shown to agree to within a factor of two throughout most of the water

column, with the tendency that Ph > ε near the bed, Ph ≈ ε at mid-depth, and Ph < ε near

the surface. This result is somewhat surprising, given that the constant stress layer—where

it is typically assumed that Ph = ε—was confined to z = 3 to 7 m. However, the vertical

variation in Ph and ε is qualitatively consistent with DNS simulations of channel flows

and the observations obtained by Talke et al. (2013) in a shallow tidal river.

The local imbalance in Ph and ε cannot be fully accounted for by the vertical diffusion

of TKE, Td, which is significantly different from zero on the ebb tide at Sites 1, 2a, and

2b. Near the bed at Sites 2a and 2b, Td < 0, indicating the export of TKE from the high

production region nearest the bed. Regions of import, i.e., Td > 0, exist for z < 7 m at

Site 1, and for z ∈ [5, 10] m at Sites 2a and 2b.

Depth averages of Ph and ε agree to within 15% in four of the eight cases (flood tide

at Sites 1, 2a, and 2b, and ebb tide at Site 3), whereas the depth-averaged production

exceeds dissipation otherwise. It is suggested that the observed imbalance is due to the

streamwise advection of TKE in these cases. While the streamwise derivative of TKE

cannot be estimated from the ADCP measurements, variations in the upstream conditions

are shown to affect the flow in two ways. First, the log-layer thickness—and hence the

vertical distribution of velocity shear and production—is positively correlated with the

RMS bottom roughness, estimated over an upstream range of 20 water depths. In addition,

minima in ε during peak ebb flows at Site 2b arise when changes in the upstream flow

direction shift the position of a lateral shear zone relative to the ADCP site.
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CHAPTER 7

TURBULENCE SPECTRA AT LARGE

SCALES: VON KÁRMÁN VERSUS

KAIMAL

In this chapter, investigation of the turbulent kinetic energy spectrum is extended into

the production range, where large eddies contribute most of the total velocity variance.

The analysis is based on the von Kármán and Kaimal semi-empirical spectra, which were

developed initially in relation to atmospheric boundary layer turbulence. The von Kármán

and Kaimal spectra are used to obtain a predicted spectral form applicable to diverging-

beam ADCP data. The modified forms are compared to the spectra observed during peak

flood and ebb conditions at Sites 2b and 3, where the instruments sampled continuously

and were well aligned with the flow direction (Fig. 3.6). The applicability of the von

Kármán and Kaimal forms is shown to depend on z because the anisotropy and length

scales vary with height above bottom.

Both the Kaimal and von Kármán spectra have been shown to describe turbulence

measurements in atmospheric boundary layer flows (e.g., Kaimal et al., 1972; Morfiadakis

et al., 1996; Petersen et al., 1998). In unstratified tidal flows, the validity of the Kaimal

form has been investigated by Walter et al. (2011) and Lien and Sanford (2000) using

measurements acquired with an ADV and an electromagnetic vorticity meter, respectively.

Both studies concluded that the semi-empirical spectra captured the general shape of the

measured spectra in the near bed region; however, the Kaimal spectra underestimated

the variance at low frequencies. In contrast, the von Kármán spectra have been shown to

overestimate the variance in the production range when compared to ADV measurements
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acquired at 5 m above the bottom in a 2 m s−1 tidal flow (Milne et al., 2013).

The ability to predict the spectral properties of large scale fluctuations is desired, specifi-

cally regarding tidal energy developments. Models used to estimate turbine performance

are often initialized by specifying the spectral densities based on theoretical curves. Both

Tidal Bladed and TurbSim—two of the most commonly used models—allow for the

spectra to be specified by either the Kaimal or von Kármán forms (Burton et al., 2011;

Jonkman, 2009). The input spectra are dependent upon appropriate length scales and

velocity variances, which—in principle—can be estimated from field measurements.

In this chapter, the derivation and properties of the longitudinal and vertical von Kármán

and Kaimal spectra are presented and discussed in Section 7.1. New values for the empirical

constants in the Kaimal spectra are proposed. In Section 7.2, modified forms are obtained

for both spectra that are applicable to diverging-beam ADCP data. In addition, a measure of

anisotropy—which affects the numerical values of the empirical constants—is introduced

and the method used to estimate the integral length scale is described. Comparisons

between the measured spectra and predicted forms are presented in Section 7.3, and the

results are discussed in Section 7.4. Conclusions are summarized in Section 7.5.

7.1 Semi-Empirical Velocity Spectra

7.1.1 von Kármán Spectra

von Kármán (1948) obtained a spectral form for isotropic turbulence. He represented

the shape of the three-dimensional spectrum by k4[1 + (k/k0)
2]−17/6: i.e., in essence an

interpolation between the k4 dependence at low frequencies and the k−5/3 dependence

at high frequencies. The cutoff wavenumber, k0, is related to the integral scale of the

turbulence, and the proportionality constant is obtained by ensuring that the integral of

the spectrum is equal to the total variance (Diedrich and Drischler, 1957). Under the

assumption of isotropy σ2 = σ2
u = σ2

w and the longitudinal integral length scale, LvK, is

twice the lateral integral length scale (Diedrich and Drischler, 1957). In frequency space,

these assumptions yield one-dimensional longitudinal and vertical spectra—i.e., Φuu and
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Figure 7.1: The semi-empirical von Kármán and Kaimal spectra. Kaimal spectra are shown
for the atmospheric coefficients (dashed lines) given by Kaimal and Finnigan (1994) and
modified coefficients based on anisotropic relationships obtained by Raupach et al. (1991)
(solid lines).

Φww, respectively—given by

fΦuu(f)

σ2
=

4f̃vK[
1 + 70.8f̃ 2

vK

]5/6 , (7.1)

fΦww(f)

σ2
=

2f̃vK

(
1 + 188.7f̃ 2

vK

)
[
1 + 70.8f̃ 2

vK

]11/6 , (7.2)

where f̃vK is a non-dimensional frequency defined as f̃vK = fLvK/|U |. As shown in

Fig. 7.1, the longitudinal and vertical spectra have similar shapes, with the maximum of

fΦww occurring at an f̃vK value that is 45% higher than the maximum of fΦuu (Table 7.1).

At high frequencies, Φww/Φuu = 4/3, which is the expected ratio in the inertial subrange.
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7.1.2 Kaimal Spectra

Using the data from the 1968 Kansas Experiment, Kaimal et al. (1972) obtained “universal”

forms for the spectra under neutral conditions that depend only on the mean velocity, the

friction velocity, and the height above ground. The spectra can be written in a general form

as

fΦuu(f)

u2∗
=

Af̃K(
1 + Bf̃K

)5/3 , (7.3)

fΦww(f)

u2∗
=

Cf̃K

1 +Df̃
5/3

K

, (7.4)

where f̃K is a non-dimensional frequency defined as f̃K = fz/|U | and A, B, C, and D are

empirical constants (Kaimal and Finnigan, 1994).

Relationships between the constants can be obtained by ensuring that the integral of the

spectrum is equal to the variance, yielding

A

B
=

2

3

σ2
u

u2∗
, (7.5)

C

D3/5
=

1

2

σ2
w

u2∗
. (7.6)

Additional equations can be obtained by requiring the spectra to reduce to the ISR form

in the high frequency limit. Also assuming that ε = (κz)−1u3
∗, i.e., a balance between

production and dissipation, yields

A3

B5
=

α3
1

(2πκ)2
, (7.7)

C

D
=

4α1

3(2πκ)2/3
, (7.8)

where κ and α1 are the von Kármán constant and the longitudinal Kolmogorov constant,

respectively. Thus, from known relationships between the velocity variances, spectra

spanning the production and inertial subranges can be predicted for a given value of u∗.

The Kaimal curves used most often in atmospheric applications have A = 102, B = 33,

C = 2.1 and D = 5.3 (Figs. 7.1b and d, dashed lines). These values can be obtained

using σu = 2.15u∗, σw = 1.24u∗, κ = 0.4 and α1 = 0.55 (Kaimal and Finnigan, 1994).
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Table 7.1: Properties of the maxima of the semi-empirical spectra.

von Kármán Kaimal* Kaimal†

f̃vK max
(
fΦii

σ2

)
f̃K max

(
fΦii

u2∗

)
f̃K max

(
fΦii

u2∗

)
Φuu 0.146 0.271 0.045 1.007 0.048 0.872
Φww 0.212 0.292 0.469 0.394 0.454 0.363
Φbb 0.205 0.288 0.411 0.402 0.399 0.370
* Kaimal and Finnigan (1994): σu = 2.15 u∗, σw = 1.24 u∗, α1 = 0.55.
† Raupach et al. (1991): σu = 2.0 u∗, σw = 1.2 u∗, α1 = 0.5.

However, using the data acquired at Site 3 on the ebb tide, Hay et al. (2013) showed

that σu = 2.0u∗ and σw = 1.2u∗, agreeing favourably with wind tunnel measurements

(Raupach et al., 1991). Using these ratios with κ = 0.4 and α1 = 0.5 yields A = 83,

B = 31, C = 2 and D = 5.6 (Figs. 7.1b and d, solid lines).

The spectral densities and frequencies corresponding to the peaks of fΦii are given by

max
(
fΦuu

u2∗

)
= 0.3257

A

B
at f̃K =

3

2B
, (7.9)

max
(
fΦww

u2∗

)
= 0.5102

C

D3/5
at f̃K =

(
3

2D

)3/5

. (7.10)

The numerical values are listed in Table 7.1. The modified constants result in 8% and 15%

decreases in the amplitude of the spectral peaks of fΦww and fΦuu, respectively, but have

little effect on the f̃K values at which the peaks occur.

The Kaimal curves in Fig. 7.1 illustrate the effect of anisotropy. At low frequencies,

the variance is dominated by horizontal fluctuations, and the maximum in fΦuu occurs at

a f̃K value that is approximately 10-fold smaller than the corresponding value for fΦww

(Table 7.1). Thus, the most energetic eddies in the flow have much larger horizontal

scales than vertical scales, as expected for turbulence within the boundary layer. For high

frequencies, the spectral densities decrease as f̃−5/3
K , as expected in the inertial subrange,

and the ratio of Φww/Φuu is CB5/3/AD, which is equal to 1.32 (i.e., 4/3) for both sets of

coefficients used in Fig. 7.1.

7.1.3 Comparison of von Kármán and Kaimal Spectra

The von Kármán and Kaimal spectra are inherently different because they are applicable

in isotropic and anisotropic conditions, respectively. Insight into the similarities and
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Figure 7.2: Comparison of von Kármán spectra (solid lines) and Kaimal spectra (dashed
lines). Kaimal spectra are based on anisotropic relationships obtained by Raupach et al.
(1991), i.e. σu = 2.0u∗, σw = 1.2u∗, and α1 = 0.5.

differences between these spectral shapes can be obtained by ensuring that the spectra

tend to the same result in the inertial subrange. Equating Eqs. (7.1) and (7.3) for large

f and using Eq. (7.5) to relate u∗ and σu, yields LvK = 2.2z for B = 31. The non-

dimensional frequencies are therefore related by f̃K = 0.45f̃vK, allowing the longitudinal

Kaimal spectrum to be plotted as a function of f̃vK (Fig. 7.2, blue dashed line). The

same procedure can be applied to the vertical velocity spectra, yielding f̃K = 2.09f̃vK for

D = 5.6 (Fig. 7.2, green dashed line). This direct comparison of the spectra reveal that the

peak of fΦii is lower and broader for the Kaimal spectra than for the von Kármán spectra.

7.2 Methods

7.2.1 A Measure of Anisotropy

A direct measure of anisotropy would require independent estimates of σ2
u, σ2

v , and σ2
w,

which cannot be obtained using data from a 4-beam, Janus configuration ADCP. How-

ever, combining the equations for the beam velocity variances—Eqs. (4.2) to (4.5)—and

assuming statistical homogeneity across the spread of the beams, yields

σ2
uI

− σ2
vI

=

(
σ2
v1
− σ2

e1

)
+
(
σ2
v2
− σ2

e2

)− (σ2
v3
− σ2

e3

)− (σ2
v4
− σ2

e4

)
2 sin2 ϑ

, (7.11)
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where uI and vI are the horizontal velocity components in instrument coordinates (Ap-

pendix F), and σ2
vi

and σ2
ei

are the variances of the along-beam velocities and the Doppler

noise, respectively. For an instrument that is well-aligned with the flow, σ2
uI

− σ2
vI

is ex-

pected to equal zero in isotropic conditions with the magnitude of the difference increasing

as the anisotropy of the turbulence increases.

7.2.2 Pairwise-Summed Beam Velocity Spectra

For instrument beam-pairs aligned with the flow direction, the summed beam velocity

spectra can be related to the longitudinal and transverse spectra. The spectral representation

of Eq. (4.6) for the streamwise beam pair, i.e., denoted by beams i and j, is

Ŝii + Ŝjj = 2Suu sin
2 ϑ+ 2Sww cos2 ϑ+Ni +Nj, (7.12)

where, as before, the Reynolds stress has been eliminated by assuming statistical homo-

geneity across the beam spread. A denoised mean velocity spectrum, Sbb, can then be

defined as

Sbb ≡ 1

2

(
Ŝii −Ni + Ŝjj −Nj

)
, (7.13)

yielding

Sbb = Suu sin
2 ϑ+ Sww cos2 ϑ. (7.14)

The predicted form of Sbb, i.e., Φbb, for ϑ = 20◦ is illustrated in Fig. 7.1 (red lines) for both

the von Kármán and Kaimal representations. The coordinates of the maxima of fΦbb are

given in Table 7.1. The dominance of cos2 ϑ over sin2 ϑ yields Φbb spectra that are closer

to Φww than Φuu, especially for the von Kármán form. At low frequencies, the contribution

from Φuu dominates the Kaimal form. This difference between the two predicted spectral

shapes has an important bearing on the results presented later.

7.2.3 Comparisons to von Kármán and Kaimal spectra

The von Kármán spectra are dependent upon the variance, σ2, and the longitudinal integral

length scale, LvK. Because the turbulence is assumed to be isotropic, σ2 = σ2
u = σ2

v , and

thus the integral of Eq. (7.14) yields

σ2 =

∞∫
0

Sbb df. (7.15)
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The length scale can be determined from the f̃vK value at the peak of fSbb. Because the

maximum is expected to occur at f̃vK = 0.205 (Table 7.1), the equivalent length scale is

LvK = 0.205|U |/fmax, where fmax is the frequency at the observed spectral peak.

In their universal form, the Kaimal spectra are dependent on the friction velocity, u∗,

and the height above bed, z. For the Kaimal spectra to reduce to the ISR form in the high

frequency limit, the assumption that ε = (κz)−1u3
∗ is required, which assumes that (1)

the Reynolds stress is equal to u2
∗, and (2) that production and dissipation are in balance.

Because neither of these assumptions are valid (Figs. 4.2, 6.5, and 6.6), the use of u∗ from

the law-of-the-wall fits does not yield spectra that are directly comparable to the Kaimal

form. Thus, a scaling coefficient, aK, is introduced, and Eqs. (7.3) and (7.4) are normalized

by aKu
2
∗, instead of simply u2

∗. The value of aK was determined so that the spectral peak of

fSbb/aKu
2
∗ coincided with the predicted maximum of 0.370 (Table 7.1). The f̃K value at

the spectral peak was also used to compute LK = 0.399|U |/fmax, which was used in place

of z as the relevant length scale. This construction of the relevant parameters ensures that

the measured and predicted spectra are in agreement at the spectral peak, but it does not

ensure that they tend to the same limit in the ISR.

7.2.4 Integral Length Scale

An independent measure of the integral length scale can be obtained by computing auto-

correlation functions of the along-beam velocity measurements, R̂ii. Recalling that the

beam velocity registered by the i-th transducer is given by v̂′i = v′i + ei, the definition of

the autocorrelation yields

R̂ii(τ) = 〈v′i(t)v′i(t+ τ)〉+ 〈ei(t)ei(t+ τ)〉 (7.16)

= Rii(τ) +Reiei(τ), (7.17)

where τ is the time lag, and Rii and Reiei are the autocorrelation functions of the true

turbulent fluctuations and the Doppler noise, respectively. Because the Doppler noise is

assumed to be white, Reiei(0) = σ2
ei

and Reiei = 0 for τ 	= 0. Thus,

Rii(τ) =

⎧⎨⎩R̂ii(τ)− σ2
ei

if τ = 0

R̂ii(τ) otherwise.
(7.18)
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The corresponding integral length scale for the i-th beam is given by

Li = |U |
∞∫
0

Rii(τ)

Rii(0)
dτ, (7.19)

where Taylor’s hypothesis has been invoked to convert time to distance.

For the beams oriented in the cross-stream direction, i.e., denoted by subscripts k and �,

the expressions for the velocity components (see Appendix F) can be used to show that

R̂kk = Rvv sin
2 ϑ+Rww cos2 ϑ+ 2Rvw sinϑ cosϑ+Rekek , (7.20)

R̂�� = Rvv sin
2 ϑ+Rww cos2 ϑ− 2Rvw sinϑ cosϑ+Re�e� , (7.21)

where the subscripts represent the Cartesian velocity components, and Rxy = 〈x(t)y(t+ τ)〉.
Summing the equations and assuming statistical homogeneity yields

R̂kk + R̂��

2
= Rvv sin

2 ϑ+Rww cos2 ϑ. (7.22)

For isotropic turbulence Rvv ≈ Rww, thus the average of R̂kk and R̂�� yields an estimate

for Rww. The velocity variances for the cross stream beams are also approximately

equal, yielding σ2
k = Rkk(0) ≈ R��(0), thus the vertical integral length scale—i.e.,

Lw = |U |σ−2
w

∞∫
0

Rwwdτ—can be approximated by

LIw =
Lk + L�

2
, (7.23)

where I in the subscript denotes the integral scale.

7.3 Results

7.3.1 A Measure of Anisotropy

For each 5-minute ensemble, the along-beam velocity variances, σ2
vi

at Sites 2b and 3 were

computed. The Doppler noise variances, σ2
ei

, were estimated using the spectral method

described in Section 6.2.1 (see Appendix D for more details). An estimate of σ2
uI

− σ2
vI

,

i.e., the anisotropy in the horizontal, was then obtained using Eq. (7.11), and averages

were calculated for the 60-minute intervals centred on peak flood and ebb flows (red and
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Figure 7.3: Difference between streamwise and cross-stream variances during peak flow
conditions. Solid lines correspond to the measured estimates obtained via Eq. (7.11). The
shaded regions identify the standard errors in the estimates based on the number of tidal
cycles included in the average. The dashed lines correspond to the empirical estimates
based on Raupach et al. (1991) (black) and Nezu and Nakagawa (1993) (red, blue). Red
and blue colours correspond to the flood and ebb, respectively.

blue segments in Fig. 6.3). The mean values over all tidal cycles are shown in Fig. 7.3,

where the estimates have been normalized by u2
∗ as determined from the law-of-the-wall

fits (Table 6.1). The magnitude of σ2
uI

− σ2
vI

is highest near the bed, where the flow is

expected to be most anisotropic. For z > 10 m, σ2
uI

− σ2
vI

is near zero on both phases of

the tide at Site 2b, and on the flood tide at Site 3, indicating a tendency toward isotropy

with increasing height above bottom.

In Fig. 7.3, the measured differences in the streamwise and cross-stream variances are

compared to two empirical estimates. The first is based on σu = 2.0u∗ and σv = 1.4u∗,

which are the anisotropic ratios in the constant stress layer obtained by Raupach et al.

(1991) for wind tunnel measurements. The corresponding value of (σ2
u − σ2

v) /u
2
∗ is 2.06

(Fig. 7.3, black line) which agrees well with the data at z ≈ 3 m on the flood tide at Site 2b

and for z < 7 m on the ebb tide at Site 3. The second empirical estimate is based on

the vertical distributions of the variances given by Nezu and Nakagawa (1993) for open

channel flow, which decrease exponentially with height above bed according to

σ2
u/u

2
∗ = 5.29e−2z/H , (7.24)

σ2
v/u

2
∗ = 2.66e−2z/H , (7.25)

σ2
w/u

2
∗ = 1.61e−2z/H , (7.26)
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where H is the channel depth. Replacing H with δL—i.e., the thickness of the log-

layer (Section 6.4.2)—and combining Eqs. (7.24) and (7.25), yields (σ2
u − σ2

v) /u
2
∗ =

2.63e−2z/δL which is illustrated in Fig. 6.2 as the red and blue dashed lines, for the flood

and ebb tides, respectively. The predicted estimate for the variance difference agrees best

with the measurements on the ebb tide at Site 2b and on the flood tide at Site 3. On the

flood tide at Site 2b and the ebb tide at Site 3, the measured differences are comparable

in magnitude but deviate from the expected exponential form. The site-dependence of

anisotropy is discussed further in Section 7.4.3.

7.3.2 Pairwise-Summed Beam Velocity Spectra

The along-beam velocity spectra were computed for the 60-minute interval around maxi-

mum flood and ebb flows. Hanning-windowed, four-minute segments were used with 50%

overlap yielding spectra with a frequency resolution of approximately 0.004 Hz and 51

and 55 equivalent degrees of freedom at Sites 2b and 3, respectively (Nuttall, 1971). The

spectra for all tides were then averaged and the z-dependent noise levels—estimated from

the spectra at slack water—were removed, yielding an estimate of Sbb via Eq. (7.13). The

Sbb estimates were further averaged over 1.5 m in the vertical.

A subset of the resulting spectra is shown in variance preserving form in Fig. 7.4. The

spectral levels do not vary significantly with depth, except on the ebb tide at Site 2b where

the variances are very high near the bed and drop off quickly with increasing z, consistent

with the large gradients in Ph and ε (Figs. 6.3 and 6.6).

On the ebb tide at both sites, there is a sharp peak near 0.15 Hz for z > 11.6 m,

which corresponds to the increased variance associated with wave motion (Appendix C).

Excluding these wave peaks, the maxima of fSbb typically occur between 0.04 and 0.25 Hz.

A least squares regression of a second order polynomial to fSbb vs log10 f was used over

approximately a one decade interval near the spectral peak. The resulting polynomial was

then used to both estimate the frequency at the spectral peak, fmax, and interpolate the

spectra over the frequency range containing the wave peak (Fig. 7.6, grey lines).

At high frequencies—i.e., f > 0.6 Hz—fSbb often increases with f , deviating from

the expected f−2/3 form. Because this is most apparent for the spectra nearest the bed

where the turbulence levels are the highest, it is likely that the O(1) Hz sample rate leads to

aliasing in the spectra. Because the focus of this chapter is on turbulence in the production

range, no corrections to the spectra were made to reduce this effect.
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Figure 7.4: Average pairwise-summed beam velocity spectra, Sbb, for the beam pair
oriented in the streamwise direction (Eq. 7.13). Averages were computed over all tides
and over 1.5 m in the vertical. The colours represent the heights given in the legend.
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7.3.3 Length Scales

The values of fmax estimated from the polynomial fits were used to determine the length

scales associated with the spectral peaks. For the von Kármán spectra, LvK = 0.205|U |/fmax,

and for the Kaimal spectra LK = 0.399|U |/fmax (Table 7.1), thus the two length scales are

related by LK = 1.95LvK. Both the LvK and LK estimates are shown in Fig. 7.5 (solid

lines), though the reader should bear in mind that they are directly proportional, so the

profile shapes are identical except for the constant scaling factor. The LvK and LK values

increase with distance from the bed to a broad maximum between 10 to 15 m height and

then decrease toward the surface, particularly at Site 2b. Near the bed, LK ≈ z (Fig. 7.5,

black line) as expected from the general form of the Kaimal spectra. In the upper half of

the water column LK < z because the free-surface necessarily limits the maximum size of

the eddies.

The integral length scales, Li, were estimated from the along-beam velocity measure-

ments using the autocorrelation function for each five-minute ensemble and Eq. (7.19)

with the upper limit of integration being the first zero crossing of Rii(τ). The mean values

over all tides for the 60-minute intervals around maximum flood and ebb flows were then

determined and the average of the cross-stream beams—i.e., Lk and L�—was calculated,

yielding LIw via Eq. (7.23). Vertical profiles of the resulting integral scales are shown

in Fig. 7.5 (dashed lines). With the exception of the ebb tide at Site 3, the LIw values

closely track the LvK values determined from the von Kármán spectra. This result is sur-

prising because LvK and LIw are estimates of the longitudinal and vertical integral scales,

respectively, which—for isotropic turbulence—are expected to be related by LvK = 2LIw

(Diedrich and Drischler, 1957; Kaimal and Finnigan, 1994). Length scales are discussed

further in Section 7.4.2.

7.3.4 Comparison to the Predicted Spectral Forms

The measured spectra and the von Kármán and Kaimal forms are compared in Fig. 7.6. The

non-dimensional frequencies were computed using LvK and LK, thus forcing the spectral

peaks to align. The velocity parameters used to non-dimensionalize the spectral densities—

i.e., σ2 for von Kármán and aKu
2
∗ for Kaimal—are shown in Fig. 7.7. Qualitatively, the

variance profiles exhibit patterns similar to those for TKE (Figs. 6.5h,k) with a significant

increase toward the bed, except on the ebb tide at Site 3, where the maximum occurs at

z ≈ 7 m. The values of aK used to scale the Kaimal spectra vary by more than an order of

130



�

�

�

�

��

��

��

��

��

�
��

�

���� ��

�
��

�
��

� � � � � � � 	 �

�
��
� �

��
���

�

�

�

�

��

��

��

��

��

�
��

�

���� �

� � � � � �� ��

�
�
���

Figure 7.5: Length scales determined from the spectral maxima (LvK, LK) and integral
length scales determined from the autocorrelation functions (LIw). Red and blue corre-
spond to flood and ebb tides, respectively, and linetypes are specified in the legend. In the
left panels, the solid black line is L = κz(1− z/H) and the green line is L = κz. In the
right panels, the black line is L = z.
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magnitude. Near the surface at Site 2b, aK ≈ 0.1 on the ebb tide, whereas aK > 1.2 near

mid-depth on the ebb tide at Site 3. The expected value of aK—based on the universal

Kaimal scaling—is 1, which is most consistent on the flood tide at Site 2b and on the ebb

tide at Site 3, for which the normalized Reynolds stresses, i.e., −〈u′w′〉 /u2
∗, were greater

than 0.5 (Figs. 6.5i,l).

The agreement between the measured spectra and the von Kármán and Kaimal forms

varies with site, tidal phase (ebb/flood) and height above bed. The RMS errors between the

measured and predicted spectra are shown in Fig. 7.8. The errors were computed for the

non-dimensional frequency range below 60% of the maximum (Fig. 7.6, black markers),

thus excluding the high frequency range affected by aliasing. For z < 5 m, the measured

spectra conform better to the Kaimal form than the von Kármán form, whereas the opposite

is true near the surface, indicating—as expected—that the flow closer to the bed is more

anisotropic. Furthermore, at all depths, the von Kármán spectra underestimate the variance

at low frequencies; however, the discrepancy decreases with height above bed, indicating

the need for a z-dependent measure of anisotropy in the formulation of the semi-empirical

spectra.

7.3.5 Varying σu/u∗

The discrepancy at low frequencies between the measured spectra and the Kaimal forms,

as well as the observation that σ2
uI

− σ2
vI

varies throughout the water column (Fig. 7.3),

suggests that the use of a constant value for σu/u∗ may be inappropriate. Near the bed,

the Kaimal spectra underpredict the variance at low frequencies, whereas for z > 8 m,

the measured spectral densities are lower than the Kaimal curves (Fig. 7.6, right panels).

Because Φbb is dominated at low frequencies by Φuu (Fig. 7.2) a z-dependent σu/u∗

was implemented, with σw/u∗ fixed at the Raupach et al. (1991) value of 1.2. Example

comparisons are shown in Fig. 7.9 for z = 8.61 m at Site 2b. On the flood tide, a value

of σu/u∗ = 1.6 yields the lowest RMS error (Figs. 7.9a,b). However, on the ebb tide, a

local minimum was not observed over the range of σu/u∗ values considered (Fig. 7.9d). In

cases like this—i.e., where no local minimum was found—the best-fit value was selected

as the highest σu/u∗ ratio where the derivative with respect to z of the RMSE was below

5 × 10−5 m−1 (e.g., green marker in Fig. 7.9d).

The best-fit values of σu/u∗ and the corresponding RMS errors are shown as functions

of z in Figs. 7.10 and 7.11, respectively. The optimal σu/u∗ values typically decrease
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Figure 7.6: A subset of the non-dimensionalized velocity spectra with comparisons to the
von Kármán curves (left panel, smooth curves) and Kaimal curves (right panel, smooth
curves). The grey segments of the spectra represent wave peaks that were interpolated over.
For increasing z, the curves have been shifted vertically by 0.15 units. The black markers
correspond to the maximum frequency used in the computation of the RMS error between
the observed and predicted spectra.
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Figure 7.7: Parameters used to non-dimensionalize the spectral fits. The variance computed
using Eq. (7.15) is plotted in the left panels and the variance scaling coefficient aK (used
for fitting to the Kaimal spectra) is plotted in the right panels. Flood and ebb tides are
represented by the red and blue lines, respectively.
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Figure 7.8: RMS errors between the measured spectra and the predicted forms (solid:
von Kármán, dashed: Kaimal). Red and blue lines correspond to the flood and ebb tides,
respectively.
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Figure 7.9: Non-dimensional velocity spectra at z = 8.61 m at Site 2b on the (a) flood,
and (c) ebb tides, compared to the Kaimal curves for various σu/u∗ values. The purple
and green curves are offset vertically by -0.15 and 0.15 units, respectively. (b) The
corresponding RMS errors between the measured spectra and the Kaimal curves are shown
in (b) and (d) for the full range of σu/u∗ values considered. The errors were computed for
the frequencies below the fSbb/aKu

2
∗ maximum.

with height above bottom, consistent with the tendency toward more isotropic turbulence

near the surface. One exception occurs at Site 2b on the ebb tide where the lowest σu/u∗

values occur near mid-depth. On the flood tide at Site 2b and the ebb tide at Site 3, the

vertical variation is well predicted by σu/u∗ = 3.45e−z/δL (dashed lines)—i.e., Eq. (7.24)

multiplied by 1.5 —indicating that the longitudinal variances are more than double those

predicted by Nezu and Nakagawa (1993) throughout the water column.

7.4 Discussion

7.4.1 Comparison to Previous Studies

To my knowledge, this is the first study to compare diverging-beam ADCP data to suitably

modified forms of the Kaimal and von Kármán velocity spectra. Previous comparisons in
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Figure 7.10: Best-fit σu/u∗ values as a function of height above bottom (solid lines) and
σu/u∗ = 3.45e−z/δL (dashed lines). Flood and ebb tides are represented by the red and
blue lines, respectively. Closed markers denote the best-fit values determined by the lowest
RMS errors between the measured spectra and the Kaimal curves (e.g. yellow lines and
markers in Fig 7.9). Open markers correspond to optimal σu/u∗ values determined using
a minimum threshold on the derivative of the RMS error (e.g. green line and marker in
Figs. 7.9c,d).
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Figure 7.11: RMS errors between the measured spectra and the Kaimal spectra with
the best-fit σu/u∗ ratio. The errors were computed for frequencies below the fSbb/au

2
∗

maximum. Dashed lines correspond to the equivalent errors with σu = 2.0u∗. Red and
blue correspond to flood and ebb tides, respectively. The open and closed markers are
consistent with those used in Fig. 7.10.
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unstratified tidal flows have been limited to single-point time series measurements of u,

v, and w obtained at a single depth (Walter et al., 2011; Milne et al., 2013) or obtained

successively at several depths by moving a single sensor through the water column (Lien

and Sanford, 2000). While ADCPs yield simultaneous estimates of velocity throughout

the water column, direct estimates of u, v, and w cannot be obtained due to the divergent

beam geometry. Neither can the length scale in the von Kármán spectrum be estimated

directly from the ADCP data, and so must instead be obtained by forcing the observed and

predicted spectra to coincide at the peak of fΦbb.

Given these limitations, it is nevertheless promising that the ADCP results presented in

this chapter are consistent with the earlier comparisons to the Kaimal spectra cited above.

Near the bed—i.e., at z = 2.61 m and occasionally greater heights—the observed spectral

densities are higher than the Kaimal spectra at low frequencies (Fig. 7.6, left panels), in

agreement with the results obtained by both Walter et al. (2011) and Lien and Sanford

(2000) at z = 1 m and z < 9 m, respectively. Note that Walter et al. (2011) used the values

for the constants A, B, C, and D in Kaimal et al. (1972), and Lien and Sanford (2000)

used the slightly modified values given by Kaimal and Finnigan (1994): i.e., both different

from the initial values used here, which were based on wind tunnel measurements by

Raupach et al. (1991) and α1 = 0.5 rather than 0.55. The underestimation of the spectral

densities in the low frequency region of the spectrum prompted the use of a variable σu/u∗

ratio, resulting in better agreement between the measurements and the Kaimal form of Sbb

(Fig. 7.11).

Comparisons of the Grand Passage data to the von Kármán spectra are inconsistent with

the ADV measurements of Milne et al. (2013) because, at low frequencies, the velocity

spectra in Grand Passage are all underpredicted by the von Kármán spectra (Fig. 7.6, left

panels). While the method implemented by Milne et al. (2013) did not force the spectra to

coincide at the spectral peaks, the observed spectra were narrower than the von Kármán

forms, unlike the results presented in this chapter.

The method implemented in this study to estimate length scales from the spectral

peak is commonly used to compare measurements obtained in the atmospheric boundary

layer to the von Kármán and Kaimal forms (e.g., Mann, 1994; Peña et al., 2010). Other

approaches have estimated the length scales by matching the measured spectra to the

appropriate limit in the inertial subrange (e.g Morfiadakis et al., 1996). In many of these
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investigations—particularly when the von Kármán form was considered—the length scales

were determined separately for each velocity component: i.e., it was not assumed that the

longitudinal integral scale was a factor of two larger than the transverse scale. In addition,

the use of von Kármán spectra where σ2
u 	= σ2

w is common in simulations of atmospheric

turbulence (Burton et al., 2011). Other modifications that incorporate anisotropy have been

suggested, including a spectral model developed by Mann (1994, 1998) based on Rapid

Distortion Theory (Townsend, 1976). Although these modified forms—unlike Eqs. (7.1)

and (7.2)—are inconsistent with the analytical equations governing the autocorrelation

functions (Diedrich and Drischler, 1957), they have been shown to agree well with

measurements obtained in neutral atmospheric boundary layers. Thus, the modified forms

could be applicable to unstratified tidal flows.

7.4.2 Physical Interpretation of the Length Scales

The length scales relevant to the von Kármán and Kaimal spectra are both related to the

size of the eddies contributing to the variance in the production range. For the Kaimal

spectra in their general form, z is the relevant length scale, indicating that the distance from

the boundary controls the vertical scale of the eddies, which is consistent with longstanding

ideas associated with Prandtl’s mixing length and the eddy viscosity, κu∗z, arising from

the law-of-the-wall. The Grand Passage data confirm this scaling in the near bed region,

since the length scale estimated from the spectral peak—i.e., LK—is within 25% of z for

z < 8 m. On the ebb tide at Site 3, the scaling with z extends farther upward to a height of

12 m. Near mid-depth, LK tends to be independent of height, whereas in the upper half of

the water column, the distance to the free surface limits the vertical extent of the eddies. A

consistent decrease in LK was only observed on the flood tide at Site 2b. However, the

uppermost 4 m—where the free surface will have the greatest effect—is not resolved in

the ADCP data.

The relevant length scale for the von Kármán spectra, LvK, is, by definition, the longitu-

dinal integral scale. Under the assumption of isotropy, the vertical integral length scale is

equal to LvK/2; however, the LIw estimates—which are an approximation for the vertical

scale—reveal that this relationship does not hold, and instead, LvK ≈ LIw (Fig. 7.5, left

panels). Importantly, neither length scale is based on the fundamental definition as the

integral of the autocorrelation function, and hence cautious interpretation is warranted. In

addition, the turbulence—particularly near the bed—is anisotropic although the deviation
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from isotropy is expected to yield LvK > 2LIw, which is not observed in the data.

Bearing this in mind, comparison to theoretical length scale estimates is useful. In the

inertial sublayer, Tennekes and Lumley (1972) (p. 159) suggest that the relevant vertical

scale is κz based on a scaling of the velocity shear as dU/dz = u∗/κz, i.e., the-law-of-

the-wall assumption. This relationship appears to be consistent with LIw at Site 2b on

the ebb tide (Fig. 7.5, green line). The mixing length scale for channel flow, given by

L = κz(1− z/H), is illustrated in black in Fig. 7.5 (left panels) and is shown to be about a

factor of two less than the measured length scales throughout the water column, consistent

with the comparisons made by Stacey et al. (1999).

7.4.3 Vertical Variation of Anisotropy

Anisotropy was assessed in two ways. First, the difference in the streamwise and cross-

stream variances (Fig. 7.3) was estimated via Eq. (7.11), and best-fit σu/u∗ values were

determined from spectral fits to the Kaimal form of fSbb in the low frequency range

(Fig. 7.10). In all cases, except on the ebb tide at Site 2b, both measures of anisotropy

decrease with height above bottom and vary with both site and tidal phase.

On the ebb tide at Site 3, the estimated length scales were the largest (Fig. 7.5) and

the differences in the streamwise and cross-stream variances (Fig. 7.3) were the greatest.

These observations indicate that the turbulence generated at the cross-stream ridge located

ca. 300 m upstream remains highly energetic and anisotropic as it is advected past the

ADCP site. The best-fit σu/u∗ values were also the highest at this site (Fig. 7.10) with

an optimal value of 3 at z = 2.61 m, inconsistent with the results of Hay et al. (2013)

who showed that σu/u∗ = 2 and σw/u∗ = 1.2 yielded the expected along beam velocity

variances at z = 2.1 m.

The vertical variation in σu/u∗ on the ebb tide at Site 2b is inconsistent with the other

cases (Fig. 7.3), exhibiting a minimum at mid-depth and then increasing with z as the

surface is approached. In the previous chapter, it was shown that the ebb tide at Site 2b

is characterized by a thin log-layer within which the turbulence levels are very high.

Turbulence is also generated near the surface during several tidal cycles, thus leading to

increased variance and increasing σu/u∗ since u∗ remains constant.

One of the interesting results regarding the measures of anisotropy is that the ratio

of the velocity variances is z-dependent: i.e., the best-fit σu/u∗ values—determined for

a constant σw/u∗ value—decrease with z, suggesting that σ2
u/σ

2
w decreases with height.

139



This is in contrast to Nezu and Nakagawa (1993) where the ratio of the σ2
i values for

any two velocity components yields a constant value for all depths (Eqs. 7.24–7.26). A

decrease in the degree of anisotropy with z is consistent with measurements obtained by

Peña et al. (2010) in a neutral atmospheric boundary layer, where comparisons of the

data with spectral model of Mann (1994) indicated that σ2
u/σ

2
w ≈ 3 near the ground and

σ2
u/σ

2
w ≈ 2 at 160 m height. In comparison, the best-fit σu/u∗ estimates for the Grand

Passage data give σ2
u/σ

2
w values as high as 6 near the bed (Site 3, ebb), and as low as 0.7 at

both mid-depth (Site 2b, ebb) and near the surface (Site 3, flood).

7.5 Conclusions

The ADCP measurements at Sites 2b and 3 have been compared to modified forms of the

Kaimal and von Kármán spectra derived for diverging-beam ADCP data. Using empirical

constants obtained from wind tunnel measurements (Raupach et al., 1991) and α1 = 0.5,

the Kaimal spectra better agree with the ADCP data in the near bed region. On the

other hand, above mid-depth, better agreement is obtained with the von Kármán spectra,

consistent with the observation that the flow is more isotropic near the surface.

The spectral densities at low frequencies are less than those predicted by the von

Kármán form throughout the water column, whereas the use of a constant σu/u∗ ratio

for the Kaimal spectra yields predicted forms that overestimate the variance near the bed

and underestimate the variance as z increases (Fig. 7.6). This observation, in addition

to (σ2
u − σ2

v)/u
2
∗ values that decrease with z, prompted the use of a variable σu/u∗ for

the Kaimal form. The optimal values of σu/u∗—determined via the RMS error in the

production range—decrease with height above bed except on the ebb tide at Site 2b where

σu/u∗ has a local minimum at mid-depth.

The comparisons between the measurements and the predicted forms were carried out

by forcing the spectra to match at the peaks of fSbb, yielding two length scale estimates

related by LK = 1.95LvK. For z < 8 m, the LK values (determined from the Kaimal

form) are within 25% of z, which is the expected value. However, near mid-depth and

closer to the surface LK < z, due to the presence of the free surface which limits the

vertical extent of the eddies. The LvK values (determined from the von Kármán form) are

comparable to estimates of the vertical integral length scale, LIw, determined from the

along-beam autocorrelation functions. This result is surprising because, by definition, LvK
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is the longitudinal integral scale and expected to be given by LvK ≈ 2LIw for isotropic

turbulence. In the lower half of the water column, LIw ≈ κz (more so at Site 2b), which is

a scaling for the vertical size of the eddies that is consistent with the law-of-the-wall form

of the velocity profile.

The results presented in this chapter indicate that the Kaimal spectra, which allow

for z-dependent anisotropy, best predict the variance at low frequencies in the Grand

Passage measurements. The anisotropy—quantified by σ2
u/σ

2
w—decreases by an order

of magnitude with increasing height above bottom. This variation with z is inconsistent

with open channel flows where a constant value of σ2
u/σ

2
w = 3.3 is expected (Nezu

and Nakagawa, 1993). However, the estimates of anisotropy are comparable—at least

qualitatively—to measurements made in the neutral atmospheric boundary layer by Peña

et al. (2010), and thus, future work should include comparisons to other anisotropic spectral

forms.

141



CHAPTER 8

CONCLUSIONS

This thesis presents ADCP and shear probe measurements acquired in Grand Passage,

Nova Scotia, which is an 8 × 107 Reynolds number tidal channel. The water depth

along the channel centreline ranges from 10 to 30 m, the tidal range is 5 m, and the

depth-averaged flow speed reaches 2.5 m s−1. The dataset consists of three separate field

campaigns that included the deployment of four bottom-mounted ADCP frames and an

underwater, streamlined buoy “flown” at mid-depth (a.k.a. the Nemo buoy). The broadband,

diverging-beam ADCPs sampled at 1.5 to 1.8 Hz in 0.5-m range bins. At one of the sites,

an additional second generation ADCP (i.e., AD2CP) acquired measurements along a

vertical beam at 8 Hz in 12.5-cm range bins. The shear probes were mounted in the nose

of the Nemo buoy and acquired measurements at a rate of 2048 Hz. The dataset was

used to: (1) assess the capabilities and limitations of both instrumentation techniques and

analysis methods for turbulence measurements in high-flow environments, (2) characterize

the spatial and temporal variability in turbulence and boundary layer parameters, and (3)

investigate the validity of existing theoretical and empirical relationships.

8.1 Key Findings

1) Dissipation rates estimated from ADCP and shear probe data agree to within a

factor of two.

Speed-bin averaged dissipation rates estimated at mid-depth from the ADCP mea-

surements agree to within a factor of two with direct estimates obtained using shear

probes mounted in the nose of the Nemo buoy (Chapter 4). Possible sources of bias and

error in the ADCP estimates were investigated, all of which are found to be small. Thus,
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the most likely cause of the factor of two discrepancy is the cross-channel separation of

the instruments and the high degree of spatial variability in the passage. This finding is

supported both by cross-channel transects of ε obtained using a vertical microstructure

profiler (McMillan et al., 2015) and by vertical velocity measurements recorded by the

AD2CP (Chapter 4).

2) Spectral and structure function methods yield comparable estimates of the dissi-

pation rate when applied to broadband diverging-beam ADCP data.

The ADCP data were used to estimate the dissipation rate at mid-depth on 5-minute

timescales using a spectral method and both second- and third-order structure function

methods (Chapter 5). The results indicate that the second-order structure function (SF2)

method agrees with the spectral estimates to within 16% at all four sites, and the SF2

method is more robust than either the third-order method or the spectral method. The

application of the SF2 method also validates the use of C2 = 2.0 as the SF2 universal

constant, as opposed to the value of 2.1 that has been frequently used in other studies.

3) Doppler noise level estimates are independent of flow speed.

The apparent Doppler noise levels, computed using the traditional SF2 method,

decrease with both increasing dissipation rate and increasing flow speed. However,

accurate noise levels can be obtained using a modified SF2 method that accounts for

the unresolved variance due to the low-pass filtering effect associated with the finite

ADCP pulse length (i.e., finite cell size). The “corrected” noise levels (i.e., estimated

from the modified method) are independent of flow speed, and in agreement with the

values determined from the spectral method.

4) Dissipation rate estimates from the ADCP measurements are log-normally dis-

tributed.

Estimates of the dissipation rate from the ADCP measurements at mid-depth are

log-normally distributed (Chapter 5), consistent both with the expected distribution for

small-scale (a.k.a. inner-scale) intermittency in high Reynolds number flows, and with

the shear probe measurements (Chapter 4). For both measurement types, the probability

density functions were computed for strong flow conditions.

5) Streamwise advection is a significant term in the TKE balance.

The dominant terms in the TKE equation—i.e., production (Ph), dissipation (ε),

and vertical diffusion of TKE (Td)—were estimated during peak ebb and flood flows
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(Chapter 6). The rates of production and dissipation are highest near the bed and

close to being in balance only when the constant stress layer is sufficiently thick to be

resolved in the ADCP profile. The vertical variation of the parameters is qualitatively

consistent with both previous field measurements and DNS simulations of channel flow.

Typically, Td is small, and Ph and ε agree to within a factor of two throughout most of

the water column, with the tendency that Ph > ε near the bed, Ph ≈ ε at mid-depth,

and Ph < ε near the surface. The observed imbalance in Ph and ε—both locally and in

a depth-averaged sense—is likely due to the streamwise advection of TKE.

6) Mean and turbulent characteristics of the flow exhibit quantitative dependence

on RMS upstream bottom roughness.

Vertical profiles of both mean velocity and second-order turbulence parameters

exhibit pronounced ebb/flood asymmetries, which are consistent with variations in the

upstream bottom roughness (Chapter 6). Both the drag coefficient and the log-layer

thickness are correlated with RMS bottom roughness computed over distances up to

20 water depths upstream. As the upstream roughness increases, the thickness of

the log-layer increases, whereas the drag coefficient decreases. The interpretation is

consistent with flow over topographic features in the atmospheric boundary layer and

in laboratory flumes: the increased mixing within the wake downstream of a hill or

ridge thickens the boundary layer, and hence, reduces the bottom stress compared with

that obtained for a similar flow over a uniformly rough bottom.

7) At low wave numbers—i.e., in the production range—the Kaimal spectrum pro-

vides a better fit to the data than the von Kármán spectrum.

The velocity measurements at Sites 2b and 3 were compared to modified forms of

the Kaimal and von Kármán spectra that are applicable to diverging-beam ADCP data

(Chapter 7). The variance at large scales is better predicted by the Kaimal spectra than

the von Kármán spectra, provided that the degree of anisotropy—quantified by σ2
w/σ

2
u—

is permitted to vary throughout the water column. This variation is in contrast to

empirical models commonly used for open channel flows which give a constant σ2
w/σ

2
u

(Nezu and Nakagawa, 1993). However, the Grand Passage results are qualitatively

consistent with observations in neutral atmospheric boundary conditions (Peña et al.,

2010). The expected scaling of the Kaimal spectra with z is observed in the lower 5

to 10 m of the water column; however, near mid-depth and closer to the surface, the

144



length scale is smaller than z due to the constraint imposed by the free surface.

8.2 Implications

Previous field campaigns in high Reynolds number tidal channels are relatively few in

number (Fig. 1.1), and have typically been limited to one or two sites within a given

channel. Thus, the Grand Passage dataset—with five measurement sites separated by less

than 1 km—is more comprehensive than the earlier studies. This enables several theoretical

and empirical relationships to be tested. The relationships are typically used to describe

turbulent flows in the atmospheric boundary layer, and hence, they are not necessarily

applicable in tidal channels. In the Grand Passage dataset, the following relationships are

satisfied at all sites on both the ebb and flood tides:

1) the mean velocity profile is described by the law-of-the-wall for at least z < 5 m,

2) an inertial subrange, where the velocity spectrum falls off at a constant rate propor-

tional to k−5/3, is resolved, and

3) the dissipation rate is log-normally distributed.

In contrast, the applicability of other relationships is dependent on the site and tidal phase.

These include:

1) a constant stress layer, where −〈u′w′〉=u2
∗, is not always resolved, and

2) the assumption of equilibrium turbulence (i.e., ε = Ph = u3
∗/κz) is not always valid.

These results indicate that the existing empirical and theoretical relationships are not

universal in Grand Passage, and possibly in other high Reynolds number tidal flows.

At all the measurement sites in Grand Passage, the turbulence characteristics are highly

dependent on the upstream topography. This observation implies that obtaining high

resolution bathymetric measurements would allow for better interpretation of turbulence

measurements in a high Reynolds number flow. More specifically, bathymetric measure-

ments would enable the prediction of certain flow features, such as the thickness of the

log-layer and the drag coefficient. In addition, bathymetric measurements could be used to

improve numerical models that simulate regional- and channel-scale flow.
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Many of the existing models for simulating turbine performance implement input

conditions either by representing the turbulent fluctuations as a simple percentage of the

mean flow, or by specifying the spectral density based on the Kaimal or von Kármán

spectra. These semi-empirical forms typically use coefficients applicable to atmospheric

boundary layer flows, and length scales that ignore the upper limit on eddy size imposed by

the air-water interface. The Grand Passage measurements indicate that the spectral forms

should be modified to account for the conditions in a tidal channel: i.e., a z-dependent

anisotropy, and a decrease in the length scale near the surface. The use of a realistic

turbulent time series in a CFD model based on the Grand Passage data has recently been

explored by Leroux et al. (2016); however, in this initial study, the turbulence was assumed

to be isotropic even at the largest scales. Implementing a Kaimal spectral form with

vertically varying anisotropy would be a logical next step toward realistic simulations of

turbine performance in tidal flows.

8.3 Future Work

The results presented in this thesis provide an encouraging basis for future scientific

studies in high Reynolds number oceanic flows. A better characterization, and subsequent

understanding, of the complex dynamics of the flow could be pursued through several

research avenues.

First, improved instrumentation may overcome some of the questions and uncertainties

that arise out of this thesis. Because divergent-beam ADCPs were used, the assumption of

horizontal homogeneity across the spread of the beams was necessary to implement many

of the methods used to estimate turbulence parameters. Due to the spatial inhomogeneity

in the flow, it is unlikely that this assumption is strictly valid. Several approaches to

overcome this restriction are already being explored. The second generation ADCPs (i.e.,

AD2CPs) sample up to four times faster than the RDI Workhorse instruments, and have

a vertical beam that yields a direct estimate of the vertical velocity. Measurements of w

enable direct comparison to predicted forms—such as the Kaimal spectrum—and thus,

provide a better basis for testing the theoretical and empirical relationships. A second

instrumentation technique that does not rely on the assumption of horizontal homogeneity

is a Doppler system with convergent beams, akin to a large ADV. Preliminary testing of

such instruments has been performed in high Reynolds number tidal channels both in
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Scotland (Sellar et al., 2015) and in the Bay of Fundy (Hay et al., 2015).

One of the key findings of this thesis is that the streamwise advection term in the

TKE equation is significant, but it is not possible to verify this conclusion using the field

measurements. However, channel scale numerical models—such as the Finite Volume

Coastal Ocean Model (Appendix E) or a Detached Eddy Simulation (Wilcox et al., 2017)—

could provide insight into the spatial variability of the advection term. More specifically,

estimates of both the mean flow speed and the TKE upstream of the measurement site

could be extracted and used to compare with the local imbalance of the terms in the TKE

equation.

The results of this thesis could also be extended to include additional comparisons to

the properties of high Reynolds number flows. Here, only second order properties of

the turbulence were investigated; however, because the dissipation rate was log-normally

distributed, it is likely that higher order statistics are also in agreement with the theoretical

and empirical relationships used to describe flows in the atmospheric boundary layer.

These higher order statistics relate to the internal intermittency in the flow, which has not

yet received much attention in tidal flows.
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APPENDIX A

COORDINATE SYSTEMS

A.1 RDI Workhorse ADCP

The instrument coordinates (xI , yI , zI) are pictured in Fig. A.1. The coordinate system is

right handed and—importantly—the xI and zI directions are reversed in comparison to the

default convention used by RD Instruments (Gordon, 1996). In the pictured configuration,

the beam velocities, vi, can be expressed as

v1 = − uI sinϑ− wI cosϑ+ e1, (A.1)

v2 = uI sinϑ− wI cosϑ+ e2, (A.2)

v3 = − vI sinϑ− wI cosϑ+ e3, (A.3)

v4 = vI sinϑ− wI cosϑ+ e4, (A.4)

where uI , vI and wI are the velocity components in instrument coordinates and ei is an

error associated with Doppler noise.

A frame dependent coordinate system was also defined such that +xF was directed

along the beam pair that was best aligned with the flood tide direction. The yF and zF

directions then defined a right handed coordinate system with zF normal to the frame base

and directed upward (i.e. zF = zI). The frame coordinates at each site are labelled in

Fig. 3.6 and the relationships between the frame coordinates and the instrument coordinates

are summarized in Table A.1.
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Figure A.1: Graphical representation of the instrument coordinate system (xI ,yI ,zI). The
circled numbers correspond to the transducer faces. For the RDI Workhorse instruments
the angle of the transducer beams to the zI axis is ϑ = 20◦.

Table A.1: Relationship between the axes of the frame coordinates (xF ,yF ,zF ) and instru-
ment coordinates (xI ,yI ,zI).

Site xF yF zF
1 −yI xI zI
2a xI yI zI
2b −yI xI zI
3 xI yI zI
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APPENDIX B

ADCP QUALITY CONTROL

B.1 Pressure, Temperature and Attitude

The ancillary data is presented below for each of the ADCP sites. The included scalars are

the pressure (P ), temperature (T ), heading (θH), pitch (θP ) and roll (θR). Time periods

excluded from the analysis are highlighted in red and one-day intervals for which time

series are shown throughout the thesis are highlighted in yellow.

B.1.1 Site 1

Figure B.1: Pressure, temperature and attitude parameters at Site 1. The red region
highlights a time period that was rejected from analysis due to frame movement. The
yellow region corresponds to the interval shown in the time series throughout the thesis.
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B.1.2 Site 2a

Figure B.2: Pressure, temperature and attitude parameters at Site 2a. The red region
highlights a time period that was rejected from analysis due to frame movement. The
yellow region corresponds to the interval shown in the time series throughout the thesis.

B.1.3 Site 2b

Figure B.3: Pressure, temperature and attitude parameters at Site 2b. The red region
highlights a time period that was rejected from analysis due to frame movement. The
yellow region corresponds to the interval shown in the time series throughout the thesis.
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B.1.4 Site 3

Figure B.4: Pressure, temperature and attitude parameters at Site 3. The yellow region
corresponds to the interval shown in the time series throughout the thesis.

B.2 Backscatter Amplitude and Correlation

The mean correlation and backscatter amplitude of the ADCP measurements were com-

puted for each 7-minute burst (Site 1) and 5-minute ensemble (Sites 2a, 2b, 3). The

averages were used to qualitatively assess the data. At all sites, the mean correlations for

all four beams were typically within 95% of the level expected (128 counts) for high-quality

velocity estimates (Gordon, 1996), which indicates that there was sufficient signal-to-noise

ratio to generate high-fidelity ADCP data. The backscatter amplitude decreased with height

above bed, as expected, due to transmission losses; however, the signal was always strong

enough to permit high fidelity measurements. The variation of the backscatter amplitude

and correlation as a function of flow speed at 10 m above bottom is plotted in Fig. B.5.
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Figure B.5: Speed-bin averaged backscatter amplitude (left panels) and correlation (right
panels) as a function of flow speed (negative speeds correspond to ebb tides) at z = 10 m.
The colours correspond to the normalized Doppler noise standard deviations, σNi

(Chapter
5). Marker shapes represent beam numbers as given in the legend.
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APPENDIX C

WAVES

Surface wave occurrences were identified by first computing averaged velocity spectra for

the near-surface measurements. Along-beam velocity spectra were computed in 10-minute

intervals with an approximate resolution of 0.01 Hz and averaged over a time-varying 5 m

region where the top bin was at 85% of the total depth. The spectra were further averaged

amongst the four beams and the average noise level was subtracted.

The resulting spectra were then analyzed for the presence of a peak in a wave band

interval of f ∈ [0.1, 0.25] Hz. The variance within the wave band, σ2
wb, was computed and

compared to the total variance up to the upper limit of the wave band, σ2
spec: i.e. within

f ∈ [0, 0.25] Hz. Large variance ratios, i.e. σ2
wb/σ

2
spec, indicate the presence of surface

waves, however, the actual amplitude and direction of the waves could not be determined.

The specification of a cutoff threshold for σ2
wb/σ

2
spec above which waves were present

was not trivial. In the absence of waves, the variance ratio changed with both flow speed

and turbulence level and, like the turbulence itself, the ratio was highly intermittent. Thus,

a qualitative analysis of the spectra was used to identify a site-dependent threshold above

which there was consistently a peak in the wave band. The threshold therefore only

identified the presence of the largest waves. Smaller waves, especially in high turbulence

conditions, were observed visually in the spectra but did not contribute sufficiently to the

total variance to exceed the threshold. The increased variance associated with these smaller

waves did not typically penetrate to depths greater than 10 m.

In the following sections, the wind, current and wave conditions are summarized for each

of the ADCP deployment sites. The wind data was obtained from hourly measurements

at the Environment Canada meteorological station at the North Point lighthouse on Brier
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Island (Fig. 3.3, pink marker). At all locations, the waves were predominantly present when

the current direction opposed the wind direction, leading to wave height amplification.

C.1 Site 1

A threshold of σ2
wb/σ

2
spec = 0.6 was used for the variance ratio at Site 1. This resulted in

wave occurrences only on the ebb tide when the winds were blowing towards the northeast,

i.e. in opposition to the current direction. Peaks in the wave band were observed for wind

speeds ranging from 5 km h−1 to 20 km h−1. The largest variance ratio occurred on year

day 216 when the wind speed and direction were 17 km h−1 and 40◦, respectively.
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Figure C.1: Timeseries of the wind vectors (top panel), surface current speed (middle
panel) and variance ratio (bottom panel) at Site 1. The colours in the top panel indicate
wind speed. The markers in the bottom panel correspond to instances on the ebb tide when
the variance ratio exceeded 0.6.
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Figure C.2: Averaged along-beam velocity spectra for intervals when the variance ratio
exceeded 0.6 at Site 1. Line colours correspond to speed-bin intervals of 0.2 m s−1 as
identified in the legend. Spectra for each of the speed bins have been shifted vertically.

� � � � �

�
�
�� ��� �

���

���

���

���

���

���

���

���

�
� �
�
��

�

��
�

��
�

��
�

�
�

���
�

���
�

�	�
�

�
�
�

���
�

���
�
���

�

���
�

���

��
�

��
�

��
�

�
�

���
�

���
�

�	�
�

�
�
�

���
�

���
�
���

�

���
�

�����

��� ��� ��� ��� ��� ��� ��� ��� ��
 ��	 ���

� �

��
���

Figure C.3: The variance ratio as a function of flow speed (top panel) at Site 1. The
magenta line indicates the cutoff threshold of 0.6. The compass plots show the wind
conditions during flood and ebb tides. The radial lines are in 5 km h−1 intervals and the
outermost circle corresponds to a wind speed of 30 km h−1. The grey markers correspond
to all the measurements during the deployment interval, whereas the coloured markers
indicate the magnitude of the variance ratio during intervals when the threshold was
exceeded.
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C.2 Sites 2a and 2b

A threshold of σ2
wb/σ

2
spec = 0.7 was used for the variance ratio at Sites 2a and 2b. This

resulted in wave occurrences on most ebb tides when the winds were blowing towards the

northwest, i.e. in opposition to the current direction. Waves were also present on the flood

tides near days 178 and 184 (Site 2b only). Peaks in the wave band were observed for all

wind speeds. The largest variance ratio occurred on ebb tides (days 180.4 and 180.9 at

Sites 2b and 2a respectively). At both times the wind speed exceeded 30 km h−1 and was

oriented towards the northwest.
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Figure C.4: Timeseries of the wind vectors (top panel), surface current speed (middle
panel) and variance ratio (bottom panel) at Site 2a. The colours in the top panel indicate
wind speed. The markers in the bottom panel correspond to instances on the flood (red)
and ebb (blue) tides when the variance ratio exceeded 0.7.
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Figure C.5: Averaged along-beam velocity spectra for intervals when the variance ratio
exceeded 0.7 at Site 2a. Line colours correspond to speed-bin intervals of 0.2 m s−1 as
identified in the legend. Spectra for each of the speed bins have been shifted vertically.
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Figure C.6: The variance ratio as a function of flow speed (top panel) at Site 2a. The
magenta line indicates the cutoff threshold of 0.7 The compass plots show the wind
conditions during flood and ebb tides. The grey markers correspond to all the measurements
during the deployment interval, whereas the coloured markers indicate the magnitude of
the variance ratio during intervals when the threshold was exceeded.
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Figure C.7: Timeseries of the wind vectors (top panel), surface current speed (middle
panel) and variance ratio (bottom panel) at Site 2b. The colours in the top panel indicate
wind speed. The markers in the bottom panel correspond to instances on the flood (red)
and ebb (blue) tides when the variance ratio exceeded 0.7.
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Figure C.8: Averaged along-beam velocity spectra for intervals when the variance ratio
exceeded 0.7 at Site 2b. Line colours correspond to speed-bin intervals of 0.2 m s−1 as
identified in the legend. Spectra for each of the speed bins have been shifted vertically.
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Figure C.9: The variance ratio as a function of flow speed (top panel) at Site 2b. The
magenta line indicates the cutoff threshold of 0.7. The compass plots show the wind
conditions during flood and ebb tides. The grey markers correspond to all the measurements
during the deployment interval, whereas the coloured markers indicate the magnitude of
the variance ratio during intervals when the threshold was exceeded.
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C.3 Site 3

A threshold of σ2
wb/σ

2
spec = 0.5 was used for the variance ratio at Site 3. This resulted in

wave occurrences during only two intervals. The first occurred on day 249.8 as the tide

transitioned from flood to ebb and the winds were oriented towards the north-northeast.

High variances were also observed on the subsequent flood tide when the winds were

towards east-south-east and thus obliquely opposed to the northward flowing current.
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Figure C.10: Timeseries of the wind vectors (top panel), surface current speed (middle
panel) and variance ratio (bottom panel) at Site 3. The colours in the top panel indicate
wind speed. The markers in the bottom panel correspond to instances on the flood (red)
and ebb (blue) tides when the variance ratio exceeded 0.5.
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Figure C.11: Averaged along-beam velocity spectra for intervals when the variance ratio
exceeded 0.5 at Site 3. Line colours correspond to speed-bin intervals of 0.2 m s−1 as
identified in the legend. Spectra for each of the speed bins have been shifted vertically.
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Figure C.12: The variance ratio as a function of flow speed (top panel) at Site 3. The
magenta line indicates the cutoff threshold of 0.5. The compass plots show the wind
conditions during flood and ebb tides. The grey markers correspond to all the measurements
during the deployment interval, whereas the coloured markers indicate the magnitude of
the variance ratio during intervals when the threshold was exceeded.
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APPENDIX D

DOPPLER NOISE LEVELS

The Doppler noise levels were estimated from the velocity spectra of the along-beam

ADCP measurements. For each ensemble (7-minutes at Site 1, 5-minutes otherwise),

along-beam spectral densities, Ŝii(f) were computed for each vertical bin using Hanning-

windowed intervals of 20 points (approximately 11-13 s) with 50% overlap. This resulted

in spectra with a frequency resolution of approximately 0.075 Hz and up to 100 degrees

of freedom (Nuttall, 1971). For each depth and beam, the velocity spectra for the lowest

flow speeds (|Uc| < 0.2 m s−1) were averaged together and the mean spectral level from

f ∈ [0.5fN , fN ] was computed, yielding an estimate of Ni (Fig. D.1). The corresponding

standard deviations—given by σei = (NifN)
1/2—are plotted in Fig. D.2. The Doppler

noise estimates are nearly independent of beam and depth and within 10% of the expected

value of 4.6 × 10−2 m s−1.
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Figure D.1: Along-beam velocity spectra for |Uc| < 0.2 m s−1 at z = 9.61 m at Site 2b.
The spectra for each ensemble are shown in grey and the mean is plotted in black. The
frequency range over which the noise level was computed is highlighted in yellow and the
noise level is represented by the horizontal red line. The range of flow speeds satisfying
|Uc| < 0.2 m s−1 is highlighted in blue in the inset.
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Figure D.2: Vertical profiles of Doppler noise standard deviations, σei , determined from
the spectra at slack water. Note: The x-axes limits are site dependent.
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APPENDIX E

FINITE VOLUME COMMUNITY OCEAN

MODEL (FVCOM)

The Finite Volume Community Ocean Model (FVCOM) is an unstructured-grid, free

surface, three dimensional ocean circulation model (Chen et al., 2006). The model uses

the modified Mellor and Yamada level 2.5 (MY-2.5) and Smagorinsky turbulent closure

schemes as the default for vertical and horizontal mixing and a terrain-following vertical

coordinate to follow bottom topography.

The original model grid was obtained from David Greenberg and Jason Chaffrey at

the Bedford Institute of Oceanography and contained the entire Bay of Fundy and Gulf

of Maine regions (Fig. E.1, left). The model was validated by Karsten et al. (2008) by

comparing measurements of surface elevation at multiple sites throughout the Bay of

Fundy. The model grid has since been adapted to have high resolution within Grand

Passage (Fig. E.1, right), where the average side length of an element is 15 m (O’Flaherty-

Sproul, 2013).

The simulation of tidal flow in Grand Passage was performed using the hydrostatic

version of FVCOM. The model was forced using five tidal constituents (M2, N2, S2, K1,

and O1), which were specified at the open boundaries located beyond the continental

shelf. The constituents were predicted using Webtide, which is a program developed

by Fisheries and Oceans Canada (Dupont et al., 2005). A uniform drag coefficient of

2.5 × 10−3 was used throughout the domain. For the model results presented in this thesis

(Fig. 3.2, Section 6.4.3), the simulations were three dimensional with 10 vertical layers.

The tidal forcing was applied for June 20-27th, 2013, i.e. the first week that the ADCPs at

Site 2a and 2b were deployed.

165



Figure E.1: The full numerical grid used for FVCOM simulations (left) and the Grand
Passage region (right). The colours correspond to the water depth; the reference values,
Hr, are 4 km and 100 m in the left and right panels, respectively.
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