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An Analytical Approach to Assess Quality Control Sample Sizes of Cement-

Based Solidification/Stabilization 

 

Rukhsana Liza, Gordon A. Fenton, Craig B. Lake, and D.V. Griffiths 

 

Abstract 

 
This paper presents an analytical approach to selecting the sample size required to achieve 

acceptable quality control in a cement-based solidification/stabilization construction cell 

program intended for the treatment/containment of contaminated soils. The proposed approach is 

based on the hypothesis test that the cell does not have an acceptably low hydraulic conductivity 

(the null hypothesis), versus the alternative hypothesis that it does. Analytical solutions are 

developed to compute the probabilities of both type I (mistakenly rejecting the null hypothesis) 

and type II (mistakenly failing to reject the null hypothesis) errors as functions of the number of 

samples and the statistics of the hydraulic conductivity field. The analytical results are validated 

by Monte Carlo simulations and are then used to develop rational sampling requirements. An 

example is presented to illustrate how the proposed approach can be used in practice to assess the 

required sample size for the quality control program of cement-based S/S construction cells. 

Key words: hypothesis test errors, solidification, stabilization, sampling, contaminated soil, 

remediation. 
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Introduction 

Solidification/stabilization (S/S) is a source controlled remediation technology for the treatment 

of contaminated soil (Hills et al. 2015). In cement-based S/S, cement is mixed with the 

contaminated soil to impart physical and/or chemical changes aimed at minimizing the migration 

of contaminants from the treated soil into adjacent ground or surface water. For large projects, 

S/S may be performed at a contaminated site by dividing the entire site into a number of 

individual cells, which will be referred to as construction cells in this paper, with each cell 

treated individually with cement. During a quality control (QC) program of cement-based S/S, 

each construction cell is then “approved” individually, if its hydraulic conductivity is deemed to 

be acceptable, based on a set of sample data. A construction cell will be accepted if the sample 

data suggests that the effective hydraulic conductivity  effk  of the cell is below the regulatory 

value, where the regulatory value  critk  is as specified by the regulatory agency. The effective 

hydraulic conductivity of the cell, effk , is defined as the uniform (spatially constant) hydraulic 

conductivity value which is equivalent to the actual heterogeneous hydraulic conductivity (which 

is spatially variable), in terms of the total flow rate through the cell (Fenton and Griffiths 1993). 

The equation governing the total advective flow rate, Q , through a saturated cement-based S/S 

construction cell is given by Darcy’s law as follows, 

[1] iAkQ eff   

where i  is the hydraulic gradient across the cell and A  is the cell area perpendicular to the 

direction of flow. During QC of cement-based S/S construction cells, samples are collected and 

tested to estimate the effective hydraulic conductivity. The cell is approved if the estimated 

effective hydraulic conductivity does not exceed the regulatory value. 



4 

 

Currently, the sample density method (USACE 2000) is most commonly used to specify the 

sampling frequency in S/S construction cells, requiring a certain number of samples per unit 

volume. Unfortunately, this method does not adjust for the site variability. Since an increase in 

the variability of a site increases its randomness, it is logical to believe that the sample density 

method results in different levels of accuracy in the effective hydraulic conductivity estimate for 

sites having different variability. In other words, highly variable sites should require more 

sampling to achieve the same reliability of the approval decision as sites with low variability. 

This paper aims to develop an analytical approach to select the required sample size for a QC 

program of cement-based S/S construction cells, considering the reliability of the decision about 

the acceptance or rejection of a construction cell based on the estimated effective hydraulic 

conductivity.  

The overall objective of QC sampling of cement-based S/S construction cells is to ensure, to 

some acceptable probability level, that the final cell has an effective hydraulic conductivity, effk , 

which is less than the regulatory hydraulic conductivity, critk . As mentioned previously, the 

decision about whether a construction cell is acceptable is made on the basis of a set of samples 

taken from the cell. This decision making process is essentially a hypothesis test where the null 

hypothesis  0H  is that the cell is unacceptable, so that the burden of proof is on showing that 

the alternative hypothesis  aH  is true, at an appropriate level of confidence. 

 

[2] 

criteff0 kk:H   

 

criteffa kkH :  

There are two types of errors that may result in making this decision about the acceptability of 

the cell: 1) a type I error where the sample data suggests that the construction cell is acceptable 
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when it is not, or, 2) a type II error where the sample data fails to suggest that the construction 

cell is acceptable when it actually is acceptable. The aim of this paper is to present analytical 

solutions for computing these error probabilities (i.e., type I and type II) as a function of the 

number of samples taken from the S/S construction cell during a QC program. 

Random fields are commonly used to model spatially variable engineering properties (Fenton 

and Griffiths 2008) and will be used here to model the soil hydraulic conductivity field. In this 

paper, the random hydraulic conductivity field is assumed to be stationary and lognormally 

distributed. The lognormal assumption of hydraulic conductivity is reasonable for the hydraulic 

conductivity of S/S sites, as shown by Liza (2014), through statistical analyses of a real site. The 

lognormally distributed hydraulic conductivity field is characterized by three parameters; its 

mean, k , its coefficient of variation, k , and its correlation length, kln . The correlation length 

is a measure of the degree of persistence between hydraulic conductivity values over space and is 

a parameter of the spatial correlation function,   ,
2

exp













 where    is the correlation 

coefficient between two kln  values separated by distance .  Smaller values of kln  imply a 

rapidly varying field, while larger values of kln  imply a more slowly varying field. While the 

mean and standard deviation of the random field can be relatively easily estimated using classical 

methods (see, e.g., Fenton and Griffiths 2008), estimation of the correlation length is generally 

not easily done unless an intensive site investigation has been conducted at the site. See Fenton 

(1999) for a more detailed discussion about the estimation of the correlation length. 

In this paper, the random hydraulic conductivity field is assumed to be isotropic and two-

dimensional as shown in Figure 1. 
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Figure 1: The two-dimensional random hydraulic conductivity field used in this paper 

 

This two-dimensional assumption is quite reasonable if the layer is thin relative to its planar area, 

as assumed in this paper. In the two-dimensional model assumed here, the effective hydraulic 

conductivity is assumed to be the local geometric average over the cell area. Fenton and Griffiths 

(1993), Dagan (1982) and Gutjhar et al. (1978) demonstrated that the geometric average was the 

best estimate of the effective hydraulic conductivity for relatively square flow regimes. Hence, 

both the estimated effective hydraulic conductivity, Gk
 
and the effective hydraulic conductivity, 

effk , of the random field are assumed here to be geometric averages of the sample and point-

hydraulic conductivities, respectively. Local averaging reduces the variance of the random field. 

The final variance depends on the area selected for local averaging, decreasing as the local 

averaging area increases (Fenton and Griffiths 2008).  

Fenton et al. (2015) related the sampling requirements for a QC program of cement-based S/S 

construction cells to the conductivity field statistics by performing probabilistic simulations. The 
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study examined the influence of correlation length, hydraulic conductivity mean and coefficient 

of variation on the probabilities of type I and II errors for a specific number of samples taken 

from a cement-based S/S construction cell during a QC program. Plots provided by Fenton et al. 

(2015) can be used to estimate the number of samples required to achieve target type I and type 

II error probabilities. The work presented in this paper is an extension of the work by Fenton et 

al. (2015). Analytical solutions are developed here to compute the probabilities of type I and II 

errors as a function of the number of samples taken and the statistics of the hydraulic 

conductivity field. These analytical solutions enable one to assess the sample size for the QC 

program of cement-based S/S construction cell required to achieve target type I and II error 

probabilities without the requirement for simulations. 

The analytical approximations to the probabilities of type I and II errors will be presented in the 

next section. 

Analytical Solutions for the Probabilities of Type I and Type II Errors 

As mentioned previously, random fields will be used in this paper to model the soil hydraulic 

conductivity field. The resulting fields can be used to derive the distribution of the effective 

hydraulic conductivity, conditioned on the samples taken from the field. The conditional 

distributions of the effective hydraulic conductivity, effk  and the estimated effective hydraulic 

conductivity, Gk  can in turn be determined analytically and used to estimate the probabilities of 

making type I or II errors in the approval decision process, leading to being able to determine the 

number of samples required to achieve target error probabilities. 

In the site modelling, the two-dimensional field is discretized into m  elements  

( ,yx mm  where xm  and ym  are the number of elements in the x  and y  directions, 
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respectively). Each element hydraulic conductivity is assumed to be the geometric average of the 

hydraulic conductivity over that element and assumed to be lognormally distributed (which it is 

if k  is lognormally distributed, as assumed).  

The probabilities of type I and II errors can then be mathematically formulated as follows: 

The probability of a type I error, 1p , is defined as 

[3]  criteffcritG kkkkp  P1   

while, the probability of a type II error, 2p , is, 

[4]  criteffcritG kkkkp  P2   

where Gk  and effk
 
are geometric averages defined as follows, 

[5] 












 


n

j

jG k
n

k
1

ln
1

exp   

[6]  













 



xx dk
YX

k

YX

eff ln
1

exp

 

 

In the above, 

n number of samples taken from the random field, 

jk hydraulic conductivity of the j th sampled element of the random field, 

X dimension of the cell in the x  direction, 

Y dimension of the cell in the y direction, and 

 xk hydraulic conductivity at spatial coordinate  yx xx ,x  

In Eq’s (3) and (4), both Gk
 
and effk

 
are lognormally distributed since k  is assumed to be 

lognormal, which means that Gkln , and effkln  are normally distributed with means 
Gkln and 
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effkln , respectively, standard deviations 
Gkln  and 

effkln , respectively, and covariance 

 effG k,k lnlnCov . In turn this means that Gkln
 

and effkln
 

follow a bivariate normal 

distribution,  ,,lnln srf
Geff kk  so that

 
the probabilities of type I and II errors become, 

[7]  drdssrfp
crit

crit

Geff

k

k

kk 






ln

ln

lnln1 , (7) 

[8]  drdssrfp

crit

crit

Geff

k

k

kk ,

ln

ln

lnln2  




 (8) 

where, 

[9]  
 

 














 22

22
lnln

lnln 2
12

1
exp

12

1
, vuvusrf

Geff

Geff

kk

kk 


 

 is the bivariate normal distribution with   ,lnln effeff kk σμru   

 
GG kk σμsv lnln  and   is the correlation coefficient between effkln  and 

Gkln . All other terms are as defined previously. The correlation coefficient,   

and the means and standard deviations of effkln
 
and Gkln  are defined in 

Appendix A. 

 

There is no closed form solution to the integral of the bivariate normal distribution (not to the 

univariate normal distribution, for that matter). An approximation proposed by Owen (1959) is 

used in this study to obtain the probabilities of type I and II errors defined by Eq’s (7) and (8), 

respectively. Let 

[10]  
 

  dudvvuvuwhB

h w

 
 















 22

22
2

12

1
exp

12

1
;, 


   

where   is defined above. An approximation to  ;, whB  is as follows (Owen 1959) 
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[11]          wh awTahTwhwhB ,,
2

1

2

1
;,    

if 0hw or if 0hw  and h  or 0w , and 

[12]          
2

1
,,

2

1

2

1
;,  wh awTahTwhwhB    

if 0hw  or if 0hw  and h  or 0w , 

where 

[13a] 
22 11 



 





h

w
ah   

[13b] 
22 11 



 





w

h
aw    

[14a]  
 

du
u

uh

ahT
ha

h ∫
0

2

22

1

1
2

1
exp

2

1
,
















  

[14b]  
 

dv
v

vw

awT
wa

w ∫
0

2

22

1

1
2

1
exp

2

1
,
















   

and   is the standard normal cumulative distribution function. 

Eq’s (14a) and (14b) are valid when 1ha
 
and 1wa . 

When 1ha ,  hahT ,  becomes 

[14c]           











h

hhhh
a

haThahhahahT
1

,
2

1

2

1
,   

Similarly, when 1wa ,  wawT ,
 
becomes 

[14d]           











w

wwww
a

waTwawwawawT
1

,
2

1

2

1
,   
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










h

h
a

haT
1

,

 

in Eq. (14c) can be found by replacing h  by hha
 
and ha

 
by 

ha

1

 

in Eq. (14a). 

Similarly, 











w

w
a

waT
1

,  in Eq. (14d) can be found by replacing w  by wwa
 
and wa

 
by 

wa

1
 in Eq. 

(14b). Eq’s (14a) and (14b) are solved in this paper using 16-point Gauss quadrature. 

Using Owen’s (1959) approximation to the bivariate normal probability, as presented above 

(Eq’s 11 and 12), the probability of a type I error, can be written as 

[15a]        wh awTahTwhp ,,
2

1

2

1
1    

if 0hw  or if 0hw  and h or 0w , and 

[15b]        
2

1
,,

2

1

2

1
1  wh awTahTwhp   

if 0hw  or if 0hw  and h  or 0w  

The probability of a type II error is 

[16a]        wh awTahThwp ,,
2

1

2

1
2    

if 0hw or if 0hw  and h  or 0w , and 

[16b]        
2

1
TT

2

1

2

1
2  wh aw,ah,hwp   

if 0hw  or if 0hw  and h  or 0w  

where 

[17a] 
G

G

k

kcritk
h

ln

lnln




   

[17b] 
eff

eff

k

kcritk
w

ln

lnln




   
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ha , wa ,  hahT , , and  wawT ,  have the same meanings as Eq’s (13a), (13b), (14a), and (14b), 

respectively. 

Derivations of Eq’s (15) and (16) are presented in Appendix B. 

The analysis presented above is for a two-dimensional hydraulic conductivity field as discussed 

above. If the layer thickness is not small relative to its planar area, the hydraulic conductivity 

field becomes three-dimensional. In order to extend the analysis to a three-dimensional case, the 

hydraulic conductivity field should be discretized into m  elements ,zyx mmm  where ,xm

ym  and 
zm  are the number of elements in the ,x  y  and z  directions, respectively. 

Consequently, to find the correlation coefficient,   and the means and standard deviations of 

effkln
 
and Gkln ,  the variance reduction function should then be determined over volume, rather 

than area. 

Verification 

The type of probabilistic analyses presented in the previous section can also be performed using 

simulation programs such as a modified version of the two-dimensional random finite element 

method (RFEM) program, mrflow2d, presented by Fenton et al. (2015). However, it requires 

significant time to complete a simulation for a set of statistical parameters. The advantage of the 

analytical approximations presented in this paper is that they enable one to quickly estimate the 

probabilities of type I and II errors for a specific number of samples and statistics of the random 

field. However, the analytical approximations given by Eq’s (15) and (16) need to be verified, 

which is done in this section by comparing to Monte Carlo simulations. Simulations are 



13 

 

erformed using a modified version of the two-dimensional random finite element method 

(RFEM) program, mrflow2d, following the method described by Fenton et al. (2015). 

For a 20 m×20 m random field, discretized into 256  xm ×256  ym  elements, parametric 

variations considered in the simulations are as presented in Table 1. These variations cover the 

‘worst case’ conditions of the parameters (Fenton et al. 2015). 

The field is sampled at equispaced locations in both directions. 

For all parameter sets considered (see Table 1), the probabilities of type I and II errors estimated 

via simulation are compared to those computed analytically using Eq’s (15) and (16), 

respectively, as illustrated in Figures 2 and 3, respectively. Excellent agreements are obtained 

 

Table 1: Parametric variations considered in the simulations 

Parameter Variation 

Normalized point-mean hydraulic 

conductivity, 
crit

k
k

k


   

0.5, 1.0, 1.2, and 1.5. 

Coefficient of variation, kkk    0.5, 1.0, and 2.0. 

Correlation length, kln  1 m, 3 m, and 10 m. 

Number of samples, n  1, 4, 25, and 100.  

 

between the theory and the simulation (which uses 5000 realizations) for both probabilities of 

type I and II errors for all parameter sets considered, indicating that the proposed analytical 
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solutions can be used to compute the probabilities of type I and type II errors with reasonable 

confidence. 

 

Figure 2: Comparison between the theory and simulation for the probability of a type I error 

 

 

Figure 3: Comparison between the theory and simulation for the probability of a type II error 
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The small discrepancies seen in Figures 2 and 3 are due to natural sampling variation. 

 

Procedure to Select Sample Size 

 
The analytical solutions presented in this paper to compute the probabilities of type I and II 

errors (i.e., Eq’s (15) and (16), respectively) can be used to estimate the sample size required for 

the QC program of cement-based S/S construction cell to achieve target type I and II error  

probabilities. The following steps can be taken to select the sample size, given the desired 

probabilities of type I and type II errors and the statistics of the random hydraulic conductivity 

field. 

1. For a specified k  
and k , compute 

2
lnk  and kln  using Eq’s (A4) and (A3), 

respectively. 

2. Compute      YXYXk  ,ln , where  X  and  Y  can be computed using 

Eq.(A6). Then compute 
effk  and 

effk  using Eq’s (A1) and (A2), respectively. 

3. Compute 
effkln  

 
and 

effkln
 
using Eq’s (A8) and (A7), respectively. 

4. Choose a specific sample size and compute 
Gkln  and 

Gkln  using Eq’s (A9) and (A10), 

respectively. Computation of 
Gkln  requires computations of the variance reduction 

function over the element,      yxyxk   ,ln , where x  and y  are the 

dimensions of the element in the x  and y  directions, respectively, and where 
 
 x   is 

obtained using Eq. (A6), replacing X  by x . Compute  y  in a similar manner. 
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5. Compute ρ  using Eq. (A12).  

6. Compute h , w , ha , and wa
 
using Eq’s (17a), (17b), (13a), and (13b), respectively. 

When 1ha , compute  hahT ,
 
using Eq. (14a), and when 1ha , compute  hahT ,

 

using Eq. (14c). Similarly, compute  wawT ,  using Eq’s (14b) and (14d), when 1wa , 

and 1wa , respectively. Solve Eq’s (14a) and (14b) using 16-point Gauss quadrature. 

7. Compute the probabilities of a type I  1p  and a type II  2p  error using Eq’s (15) and 

(16), respectively. 

8. If the computed probabilities of both type I and type II errors are approximately equal to 

or just less than the target values, then the chosen sample size is the required sample size. 

Otherwise, choose another sample size and repeat steps 1-7 until target probabilities are 

satisfied for both type I and type II errors. 

Application of the Proposed Method 

In order to illustrate the application of the method, an example construction cell of size 22 m×22 

m×1 m is considered. A construction cell size of 22 m×22 m×1 m (volume of 484 m3) is chosen 

for the example in this section, because 1 sample over this construction cell volume closely 

corresponds to the current sampling requirements specified by the USACE (2000) for cement-

based S/S material (i.e., 1 sample for every 500 m3 of cement-based S/S material). The example 

construction cell is discretized into 320×320 elements. The hydraulic conductivity coefficient of 

variation is assumed to be 2.0 (typical for silty clay, according to Willardson and Hurst 1965) 

and the correlation length considered is 22m (the “worst case” correlation length suggested by 

Liza (2014)). Since the mean is unknown prior to the QC program, the mean considered for this 
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example is varied over values 0.1, 0.9, 1.0, 1.1, and 10.0 times the regulatory value. The type I 

and II error probabilities are computed for the number of samples of 1, 4, 9, 25, 49, and 100 

using the analytical solutions presented in this paper (i.e. , Eq’s (15) and (16) , respectively). 

Figures 4 and 5 show computed probabilities of type I and type II errors, respectively, for this 

example case. The figures indicate that for a target probability for both type I and II errors of 5%, 

the QC sampling requirement for this example case is n 25 when the mean hydraulic 

conductivity is 0.9, 1.0, or 1.1 times the regulatory value (governed by the probability of a type II 

error, Figure 5). Thus, the USACE (2000) sampling requirement of a cement-based S/S 

construction cell in this example (i.e., 1 sample) is unconservative and yields greater than 5% 

probability of a type II error for this example construction cell when mean hydraulic 

conductivities are at or close to the regulatory value (i.e., 0.9, 1.0, and 1.1 times the regulatory 

value) as shown in Figures 4 and 5. 

 

Figure 4: Probability of a type I error for the example case 
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Figure 5: Probability of a type II error for the example case 

 

Using the Proposed Method to Obtain QC Sample Size: An Example 

 

Consider a cement-based S/S construction cell that has a plan area of 10 m×10 m. The mean 

hydraulic conductivity of the proposed cell is required to be less than 1×10-8 m/s, which is the 

regulatory requirement. It is desired to determine the number of samples required to achieve less 

than a 5% probability for both type I and II errors. 

Assume that the hydraulic conductivity coefficient of variation is 1.0 and that the correlation 

length is 3 m in all directions. Assume further that the actual mean hydraulic conductivity is 

1×10-8 m/s under the null hypothesis, since this is the hardest case to reject. The 10 m×10 m cell 

is divided into 160×160 elements, each of size 0.0625 m×0.0625 m. Assuming only one sample 

is taken from the centre of the 10 m×10 m cell, the following computations are performed. 

The variance and mean of log- k  are as follows: 
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        11ln   

                                                                          = 0.6931 

       

2
lnln

2

1
ln kkk    

                              
   6931.0

2

1
101ln 8    

                                                                          = 7672.18  

Using      YXYXk  ,ln , where 10YX m, and  







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
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2

2 lnln
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k
XX

X
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


 , 

and similarly for  Y , the variance reduction function over the cell is computed to be 0.0650. 

Similarly, the variance reduction function over the element,  yxk  ,ln , where  yx

0.0625 m, is computed to be 0.9727. 

The mean and standard deviation of the effective hydraulic conductivity, effk  of the field can be 

computed to be, 

 








 2
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2

1
exp kkkk YX
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
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


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2

1
7672.18exp  
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   1,exp ln
2
ln

2  YXkkkk effeff
  

                                                        
       10650.06931.0exp102323.7

29  
 

                                                        
9105532.1   

The standard deviation and mean of log- effk can be computed to be,  
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   29 2123.0

2

1
102323.7ln    

                                                                    = 7372.18  

The mean and standard deviation of log- Gk  can be computed as follows: 

7672.18lnln  kkG
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    09660.06931.01
1

1
2

  

                                        = 8211.0  

Since only one sample is taken from the cell, the variance reduction is only for averaging within 

the sample. 

Using  
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correlation coefficient between effkln  and Gkln
 
can be computed to be 0.3328. 

hawh ,, , and wa
 
are computed as follows: 
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                                                               = 0786.0  

Since 1ha ,  hahT ,
 
can be computed using 
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
, is computed using 16-point Gauss quadrature to 

be 0.0115. 
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Similarly, using 16-point Gauss quadrature,  
 
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v
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awT
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  

is computed 

to be 0033.0 . 

The probabilities of a type I  1p  and a type II  2p  error are thus computed to be, 

       wh awTahTwhp ,,
2

1

2

1
1   

                 
    0033.01659.06320.1

2

1
4220.0

2

1
  

                                                 = 0.0201 

       wh awTahThwp ,,
2

1

2

1
2   

                                                 
    0033.01659.04220.0

2

1
6320.1

2

1
  

                                                 = 0.3052 

Since the computed probability of a type II error (30.52%) is greater than the target value (5%), 

the sample size of 1n  is not acceptable. The probabilities of type I and II errors are further 

computed for n  4, 9, 16, 25, and 49, where the samples are located at equal spacing in both of 

the x  and y  directions, in Table 2. Table 2 shows that both type I and II error probabilities are 

less than 5% when the number of samples is 49, implying that n  49 is the required number of 

samples for this example case.  
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Table 2: The probabilities of type I  1p  and type II  2p  errors for kμ 1×10-8 m/s, kν 1.0, 

kθ 3 m, and varying n  

 

n  
k 3 m 

1p  2p  

1 0.0201 0.3052 

4 0.0162 0.1889 

9 0.0136 0.1240 

16 0.0119 0.0883 

25 0.0095 0.0640 

49 0.0080 0.0437 

 

 

Summary 

 
In this paper, an analytical approach is proposed to estimate the sample size, for the QC program 

of a cement-based S/S construction cell, required to achieve target type I and II error 

probabilities for the hypothesis test considered in this study. The analytical solutions developed 

are functions of the number of samples taken and the statistics of the hydraulic conductivity 

field. For a range of parameter sets, the analytically computed probabilities of type I and II errors 

are compared to those estimated via probabilistic simulations with excellent agreement, allowing 

the probabilities of a type I and a type II error to be computed analytically with reasonable 

confidence and used to develop rational sampling requirements for the QC program of 
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construction cell.  An example has been presented to illustrate how the proposed method can be 

used in practice to assess required QC sample size of cement-based S/S construction cell. 
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List of Symbols 

 

The following symbols are used in this paper: 

 

A  = Construction cell area perpendicular to flow i.e., 1Y  

h  = Standardization of critk  with respect to Gk  

oH  = Null hypothesis 

aH  = Alternative hypothesis 

i  = Hydraulic gradient in the x  direction of the construction cell 

critk  = Regulatory hydraulic conductivity 

effk  = Effective hydraulic conductivity 

Gk  = Estimated effective hydraulic conductivity 

ik  = Hydraulic conductivity of the  i th element 

jk  = Hydraulic conductivity of the  j th sample 

k  = Hydraulic conductivity field 

kln  = Log-hydraulic conductivity field 

critkln

 

= Log-regulatory hydraulic conductivity 

effkln

 

= Log-effective hydraulic conductivity 

Gkln  = Log-estimated effective hydraulic conductivity 

m  = Number of elements in the random field 

xm  = Number of elements in the x  direction of the random field 

ym  = Number of elements in the y  direction of the random field 
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n  = Number of samples 

1p  = Probability of a type I error 

2p  = Probability of a type II error 

Q  = Total flow through the construction cell 

r  = Dummy variable of integration 

s  = Dummy variable of integration 

w  = Standardization of critk  with respect to effk  

X  = Planar dimension of the construction cell in the x  direction 

x  = Planar dimension of the element in the x  direction 

Y  = Planar dimension of the construction cell in the y  direction 

y  = Planar dimension of the element in the y  direction 

kln  = Correlation length of the kln  random field 

k  = Mean of the hydraulic conductivity field 

'
k  = Normalized mean of the hydraulic conductivity field 

kln  = Mean of the log-hydraulic conductivity field, kln  

Gkμln  = Mean of the log-estimated effective hydraulic conductivity, Gkln  

effkμln

 

= Mean of the log-effective hydraulic conductivity, effkln  

kln  = Standard deviation of the log-hydraulic conductivity field, kln  

Gkln  = Standard deviation of the log-estimated effective hydraulic conductivity, Gkln  

effkln

 

= Standard deviation of the log-effective hydraulic conductivity, effkln  

k  = Standard deviation of the hydraulic conductivity field 

k  = Coefficient of variation of the hydraulic conductivity field 

ρ  = Correlation coefficient between Gkln  and effkln  

kρln  = Correlation coefficient between two points in the kln  random field 

kln  = Variance reduction function when kln  is averaged over some volume 
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  = Same as kln  

  =

  

Distance between two points in the random field 

  = Cumulative distribution function of the standard normal variate 

 

Appendix A 

Statistics of a Geometric Average 

Assuming a Markovian correlation structure (Vanmarcke 1984) with a separable correlation 

function (a product of directional correlation functions) and correspondingly a separable variance 

reduction function, the mean and standard deviation of the effective hydraulic conductivity of the 

S/S construction cell , effk , can be calculated as, 
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and similarly for  Y  and 
k

k
k




   is the coefficient of variation of point-scale hydraulic 

conductivity.  

The mean and standard deviation of effkln  can be computed as, 
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is the coefficient of variation of the effective hydraulic conductivity. 

Assuming Gk
 
to be the geometric average of n  sample hydraulic conductivities, the mean and 

standard deviation of the logarithm of the estimated effective hydraulic conductivity, Gk , can be 

calculated as, 

[A9] kk μμ
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where x  and y  are the averaging dimensions of the sample and  iyixi xx ,x
 
are the spatial 

coordinate of the center of the i th sample. A Markovian correlation structure with a separable 

correlation function (which is a product of directional correlation functions) and isotropic 

correlation lengths is assumed here, as follows, 
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[A11]      kjyiykjxixjik xxxx lnlnln 2exp2exp   xx   

Note that Eq. A10 is an approximation, as is Eq. A 12 below, since the correlation coefficient 

between local averages has been approximated by the correlation coefficient between the centers 

of the samples in Eq. A 11. However, for values of x  and y  small relative to the correlation 

length, the approximation is quite accurate. 

The correlation coefficient between effkln
 
and Gkln ,   is given by, 
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where xm
 
and ym

 
are the number of elements in the x  and y  directions, respectively, such that 

mmm yx   where m is the number of elements in the random field. 

Appendix B 

Derivations of Error Probabilities Using Owen’s (1959) Approximation 

Let  srf
Geff kk ,lnln

 
be the bivariate normal probability density function of random variables 

effkln  and Gkln ,  sf
Gkln  be the marginal probability density function of ,ln Gk
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approximation to the bivariate normal probability (see Eq’s 11 and 12). 
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Then, the probability of a type I error,  criteffcritG kkkkp lnlnlnlnP1  , is,  

 drdssrfp
crit

crit

Geff

k

k

kk 






ln

ln

lnln1 ,  

        dsdrsrfsf
crit crit

GeffG

k k

kkk 
  













ln ln

lnlnln ,  

     drdssrf
k crit crit

Geff

G

G

k k

kk

k

kcrit

 
 














 


ln ln

lnln

ln

ln
,

ln




 

      

 
 

drds

vuvu
k crit crit

Geff
G

G

k k

kkk

kcrit

 
 










































 


ln ln

22

22
lnlnln

ln
2

12

1
exp

12

1ln






 

    

 
 

dudv

vuvu
k Gk

Gkcrit

keff

keffcrit

G

G

k k

k

kcrit

 







 








































 


ln

ln

ln

lnln ln

22

22
ln

ln
2

12

1
exp

12

1ln













 

     
 

  dudvvuvuh

h w

 
  




























 22

22
2

12

1
exp

12

1


  

       ;, whBh 

 

             







 wh awTahTwhh ,,

2

1

2

1
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In a similar manner, the probability of a type II error,  criteffcritG kkkkp lnlnlnlnP2   can 

be derived to be 
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[B2]        wh awTahThwp ,,
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The above expressions for the probabilities of type I and type II errors are valid if 0hw or if 

0hw  and h  or 0w . If 0hw  or if 0hw  and h  or 0w , the probabilities of type I and 

type II errors are as follows 
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List of Symbols 

 

The following symbols are used in Appendices: 

 

h  = Standardization of critk  with respect to Gk  

effk  = Effective hydraulic conductivity 

Gk  = Estimated effective hydraulic conductivity 

critkln

 

= Log-regulatory hydraulic conductivity 

effkln

 

= Log-effective hydraulic conductivity 

Gkln  = Log-estimated effective hydraulic conductivity 

m  = Number of elements in the random field 

xm  = Number of elements in the x  direction of the random field 

ym  = Number of elements in the y  direction of the random field 

n  = Number of samples 
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1p  = Probability of a type I error 

2p  = Probability of a type II error 

r  = Dummy variable of integration 

s  = Dummy variable of integration 

w  = Standardization of critk  with respect to effk  

X  = Planar dimension of the construction cell in the x  direction 

x  = Planar dimension of the element in the x  direction 

Y  = Planar dimension of the construction cell in the y  direction 

y  = Planar dimension of the element in the y  direction 

kln  = Correlation length of the kln  random field 

k  = Mean of the hydraulic conductivity field 

effkμ  = Mean of the effective hydraulic conductivity 

kln  = Mean of the log-hydraulic conductivity field, kln  

Gkμln  = Mean of the log-estimated effective hydraulic conductivity, Gkln  

effkμln

 

= Mean of the log-effective hydraulic conductivity, effkln  

k  = Standard deviation of the hydraulic conductivity field 

effkσ  = Standard deviation of the effective hydraulic conductivity  

kln  = Standard deviation of the log-hydraulic conductivity field, kln  

Gkln  = Standard deviation of the log-estimated effective hydraulic conductivity, Gkln  

effkln

 

= Standard deviation of the log-effective hydraulic conductivity, effkln  

k  = Coefficient of variation of the hydraulic conductivity field 

effkν  = Coefficient of variation of the effective hydraulic conductivity 

ρ  = Correlation coefficient between Gkln  and effkln  

kρln  = Correlation coefficient between two points in the kln  random field 
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kln  = Variance reduction function when kln  is averaged over some volume 

  = Same as kln  

  = Cumulative distribution function of the standard normal variate 

1  


