
ENSEMBLE LEARNING FOR VISUAL RECOGNITION

by

Mohammad Ali Bagheri

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

July 2016

c© Copyright by Mohammad Ali Bagheri, 2016

To the memory of my father (1931-2002) and my mother (1935-2015).

ii

Table of Contents

List of Tables . vii

List of Figures . ix

Abstract . xii

List of Abbreviation Used . xiii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Research Contributions . 4

1.3 A Discussion on Deep Neural Networks for Action Classification . . . 5

1.4 Outline of the Thesis . 6

Chapter 2 A Unifying Framework for Ensemble Classification . . 8

2.1 Introduction . 8

2.2 The Unifying Ensemble Classification Framework 10

2.3 Subsample Approach . 11

2.4 Subspace Approach . 13

2.5 Subclass Approach . 14

2.6 Learner Manipulation Approach . 15

2.7 Combination Based Approaches . 16

2.8 Summary . 18

Chapter 3 Generic Subclass Ensemble Classification 19

3.1 Introduction . 19

3.2 The Generic Subclass Approach . 20
3.2.1 Training phase . 20
3.2.2 Testing phase . 20

iii

3.3 Three Methods Based on the Generic Subclass Approach 21
3.3.1 Exhaustive decomposition . 21
3.3.2 Decomposition based on a hierarchical clustering of class space 22
3.3.3 Two methods based on hierarchical class partitioning 23

3.4 Experiments . 24
3.4.1 Experimental settings . 24
3.4.2 Experimental results . 26
3.4.3 Analyzing the effect of ensemble size 30

3.5 Summary . 31

Chapter 4 A Genetic-based Subspace Analysis Method for Improv-
ing Error-Correcting Output Coding 35

4.1 Introduction . 35

4.2 Error Correcting Output Codes . 38
4.2.1 ECOC overview . 39
4.2.2 Coding designs . 40

4.3 Genetic Algorithm-based Subspace ECOC (GA-SS-ECOC) 42
4.3.1 Subspace ECOC . 42
4.3.2 Improving the subspace ECOC coding by GA 43

4.4 Experimental Comparison Over Benchmark Datasets 45
4.4.1 Experimental settings . 46
4.4.2 Experimental results . 48

4.5 Machine Vision Applications . 51
4.5.1 Shape categorization . 51
4.5.2 Logo recognition . 52
4.5.3 Noise models . 52
4.5.4 Feature extraction . 53
4.5.5 Experimental results and analysis 54

4.6 Summary . 56

Chapter 5 A Framework of Multi-Classifier Fusion for Human Ac-
tion Recognition . 57

5.1 Introduction . 57

5.2 Related work . 58
5.2.1 Activity recognition using color images 59
5.2.2 Activity recognition using depth and skeleton data 60

iv

5.3 Action Recognition Problems . 63

5.4 Action Learning Techniques . 65

5.5 Experiments . 70
5.5.1 Classification by individual learners 70
5.5.2 Improving the recognition rate by the Dempster-Shafer fusion

of individual learners . 74

5.6 Summary . 79

Chapter 6 Support Vector Machines with Time Series Distance Ker-
nels for Action Classification 80

6.1 Introduction . 80

6.2 Related Work . 81
6.2.1 Longest Common Subsequence (LCSS) 81
6.2.2 Dynamic Time Warping (DTW) 82

6.3 Time Series based Kernel SVM . 83
6.3.1 Kernel from pairwise data . 84
6.3.2 Classifier fusion . 86

6.4 Experiments . 86
6.4.1 Datasets . 86
6.4.2 Classification results . 88

6.5 Summary . 89

Chapter 7 Locality Regularized Group Sparse Coding for Action
Recognition . 91

7.1 Introduction . 91

7.2 Related Work . 94

7.3 Locality Regularized Group Sparse Coding 96

7.4 Experiments . 100
7.4.1 Datasets . 100
7.4.2 Feature extraction . 101
7.4.3 Temporal pyramid matching 101
7.4.4 Dictionary learning . 102
7.4.5 Parameter settings . 103
7.4.6 Classification results . 103
7.4.7 Comparison of the running time 105

v

7.5 Summary . 106

Chapter 8 Conclusion and Future Work 107

8.1 Summary . 107

8.2 Future Directions . 109
8.2.1 Investigating deep features . 110
8.2.2 Exploiting the RGB-D data 110
8.2.3 Continuous action recognition 110

Bibliography . 111

Appendix A Proof of the maximum number of dichotomizers in dense
and sparse ECOC . 126

vi

List of Tables

3.1 An example of a class decomposition matrix in the generic sub-
class approach. 20

3.2 An example of an exhaustive coding matrix for a six class problem. 22

3.3 An example of an equidistant coding matrix for a six class problem. 22

3.4 Summary of the datasets used. 25

3.5 Classification accuracies of different ensemble methods using MLP
neural network as the base learner. 26

3.6 Statistical comparison of the different ensemble methods using
the Wilcoxon sign rank test. 29

4.1 An example of an ECOC matrix. 39

4.2 Summary of the datasets used. 47

4.3 Classification accuracies of different methods using CART. . . . 48

4.4 Classification accuracies of different methods using MLP. . . . 49

5.1 Classification accuracy of individual action learning techniques
on the Chalearn gesture dataset. 71

5.2 Classification accuracy of individual action learning techniques
on the MSRAction3D dataset. 71

5.3 Classification accuracy of single and fused classifiers on the Chalearn
and MSRAction3D datasets. 77

5.4 Comparing classification accuracy of our ensemble framework
with the state-of-the-art methods on the MSRAction3D dataset. 79

6.1 Classification accuracy of different learning strategies on the
Chalearn gesture dataset. 89

6.2 Classification accuracy of different learning strategies on the
MSRAction3D dataset. 89

6.3 Classification accuracy of different learning strategies on the
CAD-60 dataset. 90

vii

6.4 Comparing classification accuracy of our methodology with the
state-of-the-art methods on the MSRAction3D and CAD-60 datasets. 90

7.1 Classification accuracy of different encoding methods on each
dataset. 103

7.2 Comparing the classification accuracy of our methodology with
the state-of-the-art methods on MSRAction3D and CAD-60 datasets.104

viii

List of Figures

2.1 The proposed unifying ensemble classification framework. . . . 11

3.1 An example of class partitioning using the hierarchical cluster-
ing technique; (a) class partitioning at different clustering level;
(b). Class partitioning under each internal node. 24

3.2 Statistical comparison of the results using the Nemenyi test. . 28

3.3 The relative accuracy of different ensemble methods compared
to the Subclass.Equidistant method. 30

3.4 Accuracy of ensemble classification methods versus the ensem-
ble size. 32

3.4 Accuracy of ensemble classification methods versus the ensem-
ble size (Cont.) . 33

4.1 The Subspace ECOC approach. 43

4.2 A possible encoding of a problem with three dichotomizers,
three classes, and four features. 44

4.3 A schematic representation of the cross-over operation in GA-
SS-ECOC. 46

4.4 The comparison results of rival methods based on the Nemenyi
test. 50

4.5 Some examples of shapes in the MPEG7 dataset. 51

4.6 Some examples of logos in the database used in our experiments. 52

4.7 The framework of logo recognition process. 52

4.8 Examples of noisy logo patterns derived by applying the Gaus-
sian and spot noise model. 53

4.9 Average accuracy of different class binarization methods on the
MPEG7 dataset. 55

4.10 Average accuracy of different class binarization methods on the
Logo dataset. 55

ix

5.1 Timeline of outstanding research studies in the field of human
activity analysis. 61

5.2 Taxonomy of applications of Kinect in vision problems [64]. . . 62

5.3 Different data modalities of the Chalearn dataset. 63

5.4 Some example gestures in the Chaleran dataset that are very
easy confuse . 64

5.5 Example frames and the corresponding skeleton joints of 20
actions of MSRAction3D dataset. 65

5.6 Sequences of frame images showing cheduepalle (top) and basta
(bottom) gestures. 69

5.7 Confusion matrices of individual classifiers trained with differ-
ent methods on the Chalearn dataset. 72

5.8 Confusion matrices of individual classifiers trained with differ-
ent methods on the MSRAction3D dataset. 73

5.9 Average execution times of different action learning methods. . 74

5.10 The framework of the proposed action classification system based
on the Dempster-Shafer fusion of multiple classifiers. 77

5.11 Confusion matrices of the ensemble classification system on the
Chalearn (top) and MSRAction3D datasets (bottom). 78

6.1 Matching within δ in time and ε in space. Everything outside
the bounding envelope can never be matched (Reprinted from
[59]). 81

6.2 The framework of the proposed Time Series based Kernel SVM 83

6.3 Examples of depth maps from the CAD-60 dataset. 87

7.1 Number of codewords used to encode the skeleton-based de-
scriptors of the first sample of MSRAction3D dataset [95]; the
encoding is performed with regular Lasso [102]. 93

7.2 With TPM, the final feature vector of a sample is obtained by
concatenating the encoded features at different levels. 102

7.3 Confusion matrices of the classification system on the MSRAc-
tion3D dataset (left) and CAD-60 dataset (right). 104

x

7.4 The relative running time of the implementation in [15] com-
pared to our proposed ADMM framework. 105

xi

Abstract

Due to the widespread availability of affordable mobile cameras and popularity of

social networking, a large variety of visual-based applications are emerging. These di-

verse applications have attracted many researchers and high-profile companies around

the world, and led to the development of a wide range of approaches for visual content

analysis. In the last two decades, a large number of methodologies have been proposed

for enhanced classification of images and videos.However, the potential improvement

in visual data classification through classifier fusion by ensemble-based methods has

remained relatively unstudied.

In this dissertation, we present new ensemble classification models and propose the

employment of such models for some challenging visual recognition tasks, including

both image classification and human action recognition.

First, we present a unifying framework for multiple classifier systems, which unites

most classification methods by an ensemble of classifiers. Following this perspective,

we propose a new general approach to ensemble classification, named generic subclass

ensemble. Then, we focus on the subclass approach, specifically on Error Correcting

Output Codes (ECOC). We propose a subspace approach to ECOC by defining a

3D-ECOC matrix, where the third dimension corresponds to the feature space. Also,

Genetic Algorithm is employed for a highly discriminative design of an application-

dependent subspace ECOC.

Then, the ensemble approach is utilized for action recognition using depth data;

and present three new methods that improve the classification of depth-based action

videos. First, we address two action recognition problems using skeleton data; and

propose the use of an ensemble framework based on the Dempster-Shafer fusion of

classifiers. In the second method, a new class of SVM that is applicable to trajectory

classification, such as action recognition, is developed by incorporating two efficient

time-series distances measures into the kernel function. The third method is based on

the well-known Bag of Visual Words (BoVW) framework: we propose a new coding

algorithm by jointly encoding the set of local descriptors of each sample and consider-

ing the locality structure of descriptors. In this model, two classifiers are trained using

both skeleton and depth feature sets, and then combined. Experimental comparison

of the proposed methodologies shows the superiority of our methods compared to the

state-of-the-art.

xii

List of Abbreviation Used

ADMM Alternating Direction Method of Multipliers

BoVW Bag of Visual Words

ECOC Error Correcting Output Codes

DMM Depth Motion Maps

DT Decision Tree

DTW Dynamic Time Warping

DS Dempster Shafer

DWT Discrete Wavelet Transform

kNN k-Nearest Neighbor

LCSS Longest Common Subsequence

GA Genetic Algorithm

OVA One-versus-All

OVO One-versus-One

RSM Random Subspace Method

ppfSVM pairwise proximity function SVM

PSD Positive Semi Definite

SC Sparse Coding

SPM Spatial Pyramid Matching

SVM Support Vector Machine

xiii

Acknowledgements

I am grateful to many people that made this work possible. First, I would like to thank

my supervisor, Dr. Qigang Gao. Since my educational background was in the field

of Industrial Engineering, I had very slow progress in the first two years of my PhD

program. Also, due to some family reasons, I had to come back to my hometown for

about two years in the last five years. During all these years, his patient guidance and

life-giving advice always enlightened my path and supported me to solve bottlenecks.

I truly owe all my research achievements to him. I am also indebted that he gave me

all the freedom and resources to develop my skills as a researcher. More importantly,

I learned a lot from him on how to become a good researcher and a good man for my

family.

I am also thankful to my co-supervisor, Dr. Sergio Escalera, for his kind help in

various aspects of my research. His strong passion for scientific research and broad

knowledge in different areas really helped me throughout my thesis. I never forgot

his encouraging and supportive advice.

I would also like to thank the great people on my committee, Dr. Milios, Dr.

Brooks, Dr. Reilly, and Dr. Zelek. I am also grateful to Dr. Milios and Dr. Thomas

Trappenberg, for their kind welcoming in their research groups. I enjoyed many

conversations and discussions that have had a tremendous impact on my research.

I learned a lot from former and current members of the IPAMI Lab. I want

to specially thank Gang Hu and Elham Etemad for their kind help and wonderful

research comments they provided. A number of wonderful friends have also helped

me throughout this effort: Ali, Maliheh, Mahdi, Zahra, Ali and Maryam were my

first friends at Dalhousie and I never forget them, although I have not seen them for

a long time. I also thank my new friends at Dalhousie: Maryam, Reza, Babak, Vahid,

Mohammad Hossein, and Ehsan.

Finally, I would like to thank Fatemeh for her love and support and for being

there for me.

xiv

Chapter 1

Introduction

1.1 Motivation

Due to the widespread availability of affordable mobile cameras and popularity of so-

cial networking, a large variety of visual-based applications is increasingly emerging.

These diverse applications have attracted many researchers and high-profile compa-

nies all around the world, and led to the development of a wide range of approaches

for visual content analysis.

In the last two decades, a large number of methodologies have been proposed

for enhanced classification of images and videos and the performances of different im-

age/video representation and recognition algorithms have been studied by a number of

researchers. However, the potential improvement in visual data classification through

classifier fusion by ensemble-based methods has relatively remained unstudied.

This dissertation presents new ensemble classification models and proposes the

employment of such models for a challenging visual application: human action recog-

nition. An ensemble classification model, also known as a multiple classification

system, is made up of a committee of individual classifiers whose outputs are com-

bined in some way to obtain a final classification decision. In this model, it is hoped

that each base classifier will focus on different aspects of the data and will err under

different situations [123, 186]. By combining a set of base classifiers, the combined

efficiency of the ensemble of classifiers can compensate for a deficiency in another

classifier.

In this dissertation, we first present a unifying framework for multiple classi-

fier systems, which unites most classification methods by an ensemble of classifiers.

Specifically, we link two research lines in machine learning: multiclass classification

based on the class binarization techniques and the strategies of ensemble classifica-

tion. With the proposed framework, the various ensemble classification strategies are

broadly categorized into four main groups, which are subsample, subspace, subclass,

1

2

and learner manipulation approaches. Following this perspective, we propose a new

general approach to ensemble classification, named generic subclass ensemble. In this

method, each base classifier is trained with data belonging to a subset of classes, and

thus discriminates among a subset of target categories. The ensemble classifiers are

then fused using a combination rule.

Then, we focus on the subclass approach, specifically on Error Correcting Output

Codes (ECOC). Two key factors affecting the performance of ECOC are indepen-

dence and accuracy of binary classifiers. Here, we propose a subspace approach to

the ECOC framework by simultaneously considering the class samples and features of

a given multiclass problem. Also, a Genetic Algorithm-based technique is employed

for the optimal design of an application-dependent subspace ECOC. The proposed

method takes advantage of some basic concepts of ensemble classification, such as

diversity of classifiers. By taking into account the problem domain, this method also

benefits from the evolutionary approach for optimizing the three-dimensional code-

matrix. The experimental results using a set of UCI benchmark datasets as well as

two image recognition problems, including logo recognition and shape categorization,

show advanced performance of the method in terms of classification accuracy.

The ensemble model is then utilized for a visual classification application. More

specifically, the recent release of the Microsoft Kinect camera in late 2011 [81] and an

emerging wide range of applications inspired us to employ the ensemble-based models

for classification of actions using depth cameras.

We present three new methods that improve the recognition of depth-based ac-

tion videos. First, we address two action recognition problems using skeleton joint

information. We argue that there is a potential improvement in classification through

classifier fusion by ensemble-based methods. The underlying rationale of the fusion

approach is two folds. First, different learners employ varying structures of input

descriptors/features to be trained. These varying structures cannot be attached and

used by a single learner. Second, in an ensemble classification system, the combined

efficiency of multiple classifiers can compensate for a deficiency in another classifier.

Thus, combining the outputs of several learners can reduce the risk of an unfortunate

selection of a poorly performing learner. This leads to having a more robust and

general-applicable framework. Motivated by this, we aim to employ different learners

3

and efficiently fuse them. To this end, we propose the use of the Dempster-Shafer

fusion method to effectively combine the outputs of different learners, taking into ac-

count the characteristic of a given test action and the behavior of ensemble learners

in similar cases.

In the context of action recognition using skeleton data, trajectories of skeleton

joints are visual salient points of human body, and their movements in 4D space re-

flect motion semantics. From the classification point of view, these trajectories may

be considered as multi-dimensional time series. The traditional recognition technique

in the literature is based on time series dis(similarity) measures, such as Dynamic

Time Warping. For these general dis(similarity) measures, k -nearest neighbor al-

gorithms are a natural choice. In general, the k -NN classification algorithms work

reasonably well, but are known to be sensitive to noise and outliers. Since SVM often

outperforms k -NN on many practical classification problems where a natural choice of

positive semidefinite (PSD) kernels exists, it is desirable to extend the applicability of

kernel SVMs. In our action classification problem, time series distance measures are

generally non-PSD kernels and basic SVM formulations are not directly applicable.

To include non-PSD kernels in SVMs, several ad-hoc strategies have been proposed.

The straightforward strategy is to simply overlook the fact that the kernel should be

non-PSD. In this case, the existence of a Reproducing Kernel Hilbert Space is not

guaranteed [142] and it is no longer clear what is going to be optimized. Another

strategy is based on pairwise proximity function SVM (ppfSVM) [60]. This strat-

egy involves the construction of a set of inputs such that each sample is represented

with its dis(similarity) to all other samples in the dataset. In this dissertation, we

investigate the effectiveness of this strategy for human action classification when the

pairwise similarities are based on time-series distances measures. More specifically,

we demonstrate the effectiveness of two trajectory-based distances measures - includ-

ing Longest Common Subsequence (LCSS) and Dynamic Time Warping (DTW) as

well as their derivatives - as SVM kernel functions. Four SVMs are trained with four

different types of kernels and finally fused at the classification stage.

Based on the well-known Bag of Visual Words (BoVW) models, we also propose

a new feature coding algorithm by jointly encoding the set of local descriptors of

each sample and considering the locality structure of descriptors. In order to utilize

4

the information of both depth and skeleton data, we employed two different feature

extraction methods: skeleton position and Depth Motion Maps (DMM). These two

sets of features are finally fused at the classification level. To efficiently implement

our proposed method, we consider the Alternating Direction Method of Multipliers

(ADMM) framework, which results in quadratic complexity in the problem size. The

proposed method is then employed for our action recognition problem by depth cam-

eras. In this model, two classifiers are trained using both skeleton and depth feature

sets. These classifiers are then combined in order to reach a higher level of prediction.

1.2 Research Contributions

Our contributions in this work can be summarized as follows:

• We present a unifying framework for multiple classifier systems that unites most

classification methods by an ensemble of classifiers. The proposed framework is

unique in a sense that it links two research lines in machine learning: multiclass

classification based on the class binarization techniques and the strategies of

ensemble classification.

• We present a new general approach to ensemble classification, named Generic

Subclass Ensemble. The proposed approach differs from existing methods that

manipulate the target attribute, since in our approach individual classification

problems are not restricted to two-class problems. In light of this approach,

class binarization techniques are considered special cases of the generic subclass

ensemble approach.

• We propose an evolutionary algorithm-based approach to the design of an

application-dependent codematrix in the ECOC framework, named GA-SS-

ECOC. The proposed method aims to decompose the original problem into

a set of binary problems, considering the class samples and features simultane-

ously. We also present the applications of GA-SS-ECOC in two machine vision

domains: image and action recognition.

• We present an ensemble classification framework to address the action recogni-

tion problem. We designed a model that consists of a set of classifiers, each one

5

trained over different feature sets. The individual classifier outputs are then

efficiently combined by means of the Dempster-Shafer fusion method, taking

benefit from diversity of base classifiers trained on different sources of informa-

tion.

We also introduce two fast action representation techniques, using only the

skeleton joints’ position during the time. The advantages of our methods are

that: 1) They will generate a fixed size feature vector for an action, that may

vary in time based on the action and subject that performs the action. Thus,

they can be used as an input for any type of classifier, 2) The proposed rep-

resentation techniques are relatively very fast. Thus, they are computationally

very efficient for real time applications.

• A new class of Support Vector Machines that is applicable to trajectory classi-

fication, such as action recognition, is developed by incorporating two efficient

time-series distance measures into the kernel function. Dynamic Time Warping

and Longest Common Subsequence distance measures along with their deriva-

tives are employed as the SVM kernel. In addition, the pairwise proximity

learning strategy is utilized in order to make use of non-positive semi-definite

kernels in the SVM formulation.

• A new encoding algorithm is proposed for human action recognition. The algo-

rithm jointly encodes the set of local descriptors of each sample by considering

the locality structure of descriptors. The proposed method takes advantage of

locality coding such as its stability and robustness to noise in descriptors, as

well as the strengths of the group coding strategy by taking into account the

potential relation among descriptors of a sample. We also proposed the utiliza-

tion of the Alternating Direction Method of Multipliers (ADMM) framework,

which results in quadratic complexity in the problem size.

1.3 A Discussion on Deep Neural Networks for Action Classification

A deep neural network (DNN) is an artificial neural network (ANN) with multiple

hidden layers of units between the input and output layers, which can model complex

6

non-linear relationships. DNNs have dramatically improved the state-of-the-art in

visual object recognition, object detection, speech recognition and many other do-

mains. Deep learning discovers intricate structure in large data sets to indicate how

a machine should change its internal parameters that are used to compute the rep-

resentation in each layer from the representation in the previous layer. Two main

categories of deep learning methods are convolutional neural networks (CNNs) and

recurrent neural networks (RNNs). CNNs have brought about breakthroughs in pro-

cessing images, video, speech and audio, whereas RNNs are a better choice for tasks

that involve sequential inputs, such as speech and language. However, the important

thing with deep learning is ”it needs a lot of data to train on, so a computer learns to

do a task like recognizing an object in an image or identifying that there is a cancer

cell or recognizing which word you’re saying when you’re speaking by looking at mil-

lions of examples, and one reason why neural nets didn’t catch on earlier is that we

didn’t have that much data in the 90s” [47].

In the field of action recognition by depth data, there is not any large publicly

available dataset. This reason was the main bottleneck to approach this strategy for

our problem. In addition, deep neural networks are generally more computationally

intensive than other standard classification procedures, like bag of features + SVM.

1.4 Outline of the Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we review the

existing ensemble methods and present a unifying framework for multiple classifier

systems. The proposed Generic Subclass Ensemble is then explained in Section 3.

In Chapter 4, the GA-SS-ECOC is presented and the the results of experimental

comparison over a set of benchmark datasets are provided.

In the next three chapters, the ensemble classification approach is employed for

a visual and interesting application: human action recognition using depth data.

We present three new methods that improve the recognition of depth-based action

videos. First, in Chapter 5, we propose the use of an ensemble framework based

on the Dempster-Shafer fusion of multiple classifiers. In Chapter 6, an ensemble

system consisting of four SVMs with time-series distance kernels is employed for

action classification. In chapter 7, a new encoding algorithm based on the BoVW

7

framework is proposed. In this model, two classifiers are trained using both skeleton

and depth feature sets. These classifiers are then combined in order to reach a higher

level of prediction.

Finally, in Chapter 8, we summarize our contributions, and discuss the future

research directions.

Chapter 2

A Unifying Framework for Ensemble Classification

2.1 Introduction

The efficiency of pattern classification by a single classifier has been recently chal-

lenged by multiple classifier systems [88, 123, 127, 136, 186]. A multiple classifier

system is a classification system made up of an ensemble of individual classifiers

whose outputs are combined in some way to obtain a final classification decision. In

an ensemble classification system, it is hoped that each base classifier will focus on

different aspects of the data and will err under different situations [107, 123, 186].

By combining a set of base classifiers, the combined efficiency of the ensemble of

classifiers can compensate for a deficiency in one classifier. However, the ensemble

approach depends on the assumption that single classifiers’ errors are uncorrelated,

which is known as classifier diversity in the background literature [170]. The intuition

is that if each classifier makes different errors, then the total errors can be reduced

by an appropriate combination of these classifiers. In fact, the ensemble classification

philosophy is derived from the fact that humans seek several opinions before making

any critical decision. We weight the individuals’ opinion and combine them to reach

a final decision [123].

The design process of a multiple classifier system generally involves two main

stages: the collection of an ensemble of classifiers and the design of the combination

rule [62, 123]. The first stage is to construct an ensemble of accurate and diverse clas-

sifiers and the second phase aims to find a proper combination rule for the ensemble.

Kuncheva summarized three primary approaches to creating an ensemble of classifiers

[88]. These approaches can be considered as different ways to achieve diversity across

base classifiers. The straightforward approach is to use different learning algorithms

or variations of the parameters of the base learners. The second approach, which has

been getting more attention in the ensemble literature, is to use different training sets

to train base classifiers. Such sets are often obtained from the original training set by

8

9

resampling techniques. The third approach is to train the individual classifiers with

datasets that consist of different feature subsets [69, 115]. The Random subspace

method (RSM) proposed by Hu is the one early algorithm that builds an ensemble of

diverse classifiers by randomly choosing feature subsets for each base learner [69].

Another effective approach, which has not been paid much attention in the ensem-

ble literature, is to “manipulate the target attribute”, in which individual classifiers are

built with different and usually simpler representations of the target classes [135, 136].

This approach was initially developed to solve the dilemma of extending binary clas-

sification algorithms to multiclass problems [130] and usually referred to as “class

binarization” [54] in the multiclass classification literature. Existing methods based

on this approach decompose the original multiclass problem into a series of smaller

two-class problems. In this way, two-class problems can be solved by binary classi-

fiers and their results can then be combined so as to provide a solution to the original

problem. The procedure to decompose the multiclass problem into a set of binary

problems is usually defined within the framework of Error Correcting Output Codes

(ECOC) [37, 172].

As mentioned above, this approach has been ignored by many researchers in the

ensemble classification literature. As an example, in a recent book by Zhou [186],

the author indicates that: “in a strict sense, they cannot be recognised as ensemble

combination methods” [186, p. 89]. More interestingly, some authors in the multiclass

classification field segregate class binarization techniques from ensemble classification

methods. As indicated in [54]: “We must bear in mind that the fusion of binary

classifiers is different from other similar tasks, such as the fusion of classifiers in an

ensemble”. There are likely two main reasons for this oversight. The first reason is

that this approach was introduced to tackle the dilemma of extending binary classifi-

cation algorithms to multiclass problems, and is therefore considered as a multiclass

decomposition technique. Accordingly, this approach is only applicable to multiclass

problems. The second reason is that standard ensemble methods differ from the class

binarization approach in that in the former, each classifier attempts to solve the same

problem, whereas in the class binarization approach each classifier solves a different

sub-problem.

Here, we argue that class binarization techniques, including the ECOC framework,

10

can be seen as an ensemble classification system. There are two main reasons behind

this argument. First, the philosophy of class binarization techniques is in accordance

with the ensemble philosophy: multiple learners are generated to learn different as-

pects of the data and then fused to reach a final decision. Second, the cornerstone

of ensemble methods and class binarization techniques are the same. In both meth-

ods, combining the outputs of individual classifiers would be effective if they make

an error in different situations, usually called diversity in the ensemble literature and

independency in the multiclass classification literature. The intuition is that if each

classifier makes different errors, then the errors can still be effectively detected and

possibly corrected.

Based on this holistic view, we present a unifying framework for multiple classi-

fier systems that unites most classification methods using an ensemble of classifiers,

including existing class binarization techniques such as ECOC. According to this pro-

posed framework, we provide a brief survey of ensemble creation approaches as well

as the principal techniques proposed to combine them.

2.2 The Unifying Ensemble Classification Framework

Here, we propose a conceptually unified framework for ensemble classification meth-

ods. In the framework, ensemble strategies are broadly categorized into four general

approaches. Among them, three approaches generate ensemble classifiers by manip-

ulating data, which we have named subsample, subspace, and subclass approaches.

The fourth approach generates ensemble classifiers by manipulating learners, usually

by using different learning algorithms or variations of the parameters of base learners.

The proposed framework is depicted in Figure 2.1, where approaches based on data

manipulation techniques are shown in the inner circle. Three main data manipulation

approaches are indicated by the three sectors in a solid blue color. Combinations of

these three approaches are indicated by the crosshatched blue sectors between them.

These approaches are surrounded by the learner manipulation approach, which im-

plies that, using data manipulation approaches, ensemble diversity can be improved

by utilizing learner manipulation techniques. For example, in the subspace approach,

instead of training a set of identical base learners with different feature subsets, dif-

ferent classification algorithms can be employed to be trained, as in [96].

11

Figure 2.1: The proposed unifying ensemble classification framework.

In the following, we briefly present an overview of the primary ensemble creation

approaches as well as the main combination methods based on these approaches.

2.3 Subsample Approach

The subsample approach, which has been getting more attention in the related litera-

ture, is to use different training samples to build base classifiers. Each sample subset

is usually drawn from the whole training set and has the same features as the original

data. These sample subsets may be disjointed or overlapping. Each subset is used

to train an individual classifier, and the classifiers are finally combined in some way.

This approach has been referred to, by some researchers, as the “data level” approach

[88] or “sample manipulating” [136].

The main strategy to generate training subsets is based on the resampling tech-

niques, where sample subsets are drawn randomly, usually with replacement, from the

entire training data. Bagging [23] and boosting [49] are two of the most well-known

12

ensemble classification techniques based on this strategy. Bagging, an abbreviation

for bootstrap aggregating, is one of the oldest and simplest ensemble methods, which

shows surprisingly good performance in different applications [12]. In bagging, dif-

ferent sample subsets are randomly chosen, with replacement, from the all training

samples. Since sampling with replacement is performed, some of the training samples

may appear more than once in each subset and some may not be included at all.

Individual classifiers are trained on each subset and then combined by the simple

majority voting of their decisions. For a given test sample, the class chosen by most

classifiers is the ensemble decision. Different algorithms have been proposed based on

Breiman’s bagging method. Among them, wagging [13] and pasting small votes [21]

are the most well-known.

Boosting is similar to bagging in that individual classifiers are built by resampling

training data and then are combined by majority voting. In the boosting strategy,

however, classifiers are generated sequentially and samples for each classifier are se-

lected based on the performance of previously built classifiers. In AdaBoost [49],

a weight is assigned to each sample according to its classification difficulty. In the

beginning, all weights are equal, but, in each iteration the samples’ weights are up-

dated such that the relative weights of samples misclassified by previous classifiers

are effectively increased. Therefore, the algorithm increasingly focuses on difficult

samples. This procedure generates a set of classifiers that complement one another.

Many variations of AdaBoost have been proposed in the literature. Among them,

Real AdaBoost [141], Gentle AdaBoost [50], Float Boost [94], and Reweight Boost

[131] are some of the most important algorithms that are designed for binary clas-

sification problems and AdaBoost.M1 and AdaBoost.M2 [49], AdaBoost.OC [140],

AdaBoost.ECC [61], AdaBoost.M1W [5], and AdaBoost. SAMME [187] are versions

that address multiclass classification problems. In [51], a new method is presented

by integrating the instance selection technique and boosting approach, where the

instance selection technique search the subset of the training set by minimizing the

training error to generate the next classifier. In [51], a new method is presented by in-

tegrating the instance selection technique and boosting approach, where the instance

selection technique search the subset of the training set by minimizing the training

error to generate the next classifier. Readers may refer to [48] for more details on

13

boosting strategies.

Another strategy to obtain subsets of data is based on the partitioning of training

samples [118]. As a simple strategy, cross-validated committees, the training samples

can be randomly partitioned into k -equal-sized disjoint subsets. Then, k classifiers

are trained, in which the ith classifier uses all subsets, except the ith subset. Rokach

[137] proposed an algorithm that partitions the input space into mutually exclusive

subsets using the K -means clustering technique and a classifier is trained on each

subset.

Most of the research above uses the original training samples to generate sample

subsets. When the number of training samples is small, this limits the amount of en-

semble diversity that these methods can obtain. Melville and Mooney [106] proposed

a method, named DECORATE, which directly constructs diverse classifiers using

additional artificially created training samples. Using C4.5 base classifiers, their re-

sults show that DECORATE achieves higher performance than Bagging and Random

Forests.

2.4 Subspace Approach

The subspace approach, also called ensemble feature selection [115], trains the indi-

vidual classifiers with datasets that consist of different feature subsets. The selected

feature subsets can be either disjoint or overlapping. While traditional feature selec-

tion algorithms seek to find an optimal subset of features, the goal of ensemble feature

selection is to find different feature subsets to generate accurate and diverse classifiers.

The Random Subspace Method (RSM) proposed by Ho [69] is the one early algorithm

that builds an ensemble of classifiers by randomly choosing feature subsets for each

base learner. The experimental results show that while most classification approaches

suffer from the curse of dimensionality, the subspace approach can benefit from high

dimensionality phenomena. Ho showed that the subspace approach is expected to

work better in classification problems which have many redundant features [69].

Different techniques based on this approach have been proposed in the related

literature. Kuncheva categorizes techniques for choosing feature subsets into three

main groups [88]:

Natural grouping: In some classification problems, especially in many real-world

14

applications, the original features are initially grouped, mainly because features are

extracted from different sources. This strategy has been employed in many real-

world applications [6, 11]. As an example, in [6], a logo recognition system using

an ensemble of three classifiers is proposed. Individual classifiers are trained using

different feature sets obtained from three shape description techniques and then fused

by the Demspter-Shafer combination method.

Random selection: In this category, feature subsets are selected by a random or a

pseudo-random strategy. Ho’s RSM is the one early algorithm that randomly chooses

about half of the available features for each classifier [69]. Bryll et al. presented

a method, named Attribute Bagging, which first chooses an appropriate size of the

feature subset using the wrapper feature selection approach and then randomly selects

feature subsets [25].

Nonrandom selection: Most ensemble feature selection methods fall in this cate-

gory. Representative works include [58, 72, 89, 115, 153, 155]. These methods aim

to simultaneously improve the accuracy and diversity of base classifiers by choosing

optimal features for each classifier that enhance the performance of the entire en-

semble system. Various heuristic search techniques, such as genetic algorithms (GA),

particle swarm optimization (PSO), and ant colony optimization (ACO) have been

employed for feature subset selection [58, 89, 115, 134, 139].

2.5 Subclass Approach

The subclass approach is to train classifiers with samples belonging to different tar-

get classes [135]. Current methods based on this approach mainly deal with mul-

ticlass classification problems by decomposing the original problem into a series of

smaller binary classification problems. The most well-known techniques based on

this approach are one-versus-all (OVA) [4], one-versus-one (OVO) [66, 5], and Error

Correcting Output Codes (ECOC) [37, 172, 119]. In one-versus-all, the multiclass

problem is decomposed into several binary problems in the following way: for each

class a binary classifier is trained to discriminate among the patterns of the class

and the patterns of the remaining classes. In the one-versus-one technique, one clas-

sifier is trained to separate each possible pair of classes. In both approaches, the

final classification prediction is usually obtained by means of a voting or committee

15

procedure. The ECOC framework decomposes a multiclass problem into a series of

different binary problems [2, 37]. In this framework, each classifier is trained on a

two meta-class problem, where each meta-class consists of some combinations of the

original classes. Accordingly, classical OVA and OVO frameworks can be considered

as special cases of the ECOC framework.

The ECOC method can be broken down into two stages: encoding and decoding.

The aim of the encoding stage is to design a discrete decomposition matrix (codema-

trix) for the given problem. According to the codematrix, a set of binary classifiers

are trained. Each row of the codematrix, named codeword, is a sequence of bits repre-

senting each class, where each bit identifies the membership of the class to a classifier

[44]. In the decoding stage, the final classification decision is obtained based on the

outputs of binary classifiers. Given an unlabeled test sample, each binary classifier

casts a vote for one of the two meta-classes used in its training. The output vector is

compared to each class codeword of the matrix and the test sample is assigned to the

class whose codeword is closest to the output vector, according to a distance measure.

Because of the ability of the ECOC framework to correct the bias and variance errors

of the base classifiers [85, 188], it has been successfully applied to a wide range of

applications [1, 117, 82]. In recent years, many authors tried to improve the efficiency

of the ECOC framework, mainly by taking into account the characteristics of the

problem at hand [9, 45, 67, 124, 183, 184].

2.6 Learner Manipulation Approach

One straightforward approach to create diverse classifiers is to manipulate the base

learners used for creating the ensemble. Several strategies have been employed to

achieve diversity based on this approach. One strategy is to use different classification

algorithms for the base learners. This approach is mainly utilized in applied problems.

The other common strategy is varying the parameters of the base classifiers; e.g.

different initial weights [84] or different topologies [114] of a series of neural network

classifiers. In [29], the authors employed an ensemble of nine classifiers with three

different learning algorithms, namely decision tree, back-propagation network, and

support vector machine. They applied the scatter search-based method to search for

the optimal parameter settings for each classifier, and then combined the classifiers

16

by the majority voting rule. In [63], a neural network ensemble was designed, in

which individual networks were trained with different objective functions. Islam et

al. proposed an algorithm which simultaneously determines the ensemble size along

with the number of hidden nodes [75].

2.7 Combination Based Approaches

Combination of subsample and subspace approaches

Several methods have been proposed in the ensemble classifier literature to simulta-

neously manipulate samples and the feature space. Breiman’s Random Forest [22]

integrates the merits of both bagging and random subspace in a way that is specific

to using decision trees as the base learner. In this method, the bagging procedure is

utilized to generate a training subset for each individual tree. However, features used

to split a node in the tree are randomly selected. Rodriguez et al. [132] proposed

Rotation Forest, which first randomly splits feature sets into K subsets and applies

principal component analysis (PCA) on each subset of a bootstrap replicate. There-

fore, K axis rotations take place to form the new features for base classifiers. More

recently, a method based on the combination of Rotation Forest and the AdaBoost,

named RotBoost [181], has been proposed. Zhou and Yu proposed a method for

building an ensemble of local learners, such as nearest-neighbor classifiers, by multi-

modal perturbation on features, samples and base classifiers’ parameters [182]. Tao

et. al [150] proposed a method based on the combination of bagging-based SVM and

random subspace SVM in order to improve the relevance feedback in content based

image retrieval.

In a series of works, some similar algorithms that combine the philosophy of boost-

ing with the basis of the random subspace method were proposed [52, 53]. In [52],

a method is presented that chooses a subset of features for the current classifier by

considering samples that are previously misclassified. In this method, each classifier

uses all training samples for learning, but uses a different nonlinear projection of the

data in order to better classify difficult samples. In [53], the authors proposed a

very similar method that combined RSM and boosting, named Not so Random Sub-

space Method (NsRSM). In this method, instead of choosing random features, they

select features that optimize the weighted classification error given by the boosting

17

algorithm, and then the new classifier is trained with the selected features.

Combination of subsample and subclass approaches

As mentioned earlier, the most representative subclass-based method is that of ECOC.

Some previous studies have proposed the use of bagging and boosting within the

ECOC framework, mainly by selecting a sampling of data for each dichotomizer in

order to increase the diversity of binary problems. In this sense, Schapire proposed

a new technique, named Adaboost.OC, by combining the boosting algorithm with

output codes [140]. After that, Guruswami and Sahai, proposed a variant of Ad-

aboost.OC that uses different weighting of the votes of the weak learners, named

Adaboost.ECC [61].

Combination of subspace and subclass approaches

Based on integrating the idea of the subspace approach and the ECOC framework, we

have proposed a new method, named subspace ECOC [7, 9]. The central idea of this

method is using feature space in the design process of the ECOC matrix. That is, each

binary classifier (dichotomizer) is trained with a different feature subset, leading to

better classification accuracy and diversity among binary classifiers. More recently,

the proposed method is extended by optimizing the whole ensemble classification

system using the GA algorithm by considering the characteristics of the problem at

hand [9].

Combination of data manipulation approaches and learner manipulation

There are relatively few theoretical studies that integrate the strategy of data manip-

ulation approaches with the learners’ manipulation approach. The main idea behind

these works is to improve the diversity of ensemble classifiers by the simultaneous use

of different base learners. In [96], an ensemble of six heterogeneous classifier is gener-

ated, in which each classifier is trained with different feature sets and different classi-

fication algorithms. Zhou and Yu proposed a method for building ensembles of local

learners, such as nearest-neighbor classifiers, by multimodal perturbation on features,

samples and base classifiers’ parameters [182]. More specifically, their method em-

ploys data perturbation with bootstrap sampling, feature perturbation with attribute

filtering and subspace selection, and learning perturbation with randomly configured

distance metrics. More recently, bagging models composed of heterogeneous learners

is proposed in [32].

18

2.8 Summary

In this chapter, first, we presented a unifying framework for multiple classifier systems

that conceptually unites a large variety of ensemble classification methods, including

existing class binarization techniques such as ECOC. In the framework, various en-

semble methods are broadly categorized into four general approaches. Among them,

three approaches generate ensemble classifiers by manipulating data, which we have

named subsample, subspace, and subclass approaches. The fourth approach, learner

manipulation, is usually based on using different learning algorithms or variations

of the parameters of base learners. According to this proposed framework, we pro-

vided a brief survey of ensemble creation methods as well as the principal techniques

proposed to combine them.

Chapter 3

Generic Subclass Ensemble Classification

3.1 Introduction

As mentioned before, one effective approach in the ensemble literature is to ”manip-

ulate the target attribute”, in which individual classifiers are built with different and

usually simpler representations of the target classes [135, 136]. This approach was

initially developed to solve the dilemma of extending binary classification algorithms

to multiclass problems and usually referred to as ”class binarization” [54] in the mul-

ticlass classification literature. Existing methods based on this approach decompose

the original multiclass problem into a series of smaller two-class problems. In this

way, two-class problems can be solved by binary classifiers and their results can then

be combined so as to provide a solution to the original problem.

The main drawback of the class binarization approach is its limitation to two-

class problems. In this chapter, we propose a new general approach to ensemble

classification, named generic subclass ensemble, in which each base classifier is trained

with data belonging to a subset of classes, and thus discriminates among a subset

of target categories. The number of categories in each subset may vary between

two and the number of classes in the problem. The ensemble classifiers are then

fused using a combination rule. The proposed approach differs from existing methods

that manipulate the target attribute, since in our approach individual classification

problems are not restricted to two-class problems. In light of this approach, class

binarization techniques are considered special cases of the generic subclass ensemble

approach. We also perform a series of experiments to evaluate the efficiency of the

subclass approach on a set of benchmark datasets.

19

20

Table 3.1: An example of a class decomposition matrix in the generic subclass approach.
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

ω1 1 0 1 0 0 1 0 0 1 0
ω2 1 0 0 1 0 2 1 2 1 0
ω3 0 1 2 0 0 3 0 1 2 1
ω4 2 2 3 0 1 0 2 0 1 1
ω5 0 3 4 2 2 0 0 1 4 0
ω6 0 3 2 0 1 0 2 1 5 2

3.2 The Generic Subclass Approach

In this section, we first introduce the generic subclass approach and explain its train-

ing and testing phases. Then, we propose three methods based on this approach.

3.2.1 Training phase

In the training phase, different sub-problems are generated and a base classifier is

trained on each sub-problem using samples belonging to a subset of the original set

of classes. For each sub-problem, the subset of classes is divided into two or more

meta-classes, where each meta-class consists of some combinations of the original

classes. Accordingly, each classifier discriminates among classes that have been seen

in its training. Here, similar to the ECOC framework, the process of decomposing the

multiclass problem into a set of smaller binary /multiclass problems is represented

by a matrix. This matrix is interpreted as a set of L learning problems, one for each

column. Table 3.1 shows an example of a class decomposition matrix for a six-class

problem that uses 10 classifiers. In this matrix, each column is associated with a

subclass classifier, hj, and each row is a unique codeword that is associated with an

individual target class. For example, the second classifier, h2, discriminates among

samples of four classes: ω3, ω4, ω5 and ω6. These classes are split into three meta-

classes: {ω3}, {ω4}, and {ω5, ω6}. Similar to the sparse ECOC matrix [2], the zero

value means that a given class is not considered in the training phase of a particular

classifier.

3.2.2 Testing phase

When testing an unlabeled pattern, x∗, each classifier casts a vote for one of the

classes used in its training, creating an L long output code vector. This output vector

21

is compared to each class codeword in the matrix, and the class whose codeword has

the closest distance to the output vector is chosen as the predicted class. Similar

to the ECOC method, the process of merging the outputs of individual classifiers is

called decoding [42]. Here, we propose a simple decoding technique:

y = argmin

∑L
i=1 wi ∗ sign(M(r, i)) ∗ (M(r, i) <> hi(x))

sum(M(r, i) <> 0)
,

where sign(z) is +1 if z > 0, -1 if z < 0 and 0 otherwise and a <> b is 1 if a �= b and

0 otherwise. Here, wi represents each classifier’ weight, which is set to the accuracy

of classifier on the training or validation samples. M(r, .) designates the codeword r

in the matrix, hi(x) represents the output of classifier i, and y ∈ {1, . . . , Nc} is the

predicted class.

3.3 Three Methods Based on the Generic Subclass Approach

Utilizing the subclass approach will pose an important challenge: how to decompose

the original multiclass problem into smaller problems? For a given problem of c

classes, the number of valid partitions is Bn − 1, where Bn is the total number of

partitions of a set with n members, named the Bell number.

Here, we propose three decomposition techniques: a problem-independent tech-

nique based on the exhaustive decomposition and two problem-dependent techniques

based on the partitioning of the class space.

3.3.1 Exhaustive decomposition

One straightforward technique for class decomposition is to consider all possible par-

titions of classes, except the one that puts all classes in one partition. For problems

with a large number of classes, however, the number of partitions and the number

of selected classes for each sub-problem become very large. In order to limit the

computational complexity, we employ two strategies to reduce the length of the code-

matrix, i.e. the number of classifiers. The first strategy is to have only one class in

each meta-class. Second, we limit the number of classes to be taken for each classi-

fier. Based on preliminary sets of experiments, choosing from two up to four classes

for each sub-problem leads to high classification results. As an example, Table 3.2

22

Table 3.2: An example of an exhaustive coding matrix for a six class problem.
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

ω1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
ω2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
ω3 3 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1 0
ω4 0 3 0 0 3 0 0 2 2 0 3 0 0 2 2 0 2 2 0 1
ω5 0 0 3 0 0 3 0 3 0 2 0 3 0 3 0 2 3 0 2 2
ω6 0 0 0 3 0 0 3 0 3 3 0 0 3 0 3 3 0 3 3 3

Table 3.3: An example of an equidistant coding matrix for a six class problem.
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

ω1 1 1 1 1 1 0 0 0 0 0
ω2 2 2 0 0 0 1 1 1 0 0
ω3 3 0 2 0 0 2 0 0 1 1
ω4 0 3 0 2 0 0 2 0 2 2
ω5 0 0 0 3 2 3 0 2 3 0
ω6 0 0 3 0 3 0 3 3 0 3

shows an exhaustive decomposition matrix for a six-class problem that considers all

permutations of three out of six classes.

Still, for problems with a large number of classes, the number of possible permu-

tations of three or four classes out of the number of classes increases dramatically. As

a result, a large number of classifiers is required in the training and testing phases.

In these cases, we propose a new version of exhaustive coding, named equidistant

coding, where the distances between all pairs of class codewords are equal 1. In this

version, a subset of all permutations is chosen such that the sum of the number of

each pair of classes is identical. As an example, Table 3.3 shows an equidistant coding

for a six-class problem, in which the number of each pair of classes in all sub problems

is 2. Thus, to discriminate between each pair of classes, two classifiers exist in the

ensemble system.

3.3.2 Decomposition based on a hierarchical clustering of class space

In this strategy, the class decomposition process is performed based on a clustering of

the class space that maximizes class discrimination in the patterns. Using a clustering

technique, classes within each cluster are generally more similar which make them

more difficult to be discriminated by a classifier. In this work, generating class subsets

are guided through the hierarchical clustering of classes. The hierarchical clustering

1distance is defined as the number of corresponding bits that differ.

23

algorithm groups classes by creating a cluster tree or dendrogram. The dendrogram

is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one

level are merged in clusters at the next level. Each node of the cluster tree defines

a partition of the classes. The partition at each node should be highly separable in

terms of discrimination.

Using the generated cluster tree, the procedure of class partitioning, i.e. generating

the class decomposition matrix, will be performed and the decomposition matrix will

be generated. The procedure is composed of two main modules. Each module creates

one decomposition matrix, and the final matrix is made by concatenating these two

matrices.

In the first module, class partitioning is performed at different clustering levels

(1 < level < 6). At each level, all classes are grouped into different partitions

(clusters). An example of a clustering tree for a six class problem as well as the

corresponding decomposition matrix is shown in Figure 3.1.a. For instance, consider

the horizontal line at the fifth level. This line intersects five lines of the dendrogram.

These five lines partition the classes into five clusters: Ψ1
5 = {c1, c3},Ψ2

5 = {c2},Ψ3
5 =

{c4},Ψ4
5 = {c5}, and Ψ5

5 = {c6}.
The second module partitions classes under each internal node into two clusters.

As an example, Figure 3.1.b shows four internal nodes for a six-class problem. For

example, the first node partitions classes below the right-hand side, namely c5 and c6,

belonging to one cluster, while the class below the left-hand line, namely c4, belongs

to the other cluster. This partitioning is represented in the first column of the matrix.

3.3.3 Two methods based on hierarchical class partitioning

The clustering procedure involves defining a dissimilarity measure between objects

in order to optimize the within- and between-cluster structure. Here, we employed

two measures that aim to satisfy the condition of the high separability of classes: 1)

the distance between the centroid of classes; and 2) the mutual information. Based

on these two measures, two different methods are proposed. In the first method, the

centroid of each class is computed as the average of patterns belonging to the corre-

sponding class. The distance between two class centroids is a rough estimation of how

separate two classes are. These centroid patterns are then hierarchically clustered.

24

h1 h2 h3 h4 h5

ω1 1 1 1 1 1
ω2 1 1 1 2 2
ω3 1 1 1 1 3
ω4 2 2 2 3 4
ω5 2 3 3 4 5
ω6 2 3 4 5 6

h1 h2 h3 h4

ω1 0 0 1 1
ω2 0 0 2 0
ω3 0 0 1 2
ω4 1 0 0 0
ω5 2 1 0 0
ω6 2 2 0 0

Figure 3.1: An example of class partitioning using the hierarchical clustering technique; (a)
class partitioning at different clustering level; (b). Class partitioning under each internal
node.

In the second method, the class partitioning is based on the mutual information,

which has been shown to be an effective criterion in terms of class separation. For

more details on computing the mutual information between classes, please refer to

[124, 151].

3.4 Experiments

In this section, we evaluate the efficiency of the generic subclass ensemble on a va-

riety of different real classification problems. First, we discuss the settings of the

experiments including the data, the comparative methods, and the evaluation mea-

surements.

3.4.1 Experimental settings

Data: The proposed generic subclass approach is evaluated on 24 multiclass datasets

from the UCI machine learning repository [16]. Table 3.4 shows the number of classes,

25

instances, and features of each dataset.

Table 3.4: Summary of the datasets used.
Dataset # Samples # Classes # Features
Abalone 4177 3 8
Car 1728 4 6
Cmc 1473 3 9
Derm 358 6 34
Glass 214 6 9
Iris 150 3 4
Mfeat-fou 2000 10 76
Mfeat-pix 2000 10 240
Mfeat-zer 2000 10 47
Optdigits 5620 10 62
Pendigits 10992 10 16
Plant Leaves (10c) 160 10 63
RobotLP2 48 5 90
Sat 6435 6 36
Semeion 1593 10 256
Thyroid 215 3 5
Vehicle 846 3 18
Vowel 528 11 10
Waveforms 5000 3 40
Wine 178 3 13
WineQualityRed 1599 6 11
WineQualityWhite 4898 7 11
Yeast 1484 10 8
Zoo 101 7 16

Methods: We compare our proposed method with well-known ensemble clas-

sification methods, including bagging, AdaBoost, and RSM. For AdaBoost, we im-

plemented the AdaBoost.M1 algorithm [49] which is a stable version of boosting for

multiclass classification problems. For RSM implementation, as suggested by Ho [69],

about half of the features are selected for each base classifier. The ensemble size, i.e.

the number of base classifiers of the bagging and RSM and the number of iterations

of the AdaBoost algorithm, is set to 25 [13, 113].

In this study, a multilayer perceptron (MLP) with 10 hidden nodes and the hyperbolic

tangent transfer function is chosen as the base learner. The MLP classifier cannot

handle the missing values, so the instances with missing values are removed.

Evaluation measurements: The classification accuracy is obtained by means of

stratified 10-fold cross-validation to improve the reliability of the results. Moreover,

we include statistical tests to look for statistical significance among the obtained

methods.

26

Table 3.5: Classification accuracies of different ensemble methods using MLP neural network
as the base learner.
Datasets Single Bagging RSM AdaBoost Subclass.v1 Subclass.v2 Subclass.v3
Abalone 66.45 66.83 65.85 66.75 67.17 66.92 66.91
Car 93.93 93.64 90.33 94.14 95.66 95.18 96.53
Cmc 52.64 54.76 53.99 54.29 55.06 54.36 54.29
Derm 95.07 96.65 97.11 93.10 96.46 96.69 95.99
Glass 56.50 63.99 65.39 62.60 67.56 67.27 66.93
Iris 94.22 95.11 94.67 93.56 95.56 95.78 95.56
Mfeat-fou 77.05 80.42 80.72 75.20 83.85 82.02 80.18
Mfeat-pix 80.33 93.00 95.50 94.58 97.42 95.33 92.75
Mfeat-zer 80.08 84.00 83.25 79.50 84.25 84.42 81.83
Optdigits 93.30 96.20 95.94 94.34 98.10 96.41 96.12
Pendigits 92.04 95.89 91.57 95.09 99.44 97.98 99.12
Plant leaves (10c) 60.42 95.83 97.92 95.50 98.96 96.88 98.96
RobotLP2 42.89 49.11 58.67 55.33 58.00 62.00 60.67
Sat 86.27 87.24 87.95 86.57 89.24 88.31 89.07
Semeion 57.26 70.64 89.03 75.92 91.64 85.27 79.94
Thyroid 95.23 96.14 95.93 95.55 97.09 96.19 96.29
Vehicle 80.54 81.52 80.97 79.99 84.08 83.85 84.43
Vowel 65.84 79.29 75.12 72.27 92.80 91.28 96.15
Waveforms 85.97 86.23 86.39 84.80 86.49 86.15 85.73
Wine 95.37 99.07 100.00 96.30 97.22 97.22 97.22
WineQualityRed 59.06 62.71 59.48 60.73 63.02 63.96 61.67
WineQualityWhite 53.27 54.59 53.37 54.63 55.41 55.44 55.20
Yeast 55.89 57.46 50.73 56.68 58.14 57.13 56.90
Zoo 90.48 96.83 95.24 94.13 96.83 96.83 98.41
Average 73.95 80.47 80.99 79.55 84.15 83.30 83.02

3.4.2 Experimental results

The average accuracy of the standard ensemble methods for each dataset is presented

in Table 3.5. For reference, we also show the accuracy of a single MLP classifier. In

this table, the means of prediction accuracy over 10 runs (expressed in %) is reported

for each method on the considered dataset. For each dataset, the best accuracy

achieved among all tested methods is in bold. As stated earlier, we proposed three

different methods based on the subclass approach. The one based on the equidis-

tant coding, named Subclass v.1, and two methods based on the partitioning of the

class space using two measures, the distance between class centroids and the mutual

information, which we respectively named as Subclass v.2 and Subclass v.3.

27

Statistical analysis of the classification results

In order to compare the results of the different approaches, statistical analysis is

applied. According to the recommendations of Demsar [36], we consider the use of

non-parametric tests. Non-parametric tests are safer than parametric tests, since

they do not assume normal distribution or homogeneity of variance. In this study,

we employ two types of analysis. First, we use the Iman-Davenport test. If there

are statistically significant differences in the classification performance, then we can

proceed with the Nemenyi test [108] as a post-hoc test, which is used to compare the

methods with each other. Second, the win-tie-loss comparison of the methods using

the Wilcoxon signed rank test is performed.

� Statistical analysis using the Iman-Davenport and the Nemenyi tests:

For the first set of analysis, we first rank competing methods for each dataset. The

best performing method gets rank 1, the second best is ranked 2, etc. The method’s

mean rank is obtained by averaging its ranks across all datasets. Then, we use the

Friedman test [36] to compare these mean ranks to decide whether to reject the null

hypothesis, which states that all considered methods have the equivalent performance.

The Friedman statistic value is computed as follows:

χ2
f =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
, (3.1)

where k is the number of competing methods and N is the number of experiments.

In our case, when comparing five methods in 24 experiments, χ2
f = 58.16. Iman and

Davenport [74] found that this statistic is undesirably conservative, and proposed a

revised one:

FF =
(N − 1)χ2

f

N(k − 1)− χ2
f

, (3.2)

which is distributed following an F distribution with k−1 and (k−1)(N−1) degrees

of freedom. By applying this correction we obtained FF = 21.63. The critical value of

F(5,23) for α = 0.05 is 2.64. As the value of FF is higher than 2.64 we can reject the

null hypothesis, that is, using the Iman-Davenport test, there is significant differences

between rival methods.

Further, to compare rival methods with each other, we applied the Nemenyi test.

28

Figure 3.2: Statistical comparison of the results using the Nemenyi test.

Two methods are significantly different if their corresponding average ranks differ by

at least the critical difference value (CD):

CD = qα

√
k(k + 1)

6N
, (3.3)

In our case, the critical value for a 90% of confidence is CD = 1.39. The results of

the Nemenyi test are illustrated in Figure 3.2. In this figure, the mean rank of each

method is indicated by a square. The horizontal bar across each square shows the

critical difference. Two methods are significantly different if their horizontal bars do

not overlap.

As can be seen in the figure, the first and the second versions of the proposed

generic subclass ensemble are significantly superior to all other methods. This find-

ing implies that the proposed approach presents a viable alternative to the most

commonly used ensemble classification approaches.

� Statistical analysis using the Wilcoxon sign rank test: Table 3.6 shows the

comparison of the different method using the Wilcoxon test. In this table, we show

the win-loss-tie (WLT) comparison record of the algorithm in the column against

the algorithm in the row. This record presents the number of datasets in which the

algorithm in the column was better than the algorithm in the row (win), was worse

(loss), or was equal (tie).

29

Table 3.6: Statistical comparison of the different ensemble methods using the Wilcoxon sign
rank test.

RSM AdaBoost Subclass v.1 Subclass v.2 Subclass v.3
Bagging 9/5/10 15/0/9 0/14/10 1/11/12 3/8/13
RSM 11/5/8 1/16/7 3/14/7 5/10/9

AdaBoost 0/20/4 0/18/6 0/17/7
Subclass v.1 11/1/12 10/1/13
Subclass v.2 6/5/13

The results in Table 3.5 and Table 3.6 along with the statistical test presented

in Figure 3.2, indicate that overall the generic subclass approach obtained the best

results with many datasets. Also, comparing the three versions of the generic subclass

approach shows that, in terms of the classification accuracy, the subclass ensemble

based on the equidistance decomposition achieves better overall results. The main

reason behind this improvement might be the fact that using the equidistant coding

more classifiers are usually generated. In ensemble systems, larger numbers of classi-

fiers, especially when non-deterministic classifiers like neural networks are used as the

base learner, usually lead to better classification accuracy. Similarly, the results of

ECOC studies show that the ECOC method with longer codes is able to significantly

improve the accuracy [2, 54]. In addition, in the second and third versions of the

subclass approach, the class partitioning is performed by the hierarchical partition

of classes that maximizes a discriminative criterion, i.e. the distance between class

centroids in the second version and mutual information in the third version. However,

there is no guarantee that this partitioning fits the underlying distribution of data.

Therefore, the errors from a classifier at higher level are propagated to the lower

levels.

As an additional analysis, the improved accuracies of the Subclass.Equidistant

method in comparison with other methods are shown in Figure 3.3. In this figure,

the obtained results are presented in the order of the number of dataset classes. The

results of datasets with a larger number of classes are shown in order from the left

side of the figure. From this arrangement, it can be seen that the generic subclass

ensemble works better when there is a larger number of classes. In these cases, instead

of combining individual classifiers trained with different subsets of samples or features,

the more efficient approach is to train classifiers on a subset of classes. In this way,

the problem that each classifier is going to be applied to is relatively smaller and can

30

-5

0

5

10

15

20

25
Im

pr
ov

ed
 a

cc
ur

ac
y

of
 th

e
su

bc
la

ss
 a

pp
ro

ac
h

vs. Bagging vs. RSM vs. AdaBoost
Figure 3.3: The relative accuracy of different ensemble methods compared to the Sub-
class.Equidistant method.

be solved more efficiently. On the other hand, when the number of features is high (in

relative to the number of samples), the subspace approach seems to be a good choice.

As an example, with the Semeion and Mfeat-pix datasets, which have a relatively

large number of features, the subspace approach achieves very high performance.

3.4.3 Analyzing the effect of ensemble size

Here, we investigate the performance of rival ensemble methods with different en-

semble sizes; 1 ≤ Ens.Size ≤ 50. For the generic subclass approach, however, the

initial number of required classifiers for a given problem is fixed; which is equivalent

to the number of columns of the class decomposition matrix. Therefore, to evaluate

the performance of the ensemble system all classifiers should cast a vote.

In the case of the Subclass.Equidistant method, for problems with a large number

of classes, the number of classifiers may be very large. In these cases, as we mentioned

earlier, we limit the number of considered classes for each classifier to two or three.

That is, each classifier discriminates between samples of two or three classes. For this

design, the class decomposition matrix begins with all permutations of two classes,

like the one-versus-one technique, and then continues until the number of classifiers is

less than a pre-defined number, fixed at 50 in our experiments. On the other hand, for

problems with small numbers of classes, the initial ensemble size is relatively small.

31

One strategy to increase the number of classifiers is to duplicate the decomposition

matrix. In this way, the ensemble size is the multiple of the initial number of classifiers,

i.e. the length of codewords of the original class decomposition matrix. Even though

the same sub-problems will be produced, the larger ensemble system can benefit from

the variation of non-deterministic classifiers like neural networks.

Figure 3.4 shows the classification accuracy of rival methods as a function of the

ensemble size for 16 representative datasets. From these results, some general findings

are summarized below:

• These experiments indicate that, in general, ensemble methods follow a similar

trend. That is, their classification performance first improves as the ensemble

size increases and then plateaus after a demarcation point, e.g. a value around

15-25. This observation is consistent with the results of many studies [106, 113,

146].

• The underperformance of the Subclass.Equidistant method in problems with a

small number of classes is mainly due to the significantly smaller number of

classifiers. However, by increasing the ensemble size by duplicating the class

decomposition matrix, classification accuracy was improved for many datasets.

• In problems with a larger number of classes, bagging, boosting, and RSM en-

semble methods cannot continue to further improve with larger ensemble sizes.

In these cases, the subclass approach shows the best performance.

3.5 Summary

In this chapter, we proposed a new general approach to ensemble classification, named

generic subclass ensemble. In this approach, an ensemble of classifiers is generated, in

which each base classifier aims to discriminate between a subset of target categories.

The proposed approach is a general framework that incorporates many methods based

on class binarization techniques.

Based on the generic subclass approach, three methods are introduced: Sub-

class.Equidistant, Subclass.ClsPart MI, and Subclass.ClsPart Dist. Using the neural

32

Figure 3.4: Accuracy of ensemble classification methods versus the ensemble size.

33

Figure 3.4: Accuracy of ensemble classification methods versus the ensemble size (Cont.)

34

network as the base learner, we evaluated the efficiency of the generic subclass en-

semble on a set of benchmark datasets. Experimental results show that the subclass

approach presents a viable alternative to the most commonly used ensemble classifica-

tion approaches. Specifically, this approach shows a better performance in problems

with a larger number of classes. In these cases, instead of combining individual classi-

fiers trained with different subsets of samples or features, the more efficient approach

is to train classifiers on a subset of classes.

An important finding is that the generic subclass ensemble works better when

there is a larger number of classes. In these cases, instead of combining individual

classifiers trained with different subsets of samples or features, the more efficient

approach is to train classifiers on a subset of classes. In this way, the problem that

each classifier is going to be applied to is relatively smaller and can be solved more

efficiently.

Chapter 4

A Genetic-based Subspace Analysis Method for Improving

Error-Correcting Output Coding

4.1 Introduction

A common task in many real-world pattern recognition problems is to discriminate

among instances that belong to multiple classes, known as multiclass classification.

There are two general approaches to deal with multiclass problems. One approach

is to construct a single decision function by considering all classes (concurrently)

and to solve a complex classification problem, known as the single-machine approach

[159, 149]. Some classification algorithms, such as the k-Nearest Neighbor (kNN) or

Multilayer Perceptron (MLP), are inherently based on this approach. The second

approach is to recast the multiclass problem into a series of smaller binary classifica-

tion problems, which is referred to as “class binarization” [54]. In this way, two-class

problems can be solved by binary classifiers and the results can then be combined so

as to provide a solution to the original multiclass problem. An extensive comparison

of the results demonstrates that the class binarization approach generally achieves

a better performance, even for powerful learners [54, 70]. In addition, many estab-

lished classification algorithms are specifically designed for binary problems, such as

Support Vector Machine (SVM) or AdaBoost. Therefore, to solve multiclass classifi-

cation problems using these binary classifiers, the class binarization approach should

be employed.

Among the proposed methods for approaching class binarization, three techniques

are well-known: one-versus-all (OVA) [4], one-versus-one (OVO) [66], and Error Cor-

recting Output Codes [37, 2]. In one-versus-all, the multiclass problem is decomposed

into several binary problems in the following way: for each class a binary classifier is

trained to discriminate among the patterns of the class and the patterns of the re-

maining classes. In the one-versus-one technique, one classifier is trained to separate

35

36

each possible pair of classes. In both approaches, the final classification prediction

is usually obtained by means of a voting or committee procedure. More recently,

a unified framework was introduced to decompose a multiclass problem into a se-

ries of different binary problems, which is known as Error Correcting Output Codes

(ECOC). In this framework, each classifier is trained on a two meta-class problem,

where each meta-class consists of some combinations of the original classes. The

ECOC method can be broken down into two stages: encoding and decoding. The

aim of the encoding stage is to design a discrete decomposition matrix (codematrix)

for the given problem. Each row of the codematrix, named codeword, is a sequence

of bits representing each class, where each bit identifies the membership of the class

to a classifier [44]. In the decoding stage, the final classification decision is obtained

based on the outputs of binary classifiers. Given an unlabeled test sample, each bi-

nary classifier casts a vote for one of the two meta-classes used in its training. The

output vector is compared to each class codeword of the matrix and the test sample

is assigned to the class whose codeword is closest to the output vector, according to

a distance measure. Because of the ability of the ECOC framework to correct the

bias and variance errors of the base classifiers [85, 86, 172], it has been successfully

applied to a wide range of applications [34, 156, 82].

The priority when designing ECOC matrices is to improve the error correcting ca-

pability of the codematrix, mainly by maximizing a separability criterion between any

pair of rows and/or any pair of columns. In general, optimizing row separation cri-

teria directly leads to more error-correcting capability. According to error-correcting

theory, it can easily be shown that a matrix having d bits error-correcting capabil-

ity implies that there is a minimum Hamming distance of 2d+1 between any pair

of rows (codewords). Assuming that each codebit is transmitted independently, it is

then possible to correctly classify a received test codeword having fewer than d bits

in error, by assigning that codeword to the closest codeword based on the Hamming

distance. Therefore, it is desirable to design a codematrix with a high minimum Ham-

ming distance between any pair of codewords. However, the capability to detect and

possibly correct errors is “dependent on the assumption that each error is indepen-

dently produced” [171, 172]. Therefore, the independence of binary classifiers is the

cornerstone of the design of ECOC matrices, without which the ECOC method would

37

be ineffective. The intuition is that if each binary classifier makes different errors,

then the ECOC’s ability to detect and possibly correct errors would be improved.

The conventional strategy in the ECOC literature for designing independent clas-

sifiers is to optimize the distance between ECOC dichotomizers. This property is

generally achieved by maximizing the Hamming distance between each column and

the others, including their complementaries. Several methods have been proposed

that aim to simultaneously optimize row and column separation, such as BCH coding

[122], CHC coding [46], and evolutionary techniques [55]. Interestingly, the extensive

experimental results show that codes designed using only a row separation criterion

performed almost as well as codes designed using column and row separation. How-

ever, codes designed using only column separation criteria performed significantly

worse [54]. In addition, many researchers agree that a pseudo-random generation of

a codematrix is a reasonably good method, and that “more sophisticated methods

might have only marginal effect on testing error” [37, 54, 140]. These results reveal

that conventional strategies to design a codematrix will not promote independence

among binary classifiers.

One efficient approach to increase diversity among an ensemble of classifiers is

to train each learner with data that consist of different feature subsets, leading to

uncorrelated errors by base learners [69, 132]. This idea, usually called subspace

approach, can effectively make use of the diversity of base learners to reduce the

variance as well as the bias errors [56, 154]. Inspired by this idea, we design a new

method for the ECOC framework, named Subspace ECOC. The strategy consists of

using different feature subsets for each dichotomizer, leading to more independent

classifiers and, consequently, increasing the overall system accuracy. In addition to

the design of more independent classifiers, the new technique allows for the design of

larger codes in comparison to classical methods.

Some previous studies have proposed the use of bagging and boosting within the

ECOC framework, mainly by selecting a sampling of data for each dichotomizer in

order to increase the diversity of binary problems. In this sense, Schapire proposed

a new technique by combining the boosting algorithm with the idea of output codes

[140]. Similarly, Windeatt and Ardeshir proposed to combine the AdaBoost, a ver-

sion of boosting, with output coding using the decision tree as a base learner [169].

38

Although previous methods have performed sampling of data, they used the same

set of available features, so it is likely that some classification errors will be common,

arising from noisy or non-discriminant features. To our knowledge, there is no related

work that performs feature selection within the ECOC framework independently of

the base classifier.

Another relevant factor for a codematrix to achieve a good performance is the

problem-dependent design of the codes. That is, for a given problem we need to

take into account the characteristics of the problem at hand. While most previous

work tried to design a generic codematrix for any classification problem, few studies

tried to develop the codematrix by considering the problem characteristics or the

classification performance. In this work, we attempt to tackle this issue using an

evolutionary algorithm-based optimization approach in order to guide the feature

selection of the three-dimensional ECOC matrix for each problem. More specifically,

the Genetic Algorithm (GA) is employed, which has been shown to provide an efficient

trade-off between the quality of the solution and the search complexity. In this way,

the efficiency of the whole ensemble for the problem at hand is considered in the

optimization process of the Genetic Algorithm. As a result, our problem-dependent

coding design in the ECOC framework based on the feature subspace approach not

only provides more independent classifiers, but also increases the overall classification

accuracy.

The rest of this chapter is organized as follows: Section 4.2 provides a brief in-

troduction to the ECOC framework. The proposed method based on the feature

subspace is explained in detail in Section 4.3. Section 4.4 reports the experiments we

performed using benchmark datasets. Finally, Section 4.5 summeriness the chapter.

4.2 Error Correcting Output Codes

First, we briefly describe some notations used in this chapter:

• T = {(x1, y1), (x2, y2), . . . , (xm, ym)}. A training set; where xi ∈ Rn; and each

label,yi, is an integer belonging to Y = {1, 2, . . . , Nc}, where Nc is the number

of classes.

• h = {h1, h2, . . . , hL} : A set of L binary classifiers.

39

Table 4.1: An example of an ECOC matrix.
Class h1 h2 h3 h4 h5 h6

c1
c2
c3
c4

4.2.1 ECOC overview

The basis of the ECOC framework consists of designing a codeword for each of the

classes. This method uses a matrix M of {1,−1} values of size Nc × L, where L is

the number of codewords codifying each class. This matrix is interpreted as a set of

L binary learning problems, one for each column. That is, each column corresponds

to a binary classifier, called dichotomizer hj, which separates the set of classes into

two metaclasses. Instance x, belonging to class i, is a positive instance for the jth

classifier if and only if Mij = 1 and is a negative instance if and only if Mij = −1.

Table 4.1 shows a possible binary coding matrix for a 4-class problem {c1, . . . , c4}
with respective codewords {M(r, .)} that uses six dichotomizers {h1, . . . , h6}. In this

table, each column is associated with a dichotomy classifier, hj, and each row is a

unique codeword that is associated with an individual target class. The white cells

of the table refer to +1 and the dark cells stand for −1. For example, h3 recognizes

two meta-classes: original classes 1 and 4 form the first meta-class, and the other two

form the second one.

When testing an unlabeled pattern, x∗, each classifier outputs a -1 or 1, creating

a L long output code vector. This output vector is compared to each codeword in the

matrix, and the class whose codeword has the closest distance to the output vector is

chosen as the predicted class. The process of merging the outputs of individual binary

classifiers is called decoding. The most common decoding method is the Hamming

distance. This method looks for the minimum distance between the prediction vector

and the codewords:

yH = arg min
r∈{1,...,Nc}

L∑
i=1

1− sign(M(r, i) · fi(x))
2

, (4.1)

where sign(z) is +1 if z > 0, -1 if z < 0 and 0 otherwise. M(r, .) designates the

codeword r in the matrix and yH ∈ {1, . . . , Nc} is the predicted label. For example,

40

the output [+1−1−1−1+1−1] is closest to c2 codeword with a Hamming distance

of 1, and hence c2 would be chosen as the predicted label of x∗. Several decoding

strategies (combination methods other than distance methods) have been proposed in

the literature, such as probabilistic approaches [119, 185] and loss-functions strategies

[2]. The reader is referred to [42, 172] for a more detailed analysis.

4.2.2 Coding designs

There are several coding designs that can be used for ECOC methods, which can

be broadly divided into two main approaches, which we have named static and dy-

namic coding designs. The static codings are for designing generic code matrices for

any classification problem, regardless of the learning algorithm and the problem to

which the codematrix is going to be applied. The design of these matrices is usually

based on their error correcting capabilities or on maximizing a separability criterion

between rows and columns. On the other hand, the dynamic coding methods take

into account the characteristics of the problem at hand. This approach can yield

higher classification performance for a specific learning algorithm [55] at the cost

of higher computational complexity and less generalization of the designed matrices

to other problems. In the following subsections, we review state-of-the-art coding

designs based on these two families of approaches.

Static coding designs (problem-independent)

Most of the popular ECOC coding methods fall into the static coding category.In this

category, the most well-known coding techniques are dense random coding, consisting

of a binary matrix, and sparse random coding, using a third symbol (zero). The zero

value in sparse coding means that a given class is not considered in the training

phase of a particular classifier. Allwein et al. [2] suggested a length of 10log2(Nc) and

15log2(Nc) bits per code for dense and sparse coding styles, respectively.

Coding methods in this category are defined independently of the problem domain

and seek to satisfy two basic criteria:

• Row separation: Each codeword should be as far apart from the other code-

words. The standard measure of the error-correcting ability of any codematrix

is the minimum Hamming distance between any pair of codewords.

41

• Column Separation: In addition to row separation, each dichotomizer, hi,

should be well-separated from the other dichotomizers. This property results

in low correlated classifiers in the ensemble.

Taking into account these two criteria, several methods have been proposed in

order to optimize the coding design, such as the algebraic-based BCH codes [19],

randomized hill climbing [37], simulated annealing and evolutionary computation

[14, 55]. Kuncheva [90] used the disagreement diversity measure, a criterion from

the literature on classifier ensembles, and suggested an evolutionary algorithm for

constructing the codematrix.

Dynamic coding methods (problem-dependent)

Utschick and Weichselberger [157] proposed one of the first problem-dependent ECOC

designs. In their work, they developed a method based on the application of maximum-

likelihood objective function by means of the Expectation-Maximization (EM) algo-

rithm in order to achieve a suboptimal decomposition of the multiclass problem into

binary problems. Escalera et. al proposed a new problem-dependent ECOC design

based on subclass information in the ECOC framework [45]. Multiclass problems are

solved by splitting the original set of classes into subclasses and embedding the binary

problems in the ECOC design. Crammer and Singer proposed a method to find an

optimal coding matrix by changing its representation from discrete to continuous val-

ues [33]. Pujol et al. [124] proposed a heuristic method, named Discriminant ECOC,

to build the ECOC matrix based on a hierarchical partition of the class space that

maximizes a discriminative criterion. They also proposed ECOC-optimizing node em-

bedding (ECOC-ONE) [41]. This method uses a coding process that trains relevant

binary problems guided by a validation set. Their proposed procedure begins with

an initial codematrix and aims to recursively optimize the codematrix by minimizing

errors in the confusion matrix by using the validation samples. The authors suggested

a length of 2Nc bits per code. In [3] a method is proposed to learn the error-correcting

output codes from data, where the backpropagation algorithm is used to drive the

codewords for each class. In [184], a method is proposed to explore the distribution

of data classes and optimize both the decomposition and the number of base learners,

named Data-Driven Error Correcting Output Coding (DECOC). DECOC computes

42

the confidence score of each base classifier based on the structural information of the

training data. Sorted confidence scores are then used to selectively include some of

the binary learners in the codematrix. Zhong et. al proposed a method that learns

the ECOC matrix and dichotomizers simultaneously from data by formulating the

learning model as a sequence of concaveconvex programming problems [183]. Re-

cently, Hatami [67] proposed a heuristic method for an application-dependent design

of ECOC matrix based on a thinning algorithm, called Thinned-ECOC. The main

idea of the method is to successively remove some unnecessary and redundant columns

from the initial codematrix based on a metric defined for each column.

4.3 Genetic Algorithm-based Subspace ECOC (GA-SS-ECOC)

As we stated earlier, there exist two main factors affecting the performance of ECOC

methods. The first is that the error committed by each of the binary classifiers

needs to be uncorrelated, which makes the ECOC approach effective in correcting the

errors. The second factor is that the design of the codematrix cannot be considered

independent of the problem to which it is going to be applied. In the following two

subsections, our strategies to deal with these two factors are explained. We first

present in detail the proposed subspace approach to the output coding framework.

Then, the GA-based optimization process that performs problem-dependent feature

selection is explained.

4.3.1 Subspace ECOC

The central idea of the proposed Subspace ECOC is based on using feature space

in the design process of the ECOC matrix. That is, each dichotomizer is trained

with a different feature subset, leading to better classification accuracy. From the

design process point of view, we generate a three-dimensional codematrix, where the

third dimension is the feature space of the problem domain. In order to generate

this framework, first, a two-dimensional codematrix is created from a previous set

of matrices that maximizes the minimum distances between any pair of codewords.

Then, for each column, a random vector of {−1,+1} values of size n is generated,

where n is the number of features. The meaning of ’+1’ (’-1’) in the vector is that the

corresponding feature is (not) included in the corresponding classifier. Note that in

43

both, sparse and dense coding styles, the value of each cell in the feature space cannot

take the 0 value. The representation of the proposed three-dimensional codematrix

is illustrated in Figure 4.1.

Figure 4.1: The Subspace ECOC approach.

This approach not only creates more independent classifiers, but it can also build

longer codewords. It can be shown that the maximum length of codewords in ECOC

matrices is (2Nc−1 − 1) and (3Nc − 2Nc+1 + 1)/2 for dense and sparse coding styles,

respectively (The proof is given in the Appendix A). Thus, the maximum number of

binary classifiers in the classical ECOC methods is small in problems with a relatively

small number of classes (i.e. Nc < 6). Conversely, the ECOC method with longer

codes is able to significantly improve the results [2, 54]. In our proposed approach,

since each classifier can be trained using a variety of feature subsets, more diverse

classifiers can be built. In an n-dimensional feature space, 2n−1 different non-empty

feature subsets can be selected. So, the number of distinct dichotomizers is (2n −
1).(2Nc−1−1) and (2n−1).(3Nc−2Nc+1+1)/2 for dense and sparse ECOC, respectively.

The other advantage of the subspace approach is that each binary classifier requires

less training time, since it uses fewer features.

4.3.2 Improving the subspace ECOC coding by GA

As mentioned earlier, most previous work on ECOC was focused on the generation

of a coding matrix without considering the characteristics of the problem at hand.

Recently, some researchers argue that using the knowledge of the problem domain

to learn relevant binary problems has a significant effect on ECOC accuracy. The

basic strategy of these studies is to use the training data to guide the design process,

44

Figure 4.2: A possible encoding of a problem with three dichotomizers, three classes, and
four features.

and thus, to develop a coding matrix that focuses on binary problems that better fit

the decision boundaries of a given problem. This problem-dependent development

can be considered as an optimization design process. One promising strategy for this

optimization issue is to use an evolutionary algorithm-based approach. One of the

most well known evolutionary approaches is the Genetic Algorithm, which is inspired

by an explicit imitation of biological life, in which weaker units (individuals with

lower fitness) are eliminated and the strongest (fittest) individuals survive to produce

the next generations.

In the proposed GA-based Subspace ECOC method, each chromosome of the

population is a three-dimensional codematrix. Consider a problem with Nc classes, L

dichotomizers, and n features. Each matrix is encoded by a vector of length L(Nc +

n). The first Nc + n bits represent the first classifier (the first dichotomizer and its

corresponding feature subset), followed by the Nc + n bits for the second classifier

,h2, and so on. Based on two ECOC schemes, i.e. dense and sparse coding, two

versions of the GA-based Subspace ECOC are proposed. In the dense scheme, each

bit of a chromosome has a value of +1,-1, whereas in the sparse scheme, bits related

to dichotomizers may take the zero value as well. A possible chromosome encoding

for a problem with three dichotomizers, three classes, and four features is illustrated

in Figure 4.2.

Due to the fact that a chromosome corresponds to a three-dimensional codematrix,

there are few changes required in mutation and particularly in cross-over operations

of the standard Genetic Algorithm. Mutation flips the sign of a randomly selected

bit of a chromosome. However, since flipping the sign of bits corresponding to di-

chotomizers may result in a non-valid dichotomizer, the mutation is only applied to

bits corresponding to feature vectors 1. This modification ensures that the premature

1As a simple example, if we mutate the third bit of [1 1 -1], a non-valid dichotomizer will be
generated.

45

convergence of the algorithm is avoided. The cross-over operation is more sophisti-

cated, since a chromosome consists of a sequence of two entities: a dichotomizer and

its corresponding feature vector, each one having different concepts and clearly dif-

ferent possible values. The proposed technique is to randomly choose the cross-over

point from the positions that encoded classifiers end. The cross-over operation is

schematically presented in Figure 4.3. The GA-based Subspace ECOC method can

be summarized in the following form:

1. Pick the parameters of the Genetic Algorithm:

• Population size (P),

• Maximum number of iterations,

• Mutation probability.

2. Generate a random population of chromosomes and calculate their fitness values

as the classification accuracy of each individual (i.e. each ECOC matrix) on the

validation data.

3. Perform one-point cross-over and mutation to generate the offspring chromo-

somes.

4. Calculate the fitness values of the offspring chromosomes.

5. Pool offspring and the current population together and select P chromosome

with the highest fitness as the next generation.

6. If the stopping criteria are met, finish; else go to step 3.

It is worth mentioning that this special implementation of the Genetic Algorithm

is a kind of hill-climbing strategy, as it guarantees that the fitness value will not

decrease in the subsequent generations.

4.4 Experimental Comparison Over Benchmark Datasets

In this section, we first discuss the experimental settings of the experiments including

the data, the comparative methods, and the evaluation measurements. We then

provide a detailed comparison of results achieved by different methods.

46

Figure 4.3: A schematic representation of the cross-over operation in GA-SS-ECOC.

4.4.1 Experimental settings

• Data: The proposed GA-SS-ECOC method was first validated on 20 multiclass

datasets from the UCI machine learning repository [16]. Table 4.2 shows the

number of classes, instances, and features of each UCI dataset.

• Methods: We compared our proposed method with classical static methods

including OVO, OVA, and dense random and sparse random ECOC methods

as well as two state-of-the-art problem-dependent coding methods, including

Discriminant ECOC and ECOC-ONE. The class of an instance in the ECOC

schemes was chosen using the Exponential Loss-Weighted (ELW) decoding [42].

In order to limit the computational complexity of the experiments in the GA-

SS-ECOC design, the population size and maximum number of iterations in

the GA optimization algorithm was set to 10 and 3, respectively. In addition,

if the best fitness did not change in two successive iterations, the optimization

process was stopped. The mutation rate was set to p = 0.1 in order to promote

diversity in the population.

We set the number of different feature subsets for each nontrivial dichotomizer

47

Table 4.2: Summary of the datasets used.

Dataset # instances # features # classes
1 Abalone 4177 8 3
2 Cmc 1473 9 3
3 Derm 366 34 6
4 Ecoli 336 7 8
5 Glass 214 10 7
6 Iris 150 4 3
7 Lymph 148 18 4
8 Mfeat-mor 2000 6 10
9 Mfeat-pix 2000 240 10
10 Mfeat-zer 2000 47 10
11 Optdigits 5620 64 10
12 Sat 6435 36 6
13 Thyroid 215 5 3
14 Vehicle 846 18 3
15 Vertebral 310 6 3
16 Vowel 528 10 11
17 Waveforms 5000 40 3
18 Wine 178 13 3
19 Yeast 1484 8 10
20 Zoo 101 16 7

as 10. Thus, codewords are 10 times longer in the Subspace ECOC design for

both dense and sparse ECOC methods. In this study, two base learners were

chosen: a classification and regression tree (CART) with the Gini-index as a

split criterion and a multilayer perceptron (MLP) with 10 hidden nodes and

the hyperbolic tangent transfer function. The MLP classifier cannot handle the

missing values, so the instances with missing values were removed.

• Evaluation measurements: The classification accuracy was obtained by

means of 10-fold cross-validation to improve the reliability of the results. In

order to have a fair comparison, the training and test sets of all methods were

the same for each repetition of experiments. Moreover, using non-parametric

tests we showed that the performance of rival methods was statistically different.

48

4.4.2 Experimental results

The average accuracy of the rival methods for each dataset is presented in Table 4.3

and Table 4.4. In these tables, the means of prediction accuracy over 10 runs (ex-

pressed in %) are reported for each method on the considered datasets. For each

dataset, the best accuracy achieved among all tested methods is in bold.

Table 4.3: Classification accuracies of different methods using CART.
OVO OVA Dense

ECOC
Sparse
ECOC

Dis.
ECOC

ECOC-
ONE

GA-SS
dense
ECOC

GA-SS
sparse
ECOC

Abalone 58.50 58.20 58.20 59.72 57.50 58.84 62.80 63.55
Cmc 50.28 49.87 49.87 51.85 49.70 50.01 52.14 52.72
Derm 95.93 94.81 97.49 96.82 94.42 96.37 97.88 97.72
Ecoli 83.22 77.24 85.62 84.67 81.60 85.00 87.32 85.84
Glass 72.44 61.94 72.30 73.41 64.90 72.01 76.76 78.27
Iris 93.33 93.20 93.73 93.33 93.71 93.33 94.13 93.73
Lymph 75.69 75.94 77.18 77.07 74.07 77.18 81.09 81.20
Mfeat-mor 68.42 65.36 72.14 71.14 66.67 68.72 70.53 70.22
Mfeat-pix 89.41 81.57 96.52 96.49 78.54 90.26 96.94 97.04
Mfeat-zer 68.97 58.78 79.75 78.81 61.42 69.47 80.56 79.58
Optdigits 91.69 83.84 97.22 96.82 81.67 91.60 97.73 97.50
Sat 86.70 83.95 90.66 91.18 85.02 86.75 91.88 91.89
Thyroid 92.05 92.50 92.50 92.05 93.31 92.85 94.58 95.23
Vehicle 72.53 73.30 73.16 74.87 73.63 73.24 76.71 76.48
Vertebral 79.35 78.28 78.28 78.71 78.82 78.92 80.75 80.65
Vowel 79.25 71.80 95.38 93.60 72.02 80.80 96.44 95.72
Waveforms 75.78 72.48 72.46 79.10 74.82 74.85 82.86 83.71
Wine 93.74 91.50 91.50 94.53 92.47 94.53 97.76 97.43
Yeast 56.69 52.80 59.60 60.68 53.48 56.44 59.94 60.43
Zoo 86.73 90.18 93.18 92.91 87.27 89.09 94.45 93.27
Mean 78.53 75.38 81.34 81.89 75.75 79.01 83.66 83.61

In order to show the superiority of the proposed ECOC method in terms of the

classification accuracy, statistical analysis is necessary. According to the recommen-

dations of Demsar [36], we consider the use of non-parametric tests. Non-parametric

tests are safer than parametric tests, such as ANOVA and t-test, since they do not

assume normal distribution or homogeneity of variance. In this study, we employed

the Iman-Davenport test. If there are statistically significant differences in the classi-

fication performance, then we can proceed with the Nemenyi test [108] as a post-hoc

test, which is used to compare the methods with each other.

We first rank competing methods for each dataset. The best performing method

gets a rank of 1, the second best is ranked 2, etc. The method’s mean rank is obtained

by averaging its ranks across all datasets. Then, we use the Friedman test [36] to

49

Table 4.4: Classification accuracies of different methods using MLP.
OVO OVA Dense

ECOC
Sparse
ECOC

Dis.
ECOC

ECOC-
ONE

GA-SS
dense
ECOC

GA-SS
sparse
ECOC

Abalone 66.13 66.02 65.99 66.62 66.27 66.47 66.76 67.02
Cmc 53.58 51.73 51.68 53.65 50.66 50.76 54.25 55.12
Derm 92.83 93.40 97.41 97.30 91.27 94.34 97.40 97.68
Ecoli 82.33 83.53 87.10 86.89 83.37 82.33 87.49 87.01
Glass 63.03 59.30 65.44 64.98 65.00 65.15 66.74 67.80
Iris 95.56 95.56 95.56 96.44 95.56 96.22 96.22 95.56
Lymph 75.40 69.59 79.28 80.69 73.25 79.02 85.64 86.21
Mfeat-mor 74.52 76.60 75.00 74.20 74.78 74.35 76.92 74.91
Mfeat-pix 94.55 89.50 91.11 93.88 90.87 94.32 94.50 95.18
Mfeat-zer 81.50 79.39 82.14 82.07 80.45 82.20 82.72 82.31
Optdigits 95.91 96.62 97.51 97.33 94.88 96.80 97.82 97.73
Sat 89.01 86.74 89.29 89.46 88.04 89.56 89.59 90.06
Thyroid 95.23 95.68 96.36 95.91 96.36 96.82 96.30 96.75
Vehicle 80.79 81.22 81.44 82.76 82.08 82.81 83.34 83.46
Vertebral 81.45 82.90 83.23 83.77 84.10 84.52 83.87 84.19
Vowel 93.74 82.25 97.29 96.82 83.59 93.50 97.43 97.64
Waveforms 85.27 84.37 84.34 86.11 85.90 86.15 86.64 86.96
Wine 93.30 95.24 94.93 97.50 94.56 97.67 98.06 98.06
Yeast 58.99 54.34 59.69 60.66 57.77 58.78 59.98 59.96
Zoo 94.09 92.27 95.45 95.91 90.45 90.30 95.45 95.45
Mean 82.36 80.81 83.51 84.15 81.46 83.10 84.86 84.95

compare these mean ranks to decide whether to reject the null hypothesis, which

states that all considered methods have the equivalent performance. The Friedman

statistic value is computed as follows:

χ2
f =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
, (4.2)

where k is the number of competing methods and N is the number of experiments. In

our case, when comparing six methods in 20 experiments, χ2
f = 99.13 and χ2

f = 78.70

for CART and MLP, respectively. Iman and Davenport [74] found that this statistic

is undesirably conservative, and proposed a revised one:

FF =
(N − 1)χ2

f

N(k − 1)− χ2
f

, (4.3)

which is distributed following an F distribution with k−1 and (k−1)(N−1) degrees

of freedom. By applying this correction we obtained FF = 46.08 and 24.39 for CART

and MLP, respectively. The critical value of F(7,19) for α = 0.05 is 2.54. As the values

50

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

OVO

OVA

dense ECOC

sparse ECOC

Disc. ECOC

ECOC−ONE

de GA−SS−ECOC

sp GA−SS−ECOC

(a) CART Classifier

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

OVO

OVA

dense ECOC

sparse ECOC

Disc. ECOC

ECOC−ONE

de GA−SS−ECOC

sp GA−SS−ECOC

(b) MLP Classifier

Figure 4.4: Comparison results of rival methods based on the Nemenyi test.

of FF are higher than 2.54 we can reject the null hypothesis, that is, the results are

not obtained because of randomness.

Further, to compare rival methods with each other, we applied the Nemenyi test.

Two methods are significantly different if their corresponding average ranks differ by

at least the critical difference value (CD):

CD = qα

√
k(k + 1)

6N
, (4.4)

In our case, the critical value for a 90% of confidence is CD = 2.78
√
0.6 = 2.15. The

results of the Nemenyi test are illustrated in Figure 4.4. In this figure, the mean rank

of each method is indicated by a square. The horizontal bar across each square shows

the critical difference. Two methods are significantly different if their corresponding

average ranks differ by at least the critical difference value. That is, their horizontal

bars do not overlap. Looking at the rankings of each coding strategy, we can conclude

that the proposed GA-SS-ECOC schemes are significantly better than other strategies

in the present experiments.

The results in Table 4.3 and Table 4.4, along with the statistical tests presented

in Figure 4.4, indicate that overall, the GA Subspace approach achieves the best

performance among all methods. As a general conclusion, the advanced performance

of the proposed method does not differ much depending on the base classifier. Us-

ing both neural network and decision tree as the base learner, we found significant

differences between GA-SS-ECOC and classical ECOC for both dense and sparse

51

Figure 4.5: Some examples of shapes in the MPEG7 dataset.

schemes. An analysis of the results shows that when the number of training patterns

is relatively small compared with the dimensionality of data, the subspace approach

is usually a better choice. Ho [69] showed that while most classification approaches

suffer from the curse of dimensionality, the subspace approach can take advantage of

high dimensionality.

4.5 Machine Vision Applications

Then, we applied the proposed GA-SS-ECOC to two machine vision problems: logo

recognition and shape categorization. As in previous experiments with UCI datasets,

CART and MLP classifiers were chosen and their adjustable parameters were the

same as previous experiments. Again, 10-fold cross-validation method was used for

performance evaluation.

4.5.1 Shape categorization

The first real image classification problem is shape classification, in which we used

the MPEG7 dataset2. This dataset consists of C = 70 classes (bone, chicken, cellular

phone, etc.) with 20 instances per class, which represents a total of 1400 object

images. All samples were described using the Blurred Shape Model descriptor [43].

This technique describes each shape by means of 100 features. Thus, the MPEG7 is

a 100 dimensional dataset. Figure 4.5 shows a few samples for some categories of this

dataset.

2MPEG7 Repository dataset: http://www.cis.temple.edu/ latecki/

52

(a) Logo60 (b) Logo30 (c) Logo10

Figure 4.6: Some examples of logos in the database used in our experiments.

Figure 4.7: The framework of logo recognition process.

4.5.2 Logo recognition

The ECOC approach was then used in the logo recognition problem. The logo images

were based on a database of logos which contains pure pictorial logos (e.g. logo 60,

Figure 4.6), text-like logos (e.g. logo 30, Figure 4.6), and text-graphics mixture

logos (e.g. logo 10, Figure 4.6). The complete dataset contains 105 images and was

obtained from the database distributed by the Document Processing Group, Center

for Automation Research, University of Maryland [111]. The logos in the dataset

have very different sizes; the smallest one is 121 × 145 pixels and the largest one is

802× 228 pixels. Figure 4.7 shows the framework of our logo recognition process.

This dataset provides only a single instance of 105 individual logo classes. In

order to increase the number of samples, for each logo class, some artificially degraded

images were generated by using the noise models described in the following subsection.

4.5.3 Noise models

We investigated the robustness of the methods when the logos are corrupted us-

ing two different image degradation methods: 1) Gaussian noise (a global degrada-

tion as shown in Figure 4.8b); and 2) spot noise (a local degradation as shown in

Figure 4.8a). For each method, we degraded each image in the database, varying

the amount of degradation in equally spaced steps. We generated a set of 40 ex-

amples for each class of logo images by adding both the Gaussian white noise of

53

(a) Gaussian noise (b) spot noise

Figure 4.8: Examples of noisy logo patterns derived by applying the Gaussian and spot
noise model.

mean = [0, 0.1, 0.2, . . . , 0.5] and var = [0, 0.01, . . . , 0.05] and the spot noise of differ-

ent sizes (width = [10, 15, . . . , 30] pixels).

4.5.4 Feature extraction

Some researchers have studied the problem of logo recognition by applying differ-

ent feature extraction methods, such as algebraic and differential invariants [38, 76],

Zernike and pseudo-Zernike moments [167, 77], line segment Hausdorff distance [28],

and template matching [76]. In this work, logo images are described in terms of seven

invariant moments, which have been proven to be an effective descriptor of logo and

trademark images [76]. Consequently, the logo dataset is a seven dimensional dataset.

Moment invariants

These descriptors, also called geometric moment invariants, were first introduced in

1962 by Hu [71] based on the theory of algebraic forms. These moment features

have the desirable properties of being invariant under rotation, translation, scale,

and reflection of images and have been widely used in many applications due to their

invariance properties. For a 2-D image, f(x, y), the central moment of order (p + q)

is defined by:

μpq =
∑
x

∑
y

(x− x)p(y − y)qf(x, y), p, q = 0, 1, 2, . . . (4.5)

where the pixel point (x, y) is the centroid of the image. Seven moment invariants

(M1 −M7) based on the 2nd and 3rd order moments are defined [71]:

54

[b]M1 =(μ20 + μ02),

M2 =(μ20 − μ02)
2 + 4μ2

11,

M3 =(μ30 − 3μ12)
2 + (3μ21 − μ03)

2,

M4 =(μ30 + μ12)
2 + (μ21 + μ03)

2,

M5 =(μ30 + μ12)(μ30 − 3μ12)[(μ30 + μ12)
2 − 3(μ21 + μ03)

2]+

(3μ21 − μ03)(μ21 + 3μ03)[3(μ30 + μ12)
2 − (μ21 + μ03)

2],

M6 =(μ20 − μ02)[(μ30 + μ12)
2 − (μ21 + μ03)

2]+

4μ11(μ30 + μ12(μ21 + μ03))

M7 =(3μ21 − μ03)(μ30 + μ12)[(μ30 + μ12)
2 − 3(μ21 + μ03)

2]−
(μ30 − 3μ12)(μ21 + μ03)[3(μ03 + μ21)

2 − (μ21 − μ03)
2]

4.5.5 Experimental results and analysis

The average accuracy of all considered methods over 10 runs is illustrated in Fig-

ure 4.9 and Figure 4.10 for shape and logo datasets, respectively. The experiments

were conducted using different numbers of classes for both datasets. The results

demonstrate that the behavior of the six methods follows the general guidelines ob-

tained in the validation of the method using benchmark datasets. It is important

to note the high performance of the GA-Subspace approaches in comparison with

the standard techniques. This improvement is clearer when the number of classes of

the datasets increases. In that case, the inter-class variability is reduced, and thus,

it is easier to confuse patterns from different classes. However, given the diversity

introduced by the feature selection approach in the proposed GA-Subspace method,

we are able to maintain a high level of performance for problems with a large number

of classes, while also outperforming the other strategies.

The other finding is that the average accuracy improvement is more significant

using the shape dataset. The main reason behind this improvement is that shape

patterns are relatively high-dimensional patterns (containing 100 features) in com-

parison with logo patterns (containing only 7 features). Therefore, the Subspace

ECOC approach takes advantage of this high-dimensionality.

55

(a) CART Classifier

(b) MLP Classifier

Figure 4.9: Average accuracy of different class binarization methods on the MPEG7 dataset.

(a) CART Classifier

(b) MLP Classifier

Figure 4.10: Average accuracy of different class binarization methods on the Logo dataset.

56

4.6 Summary

In this chapter, a subspace analysis-based approach for the design of the application-

dependent codematrix is proposed in the ECOC framework, in which the genetic al-

gorithm is applied for search optimization. The new approach defines a third ECOC

matrix dimension which corresponds to the feature space. In this sense, different sub-

sets of features can be activated for a given dichotomy. The proposed method takes

advantage of some basic concepts of ensemble classification, such as diversity of clas-

sifiers, and also benefits from the evolutionary algorithm-based approach to optimize

the three-dimensional codematrix, taking into account the characteristics of data.

As a result, we obtain a problem-dependent coding design with more independent

classifiers, which reduces the bias and variance errors of the multiclass problem and,

consequently, increases the discrimination power of the ensemble. The method was

evaluated on several UCI datasets as well as two image classification problems using

two different base learners. The experimental results show significant performance

improvement of the proposed method compared to state-of-the-art approaches.

Chapter 5

A Framework of Multi-Classifier Fusion for Human Action

Recognition

5.1 Introduction

The fast and reliable recognition of human actions from captured videos has been a

goal of Computer Vision for decades. Robust action recognition has diverse appli-

cations including gaming, sign language interpretation, human-computer interaction

(HCI), surveillance, and health care. Understanding gestures/actions from a real-time

visual stream is a challenging task for current Computer Vision algorithms.

Over the last decade, spatial-temporal (ST) volume-based approaches and local

ST feature representations have achieved good performance on some action datasets.

However, they are still far from being able to express the effective visual information

for high-level interpretation, because of the weakness of semantics and lack of intrinsic

structures. On the other hand, interpreting human actions from tracked body parts is

a natural solution that follows the mechanism of human visual perception. The early

work conducted by Johansson in 1973 shows that the tracking of joint positions itself

encodes significant discriminative information and is sufficient for human beings to

recognize different actions [79]. In addition, according to an influential computational

model of human visual attention theory [152], visual attention leads to visual salient

entities, which provide selective visual information to make human visual perception

efficient and effective. Skeleton joints are visual salient points of the human body and

their movements in 4D space reflect motion semantics.

From a technological point of view, the development of low-cost depth sensors

with acceptable accuracy has greatly simplified the task of action recognition. Most

importantly, the recent release of the Microsoft Kinect camera and its evolving skele-

ton joints detection technique in late 2011 [81] led to a revolutionary effect in the

field of Computer Vision and created a wide range of opportunities for demanding

57

58

applications. The Kinect sensor captures depth information of a scene, in addition to

the RGB image acquired by a camera. Therefore, Kinect provides synchronized color

and depth images, usually called RGB-D (RGB plus depth). Shotton et al. [144]

proposed one of the greatest advances in the extraction of the human body pose from

depth data, which is provided as a part of the Kinect platform. Their work enables

us to recover 3D positions of skeleton joints in real time and with reasonable accuracy

[57, 144].

In this chapter, we focus on human action recognition by using skeleton joint infor-

mation extracted from depth sequences. From the pattern recognition point of view,

action recognition is considered a multi-class classification task, where each action

type is a separate target class. In this view, the classification system involves two

main stages, the selection and/or extraction of informative features and the construc-

tion of a classification algorithm. In such a system, a desirable feature set can greatly

simplify the construction of a classification algorithm, and a powerful classification

algorithm can work well even with a low discriminative feature set.

Here, we first present two efficient action description techniques by only consider-

ing skeleton joint information. Then, we propose the use of an ensemble classification

framework in order to improve the efficiency of the recognition stage. To do this, we

employ different action recognition learners and aim to efficiently fuse them by the

Dempster-Shafer fusion method.

In summary, the contributions of this chapter are as follows: (1) We introduce two

simple, yet efficient, action description techniques only considering skeleton joint loca-

tion information; (2) We apply an ensemble framework to address the action/gesture

recognition problem; (3) We efficiently combine individual classifier outputs by means

of the Dempster-Shafer fusion method, taking benefit from diversity of base classifiers

trained on different source of information.

5.2 Related work

Until 2011, the main source for human action recognition was based on a sequence

of RGB images, i.e. a color video. However, for many applications that rely on

precise tracking without specific body part positions, color-based approaches can

easily fail due to occlusion, dynamic environments and intra-class variations. With the

59

development of depth sensors, active research has been conducted on action/gesture

recognition using depth and skeleton data. In this section, we first briefly review

studies of human activity analysis using RGB data. Then, we focus on related work

on human action recognition using depth and skeleton data.

5.2.1 Activity recognition using color images

Various representational methodologies have been proposed to recognize human ac-

tions/gestures from color image sequences. They can be broadly categorized into

four approaches. The first approach is based on the sequential representation of a

video using a sequence of feature vectors. Each vector may contain color, location,

orientation, size and shape features of one or more images. The second approach is to

represent 2D images as a 3D Space-Time (ST) volume, constructed by concatenating

XY images along the time T . 3D ST volumes can be viewed as rigid objects. The

volume-based representations are generated using the salience features of the rigid

objects. A well-known methodology is developed by Bobick and Davis [17]. They

proposed two 2D images: a binary motion energy image (MEI) and a scalar-valued

motion history image (MHI). These methods are constructed from a sequence of fore-

ground images. MEI and MHI essentially are weighted XY projections of the original

3D ST volume. The third approach is trajectory-based representation. In this ap-

proach, a person is usually represented as a set of 2D or 3D points, corresponding

to his joints. A human body part estimation is necessary for obtaining the joint

positions. As an example, Wang et al. [162] recently proposed the use of dense tra-

jectories to describe videos. Dense trajectories are constructed by matching dense

points in the optical flow field between frames. After removing noise trajectories, the

motion patterns are encoded by the trajectory shapes. Human motion is represented

by a set of histogram-based descriptors that represent the local and global properties

of the dense trajectories.

The fourth approach, which has gained more attention in the related literature,

is based on local feature representation. In this approach, appropriate salient points

or regions, representing an action by 3D ST volume, are extracted and then the

action is described by the local feature-based representations around those salience

entities within the ST volume. Laptev and Lindeberg extracted space-time interest

60

points (STIPs) by using the Harris3D detector [91]. Some other ST saliency detectors

are Hessian [168] and dense spatiotemporal saliency [126]. Based on these extracted

salient points, several local ST descriptor methods, such as HOG/HOF [92] and ex-

tended SURF [39] have been proposed. The use of skeleton-based descriptors has been

included in action recognition models such as the Hidden Markov model (HMM) [101]

and the Conditional Random Field (CRF) model [65]. Another common strategy for

video representation is based on the Bag-of-Word (BoW) approach of RGB image

sequences [97, 162]. These intermediate level local feature descriptors contain image

semantics, being robust to noise.

Figure 5.1 shows the general timeline of outstanding research studies in the field

of human activity analysis.

5.2.2 Activity recognition using depth and skeleton data

Within the last two years after Kinect was released, a large number of works have

appeared in diverse Computer Vision domains. Figure 5.2 shows a tree structure

taxonomy of vision problems that can be addressed or enhanced by means of Kinect

[64]. In this subsection, we focus on activity recognition studies by Kinect.

The story of human action recognition using depth and skeleton data begins with

a recent work by Shotton et al [144]. They proposed a Random Forest-based clas-

sification method to find body joints from depth images. This approach has been

recently enhanced by other works [57, 143], which provide accurate 3D estimations

of skeleton joint locations.

Li et al. [95] adopted an action graph to model the temporal dynamics of the ac-

tions and proposed the use of a bag of 3D points, extracted from the depth map. Also,

they propose a projection based sampling technique to sample the bag of 3D points

from a body surface to characterize the posture being performed in each frame. Their

experimental results on the MSR-Action3D dataset showed advanced performance of

their method, compared to the 2D silhouette based recognition. Reyes et al. [128]

proposed an automatic feature weighting approach within the Dynamic Time Warp-

ing method for real-time gesture recognition. In their method, weights are assigned

to features based on inter-intra class action variability.

61

F
ig
u
re

5
.1
:
T
im

el
in
e
o
f
o
u
ts
ta
n
d
in
g
re
se
a
rc
h
st
u
d
ie
s
in

th
e
fi
el
d
o
f
h
u
m
a
n
a
ct
iv
it
y
a
n
a
ly
si
s.

62

Figure 5.2: Taxonomy of applications of Kinect in vision problems [64].

In [174], a histogram of 3D joint locations (HOJ3D) for body posture representa-

tion is proposed. In this representation, the 3D space is partitioned into bins using

a spherical coordinate system, and the HOJ3D histogram is constructed by casting

joints into certain bins. After applying linear discriminant analysis (LDA) for dimen-

sionality reduction, HOJ3D vectors are clustered into k posture visual words. The

temporal behaviour of these visual words is coded by discrete Hidden Markov models

(HMMs). In [176] and [177], visual features for activity recognition are computed

based on the spatial and temporal differences among detected joints. This feature

set contains information about static posture, motion, and offset. In their method, a

feature descriptor will be generated for each frame. For classification, they employed

the Naive Bayes Nearest Neighbor (NBNN) method.

There are studies that have fused different sources of information, i.e. RGB, depth,

and skeleton data. Wang et al. [164] extracted two types of features from each frame:

1) the pairwise relative difference between joints’ positions (skeleton data); and 2)

local occupancy patterns (LOP) at each joint extracted from depth maps. This LOP

feature encodes the local occupancy information based on the 3D point cloud around

a joint. In addition, the Fourier temporal pyramid is then employed to represent

the temporal dynamics. For the recognition phase, they introduced the concept of

actionlet, which is a conjunction of the features for a subset of the joints, indicating

a structure of the features. Then, they proposed a data mining solution to discover

discriminative actionlets. Thus, an action is represented as an Actionlet Ensemble,

which is a linear combination of the actionlets. Their discriminative weights are learnt

via a multiple kernel learning method. Indeed, their actionlet ensemble follows the

concept of feature selection strategies.

63

Figure 5.3: Different data modalities of the Chalearn dataset.

In [68], Bag-of-Visual-and-Depth-Words is proposed, containing a vocabulary of

HOG/HOF and PFH/FPFH descriptors from RGB and depth sequences, respectively.

This novel representation was also used within the classical Dynamic Time Warping

method, including Gaussian-like probabilities to compute the warping path, perform-

ing multi-modal action recognition. Sung et al. [147] used both RGB and depth

channels to recognize human daily activities. They proposed a 459-element feature

vector from various body joints for each frame, and then a two-layered Maximum

Entropy Markov Model (MEMM) was applied to recognize single person activities.

In [98], the authors introduced an adaptive learning methodology to simultaneously

extract spatio-temporal features from RGB and depth data. The feature learning

is optimized using a restricted graph-based genetic programming (RGGP) approach.

More recently, Oreifej and Liu[116] proposed an efficient action representation tech-

nique that aims to capture shape and motion features simultaneously, named HON4D.

They described the depth sequence using a histogram capturing the distribution of

the surface normal orientation in the 4D space of time, depth, and spatial coordinates.

Their results on three action datasets showed that their descriptor outperforms the

state-of-the-art methods.

5.3 Action Recognition Problems

Here, we tackle two action recognition problems:

1) Gesture recognition: Our first problem is the classification of 20 gestures,

taken from the Multi-modal Gesture Recognition Challenge 2013 (Chalearn) dataset

[40]. This dataset is a newly released large video database of 13,858 gestures from a

lexicon of 20 Italian gesture categories recorded with a Kinect camera, including audio,

64

Figure 5.4: Some example gestures in the Chaleran dataset are very easy to be confused,
even from human visual perception.
(a) Che vuoi vs. Che due palle. For the Che vuoi gesture, both hands are in front of
the chest area, where for Che due palle gesture they are near the waist region. (b) Vanno
d’accordo vs. Cos hai combinato: both hand positions are very close and with the same
motion directions; (c) both gestures, Si sono messid’accordo and non ce ne piu, require
hand rotations; (d) four gestures, Furbo, seipazzo, buonissimo, and cosatifarei are required
with the finger pointing to the head area, which cannot be easily determined, even with
human eyes.

skeletal model, user mask, RGB and depth images (see Figure 5.3). This dataset

contains image sequences capturing 27 subjects performing natural communicative

gestures and speaking in fluent Italian, and is divided into development, validation

and test parts. Each sequence lasts between 1 and 2 minutes and contains between

8 and 20 gesture samples, around 1,800 frames. It provides audio, RGB, depth, and

user mask videos for a sequence. Examples of RGB image sequences for some gestures

are shown in Figure 5.4.

2) Human actions classification: The second problem is the recognition of 20

actions, taken from the MSRAction3D dataset [95]. This dataset is a well-known

benchmark dataset for 3D action recognition and contains 20 actions, including high

arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw,

draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward

kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up & throw. Each

action was performed 2 or 3 times by each subject. Skeleton joint data of each

frame is available having a variety of motions related to arms, legs, torso, and their

combinations. In total, there are 567 depth map sequences with a resolution of 320

× 240. Some examples of the depth sequences are shown in Figure 5.5.

65

Figure 5.5: Example frames and the corresponding skeleton joints of 20 actions of MSRAc-
tion3D dataset.
The first two rows, from left to right: high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap, The last two
rows, from left to right two hand wave, side-boxing, bend, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing, pick up & throw

5.4 Action Learning Techniques

In this work, we have employed five different action recognition techniques using only

positions of skeleton joints, described in the following subsections. Among them, the

first three methods are the existing ones in the related literature and the last two

methods are our proposed techniques.

1) Dynamic Time Warping + KNN

Dynamic Time Warping (DTW) is a well-known algorithm which aims to compare

and align two temporal sequences, taking into account that sequences may vary in

length (time) [128]. DTW employs the dynamic programming technique to find the

66

minimal distance between two time series, where sequences are warped by stretching

or shrinking the time dimension. Although it was originally developed for speech

recognition [138], it has also been employed in many other areas like handwriting

recognition, econometrics, and action/video recognition.

Here, depending on the problem, the relative distance of suitable joint points is

obtained at each frame. Then, given two actions represented by two multi dimen-

sional time series, DTW calculates the distance between two actions. To classify

an unlabeled test action (sample), its distance to all training samples is calculated.

Consequently, the nearest neighbor algorithm should be employed for classification.

Given a test action, we calculate its distance to all training actions using DTW, and

the target of the closest sample is predicted as the target class.

2) Spatial and temporal differences among joints + Naive-Bayes-Nearest-

Neighbor

In [176], visual features for activity recognition are computed based on the spatial

and temporal differences between skeleton joints, named EigenJoints features. This

feature set contains information about static posture, motion, and offset. In their

method, a feature descriptor is generated for each frame. Therefore, each action has

a different number of feature descriptors, depending on the number of frames. For

classification, they employed the Naive Bayes Nearest Neighbor (NBNN) method,

which is a very efficient method recently introduced for image classification [18].

For the next three sets of action descriptors, i.e. bag of visual words, wavelet

coefficients of time series, and extreme features, all standard classifiers can be used

in the classification stage. Here, we chose Support Vector Machine (SVM) with

the Gaussian Kernel as the classification algorithm, since SVM is a state-of-the-art

classifier and is commonly used for image and video recognition.

3) Bag of skeleton words + SVM

We also apply the BoW approach to 3D joint data, such that each visual word is

constructed using a set of spatio-temporal descriptors of skeleton joint positions. In

fact, each visual word, conceptually, is the cluster centre and represents a unique

posture. We further choose words, i.e. clusters, with high discrimination capability.

To this end, we compute the entropy of each word using the distribution of class

67

samples in the corresponding cluster, and select the words with top half entropy. As

an example, an initial word might represent the neutral posture. Since each action

usually includes frames showing the neutral posture, this word will be removed from

the dictionary. Then, each action is represented using the frequency of each word

in the codebook, obtaining a histogram of words for each action. These histograms

can be used as the input features for a particular classifier, such as neural network or

support vector machines. The generated feature set will be used for

4) Wavelet coefficients + SVM

Here, we propose a new technique for action description by using the multilevel

wavelet decomposition technique based on the Mallat algorithm [103]. The Mallat

algorithm is a classical scheme, known as two-channel subband coding in the signal

processing community. When a signal passes through the filters, the low frequency

components ,often called approximation in wavelet theory, and high frequency com-

ponents (details) are emerged. The low frequencies are usually the most important

part of a signal and represent its identity. The decomposition process can be re-

peated on the approximation components, so that one signal is broken down into

many lower resolution components. This procedure is known as multilevel discrete

wavelet transform (DWT) or simply multilevel decomposition.

In the context of action recognition using skeleton joint information, the relative

position of each skeleton joint during the time is considered as a signal (time series).

Then, we apply the multilevel wavelet decomposition method to extract low level

wavelet coefficients.

In our implementation, three series are generated for each skeleton joint, according

to the three dimensions of the real world position of the joint (X, Y, Z). The final

feature vector for each action is generated by concatenating the wavelet coefficients

of all time series.

5) Extreme features + SVM

Here, we propose a simple, but effective, action description technique. This method is

based on the idea that for many short actions, like those in the benchmark datasets,

only a very few salient postures can be a unique representative of the action. These

postures are unique in the sense that the relative position, i.e. the distance, between

68

a set of skeleton joints will reach its extreme value.

In this method, given an action, we compute the pair distance between each

appropriate joint point at each frame. The feature vector is then generated by taking

the maximum and minimum value of each pair distance of all frames:

ExtremeFeatures =
⋃

{mint(PDt
ijk),maxt(PDt

ijk)} (5.1)

where PDt
ijk is the pairwise distance of ith and jth joint points during the time in

the kth dimension (i.e. x, y, z). Depending on the problem, we may use all available

points, e.g. the 20 points provided by the Kinect, or a subset of appropriate points.

In this method, for each joint pair, six features will be generated, which are the

maximum and minimum distances of two joints in X, Y, and Z dimensions.

Although, many advanced algorithms may consider the movement of skeleton

joints during the time, many short actions have a few salient postures, and the global

pair distance between joint points encodes the most informative salient features for

those postures. In addition to its extremely fast computation, the proposed method

has the advantage of generating a fixed-length feature vector for each action. Thus,

it can be used with any type of classifier. The experimental results also show that

even with large numbers of classes, this method achieves very high performances on

two standard action recognition datasets.

For a better understanding of why this method works, in Figure 5.6 we illustrate

some sample actions using sequences of frame images of the Chalearn gesture recogni-

tion dataset [40], together with each action’s salient postures, depicted by red borders.

Actions in this dataset are all performed by two hands. Therefore, we chose only five

skeleton joint points as informative joints, including the head, left elbow, left hand,

right elbow, and right hand. Therefore, there are 10 pairs and in total 60 features

will be generated. As an example, the salient postures of cheduepalle action can be

encoded by a set of extreme pair distances. In the salient posture, the followings

extreme pair distances happen:

Maximum X of Left Elbow vs. Left Hand

Maximum X of head vs. Right Hand

Minimum X of Left Hand vs. Right Hand

Minimum X of Head vs. Right Hand

69

Figure 5.6: Sequences of frame images showing cheduepalle (top) and basta (bottom) ges-
tures.

Minimum X of Left Elbow vs. Right Hand

Minimum Y of Right Elbow vs. Right Hand

Minimum X of Head vs. Left Elbow

Maximum Y of Left Hand vs. Right Elbow

Minimum Y of Head vs. Left Hand

Minimum Y of Left Elbow vs. Left Hand

Maximum X of Left Elbow vs. Right Elbow

Maximum Z of Head vs. Right Hand

Maximum Z of Left Elbow vs. Left Hand

Maximum Z of Left Elbow vs. Right Hand

Maximum Z of Right Elbow vs. Right Hand

Minimum X of Right Elbow vs. Right Hand

Minimum Z of Left Hand vs. Right Elbow

Minimum Y of Head vs. Right Elbow

Maximum Z of Head vs. Left Hand

Minimum Y of Left Elbow vs. Right Hand

The set of values of these salient features within the cheduepalle class encodes discrim-

inating information and will lead to high recognition performance.

Once a set of features are extracted, they will be used as input to a classifier. In the

classification stage, we used a modified version of the GA-SS-ECOC method, introduced

in Chapter 3. In the modified version, instead of optimizing the whole three-dimensional

70

ECOC matrix, we find the most discriminative features for each binary problem using the

Genetic algorithm feature selection. This modification results in much faster implementa-

tion.

5.5 Experiments

Here, we first present the results of our proposed action representation techniques and com-

pare it with other methods. Then, the merits of using an ensemble classification framework

is presented.

5.5.1 Classification by individual learners

For Chalearn dataset, the classification performance is obtained by means of stratified 5-fold

cross-validation. For MSRAction3D dataset, most studies follow the experimental setting

of Li et al. [95], such that they first divide the 20 actions into three subsets, each having 8

actions. For each subset, they perform three tests. In test one and two, 1/3 and 2/3 of the

samples were used as training samples and the rest as testing samples. In the third test,

half of the subjects are used as training and the rest subjects as testing. The experimental

results on the first two tests are generally very promising, mainly more than 90% accuracy.

On the third test, however, the recognition performance dramatically decreases. It shows

that many of these methods do not have good generalization ability when a different subject

is performing the action, even in the same environmental settings. In order to have more

reliable results, we followed the same experimental setup of [164, 116]. In this setting, actors

1,3,5,7, and 9 are used for training and the rest for testing.

As mentioned before, we chose Support Vector Machine (SVM) with the Gaussian Kernel

as the base classifier for the last three sets of action descriptors. Also, dynamic time warping

is a distance-based method and therefore we employed the nearest neighbor algorithm for

classification. In addition, in the method proposed in [176], each action has different number

of feature descriptors. Therefore, standard classifiers, like SVM or neural networks, cannot

be used as the classifier. Similar to their paper, we implemented and used the NBNN

classifier.

The summaries of the results are reported in Table 5.1 and Table 5.2 for Chalearn and

MSRAction3D datasets. In addition, the confusion matrices of the last four individual

action learning techniques are presented in Figure 5.7 and Figure 5.8.

71

Table 5.1: Classification accuracy of individual action learning techniques on the Chalearn
gesture dataset.

Single classifier trained only on
EigenJoints
+NBNN

DTW
+KNN

BoVW
+SVM

Wavelet Coeff.
+SVM

Extreme Feat
+SVM

5 classes 63.50 97.40 95.40 91.60 96.80
10 classes 58.70 89.80 88.00 86.60 88.40
15 classes 56.17 86.82 85.27 79.64 87.00
20 classes 54.30 77.85 73.05 70.40 73.65
Average 58.17 87.97 85.43 82.06 86.46

Table 5.2: Classification accuracy of individual action learning techniques on the MSRAc-
tion3D dataset.

Single classifier trained only on
EigenJoints
+NBNN

DTW
+KNN

BoVW
+SVM

Wavelet Coeff.
+SVM

Extreme Feat
+SVM

5 classes 72.97 95.95 83.78 81.62 96.95
10 classes 47.62 85.14 82.43 85.14 87.84
15 classes 44.14 81.60 77.30 63.19 78.46
20 classes 47.81 75.76 64.65 58.92 72.39
Average 53.14 84.61 77.04 72.22 83.91

72

F
ig
u
re

5
.7
:
C
o
n
fu
si
o
n
m
a
tr
ic
es

o
f
in
d
iv
id
u
a
l
cl
a
ss
ifi
er
s
tr
a
in
ed

w
it
h
d
iff
er
en
t
m
et
h
o
d
s
o
n
th
e
C
h
a
le
a
rn

d
a
ta
se
t.

73

F
ig
u
re

5
.8
:
C
o
n
fu
si
o
n
m
a
tr
ic
es

o
f
in
d
iv
id
u
a
l
cl
a
ss
ifi
er
s
tr
a
in
ed

w
it
h
d
iff
er
en
t
m
et
h
o
d
s
o
n
th
e
M
S
R
A
ct
io
n
3
D

d
a
ta
se
t.

74

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Action learning algorithms

Re
la

tiv
e

tim
e

NBNN

DTW

BoVW

Wavelet coefficients

Exterme features

Figure 5.9: Average execution times of different action learning methods.

In these tables, the effectiveness of the proposed action description technique based

on the extreme pair distance of joint points is notable. For both considered datasets, our

extremely fast method achieved very high accuracy in many cases.

As an additional analysis, we compare the execution times of different action learning

algorithms. In order to visually compare the results with a graph that is easy to interpret,

the relative average time of different methods is presented in Figure 5.9.

5.5.2 Improving the recognition rate by the Dempster-Shafer fusion of

individual learners

Here, we argue that there is a potential improvement in classification through classifier

fusion by ensemble-based methods. The underlying rationale of the fusion approach is

two fold. First, different learners employ varying structures of input descriptors/features

to be trained. These varying structures cannot be attached and used by a single learner.

Second, in an ensemble classification system, the combined efficiency of multiple classifiers

can compensate for a deficiency in one classifier. Thus, combining the outputs of several

learners can reduce the risk of an unfortunate selection of a poorly performing learner. This

leads to having a more robust and general-applicable framework.

Motivated by this, we aim to employ different learners and efficiently fuse them. To this

end, we propose the use of the Dempster-Shafer fusion method to effectively combine the

outputs of different learners, taking into account the characteristics of a given test action

and the behavior of ensemble learners in similar cases. We evaluate the performance of

an ensemble of five learners, employed in the previous subsection. Figure 5.10 shows the

framework of our ensemble classification system.

In the followings, we first explain the Dempster-Shafer fusion method and then provide

75

the results obtained by the ensemble classification framework.

Dempster-Shafer fusion method

Inspired by the Dempster-Shafer (DS) theory of evidence [35], a combination method is

proposed in [133], which is commonly known as the Dempster-Shafer fusion method. By

interpreting the output of a classifier as a measure of evidence provided by the source that

generated the training data, the DS method fuses an ensemble of classifiers.

Let x ∈ Rn be a feature vector and Ω = {ω1, ω2, . . . , ωc} be the set of class labels. Each

classifier hi in the ensemble H = {h1, h2, . . . , hL} outputs c degrees of support. Without

loss of generality, we can assume that all c degrees are in the interval [0, 1]. The support

that classifier hi, gives to the hypothesis that x comes from class ωj is denoted by di,j(x).

Clearly, the larger the support, the more likely the class label ωj . The L classifier outputs

for a particular instance x can be organized in a decision profile, DP (x), as the following

matrix [88]:

DP (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,1(x) · · · d1,j(x) · · · d1,c(x)
...

...
...

di,1(x) · · · di,j(x) · · · di,c(x)
...

...
...

dL,1(x) · · · dL,j(x) · · · dL,c(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The Dempster-Shafer fusion method uses the decision profile to find the overall support

for each class and subsequently labels the instance x in the class with the largest support.

In order to obtain the ensemble decision based on DS fusion method, first, the c decision

templates, DT1, . . . , DTc, are built from the training data. Roughly speaking, decision tem-

plates are the most typical decision profile for each class ωj . For each test sample, x, the DS

method compare the decision profile, DP (x), with decision templates. The closest match

will label x. In order to predict the target class of each test sample, the following steps are

performed [88][133]:

1. Build decision templates: For j = 1, . . . , c, calculate the means of the decision

profiles for all training samples belonging to ωj . Call the mean a decision template of class

ωj , DTj .

DTj =
1

Nj

∑
zk∈ωj

DP (zk) (5.2)

where Nj in the number of training samples belong to ωj .

76

2. Calculate the proximity: Let DT i
j denote the ith row of the decision template

DTj , and Di the output of the ith classifier, that is, the ith row of the decision profile

DP (x). Instead of similarity, we now calculate proximity Φ, between DT i
j and the output

of classifier Di for the test sample x:

Φj,i(x) =
(1 + ‖DT i

j −Di(x)‖)−1∑c
k=1(1 + ‖DT i

j −Di(x)‖)−1
(5.3)

where ‖.‖ is a matrix norm.

3. Compute belief degrees: Using Eq. (2), calculate for each class j = 1, . . . , c and

for each classifier i = 1, . . . , L, the following belief degrees, or evidence, that the ith classi-

fier is correctly identifying sample x into class ωj :

bj(Di(x))
Φj,i(x)

∏
k �=j(1− Φk,i(x))

1− Φj,i(x)[1−
∏

k �=j(1− Φk,i(x))]
(5.4)

4. Final decision based on class support: Once the belief degrees are achieved for each

source (classifier), they can be combined by Dempster’s rule of combination, which simply

states that the evidences (belief degree) from each source should be multiplied to obtain

the final support for each class:

μj(x) = K
∏
i=1

bj(Di(x)), j = 1, . . . , c

where K is a normalizing constant ensuring that the total support for ωj from all classifiers

is 1. The DS combiner gives a preference to class with largest μj(x).

It is worth mentioning that classification using DTW and NBNN are based on the nearest

neighbour approach. Therefore, they generally do not provide the probabilistic outputs for

train and test samples, which are necessary for DS fusion method. In order to tackle this

problem, given a test sample, we used the normalized distances of nearest neighbours of

samples of each class as the estimation of the probability of the corresponding class. Also,

to have probabilistic outputs for training samples, we employed 2-fold cross validation on

the training samples, such that in each fold, about half of the training samples are used

as training and the others as validations samples, and generated the desired probabilistic

77

Figure 5.10: The framework of the proposed action classification system based on the
Dempster-Shafer fusion of multiple classifiers.

Table 5.3: Classification accuracy of single and fused classifiers on the Chalearn and MSRAc-
tion3D datasets.

Single classifier trained only on
DS fusion

EigenJoints
+ NBNN

DTW
+KNN

BoVW
+SVM

Wavelet Coeff.
+SVM

Extreme Feat.
+SVM

Chalearn 54.30 77.85 73.05 70.40 73.65 82.60
MSRAction3D 47.81 75.76 64.65 58.92 72.39 80.81

outputs for each training sample.

The ensemble classification results

The results of individual classifiers along with the ensemble fused system are presented in

Table 5.3 for both datasets. The results are based on the same experimental settings of

the last section. In addition, the confusion matrix of the ensemble classification system for

both datasets are demonstrated in Figure 7.3. It is important to note the superiority of the

fused results in comparison with the individual classifier. Since the learning method based

on the NBNN has a relatively very low recognition rate, we omitted its outputs in the fusion

framework. The results are quite promising, considering the fact that the skeleton tracker

sometimes fails and the tracked joint positions are quite noisy.

78

Figure 5.11: Confusion matrices of the ensemble classification system on the Chalearn (top)
and MSRAction3D datasets (bottom).

79

Table 5.4: Comparing classification accuracy of our ensemble framework with the state-of-
the-art methods on the MSRAction3D dataset.

Method Accuracy
Recurrent Neural Network [105] 42.5
Hidden Markov Model [101] 54
Action Graph on Bag of 3D Points [95] 74.7
HOG 3D [83] 81.43
HON4D [116] 85.85
Dollar + BOW [39] 72.40
STIP [91] + BOW 69.57
Vieira et al. [161] 78.20
Our method 80.81

We then compare our ensemble classification method on MSRAction3D dataset with

the state-of-the-art methods on the cross-subject test setting [95]. Table 5.4 shows the

accuracy of our method and the rival methods on this dataset with the same experimental

settings. Some of the methods in this table, like HOG 3D [83] and HON4D [116], use depth

data in addition to skeleton joint information. However, processing sequences of depth

images is much more computationally intensive. Even though the accuracy of the proposed

framework is slightly lower than some other methods, the advantage of our method is its

fast implementation, makes it feasible for real-time applications.

5.6 Summary

This chapter presented an ensemble classification framework to address certain action/gesture

recognition problems. We designed a set of classifiers, each trained over a type of feature.

We focused on feature spaces defined by a 3D skeletal model of the human body and

proposed two simple, yet effective, feature representations for this problem. The overall

performance of the ensemble of classifiers was improved by fusing the classifiers using the

Dempster-Shafer combination theory. We compared the classification results of the in-

dividual classifiers with those obtained from fusing the classifiers by the Dempster-Shafer

combination method on two public datasets, showing significant performance improvements

of the proposed methodology. We also showed performance improvements in relation to the

state of the art results on the considered data sets. In conclusion, we found that using

ensemble methods for human actions and gestures classification is an effective approach.

Chapter 6

Support Vector Machines with Time Series Distance Kernels

for Action Classification

6.1 Introduction

In the previous chapter, we addressed the problem of human action classification by em-

ploying spatio-temporal information of skeleton data, i.e. the real positions of body joints

over the time. More specifically, we used the 3D trajectories of dominant body joints,

obtained by the Kinect camera. From the classification point of view, these trajectories

may be considered as multi-dimensional time series. The traditional recognition technique

in the literature is based on time series dis(similarity) measures (such as Dynamic Time

Warping). For these general dis(similarity) measures, k -nearest neighbor algorithms are a

natural choice.

In practice, given two actions represented by two multi dimensional time series, a time

series distance measure calculates the distance between two actions. To classify an unlabeled

test action (sample), its distance to all training samples is calculated. Consequently, the

nearest neighbor algorithm is employed for classification. Given a test action, we calculate

its distance to all training actions , e.g. by using DTW, and the target of the closest sample

is predicted as the target class.

In general, the k -NN classification algorithm works reasonably well; but is known to

be sensitive to noise and outliers. Since SVMs often outperform k -NNs on many practical

classification problems where a natural choice of positive semidefinite (PSD) kernels exists,

it is desirable to extend the applicability of kernel SVMs.

In our action classification problem, however, time series distances measures are gener-

ally non-PSD kernels and basic SVM formulations are not directly applicable. To include

non-PSD kernels in SVM, several ad-hoc strategies have been proposed. The straightfor-

ward strategy is to simply overlook the fact that the kernel should be non-PSD. In this

case, the existence of a Reproducing Kernel Hilbert Space is not guaranteed [142] and it is

no longer clear what is going to be optimized.

Another strategy, which has been applied in our work, is based on pairwise proximity

80

81

Figure 6.1: Matching within δ in time and ε in space. Everything outside the bounding
envelope can never be matched (Reprinted from [59]).

function SVM (ppfSVM) [60]. This strategy involves the construction of a set of inputs such

that each sample is represented with its dis(similarity) to all other samples in the dataset.

The ppfSVM is related to the arbitrary kernel SVM, a special case of the generalized Support

Vector Machines [104]. The name is due to the fact that no restrictions such as positive

semi-definiteness, differentiability or continuity are put on the kernel function.

In this chapter, we investigate the effectiveness of this strategy for human action clas-

sification when the pairwise similarities are based on time-series distances measures. More

specifically, we demonstrate the effectiveness of two trajectory-based distances measures -

including Longest Common Subsequence (LCSS) and Dynamic Time Warping (DTW) as

well as their derivatives- as SVM kernel functions. We build an ensemble of four ppfSVMs

using the computed kernels and combine them using the product fusion technique. The

experimental results on two benchmark datasets prove the outperformance of the proposed

method compared to the state-of-the-art techniques.

The rest of the chapter is organized as follows: Section 6.2 briefly introduces LCSS and

DTW. Section 6.3 presents our methodology for action recognition. Section 6.4 evaluates

the proposed method and Section 6.5 concludes the chapter.

6.2 Related Work

6.2.1 Longest Common Subsequence (LCSS)

The longest common subsequence dissimilarity measure is a variation of the edit dissimilarity

measure, initially used in speech recognition. The underlying idea is to match two sequences

by allowing them to stretch, without rearranging the sequence of the elements but allowing

82

some elements to be unmatched or left out (e.g., outliers). Roughly speaking, LCSS counts

the number of pairs of points from two sequences that match. The LCSS measure has two

parameters, δ and ε, as shown in Fig. 6.1. The constant δ controls how far in time we can

go in order to match a given point from one trajectory to a point in another trajectory.

This parameter is a warping threshold and controls the window size for matching a given

point from one trajectory to a point in another one, which is usually set to a percentage of

the sequence length. The constant 0 < ε < 1 is the matching threshold: two points from

two sequences are considered to match if their distance is less than ε.

Longest common subsequences of the time series x and y of length n and m are recur-

sively defined as follows:

L(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0

0 for j = 0

1 + L(i− 1, j − 1) for |xi − yj | < ε

and |i− j| ≤ δ

max(L(i− 1, j), L(i, j − 1)) in other cases

L(n,m) is the similarity between x and y, because it corresponds to the length of the

longest common subsequence of elements between time series. The dissimilarity between x

and y has been defined as follows:

LCSS(x, y) =
(n+m− 2L(n,m))

(n+m)
(6.1)

6.2.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a well-known algorithm which aims to compare and align

two temporal sequences, taking into account that sequences may vary in length (time) [128].

DTW employs the dynamic programming technique to find the minimal distance between

two time series, where sequences are warped by stretching or shrinking the time dimension.

Although it was originally developed for speech recognition, it has also been employed in

many other areas like handwriting recognition, econometrics, and action recognition.

An alignment between two time series can be represented by a warping path which

minimizes the cumulative distance. The DTW distance between time series x and y of

83

Figure 6.2: The framework of the proposed Time Series based Kernel SVM for action
classification; a) an initial depth map; b) positions of 20 joints obtained by Kinect [144]; c)
extract features: relative trajectories of joints over the time; d) compute non-PSD kernels
using DTW and LCSS; e) Train ppfSVMs; f) classifier fusion.

length n and m will be recursively defined as:

DTW (i, j) = d(i, j) +min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
DTW (i, j − 1)

DTW (i− 1, j)

DTW (i− 1, j − 1)

Here, d(i, j) is the square Euclidean distance of xi and yj .

6.3 Time Series based Kernel SVM

The proposed algorithm works as follows:

1. Feature extraction: Given a depth image, 20 joints of the human body can be

tracked by the skeleton tracker (Fig. 6.2. a & b). In frame t, the position of each

joint k is uniquely defined by three coordinates Pk(t) = [xi(t), yi(t), zi(t)]. Instead of

using the positions of joints, we employ the relative position of each joint to the torso

at each frame, as more discriminative and intuitive 3D joint features (Fig. 6.2. c).

2. Compute non-PSD kernels: We compute the non-PSD kernels based on pairwise

distance of each normalized 3D trajectory to other trajectories, using LCSS and DTW

(Fig. 6.2. d), as described in the next subsection.

3. Classification: As described in subsection 6.3.2, we train four ppfSVMs using the

computed kernels (Fig. 6.2.e) and simply fuse these classifiers (Fig. 6.2.f).

84

6.3.1 Kernel from pairwise data

Given labeled training data of the form {(xi, yi)}mi=1, with yi ∈ {−1,+1} 1, the standard

form of SVM finds a hyperplane which best separates the data by minimizing a constrained

optimization problem:

τ(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi (6.2)

subject to: yi((w.xi) + b) + ξi ≥ 1

ξi ≥ 0

where ξi are slack variables and C > 0 is the tradeoff between a large margin and a small

error penalty.

The cornerstone of SVM is that non-linear decision boundaries can be learnt using the

so called ’kernel trick’. A Kernel is a function K : X × X
→ R, such that for all xi,

i ∈ {1, . . . ,m} yields to a symmetric positive semi-definite (PSD) matrix K, where Kij =

κ(xi, xj). Indeed, the kernel function implicitly maps their inputs into high-dimensional

feature spaces, x
→ Φ(x). Two common kernel functions are the Gaussian Kernel and the

Linear kernel.

In the dual formulation, the SVM algorithm maximizes:

W (a) =
m∑
i=1

αi − 1

2

∑
ij

αiαjyiyjκ(xi, xj) (6.3)

subject to: 0 ≤ αi ≤ C and
∑
αiyi

= 0

The decision function is given by:

f(x) = sign

(m∑
i=1

yiαiκ(x, xi) + b

)
(6.4)

where the threshold b is defined as:

b = yi −
m∑
i=1

yiαiκ(xi, xj) (6.5)

1In our formulation, the input samples, xi, are not restricted to be a subset of Rn and can be
any set, e.g. set of images or videos.

85

In our action classification problem, however, time series distances measures are gen-

erally non-PSD kernels and basic SVM formulations are not directly applicable. To deal

with this problem, we follow the strategy proposed in [60], which can be applied to general

pairwise similarity measures. This strategy involves the construction of a set of inputs such

that each sample is represented with its dis(similarity) to all other samples in the dataset.

The basic SVM is then applied to the transformed data in the usual way. As a consequence,

sparsity of the solution may be lost.

According to [60], it is assumed that instead of a standard kernel function, all that is

available is a proximity function, P : X×X
→ R. No restrictions are placed on the function

P , not symmetry nor even continuity. The mapping Φ(x) is defined by:

Φ(x) : x
→ (P (x, x1), P (x, x2), . . . , P (x, xm)T (6.6)

where xi, i = 1, . . . ,m are the examples in dataset. Here, we represent each sample xi

by xi = Φm(xi) i.e. an m-dimensional vector containing proximities to all other samples

in the dataset. Let P denote the m × m matrix with entries P (xi, xj), i, j ∈ {1, . . . ,m}.
Using the linear kernel on this data representation, the resulting kernel matrix becomes

K = PP T . In this case the decision rule (3) simplifies to

f(x) = sign

(m∑
i=1

yiαiPΦm(x) + b

)
(6.7)

All elements of Φm(xi) must be computed when classifying a point x.

In this study, kernels from pairwise data is obtained by pairwise time-series distance

measures, including DTW and LCSS measures. In addition, as described in the next subsec-

tions, we also calculate the pairwise distances using the derivatives of these two time-series

measures.

Derivatives of Time Series Distance Measures

Despite the success of time series dis(similarity) measures, i.e. DTW and LCSS, they may

fail in some situations. For example, since the DTW algorithm aims to explain variability

in the Y-axis by warping the X-axis, it may results in unintuitive alignments where a single

point on one sequence maps onto a large subsection of the other sequence; which is referred

to as ”singularity” in the related literature [80]. Also, they may fail to find obvious, natural

alignments of two time series simply because a feature (i.e peak, valley, inflection point,

86

plateau etc.) in one series is slightly higher or lower than its corresponding feature in the

other time series.

To address such problems, the derivatives versions of DTW and LCSS are also employed

in this work in order to enhance the level of feature representation. These modified versions

are called Derivative DTW (DDTW) and Derivative LCSS (DLCSS). More formally,

DDTW � DTW (∇x,∇y) (6.8)

DLCSS � LCSS(∇x,∇y) (6.9)

where ∇x and ∇y are estimated derivatives of two time series x and y, respectively.

6.3.2 Classifier fusion

In order to utilize the information encoded in the function values of time series and values

of their first derivatives, we employed a simple ensemble classification framework [8]. In this

framework, four SVMs are trained with four different types of kernels, i.e. DTW, DDTW,

LCSS, DLCSS. In testing phase, the class of each sample, x , is determined by:

c(x) = argmax
i

4∏
t=1

wtμt,i(x), i = 1, . . . , Nc (6.10)

where c(x) is the ensemble class prediction, Nc is the number of classes, and μt,i(x) ∈ [0, 1]

represents the support given by the tth classifier to the ith class. wt represents the weight

of tth classifier, which is based on the classifier’s accuracy on the training data.

6.4 Experiments

Here, we present the experimental details of evaluation, including the datasets used, settings

of the experiments, as well as the obtained results. The codes was implemented in C/C++

with an interface in Matlab and is available upon request.

6.4.1 Datasets

We evaluated our framework on three public benchmark datasets: MSRAction3D [95], Cor-

nel activity dataset (CAD-60) [148], and the Multi-modal Gesture Recognition Challenge

2013 (Chalearn) [40].

MSRAction3D dataset: This dataset [95] is a well-known benchmark dataset for 3D

action recognition. This dataset contains 20 actions, including high arm wave, horizontal

87

Figure 6.3: Examples of depth maps from the CAD-60 dataset.

arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,

hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis swing,

tennis serve, golf swing, pick up & throw. Each action was performed 2 or 3 times by each

subject. Skeleton joint data of each frame is available having a variety of motions related

to arms, legs, torso, and their combinations. In total, there are 567 depth map sequences

with a resolution of 320 × 240. Some examples of the depth sequences are shown in the

previous chapter in Figure 5.5.

Chalearn dataset: This dataset is a newly released large video database of 13,858

gestures from a lexicon of 20 Italian gesture categories recorded with a Kinect camera,

including audio, skeletal model, user mask, RGB and depth images [40]. It contains image

sequences capturing 27 subjects performing natural communicative gestures and speaking

in fluent Italian, and is divided into development, validation and test parts. We conducted

our experiments on the depth images of development and validation samples which contains

88

11,116 gestures across over 680 depth sequences. Each sequence lasts between 1 and 2

minutes and contains between 8 and 20 gesture samples, around 1,800 frames. Examples of

RGB image sequences for some gestures are shown in the previous chapter in Figure 5.4.

CAD-60 dataset: This dataset [148] contains 60 RGB-D videos collected by a Kinect

sensor with the distance ranges from 1.2m to 3.5m, the resolution of the depth sequences

is 640 480, and captured at 15 fps. There are 12 actions performed by 4 different subjects

(two male and two female, one of them being left-handed) in 5 different environments: of-

fice, kitchen, bedroom, bathroom, and living room. The 12 activities are: rinsing mouth,

brushing teeth, wearing contact lens, talking on the phone, drinking water, opening pill con-

tainer, cooking (chopping), cooking (stirring), talking on couch, relaxing on couch, writing

on whiteboard, and working on computer. For each action, around 45 seconds of data for

each person have been acquired, so resulting in more than 30 minutes of video recording.

All the RGB, depth and skeleton data are provided in this dataset. Figure 6.3 shows some

example depth images from this dataset.

6.4.2 Classification results

For Chalearn dataset, the classification performance is obtained by means of stratified 5-fold

cross-validation. For MSRAction3D dataset, many studies follow the experimental setting

of Li et al. [95], such that they first divide the 20 actions into three subsets, each having 8

actions. For each subset, they perform three tests. In test one and two, 1/3 and 2/3 of the

samples were used as training samples and the rest as testing samples. In the third test,

half of the subjects are used as training and the rest subjects as testing. The experimental

results on the first two tests are generally very promising, more than 90% accuracy. On

the third test, however, the recognition performance dramatically decreases. It shows that

many of these methods do not have good generalization ability when a different subject

is performing the action, even in the same environmental settings. In order to have more

reliable results, we followed the same experimental setup of [164, 116]. In this setting, actors

1,3,5,7, and 9 are used for training and the rest for testing.

The summaries of the results are reported in Table 6.1, Table 6.2, and Table 6.3 for

Chalearn, MSRAction3D, and CAD-60 datasets. In these tables, accuracies of traditional k-

NN-based techniques using DTW and LCSS distance measures along with the corresponding

accuracies using combined ppfSVMs are reported. It is important to note the superiority

of the results in comparison with the traditional kNN-based classifiers. The result are quite

promising, considering the fact that the skeleton tracker sometimes fails and the tracked

89

Table 6.1: Classification accuracy of different learning strategies on the Chalearn gesture
dataset.

DTW DDTW LCSS DLCSS Product fusion
Kernel SVM 69.30 71.85 73.05 73.40 83.42
kNN 61.11 63.15 67.21 69.18 –

Table 6.2: Classification accuracy of different learning strategies on the MSRAction3D
dataset.

DTW DDTW LCSS DLCSS Product fusion
Kernel SVM 80.47 83.84 75.76 76.77 90.57
kNN 75.42 77.78 72.05 65.66 –

joint positions are quite noisy.

We then compare our classification results on MSRAction3D and CAD-60 datasets

with state-of-the-art methods 2. Table 6.4 shows the accuracy of our method, as well as

the rival methods on these datasets based on the cross-subject test setting. As can be

seen, most studies use depth data in addition to skeleton data; and a few of them have

better performance than ours, such as [112] and [125]. However, processing sequences of

depth maps is much more computationally intensive. Even though the accuracy of the

proposed framework is slightly less than those methods, the advantage of our method is its

fast implementation and also do not need fine-tuning of many parameters, which makes it

feasible for real-time applications. The training phase of MSRAction3D dataset (including

Kernel computation) takes less than a second with a Corei7 CPU and 8 GB of RAM. Most

importantly, since kernel computation is based on pairwise distances between samples, it

can be easily conducted in parallel. This way, the training phase can be fast on large

datasets as well.

The results provided in Table 6.1 to Table 6.4 demonstrate the superiority of the pro-

posed methodology. By only considering the skeleton data, the obtained results outperform

the best accuracies on MSRAction3D and CAD-60 datasets. Considering the fact that we

have only employed the skeleton data, not depth sequences, the results are promising.

6.5 Summary

In this chapter, we tackled the problem of human action classification using the 3D trajec-

tories of body joint positions over the time. To do that, we utilized two time series distance

measures, including Dynamic Time Warping and Longest Common subsequences, as well

2Some papers do not follow the standard cross subject settings (e.x. they divide the 20 actions
into three subsets, each having 8 actions. Therefore, we do not compare our results with those
papers

90

Table 6.3: Classification accuracy of different learning strategies on the CAD-60 dataset.
DTW DDTW LCSS DLCSS Product fusion

Kernel SVM 73.33 75.00 71.67 70.00 76.67
kNN 68.33 68.33 65.00 66.67 –

Table 6.4: Comparing classification accuracy of our methodology with the state-of-the-art
methods on the MSRAction3D and CAD-60 datasets.

MSRAction3D
Accuracy

Studies employed depth data
Action Graph [95] 74.70
HON4D [116] 85.85
Vieira et al. [161] 78.20
Random Occupancy Patterns [163] 86.50
HOPC [125] 91.64
JAS(Cosine)+MaxMin+HOG2 [112] 94.84
DMM-LBP-FF [26] 87.90
Studies employed only skeleton data
Actionlet Ensemble [165] 88.20
Histogram of 3D Joint [174] 78.97
GB-RBM & HMM [110] 80.20
Points in a Lie Group [160] 89.48
Ensemble classification [10] 84.85
Proposed method 90.57

CAD-60
Accuracy

Studies employed depth data
MTO-Sparse coding [109] 65.30
Studies employed only skeleton data
Actionlet Ensemble [165] 74.70
Sung et al. (2012) [148] 51.30
Proposed method 76.67

as their derivatives. However, instead of employing these general measures as a distance

measure for k-NN, we transformed these measures using the pairwise proximity function in

order to be used for the powerful SVM classification algorithm. Comparing the recognition

results of the proposed methods with state-of-the-art techniques on two action recognition

datasets showed significant performance improvements. Remarkably, we obtained 90.57%

accuracy on the well-known MSRAction3D dataset using only 3D trajectories of body joints

obtained by Kinect.

Chapter 7

Locality Regularized Group Sparse Coding for Action

Recognition

7.1 Introduction

The bag of visual words (BoVW) framework is one of the most widely used approaches

for image/video representation and recognition, which has shown its effectiveness in many

applications [145, 78]. Despite remarkable progress, it remains challenges concerning the

efficiency and effectiveness of the framework on various domains.

The pipeline of BoVW generally consists of four stages: (i) feature extraction, (ii)

codebook generation, (iii) feature encoding, and (iv) pooling and normalization. Given

a training dataset, the first step of the framework is to extract local features. Then, a

dictionary (codebook), which is a set of bases (codewords), is built to represent visual

descriptors. Classical approaches are based on clustering techniques, such as K-means [100].

Feature encoding is meant to decompose local features over a codebook in order to obtain a

representation of features in terms of the generated codewords. Given a descriptor, a coding

technique activates a number of codewords and generates a coding vector, whose length is

equal to the number of codewords. The next step is pooling the obtained codes to reach

a compact signature for a specific sample. The max pooling technique is commonly used,

leading to signatures that are appropriate to linear classifiers. Also, in image classification,

the Spatial Pyramid Matching (SPM) step [93] is usually employed to include some spatial

layout information in the final representation. Such final vectors of fixed size can be fed to

a classifier, such as SVM.

Of all the above four stages, feature encoding is the core component [31, 129, 73], which

greatly influences the recognition performance in terms of both accuracy and execution

time. A large number of algorithms have been proposed in recent literature. The initial

technique is vector quantization (VQ), also known as hard coding [145]. This encoding

technique assigns a local feature to the closest visual word, which results in exactly one

nonzero coefficient. A more robust voting scheme is the soft coding [158, 99], which assigns

a descriptor to all (or a subset of) the codewords according to their distances.

91

92

Sparse coding (SC) for image classification, proposed by Yang et al. [175], is likely a

milestone in this line of research. SC represents a local feature by a linear combination

of a sparse set of basis vectors. Yu et al. [179] empirically observed that SC tends to

be local, i.e. nonzero coefficients are often assigned to bases near the encoded data. But

this locality cannot be ensured theoretically and they suggested a modification to SC, and

proposed Local Coordinate Coding (LCC) [179], which explicitly encourages the coding to

be local. They also demonstrated that the property of locality is more essential than sparsity,

because the locality must lead to sparsity but not vice-versa. Based on LCC, Wang et al.

proposed Locality-constrained Linear Coding (LLC) [166] and demonstrated its superiority

compared to SC. Indeed, LLC may be viewed as a fast implementation of LCC that utilizes

the locality constraint to project each descriptor into its local-coordinate system. Similarly,

Liu et al. proposed Localized Soft Assignment (SA-k), where each descriptor is assigned

to its k−nearest codewords [99]. In essence, LLC and SA-k share a common philosophy,

since they both consider locality when mapping descriptors into codewords. In general, the

incorporation of local structure in encoding is able to improve the stability and reduce the

sensitivity to noise in descriptors [120].

These locality-based encoding methods use a fixed number of non-zero coefficients for

each descriptor. However, the appropriate number of required codewords to well represent

a specific descriptor in terms of the reconstruction error may vary depending on the descrip-

tor. Fig.7.1 shows the number of dictionary codewords used to encode the skeleton-based

descriptors of the first sample of MSRAction3D dataset. This sample has 54 frames, and

a descriptor based on the pair-wise distances of joint points is obtained at each frame. A

dictionary is generated by the standard dictionary learning algorithm of the SPAMS tool-

box [102] and each descriptor is then encoded by regular Lasso. As the figure shows, the

appropriate number of codewords is very different for each descriptor. This limitation of

LLC and SA-k may affect the performance of these coding strategies in more complicated

scenarios.

All of the encoding techniques discussed above, consider each descriptor in the sample

as a separate encoding problem and encode each descriptor individually. Consequently, the

final representation of a sample is generated by pooling or averaging among all descriptors

of that sample. This strategy, however, does not take into account the fact that feature

encoding is just an intermediate stage in creating a bag of features representation for the

whole sample. Therefore, this approach is unsatisfactory due to the following reasons:

1) by treating each descriptor independently, the encoding phase completely ignores the

93

Figure 7.1: Number of codewords used to encode the skeleton-based descriptors of the first
sample of MSRAction3D dataset [95]; the encoding is performed with regular Lasso [102].

commonality shared by these related descriptors; 2) sparse coding of each visual descriptor

does not guarantee sparse coding of the whole sample [15].

In order to address this problem, the idea of group coding - appearing in the literature

under various names such as group sparsity or grouped variable selection - has been intro-

duced in [180, 15]. Group coding encourages the sparse coefficients in the same group to be

zero or nonzero simultaneously [30].

In this chapter, we address the problem of action recognition by depth cameras using

the BoVW framework and finally classification by classifier fusion. More specifically, we

investigate the feature encoding stage and propose a new coding scheme, named Locality

Regularized Group Sparse Coding, LGSC. The proposed method utilizes the advantages of

locality coding such as its robustness to noise in descriptors, as well as the strengths of the

group coding strategy by simultaneously taking into account the potential relation among

descriptors of a sample. Indeed, the proposed method is an enhanced version of LLC; since

it addresses its limitations, including setting a pre-defined number of coefficients for all

descriptors as well as encoding descriptors of a sample individually. To efficiently imple-

ment our proposed method, we consider the Alternating Direction Method of Multipliers

(ADMM) framework, which results in quadratic complexity in the problem size. In order to

utilize the information of both depth and skeleton data, we employed two different feature

94

extraction methods: skeleton position and Depth Motion Maps (DMM). These two sets of

features are fused at the classification level. The experimental results on three benchmark

action recognition datasets prove the efficiency of the proposed method compared to the

state-of-the-art techniques.

The rest of this chapter is organized as follows: Section 7.2 reviews works on related

encoding techniques. Section 7.3 presents the proposed algorithm in detail. Section 7.4

reports the experimental results of the proposed method and compares with state-of-the-

art. Finally, Section 7.5 concludes the chapter.

7.2 Related Work

In this section, we describe several encoding methods investigated in this chapter. Let

B = [b1,b2, . . . ,bM] ∈ R
d×M be the given dictionary and x ∈ R

d a local feature of a

sample, where d is the dimensionality of a visual word (or a basis vector). Also, let c ∈ R
M

be the coding coefficient vector of x, with ci being the coefficient with respect to codeword

bi. In the following, we review commonly used encoding schemes.

Hard-assignment coding (Vector Quantization): Each local descriptor is assigned to the

nearest visual word. When Euclidean distance is used:

ci =

⎧⎨
⎩1, if i = argmink ‖x− bk‖22
0, otherwise.

(7.1)

This representation is maximally sparse per descriptor since it picks a single codeword for

each descriptor, but they may not be sparse for the sample as a whole. Furthermore, such

representation does not consider codeword ambiguity and often introduces large quantiza-

tion error.

Sparse Coding: Using sparse coding (SC) [175] as an alternative algorithm has signif-

icantly improved VQ robustness. In SC, the coding coefficient is obtained by solving the

	-norm regularized approximate problem:

c = argmin
c

‖x−Bc‖22 + λ‖c‖1, λ ∈ R, (7.2)

where λ balances the sparsity of coefficients.

95

Locality-constrained Linear Coding : In LLC, coding is performed by solving the follow-

ing optimization [166]:

c = argmin
c

‖x−Bc‖22 + λ‖d
 c‖22, (7.3)

s.t. 1T c = 1,

where dmeasures the Euclidean distance between x and each b, and
 denotes element-wise

multiplication. Also, an approximation is proposed to improve its computational efficiency.

Ignoring the second term in Eq.7.3, it directly selects the k nearest codewords of x to

minimize the first term by solving a much smaller linear problem. This gives the coefficient

for the selected k codewords, and other coefficients are simply set to zero.

Group Sparse Coding: In this method [15], a set of descriptors X ∈ R
d×N are encoded

jointly:

argmin
C

1

2
‖X−BC‖2F + λ

M∑
i=1

‖Ci‖2, (7.4)

where Ci is the i-th row of the coefficient matrix, C ∈ R
M×N .

Fisher Vector coding: FV encoding assumes the generation process of local descriptors

X can be modeled by a probability density function P (.; θ) with parameters θ. Then the

sample can be described by the gradient vector of log likelihood with respect to the model

parameters:

GX
θ =

1

N
∇θ logP (X; θ). (7.5)

The probability density function is usually modeled by Gaussian Mixture Model (GMM),

and θ = {ωi, μi, σi; i = 1, . . . , k} are the model parameters, denoting the mixture weight,

mean vector and variance matrix (assumed diagonal) of Gaussian i, respectively. Perronnin

et al. [121] developed an improved fisher vector:

Gx
μ,k =

1√
πk

γk

(
x− μk

σk

)
, (7.6)

Gx
σ,k =

1√
2πk

γk

[
(
(x− μk)

2

σ2
k

)− 1

]
, (7.7)

where γk is the weight of local descriptor x to k−th Gaussian:

γk =
πkN (x;μk, σk)

ΣK
i=1πiN (x;μi,Σk)

, (7.8)

96

where N (x;μk,Σk) is d−dimensional Gaussian distribution. The final Fisher vector is

obtained by the concatenation of these two gradients:

FV : C = [Gx
μ,1,Gx

σ,1, . . . ,Gx
μ,K ,Gx

σ,K]. (7.9)

7.3 Locality Regularized Group Sparse Coding

In this section, we present the details of our proposed LGSC algorithm. LetXg = [x1,x2, . . . ,xN] ∈
R
d×N denote a group of input data (e.x. visual descriptors), Cg ∈ R

M×N be its correspond-

ing coefficient matrix, and B = [b1,b2, . . . ,bM] ∈ R
d×M be the given dictionary. Further-

more, we define a matrix D ∈ R
M×N that represents the pairwise distances between group

instances and dictionary codewords, where dij denotes the Euclidean distance between bi

and xj.

Our main goal is to jointly encode groups of inputs, usually visual descriptors, in terms

of a set of dictionary bases (codewords). To do that, we incorporate three terms in our

objective function. The first term is the well-known reconstruction error, i.e. ‖X − BC‖.
Inspired by the local coding philosophy [179, 166, 99], the second term enforces locality

by using a pairwise distance between the set of descriptors and the codewords in the given

dictionary. In essence, distance captures the dissimilarity between descriptors and the code-

words. Let cij ∈ [0, 1] denote the contribution of bi to xj. Therefore, the cost of encoding

xj with bi is dijcij ∈ [0, dij]; and the cost of encoding xj using all codewords is
∑M

i=1 dijcij .

Thus, the total dissimilarity-based cost of encoding Xg via B is
∑N

j=1

∑M
i=1 dijcij .

The third term regularizes the sparsity. Given Xg and B, we aim to find as few code-

words as possible that efficiently encode the group of descriptors simultaneously. When bi

is a representative of some of the instances of Xg, we have Ci �= 0; i.e., the i-th row of C

is nonzero. Having few codewords as representatives of inputs in Xg corresponds to having

few nonzero rows in matrix C.

Putting these three terms together, LGSC can be cast as an optimization problem that

97

minimizes the following objective function:

Qc(C,X,D) =
∑
g

Qc(C
g;Xg,Dg) (7.10)

=
∑
g

(
1

2
‖Xg −BCg‖2F + λ1tr(D

g�Cg) + λ2

M∑
i=1

I(‖Cg
i ‖)

)

s.t. Cg ≥ 0,

where tr(·) denotes the trace operator, I(·) denotes the indicator function, which is zero

when its argument is zero or one otherwise, ‖ · |2 denotes the 	2-norm, Cg
i is the i’th row

of Cg, and λ1 and λ2 are parameters that balance the tradeoff between the reconstruction

error, locality and sparsity.

For the sake of clarity, we present the optimization steps for one group of data X and

its corresponding coefficients C. Thus, our objective function becomes:

argmin
C

1

2
‖X−BC‖2F + λ1tr(D

TC) + λ2

M∑
i=1

I(‖Ci‖)

s.t. C ≥ 0. (7.11)

Since the problem in Eq.7.11 counting the number of nonzero rows of C is NP-hard, we

employ the classical relaxation version by considering the 	1,2-norm on the matrix C:

argmin
C

1

2
‖X−BC‖2F + λ1tr(D

TC) + λ2‖C‖1,2

s.t. C ≥ 0, (7.12)

where,

‖C‖1,2 �
M∑
i=1

‖Ci‖2.

In this setting, the 	1,2-norm of C is the 	1-norm of the 	2-norm of the rows of C, where,

instead of counting the numbers of nonzero rows of C, we use the sum of 	2-norms of the

rows of C.

Unlike LLC, our formulation does not initially set the number of codewords that rep-

resent a given descriptor. Most importantly, LCC and LLC encode each descriptor in a

sample individually. Consequently, the final representation vector may not be sparse for

the sample as a whole.

98

We consider the implementation of our proposed optimization in Eq. 7.12 using the

Alternating Direction Method of Multipliers (ADMM) framework [20]. The ADMM is

a simple, but powerful, algorithm that is intended to blend the decomposability of dual

ascent with the superior convergence properties of the method of multipliers. In ADMM

form, Eq. 7.12 can be written as:

1

2
‖X−BC‖2F + λ1tr(D

TC) + λ2‖Z‖1,2
s.t. Z ≥ 0, C− Z = 0.

(7.13)

As in the method of multipliers, augmenting the last equality constraint of Eq. 7.13 to the

objective function via the Lagrange multiplier matrix Λ ∈ RM×N and adding the penalty

weighting parameter ρ, we form the augmented Lagrangian:

Lρ =
1

2
‖X−BC‖2F + λ1tr(D

TC) + λ2‖Z‖1,2
+ Λ(C− Z) +

ρ

2
‖C− Z‖2F .

(7.14)

In the ADMM framework, we initialize all unknown variables and sequentially update these

variables and the Lagrangian multipliers until some convergence criteria are met. In each

update, we minimize the Lagrangian by only varying one variable of interest. This method

allows for parallel implementation, which can reduce the computational time.

More specifically, the ADMM iterations consist of 1) minimizing L with respect to C

while fixing other variables; 2) minimizing L with respect to Z while fixing other variables;

and 3) updating the Lagrange multiplier matrix Λ, having other variables fixed. Algorithm 1

shows the steps of the ADMM implementation of the proposed algorithm.

The ADMM update at iteration k + 1 can be derived as follows:

• Updating C: It can be shown that this reduces to solving a minimization of a

quadratic function in terms of the matrix variable C, which has the explicit solution:

Ck+1 =P−1(B�X+ ρ(Zk − Λk)− λ1D), (7.18)

where P = BTB+ ρI is a fixed matrix and can be inverted only once in advance. If

the dimension of P is large, it is possible to reduce the computational cost by applying

Cholesky factorization on P .

• Updating Z: Considering the non-negativity constraint on Z, the Z update can be

99

Algorithm 1 : LGSC implementation via ADMM

Initialization: Set ρ = 10−1; ε = 10−5, maxIter = 103.
Initialize k = 0 ; C(0) = I; Z(0) = I; Λ(0) = 0, error1= 2ε, error2= 2ε, λ1 = 0.1
and λ2 = 0.15.

1: while (error1 ≥ ε and error2 ≥ ε) and (k < maxIter) do
2: Update C by

Ck+1 = argmin
C

Lρ(C,Zk,Λk) (7.15)

= argmin
C

(
1

2
‖X−BC‖2F + λ1tr(D

TC)+

ρ

2
‖C− Zk + Λk‖2F

)
3: Update Z by

Zk+1 = argmin
Z

Lρ(C
k+1,Z,Λk) (7.16)

= argmin
Z

(λ2‖Z‖1,2 + ρ

2
‖Ck+1 − Z+ Λk‖2F)

s.t. Z ≥ 0

4: Update the Lagrange multiplier matrix by

Λk+1 = Λk + ρ(Ck+1 − Zk+1) (7.17)

5: Calculate the objective function, Objk using Eq. 7.12
6: Calculate errors by

error1 = Objk −Objk−1, k = 2, . . .

error2 = ‖Ck+1 − Zk+1‖∞

7: k ← k + 1
8: end while

Output: Optimal solution C∗ = Ck

100

performed by:

Zk+1
i =[Sλ2/ρ(C

k+1
i + Λk)]+, i = 1, . . . ,M, (7.19)

where the vector soft thresholding S is defined as Sκ(a) = (1− κ/‖a‖2)+a.

• Updating Λ: Updating the Lagrange multiplier is straightforward. It is worth men-

tioning that, as in the method of multipliers, the dual variable update uses a step size

equal to the augmented Lagrangian parameter.

7.4 Experiments

Here, we present the experimental details of evaluation, including the datasets used, feature

extraction techniques employed for each dataset, the settings of the experiments, as well as

the obtained results.

7.4.1 Datasets

We evaluated our framework on three public benchmark datasets: MSRAction3D [95], Cor-

nel activity dataset (CAD-60) [148], and the Multi-modal Gesture Recognition Challenge

2013 (Chalearn) [40].

• MSRAction3D dataset: This dataset [95] is a well-known benchmark dataset for

3D action recognition. It contains 20 actions, including high arm wave, horizontal

arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw

circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging,

tennis swing, tennis serve, golf swing, pick up & throw. Each action was performed

2 or 3 times by each subject. Skeleton joint data of each frame is available having a

variety of motions related to arms, legs, torso, and their combinations. In total, there

are 567 depth map sequences with a resolution of 320 × 240. Some examples of the

depth sequences are shown in Chapter 5 in Figure 5.5.

• CAD-60: The CAD dataset [148] contains 12 actions performed by 4 different sub-

jects (two male and two female, one of them being left-handed) in 5 different envi-

ronments: office, kitchen, bedroom, bathroom, and living room. The 12 activities

are: rinsing mouth, brushing teeth, wearing contact lens, talking on the phone, drink-

ing water, opening pill container, cooking (chopping), cooking (stirring), talking on

couch, relaxing on couch, writing on whiteboard, and working on computer. All the

101

RGB, depth and skeleton data are provided in this dataset. Figure 6.3 in the previous

chapter shows some example depth images from this dataset.

• Chalearn dataset: This dataset is a large video database of 13,858 gestures from a

lexicon of 20 Italian gesture categories recorded with a Kinect camera, including audio,

skeletal model, user mask, RGB and depth images [40]. It contains image sequences

capturing 27 subjects performing natural communicative gestures and speaking in

fluent Italian, and is divided into development, validation and test parts. Examples

of RGB image sequences for some gestures are shown in Chapter 5 in Figure 5.4.

7.4.2 Feature extraction

In order to utilize the information of both depth and skeleton data, we employed two

different feature extraction methods:

• Skeleton position: Given a depth image, 20 joints of the human body can be

tracked by the skeleton tracker. At frame t, the position of each joint k is uniquely

defined by three coordinates Pk(t) = [xi(t), yi(t), zi(t)]. Instead of using the positions

of joints, we employed the relative position of each joint to the torso at each frame.

• Depth Motion Maps [27]: In this simple method, depth motion maps (DMMs)

generated from three projection views are used to capture the motion characteristics

of an action sequence. Different from the original method [27], however, we split a

sample along the time dimension into 10 segments and extracted DMM features from

each segment. These features are considered sample descriptors. Finally, PCA is

applied for redundancy and dimensionality reduction.

We intentionally chose these techniques as they are very efficient in terms of computa-

tion. Moreover, no parameter is involved in extracting local descriptors by these methods.

Some well-known depth-based feature extraction method, such as DCSF [173], require many

parameters adjustment and need fine-tuning. Our initial results showed that the classifi-

cation performance strongly depends on the parameter settings. Therefore, changing the

feature extraction parameters can significantly change the classification results. These two

sets of features are finally fused at the classification level.

7.4.3 Temporal pyramid matching

Since the BoVW model usually does not encode the temporal information of local descrip-

tors, we employed the simple, but efficient, Temporal Pyramid Matching (TPM) in order to

102

Figure 7.2: With TPM, the final feature vector of a sample is obtained by concatenating
the encoded features at different levels.

incorporate the temporal information into the classification stage. TPM generally divides

the video sequence into several segments along the time dimension. Feature representa-

tions obtained from segments are concatenated to form the representation. Standard TPM

procedure, first, encodes all local descriptors from all frames and then applies TPM at dif-

ferent levels and segments. Here, we first divided the depth sequence into 3 levels with each

containing 1, 2 and 4 segments, respectively. Then, we jointly encoded descriptors of each

segment at each level using the LGSC method. The final representation of an action sample

is obtained by concatenating the encoded features of all segments, as shown in Fig. 7.2.

7.4.4 Dictionary learning

Experimental results of [31, 129] show that, for the recognition task, codebook design is less

critical than subsequent phases (i.e. encoding and pooling). The results of [166] also reveal

that the codebook generated by K-Means can produce satisfactory results.

In this work, we build the dictionary with a similar method to [15] and also with the

online dictionary learning algorithm of [102].

103

Table 7.1: Classification accuracy of different encoding methods on each dataset.
VQ SC LLC FV GSC LGSC

MSRAction3D 81.25 83.79 80.15 86.19 90.31 93.45
CAD-60 81.66 81.66 83.33 83.33 85.00 88.30
Chalearn 72.51 78.62 70.58 78.05 76.80 79.64

7.4.5 Parameter settings

For our method, we set λ1 and λ2 to 0.15 and 0.10, respectively. Also, the number of

bases (codebook size) is experimentally set to 512. These values are chosen based on cross-

validation on the training data. For Fisher Vector, we changed the codebook sizes from 16

to 256 and the best result is reported.

For the Chalearn dataset, for each group, we randomly used 100 sample for training and

50 samples for test. For the MSRAction3D dataset, many studies follow the experimental

setting of Li et al. [95], such that they first divide the 20 actions into three subsets, each

having 8 actions. For each subset, they perform three tests. In test one and two, 1/3 and

2/3 of the samples were used for training and the rest for testing. In the third test, half of

the subjects are used as training and the rest of the subjects as testing. The experimental

results on the first two tests are generally very promising, showing more than 90% accuracy.

On the third test, however, the recognition performance dramatically decreases. It shows

that many of these methods do not have good generalization performance when a different

subject is performing the action, even in the same environmental settings. In order to have

more reliable results, we followed the same experimental setup of [116]. In this setting,

actors 1,3,5,7, and 9 are used for training and the rest are used for testing. For CAD-60

dataset, we followed the leave-one-subject-out settings as in [148].

7.4.6 Classification results

The summary of the results is reported in Table 7.1. In this table, we present the results

of different encoding methods on each dataset.

In addition, the confusion matrices of the BoVW framework based on the proposed

LGSC encoding algorithm for MSRAction3D and CAD-60 datasets are shown in Figure 7.3.

As the figure shows, different types of actions have been classified with a satisfactory accu-

racy. The proposed method is robust against actions with large movements, such as pickup

and throw and two hands wave in the MSRAction3D dataset. However, for actions in the

same category with slight difference, such as draw X and draw tick or draw circle it shows

less accuracy. For instance, the misclassified samples of hand catch class are classified in

104

Figure 7.3: Confusion matrices of the classification system on the MSRAction3D dataset
(left) and CAD-60 dataset (right).

similar classes, such as forward punch.

Table 7.2: Comparing the classification accuracy of our methodology with the state-of-the-
art methods on MSRAction3D and CAD-60 datasets.

MSRAction3D
Accuracy

Studies employed depth data
Action Graph [95] 74.70
HON4D [116] 85.85
Vieira et al. [161] 78.20
Random Occupancy Patterns [163] 86.50
DMM-HOG [178] 85.52
HOPC [125] 91.64
DMM-LBP-FF [26] 87.90
Studies employed only skeleton data
Actionlet Ensemble [165] 88.20
Histogram of 3D Joint [174] 78.97
GB-RBM & HMM [110] 80.20
Points in a Lie Group [160] 89.48
Proposed LGSC Algorithm 93.45

CAD-60
Accuracy

Studies employed depth data
Brun et al. [24] 86.50
MTO-Sparse coding [109] 65.30
Studies employed only skeleton data
Actionlet Ensemble [165] 74.70
Sung et al. (2012) [148] 51.30
Proposed LGSC Algorithm 88.33

We then compare our classification results on MSRAction3D and CAD-60 datasets with

state-of-the-art methods. Table 7.2 shows the accuracy of our method, as well as the rival

105

0 5 10 15 20 25 30

256

512

1024

1000 Iterations

500 Iterations

Figure 7.4: The relative running time of the implementation in [15] compared to our pro-
posed ADMM framework.

methods on these datasets based on the standard settings.

The results provided in Table 7.1 and Table 7.2 along with the confusion matrices

depicted in Figure 7.3 demonstrate the superiority of the proposed methodology. The

results are quite promising, considering the facts that we used relatively simple depth and

skeleton feature extraction methods without manipulating the depth data, which are quite

noisy.

7.4.7 Comparison of the running time

By setting the weight of locality term to zero, our ADMM-based implementation can easily

be employed for regular group sparse coding. Here, we further compare the execution time

of group sparse coding using the ADMM algorithm with the algorithm proposed in [15].

To compare the execution time of these two methods, the simplest way is to compare the

running time in the same conditions. In order to visually compare the results with a graph

that is easy to interpret, the average of relative running times of both implementation

methods to encode a group of descriptors of size 1000 over a dictionary of different sizes

is presented in Fig. 7.4. In this figure, the relative running time of the method in [15] is

shown with respect to our method, when the number of iterations of both methods is set to

500 and 1000. As an example, when the dictionary size is 512, our implementation is about

6 and 12 times faster with 500 and 1000 iterations, respectively. As the figure shows, the

proposed implementation operates significantly faster than the one in [15], especially when

the size of dictionary decreases.

106

7.5 Summary

The objective of feature encoding in BoVW models consists of representing features by

decomposing them over an existing codebook. In this chapter, we proposed a novel en-

coding algorithm that jointly encodes a group of local features by considering a locality

regularizer in the encoding phase, which improves the encoding stability and robustness to

noises. Compared to the method in [15], the execution time of our method is significantly

reduced by an efficient implementation using the ADMM framework. In order to utilize the

information of both depth and skeleton data, we employed two different feature extraction

methods: skeleton position and Depth Motion Maps (DMM). These two sets of features

are finally fused at the classification level. The proposed method was evaluated on three

benchmark action recognition datasets. Experimental results show significant performance

improvements of the proposed method in comparison to state-of-the-art approaches on the

considered datasets. Remarkably, we obtained 88.33% and 93.45% accuracy on the CAD-60

and MSRAction3D datasets, respectively.

Our plan for future work in this area consists of 1) utilizing the block structure strategy

for dictionary learning and feature encoding phases; 2) incorporating the temporal informa-

tion into the encoding optimization problem, such that the encoded feature vector includes

the temporal behavior of the sample; and 3) evaluating the proposed methodology on a

wider range of applications, especially for image categorization.

Chapter 8

Conclusion and Future Work

This dissertation presents a considerable step towards enhanced recognition of visual data

by ensemble learning. We believe that with the ever increasing amount of digital contents

generated by consumers and institutions, this direction of research becomes more important

in both algorithmic development and real world application. In this chapter, we summarize

the contributions and key observations of our work, and discuss future research directions

that go beyond our current achievement.

8.1 Summary

The objective of this dissertation is to explore efficient algorithms for visual data recognition

based on the ensemble learning. We first investigate ensemble classification, with special

interest in subclass ensemble and Error Correcting Output Codes. The ensemble approach

is then utilized for a visual classification application: action recognition by depth data.

We first reviewed the existing ensemble classification methods and presented a unifying

framework for multiple classifier systems that conceptually unites a large variety of ensem-

ble classification methods, including existing class binarization techniques such as ECOC.

In the framework, various ensemble methods are broadly categorized into four general ap-

proaches. Among them, three approaches generate ensemble classifiers by manipulating

data, which we have named subsample, subspace, and subclass approaches. The fourth

approach, learner manipulation, is usually based on using different learning algorithms or

variations of the parameters of base learners. The proposed framework is unique in a sense

that it links two research lines in machine learning: multiclass classification based on the

class binarization techniques and the strategies of ensemble classification. According to this

proposed framework, we provided a brief survey of ensemble creation methods as well as

the principal techniques proposed to combine them.

Inspired by the proposed framework, we presented a new general approach to ensem-

ble classification, named Generic Subclass Ensemble. The proposed approach differs from

existing methods that manipulate the target attribute, since in our approach individual

classification problems are not restricted to two-class problems. In light of this approach,

107

108

class binarization techniques are considered special cases of the generic subclass ensemble

approach. Based on the generic subclass approach, three methods are introduced: Sub-

class.Equidistant, Subclass.ClsPart MI, and Subclass.ClsPart Dist. Using the neural net-

work as the base learner, we evaluated the efficiency of the generic subclass ensemble on a

set of benchmark datasets. Experimental results show that the subclass approach presents

a viable alternative to the most commonly used ensemble classification approaches. Specifi-

cally, this approach shows a better performance in problems with a larger number of classes.

In these cases, instead of combining individual classifiers trained with different subsets of

samples or features, the more efficient approach is to train classifiers on a subset of classes.

Then, we focused on the subclass approach, specifically on Error Correcting Output

Codes (ECOC). We first proposed a subspace approach to the ECOC framework by defin-

ing a three dimensional ECOC matrix, where the third dimension corresponds to the fea-

ture space. In this sense, different subsets of features can be activated for a given di-

chotomy. Also, a Genetic Algorithm-based technique is employed for the optimal design of

an application-dependent subspace ECOC. The proposed method takes advantage of some

basic concepts of ensemble classification, such as diversity of classifiers. By taking into

account the problem domain, this method also benefits from the evolutionary approach for

optimizing the three-dimensional codematrix. As a result, we obtain a problem-dependent

coding design with more independent classifiers, which reduces the bias and variance er-

rors of the multiclass problem and, consequently, increases the discrimination power of the

ensemble. The method was evaluated on several UCI datasets as well as two shape cat-

egorization problems using two different base learners. The experimental results showed

significant performance improvement of the proposed method compared to state-of-the-art

approaches.

The ensemble model is then utilized for a visual classification application. More specifi-

cally, the recent release of the Microsoft Kinect camera inspired us to employ the ensemble-

based models for classification of actions using depth cameras. We presented three new

methods that improve the recognition of depth-based action videos.

First, we generated an ensemble classification framework to address two action recog-

nition problems. We designed a model consists of a set of classifiers, each one trained over

different feature sets. The individual classifier outputs are then efficiently combined by

means of the Dempster-Shafer fusion method, taking benefit from diversity of base classi-

fiers trained on different sources of information. We compared the classification results of

109

the individual classifiers with those obtained from fusing the classifiers by the Dempster-

Shafer combination method on two public datasets, showing performance improvements of

the proposed methodology. We showed performance improvements in relation to the state

of the art results on the considered datasets. We also introduce two fast action representa-

tion techniques, using only the skeleton joint’ position during the time. The advantages of

our methods are that: 1) They will generate a fixed size feature vector for an action, that

may vary in time based on the action and subject that performs the action. Thus, they can

be used as an input for any type of classifier. 2) The proposed representation techniques

are relatively very fast. Thus, they are computationally much more efficient for real time

applications.

Second, an efficient method that is applicable to trajectory classification, such as action

recognition, is developed by incorporating two efficient time-series distances measures. More

specifically, we utilized Dynamic Time Warping and Longest Common subsequences, as well

as their derivatives. However, instead of employing these general measures as a distance

measure for k-NN classifier, we transformed these measures using the pairwise proximity

function in order to make use of non-positive semi-definite kernels in the SVM formulation.

We build an ensemble of four ppfSVMs using the computed kernels and combine them using

the product fusion technique. Comparing the recognition results of the proposed methods

with state-of-the-art techniques on three action recognition datasets showed significant per-

formance improvements.

Finally, a new encoding algorithm was proposed that jointly encodes a group of local

features by considering a locality regularizer in the encoding phase. In order to utilize the

information of both depth and skeleton data, we employed two different feature extraction

methods: skeleton position and Depth Motion Maps (DMM). These two sets of features

are finally fused at the classification level. The proposed method was evaluated on three

benchmark action recognition datasets with skeleton and depth feature sets. Results show

significant performance improvements of the proposed method in comparison to state-of-

the-art approaches on the considered datasets. Remarkably, we obtained 88.33% and 93%

accuracy on the CAD-60 and MSRAction3D datasets, respectively.

8.2 Future Directions

For future research, we aim to investigate three initial directions, described in the following

sections.

110

8.2.1 Investigating deep features

Since the success of deep neural networks on achieving impressive image classification accu-

racy on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [87], many

approaches have tried to incorporate deep networks to tackle the problems of image and

video recognition. Our main future research relies on exploring deep neural network. More

specifically, we aim to explore the performance of an ensemble of Convolutional Neural

Networks, trained on different sources of data.

8.2.2 Exploiting the RGB-D data

The proposed action representation techniques as well as the ensemble classification frame-

work is based on using the depth data. The recognition performance when both RGB and

depth features are available needs to be evaluated and fusion schemes should be explored.

In future, we aim to employ other sources of information, specially the RGB data. Track-

ing of skeleton joints’ position and depth maps generally has discriminative information.

However, they may fail in cases that two classes are closely similar in terms of positions

of skeleton joints during the time. In addition, in some applications, depth data and/or

skeleton position may not be available. Our hypothesis is that employing RGB-D data can

significantly improve the recognition performance.

8.2.3 Continuous action recognition

The proposed methods in this dissertations are mostly appropriate for single-actions. In

the future, we would like to investigate more complicated real-world scenarios. More specif-

ically, we are interested in developing new approaches for continuous action recognition, i.e.

detecting a series of actions performed by a single subject and/or multiple subjects.

Bibliography

[1] D. Aha and R. Bankert. Cloud classification using error-correcting output codes.
Artificial Intelligence Applications: Natural Resources, Agriculture, and Envi-
ronmental Science, 11(1):13–28, 1997.

[2] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to
binary: a unifying approach for margin classifiers. Journal of Machine Learning
Research, 1:113–141, 2001.

[3] E. Alpaydin and E. Mayoraz. Learning error-correcting output codes from data.
In International conference on artificial neural networks (ICANN99), volume 2,
page 43748, 1999.

[4] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka. Efficient classification
for multiclass problems using modular neural networks. IEEE Transactions on
Neural Networks, 6(1):117–124, 1995.

[5] M.A. Bagheri, Q. Gao, and S. Escalera. Efficient pairwise classification using
local cross off strategy. In 25th Canadian conf. on Artificial Intelligence, volume
7310, pages 25–36, Toronto, Canada, 2012.

[6] M.A. Bagheri, Q. Gao, and S. Escalera. Logo recognition based on the dempster-
shafer fusion of multiple classifiers. In 26th Canadian conf. on Artificial Intel-
ligence, Regina, Canada, 2013.

[7] M.A. Bagheri, Qigang Gao, and Sergio Escalera. Rough set subspace error-
correcting output codes. In IEEE International Conference on Data Mining
(ICDM), pages 822– 827, Belgium, Brussels, 2012.

[8] Mohammad Ali Bagheri, Qigang Gao, and Sergio Escalera. A framework to-
wards the unification of ensemble classification methods. In 12th International
Conference on Machine Learning and Applications (ICMLA), volume 2, pages
351–355, 2013.

[9] Mohammad Ali Bagheri, Qigang Gao, and Sergio Escalera. A genetic-based
subspace analysis method for improving error-correcting output coding. Pattern
Recognition, 46(10):2830–2839, 2013.

[10] Mohammad Ali Bagheri, Gang Hu, Qigang Gao, and Sergio Escalera. A frame-
work of multi-classifier fusion for human action recognition. In 22nd Interna-
tional Conference on Pattern Recognition (ICPR), pages 1260–1265, 2014.

111

112

[11] Mohammad Ali Bagheri and Gholam Ali Montazer. Ensemble classifier strat-
egy based on transient feature fusion in electronic nose. In 14th international
symposium on olfaction and electronic nose, New York City, NY, (USA), 2011.

[12] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. A comparison
of decision tree ensemble creation techniques. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(1):173–180, 2007.

[13] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1):105–139,
1999.

[14] Miguel ngel Bautista, Sergio Escalera, Xavier Bar, Petia Radeva, Jordi Vitri,
and Oriol Pujol. Minimal design of error-correcting output codes. Pattern
Recognition Letters, 33(6):693–702, 2012.

[15] Samy Bengio, Fernando Pereira, Yoram Singer, and Dennis Strelow. Group
sparse coding. In NIPS, pages 82–89, 2009.

[16] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, de-
partment of information and computer sciences, university of california, irvine,
1998.

[17] Aaron F. Bobick and James W. Davis. The recognition of human movement
using temporal templates. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 23(3):257–267, 2001.

[18] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor
based image classification. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1–8, 2008.

[19] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error-correcting binary group
codes. Information and Control, 3:68–79, 1960.

[20] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–
122, 2011.

[21] L. Breiman. Pasting small votes for classifcation in large databases and on-line.
Machine Learning, 36(36):85–103, 1999.

[22] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[23] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[24] Luc Brun, Gennaro Percannella, Alessia Saggese, and Mario Vento. Action
recognition by using kernels on aclets sequences. Computer Vision and Image
Understanding, 2015.

113

[25] Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. Attribute bagging:
improving accuracy of classifier ensembles by using random feature subsets.
Pattern Recognition, 36(6):1291–1302, 2003.

[26] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Action recognition from
depth sequences using depth motion maps-based local binary patterns. In
WACV, pages 1092–1099, 2015.

[27] Chen Chen, Kui Liu, and Nasser Kehtarnavaz. Real-time human action recog-
nition based on depth motion maps. Journal of Real-Time Image Processing,
pages 1–9, 2013.

[28] Jingying Chen, Maylor K. Leung, and Yongsheng Gao. Noisy logo recognition
using line segment hausdorff distance. Pattern Recognition, 36(4):943–955, 2003.

[29] Shih-Chieh Chen, Shih-Wei Lin, and Shuo-Yan Chou. Enhancing the clas-
sification accuracy by scatter-search-based ensemble approach. Applied Soft
Computing, 11(1):1021–1028, 2011.

[30] Yu-Tseh Chi, Mohamed Ali, Ajit Rajwade, and Jason Ho. Block and group
regularized sparse modeling for dictionary learning. In CVPR, pages 377–382,
2013.

[31] Adam Coates and Andrew Y Ng. The importance of encoding versus training
with sparse coding and vector quantization. In ICML, pages 921–928, 2011.

[32] Andr LV Coelho and Diego SC Nascimento. On the evolutionary design of
heterogeneous bagging models. Neurocomputing, 73(16):3319–3322, 2010.

[33] Koby Crammer and Yoram Singer. On the learnability and design of output
codes for multiclass problems. Machine Learning, 47(2-3):201–233, 2002.

[34] Amit David and Boaz Lerner. Support vector machine-based image classifica-
tion for genetic syndrome diagnosis. Pattern Recognition Letters, 26(8):1029–
1038, 2005.

[35] A.P. Dempster. Upper and lower probabilities induced by multivalued map-
pings. Annals of Mathematical Statistics, 38(2):325339, 1967.

[36] J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, 2006.

[37] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,
1995.

[38] D. Doermann, E. Rivlin, and I. Weiss. Applying algebraic and differential
invariants for logo recognition. Machine Vision and Applications, 9(2):73–86,
1996.

114

[39] Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior
recognition via sparse spatio-temporal features. In IEEE Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance, pages
65–72. IEEE, 2005.

[40] S. Escalera, J. Gonzlez, X. Bar, M. Reyes, O. Lopes, I. Guyon, V. Athistos, and
H.J. Escalante. Multi-modal gesture recognition challenge 2013: Dataset and
results. In ICMI, 2013.

[41] S. Escalera, O. Pujol, and P. Radeva. ECOC-ONE: A novel coding and de-
coding strategy. In Pattern Recognition, 2006. ICPR 2006. 18th International
Conference on, volume 3, pages 578–581, 2006.

[42] S. Escalera, O. Pujol, and P. Radeva. On the decoding process in ternary error-
correcting output codes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):120–134, 2010.

[43] Sergio Escalera, Alicia Forns, Oriol Pujol, Petia Radeva, Gemma Snchez, and
Josep Llads. Blurred shape model for binary and grey-level symbol recognition.
Pattern Recognition Letters, 30(15):1424–1433, 2009.

[44] Sergio Escalera, Oriol Pujol, and Petia Radeva. Separability of ternary codes
for sparse designs of error-correcting output codes. Pattern Recognition Letters,
30(3):285–297, 2009.

[45] Sergio Escalera, David Tax, Oriol Pujol, Petia Radeva, and Robert Duin. Sub-
class problem-dependent design of error-correcting output codes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30(6):1041–1054, 2009.

[46] L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. Morgan Kauffman,
San Mateo, CA, 1990.

[47] Daniel Fagella. The Rise of Neural Networks and Deep Learning in Our Ev-
eryday Lives A Conversation with Yoshua Bengio, 2016 (accessed August 10,
2016).

[48] A. Ferreira. Survey on boosting algorithms for supervised and semi-supervised
learning. Technical report, Technical Report, Instituto Superior de Engenharia
de Lisboa, 2007.

[49] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

[50] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. The annals of statistics, 28(2):337–374, 2000.

115

[51] Nicols Garca-Pedrajas. Constructing ensembles of classifiers by means
of weighted instance selection. Neural Networks, IEEE Transactions on,
20(2):258–277, 2009.

[52] Nicols Garca-Pedrajas, Csar Garca-Osorio, and Colin Fyfe. Nonlinear boosting
projections for ensemble construction. J. Mach. Learn. Res., 8:1–33, 2007.

[53] Nicols Garca-Pedrajas and Domingo Ortiz-Boyer. Boosting random subspace
method. Neural Network, 21(9):1344–1362, 2008.

[54] Nicols Garca-Pedrajas and Domingo Ortiz-Boyer. An empirical study of bi-
nary classifier fusion methods for multiclass classification. Information Fusion,
12(2):111–130, 2011.

[55] N. Garcia-Pedrajas and C. Fyfe. Evolving output codes for multiclass problems,.
IEEE Transactions of Evolutionary Computation, 12(1):93–106, 2007.

[56] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Comput, 4:1–58, 1995.

[57] Ross Girshick, Jamie Shotton, Pushmeet Kohli, Antonio Criminisi, and Andrew
Fitzgibbon. Efficient regression of general-activity human poses from depth
images. In ICCV, pages 415–422, 2011.

[58] Simon Gnter and Horst Bunke. Feature selection algorithms for the genera-
tion of multiple classifier systems and their application to handwritten word
recognition. Pattern Recognition Letters, 25(11):1323–1336, 2004.

[59] Tomasz Górecki. Using derivatives in a longest common subsequence dissimilar-
ity measure for time series classification. Pattern Recognition Letters, 45:99–105,
2014.

[60] Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, and Klaus Obermayer.
Classification on pairwise proximity data. NIPS, pages 438–444, 1999.

[61] Venkatesan Guruswami and Amit Sahai. Multiclass learning, boosting, and
error-correcting codes, 1999.

[62] He Haibo and Cao Yuan. SSC: A classifier combination method based on
signal strength. IEEE Transactions on Neural Networks and Learning Systems,
23(7):1100–1117, 2012.

[63] J. Hampshire and A. Waibel. A novel objective function for improved phoneme
recognition using time-delay neural networks. IEEE Transactions on Neural
Networks, 1(2):216–228, 1990.

[64] Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. Enhanced computer vi-
sion with microsoft kinect sensor: A review. IEEE Transactions on Cybernetics,
2013.

116

[65] Lei Han, Xinxiao Wu, Wei Liang, Guangming Hou, and Yunde Jia. Discrimina-
tive human action recognition in the learned hierarchical manifold space. Image
and Vision Computing, 28(5):836–849, 2010.

[66] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. The
Annals of Statistics, 26(2):451–471, 1998.

[67] Nima Hatami. Thinned-ECOC ensemble based on sequential code shrinking.
Expert Systems with Applications, 39(1):936–947, 2012.

[68] Antonio Hernndez-Vela, Miguel Angel Bautista, Xavier Perez-Sala, Victor
Ponce, Xavier Bar, Oriol Pujol, Cecilio Angulo, and S. Escalera. Bovdw: Bag-
of-visual-and-depth-words for gesture recognition. In ICPR, pages 449–452.
IEEE, 2012.

[69] Tin. K. Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattem Analysis and Machine Intelligence, 20:832–844,
1998.

[70] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass sup-
port vector machines. Neural Networks, IEEE Transactions on, 13(2):415–425,
2002.

[71] M.K. Hu. Visual pattern recognition by moment invariants. Information The-
ory, IRE Transactions on, 8(2):179–187, 1962.

[72] Qinghua Hu, DarenYu, Zongxia Xie, and Xiaodong Li. EROS: Ensemble rough
subspaces. Pattern Recognition, 40:3728 – 3739, 2007.

[73] Yongzhen Huang, Zifeng Wu, Liang Wang, and Tieniu Tan. Feature coding in
image classification: A comprehensive study. PAMI, 36(3):493–506, 2014.

[74] R.L. Iman and J.M. Davenport. Approximations of the critical regions of the
friedman statistic. Communications in Statistics, 6:571–595, 1980.

[75] M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training
cooperative neuralnetwork ensembles. IEEE Transactions on Neural Networks,
14(4):820–834, 2003.

[76] A.K. Jain and A. Vailaya. Shape-based retrieval: A case study with trademark
image databases. Pattern Recognition, 31(9):1369–1390, 1998.

[77] Hui Jiang, Chong-Wah Ngo, and Hung-Khoon Tan. Gestalt-based feature sim-
ilarity measure in trademark database. Pattern Recognition, 39(5):988–1001,
2006.

[78] YG Jiang, J Liu, A Roshan Zamir, G Toderici, I Laptev, M Shah, and R Suk-
thankar. Thumos challenge: Action recognition with a large number of classes.
http://crcv.ucf.edu/THUMOS14, 2014.

117

[79] Gunnar Johansson. Visual perception of biological motion and a model for its
analysis. Perception & psychophysics, 14(2):201–211, 1973.

[80] Eamonn J Keogh and Michael J Pazzani. Derivative dynamic time warping. In
SDM, volume 1, pages 5–7, 2001.

[81] Microsft kinect [online]. http://www.xbox.com/kinect.

[82] J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas. Face verification via error
correcting output codes. Image and Vision Computing, 21(13-14):1163–1169,
2003.

[83] Alexander Klaser and Marcin Marszalek. A spatio-temporal descriptor based
on 3d-gradients. In BMVC, 2008.

[84] J. F. Kolen and J. B. Pollack. Back propagation is sesitive to initial conditions.
In Morgan Kaufmann, editor, Advances in Neural Information Processing Sys-
tems, volume 3, pages 860–867, San Francisco, CA., 1991.

[85] E.B. Kong and T.G. Dietterich. Error-correcting output coding corrects bias
and variance. In A. Prieditis and J.F. Lemmer, editors, Machine Learning: Pro-
ceedings of the Twelfth International Conference on Machine Learning, pages
313–321. 1995.

[86] E.B. Kong and T.G. Dietterich. Why error-correcting output coding works with
decision trees. Technical report, Technical Report, Department of Computer
Science, Oregon State University, Corvallis, OR., 1995.

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[88] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley,
New York, NY, 2004.

[89] L. I. Kuncheva and L. C. Jain. Designing classifier fusion systems by genetic
algorithms. IEEE Transactions on Evolutionary Computation, 4(4):327–336,
2000.

[90] Ludmila I. Kuncheva. Using diversity measures for generating error-correcting
output codes in classifier ensembles. Pattern Recognition Letters, 26:83–90,
2005.

[91] Ivan Laptev. On space-time interest points. IJCV, 64(2-3):107–123, 2005.

[92] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld.
Learning realistic human actions from movies. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

118

[93] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR,
volume 2, pages 2169–2178, 2006.

[94] S. Z. Li and Zhang Zhenqiu. Floatboost learning and statistical face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1112–
1123, 2004.

[95] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on a
bag of 3d points. In CVPR Workshop, pages 9–14, 2010.

[96] Winston Li, Henry Leung, Chiman Kwan, and Bruce R. Linnell. E-nose va-
por identification based on dempster-shafer fusion of multiple classifiers. IEEE
Transactions on Instrumentation and Measurement, 57(10):2273–2282, 2008.

[97] Jingen Liu, Benjamin Kuipers, and Silvio Savarese. Recognizing human actions
by attributes. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3337–3344. IEEE, 2011.

[98] Li Liu and Ling Shao. Learning discriminative representations from rgb-d video
data. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), 2013.

[99] Lingqiao Liu, Lei Wang, and Xinwang Liu. In defense of soft-assignment coding.
In ICCV, pages 2486–2493, 2011.

[100] Stuart P Lloyd. Least squares quantization in pcm. IEEE Trans. on Information
Theory, 28(2):129–137, 1982.

[101] Fengjun Lv and Ramakant Nevatia. Recognition and segmentation of 3-d human
action using hmm and multi-class adaboost. In ECCV, pages 359–372. Springer,
2006.

[102] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning
for matrix factorization and sparse coding. JMLR, 11:19–60, 2010.

[103] S. Mallat. A Wavelet Tour of Signal Processing. Academic, San Diego, CA,
2nd edition, 1999.

[104] Olvi L Mangasarian. Generalized support vector machines. NIPS, pages 135–
146, 1999.

[105] James Martens and Ilya Sutskever. Learning recurrent neural networks with
hessian-free optimization. In ICML, pages 1033–1040, 2011.

[106] Prem Melville and Raymond J. Mooney. Creating diversity in ensembles using
artificial data. Information Fusion, 6(1):99–111, 2005.

119

[107] S. H. Nabavi-Kerizi, M. Abadi, and E. Kabir. A pso-based weighting method
for linear combination of neural networks. Computers & Electrical Engineering,
36(5):886–894, 2010.

[108] P.B. Nemenyi. Distribution-free multiple comparisons. PhD thesis, 1963.

[109] Bingbing Ni, Pierre Moulin, and Shuicheng Yan. Order-preserving sparse coding
for sequence classification. In ECCV, pages 173–187. Springer, 2012.

[110] Siqi Nie and Qiang Ji. Capturing global and local dynamics for human action
recognition. In ICPR, pages 1946–1951, 2014.

[111] University of Maryland. Laboratory for language and media processing (lamp)
, logo dataset, 2012.

[112] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Joint angles similarities and
hog2 for action recognition. In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2013 IEEE Conference on, pages 465–470. IEEE, 2013.

[113] D. Opitz and R. Maclin. Popular ensemble methods: an empirical study. J.
Artif. Res., 11:169–198, 1999.

[114] D Opitz and J Shavlik. Generating accurate and diverse members of a neural-
network ensemble. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems, vol-
ume 8, pages 535–541. The MIT Press, 1996.

[115] David W. Opitz. Feature selection for ensembles, 1999.

[116] Omar Oreifej, Zicheng Liu, and WA Redmond. HON4D: Histogram of oriented
4D normals for activity recognition from depth sequences. In CVPR, pages
716–723, 2013.

[117] M. Pardo, G. Sberveglieri, A. Taroni, F. Masulli, and G. Valentini. Decom-
positive classification models for electronic noses. Analytica Chimica Acta,
446(12):221–230, 2001.

[118] B. Parmanto, P.W. Munro, and H.R. Doyle. Improving committee diagnosis
with resampling techniques. In Mozer M.C. Hesselmo M.E. Touretzky, D.S.,
editor, Advances in Neural Information Processing Systems, volume 8, pages
882–888. MIT Press, Cambridge, MA, 1996.

[119] A. Passerini, M. Pontil, and P. Frasconi. New results on error correcting output
codes of kernel machines. IEEE Transactions on Neural Networks, 15(1):45–54,
2004.

[120] Xiaojiang Peng, Limin Wang, Xingxing Wang, and Yu Qiao. Bag of visual
words and fusion methods for action recognition: Comprehensive study and
good practice. arXiv preprint arXiv:1405.4506, 2014.

120

[121] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher
kernel for large-scale image classification. In ECCV, pages 143–156. 2010.

[122] W.W. Peterson and J.R.Weldon. Error-Correcting Codes. MIT Press, Cam-
bridge, MA, 1972.

[123] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3):21–45, 2006.

[124] O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: a heuristic method for
application dependent design of error correcting output codes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 28(6):1007–1012, 2006.

[125] Hossein Rahmani, Arif Mahmood, Du Q Huynh, and Ajmal Mian. Hopc: His-
togram of oriented principal components of 3d pointclouds for action recogni-
tion. In ECCV, pages 742–757. 2014.

[126] Konstantinos Rapantzikos, Yannis Avrithis, and Stefanos Kollias. Dense
saliency-based spatiotemporal feature points for action recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 1454–1461,
2009.

[127] M. Re and G. Valentini. Ensemble methods: a review. In Advances in Machine
Learning and Data Mining for Astronomy, pages 563–594. Chapman & Hall,
2012.

[128] Miguel Reyes, Gabriel Dominguez, and S. Escalera. Feature weighting in dy-
namic timewarping for gesture recognition in depth data. In CVPRW, pages
1182–1188, 2011.

[129] Roberto Rigamonti, Matthew Brown, Vincent Lepetit, et al. Are sparse repre-
sentations really relevant for image classification? In CVPR, pages 1545–1552,
2011.

[130] A. Rocha and S. K. Goldenstein. Multiclass from binary: Expanding one-versus-
all, one-versus-one and ECOC-based approaches. IEEE Transactions on Neural
Networks and Learning Systems, 2013.

[131] Juan J. Rodrguez and Jess Maudes. Boosting recombined weak classifiers.
Pattern Recognition Letters, 29(8):1049–1059, 2008.

[132] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new clas-
sifier ensemble method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(10):1619–1630, 2006.

[133] G. Rogova. Combining the results of several neural network classifiers. Neural
Networks, 7:777781, 1994.

121

[134] Lior Rokach. Genetic algorithm-based feature set partitioning for classification
problems. Pattern Recognition, 41(5):1676 – 1700, 2008.

[135] Lior Rokach. Taxonomy for characterizing ensemble methods in classification
tasks: A review and annotated bibliography. Computational Statistics & Data
Analysis, 53(12):4046–4072, 2009.

[136] Lior Rokach. Pattern classification using ensemble methods. Series in machine
perception and artificial intelligence. World Scientific, Hackensack, N.J.; Lon-
don, 2010.

[137] Maimon O. Arad O. Rokach, L. Improving supervised learning by sample de-
composition. International Journal of Computational Intelligence and Applica-
tions, 5(1):37–54, 2005.

[138] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization
for spoken word recognition. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 26(1):43–49, 1978.

[139] L. E. Santana, A. M. P. Canuto, and L. Silva. Bio-inspired meta-heuristic
as feature selector in ensemble systems: A comparative analysis. In Neural
Networks (IJCNN), The 2011 International Joint Conference on, pages 1112–
1119, 2011.

[140] R.E. Schapire. Using output codes to boost multiclass learning problems. In
Proceedings of the 14th International Conference on Machine Learning, pages
313–321, San Francisco, CA, Morgan Kauffman, Los Altos, CA,, 1997.

[141] RobertE Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

[142] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: Support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

[143] Wei Shen, Ke Deng, Xiang Bai, Tommer Leyvand, Baining Guo, and Zhuowen
Tu. Exemplar-based human action pose correction and tagging. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1784–1791. IEEE,
2012.

[144] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipman, and Andrew Blake. Real-time human pose recog-
nition in parts from single depth images. In IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

[145] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In ICCV, pages 1470–1477, 2003.

[146] Dan Sun and Daoqiang Zhang. Bagging constraint score for feature selection
with pairwise constraints. Pattern Recognition, 43(6):2106–2118, 2010.

122

[147] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Unstructured
human activity detection from rgbd images. In ICRA, pages 842–849. IEEE,
2012.

[148] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Unstructured
human activity detection from RGBD images. In ICRA, pages 842–849, 2012.

[149] J. Tanha, M. van Someren, and H. Afsarmanesh. An adaboost algorithm for
multiclass semi-supervised learning. In Data Mining (ICDM), 2012 IEEE 12th
International Conference on, pages 1116–1121, 2012.

[150] Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. Asymmetric bagging
and random subspace for support vector machines-based relevance feedback in
image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(7):1088–1099, 2006.

[151] K. Torkkola. Feature extraction by non-parametric mutual information maxi-
mization. J. Machine Learning Research, 3:1415–1438, 2003.

[152] Anne Treisman and Hilary Schmidt. Illusory conjunctions in the perception of
objects. Cognitive psychology, 14(1):107–141, 1982.

[153] Alexey Tsymbal, Seppo Puuronen, and David W. Patterson. Ensemble feature
selection with the simple bayesian classification. Information Fusion, 4(2):87–
100, 2003.

[154] K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern
classification. In A. Sharkey, editor, Combining Artificial Neural Nets, pages
127–162. Springer, Berlin, 1999.

[155] K. Tumer and N.C. Oza. Input decimated ensembles. Pattern Anal. Appl.,
6:65–77, 2003.

[156] Elif Deryas Ubeyli. Multiclass support vector machines for diagnosis of
erythemato-squamous diseases. Expert Systems with Applications, 35(4):1733–
1740, 2008.

[157] W. Utschick and W. Weichselberger. Stochastic organization of output codes
in multiclass learning problems. Neural Computation, 13(5):1065–1102, 2001.

[158] Jan C Van Gemert, Cor J Veenman, Arnold WM Smeulders, and Jan-Mark
Geusebroek. Visual word ambiguity. PAMI, 32(7):1271–1283, 2010.

[159] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[160] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recog-
nition by representing 3d skeletons as points in a lie group. In CVPR, pages
588–595, 2014.

123

[161] Antonio W Vieira, Erickson R Nascimento, Gabriel L Oliveira, Zicheng Liu,
and Mario FM Campos. Stop: Space-time occupancy patterns for 3d action
recognition from depth map sequences. In Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications, pages 252–259. Springer,
2012.

[162] Heng Wang, Alexander Klaser, Cordelia Schmid, and Cheng-Lin Liu. Action
recognition by dense trajectories. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3169–3176. IEEE, 2011.

[163] Jiang Wang, Zicheng Liu, Jan Chorowski, Zhuoyuan Chen, and Ying Wu. Ro-
bust 3D action recognition with random occupancy patterns. In ECCV, pages
872–885. Springer, 2012.

[164] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet en-
semble for action recognition with depth cameras. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1290–1297. IEEE, 2012.

[165] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Learning actionlet
ensemble for 3d human action recognition. PAMI, 36(5):914–927, 2014.

[166] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. Locality-constrained linear coding for image classification. In CVPR,
pages 3360–3367, 2010.

[167] C.H. Wei, Y. Li, W.Y. Chau, and C.T. Li. Trademark image retrieval using
synthetic features for describing global shape and interior structure. Pattern
Recognition, 42(3):386–394, 2009.

[168] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. An efficient dense and
scale-invariant spatio-temporal interest point detector. In ECCV, pages 650–
663. Springer, 2008.

[169] T. Windeatt and G. Ardeshir. Boosted ECOC ensembles for face recognition.
In Internat. Conf. on Visual Information Engineering, pages 165–168, 2003.

[170] Terry Windeatt. Accuracy/diversity and ensemble mlp classifier design. IEEE
Transactions on Neural Networks, 17(5):1194–1211, 2006.

[171] Terry Windeatt and Reza Ghaderi. Binary labelling and decision-level fusion.
Information Fusion, 2(2):103–112, 2001.

[172] Terry Windeatt and Reza Ghaderi. Coding and decoding strategies for multi-
class learning problems. Information Fusion, 4(1):11–21, 2003.

[173] Lu Xia and JK Aggarwal. Spatio-temporal depth cuboid similarity feature for
activity recognition using depth camera. In CVPR, pages 2834–2841, 2013.

124

[174] Lu Xia, Chia-Chih Chen, and JK Aggarwal. View invariant human action
recognition using histograms of 3d joints. In CVPRW, pages 20–27, 2012.

[175] Jianchao Yang, Kai Yu, Yihong Gong, and Tingwen Huang. Linear spatial
pyramid matching using sparse coding for image classification. In CVPR, pages
1794–1801, 2009.

[176] Xiaodong Yang and YingLi Tian. Eigenjoints-based action recognition using
naive-bayes-nearest-neighbor. In CVPRW, pages 14–19, 2012.

[177] Xiaodong Yang and YingLi Tian. Effective 3d action recognition using eigen-
joints. Journal of Visual Communication and Image Representation, 2013.

[178] Xiaodong Yang, Chenyang Zhang, and YingLi Tian. Recognizing actions using
depth motion maps-based histograms of oriented gradients. In Proceedings of
the 20th ACM international conference on Multimedia, pages 1057–1060. ACM,
2012.

[179] Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local coordi-
nate coding. In NIPS, pages 2223–2231, 2009.

[180] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67, 2006.

[181] Chun-Xia Zhang and Jiang-She Zhang. Rotboost: A technique for combining
rotation forest and adaboost. Pattern Recognition Letters, 29(10):1524–1536,
2008.

[182] Zhou Zhi-Hua and Yu Yang. Ensembling local learners throughmultimodal
perturbation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 35(4):725–735, 2005.

[183] Guoqiang Zhong, Kaizhu Huang, and Cheng-Lin Liu. Joint learning of error-
correcting output codes and dichotomizers from data. Neural Computing and
Applications, 21(4):715–724, 2012.

[184] Jie Zhou, Hanchuan Peng, and Ching Y. Suen. Data-driven decomposition for
multi-class classification. Pattern Recognition, 41(1):67–76, 2008.

[185] Jin Deng Zhou, Xiao Dan Wang, Hong Jian Zhou, Jie Ming Zhang, and Ning
Jia. Decoding design based on posterior probabilities in ternary error-correcting
output codes. Pattern Recognition, 45(4):1802–1818, 2012.

[186] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman &
Hall, Boca Raton, FL, 2012.

125

[187] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class adaboost. Tech-
nical report, Technical report, Stanford Univ. Available at http://www-
stat.stanford.edu/ hastie/Papers/samme.pdf., 2006.

[188] C. Zor, T. Windeatt, and B. Yanikoglu. Bias-variance analysis of ECOC and
bagging using neural nets. Studies in Computational Intelligence, 373:59–73,
2011.

Appendix A

Proof of the maximum number of dichotomizers in dense

and sparse ECOC

Before counting the maximum number of dichotomizers in dense and sparse ECOC, we need

to consider two main points:

1. From the learning point of view, each dichotomizer is equivalent to its complementary.

For example, in a 4-class problem, [1, 0,−1,−1]T is equal to [−1, 0, 1, 1]T . Based on the first

vector, the binary classifier is trained using the instances of class one against the instances

of class 3 and class 4. So, we count only one of these vectors.

2. Clearly, each valid dichotomizer includes at least one cell with 1 value and one cell with

-1 value. So, [1, 0, 0]T is not a valid vector and should not be considered in counting.

In the following, we show that the maximum number of different valid dichotomizers

in sparse ECOC is (3Nc − 2Nc+1 + 1)/2. For dense ECOC, the proof can be conducted in

similar way.

Proof :

Let, the following appropriate sets be defined:

S: The set of all possible dichotomizers of 1, 0,−1 values and size of Nc

A: The set of all valid dichotomizers of 1, 0,−1 values and size of Nc

A2: The set of all possible dichotomizers of 1, 0 values and size of Nc

A3: The set of all possible dichotomizers of 0,−1 values and size of Nc

Clearly, n(A) = n(S)− n(Ac); where Ac is the set of all non-valid dichotomizers. Obvi-

ously, Ac = A2 ∪A3. Therefore, we have

n(A) = n(S)− n(A2 ∪A3) = n(S)− n(A2) + n(A3)− n(A2 ∩A3) (A.1)

It can be noted that: N(S) = 3Nc , and n(A2) = n(A3) = 2Nc . In addition, A2 ∩ A3 has

only one member, the zero vector of length Nc. Therefore, by using Eq.(A.1),

n(A) = 3Nc − 2Nc + 2Nc − 1 = 3Nc − 2Nc+1 + 1 (A.2)

126

127

Here, each dichotomizer and its complement have been considered in n(A). Therefore, ac-

cording to the first mentioned point, the maximum number of valid different dichotomizers

is equal to n(A)/2 = (3Nc − 2Nc+1 + 1)/2.

