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ABSTRACT 

 

 Autonomous underwater vehicles (AUVs) are frequently used to survey sea-floor 

environments using side-scan sonar technology. A simultaneous localization and 

mapping (SLAM) algorithm can be used with side-scan sonar data gathered during 

surveying to bound the possible error in AUV position estimate, and increase overall 

position accuracy, using only information already gathered during the survey mission.  

  

 One problem in using SLAM to improve localization is that data from a 

preliminary or route survey on the sea floor may be inaccurate due to changes in the sea 

bed or merely be differently detected due to different side-scan sonar surveying patterns 

or equipment. 

 

 This thesis’ focus is an integrated on-board SLAM system using automated target 

recognition system to extract objects for SLAM data association, data association 

algorithms for MLOs (joint compatibility program), and finally change detection on the 

SLAM results to determine if new objects have been introduced to the sea floor.   
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CHAPTER 1 INTRODUCTION 

 AUV BACKGROUND 1.1.

There are two broad classes of Unmanned Underwater Vehicles (UUVs). The first are the 

free-swimming Autonomous Underwater Vehicles (AUVs), while the second are the 

tethered Remotely Operated Vehicles (ROVs). AUVs, as their name suggests, are robots 

capable of traversing underwater environments (similar to submarines) and performing 

scripted tasks to make measurements more-or-less independently of human operators. 

Due to the difficult underwater environment for acoustic communications and 

navigations, AUVs must be self-sufficient, and possess on-board power, navigation, and 

control systems. AUVs, available commercially in a variety of different configurations, 

sizes and payload sensors, are capable of independent missions once deployed from a 

ship or dock. This independence sharply contrasts against Remotely Operated Vehicles 

(ROVs) that require communications, control and power from the surface operator, via a 

tether from the surface.  ROVs have human operators at the top side of the tether [1]. 

AUVs are more flexible – they are not tethered, so their range is limited only by the on-

board energy they carry, and they require less top-side support for their scripted missions. 

However, AUVs require on-board autonomy (controls programming) to operate in ever 

more complex environments and missions. The underwater environment has limited 

range and bandwidth for acoustic communication with human operators, in complex 

missions like surveying beneath Arctic ice [2]. Scripted missions are very much limited 

and unable to adapt to changes in the environment, robot, or mission.  This thesis’ 

research focusses on programming the AUV to generate maps and navigation plans from 

on-board sensor data and is thus capable of adaptive, autonomous navigation. 

AUVs are used for civilian, military, and commercial applications. As AUV autonomy 

advances, the  missions AUVs can be applied to, becomes more complex. Missions that 

AUVs are presently tasked to, or development is underway for, include: 

  Mapping underwater bathymetry as in Canada’s UNCLOS efforts to map the 

Canadian Arctic continental shelf to substantiate sovereignty claims under-ice [3]. 
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Also, research in studying  ocean chemistry and biology are underway by the 

Canadian Excellence Research Chair at Dalhousie University  [8]. 

 Surface vessel or submarine surveillance/observation (intelligence, surveillance 

and reconnaissance or ISR) or anti-submarine warfare (ASW) [10]. 

 Naval mine countermeasures (NMCM) involves the detection, classification, 

identification and neutralization of mines targeting manned ships and submarines. 

It is desirable to use unmanned ROVs or AUVs for these   tasks  [10].  The work 

of this thesis is applied to mine countermeasures.   

 Command, control, communications, and intelligence (C3I) relay platforms for 

capital ships.  AUVs can act as sensor platforms, and have on-board acoustic 

modems or  in-air radios to communicate with ships and submarines [10] either 

underway or on the surface, respectively. 

 Searches for shipwrecks and downed aircraft as in the successful localization and 

recovery of the Titanic.  Downed aircraft are recovered, among other reasons, to 

determine the causes of failures [4]. 

 Hull inspection of ships to assess the condition of the wetted hull for corrosion 

and to search for attached objects [5].   

In underwater mapping tasks such as bathymetry surveys, NMCM, and downed aircraft 

searches, AUVs have notable differences from previously used methods where side-scan 

sonars are towed by manned ships. AUVs:  

  are slower (typical speeds ~ 3-4 knots, or 1.5-2 m/s) compared to minimum 

ships’ speeds of 5
+
 m/s or more;  

 can reduce the exposure of manned ships to potential naval mines by allowing the 

ships to serve as re-supply / pickup / relay points for the AUVs that perform the  

actual  NMCM surveys [10]; 
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 may have greater inaccuracy in determining their submerged location compared to 

a ship towed sonar's which is bound by the tow cable scope.  The towed sonar’s 

range and range and bearing is relative to the ship’s, which has  GPS;  

 do not facilitate human operators analyzing their acquired side-scan sonar data 

until the AUV is recovered.  A towed side scan sonar relays the imagery in near 

real-time to the ship via the tow cable.  This is addressed through the emerging 

capability, implemented in this thesis, to  analyze the side-scan sonar imagery in-

situ on-board the AUV [6]. 

AUV teams can mitigate their disadvantages over previously proven NMCM methods 

and other survey missions.   Multiple AUVs controlled by cooperative algorithms allow 

for more efficient surveys compared to an individual AUV.  Further, AUVs can use one 

or two AUVs periodically surfacing, or one or more unmanned surface vehicles (USVs) 

to obtain a GPS fix that can then be "shared" amongst the AUVs in a cooperative manner 

[7]. This ‘accuracy’ is propagated to submerged AUVs through time-of-flight 

measurements of acoustic modem pings and local sound velocity profile to determine 

range and bearing from the AUVs/USVs with GPS fixes. Techniques which depend on 

distance between the sensor and robot include short baseline, long baseline, and ultrashort 

baseline [9]. Another useful feature of working with multiple AUVs is the ability to 

transmit locations of  targets or mine-like objects from one AUV to another over 

underwater acoustic modem. This allows one AUV to make a preliminary survey of a 

large area at lower resolution to identify targets and then have another AUV, with a 

higher resolution sonar and directed mission to more closely inspect the targets [6].  

The primary focus of the research is to use AUVs to map seabed objects in an area with 

little or no a priori information.  This is achieved by integrating on-board Automated 

Target Recognition (ATR) into Simultaneous Localization and Mapping (SLAM) 

algorithms. This research is also relevant to multiple AUVs surveying large areas. This 

thesis’ work allows AUVs to better localize themselves which lays the ground work for 

AUVs to localize other AUVs as in long baseline navigation to establish accurate relative 
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locations underwater.  The work of this thesis enhances localization of underwater assets 

in the global reference frame.  

The AUVs used at Defence R&D Canada (DRDC) for research are ISE Explorers and 

OceanServer Technology Ivers (formerly Iver2s, now  Iver3s).  The former are large, 

working class, long endurance AUVs used successfully on multi-week missions to map 

the Canadian continental shelf [3]. The latter are small man portable AUVs on the lighter 

end of the four man portable classes identified by the US Navy [10].  The OceanServer 

Ltd. Iver2 AUVs have custom autonomy software tools developed and implemented by 

DRDC and are used at DRDC as testbeds for validating experimental algorithms.  In the 

control and sensor respects they are very similar to the large, working class AUVs but but 

lack the  power, range, or sea-keeping – which is not as critical as an autonomy testbed.  

The Iver2 AUV (5.8in dia, Figure 1.1) was the primary testbed for the research and is 

described next.  

 

Figure 1.1: Iver2 AUV.  Source: Oceanserver, http://www.iver-auv.com/photogallery.html. 

 

The Iver2 AUVs have four rear control surfaces, which are actively controlled hydrofoils, 

that  maintain the AUV depth/altitude, pitch, roll, and heading control.  A single shrouded 

http://www.iver-auv.com/photogallery.html
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propeller provides the forward thrust.  The Iver2s are small,  light, and deployable by one 

or two operators with no specialized equipment like the crane needed to launch and 

recover larger AUVs.  The Iver2’s are easy to handle, inexpensive, and have an open 

architecture on the payload computer which makes them excellent testbeds for 

developing control algorithms. Iver2 AUVs are available in a variety of acoustic and non-

acoustic sensor configurations. Possible sensors include side-scan sonars, Doppler 

velocity logs (DVL), acoustic Doppler current profilers (ADCP), acoustic modems, 

control computers, payload computers, inertial navigation systems, etc. The specific Iver2 

AUV used for this research has an Imagenex Yellowfin 3-frequency (260 kHz/ 330 kHz / 

800 kHz) side-scan sonar, 4-beam Doppler velocity log, compass, acoustic modem, etc.  

Iver2 AUVs are rated for operating to 100 meters depth.  The battery endurance is about 

14 hours at 2.5 knots in a ‘best case scenario’, though the battery endurance decreases 

with increased duty cycle of the sonars, underwater modems, Doppler velocity log, on-

board computers, and other hardware. 

 A distinction is made here between the terms feature, object, target, and landmark.   A 

feature is a generic structure or shape. In imagery it can be a simple collection of pixels 

that has not been given an identity as an entity or object.  Examples of objects include a 

rock, a mine, or an underwater docking station.  The automated target detection tools 

(discussed later) convert features in imagery into objects.  A target usually refers to an 

object with a specific geometry in mind.  Object and target is sometimes used 

interchangeably in the literature.  A landmark is an object (or target) that could be a 

milestone in reference to a map or mapping as in SLAM.   

This particular system is limited in that it possesses no sophisticated inertial measurement 

unit. In an AUV with a really excellent IMU, accuracy loss of location would be 

decreased and for tests on the scale of this project SLAM would not help substantially as 

during these tests the AUV would not build up much error to be detected. However, even 

with an IMU, without references to fixed locations, positional error still grows 

unboundedly over time and with sufficient time underwater when returning to the same 

area the AUV would benefit from SLAM in theory.  



 

 6 

 

 INTRODUCTION TO UNDERWATER SLAM 1.2.

Simultaneous localization and mapping (SLAM) is a solution to the probabilistic robotic 

control problem – robotic navigation and localization in unfamiliar surroundings with 

noisy sensors and actuators. The SLAM problem, in the context of AUVs, is to enter an 

environment where the AUV has no a priori information and to map objects of interest in 

that environment and to localize itself within the map at the same time.  The objects of 

interest in this thesis are targets that appear mine-like in geometry and referred to as 

mine-like objects (MLO).  For the AUV-based solution a variety of sensors are needed to 

navigate and localize the robot and to detect and localize the targets).   

The on-board inertial navigation system, compass, Doppler velocity log (measures speed 

over ground), and propeller rotations are inputs towards a refined dead-reckoned 

navigation and localization solution for the AUV.   When possible, the AUV reduces its 

cumulated dead-reckoned position error by coming to the surface for a GPS calibration 

(or fix).  The SLAM algorithm uses iterative sensor measurements and models, of which 

the extended Kalman filter (EKF) is an example of the latter. SLAM methods have been 

used for AUVs in ocean environments to navigate [11] but, for the underwater 

environment this has been problematic and does not work well, repeatedly. 

The side-scan sonar is used to acquire imagery of the seabed.  From this imagery objects 

can be extracted using the on-board DRDC automated target recognition (ATR) software 

tools.  The navigation and localization stream of the AUV is synchronized in time with 

the side-scan sonar imagery stream in order to geo-reference the targets.   This means the 

targets’ locations are only as good as the AUVs’. 

SLAM provides a solution for mapping with minimal risings for a GPS calibration by re-

observing or re-visiting targets (not necessarily from the same mission) that were 

observed when their position error was small.  This could be for a target that was 

observed soon after a GPS or other position calibration.  For this to occur the SLAM 

‘loop closure’ or data association, where recently observed targets are associated or 

matched with previously observed targets, has to be performed accurately.   
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In the probabilistic formulation of SLAM the uncertainties and noise in the robot 

measurements of attitudes, altitudes, and position; control actuation, and target geo-

referencing are explicitly captured through probability distribution functions.   

Information  on the inaccuracies in the robot's measurements and actuations are 

determined from  previous in-water experience with the system.  

Commonly used SLAM algorithms are based on two methodologies – EKFs and Particle 

Filters.  In both cases they have mathematical properties that converge the map and robot 

pose to the system’s collective accuracy given  data sets of  estimated AUV and 

measured (or calculated from measurement) target positions [13]. The SLAM approaches 

have their trade-offs for computational efficiency in terms of number of calculations to 

produce updates, accuracy, implementation difficulty, adaptability to complex 

environments and fitness to an application [14] [19][21].   These can be difficult to judge.  

For example, map quality has competing requirements like robustness to initial inaccurate 

data [22], feature detection, loop closure [23], etc. Usually computationally efficient 

solutions yield less accuracy than less conservative solutions [19], such as PowerSLAM 

[24], a highly efficient computationally SLAM technique.  Consequently, SLAM 

solutions are diverse and vary in their implementation. 

For example, a large region to be mapped can be broken into smaller regions that are 

individually less computationally intense to analyze as with the ATLAS SLAM 

framework [25].   Its drawback is that it is not suited for SLAM problems with known 

data associations and Gaussian error distributions. Cumulative SLAM methods that do 

not require re-computing the entire map to achieve loop closure are consequently, 

computationally efficient though potentially less accurate [26]. Sparsification methods 

reduce the number of non-zero elements in the covariance matrices and thus reduce 

computational requirements  [19] [27] [28].  This allows multiplications and inversions of 

large matrices in SLAM updates to compute faster and reduces memory and subsequent 

read-write delays.  Methods that were once too computationally intractable to be practical 

have become less so over time.  Moore’s Law (suggested in 1965) postulated that 

computer performance will double roughly every eighteen months [29]. This has broadly 

held true as manufacturers have used Moore's law as targets for their design of future 
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CPUs. Presently, incremental progress in computer performance is from more processor 

cores which SLAM implementations like iSAM2 (discussed later) exploit through 

parallelizing tasks.  

SLAM involves landmarks the robot measures range and bearing to.  If  recently 

observed landmarks are correctly associated with previously observed ones, the robot 

gains confidence about the landmarks’ relative layout from the multiple observations. 

This confident association can be used to deduce landmark positions relative to the AUV 

[19]. However,  if multiple landmarks are close together and similar in appearance  this 

can cause incorrect associations [30]. If the landmarks have other features that can be 

sensed (e.g. colors or bar codes) then this can be used to jointly associate with landmark 

location with the aim to reduce incorrect associations.  In some of the simpler AUV 

localization tests by the DRDC Iver2, an acoustic modem serves as a stationary landmark 

broadcasting its known GPS position. Synchronized clocks that measure the time-of-

flight between between sending and receiving acoustic signals on assets with modems 

can be used to measure the underwater range between them. SLAM algorithms that use 

visual data from cameras  [32], sonar data in artificially constructed environments [33], 

or environments with specifically placed sonar reflectors [31] have been implemented 

with AUVs. 

 EKF STATE ESTIMATION 1.3.

With state estimation noisy data is extracted from measurements of robot localization or 

landmark ranges and bearings (with an AUV) to describe  system state. For an AUV 

executing SLAM, this state is relevant to map building and estimates of its position 

within that map. Kalman Filters are an example of a state estimation algorithm. The most 

basic Kalman Filters require that the measurement and motion (or state transition) 

model’s uncertainty be described by a normal distribution   – which  may or may not be 

accurate. If these conditions are not exactly correct, but the robot and sensor performance 

could be approximated in this manner, then the system could be modeled using Kalman 

filters.  The extended Kalman Filter uses the first term in the Taylor-series expansion to 

describe a nonlinear function as a linear function tangent to the nonlinear function over 

the region of interest. The EKF approximation is efficiently computed even for multi-
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dimensional systems. However, if the linear approximation is invalid because the mean of 

the nonlinear function is  discontinuous or the system is quite nonlinear, this will cause 

the EKF to fail and  the map and AUV/targets positions will not converge.  EKFs can be 

part of a larger SLAM implementation with GPS access and proprioceptive navigation 

sensors to periodically reduce error [35].  

 PARTICLE FILTER STATE ESTIMATION 1.4.

Particle filters (Pf) use Monte Carlo point mass distributions to capture probability 

density functions for nonlinear sensors, actuation, or robot motion where the uncertainty  

is  not normally distributed. Monte Carlo localization uses particle filters for robot 

localization.  The robot state space is represented by particles which are each a 

hypothesis of the robot state.  Each particle is weighted to reflect the likelihood of the 

robot being in that state.  The (Markov) recursive assumption and the iteration between 

predicted (motion) and measurement update states in Kalman filters is maintaine here.  

As particle filters are not parametric they can more flexibly support multiple state 

hypotheses unlike Kalman Filters.   

Initially, particles are distributed uniformly over the robot’s state space as it has no 

information on its location so every state is equally likely.    The measurement update 

occurs when the robot makes a measurement.  In resampling, the particles are resampled 

based on recursive Bayesian estimation. Particles (state hypotheses) which support the 

measurement are weighted more so less likely hypotheses are removed from the state 

space and more likely hypotheses are generated.  In the motion update, the particle 

distribution changes its density as the robot moves.  Particles move in the robot state 

space to support hypotheses of where the robot might be and noise is added.    The 

particle filter solution converges to dense clouds of hypotheses/particles that are denser 

during measurement and diffuse when the robot moves.   

An example of the particle filter’s merit is with environments that yield similar sensor 

measurements (e.g.  an office building with similar offices). Compared to Kalman Filters, 

particle filters underperform where both could be used (discussed in 2.1).  The 

computational overhead of calculating likelihoods for many particles (~ order of 
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hundreds) is greater than the Kalman Filter solution which is a single particle.  However, 

Kalman Filters are not applicable to all SLAM scenarios and the advantage of PFs is with 

scenarios where the Gaussain approximation is invalid [36].  While the number of PF 

particles is  on the order of hundreds it can be scaled – more particles yield better 

localization and navigation but require more computations.  A robot that is moving and 

updating its range and bearing measurement every ten seconds needs more particles than 

if it updated every one tenth of a second.  Large kinematic movements cumulate more 

uncertainty which manifests in the state space as greater dispersion dispersion.   Linearly 

increasing the number of particles in a particle filter yields diminishing returns in 

accuracy and precison and requires linearly more processing cycles.  A typical 

implementation of such a case is FastSLAM [19].  The next sub-section describes the 

particular SLAM implementation used in this work.  

 ISAM: INCREMENTAL SMOOTHING AND MAPPING 1.5.

iSAM (incremental smoothing and mapping) is a SLAM  implementations developed by 

Georgia Tech and MIT researchers [37].  iSAM is efficient and can execute on-line.  On-

line means the SLAM solution is calculated in near real-time during the robot mission 

rather than in post-processing after the mission. The iSAM implementation is  efficient as 

it is only a few mathematical steps to execute,  sparse matrices are used to reduce the 

computational burden, and only those portions of the covariance matrices that change is 

recalculated.  Research and development has been on-going since iSAM’s introduction 

[37]. Additional computational efficiency is achieved by recovering covariance 

information, of information related to localization, from a square root information matrix 

that is already maintained by iSAM.   This recovered data is  the relative uncertainties 

between the position of a single AUV pose and a landmark’s position.  This is used for 

the data association  which helps to solve the data association problem [39]. iSAM was 

designed to work in sparse environments with as few as one landmark.   Marine 

environments are often either sparse or cluttered with objects. iSAM uses both 

proprioceptive measurements such as DVL, compass, modem acoustic time-of-flight 

measurements, as well as inclinometers and internally logged propeller rotations  to 

localize AUVs [40].  
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The latest iSAM version, iSAM2, has as its innovation the use of a new data structure, 

the Bayes trees – a set of interconnected nodes that represent the underlying Bayes 

network of probability densities [41].  iSAM2  achieves smoothing and remapping of the 

map with the Bayes tree. The nodes are calculated from Gaussian elimination on matrices 

of the measurement and motion data.  The Bayes tree  facilitates insight through data 

processing with well-known linear algebra operations. The Bayes tree allows iSAM2 to 

be more computationally efficient than the original iSAM.  In particular, iSAM requires a 

batch updating that re-linearizes the model periodically which causes a delay 

(proportional to the amount of data) in the processing.  This iSAM batch update occurs 

once every 100 cycles of the move-sense-update cycle. The Bayes tree  facilitates fluid 

re-linearization so a periodic batch process to relinearize the model is not needed.  

Consequently, this eliminates the  spikes in time to process data that appear during the 

batch job – further increasing iSAM2 efficiency.  

iSAM2 produces accurate maps compared to other SLAM algorithms with improved on-

line accuracy.  On occasion, iSAM will cumulatively increase error after each 

recalculation caused by new data during the time period between two of the batch step 

relinearizations mentioned earlier. This accuracy loss is ameliorated when the batch step 

occurs and relinearizes the model, so the final map accuracies, or accuracies of maps 

generated by post-processing of data, are similar. By comparison, iSAM2 does not have 

this so iSAM2’s average accuracy is better than that of iSAM. The iSAM2 algorithm can 

recover marginal covariances as iSAM does, which as stated earlier facillitates better data 

association. Finally, iSAM2 can exploit parallelization in multi-core processor 

architectures better than earlier SLAM implementations for faster computing [42]. 

SLAM allows an AUV to determine its position with a certain confidence and its 

surroundings relative to that position, even from an initial state of ignorance. That 

knowledge may be used to plan paths dynamically, or maps may be built from data 

observed while following pre-set paths. This is discussed in Section 3, on path planning. 

 SLAM: IMPACT OF ENVIRONMENT 1.6.
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SLAM solutions are diverse. Not surprisingly 2D implementations are ill-suited to 3D 

applications.  Similarly, SLAM methods developed in one environment are not easily 

applicable to another.   

Compared to terrestrial SLAM, which is a well-studied problem [12], there are   

differences for SLAM in the underwater environment. The closest other field of robotic 

SLAM to underwater is aerial SLAM as both have the same degrees-of-freedom for the 

motion. An underwater (or aerial) environment means the robot is free to manoeuvre in 

three dimensions rather than two, so there is greater complexity to describe the 

environment for navigational purposes. In underwater (or aerial) SLAM there are also 

three degrees of rotational freedom (pitch, roll, and yaw) that are used to navigate 

through environments rather than the single yaw in conventional two-dimensional land-

based SLAM.   This makes for a more complex robot state.   

In other respects, SLAM for aerial robots differs  from underwater ones. The issues 

involved with a robot making measurements above a terrestrial terrain is not entirely 

unlike those of an AUV measuring above the seabed. Notably different is that in 

underwater SLAM communications (between other robots or operators) are limited in 

range and bandwidth.  This impacts the ability for the navigating AUV to localize by 

communicating with other AUVs, beacons, or modems that may know their positions 

well.   

Another notable difference from aerial robot SLAM is that there is no global positioning 

system to aid in AUV localization or navigation. When the seabed is deficient of 

distinctive geo-referenced landmarks to navigate against, deployed geo-referenced sonar 

targets, acoustic modems or beacons could be used.  However, there is expense and 

logistics in deploying, localizing, and recovering   these devices.   AUVs can also reduce 

their cumulated dead-reckoned position error by surfacing for GPS fix.   This however, 

compromises mission efficiency and especially so in deep water.  For localization, AUVs 

could range off an unmanned surface vehicle that broadcasts its known GPS position to 

the underwater AUVs (via an underwater modem on-board the unmanned surface 

vehicles). The AUVs use one- or two-way time-of-flight acoustic pings with a 
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synchronized clock to determine their range from the unmanned surface vehicle to 

localize themselves.  Yet another method is to use landmarks that are identified by geo-

referenced side-scan sonar images, These landmarks can be  natural features like distinct 

rocks  on the  sea floor or man-made debris.  Identifying landmarks from side-scan sonar 

images is not without its challenges especially as it impacts data association. Different 

insonification aspects, AUV altitudes, and environmental conditions can cause the same 

landmarks to appear different on subsequent side-scan sonar scans.  These challenges  are 

discussed more in  Section 5.  

The underwater environment changes over time due to  tidal action, currents, climate 

change,  movement of ships and activity by man through removing or inserting 

landmarks.  If these features are incorporated as landmarks in a SLAM, their changes 

have to be identified,   tracked, or at least noted in the SLAM map.  This is currently 

accomplished by using a stationary sensor SLAM update followed by tracking moving 

targets [19].  This dynamically changing environment makes the underwater SLAM, an 

already difficult problem, even more so. This tracking of changes is referred to as change 

detection. This thesis addresses underwater SLAM with the aim of mapping mine-like 

objects in a dynamic environment so change detection is of interest.    Consequently, the 

next sub-section briefly reviews change detection as relevant to the work here.   

 CHANGE DETECTION 1.7.

Change detection (CD) is, in most general terms, “the process of identifying differences in the 

state of an object or phenomenon by observing it at different times” [44].   The goal of CD is to 

identify where parts of a surveyed area have significantly altered, despite noise and background 

changes, while identifying changes of significance.   In the underwater environment CD has been 

successful with underwater video [45][46] but, sonar proves more difficult.  The challenge is to 

interpret the sonar data and find feature correspondences between sonar surveys as well as 

identify where change occurred. CD is used in data analysis but only in a limited fashion with 

sonar and even less so for side-scan sonar. This is due to the difficulty in identifying features in 

sonar imagery across surveys.  Side-scan surveys of the same area performed during the same 

hour can appear different due to the sonar’s sensitivity to acoustic returns based on ensonification 

angle (or aspect), range from the AUV, underwater acoustic ambient, susceptibility to noise 
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corruption, and AUV attitude.    Accurate geo-referencing of underwater locations across side-

scan sonar surveys is vital for CD.  One application of underwater CD is to determine whether a 

new object has been added or, if a previously observed object has been removed or altered as in 

naval mine counter-measures.  There are also other applications as in searches for downed aircraft 

or deliberately laid AUV docking or charging stations.  If the same geo-referenced objects 

consistently appear across sonar surveys (i.e. there is no change at those locations) then those 

objects could be used for local robot localization as in terrain-based navigation.   

This comparison of features across side-scan sonar surveys could be implemented as a simple 

differencing of geo-referenced images.   Another approach is to identify regions where significant 

changes are detected (compared to the background) and examining those regions to extract 

significant features with which to compare against in other surveys to determine the level of 

correspondence across temporally separated images [47].  Recent DRDC efforts [48][49] use this 

approach for mine-like object detection.   Specifically, this involves identifying the feature in 

localized regions of the side-scan sonar image. The feature geometry is identified by extracting 

‘patches’ of bright sonar returns and shadows to define that pixel collection as a feature and to 

determine attributes like geo-referenced location, length, width, and height above the sea bed. 

Then, the CD applies hypothesis testing to determine the likelihood of whether the feature is a 

change at that location or not.  CD is applied in this thesis to determine exactly that – to identify 

features that are consistent, have altered, or are new detections across survey that could be 

separated by months (or years).  In this manner, the CD is referred to as persistent.    In the long 

term, persistant change detection is of interest. This thesis applies it near the end.   Given all the 

on-board processing described so far, the next sub-section describes the on-board processors and 

the data flow for the SLAM.  

 

 ON-BOARD PROCESSING 1.8.

The Iver2 AUV has two on-board networked computers, both Intel Atom CPUs, the front seat or 

Original Equipment Manfacturer (OEM) computer and the ‘back seat’ or payload computer.   The 

front seat computer, running Windows XP Embedded, is where scripted mission plans are 

created, stored and executed. This computer is provided by the OEM, OceanServer Technology 

Ltd.   Side-scan sonar data arrives on this computer from the sensor as data streamed to a file.  

The ‘back seat’ computer, which is user-configured is networked to the front seat computer, and  

used for more deliberative high level planning/learning /etc like in the SLAM.  In this case, 

Ubuntu 10.04 is installed for compatibility with the original Iver2 AUV.   The front seat computer 
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executes the missions, implements the navigation solution,  and administers the fault diagnostics 

and sonar data-gathering,   It also performs the low level inner loop control of the AUV, for 

example to maintain yaw, pitch, roll, altitude/depth, and speed over ground.  

 

As mentioned earlier, the back seat computer is for higher-level deliberation tasks like mission-

planning, decision-making, and functions like  interpretation and parsing of side-scan sonar data, 

sophisticated navigation like SLAM, etc.  

This front seat/back seat configuration is a standard setup for Iver2 AUVs [20] and has its 

benefits.  Isolation of the front seat system from the back seat means that, if the advanced and 

often prototype-level software on the back seat fails or causes total system failure the front seat  

system is isolated from it and continues to run and could implement some recovery.  As well, the 

processing speed and memory available on the back seat computer is not tied to the front seat, and 

therefore back seat programs can be optimized without being bottlenecked by the front seat for 

disk read-write availability or memory as sonar data is streamed to the front seat. 

 

There are a few drawbacks to this approach – duplication of hardware increases both hardware 

costs and increases power consumption  compared to a single proccessor. Also, programming and 

using the Iver2 is more complex as multiple systems must work in concert to transfer data via e.g. 

FTP between the two computers, rather than having all data on the same hard drive. However, the 

net effect, particularly in the safety of trialing experimental software on an isolated system as 

opposed to the main navigational and control system, outweighs the disadvantages. 

 

This thesis runs software on both CPUs. A flow chart of the software is shown in Figure 1.2. It 

illustrates the data flowing through the system from sensors,   the layers of analysis on the AUV, 

and how the data passes between components. 
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Figure 1.2: Data flow to implement on-board SLAM. The portions on the left side of the diagram 

execute on the front seat computer and the portions on the right execute on the back seat 

computer.  The FTP program transfers sonar data from frontseat to the backseat. 

 

Initially, the AUV used for this project’s demonstration and testing gathers side-scan 

sonar data in the .872 format for side-scan sonar files (Imagenex, OEM for the Yellowfin 

side-scan sonar).  At each side-scan sonar ping there is an updated position estimate 

based on the predicted Iver2 motions through water from its navigation solution which 

uses a DVL, 3-axis compass, and propeller rotation measurements in a proprietary dead-

reckoning algorithm.  This telemetry information is likewise collated into .872 Yellowfin 

files on the front seat.   

 

On the front seat computer, these files are read and imported as binary data then exported 

as .xtf files which is then read by the on-board automated target recognition (ATR) tool. 

The ATR processes the side-scan imagery using filters to detect landmarks from the 

background of the sea floor based on geometric similarity to known MLOs. The 

landmark position is then associated by a data association algorithm against previously 

observed landmark positions (with their uncertainties) in the SLAM algorithm.  Then, 
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this processed data is input to the SLAM algorithm to produce refined location estimates 

for the Iver2 AUV as well as the detected landmarks. This is performed on-line during 

the mission. Processing is on the front and back seats and are initialized during the 

mission’s setup phase.  Upon initialization a specific folder on the front seat computer is 

periodically polled for a size change indicating a new sonar data (.xtf ) files to upload to 

the back seat from the front seat. The parsing and analysis of a sonar data file starts after 

it is detected in the polled directory.   For the cases tested, the parsing and analysis were 

complete prior to the survey for the next leg. This  prevents overlap leading to delay of 

the sonar data processing build-up over multiple legs of a mission.   This means that even 

with the current embedded computer  the system can run in near-real-time as opposed to 

entirely in post-processing. 

 PARAMETER TUNING AND ENVIRONMENTAL EFFECTS 1.9.

In general, this project was created with a number of adjustable parameters that were later 

tuned and refined to create the best possible results for the environment of the Bedford 

Basin, the specific hardware (especially AUV and Sonar type used), and the type of 

mission carried out (5m altitude above sea bed sweeps). If these particulars changed – if, 

for example, surveying a much deeper area, using a different AUV and Sonar, etc – then 

a substantial recalibration would have to be manually done by a researcher. 

The major parameters that were created and tuned for this program are subdivided into 

two distinct things: ATR Parameters, and SLAM parameters.  

The ATR parameters refer specifically to parameters that the ATR program uses to 

analyze a sonar data stream and identify targets within it. The key thing to optimize for is 

low numbers of false positives (e.g. times the system identifies noise as a minelike object 

/ landmark) while maximizing the number of true landmarks. In decreasing order of 

importance to optimize, the ATR parameters include the target object size along-track 

and across track (parallel to and perpendicular to the AUV’s motion), the target object 

height above sea floor,  the detection threshold parameter, the smoothing sizes and 

background sizes used in processing, and the minimum and maximum ranges objects can 
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be found in relative to the AUV path. These parameters were part of a configuration file 

that is fed into the ATR program to adjust it’s targeting parameters every time it is run. 

For the internal SLAM parameters, these parameters were part of another configuration 

file that was pulled into the SLAM program, and adjust the mathematical model used to 

create the map. These parameters include a covariance matrix of the AUV sensors & 

AUV kinematics; time in seconds between AUV poses in the map, and several data 

association parameters that adjust e.g. maximum distances between proposed associated 

landmarks & likelihood requirements for data association. These parameters were 

optimized for avoiding incorrect associations (primarily) while making as many correct 

associations as possible (secondarily). The covariance matrices were estimated based on 

best estimates of sensor performance and accuracy of the Iver2 motion, and revised to 

increase the accuracy of the output maps. 

To do parameter tuning, there were several stages. Initially, a sonar data stream from the 

Bedford Basin from a different AUV sonar type but similar mission (survey at 5 m 

altitude above sea floor) was used to do SLAM testing and establish initial values for 

parameters. This was using a Minegarden data set made available from DRDC. These 

values were used for initial tests in the Bedford basin. After experiments collected their 

own data set using the actual sonar and AUV for this project, the parameters were retuned 

for later tests using actual data collected in situ using actual equipment on the AUVs. 

In general, to prevent overfitting and incorrect tuning, the shortest mission available at 

any particular time was used as ‘validation’ data – parameters were tuned using the other 

mission data sets, and then the data that was not used to tune the parameters was tested 

against to validate that it would work on unknown data. Some of the ATR parameters are 

likely environmentally sensitive and dependent on the location used for testing. The other 

parameters are more hardware dependent, particularly on the sonar and the Iver2 

navigation software/hardware performance as a gestalt. 

In actual useage of a AUV SLAM system for military / commercial / etc use, ideally a 

large number of datasets will be gathered and appropriate parameters for the various 

environments and sonar types that are going to be used, and parameters created for each 
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that the AUV system could be made to switch between appropriately. This sort of large-

scale data-gathering endeavor is both beyond the scope of this project and also not 

valuable on the Iver2 AUVS which are a research testbed rather than a practical 

commercial or military AUV for large surveys.  

The AUV system as a whole is sensitive to ATR parameters, and it is very possible to 

create false and erroneous maps that give misleading information (from false positive 

target recognition) or maps that are entirely useless due to sparsity of type of object (from 

not having appropriate matches). The SLAM parameters are likely to be perfectly fine for 

all Iver2 AUVs with these sonars, but should be remade for use with other 

hardware/software; Only a few might be recalibrated for different mission types – in 

particular, the number of poses on a multi-day mission would likely be excessive to 

calculate with if a poses is taken as happening every 10 seconds as in this research. 

The methods used to gather the parameter tuning data, and gather data to assess the 

project as a whole, are discussed below.  

 IN WATER TESTING PROCEDURE 1.10.

In water testing was done in the Bedford Basin using the DRDC Acoustic Calibration 

Barge as a base, and launching and recovering the AUV from a rib. In general, the basin 

has a wide variety of sea floor types with some areas rocky, others sandy, etc. This 

variety allowed researchers to assess the problems and limitations imposed by different 

sea terrains. The basin also had some human made debris such as boxes that served as 

already emplaced minelike objects for the survey.  

The testing was done in several short missions that were taking place in different parts of 

the Bedford Basin, but all between the Acoustic Calibration Barge and the nearest coast, 

due to wanting to avoid difficulties with local traffic in the Basin and to simplify 

recovery in case of vehicle failure (by making it much more likely to beach on some 

sandy area near the Barge). For additional safety and AUV loss prevention, the AUV was 

programmed to surface at each ‘leg’ of a sonar survey - after completing a duration of 

surveying in a straight line, it would surface and update it’s GPS, turn, and resubmerge 

for the next leg of a sonar survey. 
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There were 4 different missions run in somewhat different locations in the basin, and they 

were run repeatedly over the course of several days that were spread out over a few 

months, during which time the basin itself changed and moved around. The missions 

were programmed to run on the front seat computer of the Iver2 while the other computer 

carried out SLAM but did NOT feed this information to the front computer in any respect 

– this meant that the mission was entirely governed by OceanServer’s own onboard 

software to follow waypoints as best it could with no updating position based on SLAM 

estimates. This was done for three reasons:  

- reduced risk to the AUV in event of SLAM failure 

- simpler programming and engineering 

- data processing limitations meant that updates to vehicle position estimates for relatively 

small runs in shallow waters like the Basin tests would only finish processing after the 

vehicle had already surfaced and gotten a GPS fix anyways. 

As every time the AUV completed a transect, it surfaced for a GPS fix and update, this 

allowed a primary statistic used to assess performance was a metric of error 

parameterized as ε. 

 

ε was defined as follows: 

 

                                𝜀 =
|𝜃𝐺𝑃𝑆 − 𝜃𝑠𝑙𝑎𝑚|

|𝜃𝐺𝑃𝑆 − 𝜃𝑑𝑟|
                                   

Where θGPS is the GPS-verified true position when the vehicle has surfaced, θslam is the 

SLAM estimate of position when surfacing, and θdr is the dead-reckoning estimate of 

position when surfacing, and the differences are taken as the absolute distance between 

the positions as a length. This ratio being less than one means the positional estimate 

accuracy was increased, while it being one means it’s error is unchanged. If it was to be 

greater than one, it would mean the SLAM had actively reduced positional accuracy – a 

failure the system was carefully tuned to avoid. 

 

 THESIS ORGANIZATION 1.11.

The remainder of the thesis is organized as per Table 1.   
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Table 1: Thesis Organization – Contents by Chapter Number. 

 

Chapter Number Contents 

Chapter 2 Discussion of SLAM algorithm selection rationale 

and iSAM internal details. 

Chapter 3 Discussion of ATR program selection details and 

rationale. Discussion of ATR parameter tuning and 

optimization.  

Chapter 4 Discussion of data association method selection and 

tuning and optimization 

Chapter 5 Testing and results. Demonstration of functionality. 

Demonstration of processing in real time. 

Chapter 6 Contributions 

Chapter 7 Conclusions and recommendations for future work. 

   Appendices Sample code and sample raw data and more detailed results. 
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CHAPTER 2 SLAM ALGORITHM 

The objective of SLAM is for “an autonomous vehicle to start in an unknown location in 

an unknown environment and, using relative observations only, incrementally build a 

map of [a] world and to compute simultaneously a bounded estimate of the vehicle 

location." [15].  Sensor observations are separated by motion of the AUV. This means 

that the autonomous vehicle whether on land, under the sea, in the air or any 

environment, must measure from its surroundings ranges to landmarks (e.g. walls) and 

use these measurements, along with measurements of its motion such as speed and pose, 

to build a map of the environment in which the vehicle localizes itself. The map is 

probabilistic if it captures the uncertainty in the measurements, actuation, and subsequent 

localization. The robot uses this information to  navigate within the environment to 

achieve its mapping goals.  The constructed map may be in the global reference frame 

(like GPS is) or relative to the robot’s initial location or other origin [16]. Under certain 

circumstances SLAM assumes a Gaussian distribution [17] for the uncertainty in sensor 

measurements and motion actuations.  Such an assumption  makes it mathematically 

convenient to compute a solution though in some cases it can be a limitation. The general 

SLAM problem is  complex  and once a system is capable of such a solution it is simpler 

to find a solution for systems with fewer restrictions, e.g. navigating when a map or GPS 

is available for the robot position [18].   There are a simpler SLAM problems that are 

more tractable than the general solution which encompasses nearly all real-world 

applications that AUVs might require. [10] 

2.1 ISAM:  INCREMENTAL SMOOTHING AND MAPPING 

iSAM and iSAM2 are leading SLAM algorithm implementations initially developed at 

Georgia Tech [37] with further development at MIT’s Computer Science and Artificial 

Intelligence Laboratory (CSAIL) [38]. These SLAM algorithms execute efficiently and 

on-line.  The latter  meaning as the robot moves, the SLAM  estimates are calculated at 

each time step rather than  in post-processing  at the end of the robot’s trajectory. iSAM 

is computationally efficient because it transforms matrices of estimated positions into 

sparse matrices,  works with the information matricies in triangular form, and uses back 

solving and forward solving to decompose the model of the robot poses and landmark 
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positions. Consequently, subsequent recalculations from new observations are performed 

only in those parts of the matrices that  changed.  In this way, it is possible to retain the 

majority of the benefit from previous computational effort in solving each new time step.  

Other SLAM methods solve the entire robot trajectory at every time step. This re-

ordering and transformation of the matricies relies heavily on Suitesparse’s column 

approximate minimum degree (COLAMD) and other refactoring techniques [34].  They 

allow the overall performance of iSAM to not deteriorate as rapidly as other approaches 

with arbitrarily increasing AUV poses and landmarks – COLAMD in particular creates 

factored representations that are numerically sparse, where as many entries as possible 

are zero, and thus the matrices are more efficient to solve. There are other iSAM 

strengths such as its ability to add and remove associations between landmark 

observations in response to updates in data association.  Research and development on 

iSAM has been on-going since its introduction  [38]. One part of iSAM was not perfectly 

suited to other parts of the SLAM problem – the ‘square root’ representation of the 

information matrix that iSAM relies upon obscures the covariance information 

(information about the strength of knowledge on the relative locations of various points) 

that may be used for data association. This covariance information is more explicitly 

available in other SLAM algorithms and so could be incorporated into the data 

association (Chapter 4). This was remedied in iSAM by designing mathematical methods 

to efficiently recover covariance information [39] from a square root information matrix 

that is maintained by iSAM of the landmark and AUV pose information.  This recovered 

data, information regarding the relative uncertainties between the position of a  vehicle 

pose and particular landmark’s position, helps to solve the data association problem, and 

is used when the vehicle achieves loop closure (i.e. reacquires a previously observed 

landmark) [39]. iSAM works well with few navigational landmarks which is an 

advantage as marine environments can be either sparse or very cluttered with indistinct 

landmarks.  iSAM has been validated to work with as few as one landmark. As with other 

localization methods, iSAM integrates measurements from Doppler velocity logs, 

compass, propeller thrust estimates and rotation rates with micromodem time-of-flight 

range measurements, to a modem of known position, to localize the AUV [40]. 
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Fundamentally, iSAM uses a square root information matrix as the basis of its process. In 

a SLAM approach following the methods of for example, FastSLAM, the main process 

that is computed repeatedly is a representation of landmark positions relative to one 

another in the form of an information matrix.  This is composed of the sensor 

measurement covariances and an associated measurement vector. These factorized 

representations are made up by adding each measurement’s individual matrix of 

covariances into a complete matrix representation.  For example, Figure 2.1 below shows 

a robot with two distances to measure in a single-vector world. Phase 1 measures those 

distances. In Phase 2, it moves in its 1-D world. In Phase 3, it measures once again from 

its new location. The two robot poses are 𝑥1 and 𝑥2, the landmarks are 𝐿𝐴 and 𝐿𝐵, and the 

measurements are 𝑟  while the distance moved is 𝑑  and finally error estimated in 

movements and measurements are 𝑒.  

 

Measurement Phase 1 Matrix: 

[

𝑟1𝐴 + 𝑟1𝐵 −𝑟1𝐴 −𝑟1𝐵

−𝑟1𝐴 𝑟1𝐴 0
−𝑟1𝐵 0 𝑟1𝐵

] [

𝑥1

𝐿𝐴

𝐿𝐵

] = [

𝑒𝑟1𝐴
+ 𝑒𝑟1𝐵

−𝑒𝑟1𝐴

−𝑒𝑟1𝐵

] 

Movement Phase Matrix: 

[
𝑑12 −𝑑12

−𝑑12 𝑑12
] [

𝑥1

𝑥2
] =  [

𝑒𝑥12

−𝑒𝑥12

] 

Measurement Phase 2 Matrix: 

[

𝑟2𝐴 + 𝑟2𝐵 −𝑟2𝐴 −𝑟2𝐵

−𝑟2𝐴 𝑟2𝐴 0
−𝑟2𝐵 0 𝑟2𝐵

] [

𝑥2

𝐿𝐴

𝐿𝐵

] = [

𝑒𝑟2𝐴
+ 𝑒𝑟2𝐵

−𝑒𝑟2𝐴

−𝑒𝑟2𝐵

] 

 

 

Combined Matrix for all 3 Phases of Measure – Move - Measure: 

Figure 2.1: Information matrix example – parts of a simple information matrix  
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𝜁𝑋 = 𝑒𝑟𝑟𝑜𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 = [

𝑑12 + 𝑟1𝐴 + 𝑟1𝐵 −𝑑12 −𝑟1𝐴 −𝑟1𝐵

−𝑑12 𝑑12 + 𝑟2𝐴 −𝑟2𝐴 −𝑟2𝐵

−𝑟1𝐴 −𝑟2𝐴 𝑟1𝐴 0
−𝑟1𝐵 −𝑟2𝐵 0 𝑟1𝐵 + 𝑟2𝐵

] [

𝑥1

𝑥2

𝑙𝐴

𝑙𝐵

] = [

𝑒𝑟1𝐴
+ 𝑒𝑟1𝐵

+ 𝑒𝑥12

𝑒𝑟2𝐴
+ 𝑒𝑟2𝐵

− 𝑒𝑥12

−𝑒𝑟1𝐴
− 𝑒𝑟2𝐴

−𝑒𝑟1𝐵
− 𝑒𝑟2𝐵

]                   (1) 

The combination of the information from movements and measurements is, as shown 

above in Eq.(1), represented as an information matrix 𝜁  and an error matrix in an 

equation that represents the robot distances measured and distances moved in a compact 

form as shown in Eq.(1). The best solution, X,  to Eq.(1) is the least-squares solution to 

the system of equations represented in matrix form. This is computed by inverting the 

square matrix, 𝜁 and multiplying it by the error vector. The inverse of the information 

matrix 𝜁 multiplied by the error matrix solves the least-square problem and minimizes the 

error, giving the most likely solution to a set of sensor measurements where the ‘solution’ 

consists of ranges of all landmarks and poses to the initial pose. 

However, the matrix inversion step in the most straightforward solution is 

computationally expensive and scales with matrix dimension (i.e. number of landmarks 

and poses – though sparsification can reduce matrix density somewhat). This means that 

as the robot acquires more poses and landmarks, the matrix inversion requires more 

processing (each update step requires O(M log K) operations where there are M particles 

with K landmarks). As an amelioration of this problem, iSAM’s unique insight is Q-R 

factorization of the square information matrix, and keeping the data represented in a Q-R 

factorized form even as more measurements are added. This is achieved through a Givens 

Rotations of the matrix – an efficient and numerically stable QR decomposition method 

that allows the information matrix to be broken down. Givens rotations are more 

computationally stable compared to for e.g. a Householder transformation with the same 

effect. 

A Givens Rotation is a simple procedure to rotate a matrix about a plane and keep all 

information and relationships in the matrix while reducing one element of the matrix to 

zero. When applied sequentially and repeatedly it reduces multiple elements to zero, by 

multiplying the matrix by a transforming Givens rotation matrix is an identity matrix 

except for ith and jth rows and columns, where the ii and jj rows have cos(θ) and the ij 

and ji rows have sin(θ) and -sin(θ). This rotation angle and the row/column numbers i and 
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j are chosen to zero a specific element each time.  This creates a matrix that is triangular 

and easier to solve since it can be back  and forward solved, efficiently. This 

representation is the ‘square root information filter’ representation as it is comprised of a 

QR decomposition into an upper and lower triangular QR factorization that reflects r 

about the matrix main diagonal  – the two ‘square roots’ of the information matrix. This 

representation can be stored and updated efficiently, as before, and remain fairly sparse 

by periodic variable re-ordering. This grows less quickly in computational intractability 

relative to the size of the poses and landmarks compared to other methods that use the 

same sort of matrix-based approach to SLAM.  It is bound by O(n log(n)) or O(n). The 

simple inversion has a computational cost in n poses and landmarks between O(n
3
) and 

O(n
2.373

), depending on how the inversion is implemented. This means the 

computationally expensive parts of the SLAM are performed only on the measurements’ 

equations as measurements are added rather than to the entire matrix.  

Additionally what is not shown (well) by the simple example here is in real situations the 

matrix will be fairly sparse, i.e. the number of non-zero entries will be less then the 

number of zero entries. This is because not all landmarks are observable from all robot 

poses.  Each pose is only related to the previous and next pose it is measured relative to 

(as well as  landmarks the robot observes at those positions).  Consequently, the square 

matrix of landmarks and poses will necessarily have more zeros than non-zeros where 

landmarks are observable from only some poses (or aspects).  The  zero elements, matrix 

sparsity, and symmetry allow for more optimized computations to solve matricies 

repeatedly as new measurements or poses are added to the matrix. 

The approach ISAM uses for the matrix inversion is to find a square root information 

matrix. If the covariance matrix is A and the vector of measurements as B, while the 

resulting information we desire is X, the general case is:  

𝑋 = 𝐴−1𝐵. 

However, instead of finding this directly through matrix inversion every time, this can be 

converted by Q-R factorization to  
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𝑋 = (𝑄 ∗ 𝑅)−1 ∗ 𝐵. 

Where R is an upper triangular matrix and Q is an orthogonal matrix. Thus, the best 

estimate of X is:  

𝑋 = 𝑅−1(𝑄𝑇𝐵). 

Since matrix R is upper triangular, the matix inversion can be calculated by back 

substitution, which is numerically efficient.   

The solution will be found multiple times and as the matrix expands through addition of 

new columns and rows (poses and landmarks) the factorized QR representation of the 

matrix also expands.  However, the Givens rotations used  for the QR factorization for 

previous steps can be used again for all but the new columns/rows of information and the 

new matrix can be merged with the already rotated one, thereby saving on computation 

effort. The matrix is recalculated from scratch, occasionally, by default in ISAM every 

100 new total pose/landmark information sets; this recalculation is to reorder variables to 

increase the sparsity of the matrix and thereby speed up computation performance for 

subsequent processing. The entire matrix may be reordered to make it sparser (COLumn 

Approximate Minimum Degree [COLAMD] matrix reorganization algorithm of 

Larrimore and Davis [97]), which reduces the overall computational requirements of the 

algorithm from the larger number of zeros in the factorized matrix representation after 

LU decomposition.  This allows for faster computation of the least squares solution when 

using more-or-less the same matrix repeatedly with incremental new data from a pose 

and landmark measurement.  

This square root information filter (SRIF) approach is suited for SLAM implementation 

on embedded processors with landmarks that do not number in the hundreds or thousands 

for every pose – true for underwater systems using sidescan sonar measurements. SRIF 

works on-line, is computationally efficient, and produces pose and map updates every 

time step. At the same time, the iSAM representation of the information matrix as a QR-

decomposed square root information matrix allows one to add and remove data 

associations and still calculate final estimates for all landmarks and poses efficiently. The 
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iSAM algorithm grows in computational time without bounds, linearly, in the number of 

landmarks and poses processed. However, this happens mostly with larger numbers of 

poses that observe all the landmarks, eventually.  As the matrix density increases, 

iSAM’s advantage decreases.  Some SLAM implementations require the robots stay 

within an area and see the same landmarks thousands of times as they move around in a 

small area repeatedly.  However, for  underwater MLO surveying, targets in an area are 

unlikely to be re-visited thousands of times.  The targets are more likely surveyed twice 

or have a few survey paths overlap for the purposes of re-acquiring the target. This means 

the increasing matrix density as the mission progresses and the consequent iSAM 

slowdown will not have a significant impact on its performance for MLO surveys.  

iSAM needs landmarks associated with robot poses and other landmarks. This landmark 

information is extracted by processing side-scan sonar imagery and AUV telemetry using 

on-board automated target recognition (ATR) tools, as described in the next section. 

The motion data estimate is extracted from the Iver2 logs created as the mission runs. 

These log files are created and stored as semicolon separated values programs with a 

header as follows: 

Table 2: Log File Data 

Latitude Dist To Next (m) 

Longitude Next Speed (kn) 

Time Vehicle Speed (kn) 

Date Motor Speed CMD 

Number of Sats Next Heading 

GPS Speed (Kn) Next Long 

GPS True Heading Next Lat 

GPS Magnetic Variation Next Depth (m) 

HDOP (horizontal dilution of 

precision, GPS accuracy) 

Depth Goal (m) 

C Magnetic Heading Vehicle State 

C True Heading Error State 

Pitch Angle Distance to Track (m) 

Roll Angle Fin Pitch R 

C Inside Temp (c) Fin Pitch L 

DFS Depth (m) Pitch Goal 

DTB Height (m) Fin Yaw T 

Total Water Column (m) Fin Yaw B 

Batt Percent Yaw Goal 

Power Watts Fin Roll 



 

 29 

 

Watt-Hours DVL-Depth (m) 

Batt Volts DVL -Altitude (m) 

Batt Ampers DVL -Water Column (m) 

Batt State DVL-FixType 

Time to Empty DVL-FixQuality 

Current Step  

  

These data are all stored to the log file every second. The most important data extracted 

from the log file is latitude, longitude, and heading data for every second. 
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TARGET RECOGNITION FOR SIDESCAN SONAR 

This section describes how objects or targets for iSAM (Chapter 2) are ‘detected’ or 

extracted from side-scan sonar imagery. There are inherent issues with using side-scan 

sonar imagery for SLAM. The most important is that the appearance of a 

feature/object/target to  a side-scan sonar image is a function of: 

1) sonar insonification aspect (or angle). The side-scan sonar insonification of an 

object creates highlights and shadows that represent the object. An object with 

shadow is illustrated in Figure 2.2 below. The length of the shadow is a function 

of ensonfication angle, range and altitude to the AUV. Objects close to the AUV 

will have shorter sonar shadows than ones further away much as terrestrial 

structures at noon have smaller light shadows than near twilight or dawn.  

2) sonar range to the object which affects intensity/brightness of a sonar return in 

addition to the object shadow length.   

3) ambient conditions (noise underwater, obscuring objects like fish). Noise can be 

detected by the ATR as objects, and adds occasional bright lines to sonar imagery 

that can be removed by filtering.  

 

Figure 2.2: Side-scan sonar object (center) with shadow (right).  

 

With side-scan sonar imagery, size, shape, and depth information can be extracted but not 

color as with optical imagery. Optical imagery at depth is not of much use as it is difficult 

to carry an intense enough light source on-board, have it work at large range, and not be 

obscured by underwater scattering or absorption.  The resolution of side-scan sonar 

images can be as good or better then optical imagery at higher insonification frequencies.   
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Therefore, the estimated location of the object is a key attribute – it is simple to work 

with, and parametize, and during a survey the ‘true’ location of an object remains 

relatively constant (i.e. no changes in appearance). 

Several object extraction tools were examined in this work.  

1) A peak detector made from open source software (OpenCV) [51] finds spikes and 

intensity drops towards the outer edge around a detected object  – essentially looking 

for bright patches of variable pixel size that are joined together and accompanied by a 

dark patch away from the sonar ensonification direction. This approach applied to 

side-scan sonar imagery picks up errors from out-of-range glitches due to noise in the 

sonar data stream and has difficulty determining an accurate background intensity to 

reference dark and light levels against.   This had to be recomputed for every sub-

section examined in the imagery. On faster processors (AMD A6-3420) than is 

present on the Iver2 (1.6 GHz Atom processor) this approach required 4+ minutes to 

analyze a 3-minute sonar data stream which is marginal for on-line processing.  

2) SIFT/SURF feature extraction [52] proved unreliable across known objects when 

those objects were viewed multiple times from different aspects. The unique object 

shadows and shapes that depend on proximity and angle usually were not 

geometrically similar enough across multiple data sets for correct data association 

based on SIFT/SURF feature extraction.  The subsea features were identified as new 

objects. It also proved sensitive to noise in the data stream which it detected as new 

SIFT/SURF features. It was however, computationally efficient. The large number of 

false positive from interpreting noise as new SIFT/SURF features was the most 

problematic part – noise as lines of bright returns were found regularly. Conversely, 

often features observed from the context of absences and irregularities in specific 

locations against a more regular background were not found. 

3) DRDC proprietary ATR was created to detect mine-like objects on the sea floor from 

side-scan sonar imagery. It was designed to be robust and efficient, and invariant as 

possible to insonification (observations) from different aspects. The processing is 

efficient. A single run of 3+ minutes of side-scan sonar imagery required twenty to 
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thirty seconds to process on-line on the Iver2 embedded processor. This solution also 

proved more robust to noise in the data as well. 

The DRDC proprietary ATR tool was chosen for this project. However, one of the other 

methods, may also work if the algorithms used are more computationally efficient and 

better filtering and noise-reduction applied to the side-scan sonar imagery.  

The DRDC ATR is configurable to bottom type (e.g. sand, gravel, mud, etc.) or 

sensitivity by adjusting parameters. In some circumstances (where the sea floor was 

cluttered or exceptionally sparse) this was adjusting the  size threshold of the object to 

detect. This was effective in reducing the number of objects  detected in a cluttered area 

and increasing the detected objects in sparse areas. Figure 2.3, shows the results of 

applying  ATR at the default 1-meter size threshold compared to other methods.   

 

Figure 2.3: Comparison of side-scan sonar imagery extraction tools. Results are averaged 

performance across three transects of duration 192 seconds, 190 seconds, and 194 seconds. 

 

By comparison, Figure 3.3, shows how adjusting the size threshold of detected object 

affects the detection rates over a sea floor area of Bedford Basin (Nova Scotia).  

DRDC ATR 

OpenCV-based 

SURF 
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Figure 2.4: Effect of ATR size parameter threshold on detection rate. 

 

There was no measureable time difference to process of the ATR based on this detection 

characteristic.  The possibility of noise being detected increased dramatically at sub-1m 

size threshold, so those were not used.  Such small thresholds are not representative of 

the objects of interest.   The ATR was tuned to run at a default size parameter of two 

meters as a minimum with the parameter decreasing to 1m if thre were no detections.   

The size of objects to detect was greater than 1 meter.   

One has to keep in mind that the SLAM objective in this work is to map targets of a 

certain size.  However, distinct objects of any size are valuable for the data association 

and navigation SLAM objectives.  This should be kept in mind when the detection size 

threshold is adjusted.   

Once objects/targets are detected in the side-scan sonar imagery, the SLAM data 

association  is the next problem.    
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CHAPTER 3 DATA ASSOCIATION 

Suppose the ATR initially identifies an object at location X, when the robot is at pose P. 

If the system then later identifies an object  at pose ~X from a vantage P, how should the 

system determine whether this is a new object X2 or the previously observed object X?  

Several data association algorithms  were examined to answer such questions: 

1) Nearest Neighbour;  

2) Individual Compatibility, and 

3) Joint Compatibility. 

The first, Nearest Neighbour, considers which of the  object locations previously 

observed  is closest (in the Euclidean sense) in range to the recently observed  object, and 

associates them  unless the range threshold is exceeded, in which case the detection is 

considered a newly observed object. 

Individual compatibility association assigns the new object’s association based on  its 

range against a probabilistic position distribution that describes the location of previously 

observed  local objects.  Whichever one has the recently observed object best falling into 

its position distribution (in the Mahalanobis sense [53]), is associated, unless all are very 

unlikely in which case none are associated. 

The final association, joint compatibility, assesses not only the association of a single 

object, but the cumulative probabilistic chances of each possible set of associations for 

multiple objects, simultaneously. Fundamentally, it may be less likely for a set of old 

objects A, B, C and new object set X, Y, and Z, that X matches C than that X matches B. 

However, if it is more compatible that X matches B AND Y matches C AND Z matches 

A, then this incorrect association can be omitted. 

The most complex of the above, joint probability, is also the most complex to implement. 

However, with a limited field of objects the computation time to associate the object after 

each run is manageable – 30 seconds instead of ~100 milliseconds for the simplest 

association (nearest neighbor).  This time is of less concern as the SLAM calculation 



 

 35 

 

takes 2-4 minutes depending on the sonar run length (this 30 second average includes 

time for iSAM to make the covariance matrix accessible – a significant time not incurred 

for other data association methods). For more details on computation performance, see 

Chapter Five. 

The worse joint compatibility data association performance in terms of speed is not a 

significant problem compared to simpler algorithms, because it is part of a whole 

ensemble that takes an order of magnitude longer anyways. However, the more 

sophisticated data association is better for situations where the ATR result  is ambiguous, 

the sonar imagery is noisy, or  otherwise difficult to work with.  If the situation had 

distinct targets that were clear and less noisy (not usually), then it would be better to use a 

simpler and faster algorithm. 

The actual data association performance in terms of accuracy (low frequency of incorrect 

association hypotheses) is difficult to evaluate since many subsea MLOs appears similar.  

The primary method to assess accuracy is twofold. The first is to examine the proposed 

associations by comparing side-scan sonar imagery by eye visually.  Examples of 

visually distinct objects are Figure 3.1 and Figure 3.2 – the former consists of a large (~2 

m) boulder greater than almost all other matches in size and with a distinct shadow, while 

the latter is a  sharp-cornered object (may anthropic in origin). 

 

Figure 3.1: First example of visually distinct object from side-scan sonar imagery 

 

Raised Area 

Shadow 



 

 36 

 

 

Figure 3.2: Second example of visually distinct objects from side-scan sonar imagery 

 

 

The second way to assess data association accuracy is to examine how well the SLAM 

increased the AUV’s position estimate. This is discussed in Chapter 5. The results of 

visual inspection alone were significant enough to the assessment that the  time 

requirements of getting covariance matrix information from ISAM and associating it was 

considered necessary and beneficial.  

Figure 4.3 is an  example of data associations compared from visual examination. 

 

Figure 3.3: Data association accuracy assessment. False associations fall with more sophisticated 

data association algorithms. Correct associations increased by joint compatibility algorithm. 

Nearest Neighbour produced undesireable false positive associations.  

 

As shown in Figure 3.3, the performance in number of total associations was similar for 

all data association methods considered – possibly a result of having a large dependency 
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on perceived object locations for all tested examples. However, the large number of false 

associations with Nearest Neighbour makes it undesirable as false associations 

unknowingly distort the map, especially when there are few correct associations.  It is not 

possible to restrict a Nearest Neighbour algorithm to output a large number of correct 

associations without incorrect associations.  

The difference in joint vs individual compatibility was largely the latter having slightly 

better results in the rate of data association but at a ~50% performance penalty in 

processing time (from ~1 to ~1.5 seconds).  However, the primary computational burden 

is in extracting the covariance data information from iSAM and in both individual and 

joint compability this  is an identical duration.  

Having studied all the subsystems in Figure 1.2, the next task is to assess their 

computation time and localization performance when integrated.  
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CHAPTER 4 RESULTS 

 

The results overall showed that the sub-systems discussed in Chapters 2-4 are tenable for 

increasing localization accuracy and detecting moved/newly placed/altered MLOs 

automatically on sea floor bottoms. In areas where detections were sparse (1 detection or 

less per transect) it was unsatisfactory. This was compensated, to some extent, by 

decreasing the object detection size threshold in the configurable ATR parameters.  

However, such a measure is limited by sensor quality and noise. When the object 

detection size threhold in the ATR is too small the false detection rates increase and thus 

reduces the value of the detections.  

 

 TEST RUN CASES  5.1.

There were four in-water survey missions to gather data and test the system in this thesis. These 

runs are labelled missions A, B,  C, and D. 

 

Mission A is a 40-minute survey that ran northeast-southwest as shown in Figure 4.1. 

 

Figure 4.1:  Planned route (waypoints) in Mission A. Transects have dive/rise segments to obtain 

a GPS fix after turn segments at the ends.  
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In Figure 4.1 there are idealized straight parallel lines as these are GPS coordinates for the AUV 

waypoints to be traversed – the exact execution is not as precise. The set of outer and inner GPS 

points in the transect show how at the end of a transect the robot surfaces for a GPS calibration, 

then dives between two GPS points going in the forward direction, and begins surveying at depth 

until it reaches the the final submerged waypoint.   

 

Illustrated in Figures 5.2 - 5.4 are the three other  mission areas surveyed. These are shown for 

comparative purposes – Missions A, B, and D are all in different locations within Beford Basin, 

at different angles and with some variety in the length of run. In Mission C, the area was surveyed 

at a 90° aspects to assess the effect of sonar ensonification direction on target perception.  

 
Figure 4.2: Mission B planned route. Transects are at different location and length than A.  
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Figure 4.3: Mission C planned route. Transects are at right angle aspects and substantial area is 

ensonified from two directions. 

  

Figure 4.4: Mission D planned route. Similar to other tests but again different location / aspect. 
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The missions were set-up as standard underwater side-scan sonar surveys in different areas. The 

only  different mission was C, which examined data association methods and ATR in the case of 

perpendicular sonar surveys of the same area. Otherwise, the goal of multiple missions was to 

have different sea floor bottom types to reduce overfitting.  

 

Side-scan sonar imagery and associated AUV navigation telemetry data was gathered.  This was 

deliberately tested over three days in October 2013, a day in December 2013, and two days in 

January 2014 for change detection purposes.  The runs are summarized in Table 5.1 
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Table 3:  Summary of when missions in Fig. 5.1 – 5.4 were performed 

day runs performed mission test runs (by letter) 

October 22, 2013 
C, D 

October 23, 2013 
A, C 

October 24, 2013 A, B 

December 12, 2013 
B, D 

January 20, 2014 
B, D 

January 21, 2014 
C, A 

 

 

The preceding Figures of ideal paths for the AUV to take do not match up to the actual Iver2’s 

path achieved.  This is due to the Iver2’s limited ability to dead-reckon without inertial navigation, 

steer in the presence of water currents at low speed, and inability to dive instantly and perfectly to 

depth. As a result, the actual path for a reasonably good run appears as Figure 4.5. 

 

Figure 4.5: Mission D dead-reckoned AUV positions underwater and on the surface (at the end of 

transects), The underwater dead-reckoning solution does not integrate water current 

measurements so the underwater paths are straighter than they actually are.  GPS measurements 

occur at the end of each transect.  
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At the ends of each transect, where it is possible to compare the GPS and dead-reckoned AUV 

position upon surfacing, there is a substantial deviation between actual GPS location and 

estimated dead-reckoned location.  This causes the robot’s position to ‘jump’ between the last 

estimated dead-reckoned location and the new GPS measured one.  

 

When the side-scan sonar data is analyzed  through the ATR and iSAM system shown in Figure 

1.2, the map appears as in Figure 5.6.   

 

Figure 4.6:  SLAM position updated runs for Jan 2014 runs. Paths underwater are still mostly 

straight, due to limited data points for developing curvature, but paths are not parallel - angles 

correspond to cumulated drift from dead-reckoning. 

 
Of note, the red circles are landmarks found in both the Jan 2014 and the prior runs over the same 

area, while the blue circles are landmarks found only in the new survey, and the green diamonds 

are landmarks detected only in the older survey.  Manual examination of the side-scan sonar 

imagery suggests that this is more accurate than the previous estimates of position, and further the 

GPS  update ‘jumps’ are substantially reduced on almost all transects of the run (though three 

transects detected no objects and therefore did not change). This inference of increased accuracy 

is supported by the reduced error in position from a GPS update jump upon surfacing. The results 

for a single transect before and after adjustment by the SLAM algorithm are shown in Figure 5.7.  
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Figure 4.7: Difference in AUV position before and after SLAM position update from the Jan 

2014 mission. Note the ‘jump’ at the end of the transect (bottom of diagram) upon surfacing is 

reduced as the path with SLAM is closer to the GPS ground truth than the dead reckoned one.  

 

In general, this difference in location accuracy was parameterized as ε. ε was defined as 

follows: 

 

                                𝜀 =
|𝜃𝐺𝑃𝑆 − 𝜃𝑠𝑙𝑎𝑚|

|𝜃𝐺𝑃𝑆 − 𝜃𝑑𝑟|
                                  (1)  

 
Where θGPS is the GPS-verified true position at surfacing, θslam is the SLAM estimate of position 

when surfacing, and θdr is the dead-reckoning position when surfacing, and the differences are 

taken as the absolute distance between the positions as a length in meters. The unitless ratio, then 

between the error in the SLAM estimate and the dead reckoning estimate is less than 1 if the 

estimate improves our accuracy (reduces error) and more than one if the estimate increases our 

error in position estimate. This is shown in the table below with an average error value. (Survey 

A is omitted for reasons discussed immediately hereafter): 

Table 4: Error results 

survey pre-loaded  target pos age Survey Type 
avg ε (Eq. 

1) 

B none Original detection 0.79 

B 3 wks re-visit 0.57 

B 5 wks +8 wks re-visit 0.40 

C none Original detection 0.70 

C 8 wks re-visit 0.30 

C 8 wks re-visit 0.34 

D none Original detection 0.83 

D 3 wks re-visit 0.56 

D 5 wks +8 wks re-visit 0.52 
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These average values decreased as surveys incorporating previous data were done, because 

previous estimates could be used to increase positional accuracy. The original detections had 

localization improvements that were highly dependent on seeing the same object from multiple 

orientations in the course of their transects – and objects which were only passed by once could 

not improve things. In the re-visit condition, when using localizations made previously, the error 

in position was substantially reduced because objects seen only once in the course of the entire 

mission could still be used to localize if they had been seen before in the course of the previous 

mission. 

 

 
Figure 4.8: Survey leg comparison for Survey B, second survey, ε by transect number. The 

average error decreased to 0.57, but there was variance in performance in individual transects. 

 
As shown in Figure 5.7 and 5.8, the SLAM updated path is closer to the GPS ground truth 

position at the end of the transect, and therefore the error metric ε is reduced for most transects. 

Figure 5.8 illustrates how on some transects there were no landmarks observed (2, 13) and no 

update to position could be applied over the dead-reckoning estimate. Several others, e.g. 

transects 1 and 7, observed landmarks near the beginnings of their transects only. As they 

traversed further, their localization update did not help nearly as substantially as a few others that 

observed known landmarks just before rising like 6 and 12.  

 

The following  comparisons were made:  

1. Mission A using data from October 24
rd

 on October 22
nd

  

2. Mission A using data from October 24
th
 on January 21

st
  



 

 46 

 

3. Mission B using data from October 24
th
 on December 12

th
  

4. Mission B using data from December 12
th
 and October 24

th
 on January 20

th
  

5. Mission C using data from October 22
nd

 on October 23
rd

   

6. Mission C using data from October 22
nd

 and 23
rd

 on January 21
st
  

7. Mission D using data from October 22
nd

 on December 24
th
 

8. Mission D using data from October 22
nd

 and December 12
th
 on January 20

th
. 

Of these eight comparisons, the following was observed: 

 

1 and 2: Mission A was too sparse. The number of landmarks that could be observed was 

small and not repeatable.  There was also noise detected and interpretted as landmarks.  

No real targets were observed. Results were therefore ε=1.0 (no accuracy increase). 

 

3,4 and 7,8: Reasonable detections with good estimates of position updates. Note that on 

these missions the AUV survey direction was the same. However, #4 performed better 

without the data from October 24
th

 included in the analysis as it had an incorrect 

association causing one transect to be off noticeably, though no such association was 

made between the December to January data. This may be due to the three-month interval 

between missions and hence much had changed in the environment. Nevertheless, the 

overall total error in position estimates decreased more without the October data due 

primarily to this incorrect association.  

 

5-6: When using data that is only measured in one direction similar performance between 

3,4 and 7,8 mission pairs was observed. When using the full mission, which included 

orthogonal heading side-scan sonar measurements, there was a number of landmarks (3 

of the ~30 overall landmarks) which were found in one direction of the survey and not in 

the other. This did not, however, seem to impair the overall SLAM performance.  

 

It was difficult to assess if the landmarks were better than non-landmarks for ground 

truth, as the areas involved are dynamically changing and surveys of them  yield accurate 

results but also capture the dynamic changes every time, with the change increasing as 

the time between surveys grows. However, the increase in accuracy of robot position 

estimates indicates that the accuracy of detections on its transects would also increase.  In 

summation, the overall accuracy of the map increases. 
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 PARAMETER TUNING RESULTS 5.2.

In general, parameter tuning results were as follows: 

 

Table 5: ATR Parameters 

Parameter Name Parameter Number 

ObjectSizeAcrossTrackMeters 1.5 

ObjectSizeAlongTrackMeters 1.5 

ObjectHeightMeters 0.75 

SmoothingSizeAcrossTrackMeters  4.0 

SmoothingSizeAlongTrackMeters  4.0 

BackgroundSizeAcrossTrackMeters  10.0 

BackgroundSizeAlongTrackMeters  2.0 

DetectionThreshold  0.6 

MinimumRangeMeters  6.0 

MaximumRangeMeters  50.0 

 

The various settings were adjusted manually by comparing resulting outputs to the input 

stream as well as SLAM matches, adjusting parameters as seemed good to remove bad 

identifications.  This was done manually rather than by searching automatically and 

thoroughly because the number of parameters to tune was so high as to render any proper 

complete exploration difficult when processing times for an individual run were in excess 

of 10 minutes. 
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The most sensitive and important parameter is the Object Height Meters parameter, 

which the ATR uses to filter out a minimum size of an object protruding from the sea 

bed. At about 0.4 m and below, there are too many false positives and landmarks that are 

less consistently placed over time are detected. As it goes higher, though, fewer and 

fewer landmarks qualify and there are no detections above ~1.5m in the whole dataset. 

The object size along and across track (in the vertical and horizontal orientations in the 

sonar data) are also fairly important and sensitive. The other parameters are less 

important, and are more about filting out noise from the sonar results. 

The SLAM algorithm results were simpler: A time of 10 seconds between poses while 

underwater was used to generate practically computable SLAM maps. The parameters 

were tuned by adjusting relative covariances in matrices, starting with an initial 

assumption that the kinematic model of the Iver2 was probably very inaccurate to real 

world results but the sidescan sonar distances were likely to be correct. The maximum 

distance between estimated positions and possible matches in position was chosen to be 

30 meters based on estimates of maximum AUV deviation in location during these field 

tests, which proved accurate.   

 PROCESSING TIME AND COMPUTATION  REQUIREMENTS 5.3.

On-line processing requirements appear satisfactorily met for the missions studied on the Iver2 

payload processor but could be improved. Figure 5.8 summarizes the processing time required for 

the cases studied.  The total processing time is defined as the time between when the sonar stops 

logging to a .872 file and when the ATR has completed its final calculations for a run. Figure 5.8 

pertains to a set of data between waypoints 64 and 69 (waypoints not explicitly shown) where the 

AUV  surveyed on orthogonal headings as in Figure 4.10.  
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Figure 4.9: Total processing times for several side-scan sonar processing. 

 

 

Figure 4.10: Position estimates of Iver2 AUV based on dead-reckoning (straight sections) and 

when on surface (end of transects) where it accesses GPS.  

 

This was measured from an earlier surveyed area so the data was read in  (adding to 

calculation time) and referenced for data association. Substantial amounts of the 

calculation time (> 25%) was consumed converting the sonar imagery from .872  to .xtf 

format.  If the side-scan sonar data was in the correct format or the ATR  could read the 

.872 data, this calculation time would be reduced.  As-is, the program never ran longer 

than the time it took for the next transect’s sonar imagery data to be logged.  There can be 

different increased times between robot poses in the SLAM representation of robot 
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position – more poses increases processing time for iSAM and data association but yields 

a finer grained model. 

 

The breakdown in processing time for individual tasks per transect is shown in Figure 

4.11 for Mission E. 

 

Figure 4.11: Distribution of average processing time for one transect in Mission E. 

 

Figure 5.10 shows 6% of the time spent transferring files over FTP between the two on-board 

processors, monitoring sonar imagery file size to determine if a transect had completed  logging 

so it could be accessed, and other file transfer tasks. A large portion of the remaining time, 24%, 

was spent converting sonar data formats in an inefficient script. The ATR analysis and output 

segment in Figure 5.10 includes time to perform the ATR analysis, parse the subsequently 

generated detected MLOs into a list,  and synchronize the Iver poses for the data association. This 

data association time (purple) includes time for iSAM to extract covariance information used only 

in data association. 

 LIMITATIONS OF RESULTS 5.4.

This project was undertaken without using sophisticated and expensive IMUs. IMUs 

could increase navigational accuracy substantially, but they add additional equipment 

costs and still do not prevent errors from growing unbounded. With substantially reduced 

error in navigation, it would take substantially longer underwater missions before SLAM 

became helpful and useful.  
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This project was undertaken with limited numbers of different ways of analyzing 

Sidescan sonar data for landmarks. The author created an image parser, used the DRDC 

Sidescan Sonar ATR, and also tried SIFT and SURF features in the image. There is a lot 

of data in the image not properly captured by these types of analysis, and incorporating 

e.g. relative elevation data into the process could improve localization results.  

This project was undertaken in one relatively small geographical area, and some of the 

parameters are likely sensitive to the specific area testing was done in. Many of the 

specific parameters are calibrated to this specific AUV, Sidescan Sonar type, heigh above 

sea floor, and other features specific to the test environment – for actual widespread 

deployment, much more data could be gathered to help make a more general SLAM 

system. For some areas of the sea floor, where there is little recognizable terrain, even 

this is likely not terribly helpful. 

The project assumed no use of sonar modems to localize via long baseline, short baseline, 

etc. acoustic communications. A base station with a known location could help localize 

the AUV using the time-of-flight of acoustic communications, and data from these could 

in future be incorporated into the AUV localization.  Also, another AUV with sonar 

communications could relay sonar information back and forth for localization efforts to 

e.g. share landmark locations or relative positions. 
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CHAPTER 5 CONTRIBUTIONS 

The contributions from this thesis are itemized in this section.  They include the 

following: 

 

The first time that the DRDC ATR tools are integrated into an on-board SLAM method 

where ATR is used for the detection of objects from a data stream.  In fact, there are 

currently very few other SLAM methods that draw on ATR output.  This ATR appears to 

be a fairly good ‘perception’ tool for the purposes of simultaneous localization and 

mapping for mine-like objects.   

 

Based on the output of the ATR and the mapping requirements, joint compatibility 

branch and bound is the best of the commonly used data association algorithms in terms 

of accuracy for AUV and MLO localization.  It is also the first test of ATR as a means for 

change detection as well.  As a change detection tool, the DRDC ATR shows promise.   

 

Validated concepts for improved AUV and landmark localization as well as change 

detection for underwater mine-like objects as per the overall project objective. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

Based on the integration, simulator testing, and in-water validation work reported here, 

there are follow-on components that could be developed to increase the efficiency and 

general accuracy of the SLAM system shown in Figure 1.2, namely: 

 As mentioned earlier, a more efficient way to convert from the .872 to .xtf sonar 

format to reduce the time needed for this task to decrease the overall processing time.  

To some extent the requirement for this task has been superseded by IVER3 UUVs 

that have networked access to the side-scan sonar imagery across processors and 

produces the imagery in a format that the ATR can read.   

 The use of an sophisticated Inertial Measurement Unit (IMU) could potentially 

perform the same job of increasing accuracy underwater navigation. Compare 

accuracy to use of a sophisticated Inertial Measurement Unit (IMU), and test for 

SLAM navigation improvement with an IMU installed. An IMU-based system would 

still have unbounded error growing over time eventually, and would require 

additional expensive hardware to be added to an AUV. 

 A compilation of more data sets to produce change detection plots like those in Figure 

5.10.  While this one set proves the principle of the system that was assembled this 

should be tested over different sized missions, seabed bottom types (to task the ATR 

in different environments), landmark distributions, etc.  The ATR as a change 

detection tool would be further tested.   

 Coordination with other vehicles for multi-vehicle SLAM, ranging through acoustic 

micromodem communications to increase accuracy of iSAM. This of necessity entails 

compression of data into as few bits as possible while still being useful to SLAM 

techniques, and may involve some sort of partitioning scheme for dividing up the area 

to be surveyed. Also, with multiple vehicles present they can send/receive acoustic 

signals to  determine  the range  between Iver2 AUVs reliably.  

 Use of more sonar data for different parts of the ocean than just Halifax Harbour, for 

increased generality. In general, this project surveyed five different areas within line 
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of sight of the DRDC testing barge in Bedford basin. To make the techniques 

developed more applicable to general underwater environments, requires extensive 

testing and calibration in other environments.  

 Provisions for transferring data about changes detected during missions via e.g. 

acoustic modem communication relays to dock/ship/station for ‘live’ updates on 

presence of new mines. This could have practical applications, and again relies upon 

compressing relevant information and transmitting through an inherently noisy, lossy 

medium.  

 Additional different types of landmarks could be investigated. This project focuses on 

minelike object landmarks using the DRDC ATR. While this is highly practical for 

several intended use cases, further projects could use other sidescan sonar features as 

landmarks.  

 Related to the previous point, to fortify the accuracy of joint compatibility branch and 

bound for data association, the local seabed elevation imagery that could be extracted 

from side-scan sonary imagery  be jointly associated with the MLO localization.   

This does not involve extra measurements but it does involve more processing on the 

same collected side-scan imagery.  This topic is being pursued in another project.   

 

 

  



 

 55 

 

BIBLIOGRAPHY 

[1] Antonelli, G, Underwater Robots. pp 1-13. Springer, 2006. 

[2] Stone, W., Hogan, B., Flesher, C., Guliati, S., Richmond, K. et al, “Design and 

Deployment of a Four-Degrees-of-Freedom Hovering Autonomous Underwater 

Vehicle for sub-Ice Exploration and Mapping”. Proceedings of the Institution of 

Mechanical Engineers, Part M: Journal of Engineering for the Maritime 

Environment.  2010. 

[3] Crees, T., Kaminski, C., Ferguson, J., Laframboise, J., Forrest, A. Williams, J, 

MacNeil, E. Hopkins, D. and Pederson, R. ''Preparing for UNCLOS - An Historic 

AUV Deployment in the Canadian High Arctic''. Proceedings of the Oceans / MTS 

Conference, pp. 8-16. 2010. 

[4] CBC News. “Malaysia Airlines Flight MH370: What’s Needed to Find it.” Online: 

<http://www.cbc.ca/news/canada/british-columbia/malaysia-airlines-flight-mh370-

what-s-needed-to-find-it-1.2566309>  March 10, 2014. 

[5] Walter, M., Hover, F., and Leonard, J, ''SLAM for Ship Hull Inspection using 

Exactly Sparse Extended Information Filters''. IEEE Conference on Robotics and 

Automation, pp. 1463-1470. 2008. 

[6] Paull, L., Sajad, S., Seto, M, and Li, H, "A Multi-agent Framework with MOOS-

IvP for Autonomous Underwater Vehicles with Sidescan Sonar Sensors". 

Autonomous and Intelligent Systems 2nd International Conference, AIS 2011. pp. 

41-50. 2011. 

[7] Fallon, M., Papadopoulos, G., Leonard, J. and Patrikalakis, N. “Cooperative AUV 

navigation using a single maneuvering surface craft.” Intl. J. of Robotics Research, 

vol 29 no. 12 pp. 1461–1474, October 2010. 

[8] Doug Wallace, Professor, Dept. of Oceanography. Canadian Conference on 

Electrical and Computer Engineering (CCECE) Public Address. May 6, 2015.  



 

 56 

 

[9] Christ, Robert and Wernlin, Robert. The ROV Manual: A user guide for remotely 

operated vehicles. 2013. 2
nd

 edition. Elsevier. Ch.16. 2013. 

[10] United States Department of the Navy, "The Navy Unmanned Undersea Vehicle 

(UUV) Master Plan." November 9, 2004. Retrieved June 13 2012 from 

<http://www.navy.mil/navydata/technology/uuvmp.pdf> 

[11] Folkesson, J. and Leonard, J, "Autonomy Through Slam for an Underwater Robot." 

Robotics Research, pp. 55-70. 2011 

[12] Siegwart, R., and Nourbakhsh, I, Introduction to Autonomous Robots. pp. 1-336. 

Apr. 2004. 

[13] Durant-Whyte, H., and Bailey, T, “Simultaneous Localization and Mapping: Part 

1”. IEEE Robotics and Automation Magazine, pp. 99-109. Jun. 2006. 

[14] Thrun, S., Burgard, W., and Fox, D, Probabilistic Robotics. MIT University Press, 

pp. 1-647. 2006. 

[15] Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., and Csorba, M, “A 

Solution to the SLAM Problem”. IEEE Transactions on Robotics and Automation, 

pp. 229-241. Jun. 2001. 

[16] Moore, D., Huang, A., Walter, M., Olson, E., Fletcher, L., Leonard J., and Teller, S, 

''Simultaneous Local and Global State Estimation for Robotic Navigation''. 

International Conference on Robotics and Automation, pp. 3794-3799. 2009 

[17] Trappenberg, T, Lecture Notes for CSCI 6905: Probability Theory. pp. 1-30. 2011. 

[18] Leonard, J, et al. ''A Perception Driven Autonomous Urban Vehicle''. Journal of 

Field Robotics, pp. 727-774. 2008 

[19] Durant-Whyte, H., and Bailey, T. “Simultaneous Localization and Mapping: Part 

2”. IEEE Robotics and Automation Magazine, pp. 108-117. Sep. 2006 



 

 57 

 

[20] Eickstedt, D.P., and S.R. Sideleau. “The backseat control architecture for 

autonomous robotic vehicles: A case study with the Iver2 AUV.” OCEANS 2009, 

MTS/IEEE Biloxi – Marine Technology for Our Future: Global and Local 

Challenges. pp. 1-8. 2009. 

[21] Seto, M, "Autonomous Robotics Lecture Notes 6". pp. 1-78. 2011. 

[22] Olson, E., Leonard, J., and Teller, S, “Fast Iterative Alignment of Pose Graphs with 

Poor Initial Estimates”. IEEE International Conference on Robotics and 

Automation.  2006. 

[23] Olson, E., and Kaess, M, “Evaluating the Performance of Map Optimization 

Algorithms”. Workshop on Good Experimental Methodology in Robotics, pp 1-7.  

2009. 

[24] Nerurkar, E., and Roumeliotis, S, “Power-SLAM: a linear-complexity, anytime 

algorithm for SLAM”. International Journal of Robotics Research, pp. 772-788. 

Jan. 2011. 

[25] Bosse, M., Newman, P., and Leonard, J, “Simultaneous Localization and Map 

Building in Large-Scale Cyclic Environments Using the Atlas Framework”. 

International Journal of Robotics Research, Vol.23, No.12, pp. 1113-1139. 2004. 

[26] Olson, E., Leonard, J., and Teller, S, “Spatially-Adaptive Learning Rates for Online 

Incremental SLAM”. Proceedings of Robotics: Science and Systems. 2006. 

[27] Walter, M., Eustice, R., and Leonard, J, “Exactly Sparse Extended Information 

Filters for Feature-based SLAM”. International Journal of Robotics Research.  vol. 

26 no. 4 pp. 335-359. April 2007.  

[28] Eustice, Ryan M., Singh, H., and Leonard, J, ''Exactly Sparse Delayed-State Filters 

for View-Based SLAM''. IEEE Transactions on Robotics, Vol. 22, No. 6, pp. 1100-

1114. 2006 



 

 58 

 

[29]  Intel Corporation. “Excerpts from a Conversation with Gordon Moore: Moore’s 

Law.” 2005. Retrieved June 13 2012 from 

<ftp://download.intel.com/museum/Moores_Law/Video-

Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf> 

[30] Fortman, T., Bar-Shalom, Y., and Scheffe, M, “Sonar  Tracking of Multiple  

Targets  Using  Joint Probabilistic Data”. IEEE Journal of Oceanic Engineering, 

pp. 173-184. 1983. 

[31] Folkesson, J. , Leederkerken, J. Williams, R., Patrikalakis, A., and Leonard, J, ''A 

Feature Based Navigation System for an Autonomous Underwater Robot''. Field 

and Service Robotics, pp. 105-114. 2008 

[32] Mahon, I., Williams, S., Pizzaro, O., and Roberson, M, “Efficient View-Based 

SLAM Using Visual Loop Closures”. IEEE Transactions on Robotics, Vol. 24, No. 

5., pp. 1002-1014. 2008. 

[33] Siciliano, B., Khatib, O., and Groen, F, "Underwater SLAM For Structured 

Environments Using an Imaging Sonar." Springer Tracts in Advanced Robotics.  

pp. 7-21, 113-119. 2010. 

[34] Agarwal, Pratik and Olson, Edward. Variable Reordering Strategies For SLAM. 

Proceedings of the IEEE International Conference on Intelligent Robots and 

Systems, 2012.  

[35] Loebis, D., Sutton, R., Chudley, J., and Naeem, W. “Adaptive tuning of a Kalman 

filter via fuzzy logic for an intelligent AUV navigation system”. Control 

Engineering Practice 12 (2004), pp. 1531–1539. Aug. 2003. 

[36] Arulampalam M., Maskell S., Gordon N., and Clapp, T, “A Tutorial on Particle 

Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”. IEEE Journal of 

Signal Processing, pp. 174-188. Feb. 2002. 



 

 59 

 

[37] Dellaert, F. and Kaess, M. “Square Root SAM: Simultaneous Localization and 

Mapping via Square Root Information Smoothing”. International Journal of 

Robotics Research, vol. 25, no. 12, Dec. 2006, pp. 1181-1204. 

[38] Kaess, M., Ranganathan, R., and Dellaert, F, “iSAM: Incremental Smoothing and 

Mapping”. IEEE Transactions on Robotics, vol. 24, no. 6, Dec. 2008, pp. 1365-

1378. 2008. 

[39] Kaess, M., and Dellaert, F, “Covariance Recovery from a Square Root Information 

Matrix for Data Association”. Journal of Robotics and Autonomous Systems (RAS). 

vol. 57, pp. 1198-1210. 2009. 

[40] Fallon, M., Kaess, M., Johannsson, H., and Leonard, J, “Efficient AUV Navigation 

Fusing Acoustic Ranging and Side-scan Sonar”. International Conference on 

Robotics and Automation.  pp. 2398-2405. 2011. 

[41] Kaess, M., Ila, V., Roberts, R., and Dellaert, F, “The Bayes Tree: An Algorithmic 

Foundation for Probabilistic Robot Mapping”. Int’l Workshop on the Algorithmic 

Foundations of Robotics (WAFR). pp. 157-173.  2010. 

[42] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F, 

“iSAM2:  Incremental Smoothing and Mapping with Fluid Relinearization and 

Incremental Variable Reordering”. International Conference on Robotics and 

Automation.  2011. 

[43] Lewis, F, Autonomous Mobile Robots: Sensing, Control, Decision Making and 

Applications.  Taylor & Francis Group, LLC.  2006. 

[44] Singh, A., “Review Article: Digital change detection techniques using remotely-

sensed data”, International Journal of Remote Sensing, vol. 10, no. 6, pp. 989–

1003, 1989. 



 

 60 

 

[45] Lebart, K. Trucco, E. and Lane, D. “Real-time automatic sea-floorchange 

detection from video,”. Proceedings of MTS/IEEE OCEANS, Sep. 2000, pp. 337–

343. 

[46] Edgington, D., Dirk, W. Salamy, K.,  Koch, C.  Risi, M. and Sherlock, R. 

“Automated event detection in underwater video,”. Proceedings of MTS/IEEE 

Oceans Conference, 2003. 

[47] Radke, R., Andra S., Al-Kofahi O. and Roysam B., ”Image change detection 

algorithms: a systematic survey” IEEE Transactions on Image Processing, vol. 

14, no. 3, pp. 294–307 March 2005.  

[48] Wei, S, Leung, H, and Myers, V. “An Automated Change Detection Approach for 

Mine Recognition Using Sidescan Sonar Data”. IEEE International Conference 

on Systems, Man, and Cybernetics. pp. 554–558. 2008. 

[49] Midtgaard, Ø, Hansen, R., Sæbø, T., Dubberley, J, Quidu, I, and Myers, V. “Change 

Detection Using Synthetic Aperture Sonar: Preliminary Results from the Larvik 

Trial”. IEEE OCEANS 2011. pp. 1-8. 2011. 

[50] Norvig, Peter and Thrun, Sebastian. "Introduction to Artifical Intelligence: Unit 2: 

Problem Solving." Retrieved Monday June 25th from <https://www.ai-

class.com/home/> 

[51] Itseez. “OpenCV Documentation”. 2016. Retrieved March 17
th

 2016 from 

<http://opencv.org/documentation.html> 

[52] Bay, H. Ess, A, Tuytelaars, T, and Van Gool, L. “Speed Up Robust Features 

(SURF)”. Journal of Computer Vision and Image Understanding. vol. 110 no. 3, 

June, 2008  

pp. 346-359. 

[53] Mahalanobis, P. "On the generalised distance in statistics". Proceedings of the 

National Institute of Sciences of India vol. 2 no. 1, pp. 49–55. 1936. 



 

 61 

 

[54] Stentz, A, "Real-Time Replanning in Dynamic and Unknown Environments". 

Retrieved June 18 2012 from 

<http://www.frc.ri.cmu.edu/~axs/dynamic_plan.html>.  

[55] Guernane, R., and Achour, N, “Generating optimized paths for motion planning”. 

Robotics and Autonomous Systems,  vol.  59, no. 10, pp. 789–800. 2011. 

[56] Fenwick, J., Newman, P., and Leonard, J, ''Cooperative Concurrent Mapping and 

Localization ''. IEEE Conference on Robotics and Automation, pp. 1810-1817. 

2002 

[57] Chiddarwar, S., and Babu, N, “Conflict free coordinated path planning for multiple 

robots using a dynamic path modification sequence”. Robotics and Autonomous 

Systems,  2011. 

[58] Rekleitis, I., New, A., and Chosit, H, “Distributed Coverage of 

Unknown/Unstructured Environments by Mobile Sensor Networks”.  Proceedings 

from the 2005 International Workshop on Multi-Robot Systems (Springer). Pt IV, 

pp. 145-155. 2005. 

[59] Zengin, U., and Dogan, A, “Cooperative target pursuit by multiple UAVs in an 

adversarial environment”. Robotics and Autonomous Systems. vol. 59, no. 12, pp. 

1049–1059.  2011. 

[60] Cortes, J., Martinez, S., Karatas, T. and Bullo, F, “Coverage Control for Mobile 

Sensing Networks”. IEEE Transactions on Robotics and Automation, pp. 243-254. 

Apr. 2004. 

[61] Fallon, M., Leonard, J., and Bahr, A, “Cooperative Localization for Autonomous 

Underwater Vehicles”. International Journal of Robotics Research. vol. 28 no. 6 

pp. 714-728. 2009. 

[62] Fallon, M. , Papadopoulos, G., and Leonard, J, ''A Measurement Distribution 

Framework for Cooperative Navigation using Multiple AUVs''. IEEE International 

Conference on Robotics and Automation, pp. 4256-4263. 2010. 



 

 62 

 

[63] Fallon, M., Papadopoulos, G., Leonard, J., and Patrikalakis, N, “Cooperative AUV 

Navigation using a Single Maneuvering Surface Craft.”. International Journal of 

Robotics Research, pp. 1461-1474. Oct. 2010. 

[64] Bahr, A., Walter, M., and Leonard, J, ''Consistent Cooperative Localization''. IEEE 

International Conference on Robotics and Automation, pp. 3415-3422. 2009. 

[65] Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy N., and Teller, S, 

“Multiple Relative Pose Graphs for Robust Cooperative Mapping”. International 

Conference on Robotics and Automation. 2010. 

[66] Schwager, M., Rus, D., and Slotine, J, “Decentralized, Adaptive Coverage Control 

for Networked Robots”. International Journal of Robotics Research, pp. 357-373. 

2009. 

[67] Hudson, J, “Adaptive Path Planning for an Autonomous Marine Vehicle 

Performing Co-operative Navigation for Autonomous Underwater Vehicles”. 

Dalhousie University. 2012.  

[68] Seto, M., Hudson, J. and Pan, Y, "Three Dimensional Path Planning for a 

Communications and Navigation Aid Working Cooperatively with Autonomous 

Underwater Vehicles". Autonomous and Intelligent Systems 2nd International 

Conference, AIS 2011. pp. 51-62. 2011. 

[69] Sanderson, C., Gibbins, D, and Searle, S, ''On Statistical Approaches to Target 

Silhouette Classification in Difficult Conditions''. Digital Signal Processing No. 18, 

pp. 375-390. 2008 

[70] Suvorova, S. and Schroeder, J, “Automated Target Recognition Using the 

Karhunen-Loéve Transform With Invariance”. Digital Signal Processing, pp. 295-

306. 2002. 

[71] Ravichandran B.,, Gandhe, A., Smith, R., and Mehra, R, ''Robust automatic target 

recognition using learning classifier systems''. Information Fusion, pp. 252-265. 

2007. 



 

 63 

 

[72] Chapple, P., Bertilone, D., Caprari, R., and Newsam, G, ''Stochastic Model-Based 

Processing for Detection of Small Targets in Non-Gaussian Natural Imagery''. 

IEEE Transactions on Image Processing, Vol. 10, No. 4, pp. 554-564. 2001 

[73] Blondel, P, “Automatic Mine Detection by Textural Analysis of COTS Sidescan 

Sonar Imagery.” International Journal of Remote Sensing, vol. 21, no 16, pp. 3115-

3128. 2000. 

[74] Reed, S., Petillot, Y., and Bell, J, ''An Automatic Approach to the Detection and 

Extraction of Mine Features in Sidescan Sonar''. IEEE Journal of Oceanic 

Engineering, Vol. 28, No 4., pp. 90-105. 2003 

[75] Coiras, E., Petillot, Y., and Lane, D, ''Multiresolution 3-D Reconstruction From 

Side-Scan Sonar Images''. IEEE Transactions on Image Processing, Vol. 16, No. 2, 

pp. 382-390. 2007. 

[76] Sidek, O., and Quadri, S, ''A review of data fusion models and systems''. 

International Journal of Image and Data Fusion, Vol 3, No 1., pp. 3-21. 2012 

[77] Ainslie, M, Principles of Sonar Performance Modelling. Praxis Publishing Ltd. Pp 

3-52, 361-512, 2010. 

[78] Wille, P, Sound Images of the Ocean in Research and Monitoring. Springer-Verlag 

Berlin Heidelberg,  2005. 

[79] Blondell, P., The Handbook of Sidescan Sonar. Praxis Publishing Ltd.  2009. 

[80] Chapple, P, “Automated Detection and Classification in High-Resolution Sonar 

Imagery for Autonomous Underwater Vehicle Operations”. Australian Government 

Department Of Defense. 2008.   

[81] Fahimi, F, Autonomous Robots: Modeling, Path Planning, and Control. Springer 

Science+Business Media.  2009. 



 

 64 

 

[82] Pastore, T., Fioravante, T, and Vermeij, A, "Buying and MOOSifying Two USVs 

in 2008/2009."  MOOS-DAWG ’10. Retrieved online from 

<http://oceanai.mit.edu/moos-dawg10/material/11-brief-pastore.pdf> on March 12, 

2013. Aug. 2010. 

[83] Linux for ARM on TS-7000 Embedded Computers. Technologic Systems. Online. 

Retrieved from <https://www.embeddedarm.com/software/software-arm-

linux.php> August 16, 2013. 2009.  

[84] TS-7800 Datasheet. Technologic Systems. Online. Retrieved from 

<https://www.embeddedarm.com/documentation/ts-7800-datasheet.pdf> August 

16, 2013. 2009. 

[85] TS-7800 Kernel Compile Guide. Technologic Systems. Online. Retrieved from 

<https://www.embeddedarm.com/about/resource.php?item=412> August 16, 2013.  

2009. 

[86] TS-7800 Manual. Technologic Systems.  Online. Retrieved from 

<https://www.embeddedarm.com/about/resource.php?item=393> August 16, 2013. 

2009. 

[87] Li, B. et al, “MIMO-OFDM for High-Rate Underwater Acoustic Communications”. 

IEEE Journal of Oceanic Engineering, pp. 634-644. Oct. 2009. 

[88] Sozer, E., Stojanovic, M., and Proakis, J, “Underwater Acoustic Networks”. IEEE 

Journal of Oceanic Engineering, pp. 72-83. Jan. 2000. 

[89] Benjamin, M, "The Interval Programming Model For Multi-object Decision 

Making." MIT Computer Science and Artificial Intelligence Laboratory. Online. 

Retrieved from <ftp://publications.ai.mit.edu/ai-publications/2004/AIM-2004-

021.pdf> May 2012. 2004. 

[90] Benjamin, M. "MOOS-IvP Autonomy Tools User Manual." MIT Computer 

Science and Artificial Intelligence Laboratory. Online. Retrieved from 

<http://oceanai.mit.edu/moos-ivp-pdf/moosivp-tools.pdf> May 2012. 2008. 

https://www.embeddedarm.com/software/software-arm-linux.php
https://www.embeddedarm.com/software/software-arm-linux.php
ftp://publications.ai.mit.edu/ai-publications/2004/AIM-2004-021.pdf
ftp://publications.ai.mit.edu/ai-publications/2004/AIM-2004-021.pdf


 

 65 

 

[91] Benjamin, M. "MOOS-IvP Autonomy Tools User’s Manual Release 4.2.1." MIT 

Computer Science and Artificial Intelligence Laboratory. Online. Retrieved from < 

http://oceanai.mit.edu/moos-ivp-pdf/moosivp-tools.pdf> May 2012. 2009. 

[92] Benjamin, M., Newman, P., Schmidt, H., and Leonard, J. "Extending a MOOS-IvP 

Autonomy System and Users Guide to the IvPBuild Toolbox." MIT Computer 

Science and Artificial Intelligence Laboratory. Online. Retrieved from < 

https://oceanai.mit.edu/svn/moos-ivp-aro/releases/moos-ivp-4.1/ivp/docs/MIT-

CSAIL-TR-2009-037.pdf> May 2012. 2010. 

[93] Benjamin, M., Newman, P., Schmidt, H., and Leonard, J. "A Tour of MOOS-IvP 

Autonomy Software Modules." MIT Computer Science and Artificial Intelligence 

Laboratory. Online. Retrieved from 

<https://dspace.mit.edu/bitstream/handle/1721.1/44590/MIT-CSAIL-TR-2009-

006.pdf?sequence=1”> March 2016. 2009. 

[94] Benjamin, M., Newman, P., Schmidt, H., and Leonard, J. "An Overview of MOOS-

IVP and a Brief Users Guide to the IvP Helm Autonomy Software." MIT Computer 

Science and Artificial Intelligence Laboratory. Online. Retrieved from 

<https://oceanai.mit.edu/svn/moos-ivp-aro/releases/moos-ivp-4.1/ivp/docs/MIT-

CSAIL-TR-2010-041.pdf> May 2012. 2009. 

[95] Schmidt, H, Benjamin, M., Balasuriya, A., Cockrell, K., and Lum, R. "MOOS-IvP 

Undersea Autonomous Network Simulator User’s Guide." Online. Retrieved from 

<http://acoustics.mit.edu/faculty/henrik/LAMSS/simguide.pdf> August 2013.  

2008. 

[96] Goby User's Manual 1.1. MIT. Online. Retrieved from < 

http://gobysoft.org/dl/goby1-user-manual.pdf> August 2013.  

[97] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng. “A column approximate minimum 

degree ordering algorithm”.  ACM Transactions on Mathematical Software, vol 

30, no. 3, Sept. 2004, pp. 353-376. 


