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ABSTRACT 

 
Biodiversity conservation plays an important role in the maintenance of a healthy 

ecosystem. Genetic diversity provides a foundation for understanding the diversity at the 

organism and population levels of organization. Genomic DNA markers offer the 

opportunity to identify genetic variations that distinguish populations, and can be used to 

investigate the underlying forces that drive adaptation to different environments. Short 

simple-repeat DNA sequences or microsatellites are one of the most popular genetic 

markers for many biological applications. However, microsatellite data require extensive 

manual checking for errors and characteristic signals, a laborious process that can take 

days or weeks for a single dataset. We have developed MEGASAT, a bioinformatics 

approach that automates microsatellite genotyping from DNA sequence data. MEGASAT 

uses fuzzy matches and counting of frequently observed sequences to distinguish true 

genotype signal from errors. We validated MEGASAT using microsatellite data from a 

population sample of 71 guppies from Trinidad, demonstrating a high level of 

reproducibility and accuracy of MEGASAT-called genotypes by a combination of 

genotyping error estimation methods.  

      We also developed a random-forest (RF) based method to identify adaptive gene 

variants and environmental factors associated with those adaptive variants in sea scallop 

data. Our approach uses the inverse Cholesky transformation to account for spatial 

autocorrelations in genetic and environmental data and ordination techniques to further 

explore the relationships between these two data sets. The variable importance ranked by 

RF models and ordination techniques were both used on corrected and uncorrected data 

to find which environmental variables play important role in shaping the genetic structure 

of sea scallop populations. 
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CHAPTER 1 INTRODUCTION 

 
The variety of living organisms on Earth and diverse ecosystems in which they live and 

interact are referred to as biological diversity [1, 2, 3]. Biological diversity brings benefits 

to humans including food, recreation and health benefits such as medicinal resources [4, 

5]. It is also essential to the maintenance of healthy ecosystems since it helps species to 

adjust to the changing environment and confers greater resilience after natural disasters. 

However, biodiversity has been threatened by rapid economic development in recent 

decades. Species are experiencing much higher extinction rate than the natural extinction 

rate (referred as the extinction rate without human interference) because of the 

environmental changes caused by human activities such as population growth, 

deforestation and over-exploitation of resources in global scales [6, 15]. The accelerated 

rate of species extinction could result in continued loss of biodiversity, which poses a risk 

to the health of the ecosystem and then could cause serious consequences to human 

health and the environment. Therefore, biodiversity conservation is an important task for 

scientists and the whole human population.  

       Biodiversity can be explored at several levels of organization [1, 6, 7]. Genetic 

diversity refers to the variation of genes within and between populations. Genetic 

diversity strengthens species by increasing their adaptibility to environmental changes 

and resistance to diseases, which reduces the risk of extinction. Species diversity focuses 

on the number of different species on the Earth, and ecosystem diversity is the variety of 

living and non-living organisms. All three levels of diversity play an important role in the 

exploration of the process and pattern of how species and ecosytems interact.  

      Genetic diversity provides a foundation for understanding diversity at higher levels of 

organization. Traditionally, genetic diversity has been approximated based on 

morphological characteristics or biochemical methods [8, 9, 10]. However, 

morphological methods are very time-consuming and expensive, and these characters are 

susceptible to environmental variations that may be at odds with genetic variation and 

evolutionary history [8, 10]. The genetic variability assessed via biochemical methods 

reflects only a small number of gene products which do not provide detailed information 

about variation [10, 106].  
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      Molecular genetic markers, which capture variation at the nucleotide level, offer a 

more direct alternative to the morphological and biochemical approaches for the 

estimation of genetic diversity within a species. A molecular genetic marker is a DNA 

sequence with a specific location in the genome that varies among individuals in a useful 

way. Useful molecular markers are those that can be easily and reliably detected in DNA 

samples, show polymorphisms (variations) in DNA sequence and may or may not be 

under selection [13]. Detailed population studies often require many genetic markers, but 

until recently it was not feasible to characterize more than a few molecular markers using 

traditional DNA sequencing technologies (e.g. Sanger sequencing). With the development 

of next-generation DNA sequencing (NGS) technologies, the detection of molecular 

markers can be achieved at a much larger scale but in very short time and at lower cost. 

NGS techniques can generate millions of DNA fragments in a short period of time and 

massively decrease the time and costs to sequence any set from single markers to entire 

genomes. 

      Genetic diversity arises via the process of mutation [1], which provides the variations 

on which different evolutionary processes can act. Variants at a particular location in the 

genome (a locus) are termed alleles. Natural selection can act on alleles that modify the 

phenotype of an individual, such that individuals who are better adapted to their 

environment produce more offspring with a corresponding increase in the frequency of 

the fitter allele. Non-adaptive or neutral forces, by contrast, are not acted upon by 

selection, and thus may not correlate with environmental factors; however, these neutral 

alleles can still be used to differentiate populations based on differences in allele 

frequencies. The relationships between genetic diversity, population structure, and 

environmental factors are key to understanding biodiversity. It is therefore of great 

importance to explore these complex relationships to understand patterns of adaptation, 

migration, and population structuring, which can in turn be used to predict future patterns 

of biodiversity and inform management practices to preserve diversity.  

        Many types of molecular genetic markers have been developed to detect genetic 

variations, including microsatellites, single nucleotide polymorphisms (SNPs), amplified 

fragment length polymorphisms (AFLPs) and restriction fragment length polymorphisms 

(RFLPs) [8, 10]; in the sections below we focus on microsatellites and SNPs as targets 
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for computational analysis. In this thesis we focus on diploid eukaryotic organisms that 

have two copies of each chromosome. Diploid individuals can have a maximum of two 

different alleles at a given locus: a homozygous individual has two identical alleles, 

whereas a heterozygous individual has different alleles on each of its chromosomes at the 

corresponding locus. Using the simple notation of “A” and “a” as two alleles at a 

particular locus, a homozygous individual can have genotypes “AA” or “aa”, while a 

heterozygous individual would be of type “Aa”.  A desirable molecular marker should 

have the following attributes: 

 Reliably detectable at a specific locus: paralogous sequences arise when genetic 

material is duplicated, leading to two separate loci that accumulate mutations 

independently. If marker detection has poor fidelity or cannot distinguish these 

two loci, then the inferred genetic information will be inaccurate. 

 Highly polymorphic: if one allele is extremely rare (e.g., has a frequency < 1%) 

in one or more populations, it is unlikely to be useful for population studies. 

Polymorphic sites, typically defined as having at least two alleles with > 1% 

frequency in the population, are suitable candidate markers [107]. 

 Co-dominant inheritance [8]: homozygotes and heterozygotes are distinguishable 

at this type of marker. A co-dominant marker can differentiate AA from Aa, 

which is essential for estimating allele and genotype frequencies in a population.  

 High abundance in the genome: markers should belong to a type that occurs at 

numerous locations throughout the genome. Such markers are easier to discover, 

and can aid in identifying areas for further genomic investigation. 

      

1.1 GENETIC MARKERS: MICROSATELLITES AND SNPS 

 

This thesis develops new computational tools to infer genetic variation based on two 

types of genetic marker: microsatellites and SNPs. In this section we introduce these two 

types of marker and explain the key attributes that motivate the projects described in 

chapters 2 and 4.  
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1.1.1  Microsatellite Markers 

 
Microsatellites, also called as variable number tandem repeats (VNTR), have been one of 

the most popular genetic markers in many applications of molecular ecology and other 

fields of biology such as population genetics, kinship analysis, association studies and 

genetic mapping due to their high degrees of polymorphism and ubiquity in eukaryotic 

genomes [16, 17, 18]. Tandem repeats consist of short repeat motifs, typically 1-6 

nucleotides in length, that are repeated between 5 and 40+ times. Microsatellites mutate 

frequently due to errors in DNA replication, and the lack of selection at most tandem-

repeat loci means that much of the introduced diversity is not detrimental to the organism, 

and is consequently more likely to be preserved. The resulting variation in the size of 

tandem repeat arrays contributes to large numbers of allelic variants among individuals 

within a population. A microsatellite-containing sequence consists of tandem repeats and 

flanking regions that are DNA sequence located at both sides of repeat array (as shown in 

Figure 1).  

     Microsatellites are highly abundant throughout many genomes: for example, 

microsatellites occur approximately once every 30,000 base pairs in the human genome 

[29, 30, 121]. Furthermore, the high levels of heterozygosity (i.e., a high incidence of 

heterozygotes in many populations) and polymorphism, high information content and 

relatively high mutation rates associated with microsatellites give this type of genetic 

maker the ability to provide contempory estimates of migration and the capability of 

detecting differences between closely related individuals [16, 17, 19]. Microsatellites 

were used as markers before the advent of NGS, but they remain a popular choice in 

many studies due to their positive attributes. 
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Figure 1 Components of a microsatellite-containing sequence. The dinucleotide 

repeat motif “AT” and the number of repeats is 4. Flanking regions of a 

microsatellite locus are less variable for all individuals of a species.  

  

 

    The traditional way to genotype microsatellites is to “amplify” microsatellites using 

the polymerase chain reaction (PCR), which generates many copies of the microsatellite 

region. The amplified DNA fragments are then subjected to electrophoresis, which 

separates DNA molecules by size based on different migration rates through a resistive 

medium such as a gel. Microsatellite genotyping suffers from several limitations, which 

stem primarilty from reliance on electrophoretic methods and the necessarily imperfect 

inference of genotypes from DNA fragment mobility data. Visual inference of the length 

distribution and inference of genotypes is very time consuming, owing to the difficulties 

in distinguishing true alleles from a variety of artifacts that could occur during PCR 

amplification and sequencing of microsatellites. In addition, the estimated sizes of 

microsatellite alleles may differ among different laboratories and electrophoretic 

platforms, which hinders the standardization of microsatellite data for some specific 

research objectives [17, 23]. 

  

1.1.2  Single Nucleotide Polymorphisms 

 
A SNP is a variation at a single nucleotide in the DNA sequence among individuals, that 

occurs with a frequency greater than 1% in a population [110]. The nucleotides in the 
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DNA sequence have only four types: A, T, G, C. Therefore, in principle, SNPs could have 

at most four variations at each allele. However, in reality, large proportions of SNPs have 

only two types of variant [110], which indicates that only two alleles can occur at a given 

SNP. SNPs are therefore often treated as bi-allelic genetic makers.   

    Even though microsatellites have been used in molecular studies since the 1990s, SNPs 

have seen increasing use in many research fields of biology such as population genetics 

and genome-wide association studies. SNPs have a variety of advantages over 

microsatellites, including: 

1) Greater abundance within genomes: SNPs are the most abundant genetic variants in 

the human genome and occur on average about once every 500 base pairs in many 

wild animal populations [29, 30]. 

2) Greater amenability to different high-throughput genotyping techniques [17].  

3) Lower genotyping error rates: the error rate in SNP sequencing is typically < 1%, 

whereas for microsatellites, the error rate typically ranges from 5% to 10% [111]. 

4) Cost-effective: the genotyping cost ranges from $0.002 per SNP/genotype to around 

$0.15 per SNP/genotype. 

5) SNPs are easier and cheaper to standardize between platforms and laboratories than 

microsatellites [35].  

 

     However, these advantages of SNPs are not always realized or relevant. For example, 

SNPs are typically bi-allelic, whereas microsatellite loci often have >2 alleles and can 

thus carry more information. Additionally, the heterozygosity of SNPs is much lower than 

microsatellites. A common estimate states that two to six times as many SNPs are 

required to gain the equivalent information content as microsatellites in individual 

identification, parentage and relatedness research [17, 31, 32]. This is because larger 

allelic diversity and higher levels of heterozygosity would have a larger possibility that 

genotypes of individuals in a population would differ, increasing the power to distinguish 

closely related individuals [33]. As an illustration, Herraez et al. [32] carried out a 

simulation study aimed at comparing the performance of microsatellites and SNPs for the 

individual identification and parentage analysis of a Galloway cattle population. The 
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results showed that 33 SNP markers conferred approximately the same amount of 

information as 14 microsatellite markers.  

      Even though SNPs contain, on average, less information than microsatellites, many 

researchers still prefer to use SNPs in genetic analyses. This is because recent studies 

have demonstrated that SNPs could have better or similar performance in many broad-

scale applications of population structure assessment, pedigree assignments and 

parentage analysis by increasing the total number of SNPs to approximately 6 to even 10 

times the number of microsatellites [28, 34, 36, 37]. Furthermore, owing to the lower 

rates of genotyping error and lower costs of genotyping for SNPs, using large sets of 

SNPs is still a better option when compared to a small set of microsatellites. However, 

the efficiencies and economies associated with SNP genotyping are best realized at large 

scales: many loci (minimally, hundreds) genotyped in many individuals. Such large-scale 

genotyping efforts require large initial investments in set-up costs, which may not be 

cost-effective when experimental needs require only more modest numbers of loci [40]. 

Small-scale genotyping of SNPs can be more costly than genotyping of microsatellites, 

particularly when the lower information content per locus is considered. Although the use 

of technologies such as microfluidic devices can lower the cost of small-scale SNP 

assays, these technologies require access to expensive and specialized instrumentation 

[41]. 

      Although SNPs have been reported to be superior to microsatellites in many 

applications, SNPs are not suitable for all applications. For example, Hess et al. [38] 

illustrated that microsatellites outperformed SNPs in uncovering fine-scale relationships 

for salmon genetic stock identification. Forstmeier et al. [42] reported better performance 

of microsatellites in inferring correlations between heterozygosity and fitness-related 

traits. Some studies suggested that a combination of microsatellite and SNP markers 

could be more effective than using these two markers independently [28, 38]. In addition, 

with the advent of NGS technologies, many disadvantages of microsatellites such as high 

development cost and low genotyping throughput will be overcome by emerging 

methods. Therefore, microsatellites will continue to be the genetic marker of choice for 

some specific reseach objectives in the future.  
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      The recent advent of NGS technologies has also mitigated some of the challenges of 

microsatellite development and use, including the detection of microsatellite loci that are 

good candidates for PCR and the analysis of microsatellite variations using NGS data 

[22, 24, 25, 26]. NGS technologies can also directly read microsatellite genotypes from 

raw sequence data without the need for electrophoresis. The sequencing read lengths 

(currently 85 to 900 base pairs per read) [113, 114] for several NGS systems can 

encompass the range of allele sizes for large numbers of microsatellite loci across any 

genome of interest in a single run. NGS also offers a variety of additional benefits for 

microsatellite genotyping [52, 53]: 

1) It directly sequences the fragments and provides nucleotide sequence data rather than 

estimating the total length of repeats by electrophoresis. 

2) Microsatellite sequences can have SNPs in repeats or the flanking region of identical-

length alleles, adding to their discriminative power if DNA sequencing is used in 

place of electrophoresis. 

3) Any length artifacts due to PCR errors can be analyzed and filtered by investigating 

the NGS reads. This is contrast to the electrophoretic method, which does not provide 

sequence reads that can be used to analyze the reason why length artifacts occur. 

     Before this potential can be achieved, suitable software is needed to automatically 

convert raw amplicon sequence data to multilocus microsatellite genotypes. MicNeSs 

[22] is the only program that can infer microsatellite genotypes from NGS data. However, 

this program suffers from several disadvantages including long running time and 

relatively high genotyping error rate owing to the length artifacts that occur during PCR 

amplification. Furthermore, this program does not offer a user-friendly interface. 

Therefore, better software is required to automate the genotyping process. Before 

developing this software, several challenges must be addressed in order to enable 

automation.  
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1.2 AUTOMATING THE GENOTYPING OF MICROSATELLITES FROM NGS 

DATA 

 

In order to gain these advantages associated with NGS, suitable software needs to be 

developed to deal with several challenges that impede the inference of microsatellite 

genotypes from NGS sequence data. One of the main challenges has to do with the 

sequencing errors that could arise at any step throughout the laboratory processes 

including sample preparation, library construction and sequencing [54, 55]. Among 

sequencing errors, some of the most prevalent types are nucleotide substitution errors and 

insertion/deletion (indel) errors. The overall error rate ranges from 0.001 to 0.15 across 

current NGS platforms [112]. Furthermore, the lengths of NGS sequence reads are 

usually shorter than those generated by traditional sequencing platforms. The number of 

tandem repeats in microsatellites is highly variable; larger microsatellite-containing 

sequences may even be longer than the length of the sequencing read. In this case, precise 

sizing of microsatellite alleles can be impossible owing to the possibility that the contents 

of microsatellites cannot be fully present in the NGS sequence reads.    

Another challenge is a variety of errors or experimental artifacts that can occur 

during PCR amplification and sequencing of microsatellites. Chief among these are 

stutter artifacts, in which replication “slippage” during PCR amplification generates 

products that differ in size by multiples of the microsatellite repeat unit from the ‘true’ 

allele length. Replication slippage is the misalignment of two DNA strands during 

replication, which leads to deletions or insertions of repeat units in the microsatellite 

sequence [56]. Stutter artifacts increase the difficulties of scoring alleles accurately in the 

case when the two alleles in a heterozygous individual differ in size by only a few 

nucleotides [57]. PCR, which is used to generate many allele copies for downstream 

analysis, can also preferentially amplify certain alleles, leading to different relative 

abundances of products. In the extreme, PCR can fail to amplify one or both alleles 

(termed as allelic dropout); this can be caused by amplification bias favouring small 

alleles, or low starting DNA template quantity or quality. Allelic dropout may result in a 
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false assignment in which a heterozygous individual may be inferred as being a 

homozygote.  

The scale of microsatellite NGS data creates the need for automated techniques for 

allele and genotype assignment from noisy sequencing data, and inference of population 

structure from these assignments. String representations simplify the analysis of DNA 

sequences, but string-comparison algorithms must accommodate the possibility of SNPs 

and indels in the interpretation of microsatellite data. Automated algorithms must also be 

able to handle experimental artifacts, applying knowledge of the most common erroneous 

patterns to identify the correct alleles. Finally, interactive visualizations are needed to 

allow researchers to manually curate and interpret results at the level of the entire 

population, which in current studies can comprise hundreds or even thousands of 

individuals.  

 

1.3 MACHINE-LEARNING ANALYSIS OF LARGE SNP DATASETS IN 

LANDSCAPE GENETICS 

 

1.3.1  Introduction To Landscape Genetics 

 

Landscape genetics aims to understand how features such as environmental and 

geographical variables affect genetic variations in concert with evolutionary and 

ecological processes [15, 67, 68]. This research area integrates methodological 

developments in population genetics, landscape ecology, and statistics to better 

understand patterns of genetic variation within species, and consequently provide critical 

information and implications for wildlife conservation and management [69, 70, 71]. As 

an example, Manel et al. [118] used a simple statistical model (linear regression) that 

regressed the allele frequencies on environmental variables to identify environmental 

factors that are the main drivers of adaptive genetic variation and also the associated loci 

while accounting for spatial effects using Moran’s eigenvector maps (MEM).  
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     However, the processes that drive patterns of genetic variability are complicated (as 

shown in Figure 2). Although they are not subject to selection, neutral genetic variations 

play a central role in understanding spatial relationships among populations [117]. 

Adaptive genetic variations, which do affect organism fitness [72], can differentiate 

individuals inhabiting a heterogenous environment. Individuals with mutations in genes 

that provide better adaptation to environmental factors are more likely to survive in that 

environment. This evolutionary process is known as local adaptation. These mutations 

convert to adaptive genetic variation through the process of natural selection. Therefore, 

adaptive variants present different patterns from neutral variations, which show genetic 

differentiations in some individuals but not in a whole population. 

    The preservation of these adaptive genetic differentiations and the understanding of 

local adaptation provide valuable insights in the maintainance of endangered species’ 

potential in response to ecological pressures. In general, the key tasks of landscape 

genetics are to uncover the underlying processes that drive these two types of genetic 

differentiations, distinguish local adaptation from other non-adaptive patterns, and 

correlate the detected adaptive signatures with landscape parameters, especially the 

environmental conditions of greatest interest.  
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Figure 2 The role of evolutionary driving forces in generating patterns of genetic 

variation (see [122] for more details of how these evolutionary processes 

contribute to genetic variations).  
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1.3.2  Environmental Associations Analysis In Seascape Genetics 

 

It has long been recognized by researchers that environmental features such as ocean 

temperature, salinity and surface ocean pH are among the main driving factors that 

influence the genetic structure of marine populations [73, 74]. In order to identify genetic 

differences that drive local adaptation, marine researchers use seascape genetics (the 

application of landscape genetics approaches to marine populations). Environmental 

association analysis commonly uses a three-step approach, which includes sampling 

design, the collection of genetic and environmental data, and the correlation of genetic 

data with environmental data using statistical models [77]. The choice of sampling 

method depends on the motivations of the proposed landscape genetics study. More 

specifically, the choices of which pattern of genetic variations to investigate determines 

the sampling strategy.   

    Elucidation of key underlying population and environmental patterns is a challenging 

problem, and many statistical methods have been developed to distinguish different types 

of variation and explain them in terms of geographic and environmental factors.  

However, the measurement of gene-environment interactions might be complicated by 

several factors, including:  

 Sampling design will impact the successful detection of adaptive genetic 

differentiations. Genetic and environmental data are the most fundamental 

components for building a good gene-environment association model. A strategic 

sampling design can give a good presentation of genetic and environmental data, 

which helps to uncover an unbiased sign of selection. 

 A large number of environmental parameters may be required to uncover loci 

subjected to local adaptation; many of these environmental variables will be 

highly correlated and many that show correlations with genetic data will not be 

causal. For example, salinity can be highly correlated with temperature and 

precipitation; therefore, genetic variation that is driven by salinity will also show 

high correlations with the other factors. These highly correlated environmental 
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variables increase the difficulty of investigating the contributions of different 

variables driving adaptive gene variants.  

 The statistical models used to identify associations between adaptive loci and 

environmental parameters need to account for other driving factors that could 

cause genetic differentiations, including non-adaptive forces that have no strong 

relationships with environmental factors. However, the appropriate estimation of 

the effects of these processes remains a challenge. As a result, it is possible that 

correlations with some environmental factors will be identified as significant, 

even where no causal relationship exists.     

 

   Many methods have been used to overcome these challenges. For example, a common 

technique to address the effects of collinearity among environmental factors is to use 

principal component analysis (PCA) to extract highly correlated aspects of environmental 

variables as principal components or metavariables that capture maximal amounts of 

covariance. Some studies use the transformed PCA metavariables in place of the original 

variables to eliminate redundancy in the data, but at the expense of losing the direct 

associations with specific environmental factors.   

    Many statistical models have been developed to investigate the effects of 

environmental heterogeneity on genetic population structure. One of the most common 

methods is the fixation index (FST) [123] which identifies loci that show strong 

differences in allele frequencies among populations, and then correlate these loci 

(‘outliers’) with environmental variables to check the existence of some strong 

relationships with the environment. However, FST may not detect some adaptive genetic 

variations in some cases when local adaptation has few impacts on allele frequencies [77]. 

Coop et al. [75] proposed a Bayesian approach, which is different from FST method, to 

identify environment-associated adaptive loci. It builds a null model that esimates the 

allele frequency differences between populations, and then uses the null model against a 

model that searches for relationships between allele frequencies and environment to 

account for neutral effects [75]. Machine-learning methods are emerging as a new set of 
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approaches to build complex, non-linear models that link environmental and genotype 

data.  

    Our proposed machine-learning method differs from other approaches. It uses 

environmental variables as predictors and genotypes at all loci as outputs to construct a 

classification model, and chooses loci that show good predictions as possible adaptive 

loci. Then we use statistical models to explore the correlations with environment while 

controlling for some neutral effects and spatial effects in particular. As an example, 

Holliday et al. [124] used random forests to identify subsets of adaptive loci that can 

optimally predict the phenotype. In order to control for the effects of population structure 

on the identified associations, genoypes and phenotypes were both regressed on the 

estimated cluster membership, and residuals from the two regressions were used as 

predictors and output to build another random forest model.  

 

1.4 CONTRIBUTIONS AND THESIS OUTLINE 

 

The remainder of this thesis is organized into four chapters that describe two novel 

contributions.  

    Our first contribution is MEGASAT, new software that allows the automated and rapid 

inference of multilocus genotypes from microsatellite NGS data. MEGASAT has three 

primary functions: (i) separate highly complicated NGS data encompassing large 

amounts of loci into locus-specific files, based on primer and flanking sequences; (ii) 

automate the scoring of microsatellite genotypes, using customized decision rules to 

account for amplification artifacts; and (iii) generate plot files (histograms of sequence 

length-frequency distributions) for manual verification and updating of genotypes. 

MEGASAT outputs predicted multilocus genotypes to tab-delimited text files that can be 

imported into spreadsheets. In Chapter 2 we describe the algorithms in MEGASAT, and in 

Chapter 3 we apply it to a large dataset of guppies collected from Trinidad using 43 

microsatellites. We further demonstrate a high level of reproducibility and accuracy of 
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MEGASAT-called microsatellite genotypes by a combination of genotyping error 

estimation methods.   

    Our second contribution, described in Chapter 4, is a series of new random-forest-

based techniques for seascape genetic analysis. We propose a novel workflow to identify 

environment-associated adaptive variations using random forest while utilizing some 

statistical methods to control for spatial effects. And then we use some ordination 

techniques to explore which environmental variables present strong correlations with 

identified adaptive variations. We apply this workflow into genetic and environmental 

data collected from the sea scallop Placopecten magellanicus across 12 locations from 

Newfoundland to the Mid-Atlantic Bight.  

    In Chapter 5 we conclude with a summary of the thesis and propose future work.   
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CHAPTER 2 INFERENCE OF MICROSATELLITE GENOTYPES 

FROM NGS DATA 

 

In this chapter we describe MEGASAT, a software package to automatically and rapidly 

infer microsatellite genotypes from NGS data. MEGASAT has two main algorithms and 

one script to obtain the three main functions as we stated in section 1.4. In this chapter, 

we describe the required input files, workflow and algorithms implemented in MEGASAT.  

 

2.1  INPUT FILES FOR MEGASAT 

 
MEGASAT accepts FASTQ files and a tab-delimited text file as input files. FASTQ is a 

text-based file that stores nucleotide sequences and the corresponding quality scores. 

Every read in a FASTQ file consists of four lines: sequence identifier, sequence, quality 

score identifier line and quality scores (as shown in Figure 3). MEGASAT reads only the 

DNA sequence line which consists of the nucleotide characters “A T G C” to identify 

microsatellite-containing sequences.  

 

 

 

Figure 3 Example of a sequence record in a FASTQ file. The four lines represent 

sequence identifier, sequence, quality score identifier line and quality 

scores.  

 

 

     The other input file is a user-definable text file that stores the component information 

for all the microsatellite loci (as shown in Table 1). Microsatellite-containing amplicon 

sequences have the following components: forward primer (FP), forward flank (FF), 

microsatellite repeat array (MRA), reverse flank (RF) and reverse-complement primer 
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(RP) (as shown in Figure 5). The FP and RP are the designed primers for PCR to amplify 

the microsatellites. Once microsatellites have been amplified, the primers have no 

biological meaning apart from a correctness check. MRA is the region of tandem repeats. 

The FF and RF are flanking regions located on each side of the MRA. These flanking 

regions are important for designing locus-specific primers, and some studies illustrated 

their critical role in applications such as phylogenetic inference [19]. The first row in the 

input file specifies the microsatellite locus name and the first column represents the 

required column name. Each subsequent row in the text file corresponds to a 

microsatellite locus, with each column containing the expected sequence for each of the 

five components of that locus. The last column in the text file is optional, and allows 

users to define specific parameters for the genotype assignments. If these are not 

specified, then default parameter settings will be used. MEGASAT uses the locus-specific 

information as reference data to search for reads that contain the microsatellites and call 

genotypes based on the identified reads.  

   

Table 1  Format of the input tab-delimited text file. 

 

Locus 
Name 

Forward 
Primer 

Reverse-

compleme
nt Primer 

Reverse 
Flank 

Forward 
Flank 

Repeat
Unit 

Ratios 
group 

(option

al) 

Locus 1 

Locus 2 

… 

AACCTG 

CCTGAC 

GGCCTA 

TTAACG 

GGCC 

ATAG 

CATGCT 

TGACC 

AC 

TG 
 

Locus n TCGACT ACCTGC TAGCC CCT ACG  

 

 

2.2  CORE FUNCTIONS INCORPORATED IN MEGASAT 

 
MEGASAT uses the information provided in the text file to search for patterns in the 

sequence reads. However, sequencing errors in the NGS reads can cause a microsatellite-

containing sequence to be discarded because of one or more mismatches between the 

reference primer or microsatellite flank sequences and the user-provided reference 
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sequence used to identify the locus. The sequencing error rate on the Illumina platform 

(the NGS platform used to generate our trial data) is around 0.1% [112]. Even though the 

error rate is low enough to be useful in genotyping, billions of NGS reads will contain a 

large number of errors. The primary error type is nucleotide substitution errors, which can 

impact any component of the microsatellite-containing reads. To overcome this problem, 

MEGASAT has a function to allow a tolerance for mismatches when matching reference 

sequences for primers and flanking regions with observed sequences. The number of 

allowed mismatches (parameter m) is a user-controlled variable. The function traverses 

each sequence in the FASTQ files and searches for the starting position of a near-exact 

match in the target sequence, which can be used to enable trimming of primers.  

     Another important function in MEGASAT helps to find the end of the MRA. The 

function searches for the longest continuous MRA while also incorporating tolerance for 

sequencing errors (i.e., “fuzzy” matching) in one or two microsatellite repeat units. This 

function can also be used to find the end of the reverse flank (RF) when only a few bases 

of the reverse-complement primer (RP) are present in the sequence. 

     The third function deals with cases when the complete reverse primer complement of 

a large microsatellite allele is not present in the NGS read at all. This function uses the 

Hamming distance (the number of differences between two strings of equal length) to 

find the starting point of any incomplete reverse primer complement. Based on the length 

of the reference reverse-complement primer (RP), it progressively removes the last few 

bases of the observed reads and calculates the Hamming distances between the resulting 

truncated sequence and all or part of reference reverse primer complement. Then the 

Hamming distance is divided by the length of the removed sequence to calculate an error 

ratio. The truncated sequence with the smallest error ratio will be the incomplete RP and 

then it can be easily trimmed off from the sequence. We use this function because it 

allows the primers to be trimmed off at the correct position even if there are length 

variations in the RF. Figure 4 demonstrates this procedure. 
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Figure 4 Using the Hamming distance to locate the starting point of an incomplete 

reverse-complement primer. The last bases of the reads are progressively 

removed and the Hamming distance computed between the truncated 

sequence and the all or part of reference RP. The truncated sequence with 

the smallest error ratio (Hamming distance divided by the length of 

subtracted string) will be the correct incomplete RP. 

 

 

      MEGASAT employs two different algorithms to allow the automated scoring of 

microsatellite alleles from the sequences in the FASTQ files. These files contain reads 

from all targeted microsatellite loci, which are distinguished by the PCR primers that 

were used for amplification. The first algorithm sorts the input reads (all sequences for a 

given sample, found in one FASTQ file) into locus-specific files containing only the 

relevant reads of interest by discarding reads which do not contain the locus-specific 

priming and flanking sequence. This algorithm also locates the correct boundary of the 

microsatellite flanking regions. The second algorithm takes as input the trimmed reads 

generated by the first algorithm and uses scoring parameters to deal with errors such as 

stutter that arise from PCR amplification. These algorithms are described in the following 

sections. 

2.3  SORTING THE INPUT SEQUENCES BY LOCUS 

 

MEGASAT uses reference data for each microsatellite locus to identify sequences 

associated with individual loci and to remove primer sequences. The FF and RF portions 
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of the microsatellite amplicon are retained as part of the allele, for two reasons: (i) The 

flanking sequences may themselves contain insertion or deletion mutations that 

contribute to allelic diversity. (ii) The boundaries of the MRA may not be clear in some 

loci; retaining the two flanking sequences avoids the need in most cases to define exact 

boundaries for the MRA, although our script includes the ability to define the boundary 

of the MRA when needed (see below).  

     The process of identifying and trimming off primers may be complicated by one or 

more factors, including sequencing errors and some cases that the size of the amplified 

microsatellite allele exceeds the length of NGS reads (Figure 5 b-d). Nowadays, the read 

lengths of NGS data typically range from 125 to 350 bases, which are longer than most, 

but not all, microsatellite repeat arrays [113, 114]. It is possible that all or part of the 

reverse-complement primer, or even the reverse flank, may be absent from the sequenced 

portion of the amplicon. Therefore, in order to correctly locate the boundary of 

microsatellite flanking regions, we implemented the following algorithm in MEGASAT. 

The detailed algorithm flowchart is shown in Appendix Figure A.1. 

 

 

 

Figure 5 Loss of information in short DNA sequence read data. (a) The forward 

primer (FP), forward flank (FF), microsatellite repeat array (MRA), 

reverse flank (RF) and reverse-complement primer (RP) are present within 

the sequence read length (SRL). (b) A longer MRA leaves only a few 

bases of the 3’ end of the RP within the SRL. (c) An even longer MRA 

causes only part of the RF to be present with the SRL. (d) An MRA that 

extends past the end of the SRL. In cases (a) and (b), MEGASAT is able to 
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detect the 3’ end of the RP, and directly ascertain the length of the 

amplified microsatellite allele, which consists of FF+MRA+RF. In case (c), 

MEGASAT detects the end of the MRA and adds the reference length for the 

RF to infer the allele length. In case (d), MEGASAT detects the length of the 

FF and adds an integer value, to denote alleles that exceed the length of 

the SRL. 

   

 

       First, MEGASAT reads each sequence in the FASTQ or FASTA file and checks if there 

is a fuzzy match for the forward primer of any locus in each sequence. If there are no 

matches, it will discard the sequence. If there is a match, MEGASAT will delete the 

forward primer from the sequence and check if there is fuzzy match for the corresponding 

RP of that locus. If so, it will delete the RP from this sequence and then check the 

trimmed sequence to see if it contains a fuzzy match for 5’ and 3’ flanking sequences (FF 

and RF), and for the repeat array of that locus (Figure 5a). If it does, MEGASAT will retain 

the trimmed sequence in a hash table, henceforth referred to as the genotyping set. If not, 

it will add the deleted RP sequences back to the reads and put the sequences into a hash 

table that contains all the discarded sequences for each locus. 

       In some cases the amplified sequence does not contain the complete RP, because the 

amplicon sequence exceeds the length of the sequence read (Figure 5b). In such cases, 

MEGASAT checks the sequence to see if it contains a fuzzy match for the FF and RF 

sequences, and if the end of the microsatellite repeat array occurs before the end of the 

sequence. If this is the case, MEGASAT checks if the length of FP + FF + MRA ≤  the 

length of SRL – RF – l. The “l” is an integer variable that should be in the range between 

the half of the length of RP and the total length of RP. This determines if the sequence 

contains at least l bases of the incomplete RP; if it does, MEGASAT identifies the starting 

point of the incomplete RP. In this case the incomplete RP is removed, and the trimmed 

sequence is added to the genotyping set.  

      If at least l bases of the RP are not present, MEGASAT searches for the end of the 

reverse flank (RF) using the end point of the MRA plus the length of RF. In this case the 

incomplete RP is removed, and the trimmed sequence is added to the genotyping set.  

      In some cases the sequence does not contain the complete reverse flank (RF). If the 

RF is not detected, MEGASAT checks if the sequence has a fuzzy match for the FF, and if 

the end of the MRA occurs before the end of the sequence (Figure 5c). In such cases, 
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MEGASAT locates the end point of the MRA. The incomplete amplicon RF sequence is 

then deleted, and the reference RF sequence is added to the end point of the MRA, to 

produce an untruncated sequence, which is added to the genotyping set. 

      Failure to detect the end of the MRA implies the presence of an allele that is too large 

to contain identifiable RF sequence (Figure 5d). In this case, an integer variable which is 

the sum of the length of input sequence plus 100 is added to the observed length of the 

FF. In our guppy experiment described in Section 3.1 below, the value of the integer 

variable was 250 since our trial data had a read length of 150 bp, which is a common 

length generated by NGS sequencing runs. The addition of the large integer value clearly 

distinguishes such large alleles from those that can be accurately scored within the 

bounds of the read length. The inclusion of the FF length in the allele length value allows 

different classes of large alleles to be distinguished if there is variation in the length of 

the FF. The sequences are added to the genotyping set. 

 

2.4  INFERENCE OF MICROSATELLITE GENOTYPES 

 

The second major step in MEGASAT is to predict microsatellite genotypes. Once the 

genotyping set is complete, MEGASAT determines the lengths of all the trimmed 

sequences for each locus and each individual, and records the count of sequence length 

variants for each locus in each individual. These records will be printed into text files and 

used as input files for another script to visualize the microsatellite data used to infer 

genotypes. When the hash tables containing the distributions of length variants for each 

locus in each individual are constructed, the next step is to infer allele sizes, and then call 

genotypes from those length variants. However, the process of inferring alleles and 

genotypes is complicated by the stutter, allele dropout and indel length artifacts 

introduced in Section 1.2 that can arise during PCR amplification and sequencing.  

 

Amplification stutter and sequencing indels could result in ‘false’ length variants 

being misinterpreted as microsatellite alleles, and length artifacts that arise during 

amplification can cause heterozygotes to be mis-scored as homozygotes. MEGASAT 
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employs a number of rules to distinguish true alleles from those complicated length 

artifacts, and infer genotypes. The process of allele and genotype inference is described 

briefly below; the process is outlined in more detail in Algorithm 1.   

  The first task is to determine how many length variants are present. If there is no 

length variant, the genotypes will be scored as “0 0”. If there is only one length variant 

present, which means that only one allele is amplified, then the next step is to check if the 

number of copies (read depth) of this length variant is larger than a user-definable 

minimum threshold of observations n. If so, the locus is scored as homozygous. If two or 

more length variants are present, MEGASAT first identifies those variants with a minimum 

read depth of n. MEGASAT compares the size of the second most abundant length variant 

(A2) with the most common length variant (A1) (Figure 6). Based on the relative length 

of A1 and A2, it uses a set of criteria to calculate the depth ratios of as many as four (i.e., 

from A1 to A4) of the most common length variants relative to A1. Then it compares the 

depth ratios with user-specified thresholds to determine which amplification products 

should be called as real alleles. This procedure minimizes the risk of miscalling stutter 

artifacts as real alleles.   

As an illustration, for the case when length (A1) is smaller than length (A2) (Figure 

6a), the ratio q of the second most abundant length variant to the most abundant variant 

(A2/A1) is calculated. If q is less than a user-defined threshold (default value R1= 0.15), 

the genotype is scored as homozygous (in this case, A1 A1). If q is greater than or equal 

to the threshold value, additional scenarios are considered that take into account the 

possibility of complex stutter patterns associated with the larger allele. The script checks 

for the presence of a next-most abundant length variant that is one microsatellite repeat 

unit larger than the second most abundant variant (A3 in Figure 6a). The script calculates 

the ratio A3/A2, and compares it to a user-defined threshold value (default value R3 = 

0.7). If the ratio is greater than or equal to R3, then the third most abundant variant (A3) 

is considered the large allele (the genotype is A1 A3). Therefore, genotype “A1 A3” will 

be called in the case of Figure 6(a).  

If the length (A1) is larger than the length (A2) (as shown in Figure 6 (b)), the script 

next checks if the difference between A1 and A2 is larger than or equal to one 

microsatellite repeat unit and the ratio depth(A2)/depth(A1) is larger than or equal to a 
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user-defined threshold (default value R4= 0.6). In Figure 6b, the ratio is smaller than the 

threshold value. The script then checks for the presence of a next-most abundant length 

variant that is larger than the most abundant variant (A3 in Figure 6b) and compares the 

ratio depth(A3)/depth(A1) to a user-defined threshold (R6; default value = 0.2). Since the 

ratio in Figure 6b is larger than R6, the third-most abundant variant (A3) is considered 

the large allele (the genotype is A1 A3).  

 

 

 

 
Figure 6 Examples of two common modes of length-variant distributions. Both 

distributions lead to genotype calls of “A1 A3” via different paths in 

Algorithm 1. 

  

 

    Algorithm 1 presents more details about how to infer microsatellite genotypes based on 

those trimmed data sets we got from the previous step. The variable “lRU” in this 

algorithm refers to the length of one repeat unit of a microsatellite locus. 
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Algorithm 1 Inference of microsatellite genotypes 

Input: the first four abundant length variants (A1, A2, A3, A4) 

Input: six user-definable minimum ratio thresholds (R1, R2, R3, R4, R5, R6) 

Input: a minimum read depth threshold (n) 

 

1: if there are two or more length variants present then 

2:      if depth (A1) + depth (A2) ≥ n then 

3:          if A1 < A2 then 

4:              if depth (A2)/depth (A1) ≥ R1 then 

5:                  if there is A3 or A4 and depth (A3 or A4)/depth (A2) ≥ R2 then 

6:                      if A3-A2 is equal to lRU and depth (A3)/depth (A2) ≥ R3 then 

7:                          Genotype is “A1 A3” 

8:                      else if A4-A2 is equal to lRU and depth (A4)/depth (A2) ≥ R3 then 

9:                          Genotype is “A1 A4” 

10:                    else  

11:                        Genotype is “unscored unscored” 

12:                  else 

13:                      Genotype is “A1 A2” 

14:              else 

15:                 Genotype is “A1 A1” 

16:          else (A1>A2) 

17:              if A1-A2 ≥ lRU and depth (A2)/depth (A1) ≥ R4 or A1-A2 is equal to 2 and 

depth (A2)/depth (A1) ≥ R5 (this means that A1 A2 are real alleles) then 

18:                  if there is A3 and depth (A3)/depth (A1) ≥ R6 then 

19:                     Genotype is “unscored unscored” 

20:                  else  

21:                     Genotype is “A2 A1” 

22:              else if there is A3 and depth (A3)/depth (A1) ≥ R6 then 

23:                  if there is A4 and A4-A3 is equal to lRU and depth (A4)/depth (A3) ≥ R3 

then 
24:                     Genotype is “A1 A4” 

25:                  else 

26:                     Genotype is “A1 A3” 

27:              else 

28:                 Genotype is “A1 A1” 

29:      else 

30:         Genotype is “0 0” 

31:  else if there is only one length variant present then 

32:      if depth (A1) ≥ n then 

33:         Genotype is “A1 A1” 

34:      else 

35:         Genotype is “0 0” 

36:  else (there is no length variant present, which means that this locus was not 

identified in this individual) 

37:      Genotype is “X X” 
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2.5  VISUAL REPRESENTATION OF GENOTYPE CALLS 

 

The third major function of MEGASAT enables visual review of the sequence length 

distributions for each locus and each individual. This function allows users to quickly 

verify the accuracy of automatically scored genotypes and hence offers the opportunity 

for reviewers to correct the allele calls in the text data file generated by MEGASAT. 

Although validation trials of MEGASAT showed a high accuracy of allele calls, user 

review may reveal cases where a locus signal was misinterpreted. To accomplish this, 

histograms of length and depth count information are displayed using the R “ggplot2” 

package [124]. The plots are a graphical representation of the allele calls MEGASAT has 

made, and are an important tool for quickly reviewing the predicted genotypes. These 

plots are presented in PDF format.  

These histogram plots are colour coded for easy review (as shown in Figure 7). 

Histogram bars are either grey, pink or blue based on the depth sum of the first two 

abundant length variants per locus. Grey indicates a sample below the minimum depth 

threshold which is marked with a “0 0” genotype in the data file. Blue histograms 

indicate a high depth, and pink bars indicate that the depth is just marginally (in the range 

between minimum threshold “n” and n+10) above the minimum threshold. Predicted 

alleles are plotted in dark blue bars and length artifacts are coloured in light blue bars. 

These color-coded histograms allow the reviewers to scan quickly over the plot files to 

see if MEGASAT has scored alleles correctly. The interface allows the reviewer to correct 

the genotype calls in the text data file. 

MEGASAT also generates text files that contain all the discarded sequences (sequences 

with FP present but otherwise fail to meet MEGASAT requirements), which allows 

reviewers to check if the customized scoring parameters are set correctly and MEGASAT is 

not filtering out reads that contain true alleles. These discard files are important early in a 

project when one is still characterising the loci.  
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Figure 7 Example of MEGASAT histograms that show the frequencies of sequence 

length variants per microsatellite locus per individual. Sample IDs title 

each plot, followed by the total depth.  Genotypes are listed under the x-

axis. a) Grey bars indicate samples below the minimum depth threshold, 

with no alleles called (genotype is represented as “0 0”). b) Pink indicates 

that the depth is between the minimum read depth n and n+10, dark blue 

bars indicate allele calls (72/86)  c) Blue bars indicate sufficient read 

depth, but with no alleles called (genotype is represented as “unscored 

unscored” due to complicated length artifact pattern). d)  Dark blue at 

length 62 and 74 indicate real alleles and a heterozygous genotype. 
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CHAPTER 3 APPLICATION OF MEGASAT TO GUPPY 

MICROSATELLITE DATA  

 

In this chapter, we first describe the source of our validation data set. Then we 

demonstrate MEGASAT performance via a combination of repeated genotyping of 

independently extracted and amplified duplicate samples, and examine known pedigrees 

of guppies to identify genotyping errors in the validation dataset. Further, we compare the 

genotyping performance of MEGASAT with MicNeSs [22], which is the only other 

program that can call microsatellite genotypes from NGS reads, and demonstrate 

MEGASAT’s improved performance relative to MicNeSs. The gold standard on all the 

genotype calls is the manual validation by an experienced researcher that was performed 

based on the histograms of sequence length variations produced by MEGASAT. The 

generated text files containing all the discarded sequences were used as a tool to ensure 

the histograms can correctly represent the length variants and corresponding depth 

counts. Although an experienced human curator can reliably identify the majority of 

genotypes, in some extreme cases when stutter artifacts present rare patterns, those rare 

genotyping errors may not be correctly assigned by MEGASAT or the human curator. 

 

3.1 VALIDATION DATA SET 

 

In order to demonstrate the application of MEGASAT for microsatellite genotyping, we 

used 43 microsatellite loci obtained from the guppy (Poecilia reticulata) genome. The 

majority of the 43 loci are di- and trinucleotide microsatellite loci. Di- and trinucleotide 

microsatellites tend to generate more stutter artifacts than longer repeats [16, 46], 

therefore high accuracy on these ‘difficult’ microsatellite loci may generalize well to 

microsatellites with longer repeat units. The abbreviated workflow of primer design and 

DNA sequencing that was performed to generate the guppy dataset is illustrated in Figure 

8.  
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Figure 8 Abbreviated workflow of guppy dataset generation. Microsatellites 

containing sequences were obtained from the guppy genome and put into 

MSATCOMMANDER [59] to choose loci suitable for PCR. Two multiplex 

PCRs were performed on the selected microsatellite loci and then the 

generated PCR products were sequenced using Illumina Miseq. 

   

 

3.1.1  Microsatellite Selection 

 

An initial 2659 di- and tri-nucleotide microsatellite-containing sequences were retrieved 

from a guppy genome project (e.g. [115, 116]) database, targeting sequences with a 

minimum of 8 microsatellite repeats and approximately 150 bases of sequence on either 

side of the microsatellite array. The initial microsatellite-containing sequences ranged in 

Sequence indexed PCR 
products using Illumina Miseq 

Second multiplex PCR 

Initial multiplex PCR 

MSATCOMMANDER identifies 
loci suitable for PCR 

Select microsatellites from guppy 
genome  
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length from 258-359 bases. MSATCOMMANDER [59], a program to automatically detect 

microsatellite arrays and design locus-specific primers, identified 5818 uninterrupted 

microsatellite arrays within these sequences, 82.2% dinucleotide and 17.8% trinucleotide. 

Constraining the number of repeat units to >6 and product size to 60-150 bases, 

MSATCOMMANDER identified 2915 loci suitable for PCR. A total of 468 loci with >7 

repeat units were selected for further analysis. Loci with limitations such as low 

information content, high error rates, evidence of nulls or inability to multiplex well were 

discarded; a final set of 43 loci was selected for long-term data collection. 

 

3.1.2  Laboratory Method 

 

Details of the laboratory workup of our guppy dataset, including PCR, attachment of 

Illumina adapters and indices and sequencing methods are provided in Appendix A.2. The 

following is an abbreviated outline. Microsatellite loci (n=43) were amplified in two 

multiplex PCRs per individual DNA sample. The amplicons were diluted and used as 

template for a second PCR which added Illumina annealing adapter sequences, a 6 base-

pair index (barcode) and the Illumina sequencing primers. Purified indexed PCR products 

were sequenced in one direction using Illumina MiSeq v3 reagents, which give sequence 

read lengths of 150 bases. Miseq Reporter software [132] demultiplexed the dual-indices 

to create separate FASTQ files for each individual.  

 

3.1.3  MEGASAT Runs 

 
After the collection of validation data, we customized the parameters that need to be set 

in MEGASAT. All the primer and flanking information of the 43 microsatellite loci were 

stored in the input text file. The number of mismatches (m) was defined as 2 and the 

minimum depth threshold n was set to 50, values which were found to generate the most 

accurate genotyping outputs on our guppy data according to the manually curated calls 

that served as our gold standard. The integer variable “l” we specify in the section 2.3 

was set to 4. The primer lengths of all of our 43 microsatellite loci are around 20 base 
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pairs. Four is a suitable value that ensures at least four bases of incomplete RP are present 

in the read. All of the analyses were performed on a single CPU core.  

 

3.2 RESULTS AND DISCUSSION 

 

3.2.1  Frequency Of Genotype Assignments 

 

In order to present some basic information associated with our NGS data and demonstrate 

the performance of MEGASAT genotyping, we examined the effects of properties that can 

impact the genotype call rate (referred as the proportion of called informative genotypes 

as a proportion of the total number of loci). The analysis of the percentage of the targeted 

genotypes variations among individuals was performed on 2048 guppy individuals 

(FASTQ files) by counting the number of informative genotypes inferred by MEGASAT 

(excluding those genotypes scored as “0 0” due to low sequence depth and genotypes not 

scored because of the identification of more than two alleles) over the 43 loci (Figure 9a, 

b). The genotyping success rate varied among individuals (Figure 9a). Approximately 

86% of individuals were genotyped at a high percentage (over 90% of all loci for that 

individual were assigned an informative genotype), and ~70% of individuals were 

genotyped at all 43 loci. The average percentage of collected genotypes was 92.15% 

among individuals. However, 6% of individuals had genotype call rates <50%, which 

may be due to the failure of PCR amplification at some individuals or the DNA 

degradation of some individual samples. Since trimmed sequences are the most important 

factor that contributes to the generation of genotypes [40], the percentage of trimmed 

sequences was calculated based on the ratio between the counts of trimmed sequences 

and total counts of raw reads for each individual sample. The average percentage of 

trimmed sequences was 64.82% among all the samples. Figure 9b shows the percentage 

of informative genotypes versus the number of individual trimmed reads. It is obvious 

that the percentage of informative genotypes collected increases with the trimmed 

sequence counts, with genotype calling reaching approximately 100% with 5000 trimmed 

reads.  
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        The analysis of trimmed read distributions among all the 43 loci was performed by 

counting the average percentage of trimmed reads at each locus for all 2048 individuals 

(Figure 10). In a random recovery model, each locus would be expected to account for 

2.33% (=100%/43) of all trimmed reads, but we observed high variability, with values for 

individual loci ranging from 1.06% to 4.59%. Around half of the loci (21 loci) have the 

percentage of trimmed reads larger than the expected percentage (2.33%).     
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Figure 9 (a) The percentage of informative genotypes collected vs. the number of 

individual raw reads. (b) The percentage of informative genotypes vs. the 

number of individual trimmed reads.   
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Figure 10 The average percentage of trimmed reads among the 43 loci for all the 

2048 individual samples. The percentage of trimmed reads is the number 

of trimmed reads at each locus over the total trimmed read counts of each 

individual. The dashed horizontal line represents the expected percentage 

of trimmed reads (2.33%) for each locus. 

 

 

     Sequence mismatch tolerance allows for the retention of reads with a small number of 

sequencing errors or mutations within the microsatellite locus. In some cases, if large 

amounts of microsatellite-containing sequences are discarded because of sequencing 

errors, it will lead to some amplification artifacts being called as real alleles; in extreme 

cases, it will result in no alleles being called due to the low amounts of trimmed reads. As 

an illustration, we chose the ‘difficult’ microsatellite locus BF-272 that presents more 

substitution errors to assess the impact of error tolerance. Figure 11 shows the number of 

retained reads with a mismatch tolerance m of 0 (i.e., exact matches required) and 2 for a 

small set of 23 individuals) for the locus BF-272. Error tolerance yielded a dramatic 

increase in the number of matched reads for most individuals, and in some cases there 
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were no exact matched reads at all. We also varied the allowed number of mismatches on 

a sample data set for all 43 loci with m = 0, 1, 2, 3, 4, 5, 6 (see Table 2). Values of m = 3 

or 4 gave similar results as m = 2, but larger variations were seen for m <= 1 and m >= 5. 

These results demonstrate the number of mismatches can affect the accuracy of 

automatically scored genotypes.  

 

 

 

Figure 11 Number of trimmed sequences identified by MEGASAT with and without 

an error tolerance for locus BF-272 in selected subset of 23 individuals.   

 
 
 
Table 2 Comparison of MEGASAT runs with different m values and the run with m 

set to 2. The second column presents the number of alleles differing from 

the called alleles with m=2. The third column shows the percentage of 

alleles that were called differently for a given m relative to m = 2, divided 

by the total number of called alleles. 

 

Number of Number of allele Percentage of differences 
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mismatches (m) differences (%) 

0 (exact mismatches) 186 5.54% 

1 92 2.74% 

3 10 0.298% 

4 20 0.595% 

5 190 5.65% 

6 645 19.20% 

 

 

3.2.2  Estimation Of Genotyping Error Rates 

 
Genotyping error rate is the proportion of wrongly called genotypes in the whole set of 

called genotypes [62]. Even moderate genotyping error rates can cause severe problems 

in subsequent analyses: for example, genotyping errors could lead to misassignment of 

kinship and parentage relationships or reduced likelihood of detecting linkage in genetic 

linkage analysis [60, 62]. Several methods can be used to estimate genotyping error rates, 

including repeat genotyping, comparison of error-prone genotypes with high-quality 

reference samples, calculating concordance on resampled individuals, and pedigree-based 

approaches [63, 64]. The repeat-genotyping method calculates mismatches between 

genotypes called from duplicately sampled individuals. The pedigree-based method 

calculates the genotyping errors by identifying the mismatches between scored alleles 

with known parent-offspring pairs based on some rules of genetic inheritance of alleles 

[61, 65]. Known parent-offspring pairs should share an allele at one or more loci; any 

genotypes that violate rules of genetic inheritance will be detected as genotyping errors.  

      In our experiment, we used the repeat-genotyping and pedigree-based methods to 

evaluate the accuracy of MEGASAT-scored microsatellite genotypes. In repeat-genotyping 

approach, 37 individuals were randomly resampled for tissue (scales). DNA extractions, 

PCR, sequencing and genotyping using MEGASAT were carried out independently, except 
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that some repeat-genotyped individuals were sequenced in the same sequencing run as 

the original samples. In the pedigree-based approach, 71 guppies from known, lab-reared 

crosses were genotyped, and parent-parent-offspring triads were examined for genotypes 

that would violate the rules of inheritance (i.e., alleles present in an offspring that are 

absent from both parents). In both approaches, genotyping error was evaluated for 

MEGASAT-scored genotypes both with and without additional manual editing of 

genotypes.    

      Rates of genotyping error for MEGASAT-scored genotypes differed between these two 

methods among all the 43 loci (Figure 12). For MEGASAT-scored genotypes, the mean 

estimated error rate per allele was 0.021 for the pedigree-based method. Most of the 

genotyping errors detected using this method were concentrated within a few loci: three 

loci had error rates exceeding 0.1 (0.109-0.129), whereas 16 loci had no detected errors 

(error rate < 0.007), and 10 additional loci had a single error (error rate ≈ 0.007). 

     Estimates of genotyping error obtained with the repeat-genotyping method were lower 

(mean genotyping error = 0.012). This is because for pedigree-based method, more 

individuals were compared and a wider range of errors such as allelic dropout, null alleles 

and mis-genotyped alleles could be identifiable with the pedigree information [46, 48]. 

However, the repeat genotyping method cannot detect those genotyping errors when 

errors exist in both duplicates. For the repeat genotyping approach, the three most error-

prone loci had estimated genotyping error rates of 0.040-0.050 (around half of the 

estimated error rates on the basis of pedigree). Among the other loci, 18 loci had no 

detected genotyping errors, and eight loci had a single error (error rate ≈ 0.007).    

     Using the histograms of sequence length variation produced for each locus genotype, 

an expert curator performed manual updates which reduced the genotyping error rates, 

particularly for those few loci that had the highest error rates in the automated genotype 

calls. Manual editing reduced the mean error rate from 0.021 to 0.010 in the pedigree-

based estimates, and from 0.012 to 0.007 in the repeat genotyping-based estimates. In the 

pedigree-based estimates, manual editing substantially reduced genotyping error at the 

eight most error-prone loci; mean genotyping error rates for these eight loci were 0.087 



 

 39 

and 0.023 before and after manual editing, respectively. By contrast, manual editing 

produced no gains in accuracy for 28 loci, either because no errors were detectable in the 

automatically scored loci, or because the rare errors that did occur were scored the same 

way by a person and by MEGASAT. Results were similar with repeat genotyping-based 

error estimates, except that overall error rates, and the gains realized from manual editing, 

were smaller. Manual editing reduced the mean error rate from 0.044 to 0.018 for the 

three most error-prone loci in this analysis, but produced little or no gain in accuracy for 

35 loci, for the same reasons as before. These results suggest some important 

considerations for microsatellite genotyping using MEGASAT. Generally, it took around 

12 hours for MEGASAT to generate all the genotyping output on 1024 individuals for 43 

loci, or approximately one genotype call per second. Manual checking of MEGASAT 

results took approximately six hours.  

 

Figure 12 Estimated genotyping error rates of automated genotype calls inferred by 

MEGASAT with (blue bars) and without (red bars) manual editing for all the 

43 microsatellite loci using repeat genotyping method and pedigree-based 
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method. In the pedigree-based method, 16 loci had no detected genotyping 

errors. 18 loci had no detected errors in the repeat genotyping approach. 

 

 

3.2.3  Pedigree Construction 

 
Genotype information is often used to infer pedigrees for a set of individuals for which 

direct information about relationships is not available. This approach is particularly 

valuable when applied to individuals sampled from different locations or time points. In 

order to further explore the contributions of MEGASAT to pedigree analysis, more than 600 

guppies captured from 12 cohorts between 03/2008 to 03/2009 on the island of Trinidad 

were automatically genotyped at 43 microsatellite loci using MEGASAT. In order to better 

present the cohort information in pedigrees, we used integers ranging from 0 to 11 to 

represent the cohorts captured from 03/2008 to 03/2009. Then the program FRANz [66] 

was used to conduct a pedigree analysis based on the MEGASAT-scored genotypes and 

genotypes updated via manual curation. FRANz is a program that uses an error model 

with Markov Chain Monte Carlo (MCMC) sampling to estimate the statistical confidence 

of constructing parent-offspring relationships while allows the incorporation of prior 

information such as age and sex of individuals [66].  

      In our guppy samples, we used the already known sex and age (defined based on the 

month that those guppies were captured) as prior information for FRANz. Age was used 

to order the entire guppy individuals into successive generations. The parameter 

specifying the number of candidate fathers in FRANz was set to be the number of known 

males in our data. FRANz generates several output files, including a comma-separated 

file that lists the likeliest parents of each individual and the corresponding statistical score 

and posterior probability of each parentage in the pedigree. The Pedigree Viewer [125] 

software was used to read this file and visualize the FRANz output. Figure 13 is the 

constructed pedigree made directly with the automatically scored genotypes and Figure 

14 shows the pedigree based on the genotypes assigned by MEGASAT with manual 

editing.  
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     From both pedigrees, it is obvious to find that some individuals in newer cohorts 

mated with individuals in earlier cohorts. The pedigree made with the manually edited 

genotypes shows more parentage relationships between new generations especially 

between the second generation and the third generation. Using the statistical scores 

calculated from manually edited and automated genotypes, we found differences between 

these two pedigrees where around 73% of the inferred parentage relationships were larger 

than those from the automated genotypes (as shown in Figure 15). The Pearson’s 

correlation coefficient on the statistical scores was 0.968 (p value < 2.2e-16). From the 

comparison of these two pedigrees, it is obvious that manual editing could affect the 

inferred parentages in the built pedigrees and might give more statistical confidence for 

the inferred parentages. 

 

 

Figure 13 Pedigree built on the MEGASAT automatically scored genotypes. The 

founder population is arrayed along the first row and new generations are 

listed on each following row. Numbers represent the cohort number in 
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which offspring was captured. Blue lines run from paternal parent to 

offspring and pink lines run from maternal parent to offspring. 

 

  

 

 

Figure 14 Pedigree built on the MEGASAT-scored genotypes with manual editing.   
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Figure 15 Comparison of statistical score for the same inferred parentage on 

automated genotypes and genotypes with subsequent manual curation. 
   

 

3.2.4  Comparison With MicNeSs Results 

 

To the extent of our knowledge, MicNeSs is the only other program that infers 

microsatellite genotypes from NGS data. Suez et al. [22] employed an algorithm that first 

extracts the microsatellite-containing sequence with the largest number of repeat motifs 

among all reads of all individuals. Then sequences whose repeat motifs differ from the 

extracted repeat motif will be referred to as different microsatellites. The following step 

is to build the observed microsatellite length distribution for each individual using the 

number of repeat motifs and number of substitutions. After the observed distributions 

have been built, the next step is to assign a theoretical parametric distribution to each 

allele in an individual. Then an individual’s genotype is inferred by using the optimized 

parameters of the theoretical distributions via minimizing the squared difference between 

observed length distribution and the theoretical parametric distributions.  
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       The algorithm implemented by MEGASAT requires the reference data provided by the 

users to allow the sizing of microsatellite repeats, and employs some ratio functions to 

disentangle real alleles from amplification and sequence-driven artifacts. By contrast, 

MicNeSs uses parametric models to simulate the mode of genotypes and then infer 

genotypes via optimizing models based on the prior information provided by the data. 

This method does not need the user to define any parameters; instead, the software can 

automatically find the optimal parameters from data. And if the assumed model is correct 

for the data, it could achieve highly accurate results with enough data. However, this 

method suffers from some disadvantages. If the parametric model cannot correctly 

simulate the mode of data, it could induce bias into the inferred results. Furthermore, 

parametric modeling is always accompanied with a high computational cost. Several 

additional important algorithm and functionality differences between MEGASAT and 

MicNeSs are listed below:  

 MicNeSs can deal with sequencing errors, but it cannot overcome artifacts that 

may occur during the PCR amplification, which could result in some 

amplification artifacts being miscalled as real alleles (see below).  

 MEGASAT can run on files that contain NGS reads encompassing multiple loci. 

However, the input files of MicNeSs need to be locus-specific files that contain 

reads for only one microsatellite locus of interest, which means that MicNeSs 

cannot directly perform on sequencing data encompassing multiple loci. Pre-

processing for these complicated data is needed but the code for pre-processing is 

not available.  

 A user graphical interface is available for MEGASAT but MicNeSs can only be run 

through a command line.   

 MEGASAT outputs discarded and trimmed sequences to files for each individual 

and each locus. This function allows users to ensure MEGASAT is not overly 

rigorous in throwing out some microsatellite-containing sequence. However, 

MicNeSs does not offer the opportunity to review sequences that are filtered out 

by it. 
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 MEGASAT visualizes the data used to infer genotypes by creating depth vs. size 

histogram plots, which allows verification and manual editing of automated 

genotypes. While in MicNeSs, only genotypes are generated so no function is 

offered to verify the accuracy of called genotypes. 

      In order to compare the performance of MEGASAT to MicNeSs, we ran MicNeSs on a 

guppy data set comprising 172 individuals. Then we compared the genotypes scored by 

MicNeSs with the genotypes inferred by MEGASAT (as shown in Figure 16 (a)). The 

accuracy of genotypes scored by MEGASAT on this data set was manually validated by a 

researcher with rich experience in assigning genotypes based on length distributions. The 

percentage of difference is the number of alleles scored by MicNeSs that differ from the 

MEGASAT output over the total number of scored alleles (172*43*2). The alleles called 

by MicNeSs were maximally different from MEGASAT at two microsatellite loci (pink 

bars in Figure 16 (a)). This difference may be a consequence of incorrect pre-processing 

of multiplexed FASTQ files using the scripts offered by the developer of MicNeSs, 

which causes a majority of microsatellite-containing sequences to be discarded. The 

mean percentage of differences for the 41 remaining loci is 13.17%. Only 18 loci had 

percentage of differences smaller than 10%. Eight loci showed 20% difference from 

MEGASAT genotyping output. Figure 17 shows two examples, where MEGASAT correctly 

filtered out the amplification artifacts and called the real alleles. However, MicNeSs 

called incorrect genotype “36 56” from Figure 3.10 (a) and genotype “58 58” from Figure 

17 (b).  

       The running time is also a good indicator to evaluate the performance of a program. 

Therefore, we compared the running time of MicNeSs and MEGASAT on the same 

individual samples. We found that the computing time of MicNeSs among these 43 loci 

is highly variable (Figure 16 (b)). This is because the number of alleles and associated 

variance has huge impacts on the running time of MicNeSs [22] and the number of alleles 

fluctuates among all the 43 loci. As an illustration, it took around 27 minutes for locus 

BF-047 to get all the genotyping output but for locus BF-322, around 155 minutes were 

required (Figure 16 (b)). The running time for the two wrongly processed loci (pink bars) 

was small since no real alleles existed in the input data. But for MEGASAT, allelic 
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variance does not make a big difference for the running time. The running time for each 

of the 43 loci on the same dataset is just around 2 minutes. However, MicNeSs needs at 

least 10 minutes even for the locus with smallest number of alleles. The maximum 

running time for MicNeSs to assign genotypes at a locus on the same dataset with 

MEGASAT is around 155 minutes, 77.5 times slower than MEGASAT.   

 

 

 

Figure 16 (a) The percentages of genotypes inferred by MicNeSs that differed from 

those scored by MEGASAT for all the 43 loci. Two loci had percentage of 
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difference equal to 100% (pink bars), which were caused by incorrect pre-

processing of input data and have no direct causal correlation with 

MicNeSs. (b) The running time of MicNeSs on ~ 170 individuals for all 

the 43 loci. The two wrongly processed loci are colored in pink.  

 

 

Figure 17 Two examples of MEGASAT histograms that show the correct genotype 

inference by MEGASAT. However, MicNeSs called the genotype as “36 56” 

from (a) length distribution. Genotype “58 58” was inferred by MicNeSs 

from (b) length distribution. 

 

3.3 DISCUSSION 

 

Many of the disadvantages associated with microsatellite genotyping stem from its 

reliance on the capillary electrophoresis and the imperfect inference of genotypes from 

DNA fragement mobility data. The preparation of samples for each capillary 

electrophoresis and genotypes inference remain far too expensive and time-consuming. 

Even though several genotyping softwares such as GeneMapper (Applied Biosystems) or 

GeneMarker (Softgenetics) have been developed to visualize and filter out some stutter 

products, most of the high-precision software packages are commercial and therefore the 

genotyping costs are relatively high. However, MEGASAT addresses these problems by 
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calling microsatellite genotypes from raw sequence data. Furthermore, it provides several 

contributions to microsatellite genotyping.  

     First, completely automated genotype prediction is feasible for many loci. In our 

experiments, automated genotype prediction resulted in mean error rates of 0.003-0.004 

for 28 loci (estimated using either method), and no genotyping errors detected for 16-18 

loci. Slightly higher mean rates of genotyping error occur with fully automated 

genotyping of up to 40 loci in our panel. Moreover, our panel of 43 loci was selected for 

their ease of amplification, high degree of polymorphism, and suitable allele size ranges, 

but they were not rigorously screened for their tendency to produce easily interpretable 

genotypes. A clear implication is that further screening of candidate microsatellite loci 

could have produced more loci that met all desired criteria, including amplification 

products amenable to highly accurate, fully automated scoring. We enjoyed the luxury of 

having thousands of candidate microsatellite loci to choose from; however, NGS-based 

approaches to identifying novel microsatellite loci make the identification of large 

numbers of microsatellite loci feasible and relatively inexpensive in any species (e.g. [17] 

[83]).    

      Second, such fully automated genotype prediction brings great advantages in 

genotyping throughput (and associated labour costs), low genotyping error rates, and ease 

of data standardization across experiments and laboratories. A single researcher can 

obtain data for ~41,000 single-locus genotypes per week with fully automated scoring, 

and ~44,000 genotypes per week with some manual editing. As noted, genotyping error 

rates are low, and comparable to those obtained with carefully selected loci using 

conventional electrophoretic methods in other studies [57] [61] [64]. Since genotypes are 

based on direct counts of DNA sequence lengths rather than indirect inference from 

electrophoretic data, data standardization between platforms and laboratories is not a 

concern.    

      Third, there will be situations where manual editing is desirable. For example, it may 

be advantageous to include somewhat more difficult-to-score loci to enable comparisons 

with older data sets, or comparisons across species, or because particular loci have 
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particular merits, such as being linked to genes or traits of interest. The data visualization 

feature in MEGASAT enables easy manual checking and editing of genotypes, and our 

results suggest that rapid manual editing can improve genotyping accuracy at loci that 

might otherwise be of marginal utility. Conversely, although the default values of 

variables MEGASAT uses to guide the decision making process for identifying true alleles 

among amplification or sequencing artifacts work well for a wide variety of di- and 

trinucleotide microsatellite loci, locus-specific adjustments of some of these user-

definable variables may improve the automated scoring accuracy of some problematic 

loci.
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CHAPTER 4 DETECTING CLIMATE-ASSOCIATED 

ADAPTATION USING SPATIALLY CONTROLLED RANDOM 

FORESTS 

 

The main objective of this chapter is to present a novel approach that can identify 

adaptive loci and also environmental factors associated with those loci, with a focus on a 

previously decribed sea scallop dataset [137]. This dataset spans a large latitudinal range, 

and we hypothesized that environment-driven adaptation might play an important role in 

shaping the genetic structure of sea scallop. However, the large numbers of 

environmental factors and their multicollinearity complicate our analysis. In order to 

identify adaptive signals, we proposed a random-forest (RF) approach, which differs 

from other approaches that are commonly used in environmental association studies. The 

non-linear RF models used all the environmental factors as predictors to predict 

individual genotypes at each SNP in order to identify candidate adaptive loci. The RF 

model could automatically select important environmental features, even those that are 

highly correlated. Finally, by combining our RF approach with a matrix transformation to 

control for spatial autocorrelations, we were able to generate classifications with a likely 

decrease in the false-positive rates of identified associations.  

 

4.1 INTRODUCTION 

 

4.1.1  Associating Genotype With Environment 

 
Adaptive genetic variants play an important role in the maintenance of species viability in 

a heterogenous environment. In order to identify loci under selection, a common 

approach is to associate genetic data (commonly SNPs) with environmental variables; 

and identify gene variants that show strong correlations with the environment. However, 

large amounts of genetic data, often corresponding to thousands or tens of thousands of 
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SNPs, and highly correlated environmental factors complicate the association analysis. 

Furthermore, any inference method needs to consider non-adaptive effects such as spatial 

autocorrelation caused by geographical distance. Spatial autocorrelation is quite common 

in ecological data. Therefore, if the model does not take these effects into consideration, 

the detected important loci might not be adaptive and have no relationships with selective 

forces.  

     However, exploring the relationships between many SNPs and correlated 

environmental variables is challenging. A common approach is to consider only a subset 

of features in detail. For example, many studies identify ”outlier” loci that deviate from a 

null hypothesis of no environmental association using Bayesian statistics or FST-based 

methods. Ordination techniques such as PCA build metavariables that are linear 

combinations of correlated environmental variables; these metavariables can be used 

directly, or replaced by representative environmental variables with which they are highly 

correlated. In the final step of building an association model, multivariate constrained 

ordination methods such as canonical correspondence analysis (CCA) or redundancy 

analysis (RDA) are widely used to reveal the relationships between the reduced set of 

SNPs and environmental variables. Partial ordination techniques can also be used to 

control for neutral effects such as geographical effects. Non-outlier-based regression 

models have been developed to identify adaptive loci from large sets of markers: for 

example, in some studies linear regressions while controlling for spatial effects using 

Moran’s eigenvector maps (MEM) have been used to identify adaptive loci and selective 

forces [76, 119]. Another common used type of model is mixed effect model (e.g. Latent 

factor mixed model (LFMM) [120]) that uses random effects to control for non-adaptive 

forces when testing for genotype-environment associations.    

     Here we apply a supervised learning approach, random forests, to build association 

models between genotype and environment. In order to uncover the signals of selection, 

random forest models used all the environmental factors as predictors to classify the 

genotypes at each SNP independently. SNPs with high prediction performance were 

selected as potential adaptive SNPs. Then, multivariate analysis was performed to 

discover how some important environmental factors structure the genetic data at 

identified adaptive loci. However, several challenges need to be addressed before 
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building the multivariate model. First, how to deal with high multicollinearity in the 

environmental data is a concern. Second, strong correlations identified by multivariate 

analysis may suffer from a high false positive rate due to the impacts of spatial effects on 

the genotype and environmental data. Therefore, adjustments are required to account for 

the spatial effects in order to build a set of good predictors that are not highly correlated 

with geographical distance.  

 

4.1.2  Random Forest Classifier 

 
Decision trees are the building blocks of random forests. Decision trees consist of 

terminal nodes, which represent a set of target outcomes, internal nodes, which define 

decision criteria, and branches that represent decision paths. Decision trees are built by 

choosing important discriminating variables as internal (decision) nodes and splitting the 

data set based on the observation values on those variables until the tree growing is 

finished. A node can be described in terms of its purity, which expresses the extent to 

which the node represents members of a single class, whereas an impure node does not 

effectively distinguish members of different classes. The choice of important variables for 

splitting is based on the calculation of node impurity decrement, i.e., to what extent a 

given variable can distinguish two or more classes.  After splitting on each decision node, 

node impurity is calculated for parent and child nodes. The more the node impurity 

decreases from splitting, the more important the variable is.  

    Decision trees are popular due to their easy interpretation, automatic feature selection 

and their elimination of the need for data normalization. However, decision trees often 

have higher error rates in comparison with other supervised learning models due to their 

relative simplicity, and have a high risk of overfitting as the decision criteria can be too 

specific to the training data. Tree complexity is inversely correlated with the prediction 

accuracy. Decision trees may have poor performance on test dataset when the built tree is 

very complex [104, 136]. 

 

Bootstrap aggregation or bagging is a powerful algorithm that was proposed by Breiman 

in 1994 [105] to reduce the variance of a statistical model [104]. The reduction of 
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variance is achieved by assembling multiple separate models and averaging the 

predictions on those models. Therefore, bagging can be used in decision trees to solve the 

overfitting problem.  

     Consider a training data set S, and a predictor P (S,  ), which uses S to predict the 

value at input point  . In order to aggregate multiple predictors, the training data set S is 

resampled with replacement (i.e., bootstrapped) to generate N different training data sets 

S
1
, S

2
, ... , S

N
. Then we train the predictor P on each bootstrapped training data set and 

calculate 

 

Pavg (x) = 
 

 
           

        (4.1) 

This equation is for predicting quantitive outcome. If the outcome is qualitative, then 

 

Pavg (x) =                         
 

   
     (4.2) 

 

The majority vote is to assign the most frequently present class to the prediction class of 

 . 

Since their introduction in 2001 [103], random forest (RF) classifiers have gained 

widespread use in many domains of machine learning. RF is an ensemble approach that 

benefits from growing a large group of decision trees to improve its overall performance. 

RFs refine the concept of bagged trees by using a minority of predictors on splitting in 

order to build a number of independent decision trees on bootstrap samples [104, 105]. 

This refinement substantially reduces the variance of bagged trees. Suppose if most of the 

predictors are considered as candidates for splitting, the majority of the built bagged trees 

will choose the most important predictors for splitting, which will result in overfitting 

since all the bagged trees will be similar [104]. In random forests, decision trees are built 

using the following steps: 

 Randomly select m predictors from the full set of p predictors. 

 Choose the top splitting predictor from m predictors. 

 Split the nodes 

 Repeat the first three steps until the tree growing is finished 
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The above four steps will be repeated N times (determined by the tunning parameter: 

number of trees) and the final prediction of random forests will be calculated the same as 

bagging algorithm.  

     The two key attributes of RF are the out-of-bag (OOB) error estimation and variable 

importance measurement. OOB data refers to those observations that do not contribute to 

the construction of bagged trees. Therefore, the OOB error is a good quantitative 

measurement for the generalization error of an RF. Another attractive feature is the 

automatic computation of variable importance. Usually two types of importance are 

offered: Gini importance (RF classification) and permutation importance. Gini 

importance calculates the total node impurities decrease that results from splitting on 

each variable and averages over all trees [135]. Permutation importance counts the 

average prediction error increase on OOB data after permuting the values of each 

variable. If the variable is an important predictor for the RF model, the permutation on 

the values of this variable will produce more prediction errors. Therefore, large 

permutation importance values indicate important variables. These two types of 

importance are both critical for feature selection. 

  

4.1.3  Evaluation And Verification Method 

  

Many evaluation methods are available for assessing the performance of a machine-

learning model. A simple measure of accuracy is the percentage of predictions that are 

correct. However, in imbalanced data, the accuracy is not a good quantitative measure of 

model performance. Imbalanced data refers to data whose classes are not present equally, 

and in some cases the number of instances in a class is much less than others. As an 

illustration, in a classification task for predicting the existence of a rare disease in a 

patient, the majority of the training set may be non-diseased individuals. The overall 

prediction accuracy will be high even though no individuals will be correctly predicted as 

diseased samples. In order to better illustrate the performance of a model, the confusion 

matrix (as shown in Figure 18) is used to give more details of correct classification and 

misclassification for each class.  
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Figure 18 Confusion matrix for a two-class classification problem. 

   

     

      Another commonly used evaluation measure is the Receiver Operating Characteristic 

(ROC) curve, which was recognized as a good evaluator for model performance by Metz 

[106]. A ROC curve (as shown in Figure 19) is a visualization tool that illustrates how the 

true positive rate (TP/(TP+FN), also referred to as sensitivity) fluctuates with the false 

positive rate (FP/(TN+FP)). A perfect classifer will have a 100% true positive rate and a 

0% rate of false positives, which means that the curve will have a point in the top left 

corner of the plot. The area under the ROC curve (AUC) is used to assess the prediction 

performance across a range of decision thresholds. For a two-class classification task, an 

AUC value of 1.0 represents a perfect model, while a value of 0.5 corresponds to random 

predictions, as increases in sensitivity are directly correlated with decreases in specificity.   
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Figure 19 An example of Receiver Operating Characteristic (ROC) curve retrieved 

from [126]. This example presents three kinds of ROC curves: a perfect 

ROC curve with AUC values equal to 1, a relatively good ROC curve with 

AUC values = 0.85 and a chance line with AUC values = 0.5.  

     

      

      In order to evaluate the predictive performance of machine learning model on the test 

data, the k-fold cross validation has been widely used in machine learning evaluation 

stage. It first divides the whole data set into k subsets. Subsequently, k – 1 subsets are 

utilized as the training set to train the model, and the remaining subset is used as the test 

set for test error estimation. The above process is repeated k times to get an averaged test 

error.  

 

4.1.4  Population Of Interest 

 
The Atlantic sea scallop (Placopecten magellanicus) is one of the most commercially 

important marine species in North America. In 2012, the overall economic value of this 

species was around $113.5 million. This species is common along the shore of the Gulf 

of St. Lawrence and the Bay of Fundy off Digby, and the coasts of the Mid-Atlantic 

Bight as far south as North Carolina [84] [85] [87]. Even though several management 
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measures have been made to increase their sustainability to excessive fishing, long-term 

effective management is still in need owing to the increasing marketing demand of the 

sea scallop. Furthermore, ongoing environmental changes, such as global warming, 

would lead to the increment of sea surface temperature, which might shape the future 

distributions or the geographic ranges of species including scallops. These induced 

changes would have negative impacts on sea scallop habitats. Therefore, research 

exploring climate-associated adaptation in sea scallop populations is required to provide 

critical insights for the understanding of how climatic factors drive distributions of 

marine species, and subsequently implicate the environmental and management policies. 

      Many markers such as random amplified polymorphic DNA (RAPD), RFLPs and 

microsatellites have been developed for population genetics studies in sea scallop [97]. A 

large panel of SNPs assessed using NGS data can present a complete genomic picture 

across all regions of the genome, providing the opportunity to identify both neutral genes 

and adaptive genes that have strong relationships with environmental gradients. This 

enables the detection of adaptive loci through environmental association analysis. 

Normally the genotypes at a bi-allelic SNP can only have three classes (homozygous for 

either of the two alleles, or heterozygous), but large numbers of SNPs provide high-

resolution differentiation of individuals. Individuals with similar genotypes, which 

indicate that they are closely related, can be clustered into a population. Individuals may 

also have admixed genotypes which indicate similarity to two or more populations. 

Therefore, SNP genotypes enable the inference of the composition of a population 

(population structure).   

 

4.1.5  Analysis Workflow 

 
Our objective in this work was to pair a machine-learning approach with statistical 

models to identify adaptive loci and the environmental factors that are associated with 

these adaptive variants. The analysis proceeded in several steps (Figure 20). First we 

inferred the number of distinct populations assignments of individuals to each of these 

populations using the STRUCTURE software [100]. We then trained RF classifiers using 

environmental variables as input and individual SNPs as output, with well-predicted 
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SNPs considered as candidate adaptive loci. Next, to correct for spatial autocorrelations 

in the genetic and environmental data, we used statistical models to partition the variance 

of these data into spatially correlated and uncorrelated components. Another random 

forest analysis was then performed to select important SNPs whose effects are at least 

partially independent of spatial relationships.   

  

 

 

Figure 20 Workflow of proposed environmental association analysis. Genetic data 

are to infer population structure. Two random forest analyses are 

performed on the environmental and genetic data with and without spatial 

effects controlled. Important genotypes selected by both models can then 

be run into multivariate analysis to investigate the underlying associations.  
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4.2 DATA PREPARATION 

 

4.2.1  Genetic Data 

 
A total of 252 adult scallops were collected by hand or bottom trawl from a total of 12 

locations across the entire range of the species between 2011 and 2013 (Table 3, Figure 

21) with a minimum of 12 scallops per population (mean value of 20.4 ± 2.8 scallops). 

The details of DNA extraction, library preparation and sequencing can be found in 

Appendix C.1. 

      SNPs were detected using the de novo pipeline in STACKS v.0.9999 [90]. We tested 

several variations of the STACKS parameters with repeated runs to help ensure 

appropriate choice and examine sensitivity of SNP calling. The final dataset was filtered 

using PLINK v.1.07 [91] [92] to include only SNPs that were present in 75% of 

individuals in SNP discovery and calling. Therefore, all SNPs included in the analysis 

were present in 75% of individuals with a minor allele frequency greater than 5%. 

Furthermore, we excluded individuals with more than 20% missing loci from the 

analysis. Hardy-Weinberg Equilibrium (HWE) describes the situation where allele 

frequencies and genotype frequencies are in balance; in diploid organisms with alleles 

“A” and “a” with respective frequencies p and q, the expected genotype frequencies are 

p
2
, q

2
, and 2pq for the homozygous “pp”, homozygous “qq”, and heterozygous “pq” 

genotypes, respectively. Devations from HWE at a locus can indicate unusual patterns of 

inheritance and key assumptions of population structure. Loci were filtered for HWE 

using the program GENEPOP v.4 [93], excluding loci out of equilibrium in six or more 

populations from the analysis (<0.7% of all loci). The final genetic data contains 

genotypes of 245 samples at 7163 SNP loci.  

      Before running the following environmental association analysis, missing genotypes 

in the genetic SNP data need to be addressed since many statistical models cannot handle 

missing values. Removing missing values is not a good approach because it will cause 

the loss of too much important information. Therefore, inference or imputation of missing 
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genotypes was performed. A method based on weighted k-nearest neighbours (KNN) 

called KNNcatImpute [95] was used to impute the missing genotypes in our genetic SNP 

data. The imputation was performed using the scrime package in R [99]. 

 

4.2.2  Environmental Data 

 
Environmental data was collected from several databases including the Department of 

Fisheries and Oceans Canada, BioChem (DFO 2014) (years 2009-2014), and AZMP 

(DFO 2015), and from the National Aeronautics and Space Administration in the United 

States of America (NASA, years 1990-2010), and the MODIS satellite database (NASA 

Goddard Space Flight Center Ocean Ecology Laboratory 2014) (years 2002-2013). Data 

was averaged over the range of years available to remove the signatures of short-term 

variation in the marine environment. Collected variables included water temperature, 

salinity, sigmaT that is a measure of water density which is a product of the temperature 

and salinity, and chlorophyll A that can be used to assess the levels of phytoplankton in a 

system, and nutrient concentrations including silicic acid (SiO4), nitrite (NO2), nitrate 

(NO3) and phosphate (PO4). Some important environmental variables that will be used in 

the following analysis and their corresponding abbreviations are listed in Table 4.  

     Data validation and preparation were completed using R [96]. The details of how we 

normalized data and removed some outliers were described in Appendix C.2. The final 

environmental data set contained 90 variables spanning all variable data types.    

   

 

Table 3 Information of sampling locations and the number of individuals at each 

sampling site. 

 
Location Name Abrreviations Number of 

individuals collected 
at this site 

Sunnyside, NL SUN 20 

Little Bay, NL LTB 21 

Magdalen Islands MGD 21 

Northumberland Strait NTS 22 
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Location Name Abrreviations Number of 

individuals collected 
at this site 

Passamaquoddy Bay PSB 12 

Bay of Fundy BOF 22 

Scotian Shelf – Middle SSM 19 

Gulf of Maine Inshore GMI 20 

Browns Bank SSB 22 

Gulf of Maine offshore GMO 22 

George’s Bank GEO 22 

Mid-Atlantic Bight MDA 22 

   

 

Table 4  Important environmental variables and corresponding abbreviations. 

 
Environmental variables Abrreviations 

Surface average winter temperature SAWT 

Depth average summer temperature DAST 

Depth max temperature DMT 

Depth average autumn salinity DAAS 

Surface average winter chla SAWCA 

Depth average summer SiO4 DASSiO4 

Surface average winter SiO4 SAWSiO4 

Depth min PO4 DMIPO4 

Surface max chlorophyll A SMCA 

Surface average spring chlorophyll A SASCA 

Surface average autumn salinity SAAS 

Depth average spring temperature DAST 

Depth average summer temperature DASUT 

Surface average spring SiO4 SASSiO4 

Surface average autumn SiO4 SAASiO4 
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Environmental variables Abrreviations 

Depth average spring NO2 NO3 DASNN 

Depth min NO2 NO3 DMNN 

Depth max NO3 DMN3 

Depth average autumn PO4 DAAPO4 

Depth max PO4 DMPO4 

 

 

 

Figure 21 Map of the 12 sea scallop collection sites in the Northwest Atlantic Ocean. 

Populations are marked by abbreviations that are the same as Table 3.  

 

4.3 POPULATION STRUCTURE AND ENVIRONMENTAL ASSOCIATION 

ANALYSIS 
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4.3.1  Population Structure 

 
A Bayesian model-based program, STRUCTURE [100], was used to estimate the number 

of distinct populations in the sea scallop, as well as the admixture proportions for each 

individual. STRUCTURE uses Markov chain Monte Carlo (MCMC) algorithm to 

differentiate populations from multilocus genotype data. In our sea scallop data, 200,000 

MCMC interations were run in STRUCTURE after an initial discarded burn-in phase of 

50,000 runs. The tested number K of genetic clusters was allowed to vary between 1 and 

15, and for each value of K, STRUCTURE runs were replicated 3 times in order to get the 

most stable likelihood values. The number of correct clusters was estimated based on the 

log probability value L(P) and as well as the rate of change in the log probability with 

respect to K values (also called as K method) [101]. The STRUCTURE results were 

summarized using the Structure Harvester [102] and visualized using software CLUMPP 

[133] and distruct [134].  

     Plot of L(P) values (Figure 22(a)) showed that L(P) values reached a plateau at around 

K=2. From the deltaK plot, we can see a large peak at K=2 and a much smaller peak at 

K=4 (Figure 22 (b)), which indicated the number of inferred clusters best fitting our data 

was 2. Each individual in the bar plot was represented by a vertical line and each line was 

filled by different colors that represent the proportions of membership in the inferred 

clusters [100]. Bar plots of individuals for K=2 and K=4 revealed a substantial degree of 

admixture, as seen by the large number of individuals composed of bars of >1 color 

(Figure 22 (c)). For K=2, SUN, LTB, MGD and NTS were identified as a group and all 

the other populations were clustered together. A larger degree of admixture was seen in 

the sampling sites SUN, MGD, NTS, PSB, SSM and GMO. This degree of admixture 

might affect the detection of environmentally adaptive SNPs since allele frequencies at 

those adaptive SNPs might decrease or disappear when admixed individuals contain 

alleles from more than one population. The influence of admixture on the identification 

of adaptive loci was explored in the following section. When K=4, no clear evidence of 

population structure was observed in the majority of sites, however, in this case SUN, 

MGD and NTS were more similar to one another, while LTB was more distinct from 

other three sites. 
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Figure 22 STRUCTURE results showing the spatial structure of the 12 sea scallop 

populations. (a) Plot showing the estimated log probability L(P) for each 

K value (b) The deltaK plot for detecting the optimal number of 

populations. (c) Bar plot of inferred ancestry of individuals obtained with 

the STRUCTURE analysis. In the bar plot, each vertical line represents an 

individual and is filled with colors whose lengths are proportional to the 

estimated memberships in the inferred clusters. The abbreviations for all 

the populations are listed in Table 3.  
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4.3.2  Random Forest Classification Of Sea Scallop Data 

 
The 7163 SNPs in our study are bi-allelic genetic markers, which indicates that only two 

alleles (denoted as A and B) can be present at each site, and all individuals will have a 

genotype of AA, AB or BB. To encode the SNP data, we transformed the genotypes to 

three categories and performed three-class RF classification. All the environmental 

variables were used as predictors of SNP genotypes, with a total of 7163 predictive 

models built, one per SNP. Classification was performed using the randomForest package 

[107] in R. Ten-fold cross validation was used to evaluate test-set accuracy, and we used 

AUC as an evaluation measure for the predictions of all the 7163 random forest models. 

Normally the AUC calculation is only applicable to a binary classification problem. 

Therefore, in our case, a different AUC calculation method proposed by Hand & Till in 

2001 [108] was used for our three-class classification tasks. This method calculates AUC 

for each pair of classes and averages the AUC for all pairs of classes [108]. The multi-

class AUC measure was performed using the package pROC in R [109].   

      Based on the value of AUC, we obtained a ranked list of SNPs (Figure 23 (a)) and 

selected the 14 top-ranked SNPs whose AUC value was larger than 0.7 for the following 

analysis. In the top 14 SNPs, SNP “4668_81” showed the best classification accuracy 

with AUC around 0.96. The majority of SNPs have AUC values close to 0.5, while 85 

SNPs (around 1%) had an AUC larger than 0.65. The AUC values for the top ranked 200 

SNPs were also illustrated in Figure 23 (b). The accuracies at these top 14 SNPs were 

also calculated by sampling site. At SNPs “17055_73” and “25627_51”, the accuracies at 

sampling site SSB were larger than other sites owing to the smaller degree of admixture 

in the SSB site (as shown in Figure 22 (c)). Poorer prediction performance was seen in 

the sites of NTS and MGD sites at some SNPs. Since all genotype predictions for a given 

site must be identical (since the environmental predictors are the same), it is not 

surprising that sites with greater admixture are likely to exhibit lower classification 

accuracies.  

    The 14 trained RF models for the top 14 SNPs were used to rank environmental 

variables using the variable importance function built in random forests. The permutation 
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importance was used to estimate the variable importance. Since the importance values of 

some variables might be negative, which indicate that those variables are not important, 

the exponential values of the variable importance array were calculated. Then these 

values were averaged over the total importance sum of all environmental variables to 

calculate an importance percentage for each environmental variable. In the ten-fold cross 

validation, 10 RF models were built and importance percentage array was calculated for 

all the environmental variables by each built RF model, to ensure the estimated variable 

importance values are reliable. Subsequently we averaged the 10 importance percentage 

arrays to get average importance percentages. Therefore, in each of the 14 trained RF 

models for the top 14 SNPs, one average importance percentage array was generated. In 

order to explore which environmental variables contribute the most to the prediction of 

genotypes at all the 14 SNPs, we averaged again on all the 14 average importance 

percentage arrays to get the final variable importance ranking list (as shown in Figure 

24). Among these environmental variables, depth average summer salinity, surface 

average spring sigmaT, and depth min salinity were the three most important predictors 

for the classifiers. In addition to these salinity variables, depth average winter 

temperature, surface average autumn temperature and depth min temperature were also 

ranked as important variables. The importance percentages of the most important 

predictors are low. This is because the importance percentages of the same environmental 

variables may differ for different SNP outputs, and relatively large importance 

percentages might decrease due to the averaging on all the 14 importance percentage 

arrays.  
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Figure 23 (a) AUC values for all the 7163 SNPs. (b) AUC values for the top ranked 

200 SNPs. 
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Figure 24 Averaged variable importance percentages for all the environmental 

variables.  

 

 

4.3.3  Association With Environmental Data Using Redundancy 
Analysis 

 

In order to validate the performance of RF model in the selection of environment-

associated loci and further explore the underlying associations with environmental 

factors, redundancy analysis (RDA) was conducted on environmental data and the 

selected SNP data (Figure 25). RDA is a statistical model that is similar to PCA. 

However, where PCA is an unconstrained ordination analysis that extracts the maximum 

variance of one set of variables, RDA is a constrained ordination analysis that seeks 

dimensions that capture the maximum variance in the response data, where the response 

data are linear combinations of the explanatory variables [110].  

    Assume response data is a matrix Y (n, p) and explanatory variables are in a matrix X 

(n, q), which can be displayed as follows: 
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Y =  

       
       

       

    

    

 
    

   X =  

       
       

       

    

    

 
    

  

 

    Where n indicates the number of samples, p and q refer to the number of reponse 

variables and explanatory variables. The RDA model is built by firstly performing a 

multiple linear regression (MLR) for each feature in Y on matrix X. Then PCA is 

conducted on the fitted values of MLR to generate canonical eigenvectors E and 

eigenvalues, where the matrix E is used subsequently to calculate ordination scores for 

response and explanatory variables respectively [110].   

     The top 14 SNPs were selected from the SNP ranking list based on the AUC values. 

Owing to the multicolinearity in the environmental variables, we did a PCA on all the 

variables and extracted the first five PCA axes that explained over 90% of the variance of 

the environmental data set. Subsequently, we selected the two variables that were most 

highly correlated with each of these first five PCA axes. The extracted 10 important 

environmental variables accounted for 6.76% of the total variance in the environmental 

data set. The RDA model was performed using these 10 environmental variables and the 

allele frequencies at the 14 SNPs.  

      Part of the variance in genetic data can be explained by geographical distance due to 

more-frequent interbreeding and migration between proximal sample sites. In order to 

control for these effects, a partial RDA aiming to remove the contributions of conditional 

variables to the variance of response data was performed. The variance explained by the 

environmental variables in RDA was 31.71%, with the first 2 RDA axes accounting for 

21.90% and 5.05% of the variance, respectively (Figure 25(a)). A permutation test of 

significance yielded a p-value smaller than 0.001 and F value of 10.864. Another 

permutation test was used to calculate the amount and significance of variation that could 

be attributed to each explanatory variable. The results showed that DMT (test statistic F = 

6.2827, p-value <0.001) and DMIPO4 (test statistic F =5.7803, p-value <0.001) 

presented a strong correlation with allele frequencies. DAST (test statistic F = 2.2066, p-

value 0.039) and DASSiO4 (test statistic F = 2.2508, p-value 0.032) had associated p-
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values that were larger but still less than 0.05, which means they were still ‘significant’ 

correlations. In the partial RDA model, environmental factors contributed to 12.94% of 

the variance and geographic distance explained 19.34% of the total variance (Figure 25 

(b)).   
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Figure 25 (a) RDA biplot for associations between the allele frequencies at the top14 

SNPs and 10 selected environmental variables. (b) Partial RDA biplot with 

the removal of geographical effects. Environmental variables are plotted 

as arrows and objects plotted as grey points. The explanations of these 

abbreviations are listed in Table 4. 
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4.3.4  RF Classification With Control Of Geographical Effects  

 
From the results of partial RDA, we found that geographical distance accounted for larger 

proportions of the variance in our selected genetic data than did environmental factors. In 

order to remove the effects of spatial distance on environmental factors and genetic data, 

we used an inverse Cholesky transformation method on these two data sets. Inverse 

Cholesky transformation [127] is a method to decorrelate highly correlated variables. 

Suppose the environmental data is E, which are the combined effects of spatial 

independently environmental variables (E’) and the geographical distance (D). Then 

using the inverse Cholesky matrix of D times the environmental data E will generate the 

transformed data that are not correlated with D (which is E’). In order to validate the 

performance of inverse Cholesky transformation method on controlling spatial effects, 

first we did a Moran’s I test to measure the spatial autocorrelation in the original 

environmental variables. Figure 26 shows the p-value for the measured spatial 

autocorrelations on all environmental variables. The p-value represents the probability 

that no spatial autocorrelation is detected at these environmental variables. In Figure 26, 

the p-values are log transformed and then absolute values are used as the y-axis values to 

better present those spatial correlated variables in the top of the plot. In our 90 

environmental variables, spatial autocorrelation was found in 45 variables. Then we did 

another Moran’s I test on the environmental data after inverse Cholesky transformation, 

the number of environmental variables that showed spatial autocorrelation decreased to 

eight, which demonstrate that spatial effects were controlled to some extent.  

     Another RF regression model was performed on the corrected genetic and 

environmental data. Since the values of corrected genetic data are continuous, we adopted 

the mean squared error (MSE), which is the average of the square of diffirences between 

predicted value and actual value, as an evaluation measure to assess the performance. A 

smaller MSE value indicates better performance of the RF regression model. The 

estimated MSE for the 280 SNPs with MSE smaller than 0.75 can be found in Figure 27. 

In order to compare the performance of model with spatial effects controlled the previous 

uncorrected model, the top 14 SNPs were also selected from the MSE ranking list. Only 

two SNPs, “4668_81” and “15645_89”, were selected by both the corrected and 

uncorrected RF models. PCA was also used on the transformed environmental variables 
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and 10 important environmental factors were picked using the same method. The 

extracted 10 environmental variables accounted for around 6.12% of the total variability 

in the environmental data set. RDA was once again conducted on these two data sets (as 

shown in Figure 28).   

      The variance explained by environmental variables in RDA was 44.21%, where the 

first 2 RDA axes accounted for 39.99% and 2.27%. Then a permutation test on the RDA 

model illustrates that this model was significant with a p-value smaller than 0.001 and F 

value is equal to 18.545. Another permutation test was used to calculate the significance 

of variation explained by each explanatory variable. The results showed that all the 10 

environmental variables presented a strong correlation with allele frequencies (p value 

smaller than 0.001).  

 

 

Figure 26 The absolute values of log transformation on the p-values of Moran’s I test 

for spatial autocorrelation on all environmental varibales. The red line 

specifyies the absolute values of log transformation on the p-value of 0.05 

(which is 2.995732). Any points above the red line means that those 

environmental factors are correlated with spatial distance; only those 

variables found to be significant are labelled on the x-axis.   
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Figure 27 MSE values for the top 280 SNPs with MSE smaller than 0.75. 
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Figure 28 RDA biplot for associations between the allele frequencies at the top 14 

SNPs and ten selected environmental variables with the removal of spatial 

effects. The explanations of these abbreviations are listed in Table 4. 

  

 

4.4 CONCLUSIONS 

 

RF offers a non-linear model to explore the associations between genetic data and 

environmental data, and provides an automatic calculation of variable importance that 

helps to find which environmental variables are the primary drivers for the spatial 

patterns of identified adaptive variants. The RF models differ from other most regression 

models in the identification of adaptive loci. Most regression models regress allele 

frequencies on a range of environmental variables to test correlations between allele 

frequencies and environmental gradients while using other variables to account for 

neutral effects. By contrast, our RF models treat those loci with high prediction 

performance as signs of selection. However, the correlations identified by this naïve 
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model could suffer from high false positive rates owing to the spatial autocorrelations in 

genetic and environmental data. The RF regression model on the corrected was 

constructed to address this problem. Moran’s I test on uncorrected and corrected data 

demonstrated that the geographic effects were well controlled. However, removing the 

geographic signal might also remove some adaptive signal as well since our 

environmental variables showed strong correlations with geographic distance.  

      The variable importance percentages calculated by RF models indicated that salinity 

(depth average salinity and depth min salinity), depth average winter temperature, surface 

average spring sigmaT and depth minimum temperature as the most important 

environmental variables. The RDA analysis on the selected environmental variables and 

SNPs indicated that depth max temperature and depth minimum PO4 had strong 

correlations with spatial patterns in genetic data. The identified important variables 

differed between these two methods since only 10 environmental factors with low 

multicollinearity were kept in the RDA analysis. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 

In this thesis, we have developed and validated approaches to infer, visualize and curate 

microsatellite data, and developed a new hybrid statistical / machine-learning approach to 

infer SNP loci that covary with environmental variables. MEGASAT addresses the 

disadvantages associated with electrophoresis-based methods by inferring microsatellite 

genotypes from NGS data, which could achieve higher genotyping accuracy, lower 

consumable costs and some other potential benefits. It uses different functions to deal 

with sequencing errors and designs algorithms to filter out amplification artifacts. 

Furthermore, it offers a visualization function to present the microsatellite data used to 

call genotypes, which enables reviewers to validate the scored genotypes and manually 

edit the mis-scored genotypes. The estimated genotyping error rates using repeat-

genotyping method and pedigree-based method demonstrated that MEGASAT could 

achieve high genotyping accuracy. The comparison of performance of MEGASAT with 

MicNeSs [22] further demonstrated the better performance of MEGASAT in genotyping 

accuracy and running time.  

    Subsequently, we presented a machine-learning model, random forest, to conduct 

environmental association analysis with statistical models. We developed an approach 

that used RF classification to infer environmentally associated gene variants, and 

performed an RF regression to extract gene variants that are only correlated with 

environmental gradients. This regression model was built on spatially independent 

genetic and environmental data sets via using inverse Cholesky transformation to 

partition raw data into spatially correlated and uncorrelated components. After extraction 

of adaptive SNPs, the ordination technique RDA was used to futher investigate the 

relationships between identified adaptive genetic variabilities and environmental 

gradients.   

    These new methods have already generated new insights into datasets collected for 

conservation biology purposes, but further refinements are possible that would further 

increase their utility. 
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5.1  SNP DETECTION IN IDENTICAL-LENGTH ALLELES  

 
NGS provides the raw sequence reads for microsatellite genotyping, which gives the 

opportunity to detect SNPs in microsatellite-containing sequences in addition to the 

length variants currently identified by MEGASAT. If sequence variations can be found in 

identical-length alleles, those assigned alleles will give higher-resolution information 

about more closely related individuals. The pedigrees shown in Figure 3.6 and 3.7 still 

have a large amount of statistical uncertainty; if reliable SNPs can be used to further 

differentiate alleles, then statistical support would be expected to increase. This is 

because the high mutation rate of microsatellites, which results in individuals with the 

same allele lengths that are not identical by descent but instead the product of 

convergence [130, 131]. However, DNA sequences are less likely to converge due to the 

large number of nucleotides in a typical microsatellite array.  

 We developed a preliminary new version of MEGASAT that can use SNP information to 

distinguish alleles that would not have been detectable by the version described in 

Chapter 2. This function can differentiate alleles of the same length based on their 

nucleotide sequences. These refinements required changes to the MEGASAT 

implementation including using a hash table to store the length and counts of alleles, and 

genotype assignment from the sequence records in the hash table. Applying this version 

to the guppy dataset, we calculated the number of additional real variations we found for 

different alleles (as shown in Table 5). For some alleles at a locus, few variations were 

detected but some other alleles show large amounts of variation.  

 

Table 5 Number of additional variations found by the SNP-version script for some 

loci on a sample data set (around 400 guppy individuals). The second and 

third column shows the number of alleles detected by original script and 

SNP-version script. The last column presents the number of variations 

found at different alleles. 

 

Locus 

name 

Number of 

alleles 

detected by 

Number of 

alleles detected 

by the new 

Alleles detected by 

original script (number 

of variations found at 



 

 79 

original script version this allele) 

BF-047 6 71 30(18) 32(3) 34(20) 36(3) 

38(23) 40(4)  

BF-052 11 36 24(3) 27(3) 30(6) 33(1) 39(4) 

42(1) 45(8) 48(6) 51(7) 54(2) 

63(1) 

BF-143 8 26 47(5) 49(2) 51(11) 53(2) 55(1) 

57(2) 77(2) 79(1)  

BF-174 11 223 36(37) 42(47) 44(1) 46(49) 

48(15) 50(11) 54(11) 56(2) 

58(40) 60(1) 62(9)  

BF-185 11 159 38(10) 41(3) 44(7) 47(18) 

50(12) 53(5) 56(13) 59(26) 

62(32) 65(26) 68(7)  

BF-190 9 129 45(9) 47(3) 49(18) 51(8) 

57(36) 59(42) 61(1) 63(6) 

69(6)  

BF-225 7 148 61(6) 63(11) 65(16) 67(45) 

69(22) 71(45) 73(3)  

BF-230 16 300 42(13) 48(2) 60(23) 63(13) 

66(51) 69(14) 72(16) 75(32) 

78(34) 81(18) 84(21) 87(15) 

90(18) 93(18) 96(7) 99(5)  

BF-231 10 81 52(3) 56(13) 62(3) 66(3) 

68(26) 70(6) 72(11) 74(12) 

80(2) 82(2)  

BF-247 11 72 48(1) 51(3) 54(1) 57(4) 60(3) 

63(18) 66(16) 69(12) 72(8) 

75(4) 84(2)  

BF-262 11 45 64(3) 70(7) 73(1) 76(2) 79(6) 

82(4) 85(7) 88(8) 91(2) 94(3) 

97(3) 
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     However, in the called allele variants, there still exist a proportion of variants that are 

caued by sequencing errors. In order to address this problem, several methods could be 

used to distinguish real SNPs from sequencing errors. One way is to utilize models 

proposed by some [e.g. 128], which uses the quality scores provided by FASTQ files and 

compare the sequence reads across a large population of individuals using a probabilistic 

model to detect the SNPs. SNP detection models built in some software pipelines (e.g. 

Stacks [129]) could also be used to filter out those variants containing sequencing errors. 

Once genotyping errors were filtered out, the genotyping output of this SNP-version 

script could also be used into FRANz to build pedigrees. However, if there are enough 

alleles identified by the previous script, which give enough genetic resolution for 

inferring parentage information, adding more variants might not make any difference 

unless we need to build pedigrees from large numbers of individuals.   

 

5.2 FUTURE WORK 

 

Although MEGASAT enables microsatellite genotyping in a much faster and more accurate 

way by using NGS data, there still exist some improvements that could be done for this 

program. In some microsatellite loci, the flanking regions might not be identical and can 

have length variations even for the same microsatellite locus. In order to identify those 

real variations in the flanking region, several changes could be made in the microsatellite 

identification algorithm to enable MEGASAT to recognize different length variants in 

flanking regions. Another future refinement would be interactive curation. As we stated in 

the section 2.5, MEGASAT provides visual representations of allele calls to allow users to 

verify the inferred genotypes and manually curate few wrongly scored genotypes. 

Though few genotypes need to be edited, manual editing the genotyping text file is 

inconvenient. A better way could be achieved by generating interactive histograms that 

connect the histograms to the text file. Any updates made in the histograms could be 

incorporated into the text file as well. 

       The proposed random-forest based workflow worked well to identify adaptive loci 

and environmental gradients associated with adaptive loci. In this method, we used PCA 
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to extract important environmental variables that are not highly correlated, which aimed 

to run into the following RDA analysis since RDA assumes explanatory variables are 

independent. However, the extracted environmental variables just accounted for around 

6% of the total variance, which might cause the loss of environmental information. This 

could result in some important environmental variables failing to be explored with 

adaptive gene variants in the RDA analysis. A refinement of this approach could use the 

variable importance inferred by RF to extract important variables from the whole data set. 

PCA can be performed on the extracted variables and PCA axes can be used into RDA 

analysis to find which PCA axes are most important. Important environmental factors can 

be identified via the contributions of each environmental variable on the important PCA 

axes. Another way could be using LASSO or ridge regressions [104] to do feature 

selection on environmental data since these two regression methods perform well on 

collinear data. Then we can apply forward selection in RDA analysis using these selected 

variables to further determine which subset of variables can be explanatory variables for 

RDA. 

     In our method, we used the corrected genetic and environmental data after inverse 

Cholesky transformation into RF regression to control for spatial autocorrelations. 

However, we did not implement any changes in the RF model. In some other traditional 

statistical models for environmental association studies, latent factors or covariates [118, 

120] are used in regression models to account for non-adaptive effects, which indicate the 

probability of incorporating covariates or any latent factors into RF models to account for 

some neutral effects.     

 

  



 

 82 

BIBLIOGRAPHY 

 
[1] Jean-Pierre Feral. How useful are the genetic markers in attempts to understand and 

manage marine biodiversity. Journal of Experimental Marine Biology and Ecology, 

268(2):121-145, 2002. 

 

[2] Francisco Rodriguez-Valera. Approaches to prokaryotic biodiversity: a population 

genetics perspective. Envrionmental Microbiology, 4(11):628-633, 2002. 

 

[3] Don C. Delong. Defining biodiversity. Wildlife Society Bulletin, 24 (4):738-749, 1996.  

 

[4] Peter J. Edwards and Cyrus Abivardi. The value of biodiversity: where ecology and 

economy blend. Biological Conservation. 83(3):239-246, 1998. 

 

[5] Craig Bullock. The economic and social aspects of biodiversity. 2008. 

 

[6] How many species are we losing? Retrieved from 

http://wwf.panda.org/about_our_earth/biodiversity/biodiversity/. 2015. 

 

[7] Carol Kearns. Conservation of Biodiversity. Nature Education Knowledge, 3(10):7, 

2010. 

 

[8] Brian Ford-Lloyd and Kevin Painting. Measuring genetic variation using molecular 

markers. International Plant Genetic Resources Institute, 1996. 

 

[9] Yoseph Beyene, Anna-Maria Botha and Alexander A. Myburg. A comparative study 

of molecular and morphological methods of describing genetic relationships in traditional 

Ethiopian highland maize. African Journal of Biotechnology, 4(7):586-595, 2005.  

 

[10] Linda Mondini, Arshiya Noorani and Mario A. Pagnotta. Assessing plant genetic 

diversity by molecular tools. Diversity, 1:19-35, 2009. 

 

[11] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature 

Biotechnology, 26(10):1135-1145, 2008. 

 

[12] Michael L. Metzker. Sequencing technologies – the next generation. Nature Reviews  

Genetics, 11(1):31-46, 2010. 

 

[13] P. Kumar, V.K. Gupta, A.K. Misra, D. R. Modi and B. K. Pandey. Potential of 

molecular markers in plant biotechnology. Plant Omics Journal, 2(4):141-162, 2009. 

 

[14] John S. Gray. Marine biodiversity: patterns, threats and conservation needs. 

Biodiversity and Conservation, 6(1):153-175, 1997. 

 

http://wwf.panda.org/about_our_earth/biodiversity/biodiversity/


 

 83 

[15] Stephanie Manel and Rolf Holderegger. Ten years of landscape genetics. Trends in 

Ecology & Evolution, 28(10):614-621, 2013. 

 

[16] Hans Ellegren. Microsatellites: simple sequences with complex evolution. Nat Rev 

Genet Nature Reviews Genetics, 5(6):435-445, 2004. 

 

[17] E. Guichoux, L. Lagache, S. Wagner, P. Chaumeil, P. Léger, O. Lepais, C. 

Lepoittevin, T. Malausa, E. Revardel, F. Salin, and R.J. Petit. Current trends in 

microsatellite genotyping. Molecular Ecology Resources, 11(4):591-611, 2011. 

 

[18] Kimberly A. Selkoe and Robert J. Toonen. Microsatellites for ecologists: a practical 

guide to using and evaluating microsatellite markers. Ecology Letters, 9(5):615-629, 

2006. 

 

[19] P.M.Abdul-Muneer. Application of microsatellite marker in conservation genetics 

and fisheries management: recent advances in population structure analysis and 

conservation strategies. Genetics Research International, 2014:1-11, 2014. 

 

[20] Daniel G. Hert, Christopher P. Fredlake and Annelise E. Barron. Advantages and 

limitations of next-generation sequencing technologies: a comparison of electrophoresis 

and non-electrophoresis methods. Electrophoresis, 29(23):4618-4626, 2008. 

 

[21] A J Sabat, A Budimir, D Nashev, R Sa-Leao, J M van Dijl, F Laurent, H Grundmann, 

A W Friedrich, on behalf of the ESCMID Study Group of Epidemiological Markers 

(ESGEM). Overview of molecular typing methods for outbreak detection and 

epidemiological surveillance. Euro Surveill, 18(4):p20380, 2013. 

 

[22] Marie Suez, Abdelkader Behdenna, Sophie Brouillet, Paula Graca, Dominique 

Higuet and Guillaume Achaz. MicNeSs: genotyping microsatellite loci from a collection 

of (NGS) reads. Molecular Ecology Resources, 16(2):524-533, 2015. 

 

[23] Moran P, Teel DJ, LaHood ES, Drake J and Kalinowski S. Standardising multi-

laboratory microsatellite data in Pacific salmon: an historical view of the future. Ecology 

of Freshwater Fish, 15(4):597-605, 2006. 

 

[24] Iria Fernandez-Silva, Jonathan Whitney, Benjamin Wainwright, Kimberly R. 

Andrews, Heather Ylitalo-Ward, Brian W. Bowen, Robert J. Toonen, Erica Goetze and 

Stephen A. Karl. Microsatellites for next-generation ecologists: a post-sequencing 

bioinformatics pipeline. PLOS ONE, 8(2):e55990, 2013. 

 

[25] Emese Meglecz, Nicolas Pech, Andre Gilles, Vincent Dubut, Pascal Hingamp, 

Aurelie Trilles, Remi Grenier and Jean-Francois Martin. QDD version 3.1: a user-friendly 

computer program for microsatellite selection and primer design revisited: experimental 

validation of variables determining genotyping success rate. Molecular Ecology 

Resources, 14(6):1302-1313, 2014. 

 



 

 84 

[26] John W. Fondon III, Andy Martin, Stephen Richards, Richard A. Gibbs and David 

Mittelman. Analysis of microsatellite variation in Drosophila melanogaster with 

population-scale genome sequencing. PLoS ONE, 7(3):e33036, 2012. 

 

[27] Lucia R. Weinman, Joseph W. Solomon and Dustin R. Rubenstein. A comparison of 

single nucleotide polymorphism and microsatellite markers for analysis of parentage and 

kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15(3):502-511, 

2015.  

 

[28] Christiaan Labuschagne, Lisa Nupen, Antoinette Kotze, Paul J. Grobler and Desire L. 

Dalton. Assessment of microsatellite and SNP markers for parentage assignment in ex 

situ African Penguin (Spheniscus demersus) populations. Ecology and Evolution, 

5(19):4389-4399, 2015. 

 

[29] Barkur S. Shastry. SNP alleles in human disease and evolution. J Hum Genet, 

47(11):561-566, 2002. 

 

[30] Martin Kreitman. Human genome variation: analysis, management and application 

of SNP data. Pacific Symposium on Biocomputing, 5:633-635, 2000. 

 

[31] Phillip A. Morin, Gordon Luikart, Robert K. Wayne and the SNP workshop group. 

SNPs in ecology, evolution and conservation. TRENDS in Ecology and Evolution, 

19(4):208-216, 2004. 

 

[32] David Lopez Herraez, Holger Schafer, Jorn Mosner, Hans-Rudolf Fries and Michael 

Wink. Comparison of microsatellite and single nucleotide polymorphism markers for the 

genetic analysis of a Galloway cattle population. BIOCIENCES, 60(7-8):637-643, 2005. 

 

[33] Tanya Y. Berger-Wolf, Saad I. Sheikh, Bhaskar DasGupta, Mary V. Ashley, Isabel C. 

Caballero, Wanpracha Chaovalitwongse and S. Lahari Putrevu. Reconstructing sibling 

relationships in wild populations. Bioinformatics, 23(13):i49-i56, 2007. 

 

[34] C. Garke, F. Ytournel, B. Bed’hom, I. Gut, M. Lathrop, S. Weigend and H. Simianer. 

Comparison of SNPs and microsatellites for assessing the genetic structure of chicken 

populations. Animal Genetics, 43(4):419-428, 2011. 

 

[35] Eric C. Anderson and John Carlos Garza. The power of single-nucleotide 

polymorphisms for large-scale parentage inference. Genetics, 172(4):2567-2582, 2006. 

 

[36] Francesco Emanuelli, Silvia Lorenzi, Lukasz Grzeskowiak, Valentina Catalano, 

Macro Stefanini, Michela Troggio, Sean Myles, Jose M Martinez-Zapater, Eva Zyprian, 

Flavia M Moreira and M Stella Grando. Genetic diversity and population structure 

assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant 

Biology, 13:p39, 2013. 

 



 

 85 

[37] Melony J Sellars, Leanne Dierens, Sean McWilliam, Bryce Little, Brian Murphy, 

Greg J Coman, William Barendse and John Henshall. Comparison of microsatellite and 

SNP DNA markers for pedigree assignment in Black Tiger shrimp, Penaeus monodon. 

Aquaculture Research, 45(3):417-426, 2014. 

 

[38] J. E. Hess, A. P. Matala and S. R. Narum. Comparison of SNPs and microsatellites 

for fine-scale application of genetic stock identification of Chinook salmon in the 

Columbia River Basin. Molecular Ecology Resources, 11:137-149, 2011. 

 

[39] Jacquelin Defaveri, Heidi Viitaniemi, Erica Leder and Juha Merila. Characterizing 

genetic and nongenic molecular markers: comparsion of microsatellites and SNPs. 

Molecular Ecology Resources, 13(3):377-392, 2013. 

 

[40] Nathan R. Campbell, Stephanie A. Harmon and Shawn R. Narum. Genotyping-in-

Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on 

custom amplicon sequencing. Molecular Ecology Resources, 15(4):855-867, 2015. 

 

[41] James E. Seeb, Carita E. Pascal, Ramesh Ramakrishnan and Lisa W. Seeb. SNP 

genotyping by the 5’-Nuclease Reaction: advances in high-throughput genotyping with 

nonmodel organisms. Methods in Molecular Biology, 578:277-292, 2009.  

 

[42] Wolfgang Forstmeier, Holger Schielzeth, Jakob C. Mueller, Hans Ellegren and Bart 

Kempenaers. Heterozygosity-fitness correlations in zebra finches: microsatellites markers 

can be better than their reputation. Molecular Ecology, 21(13):3237-3249, 2012. 

 

[43] X.Y. Hauge and M. Litt. A study of the origin of ‘shadow bands’ when typing 

dinucleotide repeat polymorphisms by the PCR. Human Molecular Genetics, 2(4):411-

415, 1993. 

 

[44] Vincent Murray, Chutima Monchawin and Phillip R. England. The determination of 

the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids 

Research, 21(10):2395-2398, 1993. 

 

[45] J. Squirrell, P. M. Hollingsworth, M. Woodhead, J. Russell, A. J. Lowe, M. Gibby 

and W. Powell. How much effort is required to isolate nuclear microsatellites from plants? 

Molecular Ecology, 12(6):1339-1348, 2003. 

 

[46] P. Sean Walsh, Nicola J. Fildes and Rebecca Reynolds. Sequence analysis and 

characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids 

Research, 24(14):2807-2812, 1996. 

 

[47] Edwin Meijerink, Branko Kozulic, Gerald Stranzinger and Stefan Neuenschwander. 

Microsatellite allele sizing: difference between automated capillary electrophoresis and 

manual technique. BioTechniques, 31(4):810-818, 2001. 

 



 

 86 

[48] Dennis L. Deemer and C. Dana Nelson. Standardized SSR allele naming and bining 

among projects. BioTechniques, 49(5):835-836, 2010. 

 

[49] R Ekblom and J Galindo. Applications of next generation sequencing in molecular 

ecology of non-model organisms. Heredity, 107(1):1-15, 2011. 

 

[50] Juan E. Zalapa, Hugo Cuevas, Huayu Zhu, Shawn Steffan, Douglas Senalik, Eric 

Zeldin, Brent Mccown, Rebecca Harbut and Philipp Simon. Using next-generation 

sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. 

American Journal of Botany, 99(2):193-208, 2012. 

 

[51] John W. Davey, Paul Hohenlohe, Paul D. Etter, Jason Q. Boone, Julian M. Catchen 

and Mark L. Blaxter. Genome-wide genetic marker discovery and genotyping using next-

generation sequencing. Genetics, 12(7):499-510, 2011. 

 

[52] Christophe Van Neste, Filip Van Nieuwerburgh, David Van Hoofstat and Dieter 

Deforce. Forensic STR analysis using massive parallel sequencing. Forensic Science 

International: Genetics, 6(6):810-818, 2012. 

 

[53] Monika Zavodna, Andrew Bagshaw, Rudiger Brauning and Neil J. Gemmell. The 

accuracy, feasibility and challenges of sequencing short tandem repeats using next-

generation sequencing platforms. PLoS ONE, 9(12):e113862, 2014. 

 

[54] Kimberly Robasky, Nathan E. Lewis and George M. Church. The role of replicates 

for error mitigation in next-generation sequencing. NIH Public Access, 15(1):56-62, 2014. 

 

[55] M Ferrandiz-Rovira, T Bigot, D Allaine, M-P Callait-Cardinal and A Cohas. Large-

scale genotyping of highly polymorphic loci by next-generation sequencing: how to 

overcome the challenges to reliably genotype individuals? Heredity, 114:485-493, 2015. 

 

[56] Danielle Canceil, Enrique Viguera and S. Dusko Ehrlich. Replication slippage of 

different DNA polymerases is inversely related to their strand displacement efficiency. 

THE JOURNAL OF BIOLOGICAL CHEMISTRY, 274(39):27481-27490, 1999. 

 

[57] J. I. Hoffman and W. Amos. Microsatellite genotyping errors: detection approaches, 

common sources and consequences for paternal exclusion. Molecular Ecology, 

14(2):599-612, 2005. 

 

[58] Gareth Highnam, Christopher Franck, Andy Matrtin, Calvin Stephens, Ashwin 

Puthige and David Mittleman. Accurate human microsatellite genotypes from high-

throughput resequencing data using informed error profiles. Nucleic Acids Research, 

41(1):e32, 2013. 

 

[59] Brant C. Faircloth. MSATCOMMANDER: detection of microsatellite repeat arrays and 

automated, locus-specific primer design. Molecular Ecology Resources, 8(1):92-94, 2008. 

 



 

 87 

[60] Kelly R. Ewen, Melanie Bahlo, Susan A. Treloar, Douglas F. Levinson, Bryan 

Mowry, John W. Barlow and Simon J. Foote. Identification and analysis of error types in 

high-throughput genotyping. American journal of human genetics, 67(3):727-736, 2000. 

 

[61] Maureen A. Hess, James G. Rhydderch, Larry L. Leclair, Raymond M. Buckley, 

Mitsuhiro Kawase and Lorenz Hauser. Estimation of genotyping error rate from repeat 

genotyping, unintentional recaptures and know parent-offspring comparisons in 16 

microsatellite loci for brown rockfish (Sebastes auriculatus). Molecular Ecology 

Resources, 12(6):1114-1123, 2012. 

 

[62] Ke Hao, Cheng Li, Carsten Rosenow and Wing Hung Wong. Estimation of genotype 

error rate using samples with pedigree information-an application on the GeneChip 

Mapping 10K array. Genomics, 84(4):623-630, 2004.  

 

[63] Paul C.D. Johnson and Daniel T. Haydon. Software for quantifying and simulating 

microsatellite genotyping error. Bioinformatics and Biology Insights, 1:71-75, 2007. 

 

[64] Francois Pompanon, Aurelie Bonin, Eva Bellemain and Pierre Taberlet. Genotyping 

errors: causes, consequences and solutions. Nature Reviews. Genetics, 6(11):847-859, 

2005.  

 

[65] Yumeng Gao, Dabing Lu, Huan Ding and Poppy H. L. Lamberton. Detecting 

genotyping errors at Schistosoma japonicum microsatellites with pedigree information. 

Parasites & Vectors, 8(1):452, 2015. 

 

[66] Markus Riester, Peter F. Stadler and Konstantin Klemm. FRANz: reconstruction of 

wild multi-generation pedigrees. Genetics and population analysis, 25(16):2134-2139, 

2009. 

 

[67] Stephanie Manel, Michael K. Schwartz, Gordon Luikart and Pierre Taberlet. 

Landscape genetics: combining landscape ecology and population genetics. TRENDS in 

Ecology and Evolution, 18(4):189-197, 2003. 

 

[68] A Storfer, MA Murphy, JS Evans, CS Goldberg, S Robinson, SF Spear, R Dezzani, E 

Delmelle, L Vierling and LP Waits. Putting the ‘landscape’ in landscape genetics. 

Heredity, 98(3):128-142, 2007. 

 

[69] Ian R. Bradbury, Lorraine C. Hamilton, Martha J. Robertson, Chuck E. Bourgeois, 

Atef Mansour and J. Brian Dempson. Lanscape structure and climatic variation determine 

Atlantic salmon genetic connectivity in the northwest Atlantic. Canadian Journal of 

Fisheries and Aquatic Sciences, 71(2):246-258, 2013. 

 

[70] Gernot Segelbacher, Samuel A. Cushman, Bryan K. Epperson, Marie-Josee Fortin, 

Olivier Francois, Olivier J. Hardy, Rolf Holderegger, Pierre Taberlet, Lisette P. Waits and 

Stephanie Manel. Applications of landscape genetics in conservation biology: concepts 

and challenges. Conservation Genetics, 11(2):375-385, 2010. 



 

 88 

 

[71] Ian R. Bradbury, Sophie Hubert, Brent Higgins, Tudor Borza, Sharen Bowman, Ian 

G. Paterson, Paul V. R. Snelgrove, Corey J. Morris, Robert S. Gregory, David C. Hardie, 

Jeffrey A. Hutchings, Daniel E. Ruzzante, Chris T. Taggart and Paul Bentzen. Parallel 

adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to 

temperature. Proceedings of the Royal Society B, 277(1701):3725-3734, 2010. 

 

[72] Rolf Holderegger, Urs Kamm and Felix Gugerli. Adaptive vs. neutral genetic 

diversity: implications for landscape genetics. Landscape Ecology, 21(6):797-807, 2006. 

 

[73] Ana R. Amaral, Luciano B. Beheregaray, Kerstin Bilgmann, Dmitri Boutov, Luis 

Freitas, Kelly M. Robertson, Marina Sequeira, Karen A. Stockin, M. Manuela Coelho and 

Luciana M. Moller. Seascape genetics of a gloabally distributed, highly mobile marine 

mammal: the short-beaked common dolphin (Genus Delphinus). PLoS ONE, 7(2):e31482, 

2012. 

 

[74] Kimberly A. Selkoe, James R. Watson, Crow White, Tal Ben Horin, Matthew Iacchei, 

Satoshi Mitarai, David A. Siegel, Steven D. Gainess and Robert J. Toonen. Taking the 

chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic 

drivers of genetic patterns in three temperate reef species. Molecular Ecology, 

19(17):3708-3726, 2010. 

 

[75] Graham Coop, David Witonsky, Anna Di Rienzo and Jonathan K. Pritchard. Using 

environmental correlations to identify loci underlying local adaptation. Genetics, 

185(4):1411-1423, 2010. 

 

[76] Stephanie Manel, Felix Gugerli, Wilfried Thuiller, Nadir Alvarez, Pierre Legendre, 

Rolf Holderegger, Ludovic Gielly, Pierre Taberlet and Intra Bio Div Consortium. Broad-

scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. 

Molecular Ecology, 21(15):3729-3738, 2012. 

 

[77] Christian Rellstab, Felix Gugerli, Andrew J. Eckert, Angela M. Hancock and Rolf 

Holderegger. A practical guide to environmental association analysis in landscape 

genomics. Molecular Ecology, 24(17):4348-4370, 2015. 

 

[78] Katie E. Lotterhos and Michael C. Whitlock. The relative power of genome scans to 

detect local adaptation depends on sampling design and statistical method. Molecular 

Ecology, 24(5):1031-1046, 2015. 

 

[79] Pierre de Villemereuil and Oscar E. Gaggiotti. A new FST-based method to uncover 

local adaption using environmental variables. Methods in Ecology and Evolution, 

6(11):1248-1258, 2015. 

 

[80] Peter M. Vallone and John M. Butler. AutoDimer: a screening tool for primer-dimer 

and hairpin structures. BioTechniques, 37(2):226-231, 2004. 

 



 

 89 

[81] Elfath M. Elnifro, Ahmed M. Ashshi, Robert J. Cooper and Paul E. Klapper. 

Multiplex PCR: optimization and application in diagnostic virology. Clinical 

Microbiology Reviews, 13(4):559, 2000. 

 

[82] Matthew Kearse, Richard Moir, Amy Wilson, Steven Stones-Havas, Matthew 

Cheung, Shane Sturrock, Simon Buxton, Alex Cooper, Sidney Markowitz, Chris Duran, 

Tobias Thierer, Bruce Ashton, Peter Meintjes and Alexei Drummond. Geneious basic: an 

integrated and extendable desktop software platform for the organization and analysis of 

sequence data. Bioinformatics, 28(12):1647-1649, 2012. 

 

[83] Michael G. Gardner, Alison J. Fitch, Terry Bertozzi and Andrew J. Lowe. Rise of the 

machines – recommandations for ecologists when using next generation sequencing for 

microsatellite development. Molecular Ecology Resources, 11(6):1093-1101, 2011. 

 

[84] US Atlantic sea scallop. Retrieved from https://www.msc.org/track-a-

fishery/fisheries-in-the-program/certified/north-west-atlantic/us-atlantic-sea-scallop/. 

2015. 

 

[85] Atlantic deep-sea scallop, Placopecten magellanicus. Retrieved from 

http://www.geog.mcgill.ca/climatechange/ReportsMap/Placopecten%20magellanicus.pdf.  

 

[86] Deborah R. Hart and Paul J. Rago. Long-term dynamics of U.S. Atlantic sea scallop 

Placopecten magellanicus populations. North American Journal of Fisheries 

Management, 26(2):490-501, 2006. 

 

[87] Wendy Norden. Sea scallop Placopecten magellanicus. Seafood Watch, Monterey 

Bay Aquarium. 2012. 

 

[88] Sarah R. Cooley, Jennie E. Rheuban, Deborah R. Hart, Victoria Luu, David M. 

Glover, Jonathan A. Hare and Scott C. Doney. An integrated assessment model for 

helping the United States sea scallop fishery plan ahead for ocean acidification and 

warming. PLoS ONE, 10(5):e0124145, 2015. 

 

[89] Paul D. Etter, Jessica L. Preston, Susan Bassham, William A. Cresko and Eric A. 

Johnson. Local De Novo assembly of RAD paired-end contigs using short sequencing 

reads. PLoS ONE, 6(4):e185, 2011. 

 

[90] Julian M. Catchen, Angel Amores, Paul Hohenlohe, William Cresko and John H. 

Postlethwait. Stacks: building and genotyping loci de novo from short-read sequences. 

G3, 1(3):171-182, 2011. 

 

[91] Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel A. R. 

Ferreira, David Bender, Julian Maller, Pamela Sklar, Paul I. W. de Bakker, Mark J. Daly 

and Pak C. Sham. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. The American Journal of Human Genetics, 81(3):559-575, 2007. 

 

https://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-west-atlantic/us-atlantic-sea-scallop/
https://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-west-atlantic/us-atlantic-sea-scallop/
http://www.geog.mcgill.ca/climatechange/ReportsMap/Placopecten%20magellanicus.pdf


 

 90 

[92] Manuel A. R. Ferreira and Shaun M. Purcell. A multivariate test of association. 

Bioinformatics, 25(1):132-133, 2009. 

 

[93] Francois Rousset. GENEPOP’007: a complete re-implementation of the GENEPOP 

software for Windows and Linux. Molecular Ecology Resources, 8(1):103-106, 2008. 

 

[94] Klaus Hechenbichler, Klaus Schliep. Weighted k-nearest-neighbouring techniques 

and ordinal classification. Universitätsbibliothek der LMU Muenchen, 2004. 

 

[95] Holger Schwender. Imputing missing genotypes with weighted k nearest neighbours. 

Journal of Toxicology and Environmental Health, 75(8-10):438-446, 2012.  

 

[96] R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. R Core Team, 

2015. 

 

[97] Andy Beaumont. Genetic considerations in transfers and introductions of scallops. 

Aquaculture International, 8(6):493-512, 2000. 

 

[98] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and 

Psychological measurement, 20(1):27-46, 1960. 

 

[99] Holger Schwender and with a contribution of Arno Fritsch. Scrime: analysis of high-

dimensional categorical data such as SNP data. R package version 1.3.3. http://CRAN.R-

project.org/package=scrime. 2013. 

 

[100] Jonathan K. Pritchard, Matthew Stephens and Peter Donnelly. Inference of 

population structure using multilocus genotype data. Genetics, 155(2):945-959, 2000. 

 

[101] G. Evanno, S. Regnaut and J. Goudet. Detecting the number of clusters of 

individuals using software STRUCTURE: a simulation study. Molecular Ecology, 

14(8):2611-2620, 2005. 

 

[102] Dent A. Earl, Bridgett M. vonHoldt. STRUCTURE HARVESTER: a website and 

program for visualizing STRUCTURE output and implementing the Evanno method. 

Conservation Genetics Resources, 4(2):359-361, 2012. 

 

[103] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001. 

 

[104] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The elements of statistical 

leanring data mining, inference, and prediction. New York: Springer, 2009. 

 

[105] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.  

 

http://www.r-project.org/
http://cran.r-project.org/package=scrime
http://cran.r-project.org/package=scrime


 

 91 

[106] Gerold Wefer, David Billet, Dierk Hebbeln, Bo Barker Jorgensen, Michael Schluter 

and Tjeerd C.E. Van Weering. Ocean margin systems. Hanse Conference on Ocean 

Margin Systems. Delmenhorst, Germany. 2000. 

 

[107] Principles of genetic variation. Retrieved from 

http://garlandscience.com/res/pdf/ggm_ch04.pdf. 2014. 

 

[108] Ulo Vali, Mikael Brandstrom, Malin Johansson and Hans Ellegren. Insertion-

deletion polymorphisms (indels) as genetic markers in natural population. BMC Genetics, 

9:8, 2008. 

 

[109] NJ Schork, D Fallin and JS Lanchbury. Single nucleotide polymorphisms and the 

future of genetic epidemiology. Clin Genet, 58(4):250-264, 2000. 

 

[110] Alain Vignal, Denis Milan, Magali SanCristobal and Andre Eggen. A review on 

SNP and other types of molecular markers and their use in animal genetics. Genetics, 

Selection, Evolution, 34(3):275-305, 2002.  

 

[111] Joel Ira Weller. Genomic selection in animals. John Wiley & Sons, 2016. 

 

[112] Sebastian Junemann, Fritz Joachim Sedlazeck, Karola Prior, Andreas Albersmeier, 

Uwe John, Jorn Kalinowski, Alexander Mellmann, Alexander Goesmann, Arndt von 

Haeseler, Jens Stoye and Dag Harmsen. Updating benchtop sequencing performance 

comparison. Nature Biotechnology, 31(4):294-296, 2013.  

 

[113] Jun Zhang, Rod Chiodini, Ahmed Badr and Genfa Zhang. The impact of next-

generation sequencing on genomes. J Genet Genomics, 38(3):95-109, 2011. 

 

[114] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu 

and Maggie Law. Comparison of next-generation sequencing systems. Journal of 

Biomedicine and Biotechnology, 2012: 1-11, 2012. 

 

[115] Rana W. El-Sabaawi, Michael C. Marshall, Ronald D. Bassar, Andres Lopez-

Sepulcre, Eric P. Palkovacs and Christopher Dalton. Assessing the effects of guppy life 

history evolution on nutrient recycling: from experiments to the field. Freshwater Biology, 

60(3):590-601, 2015. 

 

[116] Ronald D. Bassar, Thomas Heatherly , Michael C. Marshall, Steven A. Thomas, 

Alexander S. Flecker and David N. Reznick. Population size structure dependent fitness 

and ecosystem consequences in Trinidadian guppies. Journal of Animal Ecology, 

84(4):955-968, 2015. 

 

[117] Monica G. Turner and Robert H. Gardner. Lanscape ecology in theory and practice 

pattern and process. Springer eBooks, 2015. 

 

http://garlandscience.com/res/pdf/ggm_ch04.pdf


 

 92 

[118] S. Manel, B. N. Poncet, P. Legendre, F. Gugerlis and R. Holdereggers. Common 

factors drive adaptive genetic variation at different spatial scales in Arabis alpine. 

Molecular Ecology, 19(17):3824-3835, 2010.  

 

[119] Deborah Zulliger, Elvira Schnyder and Felix Gugerli. Are adaptive loci transferable 

across genomes of related species? Outlier and environmental association analyses in 

Alpine Brassicaceae species. Molecular Ecology, 22(6):1626-1639, 2013. 

 

[120] Eric Frichot, Sean D. Schoville, Guillaume Bouchard and Olivier Francois. Testing 

for associations between loci and environmental gradients using latent factor mixed 

models. Molecular Biology and Evolution, 30(7):1687-1699, 2013. 

 

[121] Cooper and Necia Grant. The Human genome project: desciphering the blueprint of 

heredity. Mill Valley, Calif. : University Science Books, 1994. 

 

[122] Thomas Mitchell-Olds, John H. Willis and David B. Goldstein. Which evolutionary 

processes influence natural genetic variation for phenotypic traits? Nature Reviews 

Genetics, 8(11):845-856, 2007. 

 

[123] Sewall Wright. The genetical structure of populations. Annals of Human Genetics, 

15(4):323-354, 1951. 

 

[124] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer-Verlag New 

York, 2009.  

 

[125] Brian and Sandy Kinghorm. Pedigree Viewer. Retrieved from 

http://bkinghor.une.edu.au/pedigree.htm. 2015. 

 

[126] Teri A. Reynolds and David L. Schriger. The conduct and reporting of meta-

analysis of studies of diagnostic tests, and a consideration of ROC curves. Annals of 

Emergency Medicine, 55(6):570-577, 2010. 

[127] Aravindh Krishnamoorthy and Deepak Menon. Matrix inversion using Cholesky 

decomposition. arXiv Preprint arXiv:1111.4144, 2011. 

[128] Vikas Bansal, Olivier Harismendy, Ryan Tewhey, Sarah S. Murray, Nicholas J. 

Schork, Eric J. Topol and Kelly A. Frazer. Accurate detection and genotyping of SNPs 

utilizing population sequencing data. Genome Research, 20(4):537-545, 2010. 

[129] Julian Catchen, Paul A. Hohenlohe, Susan Bassham and Angel Amores.Stacks: an 

analysis tool set for population genomics. Molecular Ecology, 22(11):3124-3140, 2013. 

[130] Allan J. Baker. Molecular methods in ecology. Oxford; Malden, MA, USA: 

Blankwell Science, 2000. 

http://bkinghor.une.edu.au/pedigree.htm


 

 93 

[131] John Carlos Garza and Nelson B. Freimer. Homoplasy for size at microsatellite loci 

in Humans and Chimpanzees. Genome Research, 6(3):211-217, 1996. 

[132] Richard Shen, Jianbing Fan, Derek Campbell, Weihua Chang, Jing Chen, Dennis 

Doucet, Jo Yeakley, Marina Bibikova, Eliza Wickham Garcia, Celeste McBride, Frank 

Steemers, Francisco Garcia, Bahram G. Kermani, Kevin Gunderson and Arnold Oliphant. 

High-throughput SNP genotyping on universal bead arrays. Mutation Research, 573(1-

2):70-82, 2005. 

[133] Mattias Jakobsson and Noah A. Rosenberg. CLUMPP: a cluster matching and 

permutatioin program for dealing with label switching and multimodality in analysis of 

population structure. Bioinformatics, 23(14):1801-1806, 2007. 

[134] Noah A. Rosenberg. Distruct: a program for the graphical display of population 

structure. Molecular Ecology Notes, 4(1):137-138, 2004. 

[135] H. John B. Birks, Andre F. Lotter, Steve Juggins and John P. Smol. Tracking 

environmental change using lake sediments. Springer eBook, 2012. 

[136] Oded Maimon and Lior Rokach. Data mining and knowledge discovery handbook. 

Springer New York Dordrecht Heidelberg London, 2010.  

[137] Mallory Van Wyngaarden, Paul V. R. Snelgrove, Claudio DiBacco, Lorraine C. 

Hamilton, Naiara Rodriguez-Ezpeleta, Ryan R. E. Stanley, Ian R. Bradbury. Identifying 

patterns of dispersal, connectivity, and selection in the sea scallop, Placopecten 

magellanicus, using clines in RAD-seq derived SNPs. In review, 2016. 

 

 

 

 

 

 

 

 

 
 
 
 

 
 



 

 94 

APPENDIX A   Flowchart Of The Algorithm That MEGASAT Uses to 

Trim Off Microsatellite Primers 

 

 

 
 

 

Figure A.1 Flowchart of the algorithm that MEGASAT uses to trim off microsatellite 

primers. The abbreviations for microsatellite amplicon components are the 

same as those given in Figure 5. 
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APPENDIX B   Laboratory Method For Generating Validation 

Data Set 

 

The following protocols were carried out in the laboratories of Dr. Paul Bentzen 

(Department of Biology, Dalhousie University) by members of these labs. 

 

B.1 First Multiplex PCR   

     

Initial multiplex PCR reactions were set up using 10 loci per multiplex. Loci were 

untested, thus the only criterion used while creating the mixes was absence of dimers 

based on the AUTODIMER output. PCRs were performed in 3.5ul volumes using Qiagen 

(Venlo, Netherlands) Type-IT 2x Mastermix (1.75ul), 0.2uM each oligo (20 oligos per 

reaction) and 0.7ul genomic DNA estimated to be ~275pg.  PCRs were conducted on 

Eppendorf (Hamburg, Germany) Mastercycler ep384 PCR machines using the following 

parameters: 94°C for 15 min, followed by 20 cycles of 94°C 30s, 57°C, 180s, 72°C 60s, 

with a final extension at 68°C for 30min. Each multiplex was run versus 12 individuals 

from the Guanapo River, Trinidad, West Indies. Multiplexed PCRs were then pooled per 

individual (i.e. all reactions from one guppy were pooled together), resulting in 12 pools. 

Figure B.1 shows the process of first multiplex PCR. 

 

  

 

Figure B.1. Overview of the initial multiplex PCR 
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B.2 Second Multiplex PCR 

 

Illumina annealing and indexing sequences were added to the PCR products using a 

second PCR (as shown in Figure B.2). The previous amplicons were diluted 500x and 

used as template for an indexing-PCR which included oligos composed of the Illumina 

annealing adapter sequences, a 6bp index (barcode) and the Illumina sequencing primers.  

By taking advantage of the Illumina dual-indexing capability, we differentiate 1024 

individuals in a single sequencing run using a set of 32 Index_1 oligos and a set of 32 

Index_2 oligos.  Indexing PCRs were performed in 5ul total volume with 0.25U Taq 

DNA polymerase (New England Biolabs, Ipswich MA, USA), 0.5ul Thermopol 10x 

buffer (NEB), 0.2mM each dNTP, 0.2uM Index_1 oligo, 0.2uM Index_2 oligo and 1ul of 

500-fold diluted PCR product pooled above. Cycling parameters were: 95°C 2m, 

followed by 18 cycles of 95°C 20s, 60°C 60s, 72°C 60s with a final extension at 72°C for 

10 min.   

 

 

Figure B.2 Overview of the second multiplex PCR.  

 

B.3 Sequencing 

  

 The indexed PCR products were pooled and cleaned using Ampure XP (Beckman 

Coulter, Pasedena CA, USA) magnetic beads (1.8:1 bead: DNA library ratio). The clean 

library was quantified using Kapa (Wilmington MA, USA) Library Quantification for 
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Illumina on a Roche (Basel, Switzerland) LC480 qPCR instrument using manufacturers’ 

protocols. This library was sequenced at 10pM concentration using Miseq v2 chemistry, 

150x150 dual index read. Dual-indexed individuals were demultiplexed with the Miseq 

Sequence Analysis software and then separate FASTQ files were generated for each 

individual.  

 

       Prior to developing MEGASAT, we used GENEIOUS r7 software [82] ‘separate by 

barcode’ function to demultiplex loci within an individual and microsatellite genotypes 

were scored using the depth histograms generated within GENEIOUS. Once MEGASAT was 

working, we used GENEIOUS to examine reads and verify the performance of MEGASAT. 

As more data were collected, we refined the laboratory process. From the initial 468 loci 

tested in 10-plexes, we chose 80 loci and proceeded using 20-plex reactions. As our 

microsatellite data set grew larger (i.e. as we learned more about each locus), we dropped 

loci that had low information content, high error rates, evidence of nulls or inability to 

multiplex well. For long-term data collection, we settled on 43 loci that we multiplex in a 

single PCR reaction, using the same reaction conditions as our initial PCRs (above). This 

reaction is diluted 10-fold by adding water directly to the completed PCR plate and 0.3ul 

of the diluted product is used as template in the indexing reaction.
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APPENDIX C   Laboratory Methods For Generating Genetic And 

Environmental Data 

 

The following protocols were carried out in the laboratories of Dr. Ian Bradbury 

(Department of Fisheries and Oceans) by members of these labs. 

C.1 Genetic Data 

 
Tissue samples were collected and preserved in AllProtect (Qiagen, Toronto, ON, 

Canada) or 80% ethanol. DNA extraction and library preparation were performed at the 

Aquatic Biotechnology Lab at the Bedford Institute of Oceanography in Halifax, Nova 

Scotia. DNA was isolated from the tissue samples using DNeasy Blood and Tissue kit or 

DNeasy 96 Blood and Tissue kit (Qiagen) following the manufacturer’s protocol, 

including the optional RNase A treatment. All DNA samples were quantified using the 

Qubit dsDNA HS Assay Kit (Life Technologies, Burlington, ON, Canada) with assays 

read on a Qubit v2.0 (Life Technologies) or using the Quant-iT PicoGreen dsDNA Assay 

Kit (Life Technologies) with assays read on a FLUOStar OPTIMA fluorescence plate 

reader (BMG Labtech, Ortenberg, Germany). All samples were normalized to 25ng/µL. 

The DNA quality for all samples was verified by agarose gel electrophoresis of 100 ng of 

extracted DNA. DNA was visualized using SYBR Safe (Life Technologies) and 

documented using a Gel Logic 200 (Kodak).  

RAD-seq libraries were prepared as described in [89] with modifications. DNA 

samples from 22 individuals from the same geographical location comprised each library 

(with the exception of the library for SUN which consisted of only 20 individuals) with a 

different in-line barcode in the P1 adapter for each individual sample. Gel size selection 

performed after sonication and PCR amplification was done on a Pippin Prep (Sage 

Science, Beverly, MA, USA) using the 2% agarose gel cassette with ethidium bromide 

(Sage Science) and size selection range of 300-500bp. PCR amplification used Q5 Hot 

Start Master Mix (NEB, Whitby, ON, Canada) for all libraries. Amplification cycles for 

all libraries were 98 °C for 30 seconds; x cycles of 98 °C for 30 seconds, 65 °C for 30 
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seconds, 72 °C for 30 seconds; 1 cycle of 72 °C for 5 minutes, where x was 18 for all 

libraries except for SSB, GEO, and SUN where x was 13. All libraries were sequenced on 

a HiSeq 2000 (Illumina) as 100bp paired end sequences with one library per lane. 

Sequencing was performed at the McGill University and Génome Québec Innovation 

Centre, Montréal, Canada. 

 

C.2 Environmental Data 

 
A bounding box of 1 square degree around each sample site was used to collect data for 

each sampling location and values were averaged within the bounding box to create site-

specific averages for each data type. Data from all sources were combined to create the 

final dataset used in the analysis. Data were separated into surface and depth values based 

on the collection site depth for each sampling location.  

      Data validation and preparation were completed using R (R Development Core Team 

2012). We removed outliers using z-score analysis. Because of natural season variation in 

the data, z-scores were calculated for each variable for each sample site per each month 

and outliers were removed, where necessary. Variables with missing data in more than six 

sites were removed from subsequent analyses. For the remaining variables with missing 

data, single imputation using neighbouring sites was used to estimate missing values 

(sites arranged by latitude, mean of the sites directly north and south of the missing site). 

Following outlier removal and imputation, we standardized data by subtracting the mean 

and dividing by the standard deviation. We then calculated site-specific maximum and 

minimum values as well as seasonal averages for each variable. Winter included January, 

February, and March, Spring included April, May, and June, Summer included July, 

August, and September, and Fall included October, November, and December. The final 

dataset contained 90 variables spanning all available data types.  


