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Abstract

The Major Histocompatibility Complex (MHC) are a set of vertebrae immune genes, that act in
defense from cellular parasites. In Poecilia reticulata MHC is shown to also affect coloration
and mate choice. The guppy acts as a model system in studying MHC. Having multiple copies of
the MHC gene, large populations, and short generation time are ideal for studying MHC
diversity. Samples were collected from Trinidad as Trinidad’s water system offers an ideal living
lab with many genetically distinct populations separated by watersheds, waterfalls, and different
predation levels. MHC may be separated into groups, known as super types, based on like
binding properties of the peptide binding region. Through the construction of maximum
likelihood trees super types were compared to the phylogeny of all alleles together. These trees
were then aligned with the geography of Trinidad to look for correlation between clades of the
tree and clusters of sample sites. When looking at the full tree of MHC alleles, significant
correlation between phylogenetic tree and sample sites were found, however only super types 3,
4,7, 10, and 14 were found to have this correlation. I discuss the role of selection, both natural
and sexual on the presence and absence of MHC alleles, the roll of the Guppy’s colonization
history in Trinidad, and the role of temporal separation due to the age of the MHC genes

themselves.
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Chapter 1

Introduction
Genes of the Major Histocompatibility Complex (MHC) are found in all vertebrates and code for

proteins that function in cellular defense against parasites (Herdegen, Babik, & Radwan, 2014).
This immune function allows MHC to be used as a proxy to estimate an organism’s or a
population’s ability to adapt to the local environment (Lighten, 2015). In some species, such as
the Trinidadian Guppy, Poecilia reticulata, variation in MHC genes has been shown to be
correlated with various traits, including those involved in sexual selection. The interactions
between parasite dependent natural selection and mate choice dependent sexual selection both
acting on the MHC genes are difficult to model. In this thesis I hope to aid in the modeling of
MHC selection by looking at relationship of MHC protein binding region phylogeny and the

geography of Trinidad.

The guppy, Poecilia reticulata
Poecilia reticulata, the Trinidadian guppy, is a hardy species of freshwater fish indigenous to

Central America and northern South America. It is known to be able to survive in brackish and
polluted waters (Baillie, 2012; Lighten, 2015). This hardiness is attributed in part to its short
generation times and high level of genetic variability (Lighten, 2015). The guppy is a sexually
selective species, with the females preferring ornate males (Nicoletto, 1993). Ornaments of the
male guppy include coloured spots, especially orange and black, structural pigments, and
elongated fins. The coloured spots of the guppy require pigments that it is unable to produce
itself and must acquire through dietary intake (Grether, Hudon, & Millie, 1999). Ornaments are

thought to be honest indicators correlated to various measures of fitness in the guppy, as



pigmentation requires resources that are also limiting in immune function (Grether, Hudon, &
Millie, 1999; Lighten, 2015; Nicoletto, 1993). Correlation between ornament and MHC allele

diversity has also been reported (Lighten, 2015).

Major histocompatibility complex
Genes of the MHC are present in all jawed vertebrates, and code for proteins involved in the

immune response (Herdegen, Babik, & Radwan, 2014). MHC proteins are involved in antigen
presenting, binding to pathogen-derived antigens to elicit an immune response (Herdegen, Babik,
& Radwan, 2014). The MHC has two distinct classes: class I, which binds to intracellular
pathogens antigens, and class II, binding to extracellular pathogen antigens (Fraser, Ramnarine,
& Neft, 2010; Herdegen, Babik, & Radwan, 2014). The MHC genes are the most polymorphic
genes found in vertebrates, and the Red Queen Hypothesis is thought to account for this
polymorphism found in MHC genes. (Herdegen, Babik, & Radwan, 2014; Lighten, 2015). The
Red Queen hypothesis describes the co-evolutionary trends between host and pathogen relations,
when one evolves an adaptation against the other, the other than must evolve a counter
adaptation to survive (Van Valen, 1973). The large amount of variability in the MHC can be
attributed to the fast rate of evolution of pathogens (Fraser, Ramnarine, & Neff, 2010; Lighten,
2015; Herdegen, Babik, & Radwan, 2014). With the MHC needing to be able to respond to
multiple types of variable pathogens, many species, the guppy included, exhibit multiple copies
of the genes, and the number of copies can vary among individuals (copy number variation;
CNV) (Sommer, 2005; Herdegen, Babik, & Radwan, 2014; Lighten, 2015). Individuals may be
heterozygous at any MHC locus, and this may to contribute to an increase in fitness due to
heterozygous advantage or negative frequency dependent selection (NDS) (Lighten, 2015;

Herdegen, Babik, & Radwan, 2014; Fraser, Kunstner, Reznick, Dreyer, & Weigel, 2015).



Heterozygous advantage results from heterozygotes, having different MHC alleles, being able to
respond to a broader range of pathogens than homozygotes, having only one allele (Fraser,
Ramnarine, & Neff, 2010; Lighten, 2015; Herdegen, Babik, & Radwan, 2014). NDS may
benefit individuals with rare MHC alleles in the population; due to the allele being rare there is
little pressure for pathogens to evolve an adaptation against the allele compared to common
alleles (Fraser, Ramnarine, & Neff, 2010; Herdegen, Babik, & Radwan, 2014; Lighten, 2015).
Conversely MHC diversity may also be selected against in populations with exposure to only a
few species of pathogens, reducing the benefits of heterozygosity and diverse MHC alleles in the
population (Fraser, Ramnarine, & Neff, 2010; Lighten, 2015). Lighten (2015) and found that the
guppy may carry 1-6 MHC class IIb loci. In describing MHC phenotypes it has been proposed to
group alleles into super types (ST), based on like antigen binding in by the peptide-binding
region (PBR) of the gene (Lighten, 2015; Reche & Reinherz, 2007). While grouping into STs has
been shown to be an effective way of categorizing human MHC alleles, it is not yet confirmed

for non-human species.

Trinidad
The river systems of Trinidad offer a variety of different local environments, often with physical

barriers such as waterfalls, between (Herdegen, Babik, & Radwan, 2014; Baillie, 2012; Barson,
Cable, & Van Oosterhout, 2009; Barson, Cable, & Van Oosterhout, 2009). Previous studies have
shown that the changes in the local environment have contributed to changes in guppy
behaviour, male colour, reproduction cycles, morphology, and neutral and selective genetic
markers between populations (Magurran, 2005). Behavioural, morphological, and reproductive
differences have largely been attributed to differences in predation between local environments

(Magurran, 2005). Large predatory fish that feed on adult P. reticulata are found in downstream



areas but are unable to pass barriers such as waterfalls to get upstream; in response, downstream
guppies tend to be small, shoal tightly together, and invest in early reproduction with large clutch
sizes, as they are unlikely to survive long in the predator filled waters (Magurran, 2005; Reznick,
Butler IV, & Rodd, 2001). Upstream predators are closer in size to P. reticulata and feed mostly
on the young, which selects for larger guppies that invest in long term reproductive success with
smaller clutch sizes of large young (Magurran, 2005 (Reznick, Butler IV, & Rodd, 2001).
Colouration of male P. reticulata was thought to result from a combination of natural selection,
predators being able to spot bright guppies more easily, and sexual selection, females preferring
bright males (Reznick et al, 2001). Lighten (2015) has suggested the male P. reticulata
colouration is linked with variation at the Major Histocompatibility Complex (MHC), as an
honest indicator of immuno-competence. The northern part of Trinidad has three major
watersheds, the Caroni in the west, the Oropouche to the east, and the north shore (Baillie, 2012).
Baillie (2012) has shown, via mitochondrial DNA (mtDNA) samples and microsatellites, that the
populations the Caroni and Oropouche are genetically distinct from each other and likely
populated the island in two different events, from two different source populations. Some

exceptions can be seen in these watersheds to the origins such as the population in the Turure.
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Figure 1. The main watersheds of northern Trinidad, the Caroni in blue, Oropouche in orange

and the Northern watershed in green.

The MHC is of particular interest in conservation of vertebrates, and in agricultural and
aquaculture settings. While MHC is primarily studied for its immune function and disease
resistance, it also plays a role in mate choice, success of fertilization, kin selection and auto-
immune disease, with populations with a diverse MHC gene pool generally being more
successful (Sommer, 2005). Human activity often fragments and reduces the total habitat
available for wild populations, reducing total population size and preventing gene flow between
populations (Sommer, 2005). Reduction in population size, and gene flow may lead to decreased
diversity in all genes, including MHC, due to increased risk of genetic drift and inbreeding
(Sommer, 2005). Diversity in MHC alleles is positively correlated with recovery of bottlenecked
populations and decreasing disease susceptibility (Sommer, 2005). The decrease in disease
susceptibility also holds true in agricultural and aquaculture populations, as seen in cattle and

salmon, with high levels of MHC diversity reducing disease prevalence, and need for antibiotics



and other treatments (Sommer, 2005). The guppy and the watersheds of Trinidad offer a model
system, acting as a natural laboratory, for looking at the change of MHC diversity in populations,
and its role in disease resistance, behaviour, and reproductive success (Sommer, 2005; Herdegen,
Babik, & Radwan, 2014). The structure of Trinidad’s watersheds offers sites that may experience
non-negligible migration between populations, but are still genetically, morphologically, and
behaviourally distinct due to different selective pressures in downstream sites and between
different rivers or watersheds (Herdegen, Babik, & Radwan, 2014; Sommer, 2005). This project
hopes to add the modeling of MHC diversity in a natural system, and in that aid in conservation,

population management efforts.

Overview of thesis
This study uses the MHC class II b PBR sequence data and genotyping from Lighten (2015).

Lighten (2015) has organized PBR alleles into ST groups based on the targets parasite, with
PBR’s that bind to similar parasites being grouped together. Allelic presence of MHC class I1b
region have been linked to the location of the population and mapped out using GIS to infer gene
flow. Maximum likelihood and maximum parsimony phylogenetic trees have been constructed
from the sequence data of alleles found in Lighten (2015). The phylogenetic trees were linked to
location to observe how allelic presence changes in terms of ST.

This thesis focuses on allelic level distribution in contrast to Lighten (2015) who looked only at
the MHC supertype phylogeographic distribution. Lighten’s study was chosen due to the large
amount of population and sequence data for guppy MHC available from it. This study hopes to
contribute to a working model on MHC evolution and distribution between populations for the

use in future studies.



Chapter 2

Literature Review
Fraser (et al, 2010) was one of the first studies to look at the MHC in natural populations

of guppies, and showed that MHC is under strong selection compared to neutral markers.
Lighten’s (2015) study focused on mapping groups of functionally similar MHC phenotypes,
based on the protein binding region, as supertypes (15 in all for P. reticulata). Parasite load of
the guppies was then compared to the supertypes found in the population. Lighten (2015) found
several associations between STs and parasite prevalence, i.e. ST 2, ST 11, and Gyrodactylus, a
common parasite of P. reticulata. Lighten’s study does have a drawback in that the grouping of
MHC alleles into supertypes for P. reticulata is only a theory based on modeling of human MHC
diversity. Supertyping in humans examines the peptide-binding region of the MHC (Reche,
2010). The peptide-binding region is important for the immune function of the MHC; it binds to
an antigen marker and begins to illicit an immune response (Reche, 2010). In humans
supertyping is determined grouping together peptide binding regions that bind to like antigens
(Reche, 2010). The method of super typing does not take into account the genetic descent of
alleles, only phenotypic similarity, and may group together genetically distinct alleles (Receh,
2010). Lighten (2010) used a guppy specific peptide binding region, which has yet to be
confirmed if it follows the same pattern as human peptide binding region. The methods used in
sequencing the MHC and interpreting the data are quite novel (Babik, Taberlet, Ejsmond, &
Radwan, 2009; Lighten, 2015).

The use of Next Generation Sequencing (NGS), while considered more practical than
previously used methods, such as Sanger sequencing, for gathering large amounts of sequence

data, is not without drawbacks (Babik, Taberlet, Ejsmond, & Radwan, 2009; Lighten, 2015).



NGS is prone to pick up on small errors that may be made in the processing of the sequence, i.e.
error in DNA synthesis during PCR that may give null alleles or false positives (Babik, Taberlet,
Ejsmond, & Radwan, 2009; Lighten, 2015). To compensate for PCR related errors many studies
placed high restrictions on what they allow to be considered an allele, i.e. having to show up on x
% of reads, which likely lead to false negatives in the counting of alleles (Lighten, 2015). The
Ultra Deep Illumina sequencing used by Lighten (2015) looks to more accurately sequence by

increasing the reads of the sequence.



Chapter 3

Methodology

Samples
P. reticulata samples were taken between 2008 and 2012. 59 populations were sampled

from throughout Trinidad. Samples were euthanized and preserved in ethanol (Lighten, 2015).

Figures 2-5 show the sites were guppy samples were obtained from.
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Figure 2. Locations in southern Trinidad where guppy samples were taken. Abbreviated
locations: Snake River (Sn), Stollmeyer (Sm), Vance (Vc), Morne (Mn), Mondesir (Mon), Pitch
Lake (PL), Fifth Company (FC), Point Fortin (PF), Silver Stream (Sil), Oropouche South (ORS),
Guayguare (GG), Basse-Terre (BT), Poole (PO), Faecal Dump Rd. (FDR), Matura (MAT), and
Las Seiva (LS).
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Figure 3. Locations in Northern Trinidad where guppy samples were collected.
Abbreviated locations; Diego Martin (DM), Damier (D), Curaguate (Cur), Las Cuevas (LC),
Yara (Y), Madamas (MAD), Turure (T), Arima (AR), San Souci (SS), Shark (SH), Mission
(Mis), Cumana (CU), Tompire (TOM), Guanapo (G), Aripo (Ap), Quare (Q), and El Cedro.
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(P) River systems of northern Trinidad.
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Figure 5. Non Trinidadian locations were samples, or genetic data were available.
Locations abbreviated; Windward, Tobago (WRD), Barbados (BAR), and Hawaii (WSH).

Samples of the related swamp guppy, Poecilia picta, were also collected from St. Joseph (SJ),
Trinidad.

Molecular methods
A 209 base-pair portion of the peptide-binding region of the MHC II b was amplified via

PCR, in either a Mastercycler Epgradient S or a ep384 thermocycler in the following cycles: 98
°C for 3 min; 30 cycles of 98 °C 155,57 °C 40 s, 72 °C 60 s; 10 min at 72 °C, then held at 10 °C
(Lighten, 2015). Samples were then sequenced with an Illumina MiSeq sequencer. Individuals
were then genotyped, and validated by Lighten (2015).

Data analysis

CNYV in the MHC prevents the assignment of individual alleles to loci, to compensate for this all
alleles are looked at as though they are dominant, if they are present in an individual they are
expressed (Herdegen, Babik, & Radwan, 2014). Allelic nucleotide sequences were used to
construct maximum likelihood and parsimony phylogenetic trees using the phangorn package on
R, and bootstrapped via the boot package (Schliep, 2011; Canty, 2002). Trees were constructed
for all 15 supertypes, as well as a tree containing all alleles used in Lighten’s (2015) study. Trees

were edited with FIGTREE (www.tree.bio.ed.ac.uk/software/figtree/). Tree structure was then
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compared to the geography of Trinidad, comparing allelic groups to sample sites where they are
found using GIS program GenGIS. Lighten’s (2015) also included MHC alleles from
populations in Tobago, Barbados, Hawaii, and from a Trinidadian population the related swamp

guppy Poecilia picta for comparison, these were retained in this study.

Chapter 4

Results

Phylogenetic trees

Maximum likelihood trees were constructed for the 15 supertypes defined by Lighten (2015)
(Figures 6-20). An additional maximum likelihood tree was constructed for all alleles together
(Figure 21). Bootstrap values were calculated and reported for all trees. Maximum parsimony
trees were also constructed, but found to have smaller bootstrap values than the maximum
likelihood trees; they are shown in the appendix. Branches on the maximum parsimony trees
with high bootstrap values frequently conformed to the structures found in the maximum

likelihood trees.
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Figure 12. Maximum likelihood phylogenetic tree of guppy MHC class Ilb ST7 alleles, with
bootstrap values.
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Figure 20. Maximum likelihood phylogenetic tree of guppy MHC class llb ST15 alleles, with
bootstrap values.
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GenGlIS phylogeographic maps

The maximum likelihood and parsimony trees were overlaid with maps of Trinidad connecting
node of tree to sample sites where allele can be found. Monte Carlo permutation tests were
preformed to determine if the relationship between tree topology and geographic location of the
sample was significant (p-value < 0.05). Correlation between tree topology and geographic
location is determined based on the number of times individual end nodes cross over each other
when comparing them to location, greater number of crossing suggests that there is no
correlation. Site locations are coloured by their watershed; Caroni, North east (NE),
Oropouche, The maximum likelihood of ST3 had significant
correlation between tree topology and geographic location, with a p-value of 0.001 (figure 22).
The maximum parsimony tree of ST4 had significant correlation between tree topology and
geographic location, with a p-value 0.027(figure 23). Both the maximum likelihood and
parsimony trees of ST7 had significant correlation between tree topology and geographic
location, p-values of 0.014 and 0.007 respectively (figures 24, 25). The maximum parsimony tree
of ST10 had significant correlation between tree topology and geographic location, with a p-
value 0.002(figure 26). The maximum parsimony tree of ST12 had significant correlation
between tree topology and geographic location, with a p-value of 0.032 (figure 27). The
maximum likelihood tree of ST14 had significant correlation between tree topology and
geographic location, with a p-value of 0.010 (figure 28). The maximum likelihood tree that
included all alleles of all STs also found significant relation to tree topology and geographic
location of sample site, p-value0.019. ST9 appears to be distinct from other types in that it is

separate from all others in the tree containing all alleles (figure 21), and as such the maximum



likelihood tree compared to the geography has been included (figure 29) despite not having

significant correlation with geography, p-value 0.850.
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Figure 26. Geophylogeny of guppy MHC class Ilb ST10 alleles, derive

from maximum parsimony phylogenetic tree.
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Figure 28. Geophylogeny of guppy MHC class Ilb ST14 alleles, derived from maximum likelihood

phylogenetic tree.
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Chapter 5

Discussion

In looking at the total diversity of MHC we see that there is a significant correlation between the
phylogeny of the tree and the geography of Trinidad. This could be resultant of isolation by
distance; however, this correlation is not present in all individual supertypes. Looking at the
phylogenetic tree for all MHC alleles we see that STs are frequently interspersed throughout the
tree rather than being found in specific clade, with the exception of ST 9. The classification of
MHC STs as used by Lighten (2015), is based on the translated protein binding protein
properties, which potentially allows for the separation of supertypes when looking at them the
nucleotide level, due to the redundancy of the genetic code. The breaking up of STs in the full
tree may also allow for the correlation between geography and phylogeny, with clusters located
in different branches being exclusive to clusters of populations, i.e. ST 3 with the north south
divide and two large clusters in the full tree. Despite this ST 9 is found as a single clade of the
phylogenetic tree (figure 21), and is found in almost all sites across Trinidad however it shows
no correlation with the geography of Trinidad (figure 29). ST 9 being a separate clade that is
wide spread may suggest that it is a precursor or the founding supertype on the island, or
somehow separated from the other MHC alleles.

Baillie (2012) has suggested that guppy populations in Trinidad are the result of multiple
colonisations from different source populations. Differences in the source populations’ MHC
patterns may provide some insight on the structure of full tree in terms of supertype, and the
correlation with geography. Different founding colonies separated by source, geographic and

temporal distance may have had to adapt to local parasites using different source pools of MHC.
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This could resultant in similar phenotype despite different sequences, and would be especially
localized to founding sites.

MHC are old genes in terms of evolution, being found in all jawed vertebrates (Herdegen,
Babik, & Radwan, 2014). The rapid rate of change in MHC sequences combined with their age
may explain some of the Some ST maybe older than others resulting in greater distribution,
especially when looking at the role of MHC in immunity and the high rate of change. ST, or
precursors of, that may have been present during colonization of Trinidad would be expected to
have a greater distribution than a ST that arose in in the mostly isolated populations in
Trinidadian rivers. STs 4, 10, and 7 all found significant correlation to geography with their
maximum parsimony trees, may be indicative of this. Parsimony trees are constructed by
conjoining branches with the fewest amounts of changes between nucleotides, this may suggest

recent divergences (Nakjang, et al., 2013).

The primary role of the MHC is in parasitic immunity, and a such the absence and presence of
the parasitic target, of the PBR are expected to influence the distribution of alleles. The role of
secondary effects of MHC on sexual selection, i.e. through increased pigmentation, may retain
alleles that are not effect for immune function but otherwise increase factors for mate choice
(Lighten, 2015). This retention could result in increased distribution by not allowing for the same
amount of genetic drift that would exist form just natural selection (Lighten, 2015). Further

studies looking at HMC and specific target immunity may be taken to address this.
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