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Abstract

Computations of the elastic properties of networks with bond stretch and bond angle bend forces are carried out in order to study
their behavior as a function of average coordination number. It is found that the elastic constants essentially vanish as the average
coordination number drops to 2.4. It is argued this phenomenon is responsible for the failure of the Makishima Mackenzie model to
predict accurately the elastic properties of borate glass, originating with B2O3 itself which also has an average coordination number
of 2.4. Finally, a new model is proposed, similar to the Makishima Mackenzie model but including explicitly the dependence on
network connectivity.
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1. Introduction

The Makishima-Mackenzie (MM) model [1, 2] provides an
estimate for the Young’s modulus of glass based on its composi-
tion and properties of the components. In particular, the model
posits

E = 2Vt

∑

i

Gi xi, (1)

where E is the Young’s modulus, Vt is the atomic packing frac-
tion (the fraction of space filled with ions of all types), Gi the
dissociation energy per unit volume of component i, and xi the
mole fractions. The components of the glass are understood to
be the oxide constituents, for example SiO2, Na2O, and CaO in
a soda-lime-silicate glass.

This model is widely used to make simple estimates of glass
stiffness and to correlate data with composition. Indeed, it is
found experimentally that silicate glasses are rather well de-
scribed by this model, with accuracy to about 20%. This level
of agreement is remarkable given the simplicity of the model.
Borates on the other hand, and especially B2O3 itself, are very
poorly described, with the model in error by a factor of about 5.
In particular, B2O3 is markedly less stiff than predicted by the
MM model. In the original work of Makishima and Mackenzie,
as well as later works on borates that quote these papers, it is
argued that this lack of agreement for borates is due to boroxol
ring-ring interactions, or differences between three and four-
fold coordinate boron, and to “correct” the discrepancy, the dis-
sociation energy G for B2O3 is scaled by a factor of 5. Given
this scaling, the predictions of the model are then in reasonable
agreement with experiment.
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We argue in this paper that such a scaling is unjustified and
in fact, the lack of agreement between the model and experi-
ment in borates is due to the lack of consideration of network
topology in the MM model. Our arguments are justified by con-
sideration of computation of the elastic constants of network
models with various random bond deletions, and we show that
such models soften when the average coordination number is
reduced to 2.4, the same coordination number that character-
izes B2O3. Finally we will suggest the form for an extended
model of the Young’s modulus, with a factor including average
coordination number.

2. Models and Methods

To study the elastic properties of disordered systems, a series
of models were created based on random deletions from the sil-
icon crystal structure, similar to what has been done by Thorpe
and co-workers [3]. In one series of models, disorder was gen-
erated by removing bonds at random, subject to the rule that
no atomic nearest-neighbor coordination number was allowed
to fall below two. A variant to this approach involved targeted
deletion, such that the deletion was biased towards atoms with
a particular coordination number, in order to generate models
with different bond distributions. A different series of models
was created by randomly deleting atoms and their associated
bonds, so that atomic density could be probed in addition to
random bonding. Although the starting point of these models
was the structure of crystalline silicon, the models themselves
are not meant to represent amorphous silicon, rather our goal is
simply to investigate the elastic properties of a disordered net-
work of bonds. We chose silicon as a starting point simply be-
cause it provided a useful check of our simulations in the limit
of little disorder.
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Figure 1: Elastic constants Ci j for models based on silicon, using a simplified
Stillinger-Weber potential, as a function of random deletion of the atoms (in-
dices i and j refer to the stress in direction i generated by strain in direction j).
The computed average coordination number for each deletion level is indicated
across the top of the graph.
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The bonds themselves were modeled with a simplified form
of the Stillinger-Weber potential [4]. This potential includes
a two-body term with exponential short-range repulsion and
a more graduate attractive part, resulting in a local minimum.
There is also a three-body term centered around the tetrahedral
bond angle. This potential is known to reproduce accurately
the elastic properties of silicon. We simplified the potential by
making quadratic fits to the bond-stretch and bond-angle-bend
terms around the equilibrium geometry of crystalline silicon
(the local minima of the Stillinger-Weber potential), in order
to have just two parameters in the model. This fitting resulted
in a bond-stretch force constant of 2.5 around a minimum of
2.35, and a bond-angle-bend force constant of 0.58 around the
tetrahedral bond angle (all numbers in atomic units).

The elastic properties of a given model were computed us-
ing the Lammps package, a general purpose molecular dynam-
ics code [5]. A given model and the potential described above
were supplied to the code, and then, using periodic boundary
conditions, the structure was relaxed until all forces were be-
low 10−10 eV/Å. This relaxation displaced the atoms from their
original diamond-lattice positions. Finally, elastic constants Ci j

were computed using a finite difference method, in which the
stress in direction i as a function of strain in direction j was
calculated for both positive and negative strains in both positive
and negative directions. In this way the entire elastic tensor was
reconstructed for each model.

3. Results

The elastic constants computed for the models created by
random atom deletion are plotted in Figure 1. This figure shows
that all three elastic constants of the pseudo-cubic system van-
ish as the average coordination number drops to 2.4, in agree-
ment with the earlier results of He and Thorpe [3].

Figure 2 shows the Young’s modulus plotted as a function
of average coordination number, for models generated by bond

Figure 2: Elastic constants for models based on silicon, using a simplified
Stillinger-Weber potential, as a function of atom deletion followed by random
bond deletions. Model number densities (atoms Å−3) are indicated in the leg-
end.
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Figure 3: Dependence of the Young’s modulus on variations in the linear force
constant, with the bond angle force constant held fixed at its equilibrium value
keq , for several average coordination numbers.
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deletion, followed by atom deletion. By this method, models
with varying densities for the same average coordination num-
ber were generated. It can be seen that while the Young’s mod-
ulus varies strongly with average coordination number its de-
pendence on density is actually quite weak.

Figures 3 and 4 show the dependence of the Young’s modu-
lus on variation of bond stretch and bond angle force constants
respectively. In Figure 3 the bond angle force constant was
kept fixed at its equilibrium value while the bond stretch force
was varied over a wide range, from a fraction of its equilibrium
value to twice the equilibrium value. For each average coordi-
nation, the Young’s modulus is seen to be largely independent
of the bond stretch force value. In Figure 4 the same procedure
was followed except that the bond stretch force was held con-
stant while the bond angle force was varied. In this way the
Young’s modulus was observed to be much more sensitive to
the bond angle force than the bond stretch force.
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Figure 4: Similar to Figure 3 but with the linear force constant held fixed at its
equilibrium keq and the bond angle force constant varied.
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4. Discussion

The Makishima Mackenzie model estimates the Young’s
modulus from two factors: bond strength and atomic packing.
The model quite reasonably assumes that bulk stiffness should
be related to the strength of bonds and their density, and tries
to capture this behavior by estimating bond strength from the
dissociation energy and bond density from the combination of
using the specific bond energy and the atomic packing frac-
tion. Indeed the atomic packing fraction is the key point where
glass structure enters the model, however, details of intermedi-
ate range order are averaged over in this description.

While the Young’s modulus of silicates and aluminosilicates
are described reasonably well by this model, with typical errors
of under 20% [1], borates and B2O3 in particular are poorly de-
scribed. The heat of formation of B2O3 similar between the
glass and crystal, at -1245 kJ/mol and -1263 kJ/mol respec-
tively. The densities differ significantly, with the glass density at
about 1.86 g/cc. The atomic radii in the glass can be estimated
from various scales, including the Pauling and Shannon tables,
leading to an atomic packing fraction of at least 0.37. Thus
the Makishima Mackenzie model predicts a Young’s modulus
of at least 62 GPa. However, this quantity is typically quoted
experimentally as about 17 GPa, and a detailed study of ther-
mal history effects, taking into account humidity, found values
of the elastic constants even lower, leading to Young’s modu-
lus estimates of 8–11 GPa [6]. In contrast, applying the Mak-
ishima Mackenzie model to fused quartz leads to an estimate
67.6 GPa for the Young’s modulus, in good agreement with the
standard literature value of 71.7 GPa. It seems clear that us-
ing the Makishima Mackenzie model as originally formulated
leads to a significant overestimate of the Young’s modulus in
B2O3 glass.

Enhancing the Makishima Mackenzie model could proceed
through an improved description of bond strength, or of struc-
ture, but should also respect or at least explain the fact that
the current model works satisfactorily for silicates and alumi-
nosilicates. As a bulk description of bond strength the disso-
ciation energy seems reasonable, and the specific dissociation

energy as energy per unit volume is already dimensionally cor-
rect to describe Young’s modulus. On the other hand, as noted
the description of bonding simply through atomic packing frac-
tion clearly averages over any possible intermediate range or-
der, which as the simulations show has a very strong correla-
tion with elasticity. Incorporation of connectivity into the Mak-
ishima Mackenzie model is therefore where we now turn our
attention.

The effect of intermediate range order as described by con-
nectivity (topology) has been considered from several ap-
proaches. Gupta and Cooper [7, 8] considered the problem of
rigid polyhedra linked through vertices, edges, and faces, and
determined the residual degrees of freedom after linking such
objects in d dimensions. For corner-linked tetrahedra in three
dimensions, as in fused quartz, they found zero residual de-
grees of freedom, while for corner-linked triangles, as in B2O3,
one degree of freedom remains after condensation. This view
thus suggests that fused quartz should be “stiff” as compared to
B2O3 because it has no further modes to absorb energy.

In contrast to the rigid polyhedra models, the Phillips-Thorpe
construction focuses on atoms linked by bonds, including typi-
cally bond stretch and bond angle bend forces [9, 10]. Analysis
of such networks leads to the conclusion that as the average
coordination number drops to 2.4, “floppy” regions percolate
through the material so that system should become macroscop-
ically soft. Both the Gupta-Cooper and Phillips-Thorpe mod-
els suggest that the B2O3 network, whether viewed as corner-
linked triangles or atoms with average coordination number 2.4,
should be macroscopically soft, as indeed it is compared to sil-
icates (note that fused quartz has an average coordination num-
ber of 2.67).

In order to interpolate between the limits of a stiff and soft
network, it is easier to adopt the Phillips-Thorpe perspective
because of its dependence on the essentially continuous param-
eter 〈r〉. Indeed, the data of Figure 2 provides the dependence
of stiffness on 〈r〉 for the model system described above, and
these data can be satisfactorily fit to the exponential form

E ∝ (〈r〉 − 2.4)1.7
, (2)

as shown in Figure 5. The exponent 1.7 is in satisfactory agree-
ment with the value 1.5± 0.2 obtained by He and Thorpe [3]. It
is essential to recognize, though, that beyond this agreement the
exponential fit also shows only a very weak at most dependence
on number density, in contrast to the linear dependence posited
by the Makishima Mackenzie model.

Based on the above observations that the Young’s modulus
depends on bond stiffness and connectivity, but hardly on den-
sity, we might posit a simple model as follows:

E = a(〈r〉 − 2.4)1.7
∑

i

Gixi + b, (3)

where Gi is the dissociation energy per volume as before, 〈r〉
is the average connectivity, a is a dimensionless scaling con-
stant, and b is the “background” elasticity, that is, the Young’s
modulus due to longer-range forces that will be present even
as the connectivity drops to 2.4 or below. In contrast to the
original Makishima-Mackenzie formulation, this approach has
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Figure 5: Data of Figure 2 replotted as an exponential function of the average
coordination number, shifted to 〈r〉 = 2.4.
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Figure 6: Data from ref. [11] of the Young’s modulus of GexSe1−x glass as a
function of composition and average coordination number. Experimental data
points are squares, while the triangles represent the coordination-number based
model of Eq. 3 and the circles the original Makishima-Mackenzie model. The
lines connecting the data points are only guides for the eye.
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two fit parameters, which can be seen as a deficiency; on the
other hand, it does address the significant errors made by the
Makishima-Mackenzie model in the case of weakly connected
glasses, as we know discuss.

The GexSe1−x system provides a range of glass compositions
over which the average coordination number can be varied from
4 (pure Ge) to 2 (Se). The electronegativity difference between
these atoms is small so if connectivity models work anywhere
they should work in this system. Yun et al. published data on
the elastic properties of these glasses [11] and we plot some of
them in Fig. 6. The data show that the Young’s moduli fall be-
tween 1–2 GPa, and show a mild increase with added Ge (and
hence increased coordination number), and a concave curva-
ture. The Makishima-Mackenzie model applied to this system,
using elemental Ge and Se as constituents, leads to a uniform
overestimate of the Young’s modulus (6–8 GPa) and a convex
curvature. The connectivity-inspired model of Eq. 3 leads to a
similar curvature, and can of course be scaled to fit the experi-

mental data very well.
Applying Eq. 3 to an oxide glass like lithium silicate leads

to poorer agreement with experiment than the Makishima-
Mackenzie model, primarily because, as usual with topological
models, it is hard to know how to count the constraints broken
or imposed by the alkali ions. If the lithium ions are counted
as four-coordinate and fully constrained, then Eq. 3 leads to a
broader range of predicted Young’s moduli than observed ex-
perimentally (50–90 GPa as compared to 74–79 GPa). This
range could be reduced by counting the constraints differently
but then the predictive value of the model is lost.

We remark that the Makishima-Mackenzie model is most
successful in glasses like quartz and silicates where the atomic
packing fraction is around 50%. In B2O3 it is only 37% while in
the Ge-Se system considered above it is about 20–22%. On the
other hand, the connectivity-based model of Eq. 3 performs best
for the Ge-Se system and less so for silicates. While both pack-
ing fraction and connectivity encode some information about
structure, we surmise that in densely packed systems, packing
fraction is sufficient and captures the many-body contributions
to elasticity adequately. In low-density glasses, packing frac-
tion appears to be a poor marker for structure and instead ex-
plicitly counting the direct-bond interactions, through connec-
tivity, is more suitable. It is not clear at this point how to inter-
polate in a well-founded way between these two descriptions.

5. Conclusions

By considering networks of elastic force constants we
showed by simulation that all elastic constants reduce to zero
as the average connectivity drops to 2.4, and most importantly
that this result is essentially insensitive to the model packing
fractions. These observations lead to several conclusions. First,
the poor agreement of the Makishima-Mackenzie model with
experiment for B2O3 glass is likely due to the inaccuracy of
packing fraction as a descriptor of structure in a glass with av-
erage coordination of only 2.4. Secondly, the dependence of
Young’s modulus in Ge-Se glasses is reasonably well repro-
duced by a model that depends only on connectivity, especially
in accounting for compositions with low connectivity. Third,
the success of the Makishima-Mackenzie model in silicates is
likely because in dense classes, packing fraction does describe
structure adequately and accounts for the many-body interac-
tions when many atoms are relatively close.
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