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A ROLE FOR GENERALIZED FERMAT NUMBERS

JOHN B. COSGRAVE AND KARL DILCHER

Abstract. We define a Gauss factorial Nn! to be the product of all positive

integers up to N that are relatively prime to n ∈ N. In this paper we study

particular aspects of the Gauss factorials bn−1
M
cn! for M = 3 and 6, where

the case of n having exactly one prime factor of the form p ≡ 1 (mod 6) is

of particular interest. A fundamental role is played by those primes p ≡ 1

(mod 3) with the property that the order of p−1
3

! modulo p is a power of 2
or 3 times a power of 2; we call them Jacobi primes. Our main results are

characterizations of those n ≡ ±1 (mod M) of the above form that satisfy

bn−1
M
cn! ≡ 1 (mod n), M = 3 or 6, in terms of Jacobi primes and certain

prime factors of generalized Fermat numbers. We also describe the substantial

and varied computations used for this paper.

1. Introduction

The Fermat numbers

Fk := 22
k

+ 1, k = 0, 1, 2, . . .

are a well known and intensively studied special number sequence. This is partly
due to important applications (e.g. Gauss’s construction of a regular n-gon), but
also due to the history of this sequence, including Fermat’s mistaken claim that all
are prime, which was disproved by Euler. It is a well-known fact that no Fermat
primes except F0, . . . , F4 have been found.

The generalized Fermat numbers, defined for integers a > b ≥ 1 by

Fk(a, b) = a2
k

+ b2
k

, gcd(a, b) = 1, k = 0, 1, 2, . . .

were first studied by Euler who proved a well-known theorem about the structure
of their prime factors; see [13, p. 375]. They were then subject to more inten-
sive studies from the 1960s onwards. Among the numerous references for Fermat
and generalized Fermat numbers, we mention the books [22, 29, 30], and [13] for
historical references. Of particular interest is the case b = 1, namely

(1.1) Fk(a) = a2
k

+ 1, k = 0, 1, 2, . . .

These can also be seen as special cases of integers of the form an± 1, whose factor-
izations have been intensively studied since (at least) the advent of the electronic
computer, as part of the “Cunningham Project”; see [3].

Factorization attempts of such numbers have always tested, and continue to
test, the limits of modern factoring and primality testing algorithms, both general
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2 JOHN B. COSGRAVE AND KARL DILCHER

and specific to Fermat and related numbers, as well as implementations of these
algorithms and the increasingly powerful computer hardware on which they run.

There have been, however, relatively few applications of generalized Fermat num-
bers; see, e.g., [5, 19, 25, 26, 27]. In this paper we present another novel application
of the factors of numbers of the type (1.1), for a very special class of bases a.

In Section 2 we state the main objectives of this paper, and give a first indication
as to how generalized Fermat numbers and their factors will enter. Sections 3–6
contain the main results and proofs, while Section 7 is devoted to computations,
including new factors of generalized Fermat numbers. We conclude this paper with
some further remarks in Section 8.

2. Gauss Factorials

The theorem of Wilson, which states that for a prime p we have (p − 1)! ≡ −1
(mod p), has a less well-known analogue, due to Gauss, for composite moduli: For
any integer n ≥ 2 we have

(2.1)
∏

1≤j≤n
gcd(j,n)=1

j ≡

{
−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,

where p is an odd prime and α is a positive integer. For references, see [13, p. 65].
With this theorem in mind, we have used the term Gauss factorial in previous

papers (see, e.g., [9]) to refer to the factorial-like product

(2.2) Nn! =
∏

1≤j≤N
gcd(j,n)=1

j, N, n ∈ N.

Such products play an important role in number theory, for instance in the definition
of Morita’s p-adic Gamma function (see, e.g., [2, p. 227]).

In this paper we continue our study of the arithmetic properties of the Gauss
factorial bn−1M cn!, M ≥ 1, n ≡ ±1 (mod M). In particular, given a fixed integer
M ≥ 1 we consider the question of which integers n satisfy

(2.3)
⌊
n−1
M

⌋
n
! ≡ 1 (mod n), n ≡ ±1 (mod M).

More general questions on the residues or the multiplicative orders modulo n of the
Gauss factorials in (2.3) can also be (and have been) considered. However, it is the
purpose of this paper to study the solutions of (2.3) in the two closely related cases
M = 3 and M = 6.

We begin by putting the congruence (2.3) in perspective. When M = 1, this
is just the Gauss-Wilson theorem, and all solutions are given by (2.1). The case
M = 2 was completely solved in [7], where it was shown that the only possible
orders of

(
n−1
2

)
n
! modulo n are 1, 2, and 4. The case M = 4 was considered in

[10], where the methods and results were similar in nature to the present paper,
with some substantial differences, however.

Another way of characterizing the Gauss factorials in (2.3) is by the number of
distinct prime factors p | n for which p ≡ 1 (mod M). If n has at least three such
prime factors, then (2.3) always holds for n ≡ 1 (mod M), as was shown in [7],
and an easy extension of the proof given in [7] establishes the same result in the
case where n ≡ −1 (mod M). If n has exactly two distinct prime factors p ≡ 1
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(mod M), the situation becomes more interesting, and a typical result is given as
an illustration in Subsection 8.3 at the end of this paper.

Of the two remaining cases, very little can be said when n has no prime factor of
this kind. However, when n has exactly one such prime factor, a very rich structure
and strong and pleasing results emerge; this case was already explored in [8] and
[11] when n is a prime power.

Let us now make the question around (2.3) more specific. From here on we
always assume that n is of the form

(2.4)

{
n = pαw, with w = qβ1

1 . . . qβss (s ≥ 0, α, β1, . . . , βs ∈ N),

p ≡ 1 (mod 3), q1 ≡ · · · ≡ qs ≡ −1 (mod 3) distinct primes,

where the case s = 0 is interpreted as w = 1. The main objective of this paper is
to study integers of this type for which⌊

n−1
3

⌋
n
! ≡ 1 (mod n), or(2.5) ⌊

n−1
6

⌋
n
! ≡ 1 (mod n).(2.6)

Table 2.1 shows the first few solutions of each of these two congruences.

n (2.5) factored n (2.6) factored
26 2 · 13 1105 5 · 13 · 17

244 22 · 61 14365 5 · 132 · 17
305 5 · 61 34765 5 · 17 · 409
338 2 · 132 303535 5 · 17 · 3571

9755 5 · 1951 309485 5 · 11 · 17 · 331
18205 5 · 11 · 331 353365 5 · 29 · 2437
33076 22 · 8269 508255 5 · 11 · 9241
48775 52 · 1951 510605 5 · 102121
60707 17 · 3571 527945 5 · 11 · 29 · 331

Table 2.1: The first solutions of (2.5) and (2.6); p shown in bold.

While no strong patterns appear in this table, we observe that both tables contain
integers n that are not 1 (mod 3), resp. 1 (mod 6), so that the floor functions in
(2.5) and (2.6) are indeed meaningful. All entries in Table 2.1 can be completely
explained by our main results later in this paper.

In the process of studying the solutions of these two congruences (2.5) and (2.6),
we prove more general results, and we encounter phenomena that are interesting in
their own right. But first we continue with two motivating examples.

Example 2.2. Let p = 7, the smallest admissible p in (2.4). A combination of
theory and computation establishes that for s = 0, 1, . . . , 6 there are no solutions
of (2.5), while for s = 7 there are exactly 27 solutions, the smallest and largest of
which are
n = 7 · 2 · 5 · 17 · 353 · 169553 · 7699649 · 531968664833, and
n = 7 · 29 · 5 · 17 · 353 · 7699649 · 47072139617 · 531968664833,

with 30 and 36 decimal digits, respectively. As far as (2.6) is concerned, we have
the trivial solution n = 7 for s = 0, while there are no solutions for s = 1, 2, . . . , 5,
and a single one for s = 6, namely the 40-digit

n = 7 · 17 · 353 · 169553 · 7699649 · 47072139617 · 531968664833.
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What are these factors qj that occur in these cases? We note that 5 | 72 + 1, and

17 | 72
3

+ 1 and 169 553 | 72
3

+ 1,

353 | 72
4

+ 1 and 47 072 139 617 | 72
4

+ 1,

7 699 649 | 72
5

+ 1 and 531 968 664 833 | 72
5

+ 1,

while 72
2

+ 1 has no prime factor q ≡ −1 (mod 3), and 29 is the exact power of 2

that divides (7− 1)(7 + 1)(72
1

+ 1) . . . (72
5

+ 1).

Example 2.3. Let p = 13, the next admissible p in (2.4). Again, a combination of
theory and computation establishes that (2.5) has no solution for s = 0, 1, . . . , 7 and
9, while there are exactly 38 solutions for s = 8, the smallest and largest of which
have 39 and 43 digits, respectively. Those solutions are as follows (with α = 1, 2
and β = 1, 2, . . . , 9):

13α · 2β · 5 · 17 · 257 · 2657 · 10433 · 441281 · 36713826768408543617,
13α · 2β · 5 · 17 · 1601 · 2657 · 10433 · 441281 · 36713826768408543617,
13α · 5 · 17 · 257 · 1601 · 2657 · 10433 · 441281 · 36713826768408543617.

On the other hand, a combination of theory and computation also establishes
that (2.6) has no solution for s = 0, 1, and exactly two solutions for s = 2, namely
1105 and 14365: 13α · 5 · 17 (α = 1, 2).

Further, there are no solutions for s = 3, 4, 5, 6 and 8, while there are exactly
eight solutions for s = 7, the smallest and largest of which have 22 and 43 digits,
respectively. Those solutions are as follows (for α = 1, 2):

13α · 5 · 17 · 257 · 1601 · 2657 · 10433 · 441281,
13α · 5 · 17 · 257 · 1601 · 2657 · 10433 · 36713826768408543617,
13α · 5 · 17 · 257 · 1601 · 2657 · 441281 · 36713826768408543617,
13α · 5 · 257 · 1601 · 2657 · 10433 · 441281 · 36713826768408543617.

In the case of the solutions to (2.5), the prime powers occurring in the construc-
tion of the factor w in (2.4) (up to s = 8) are divisors of the product

(2.7) (13− 1)(13 + 1)(132
1

+ 1) . . . (132
6

+ 1),

where the exponent 6 comes from s − 2. In the case of the solutions to (2.6), the
prime powers (up to s = 7) are divisors of the same product (2.7), but this time
the exponent 6 comes from s − 1. Since we have complete factorizations of the
generalized Fermat numbers in (2.7), we can be certain that the solutions displayed
in this example are complete up to s = 8, resp. s = 7, as we will see later.

Remark 2.4. In Example 2.3 we have solutions of the form (2.4) with α = 2. This
is an extremely rare event; in fact, as will be explained later, p = 13 is the only
prime p < 1014 for which α = 2 can occur. We will also show that there cannot be
any solutions with α > 2 for p in the same range.

Having displayed numerous solutions for p = 7 and 13 in Examples 2.2 and 2.3,
we note that as a consequence of the theory developed in this paper, there are no
solutions of either (2.5) or (2.6) for p = 19, 31, 37, or 43, with the next solutions
occurring for p = 61 and p = 97, and only five more such p below 1000.

In this paper we will give a complete characterization of these special primes 7,
13, 61, 97, . . . , which we call Jacobi primes, and also explain and characterize the
structure of the solutions of (2.5) and (2.6), as seen in Examples 2.2 and 2.3. Key
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ingredients to all of this are closed form congruences, split modulo pα and modulo
w, which will be stated in the following section.

3. Closed Form Congruences

The proofs of our main results in Section 5, and thus the solutions to the con-
gruences (2.5) and (2.6), depend on certain explicit congruences modulo pα, and
separately modulo w, where n = pαw as in (2.4). In this section we will state
these congruences; later, in Section 5, they will be combined by using the Chinese
Remainder Theorem.

3.1. Congruences modulo w. We require the following definitions, partially mod-
ified from D. H. Lehmer’s paper [23]. As usual, ϕ(n) denotes Euler’s totient func-
tion. For positive integers k < n we define, for each q = 1, 2, . . . , k, the partial
totient function ϕ(k, q, n) as the number of totatives τ , that is, integers τ relatively
prime to n, for which

n(q − 1)

k
< τ <

nq

k
.

Here we will be dealing with the special cases

(3.1) ϕ(M, 1, w) = #{τ | 1 ≤ τ ≤ w−1
M , gcd(τ, w) = 1}.

With this definition we can now state the following two lemmas. Their proofs lie
at the centre of most of this paper, but for the sake of greater clarity of exposition
we defer them to Section 6.

Lemma 3.1. Let n be as in (2.4), with w ≡ δ (mod 3), where δ ∈ {−1, 1}. Then

(3.2) bn−13 cn! ≡ 1

pϕ(3,1,w)
(mod w), ϕ(3, 1, w) =

1

3

(
ϕ(w) + δ2s−1

)
.

Lemma 3.2. Let n be as in (2.4), with w ≡ δ (mod 6), where δ ∈ {−1, 1}. Then

(3.3) bn−16 cn! ≡ Bs(n)

pϕ(6,1,w)
(mod w), ϕ(6, 1, w) =

1

6

(
ϕ(w) + δ2s+1

)
,

with

Bs(n) =

{
(−1)(p−1)/6, s = 1,

1, s ≥ 2.

We note that the right-hand sides of (3.2) and (3.3) are independent of α, the
exponent of p in (2.4). Before stating the closed-form congruences modulo pα, we
derive some consequences from Lemmas 3.1 and 3.2, which will already show how
generalized Fermat numbers enter the picture. For the proof of the first consequence
we require the following lemma.

Lemma 3.3. For w as in (2.4), the congruence X ≡ 1 (mod w) holds if and only
if X3 ≡ 1 (mod w) holds.

Proof. The first congruence obviously implies the second one. Suppose now that
X3 ≡ 1 (mod w); then (X − 1)(X2 + X + 1) ≡ 0 (mod w). But X2 + X +
1 ≡ 0 (mod q) if and only if (2X + 1)2 ≡ −3 (mod q), which is impossible for
primes q ≡ −1 (mod 3) since −3 is a quadratic nonresidue for such primes. Hence
gcd(w,X2+X+1) = 1 for any X ∈ Z, so w | X−1, which completes the proof. �
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Proposition 3.4. Let n be as in (2.4), with s ≥ 1. Then

(3.4)
⌊
n−1
3

⌋
n
! ≡ 1 (mod w)

if and only if every qβii is a divisor of p2
s−1 − 1; in other words, if and only if every

qβii divides


p− 1, for s = 1,

(p− 1)(p+ 1), for s = 2,

(p− 1)(p+ 1)(p2 + 1) . . . (p2
s−2

+ 1), for s ≥ 3.

Proof. Raise both sides of (3.2) to the third power. Then we get⌊
n−1
3

⌋
n
!3 ≡ p−ϕ(w)−δ2s−1

≡ p−δ2
s−1

(mod w), δ = ±1.

By Lemma 3.3 we now have (3.4) if and only if p2
s−1 ≡ 1 (mod w), which was to

be shown. �

In a completely analogous way we may obtain the following result from (3.3).

Proposition 3.5. Let the odd integer n be as in (2.4), with s ≥ 2. Then

(3.5)
⌊
n−1
6

⌋
n
! ≡ 1 (mod w)

if and only if every qβii is a divisor of p2
s − 1; in other words, if and only if

qβii

∣∣∣(p− 1)(p+ 1)(p2 + 1) . . . (p2
s−1

+ 1), for all i = 1, . . . , s.

The condition s ≥ 2 is necessary in this result because of the term Bs(n) in (3.3).
Also, the proof would use the easily derivable congruence pϕ(w)/2 ≡ 1 (mod w),
which holds for s ≥ 2,

Example 3.6. Let p = 19. We compute

p− 1 = 2 · 32, p+ 1 = 22 · 5, p2
1

+ 1 = 2 · 181, p2
2

+ 1 = 2 · 17 · 3833,

and we note that among these factors, q1 = 5, q2 = 17, and q3 = 3833 satisfy
qi ≡ −1 (mod 6). Hence for s = 3 the hypotheses of Proposition 3.5 are satisfied,
and n = 19αw with w = 5 · 17 · 3833 is a solution of (3.5).

On the other hand, there can be no solution for s = 2 since q1 = 5 is the only
admissible prime factor up to the appropriate level. Also, it is important to note
that the above n is not a solution of (2.6). For this to be the case, we would need⌊
n−1
6

⌋
n
! ≡ 1 (mod pα), which cannot hold, as we shall see later.

The reader will have noticed that, in contrast to Proposition 3.4, the case s = 1
is not mentioned in Proposition 3.5 or in Example 3.6. This case needs to be treated
separately.

Proposition 3.7. Let n = pαqβ with primes p ≡ 1 (mod 6), q ≡ −1 (mod 6) and
α, β ≥ 1. Then

(3.6)
⌊
n−1
6

⌋
n
! ≡ 1 (mod qβ)

if and only if qβ | p2 − (pq )(−1)(p−1)/2, where (pq ) is the Legendre symbol. In other

words, (3.6) holds if and only if qβ | (p − 1)(p + 1) or qβ | p2 + 1, depending on
whether (pq )(−1)(p−1)/2 = 1 or −1.
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Proof. By Lemma 3.3 we know that (3.6) holds if and only if the cube of this
congruence holds. By (3.3) this is the case when

(3.7) p
1
2ϕ(q

β)+2δ ≡ (−1)(p−1)/2 (mod qβ).

But by the theory of quadratic residues (using Euler’s criterion) we have

p
1
2ϕ(q

β) ≡ (
p

q
) (mod qβ).

Since the Legendre symbol and the right-hand side of (3.7) are 1 or−1, the exponent
δ = ±1 is irrelevant, and (3.7) is now seen to be equivalent to p2 ≡ (pq )(−1)(p−1)/2

(mod qβ), which was to be shown. �

We illustrate this result with two examples.

Example 3.8. Let p = 349 and q = 5. Then (pq )(−1)(p−1)/2 = 1 · 1 = 1. So we

consider (p − 1)(p + 1) = 348 · 350 = 23 · 3 · 52 · 7 · 29, and by Proposition 3.7 the
congruence (3.6) holds for n = 349α · 52 for any α ≥ 1. For instance, for α = 2 we
compute ⌊

n−1
6

⌋
n
! ≡ 596726 (mod n) ≡ 1 (mod 52).

Example 3.9. Let p = 463 and q = 17. Then (pq )(−1)(p−1)/2 = 1 · (−1) = −1. So

this time we consider p2 +1 = 2 ·5 ·13 ·17 ·97, and by Proposition 3,7 we know that
(3.6) holds for n = 463α · 17 for any α ≥ 1. We choose again α = 2 and compute⌊

n−1
6

⌋
n
! ≡ 994637 (mod n) ≡ 1 (mod 17).

3.2. Congruences modulo pα. The following two lemmas contain a second set of
crucial closed-form congruences, for denominators M = 3 and M = 6, respectively.
Their proofs will also be presented in Section 6.

Lemma 3.10. Let n ≡ δ (mod 3), δ ∈ {−1, 1}, be as in (2.4). Then for s ≥ 1,

(3.8) bn−13 cn! ≡ ε(n)(q1 . . . qs)
(−1)s−1δϕ(pα)/3(p

α−1
3 )p!

δ2s (mod pα),

where

ε(n) :=

{
−1 when s = 1 with q1 = 2 and β1 = 1,

1 otherwise.

Lemma 3.11. Let n ≡ δ (mod 6), δ ∈ {−1, 1}, be as in (2.4). Then we have

bn−16 cn! ≡ (−1)(p+q1)/6q
δϕ(pα)/6
1 (p

α−1
6 )p!

2δ (mod pα) (s = 1),(3.9)

bn−16 cn! ≡ (q1 . . . qs)
(−1)sδϕ(pα)/3(p

α−1
6 )p!

δ2s (mod pα) (s ≥ 2).(3.10)

We note that the right-hand sides of (3.8)–(3.10) are independent of the powers
of q1, . . . , qs. While the main purpose of this paper is to study solutions of the
congruences (2.5) and (2.6), Examples 2.2 and 2.3 suggest that the Gauss factorials⌊
n−1
3

⌋
n
! and

⌊
n−1
6

⌋
n
! are closely related to each other. As another application of

the closed-form congruences stated above we will now make this connection more
explicit.
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Proposition 3.12. Let n be as in (2.4), with qj ≡ −1 (mod 6), j = 1, . . . , s. Then⌊
n−1
3

⌋
n
!24 ≡

⌊
n−1
6

⌋
n
!12 (mod n) when s = 0,(3.11) ⌊

n−1
3

⌋
n
!12 ≡

⌊
n−1
6

⌋
n
!6 (mod n) when s = 1,(3.12) ⌊

n−1
3

⌋
n
!6 ≡

⌊
n−1
6

⌋
n
!3 (mod n) when s ≥ 2.(3.13)

Proof. The case s = 0 is Corollary 1 in [11]. Next, for s = 1 we raise both sides of
(3.8) and (3.9) to the 12th and 6th powers, respectively. Then by the Euler-Fermat
theorem all but the last term on each of the right-hand sides become 1, and using
the case s = 0 gives

(3.14)
⌊
n−1
3

⌋
n
!12 ≡

⌊
n−1
6

⌋
n
!6 (mod pα).

Now, raising (3.2) and (3.3) to the same powers, we get⌊
n−1
3

⌋
n
!12 ≡ p−4ϕ(w)−δ2s+1

(mod w),
⌊
n−1
6

⌋
n
!6 ≡ p−ϕ(w)−δ2s+1

(mod w).

Since pϕ(w) ≡ 1 (mod w), the left terms in the above two congruences are con-
gruent to each other modulo w. Combining this with (3.14) by using the Chinese
Remainder Theorem gives (3.12).

Finally, in the case s ≥ 2 we raise (3.8) and (3.10) to the sixth and third powers,
respectively, and once again use the case s = 0. This gives

(3.15)
⌊
n−1
3

⌋
n
!6 ≡

⌊
n−1
6

⌋
n
!3 (mod pα).

Just as before, (3.2) and (3.3) give⌊
n−1
3

⌋
n
!6 ≡ p−2ϕ(w)−δ2s (mod w),

⌊
n−1
6

⌋
n
!3 ≡ p−ϕ(w)/2−δ2s (mod w).

Once again, we have pϕ(w) ≡ 1 (mod w), and pϕ(w)/2 ≡ 1 (mod w), since s ≥ 2.
So the terms on the left-hand sides above are congruent to each other modulo w,
and combining this with (3.15), the Chinese Remainder Theorem gives (3.13), and
the proof is complete. �

Remark 3.13. Examples show that the exponents in each of the three cases in
Proposition 3.12 are best possible.

4. Jacobi Primes

4.1. Basics. We will now use the closed-form congruences from the previous section
to motivate the main definition in the current section; this is also a central concept
for this paper. For this purpose, and to simplify matters, we restrict our attention
to integers of the form (2.4) with s ≥ 2, and to the case of the congruence (2.5). A
necessary condition for this congruence to hold is that the third power also holds.
We therefore cube both sides of (3.8), which shows that a necessary condition for
(2.5) to hold is that

(4.1) (p
α−1
3 )p!

3·2s ≡ 1 (mod pα)

be satisfied. We will see later that this congruence places an extremely strong
condition on the prime p whenever α > 1. But first we will see that for any α ≥ 1
the primes p that satisfy (4.1) are rather special. Using the notation

(4.2) γ(M)
α (p) := ordpα((p

α−1
M )p!) (M ≥ 2, p ≡ 1 (mod M)),

for the multiplicative order modulo pα, the congruence (4.1) implies that

(4.3) γ(3)α (p) = 2` or 3 · 2` (0 ≤ ` ≤ s).
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Now, in Proposition 4.2 of [8] it was shown that the sequence of orders γ
(M)
1 (p),

γ
(M)
2 (p), . . . behaves in a very specific way which in the above situation means that

(4.3) implies

(4.4) γ
(3)
1 (p) = ordp

(
p−1
3 !
)

= 2` or 3 · 2`.
This gives rise to the following definition.

Definition 4.1. A prime p ≡ 1 (mod 3) will be called a Jacobi prime of level ` if

ordp
(
p−1
3 !
)

= 2` or ordp
(
p−1
3 !
)

= 3 · 2`.

Example 4.2. We consider the first three primes p ≡ 1 (mod 6) and compute:

p = 7 : p−1
3 ! = 2, ordp

(
p−1
3 !
)

= 3 = 3 · 20;

p = 13 : p−1
3 ! = 24, ordp

(
p−1
3 !
)

= 12 = 3 · 22;

p = 19 : p−1
3 ! = 720, ordp

(
p−1
3 !
)

= 9.

Thus, 7 and 13 are Jacobi primes of levels 0 and 2, respectively, while 19 is not a
Jacobi prime.

An equivalent definition given below is related to another important ingredient
in our eventual characterization of the solutions of (2.5) and (2.6), namely Jacobi’s
binomial coefficient congruence.

Theorem 4.3 (Jacobi). Let p ≡ 1 (mod 3), and write

(4.5) 4p = r2 + 27t2, r ≡ 1 (mod 3),

which uniquely determines the integer r. Then

(4.6)

( 2(p−1)
3
p−1
3

)
≡ −r (mod p).

This remarkable result is nonelementary, and a proof can be found in [2], the
standard reference in the field. For remarks and further references, see [2, p. 291].
As an easy consequence of Jacobi’s theorem we obtain the following congruence.

Corollary 4.4. Let p and r be as in (4.5). Then

(4.7) (p−13 )!3 ≡ 1

r
(mod p).

Proof. We rewrite (4.6) as

(4.8) ( 2(p−1)
3 )! ≡ −r(p−13 )!2 (mod p).

Since p−1
3 is even, we have (p−13 )! ≡ (p − 1)(p − 2) . . . (p − p−1

3 ) (mod p) and

therefore, upon multiplying both sides of (4.8) by (p−13 )!, the left-hand side becomes
(p− 1)! ≡ −1 (mod p), by Wilson’s theorem; (4.7) now follows immediately. �

Corollary 4.4 shows that we have the equivalence

(p−13 )!3·2
m

≡ 1 (mod p) ⇔ r2
m

≡ 1 (mod p) (m ≥ 0),

and by (4.4) we get the following equivalent to Definition 4.1.

Corollary 4.5. A prime p ≡ 1 (mod 3) is a Jacobi prime of level ` if and only if

(4.9) ordp(r) = 2`,

where r is as defined in (4.5).
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Example 4.6. We consider again the primes of Example 4.2 and compute:

p = 7 : 4p = 12 + 27 · 12, ordp(1) = 20;

p = 13 : 4p = (−5)2 + 27 · 12, ordp(−5) = 22;

p = 19 : 4p = 72 + 27 · 12, ordp(7) = 3.

By Corollary 4.5, this is consistent with Example 4.2.

We will see later that it is Corollary 4.5, rather than Definition 4.1, that allows
for the most efficient computation of Jacobi primes. But first we derive some
important conditions for levels 0, 1 and 2.

Proposition 4.7. (a) A prime p is a level-0 Jacobi prime if and only if

(4.10) p = 27X2 + 27X + 7 (X ∈ Z).

(b) There is no level-1 Jacobi prime.
(c) The only level-2 Jacobi prime is p = 13.

Proof. (a) By Corollary 4.5, p is a level-0 Jacobi prime if and only if r = 1, which
by (4.5) means that 4p = 1 + 27t2 = 1 + 27(2X + 1)2, where we used the fact that
t must be odd. Upon expanding and dividing by 4, we immediately get (4.10).

(b) Again by Corollary 4.5, p is of level 1 if and only if r ≡ −1 (mod p). The
case r = −1 is a contradiction to r ≡ 1 (mod 3). By (4.5) we have the restriction
|r| < 2

√
p, an inequality not satisfied by the next-smallest r, namely r = p − 1,

since p ≥ 7. This proves part (b).
(c) In this case we have ordp(r) = 4, i.e., r2 ≡ −1 (mod p). Due to the size

restriction |r| < 2
√
p from above, r2 has to be of the form r2 + 1 = mp, 1 ≤ m ≤ 4.

Since r2 + 1 ≡ 2 (mod 3), the cases m = 1, 3 and 4 lead to contradictions to p ≡ 1
(mod 3). This leaves m = 2, and we wish to show that 2p = r2 + 1 implies p = 13.

To do so, we combine this identity with (4.5), obtaining

r2 − 27t2 = −2, or x2 − 3y2 = −2.

Without going into details, we now appeal to the theory of Pell equations. Let
(xk, yk) be the solutions of x2−3y2 = −2, and (Ak, Bk) the solutions of x2−3y2 = 1.
All four sequences, with numerous properties and references, can be found in [28],
as A001834, A001835, A001075 and A00353, respectively. The one property we
require here is x2k+1 = A2k−1, which can be verified, for instance, by manipulating
the relevant Binet-type formulas. This identity implies, with the above, that a
level-2 Jacobi prime p satisfies 2p = r2 + 1 = x2k + 1 = A2k−1. A3 = 26 is one
such solution. But as far as other solutions are concerned, it was shown in [8,
Lemmas 7–9] that for no other case can we have r4 ≡ 1 (mod 4), a contradiction
to the level of p being 2. Hence p = 13 is the only level-2 Jacobi prime. �

Remark 4.8. (1) As one would expect, (4.10) generates a large number of primes,
although it is not known whether there are infinitely many. The first few (up to
1000) are 7, 61, 331 and 547, with the total of 215 105 such primes up to 1014. On
the other hand, Jacobi primes of levels ` ≥ 3 are very rare, with only 44 up to 1014;
see Section 7 for a complete list.

(2) Because of this large difference in their abundance, we shall refer to level-0
Jacobi primes as standard , and those of levels ` ≥ 2 as nonstandard Jacobi primes.
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(3) For a standard Jacobi prime p, (4.10) gives an explicit representation p =
a2 + 3b2. Indeed, it is easy to verify that

p =
(
9X+4

2

)2
+ 3

(
3X+2

2

)2
(X even) or p =

(
9X+5

2

)2
+ 3

(
3X+1

2

)2
(X odd).

This also shows that b ≡ 1 (mod 3), resp. b ≡ 2 (mod 3), and in particular b is
never divisible by 3. For Jacobi primes of level ` ≥ 2 there is no obvious way to
determine a and b, other than the usual algorithms.

4.2. The “denominator 6” case. This is the case of solutions of (2.6), where
once again we assume s ≥ 2 for simplicity. In analogy to the development at the
beginning of this section we see that a necessary condition for (2.6) to hold is that

(4.11) (p
α−1
6 )p!

3·2s ≡ 1 (mod pα)

be satisfied which, again using the theory developed in [8], requires

(4.12) γ
(6)
1 (p) = ordp

(
p−1
6 !
)

= 2L or 3 · 2L (0 ≤ L ≤ s).

We will now see that such a prime p also has to be a Jacobi prime whose level `
is closely related to L. First we require another binomial coefficient congruence,
similar in nature to Jacobi’s theorem.

Given a prime p ≡ 1 (mod 6), by a result going back to Fermat it can be
written as p = a2 + 3b2, uniquely up to signs of a and b. It was Jacobi who used
the alternative representation 4p = x2 + 3y2 and showed that it always has three
distinct solutions (up to sign) that can be written in terms of a and b. For an
exposition of this, with references and a table of small primes, see [9].

One of the three representations is given by (4.5), and below we write r in terms
of a and b. We also need an integer u satisfying 4p = u2 + 3v2 which is written in
terms of a and b in a similar way.

Let p = a2 + 3b2 with the signs chosen so that a ≡ −1 (mod 3) and b > 0; then
we define u by the following congruences modulo p, with r given as comparison:

(4.13) u ≡


2a if b ≡ 0 (mod 3),

−a− 3b if b ≡ 1 (mod 3),

−a+ 3b if b ≡ 2 (mod 3);

r ≡


2a if b ≡ 0 (mod 3),

−a+ 3b if b ≡ 1 (mod 3),

−a− 3b if b ≡ 2 (mod 3).

For r these are actually equations for all p ≡ 1 (mod 6), while for u they hold as
equations for p ≥ 19, with u = −5 when p = 7 and u = 7 when p = 13.

Before continuing, we use these congruences to obtain a simple but useful con-
nection between r and u, which was also proved in [11, Lemma 3].

Lemma 4.9. For any p ≡ 1 (mod 6) we have r3 ≡ u3 (mod p).

Proof. We consider the factorization r3 − u3 = (r − u)(r2 + ru + u2) and use the
fact that r = u when b ≡ 0 (mod 3). When b ≡ ±1 (mod 3) then in both cases,

r2+ru+u2 ≡ (a+3b)2+(a+3b)(a−3b)+(a−3b)2 = 3(a2+3b2) = 3p ≡ 0 (mod p),

so in all three cases we have r3 − u3 ≡ 0 (mod p). �

We now state the following congruence, which is similar in nature to Jacobi’s
theorem, and which was proved in [21]; see also [2, p. 270].
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Theorem 4.10 (Hudson and Williams). Let p ≡ 1 (mod 6) be a prime and u as
defined above. Then

(4.14)

(p−1
3
p−1
6

)
≡ (−1)

p−1
6 +1u (mod p).

We can now state and prove the following result related to (4.12).

Proposition 4.11. Let p be a Jacobi prime of level ` ≥ 2. Then

(4.15) ordp
(
p−1
6 !
)

= 2L or ordp
(
p−1
6 !
)

= 3 · 2L, `− 3 ≤ L ≤ `.
Furthermore, if ` = 0 then L = 0, 1 or 2.

Proof. By Theorem 4.10 we have

(4.16) p−1
3 ! ≡ (−1)

p−1
6 +1u

(
p−1
6 !
)2

(mod p).

Raising both sides to the (even) power 3 · 2`−1, we get

(4.17)
(
p−1
3 !
)3·2`−1

≡ u3·2
`−1 (p−1

6 !
)3·2`

(mod p).

Now, by Definition 4.1, the left-hand side of (4.17) is ≡ −1 (mod p), and by
Lemma 4.9 and Corollary 4.5 we have

u3·2
`−1

≡ r3·2
`−1

≡ (−1)3 = −1 (mod p),

so that (4.17) reduces to (
p−1
6 !
)3·2` ≡ 1 (mod p),

which gives (4.15) with L ≤ `. To obtain a lower bound for L, we note it was shown
in [11, Corollary 2] — which is actually an easy consequence of (3.11) in Propo-
sition 3.12 — that the values of the ratios ordp(

p−1
6 !)/ordp(

p−1
3 !) are restricted to

the 18 values
1

24
,

1

12
,

1

8
,

1

6
,

1

4
,

1

3
,

3

8
,

1

2
,

2

3
,

3

4
, 1,

4

3
,

3

2
, 2, 3, 4, 6, 12,

and it is obvious that the largest deviation in the powers of 2 is 3 (in 1/24 and 1/8).
Finally, for ` = 0, we have r = 1 by Corollary 4.5; we raise both sides of (4.16)

to the third power and note that by Corollary 4.4 we have (p−13 !)3 ≡ 1 (mod p),

and Lemma 4.9 gives u3 ≡ r3 ≡ 1 (mod p). Hence

1 ≡ (−1)(p+5)/6
(
p−1
6 !
)6

(mod p),

and upon squaring we have (p−16 !)12 ≡ 1 (mod p), which means that ordp(
p−1
6 !) is

a divisor of 12, i.e., it is of the form 2L or 3 · 2L, with L = 0, 1 or 2. �

Remark 4.12. Proposition 4.11 raises the question as to whether L can take on
all four values in relation to ` (when ` ≥ 2). This is indeed the case (see Tables 7.4
and 7.5):
(1) For p = 13 we compute ordp(

p−1
3 !) = ordp(

p−1
6 !) = 3 ·22, so ` = L = 2 (compare

with Proposition 4.7(c)). For ` ≥ 3, no other Jacobi prime p < 1014 satisfies ` = L.
(2) For 40 of the 45 nonstandard Jacobi primes p < 1014 we have L = ` − 1, the
smallest one being p = 97, and the largest p = 69 803 955 978 241.
(3) The case L = `− 2 occurs for the the primes 409, 4729, and 824 717 353.
(4) The only prime with L = `− 3 is 860 301 577.
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In the case ` = 0, a slightly more detailed proof of the last part of Proposition 4.11
would show that

ordp(
p−1
3 !) = 1 implies ordp(

p−1
6 !) = 3, 6, or 12;

ordp(
p−1
3 !) = 3 implies ordp(

p−1
6 !) = 1, 2, 3, 4, 6, or 12.

In both cases, all the orders on the right are actually attained.

5. The Main Results

5.1. Preliminaries. In this section we will state and prove our main theorems
concerning solutions of (2.5) and (2.6). In addition to the crucial concept of a Jacobi
prime introduced in the previous section, we also need the notion of an α-exceptional
prime which was introduced and studied in [8], with further properties and criteria
in [11]. Recall that in connection with the congruence (4.1) and the subsequent
motivation for the definition of a Jacobi prime, we alluded to the sequence of orders

γ
(M)
1 (p), γ

(M)
2 (p), . . . behaving in a very specific way. In fact, Proposition 4.2 in [8]

can be simplified as follows, using the notation of (4.2).

Lemma 5.1. Let M ≥ 2 and p ≡ 1 (mod M) be a prime. Then for a fixed α ≥ 1,

(5.1)
γ
(M)
α+1(p)

γ
(M)
α (p)

=
p

2
, p or 2p or

γ
(M)
α+1(p)

γ
(M)
α (p)

=
1

2
, 1 or 2.

It turns out that for any given M ≥ 3, the second alternative in (5.1) is exceed-
ingly rare. This gives rise to the following definition.

Definition 5.2. Given an integer M ≥ 2, a prime p ≡ 1 (mod M) is called α-
exceptional for M if the second alternative in (5.1) holds for α ≥ 1.

Example 5.3. Using computer algebra, it is easy to evaluate

γ
(4)
1 (5) = 1, γ

(4)
2 (5) = 10; γ

(3)
1 (13) = 12, γ

(3)
2 (13) = 12,

so p = 5 is not 1-exceptional for M = 4, while p = 13 is 1-exceptional for M = 3.

We require the following properties of exceptionality. For proofs, see Theorem 3
and Corollary 3, respectively, in [11].

Lemma 5.4. (a) Let M ≥ 2 and p ≡ 1 (mod M) be a prime. If p is α-exceptional
(α ≥ 2) for M , then it is also (α− 1)-exceptional for M .

(b) Let p ≡ 1 (mod 6) be a prime and α ≥ 1. Then p is α-exceptional for M = 3
if and only if it is α-exceptional for M = 6.

Remark 5.5. (1) Since this paper is almost exclusively concerned with the cases
M = 3 and M = 6, we will call an α-exceptional prime for M = 3 (and thus for
M = 6) simply α-exceptional .

(2) Up to 1012 only p = 13, p = 181, p = 2 521, p = 76 543 and p = 489 061
are 1-exceptional. By Lemma 5.4(a), only these primes need to be checked for
2-exceptionality; none of them have this property.

We are now ready to state and prove our main results. If we consider cubes of the
left-hand sides of (2.5) and (2.6), we can actually establish necessary and sufficient
conditions of the solutions; the original congruences will then be discussed later.



14 JOHN B. COSGRAVE AND KARL DILCHER

5.2. The case s ≥ 2. For simplicity of the statements, we treat the case s ≥ 2
separately from the cases s = 0 and s = 1, which will be stated and proved following
Theorems 5.6 and 5.8. We begin with the “denominator 3” case.

Theorem 5.6. Let n be as in (2.4), with α ≥ 1 and s ≥ 2. Then a necessary and
sufficient condition for

(5.2)
⌊
n−1
3

⌋
n
!3 ≡ 1 (mod n)

to hold is that all of the following be satisfied:
(a) p is (α− 1)-exceptional if α > 1;
(b) p is a level-` Jacobi prime for some 0 ≤ ` ≤ s;
(c) qβii divides (p− 1)(p+ 1)(p2 + 1) . . . (p2

s−2

+ 1) for all 1 ≤ i ≤ s.

Proof. (i) We first prove the necessity of the conditions (a)–(c). We have already
seen at the beginning of Section 4 that (5.2) implies the congruence (4.1). But (4.1)

implies that γ
(3)
α (p) divides 3 · 2s. If α ≥ 2, this means that the first alternative in

(5.1) cannot hold (for α− 1 in place of α), so p is (α− 1)-exceptional. If α = 1, the
condition (a) is vacuous.

Furthermore, we already saw following (4.1) that condition (b) must hold. Fi-
nally, the necessity of condition (c) follows from Proposition 3.4 and the Chinese
Remainder Theorem.

(ii) For the opposite direction, we first note that condition (b) implies

(5.3) (p
α−1
3 )p!

3·2` ≡ 1 (mod pα).

Since s ≥ `, we raise both sides to the power 2s−`, which gives (5.3) with s in
place of `. Substituting this into the closed-form congruence (3.8) and cubing, we
immediately get

(5.4)
⌊
n−1
3

⌋
n
!3 ≡ 1 (mod pα).

Finally, condition (c) means that the other closed-form congruence, namely (3.3),
holds. Cubing it and combining it with (5.4) via the Chinese Remainder Theorem
gives (5.2); this completes the proof. �

Remark 5.7. Theorem 5.6 shows that for the case α > 1 to occur, p has to be
1-exceptional (note Lemma 5.4(a)) and at the same time a Jacobi prime. First,
it is readily checked that of the five known exceptional primes up to 1012 (see
Remark 5.5(2)), p = 13 is the only one that is also a Jacobi prime. Second,
by Theorem 10 in [11], combined with Proposition 4.7(a), a level-0 Jacobi prime
cannot be exceptional. Finally, the ten higher-level Jacobi primes between 1012 and
1014 are easily checked, using the criterion in Corollary 5 of [11], and found to be
non-exceptional.

In summary, p = 13 is the only prime p ≡ 1 (mod 6) up to 1014 for which n can
possibly be a solution of (2.5), where n = pαw with α ≥ 2 and w as in (2.4). See
also Example 2.3.

We now state the “denominator 6” analogue of Theorem 5.6. The proof is
almost identical with that of Theorem 5.6, with the main ingredients again found
in Section 3.
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Theorem 5.8. Let the odd integer n be as in (2.4), with α ≥ 1 and s ≥ 2. Then
a necessary and sufficient condition for

(5.5)
⌊
n−1
6

⌋
n
!3 ≡ 1 (mod n)

to hold is that all of the following be satisfied:
(a) p is (α− 1)-exceptional if α > 1;
(b) p is a Jacobi prime, and 0 ≤ L ≤ s;
(c) qβii divides (p− 1)(p+ 1)(p2 + 1) . . . (p2

s−1

+ 1) for all 1 ≤ i ≤ s.

Remark 5.9. Two subtle but important differences between Theorems 5.6 and 5.8
must be highlighted at this point.

(i) In the conditions (c), note the highest powers 2s−2, resp. 2s−1.
(ii) In Theorem 5.8, q = 2 cannot be a factor of n, but 2 ≡ −1 (mod 3), and is

therefore an allowable factor of n in Theorem 5.6. While an odd prime q can divide

at most one of the factors in (c), q = 2 divides p2
j

+ 1 exactly once for j ≥ 1. Also,
2 divides one of p− 1 and p+ 1 exactly once, while it divides the other to a higher
power. This is illustrated in Examples 2.2 and 2.3.

5.3. The cases s = 0 and s = 1. We now address the cases that were not covered
by Theorems 5.6 and 5.8. We begin with s = 0, i.e., the case w = 1 in (2.4).

Proposition 5.10. Let p ≡ 1 (mod 3) be a prime and α ≥ 1. Then

(5.6)
(
pα−1

3

)
p
!3 ≡ 1 (mod pα)

if and only if α = 1 and p is a level-0 Jacobi prime.

Proof. If α = 1 and p is a level-0 Jacobi prime, then (5.6) holds by Definition 4.1.

Now assume that (5.6) holds, and note that it implies γ
(3)
α (p) = 1 or 3. We now

appeal to a more detailed version of Lemma 5.1, given as Proposition 4.2 in [8]
which says that in this particular case the right-hand alternative in (5.1) is always 1

(mod p), and since p 6= 3, this forces γ
(3)
α (p) = γ

(3)
α−1(p) = . . . = γ

(3)
1 (p) when α > 1.

This means that, first, p is a level-0 Jacobi prime by Definition 4.1 and second, p
is 1-exceptional when α > 1. But by Theorem 10 in [11] this is a contradiction to
p being of the form p = 27X2 + 27X + 7, i.e., to being a level-0 Jacobi prime. So
α > 1 is impossible, which completes the proof. �

Remark 5.11. (1) If p satisfies (5.6) with α = 1, i.e.,

(5.7)
(
p−1
3 !
)3 ≡ 1 (mod p),

then ordp(
p−1
3 !) = 1 or 3 (or equivalently r = 1); see the γ31(p) column in Table 7.1.

Can one distinguish between these two cases? We have not been able to find a
criterion, and we believe this to be a difficult question.

(2) However, we can make the following observations. By (5.7), p−1
3 ! is a cube

root of unity (mod p). On the other hand, by Lemma 4.9 and Corollary 4.5 we
have u3 ≡ r3 ≡ 1 (mod p), so u is also a cube root of unity (mod p), and so is
u2. Since, by Proposition 4.7, p = 27X2 + 27X + 7, it is easily derived from the
parametric representations at the end of Section 4.1 that u = −9X − 5 for even
X, while u = 9X + 4 for odd X, and, in particular, u 6= 1 for a standard Jacobi
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prime p. Thus 1, u, and u2 are the three distinct cube roots of unity (mod p), and
one might expect that the three cases

(5.8) p−1
3 ! ≡ 1 (mod p), p−1

3 ! ≡ u (mod p), p−1
3 ! ≡ u2 (mod p)

occur, on average, equally often. Indeed, computations show that of the 3121 primes
p = 27X2 + 27X + 7 < 1010, the three congruences in (5.8) are satisfied by 1037,
1030, and 1054 of them, respectively.

Proposition 5.12. Let p ≡ 1 (mod 6) be a prime and α ≥ 1. Then a necessary
condition for

(5.9)
(
pα−1

6

)
p
! ≡ 1 (mod pα)

to hold is that either
(i) p is a standard Jacobi prime, in which case α = 1, or
(ii) p is a level-3 Jacobi prime which is α− 1 exceptional when α > 1.

Proof. The congruence (5.9) means, in particular, that γ
(6)
α (p) = 1. Once again

Lemma 5.1 implies that p must be a 1-exceptional prime if α > 1. In this case a
refinement of Lemma 5.1 (Proposition 4.2 in [8]) means that the sequence of orders

(γ
(6)
1 (p), γ

(6)
2 (p), . . . , γ

(6)
α (p)) can only occur as (1, 1, . . . , 1, 1), (1, 2, 1, . . . , 2, 1), or

(2, 1, 2, . . . , 2, 1). In particular, this implies γ
(6)
1 (p) = 1 or 2, i.e., (p−16 !)2 ≡ 1

(mod p) in all cases.
Now we proceed with a similar argument as in the proof of Proposition 4.11 and

note that (4.16) implies

p−1
3 ! ≡ (−1)

p−1
6 +1u (mod p).

Raising this to the sixth power and using Corollary 4.4 on the left and Lemma 4.9
on the right, we get 1/r2 ≡ r6 (mod p), i.e., r8 ≡ 1 (mod p). This means, by
Corollary 4.5, that p is a Jacobi prime of level 0 ≤ ` ≤ 3.

When ` = 0, then p cannot be 1-exceptional, as we have already seen. This
implies α = 1, which is part (i) of our result. Next, ` = 1 is impossible by Propo-
sition 4.7(b), while by Proposition 4.7(c), p = 13 is the only candidate for ` = 2.

However, it is easy to see that γ
(6)
1 (13) = 12, and therefore there cannot be a

solution of (5.9) with p = 13. This leaves ` = 3, which is part (ii) of this result. �

Remark 5.13. (1) The first few solutions of (5.9) in case (i) are p = 7, 74 419 (see
Table 7.1), 1 409 731, 1 600 891, . . . , with a total of 253 up to 1010. Again we have
p = 27X2 + 27X + 7, i.e., (p−13 !)3 ≡ 1 (mod p), and upon cubing both sides of the

congruence (4.16), we see that (p−16 !)6 ≡ 1 (mod p) if and only if p ≡ 7 (mod 12).

Thus (p−16 !)2 is a cube root of unity (mod p), and we might expect that the cases

(5.10)
(
p−1
3 !
)2 ≡ 1 (mod p),

(
p−1
3 !
)2 ≡ u (mod p),

(
p−1
3 !
)2 ≡ u2 (mod p)

occur, on average, equally often. Indeed, computations show that of the 1555 primes
p = 27X2 + 27X + 7 < 1010 that are 7 (mod 12), the congruences in (5.10) are
satisfied by 499, 542, and 514 of them, respectively. Of the 499 that satisfy the
first congruence in (5.10), 253 (resp. 246) satisfy p−1

6 ! ≡ 1 (mod p) (resp. ≡ −1

(mod p)). It is reasonable to expect one-twelfth of all primes p = 27X2 + 27X + 7
to satisfy p−1

6 ! ≡ 1 (mod p).
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(2) The only level-3 Jacobi primes up to 1014 (see Tables 7.4 and 7.5) are p = 409,
4 729, 824 717 353, and 860 301 577. Only the last one of these has L = 0 (see

Table 7.5). However, γ
(6)
1 (p) = 3 · 20, so this prime, while being a solution of the

cube of (5.9), is not a solution of (5.9) itself.

We now turn to the case s = 1 and begin with the analogue of Theorem 5.6.

Proposition 5.14. (a) Let n = pαqβ, with primes p ≡ 1 (mod 3) and q ≡ −1
(mod 3), and integers α, β ≥ 1, except when q = 2, in which case β ≥ 2. Then a
necessary and sufficient condition for (5.2) to hold is that α = 1, p is a standard
Jacobi prime, and qβ | p− 1.

(b) If n = 2pα, with p and α as in part (a), then the only solutions of (2.5) are
2 · 13 and 2 · 132.

Proof. (a) The proof is identical with that of Theorem 5.6, with the product of
p − 1 and the generalized Fermat numbers replaced by only p − 1, according to
Proposition 3.4. Condition (b) means that, in fact, ` = 0 since by Proposition 4.7(b)
there are no level-1 Jacobi primes. Finally, as we saw before, such a p cannot be
(α− 1)-exceptional for any α ≥ 2, which forces α = 1.

(b) In this case we have ε(n) = −1 in Lemma 3.10, and upon cubing both sides
of (3.8) we find that n = 2pα is a solution of (5.2) if

(p
α−1
3 )p!

6 ≡ −1 (mod pα).

But this means that γ
(3)
α (p) = 1, 2, 3, 4, 6, or 12. By the refinement of Lemma 5.1

already mentioned in the proof of Proposition 5.10, this means that p is a Jacobi
prime of level 0, 1 or 2, and is (α− 1)-exceptional when α > 1. By Proposition 4.7,
level 1 is impossible, while the only level-2 Jacobi prime is p = 13, which is also
1-exceptional, but not 2-exceptional. Hence the only possible solutions with a
nonstandard Jacobi prime are n = 2 ·13 and n = 2 ·132. Table 2.1 shows that these
two numbers are in fact solutions of (2.5).

This leaves the case where p is a standard Jacobi prime, which also means that
α = 1, as we have seen earlier. If n = 2p were a solution of (2.5) then by (3.8) we
would have

2(p−1)/3(p−13 !)2 ≡ −1 (mod p).

Multiplying both sides by p−1
3 ! and using the fact that p is a level-0 Jacobi prime,

we get

2(p−1)/3 ≡ −p−13 ! (mod p).

Finally, cubing both sides of this congruence and once again using (p−13 !)3 ≡ 1
(mod p), we obtain 1 ≡ −1 (mod p), which is a contradiction. This means that
there are no solutions with p a standard Jacobi prime, which completes the proof.

�

Example 5.15. (a) Let p = 61. Then p − 1 = 22 · 3 · 5, and 61 · 22 and 61 · 5
are solutions of (5.2). By computation we find that both are also solutions of the
original congruence (2.5); see Table 2.1.

(b) With p = 1951 we obtain p − 1 = 2 · 3 · 52 · 13, so Proposition 5.14 gives
n = 1951 · 5 and n = 1951 · 52 as solutions of (5.2). Once again, as Table 2.1 shows,
both are solutions of (2.5).

Finally in this section, we deal with the case s = 1 and denominator 6.
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Proposition 5.16. Let n = pαqβ, with primes p ≡ 1 (mod 6), q ≡ −1 (mod 6)
and integers α, β ≥ 1. Then a necessary condition for (2.6) to hold is that either

(i) p is a standard Jacobi prime and qβ | p2 − (pq )(−1)(p−1)/2, in which case
α = 1, or

(ii) p is a level-3 Jacobi prime which is (α − 1)-exceptional when α > 1, and
qβ | p2 − (pq ).

Proof. As usual, we apply the Chinese Remainder Theorem, in this case combining
the congruences (3.6) and (3.9). We begin by considering the latter. Assuming that
n is a solution of (2.6), we raise both sides of (3.9) to the 6th power, obtaining the
congruence (5.9). Proposition 5.12 then gives necessary conditions for its solution.

The second condition in each of the cases (i) and (ii) follows directly from Propo-
sition 3.7. Now, it is a consequence of Corollary 4.5 that a Jacobi prime p of of
level ` ≥ 2 always satisfies p ≡ 1 (mod 4). This implies that (−1)(p−1)/2 = 1, which
gives the second condition in (ii). �

Example 5.17. (a) Let p = 1951, a standard Jacobi prime. We have 19512 + 1 =
2·17·111953. Both q = 17 and 111953 satisfy q ≡ −1 (mod 6) and (pq )(−1)(p−1)/2 =

−1. While n = 1951 · 111953 is a solution of (2.6), n = 1951 · 17 is not (it would be
a solution of the cube of the congruence).

Next, 19512 − 1 = 26 · 3 · 52 · 13 · 61. Here only q = 5 satisfies q ≡ −1 (mod 6),
but (pq )(−1)(p−1)/2 = −1, so n = 1951 · 5β cannot be a solution for any β ≥ 1.

(b) As in Remark 5.13, we note that there are only four level-3 Jacobi primes
up to 1014. Combining Proposition 5.16(ii) with computations, we find that these
primes lead to one single solution, namely n = 824 717 353 · 5.

6. Proofs of the closed-form congruences

In this section we will prove the crucial closed-form congruences that were stated
in Section 3, namely Lemmas 3.1, 3.2, 3.10 and 3.11. We will actually prove more
general results which then immediately imply the lemmas in question, as well as
Lemmas 2–4 in [10] which correspond to the case M = 4. The proofs are modeled
after those in [10].

6.1. Congruences modulo w.

Proposition 6.1. Let M ≥ 3 and s ≥ 1 be integers, and let n = pαw, w =

qβ1

1 . . . qβss , where p, q1, . . . , qs are distinct primes with p ≡ 1 (mod M) and q1 ≡
· · · ≡ qs ≡ −1 (mod M). Then

(6.1) bn−1M cn! ≡ Bs(n)

pϕ(M,1,w)
(mod w),

where ϕ(M, 1, w) is as defined in (3.1), and

Bs(n) =

{
(−1)(p−1)/M , s = 1,

1, s ≥ 2.

Proof. With m := pα−1
M , we have for n ≡ 1 (mod M), resp. n ≡ −1 (mod M),

n−1
M = mw + w−1

M , resp. n−M+1
M = mw + w−M+1

M ,
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and thus in either case,
⌊
n−1
M

⌋
= mw +

⌊
w
M

⌋
. Based on this, we write

(6.2)
⌊
n−1
M

⌋
n
! =

( m∏
j=1

Pj
)
Q,

where we have, for all j = 1, . . . ,m,

Pj :=

w∏
k=1

gcd((j−1)w+k,n)=1

(
(j − 1)w + k

)
, Q :=

bw/Mc∏
k=1

gcd(mw+k,n)=1

(
mw + k

)
.

We now define the corresponding ‘augmented’ products

Pj :=

w∏
k=1

gcd((j−1)w+k,w)=1

(
(j − 1)w + k

)
, Q :=

bw/Mc∏
k=1

gcd(mw+k,w)=1

(
mw + k

)
,

so the products Pj and Q include multiples of p that are relatively prime to w. Now
for 1 ≤ j ≤ m, the Gauss-Wilson Theorem gives

Pj ≡
w∏
k=1

gcd(k,w)=1

k(6.3)

= (w − 1)w! ≡


−1 (mod w) if s = 1 for all M,

−1 (mod w) if s = 2,M = 3, q1 = 2, β1 = 1,

1 (mod w) if s ≥ 2 in all other cases,

and we also have

(6.4) Q ≡
bw/Mc∏
k=1

gcd(k,w)=1

k =
⌊
w−1
M

⌋
w

! (mod w).

The product P1 · · ·Pm ·Q can be reduced to (6.2) by dividing the former by

(6.5) Π1 :=

m1∏
ν=1

gcd(ν,w)=1

(νp),

where

m1 =


pα−1w − 1

M
=
pα−1 − 1

M
w +

w − 1

M
, n ≡ 1 (mod M),

pα+1−Mw − 1

M
=
pα−1 − 1

M
w +

w + 1−M
M

, n ≡ −1 (mod M),

and in either case,

(6.6) m1 = M1w +
⌊
w−1
M

⌋
, M1 :=

pα−1 − 1

M
.

With (6.5) and (6.6) we then have

Π1 ≡
(
pϕ(w)(w − 1)w!

)M1

pϕ(M,1,w)
⌊
w−1
M

⌋
w

! (mod w)(6.7)

≡ (−1)b(s)M1pϕ(M,1,w)
⌊
w−1
M

⌋
w

! (mod w),
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where b(s) = 1 when s = 1 or s = 2, M = 3, q1 = 2 and β1 = 1, and b(s) = 0
when s ≥ 2, having used the theorems of Euler-Fermat and Gauss-Wilson. Now
with (6.2)–(6.4) and (6.7),

(6.8)
⌊
n−1
M

⌋
n
! ≡ P1 · · ·Pm ·Q

Π1
≡ (−1)b(s)(m−M1)

pϕ(M,1,w)
(mod w).

Finally, we note that

m−M1 =
pα − 1

M
− pα−1 − 1

M
=
pα−1(p− 1)

M
≡ p− 1

M
(mod 2),

and this, with (6.8), gives (6.1). �

We note that Proposition 6.1 is also valid for M = 2; this is the case treated in
[7]. However, it is essential for the current paper to have 1 6≡ −1 (mod M).

Proof of Lemmas 3.1 and 3.2. The first parts of (3.2), (3.3) are immediate conse-
quences of (6.1), where in the case M = 3 we note that (p− 1)/3 is always even, so
that Bs(n) = 1 also for s = 1. The evaluations of ϕ(M, 1, w) follow directly from
[23], Theorem 5 (for M = 3) and Theorem 7 (for M = 6). �

6.2. Congruences modulo pα. In this larger subsection we prove congruences
that will give Lemmas 3.10 and 3.11, as well as Lemmas 2 and 3 in [10], as special
cases.

Proposition 6.2. Let M ≥ 3 and s ≥ 1 be integers, and let n = pαw, w =

qβ1

1 . . . qβss , where p, q1, . . . , qs are distinct primes with p ≡ 1 (mod M) and q1 ≡
· · · ≡ qs ≡ −1 (mod M). If n ≡ δ (mod M), with δ ∈ {−1, 1}, then for s = 1,

(6.9) bn−1M cn! ≡ (−1)Eq
δϕ(pα)/M
1

(
pα−1
M

)
p
!2δ (mod pα),

where

E =

{
0, when M = 3, q1 = 2, β1 ≥ 2,

(p+ q1)/M, otherwise,

while for s ≥ 2,

(6.10) bn−1M cn! ≡ (q1 . . . qs)
δ2s−1ϕ(pα)/M

(
pα−1
M

)
p
!δ2

s

(mod pα).

Proof. 1. By considering the two cases δ = ±1 separately, it is easy to verify that⌊
n− 1

M

⌋
=

⌊
w − 1

M

⌋
pα + γ

pα − 1

M
, γ =

{
1 if δ = 1,

M − 1 if δ = −1.

Based on this, we write

(6.11)
⌊
n−1
M

⌋
n
! =

bw−1
M c∏
j=1

Pj

Q,

where

Pj :=

pα−1∏
k=1

gcd((j−1)pα+k,n)=1

(
(j−1)pα+k

)
, Q :=

γ p
α−1
M∏

k=1

gcd(bw−1M cpα+k,n)=1

(⌊
w−1
M

⌋
pα + k

)
.
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With the goal of evaluating these modulo pα, we define the related easier products

Pj :=

pα−1∏
k=1

gcd((j−1)pα+k,p)=1

(
(j − 1)pα + k

)
, Q :=

γ p
α−1
M∏

k=1

gcd(bw−1M cpα+k,p)=1

(⌊
w−1
M

⌋
pα + k

)
,

which include multiples of the primes qi that are relatively prime only to p. We do
this because the Pj and Q are easy to evaluate modulo pα. In fact, we have

(6.12) Pj ≡
pα−1∏
k=1

gcd(k,p)=1

k = (pα − 1)p! ≡ −1 (mod pα)

by the Gauss-Wilson theorem (2.1), and

(6.13) Q ≡
γ p

α−1
M∏

k=1
gcd(k,p)=1

k =
(
γ p

α−1
M

)
p
! (mod pα).

To evaluate the right-hand side of (6.13) in the case δ = −1, we note that by the
Gauss-Wilson theorem we have

(6.14)
(

(M − 1)p
α−1
M

)
p
!

pα−1
M∏
k=1

gcd(k,p)=1

(pα − k) = (pα − 1)p! ≡ −1 (mod pα).

But we have

(6.15)

pα−1
M∏
k=1

gcd(k,p)=1

(pα − k) ≡ (−1)A
(
pα−1
M

)
p
! (mod pα),

where A is the number of terms in the product on the left, which we can count as
follows. For α = 1, we clearly have A = (p − 1)/M . When α ≥ 2, we divide by p
with remainder:

pα − 1

M
=
p− 1

M

(
pα−2 + · · ·+ 1

)
p+

p− 1

M
.

This means that the number of terms in the ordinary factorial product ((pα−1)/M)!
that are divisible by p is (p− 1)(pα−2 + · · ·+ 1)/M , and using a factorization of the
total number (pα − 1)/M , we find that the number of terms in the Gauss factorial
product ((pα − 1)/M)p! in (6.15) is

A =
p− 1

M

(
pα−1 + pα−2 + · · ·+ 1

)
− p− 1

M

(
pα−2 + · · ·+ 1

)
=
p− 1

M
pα−1 ≡ p− 1

M
(mod 2).

So we have A ≡ (p− 1)/M (mod 2) for all α ≥ 1, and (6.13)–(6.15) now give

(6.16) Q ≡
(

(−1)
p−1
M −1

) δ−1
2
(
pα−1
M

)
p
!δ (mod pα).

2. The product of Q and the Pj , j = 1, . . . , bw−1M c, is the product of all integers

from 1 to bn−1M c, without multiples of p. To reduce this bn−1M cn! in (6.11), we use
the inclusion/exclusion principle and first divide the product by all the multiples of
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q1, . . . , qs, then multiply it by all the multiples (if any) of qj1qj2 , 1 ≤ j1 < j2 ≤ s,
then divide by all the multiples (if any) of qj1qj2qj3 , 1 ≤ j1 < j2 < j3 ≤ s, etc. To
do this, we define for a given k, 1 ≤ k ≤ s and 1 ≤ j1 < · · · < jk ≤ s, the product

(6.17) Π(j1, . . . , jk) =

m(j1,...,jk)∏
ν=1

gcd(ν,p)=1

(νqj1 . . . qjk) , m(j1, . . . , jk) :=
⌊
b(n−1)/Mc
qj1 ...qjk

⌋
.

It is straightforward to verify that

(6.18) m(j1, . . . , jk) =

{
1
M (w(j)− 1)pα + pα−1

M , (−1)k = δ,
1
M (w(j)−M + 1)pα + (M − 1)p

α−1
M , (−1)k = −δ,

where w(j) := w/(qj1 . . . qjk). With the notation

(6.19) M(j1, . . . , jk) :=

{
1
M (w(j)− 1), (−1)k = δ,
1
M (w(j)−M + 1), (−1)k = −δ,

we get from (6.17) and (6.18), when (−1)k = δ,

Π(j1, . . . , jk) ≡
[
(qj1 . . . qjk)ϕ(p

α)(pα − 1)p!
]M(j1,...,jk)

(6.20)

× (qj1 . . . qjk)ϕ(p
α)/M

(
pα−1
M

)
p
! (mod pα)

≡ (−1)M(j1,...,jk)(qj1 . . . qjk)ϕ(p
α)/M

(
pα−1
M

)
p
! (mod pα),

where we have used the Euler-Fermat and the Gauss-Wilson theorems. Similarly,
when (−1)k = −δ,

Π(j1, . . . , jk) ≡ (−1)M(j1,...,jk)(qj1 . . . qjk)(M−1)ϕ(p
α)/M(6.21)

×
(

(M−1)(pα−1)
M

)
p
! (mod pα).

Now, for any integer x with p - x the Euler-Fermat theorem gives

(6.22) x(M−1)ϕ(p
α)/M ≡ x−ϕ(p

α)/M (mod pα).

This, together with the case δ = −1 of (6.16), applied to (6.21) leads to

Π(j1, . . . , jk) ≡ (−1)M(j1,...,jk)+
p−1
M −1(qj1 . . . qjk)−ϕ(p

α)/M

×
(

(pα−1)
M

)
p
!−1 (mod pα)

for (−1)k = −δ. Raising both sides of this last congruence to the power (−1)k = −δ,
and both sides of (6.20) to the power (−1)k = δ, we get the following congruence
which holds in all cases:

Π(j1, . . . , jk)(−1)
k

≡ (−1)M(j1,...,jk)+θ(qj1 . . . qjk)δϕ(p
α)/M(6.23)

×
(
pα−1
M

)
p
!δ (mod pα),

where

θ =

{
0 when δ = (−1)k

p−1
M − 1 when δ = −(−1)k.
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To conclude this part of the proof, we compare (6.11) with the product of Q and
Pj , j = 1, . . . , bw−1M c, keeping in mind the remarks made before (6.17). Then

⌊
n−1
M

⌋
n
! =

bw−1
M c∏
j=1

Pj

Q

s∏
k=1

∏
(j)

Π(j1, . . . , jk)(−1)
k

(6.24)

≡ (−1)b
w−1
M c+(

p−1
M −1) δ−12

(
pα−1
M

)
p
!δ

×
s∏

k=1

∏
(j)

Π(j1, . . . , jk)(−1)
k

(mod pα),

where (j) indicates that the product is taken over all 1 ≤ j1 < · · · < jk ≤ s. Here
we have used (6.12) and (6.16).

3. To complete the proof, we first consider the case s = 1. In this case we have

k = 1, w = qβ1

1 , and w(j) = qβ1−1
1 . From (6.24) and (6.23) we then get

(6.25)
⌊
n−1
M

⌋
n
! ≡ (−1)Eq

δϕ(pα)/M
1

(
pα−1
M

)
p
!2δ (mod pα),

where

E =
⌊
w−1
M

⌋
+M(j1) + θ + (p−1M − 1) δ−12 =

⌊
w−1
M

⌋
+M(j1) + p−1

M − 1

for both δ = 1 and δ = −1. With (6.19) we then have for δ = 1 and −1, respectively,

E =
qβ1

1 − 1

M
+
qβ1−1
1 −M + 1

M
+
p− 1

M
− 1,

E =
qβ1

1 −M + 1

M
+
qβ1−1
1 − 1

M
+
p− 1

M
− 1,

and thus in both cases

E = qβ1−1
1

q1 + 1

M
+
p− 1

M
≡ q1 + p

M
(mod 2),

where the congruence holds whenever q1 is odd, or q1 = 2 and β1 = 1. We can have
q1 = 2 only when M = 3, in which case p ≡ 1 (mod 6), and thus E ≡ 0 (mod 2)
when β ≥ 2. This, together with (6.25), proves (6.9).

4. Now we let s ≥ 2, and we begin by counting the number of terms Π(j1, . . . , jk)
in the double product in (6.24), separately for even and for odd k:

s∑
k=1

∑
1≤j1<···<jk≤s

k even

1 =

b s2 c∑
j=1

(
s

2j

)
= 2s−1 − 1,(6.26)

s∑
k=1

∑
1≤j1<···<jk≤s

k odd

1 =

b s−1
2 c∑
j=0

(
s

2j + 1

)
= 2s−1.(6.27)

The evaluations of the binomial sums above are well-known and can be found, e.g.,
in [18], identities (1.97) and (1.89).

To evaluate the right-hand side of (6.24), we first deal with the powers of −1,
starting with the exponent θ in (6.23). When δ = 1, resp. −1, then only for odd
(resp. even) k there is a contribution p−1

M − 1 in each of the factors Π(j1, . . . , jk),
of which there are an even (resp. odd) number, by (6.27), resp. (6.26), and keeping
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in mind that s ≥ 2. But this, combined with (p−1M − 1) δ−12 in (6.24), means that
the sum of all the θ, plus this last term, is always even and therefore gives no
contribution to the sign.

The remaining exponents of −1 add to

B :=

s∑
k=1

∑
(j)

M(j1, . . . , jk) +
⌊
w−1
M

⌋
,

by (6.24) and (6.23). First let δ = 1. Then by (6.19) we have

B :=

s∑
k=1
k even

∑
(j)

w(j)− 1

M
+

s∑
k=1
k odd

∑
(j)

w(j)−M + 1

M
+
w − 1

M

=
w

M

s∑
k=1

∑
(j)

1

qj1 . . . qjk
− 1

M

(
2s−1 − 1

)
− M − 1

M
2s−1 +

w − 1

M

=
w

M

s∑
k=1

∑
(j)

1

qj1 . . . qjk
− 2s−1,

where in the middle row we have used (6.26) and (6.27). The double sum in the
last row can be written as a product; hence we get, along with the definition of w,

B =
qβ1

1 . . . qβss
M

s∏
j=1

(
1 +

1

qj

)
− 2s−1 =

1

M

s∏
j=1

q
βj−1
j (qj + 1)− 2s−1

= qβ1−1
1

q1 + 1

M

s∏
j=2

q
βj−1
j (qj + 1)− 2s−1.

Since (q1 + 1)/M is always an integer (including the case M = 3 and q1 = 2) and
qj + 1 is even for 2 ≤ j ≤ s, we see that B is even since s ≥ 2. The case δ = −1
is completely analogous and also gives an even B. This means that in all cases all
the powers of −1 cancel out.

Next, since by (6.26) and (6.27) the double product in (6.24) has 2s−1 terms, the

Gauss factorial (p
α−1
M )p!

δ occurs to the power 2s in the desired congruence (6.10).
Finally, it remains to determine the product

(6.28)

s∏
k=1

∏
1≤j1<···<jk≤s

qj1 . . . qjk .

We fix an index j, 1 ≤ j ≤ s, and observe that for a given k, 1 ≤ k ≤ s, the number
of times the prime qj occurs in the products qj1 . . . qjk is

(
s−1
k−1
)

(since j is fixed and

the remaining k − 1 subscripts vary). So qj occurs a total of

s∑
k=1

(
s− 1

k − 1

)
=

s−1∑
k=0

(
s− 1

k

)
= 2s−1

times in (6.28). Since this is independent of j, we have
s∏

k=1

∏
(j)

qj1 . . . qjk = (q1 . . . qs)
2s−1

,

and this, together with (6.23) and (6.24), completes the proof of (6.10). �
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Proof of Lemma 3.10. We take M = 3 in Proposition 6.2. Since p ≡ 1 (mod 6),
then q1 = 2 gives (p+ q1)/3 ≡ 1 (mod 2), so (6.9) becomes the case s = 1 of (3.8).
Next, since xϕ(p

α) ≡ 1 (mod pα) for any integer x with p - x, it suffices to note that
2s−1 ≡ (−1)s−1 (mod 3) in order to see that (6.10) becomes (3.8) for s ≥ 2. �

Proof of Lemma 3.11. Now let M = 6. Then (6.9) immediately gives (3.9). For
s ≥ 2 we note that

1

6
2s−1ϕ(pα) =

1

3
2s−2ϕ(pα) ≡ 1

3
(−1)s−2ϕ(pα) =

1

3
(−1)sϕ(pα) (mod ϕ(pα)).

This completes the proof of Lemma 3.11. �

7. Computations

In this section we deal with various computational issues arising in this paper.
These are, in particular, the computation of Jacobi primes, computing Gauss fac-
torials and their orders, and factoring generalized Fermat numbers. We also give
explicit solutions of the congruences (2.5) and (2.6) for two specific examples, while
the solutions for all Jacobi primes listed in Tables 7.1, 7.4 and 7.5 are deposited at
[6] and [14].

7.1. Finding Jacobi primes. We recall that, by (4.9), a prime p ≡ 1 (mod 3) is
a Jacobi prime of level ` if and only if ordp(r) = 2`, where r is as defined in (4.5). In
Proposition 4.7 we saw that the level-0 (or standard) Jacobi primes are exactly the
primes of the form p = 27X2 + 27X + 7, and these are easy to compute. Because
of their relative abundance we list only those with p < 105 in Table 7.1, along with
the integers a and b from the expression p = a2 + 3b2, a ≡ −1 (mod 3) and b > 0,
and with the relevant orders defined in (4.2).

p a b γ31(p) γ61(p) p a b γ31(p) γ61(p)
7 2 1 3 1 9241 83 28 3 22

61 −7 2 3 3 · 22 10267 −88 29 3 3 · 2
331 −16 5 3 3 · 2 13669 101 34 1 3 · 22
547 20 7 3 3 · 2 23497 −133 44 3 22

1951 38 13 3 3 25117 137 46 1 3 · 22
2437 −43 14 3 22 55897 −205 68 1 3 · 22
3571 −52 17 1 3 · 2 60919 −214 71 3 3 · 2
4219 56 19 1 3 · 2 74419 236 79 3 1
7351 74 25 3 3 89269 −259 86 1 3 · 22
8269 −79 26 3 3 · 22 92401 263 88 3 22

Table 7.1: Standard Jacobi primes p < 105, with a, b and orders.

To compute the non-standard Jacobi primes, we first recall from Proposition 4.7
that there are none of level 1, and that the only level-2 Jacobi prime is p = 13.

Hence we may restrict our attention to ` ≥ 3, and since by (4.9) we have r2
` ≡ 1

(mod p), this means that 23 | p− 1, and thus p ≡ 1 (mod 24); this is a significant
restriction as it reduces the required number of calculations by about 75%. Our
main tool will be the unique expansion

(7.1) p = a2 + 3b2, a ≡ −1 (mod 3), b > 0,

which was already used in Section 4. We now proceed in two separate stages:
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1. To find Jacobi primes of levels 3 ≤ ` < D for some parameter D to be
determined later, we begin with a few easy observations. First, it is clear that a
and b in (7.1) have to be of opposite parity since otherwise p would be even. If a
were even and b odd, then we would have a2 + 3b2 ≡ 3 (mod 4), which contradicts
p ≡ 1 (mod 24). Hence a is odd and b is even. But furthermore, if b ≡ 2 (mod 4)
then 3b2 ≡ 4 (mod 8), while a2 ≡ 1 (mod 8); this again leads to a contradiction,
and so b ≡ 0 (mod 4), i.e., b ≡ 0, 4 or 8 (mod 12). On the other hand, since
3 - a in addition to a being odd, we have a ≡ 1, 5, 7 or 11 (mod 12). In our
first algorithm, described below, we loop through positive integers a and b in these
residue classes and define p by (7.1) without checking for primality until needed later
in the algorithm, an approach suggested by Yves Gallot. However, we eliminate
pairs (a, b) with gcd(a, b) > 1, to avoid cases where p is trivially composite. We
also use (7.1) to establish obvious search limits. All this gives rise to the following
algorithm.

Algorithm 7.2. To find Jacobi primes p ≤ 10C with levels 3 ≤ ` < D:

(a) Let (A,B) run through the 12 pairs {1, 5, 7, 11} × {0, 4, 8}.
(b) Let a ≡ A (mod 12) run from A to 10C/2.

(c) Let b ≡ B (mod 12) run from B to
√

(10C − a2)/3.
(d) Let p := a2 + 3b2.
(e) Let r := 2a,−a+ 3b or −a− 3b, according as B = 0, 4 or 8. If A = 1 or 7,

replace a by −a.

(f) If r 6= 1, r2
D−1 ≡ 1 (mod p) and p is prime, then p is a Jacobi prime of

level < D.
(g) The smallest `, 3 ≤ ` ≤ D, for which r2

` ≡ 1 (mod p) is the level.

We note that this algorithm lends itself to computing the twelve cases of (a) in
parallel. For each of these cases the choices in (e) are fixed. Furthermore, we note
that checking the gcd in (c) is very fast, and the modular exponentiation in (f) is
reasonably fast. The expensive primality testing then needs to be rarely done. In
(f), r = 1 can only occur in the cases (A,B) = (1, 8) and (11, 4), and needs to be
checked only there.

2. To find Jacobi primes with levels ` ≥ D, we use a more direct approach,
noting that by (4.9) and an argument made earlier, we may restrict our attention
to primes p ≡ 1 (mod 3 · 2D).

Algorithm 7.3. To find Jacobi primes p ≤ 10C with levels ` ≥ D:

(a) Let the integer p run from 3 · 2D in increments of 2D to 10C .
(b) Test p for primality.
(c) Find the unique integers a, b defined by (7.1).
(d) Let r := 2a,−a+ 3b or −a− 3b, according as b ≡ 0, 1 or 2 (mod 3).
(e) If ordp(r) = 2`, then p is a Jacobi prime of order `.

The parameter D determines the balance between the two algorithms. We found
that for C = 14 a reasonable choice was D = 20. However, since the computational
aspects have not been the main focus of this paper, we did not attempt to opti-
mize this balance. Also, for maximal ease of use during this work, we implemented
the algorithms in the computer algebra package MAPLE and ran it on a desktop
computer. We used built-in MAPLE routines for modular exponentiation in Algo-
rithm 7.2(f), for primality testing in Algorithm 7.2(f) and 7.3(b), for solving the
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diophantine equation in 2(c), and for finding the orders in 2(e). The results of these
computations are recorded in Table 7.4 and, with fewer details, in Table 7.5.

p a b r ordpr γ31(p) γ61(p)
13 −1 2 −5 22 3 · 22 3 · 22
97 −7 4 19 25 3 · 25 3 · 24

193 −1 8 −23 25 3 · 25 3 · 24
409 −19 4 31 23 23 3 · 2
769 −1 16 49 27 3 · 27 3 · 26

2593 −49 8 25 24 24 3 · 23
4729 29 36 58 23 23 2
6481 41 40 79 24 24 3 · 23

12289 −1 64 193 211 3 · 211 210

15361 119 20 −179 24 3 · 24 3 · 23
55681 191 80 −431 26 3 · 26 3 · 25

331777 95 328 889 210 3 · 210 3 · 29
417793 641 48 1282 213 213 212

737281 −841 100 1141 211 211 3 · 210
786433 −1 512 −1535 217 3 · 217 3 · 216

Table 7.4: Nonstandard Jacobi primes p < 106, with a, b, r and orders.

p ` L p ` L p ` L
2752513 17 16 860301577 3 0 1136051159041 16 15
6684673 17 16 1380974593 20 19 1618173493249 19 18
8650753 16 15 1845657601 14 13 3788060491777 25 24

36175873 18 17 3221225473 28 27 3893453733889 9 8
69206017 21 20 3255828481 20 19 4713049675777 9 8
75079681 13 12 3281584129 14 13 4754528796673 30 29

155344897 10 9 8531146753 11 10 6597069766657 40 39
270532609 20 19 206158430209 35 34 9748709033473 9 8
435486721 16 15 460794822529 7 6 25177098289153 33 32
824717353 3 1 844734922753 21 20 69803955978241 31 30

Table 7.5: Nonstandard Jacobi primes p, 106 < p < 1014, with levels ` and L.

7.2. Computing Gauss factorials and their orders. Since Gauss factorials
(including “usual” factorials) and their orders play an important part in this paper,

it is also interesting to know the values of γ
(3)
1 (p) (see (4.4) and Definition 4.1) as

well as γ
(6)
1 (p) and the related level L; see (4.7).

First we note that the computational effort required to obtain the Gauss factorial
(in fact, the usual factorial) p−1

3 ! (mod p) is vastly reduced by using the congruence
(4.14), since the integers u are equally easy to compute from (7.1) as the integers
r. It therefore suffices to compute p−1

6 ! (mod p). While for small and moderate-
sized primes p this is easily feasible by straightforward multiplication and reduction
using MAPLE, it becomes prohibitively expensive for about p > 1010 (however, see
a discussion about relevant computational strategies in [12, p. 104ff.]). For these
larger primes we used a special and very fast program which Yves Gallot kindly
made available to us. On a single core of a desktop computer, p−1

6 ! (mod p) was
found in just over 2 minutes for p = 206 158 430 209, and in just over 19 hours for



28 JOHN B. COSGRAVE AND KARL DILCHER

p = 69 803 955 978 241. The corresponding orders were then again computed using
the order routine in MAPLE; the results are recorded in Tables 7.4 and 7.5.

7.3. Factoring generalized Fermat numbers. To apply Theorems 5.6 and 5.8,

we need to know the prime factors of p− 1, p+ 1 and p2
j

+ 1 for as many j ≥ 1 as
possible, where p is a Jacobi prime. Given the moderate sizes of the Jacobi primes
under consideration, factoring p− 1, p+ 1, p2 + 1 and p4 + 1 presents no problem
and is quickly done with MAPLE. For j ≥ 3 we dealt with it in several steps:

1. We used the ifactor routine in MAPLE with the easy option to quickly
and efficiently find small factors. Numerous smaller generalized Fermat numbers
were completely factored in this way, along with some larger ones, when all prime
factors except one happened to be small.

2. Following this, and in some cases independent of Step 1, we used the factor

routine in Sage [31] to find further prime factors of small and moderate size.
3. In conjunction with Steps 1 and 2 we also consulted the published and online

resources [3, 15, 30], verifying our factorizations and finding further factors.
4. Remaining composite cofactors were then subjected to the Elliptic Curve

Method in the GMP-ECM implementation [16].
5. Finally, if after a reasonable effort (depending on the size of the number to be

factored) the ECM failed for integers up to 166 decimal digits, we used the Number
Field Sieve in the CADO-NFS implementation [4], which was always successful.

6. Tables of all prime factors obtained in Steps 1–5 are deposited at [6] and [14].
A small subset can be found in Table 7.7.

In what follows, we refer to the primes qi(≡ −1 (mod 3)) in parts (c) of Theo-
rem 5.6 and Theorem 5.8 as support primes of a given Jacobi prime p. The prime
q = 2 is a special case as it is always a support prime in the case of denominator 3,
but never in the case of denominator 6; see Remark 5.9.

Although the ECM is well suited to find reasonably small factors of large inte-
gers, we made concentrated factorization efforts, as described above, only for those
exponents j that were “adjacent” to those for which we already had a complete
factorization. Still, it is interesting to note that there are easily obtained complete

factorizations of p2
j

+ 1 for p = 97, j = 9, and for p = 3 221 225 473 with j = 8 and
j = 9. In this last case, for j = 8, the corresponding generalized Fermat number has
a 2429-digit support prime, which therefore contributes to appropriate solutions of
(2.5) and (2.6). It is also worth mentioning that

1
2

(
3312

8

+ 1
)
, 1

2

(
2 752 5132

4

+ 1
)
, and 1

2

(
6 684 6732

5

+ 1
)

are all primes, with 645, 103 and 219 digits, respectively, but none of them are
support primes, which follows from their definitions. Some notable factorizations,
achieved with the ECM and the NFS, are summarized in Table 7.6.

p j C P M p j C P M
1 951 6 157 72, 85 N 331 777 5 170 51, 119 E
2 437 6 166 67, 99 N 737 281 7 702 43, 660 E
4 219 6 156 77, 80 N 75 079 681 5 197 43, 155 E

25 117 6 197 43, 154 E 460 794 822 529 4 151 75, 77 N
55 681 6 293 44, 249 E 1 136 051 159 041 4 154 76, 78 N

Table 7.6: Numbers of digits of factors of some p2
j

+ 1.
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There the heading C indicates the number of digits of a composite cofactor, after

smaller factors of p2
j

+ 1 have been removed; P indicates the number of digits of
the prime factors found, with support primes in bold, and M indicates the method
used, namely the E(CM) or the N(FS).

7.4. Examples. In this subsection we consider two specific examples, similar to
Examples 2.2 and 2.3, but now with the benefit of having Theorems 5.6 and 5.8
at our disposal. These examples were chosen for their very different natures from
each other. For easy reference we begin by giving the complete factorizations of the
relevant generalized Fermat numbers in Table 7.7.

p j factors
331 1 29 · 1889

2 17 · 41 · 8610913
3 72673 · 14927201 · 66411377
4 36833 · 1361089 · 1776833 · 6271510529 · 18581275406849
5 30977 · 26705372033 · 226515295026304671802528341454337

·1150085914749541327603538276348993
6 641 · 3329 · 4481 · 51713 · 31644673 · 1024640129 · p79

·20973135548033 · 201159479362906886304877376538153501697
7 257 · 10753 · 15751388929 · 345807320321 · 43197116304176641 · p278
8 p645

55681 1 373 · 4155997
2 41 · 3001 · 321553 · 121477457
3 17 · 12075324422351249 · 225049724837235459937
4 794655492577 · p64
5 257 · 610817 · 476600704619911891073 · 5411527113131759318593

·494039575542372154409346497 · p75
6 769 · 1153 · 84481

·65298013540910483767858261037118325206398849 · p249

Table 7.7: Complete factorizations of 1
2 (p2

j

+ 1) for p = 331 and p = 55681.

Example 7.8. Let p = 331, a standard Jacobi prime, i.e., ` = 0. Its support
primes can be found in the factorizations p− 1 = 2 · 3 · 5 · 11, p+ 1 = 22 · 83, and in
the relevant entries (marked in bold) in Table 7.7. None of the odd support primes
occur to a power higher than 1.

(a) We begin with the easier case of denominator 6, i.e., Theorem 5.8. Since we

have complete factorizations of p2
j

+ 1 for all j ≤ 8, we can give complete solutions
for all 2 ≤ s ≤ 9, augmented by results for s = 0 and s = 1.
• s = 0: By computation (Table 2.1), n = p = 331 is not a solution of (2.6).
• s = 1: By Proposition 5.16(i), the only possible solutions of (2.6) are n = pq,

with q ∈ Q2 := {5, 11, 29, 83, 1889}. However, computations show that none of
these is a solution. (For q up to 83, see Table 2.1).
• s = 2: The relevant support primes are the factors of (p−1)(p+1)(p2 +1) that

are ≡ −1 (mod 6), namely the elements of Q2. Then exactly the
(
5
2

)
= 10 integers

n = 331 q1q2, with q1, q2 ∈ Q2, are solutions of (5.5). Of these, computations show
that the following are also solutions of (2.6): 331 ·29 ·83, 331 ·29 ·1889, 331 ·83 ·1889.
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• s = 3: The support primes are now the elements of Q3 := Q2 ∪ {17, 41}, so
the solutions of (5.5) are the

(
7
3

)
= 35 integers n = 331 q1q2q3, with q1, q2, q3 ∈ Q3.

Among these, the following turn out to be solutions of (2.6): 331 · 5 · 11 · 17,
331 · 5 · 11 · 29, 331 · 5 · 11 · 41, 331 · 5 · 11 · 83, and 331 · 5 · 11 · 1889.
• s = 4, . . . , 9: Continuing as above, for each s we easily obtain all solutions

of (5.5), and by computations the subsets of solutions of (2.6). Table 7.9 gives
a summary, with #qj showing the numbers of relevant support primes, and “#
digits” the numbers of digits of the smallest and largest solutions of (2.6).

s #qj (5.5) (2.6) # digits s #qj (5.5) (2.6) # digits
2 5 10 3 6–8 6 17 12 376 4 362 11–110
3 7 35 5 6–8 7 23 245 157 81 690 15–123
4 9 126 41 8–20 8 25 1 081 575 360 381 17–135
5 13 1 287 411 13–47 9 25 2 042 975 680 973 20–142

Table 7.9: Numbers of solutions of (5.5) and (2.6), p = 331.

(b) We now consider the case of denominator 3, i.e., Theorem 5.6. For a summary
of the differences between the two cases, see again Remark 5.9. In particular, q = 2
is now a support prime.
• s = 0: By Table 7.1, γ31(331) = 3, so n = p = 331 is not a solution of (2.5).
• s = 1: By Proposition 5.14(a), the only potential solutions of (2.5) are n =

331 q, with q ∈ {5, 11}. However, Table 2.1 shows that neither one is actually a
solution.
• s = 2: The relevant support primes are now the factors of (p− 1)(p+ 1) that

are −1 (mod 3), namely the elements of the set Q2 ∪ {2}, where Q2 := {5, 11, 83}.
Then the solutions of (5.2) are the

(
3
2

)
= 3 integers n = 331 q1q2 with q1, q2 ∈ Q2,

together with the 3 ·
(
3
1

)
= 9 integers n = 331 · 2βq2, where 1 ≤ β ≤ 3 and q2 ∈ Q2.

Of these 12 solutions of (5.2), only n = 331 · 5 · 11 is also a solution of (2.5).

s #qj (5.2) (2.5) # digits s #qj (5.2) (2.5) # digits
2 4 12 1 5 7 18 118 456 38 685 14–117
3 6 50 30 5–9 8 24 2 696 727 901 245 14–130
4 8 210 55 8–11 9 26 12 858 725 4 287 960 17–142
5 10 882 420 8–25 10 26 25 741 485 8 578 366 20–150
6 14 10 725 3 501 10–48

Table 7.10: Numbers of solutions of (5.2) and (2.5), p = 331.

• s = 3: The support primes are the elements of Q3 ∪ {2}, where Q3 := Q2 ∪
{29, 1889}. Also, p2 + 1 contributes to the power of 2, which is now 24. Hence
the solutions of (2.5) in this case are exactly the

(
5
3

)
= 10 integers n = 331 q1q2q3,

with q1, q2, q3 ∈ Q3, together with the 4 ·
(
5
2

)
= 40 integers n = 331 · 2βq2q3, with

1 ≤ β ≤ 4 and q2, q3 ∈ Q3. Of the 10 odd solutions of (5.2), 6 turn out to solve
(2.5) as well, the smallest one being n = 331 · 5 · 29 · 83. Of the 40 even solutions
of (5.2), 24 are solutions of (2.5), with n = 331 · 2 · 5 · 29 being the smallest.
• s = 4, . . . , 10: Once again, we continue as above, determining all solutions of

(5.2) for each s, and as a subset the solutions of (2.5) by computation. A summary
is given in Table 7.10.
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Example 7.11. Let p = 55681, a nonstandard Jacobi prime of levels ` = 6 and
L = 5 (see Table 7.4). Its support primes can again be found in the factors of
p− 1 = 27 · 3 · 5 · 29 and p+ 1 = 2 · 11 · 2531, and in Table 7.7. We note again that
p is not 1-exceptional and that none of the odd support primes in the range under
consideration occur to a power higher than 1.

(a) We begin with denominator 6. We have complete factorizations of p2
j

+ 1
for all j ≤ 6, we can give complete solutions for all s ≤ 7.
• s = 0, 1: By Propositions 5.12, 5.14, respectively, there are no solutions of (2.6).
• s = 2, 3, 4: By Theorem 5.8(b) there can be no solutions of (5.5), and thus of

(2.6), since L = 5.
• s = 5: There are 8 support primes, namely the elements of the set Q5 :=

{5, 11, 17, 29, 41, 2531, 121477457, 12075324422351249}. The solutions of (5.5) are
therefore exactly the

(
8
5

)
= 56 integers n = 55681 q1 . . . q5, with qj ∈ Q5, j =

1, . . . , 5. Computations show that 18 of these are solutions of (2.6) as well, the
smallest of which being n = 55681 · 5 · 11 · 17 · 29 · 41, an 11-digit integer.
• s = 6, 7: As above, Theorem 5.8 and Table 7.7 give all solutions of (5.5).

Computations then lead to the solutions of (2.6); see the summary in Table 7.12.
(b) In the case of denominator 3 we need to take the support prime q = 2 into

account, and in this case we can determine all solutions for s ≤ 8.
• s = 0, . . . , 5: By Propositions 5.10 and 5.14 (for s = 0, 1, respectively) and

Theorem 5.6(b) there can be no solutions of (5.2), and thus of (2.5).
• s = 6: There are 9 support primes, namely the elements of {2} ∪ Q5, with

q = 2 occurring to the 12th power. Accordingly, the solutions of (5.2) consist of
the

(
8
6

)
= 28 odd integers n = 55681 q1 . . . q6 with qj ∈ Q5, j = 1, . . . , 6, along with

the 12
(
8
5

)
= 672 even integers n = 55681 · 2βq2 . . . q6 with 1 ≤ β ≤ 12 and qj ∈ Q5,

j = 2, . . . , 6. Among these, 12 of the odd and 252 of the even solutions turn out to
be solutions of (2.5) as well.
• s = 7, 8: Once again, we proceed as above and summarize the numbers of

solutions in the right half of Table 7.12.

s #qj (5.5) (2.6) # digits s #qj (5.2) (2.5) # digits
5 8 56 18 11–36 6 9 700 264 18–39
6 12 924 306 14–84 7 13 12 804 4 320 15–89
7 14 3 432 1 140 19–371 8 15 51 051 17 127 17–379

Table 7.12: Numbers of solutions of (5.5), (2.6), (5.2) and (2.5), p = 55681.

To check whether solutions of (5.5) or (5.2) are also solutions of (2.6), resp. (2.5),
according to the Chinese Remainder Theorem it suffices to compute the relevant
Gauss factorials modulo p, since by Lemma 3.3 they are automatically 1 (mod w).
This can be done quickly and efficiently with MAPLE, using the congruence (4.9)
when appropriate.

Finally, we note that the ratios between the numbers of solutions of (2.6) and
(5.5), resp. (2.5) and (5.2), are usually very close to 1/3. For instance, for p = 331
and denominator 3 (Table 7.10), this ratio is approximately 0.33347 for s = 9 and
0.33325 for s = 10. This is related to Remark 5.11(2).

8. Further Remarks

8.1. Very large Jacobi primes. In Table 5 of his well-known book [30], H. Riesel
listed primes of the form p = h · 2n + 1. Of particular interest for this paper are
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those with h = 3. In this case the order of p−1
3 ! modulo p divides p − 1 = 3 · 2n

and therefore must be 3 · 2` or 2`, i.e., p is always a Jacobi prime. Riesel’s table
has been vastly extended, and the website [1] lists the primes p = 3 · 2n + 1 for the
values of n shown in Table 8.1, and in addition six larger n up to the search limit
8 426 000 (as of July, 2014).

n ∆ n ∆ n ∆ n ∆ n ∆ n ∆
1 1 30 2 276 2 3168 2 44685 0 213321 0
2 0 36 1 353 0 3189 0 48150 2 303093 1
5 0 41 1 408 1 3912 2 54792 1 362765 0
6 1 66 1 438 1 20909 3 55182 2 382449 0
8 1 189 0 534 1 34350 2 59973 2 709968 1

12 1 201 1 2208 5 42294 2 80190 1 801978 3
18 1 209 0 2816 3 42665 0 157169 0 916773 0

Table 8.1: Jacobi primes p = 3 · 2n + 1, n < 106, with ∆ = n− `.

The first ten entries in this list, up to n = 41, also appear in Tables 7.4 and 7.5.
Up to n = 3912, the levels ` are easy to compute by way of Algorithm 7.3. For larger
n, we proceed as follows: (i) When n is even, say n = 2m, then a = −1, b = 2m,
and by (4.13) we have r = 1 + 3 · (−2)m. (ii) When n is odd, we use the qfbsolve

routine in Sage [31] to find a positive solution (a, b). With the appropriate choice
of the sign of a, (4.13) gives r. (iii) In both cases we use modular exponentiation

to compute r2
n−10

(mod p), and then square the result repeatedly modulo p until
1 (mod p) is reached within ∆ steps from n; see Table 8.1.

8.2. Heuristics for the number of solutions. As we have seen in Section 6.4,
our ability to find solutions of the congruences (2.5) and (2.6) depends to a large
extent on the level ` of the Jacobi prime p | n, on our ability to factor p−1 and the
generalized Fermat numbers Fk(p) for 0 ≤ k ≤ s − 2 (resp. 0 ≤ k ≤ s − 1, where
s is as in (2.4)), and on the number of primes q ≡ −1 (mod 3) among the prime
divisors of these Fk(p). This gives rise to the following question:

Given a Jacobi prime p, are there always integers n = pq1 . . . qs that solve the
congruences (2.5) or (2.6)? We will show heuristically that this is always the case
and that, in fact, we can expect infinitely many such solutions of (2.5) and of (2.6).

We begin with the well-known fact that the normal order of the number ω(n) of
distinct prime factors of an integer n is log log n (see, e.g., [20, p. 356]). We now
make the obviously unproven assumptions that the factors of a generalized Fermat

number Fk(p) = p2
k

+1 behave like those of a random integer and that, on average,
half of the prime divisors of Fk(p) lie in the residue class of −1 (mod 3). Then we
can expect that the number of prime divisors q ≡ −1 (mod 3) of Fk(p) is roughly

(8.1)
1

2
log logFk(p) >

1

2
log(2k log p) >

log 2

2
· k.

Next we use the fact that apart from 2, no two generalized Fermat numbers with a
fixed base p have a common factor; see, e.g., [22, p. 149].

Combining this with the estimate (8.1), we can expect roughly

(8.2)
log 2

2
(1 + 2 + · · ·+ (s− 2)) =

log 2

4
(s− 2)(s− 1)
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distinct prime divisors q ≡ −1 (mod 3) of (p − 1)(p + 1) . . . (p2
s−2

+ 1). Based
on our assumptions, the number of these prime divisors will therefore soon exceed
s ≥ `, which by Theorem 5.6 is necessary and sufficient for (5.2) to have a solution.
As we let s increase, the combinatorial arguments of Section 6.4 show that we can
expect the number of solutions to increase quite rapidly, and as we have seen, we
can expect about 1/3 of these solutions to also be solutions of (2.5).

We can make the same argument for the solutions of (5.5) and (2.6), with only
the small change of replacing s by s+ 1 in (8.2)

8.3. Closing remarks. This paper has been about solutions of the congruence
(2.5) and (2.6) for integers n exclusively of the form (2.4), i.e., n = pαw, with p ≡ 1
(mod 3) being the only prime factor in this residue class. In Remark 2.4 we noted
that α = 2 is extremely rare when n is a solutions, with p = 13 being the only
prime up to 1014 for which this can occur, and that there is no prime in this range
for which α > 2 is possible. This is in stark contrast to the case where n has two
distinct prime congruent to 1 (mod 3), as the following result shows.

Proposition 8.2. Let n = pα1
1 pα2

2 , where p1 ≡ p2 ≡ 1 (mod 12) are distinct primes
that are sextic residues of each other. Then(

n−1
6

)
n
! ≡ 1 (mod n)

for all integers α1, α2 ≥ 1.

Since this is not central to the main topic of this paper, we only mention that
the proof is based on a special case of a closed-form congruence in Lemma 2 of
[9] that is of a similar nature (although different in detail) to the congruences in
Section 3. A similar, but simpler, result can also be obtained for the case M = 3.
In both cases there are infinitely many pairs (p1, p2) that provide solutions; in the
case of Proposition 8.2 they can be found by searching for simultaneous solutions
of reciprocal pairs of congruences

p
(p2−1)/6
1 ≡ 1 (mod p2), p

(p1−1)/6
2 ≡ 1 (mod p1).

The five smallest solutions by size of their product n = p1p2 are 13 · 1117, 61 · 241,
37 · 433, 13 · 1741, and 13 · 1873.

Acknowledgments

We would like to thank Douglas Staple for his invaluable help with factoring
some difficult integers, François Morain for verifying the primality of a 2429-digit
factor, and Yves Gallot for his help with calculating large factorials modulo p.

References

[1] R. Ballinger and W. Keller, List of primes k.2n + 1 for k < 300. Updated July, 2014.

http://www.prothsearch.net/riesel.html.
[2] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Wiley, New York,

1998.

[3] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr., Factoriza-
tions of bn ± 1. b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Contemporary Mathematics, 22.

American Mathematical Society, Providence, R.I., 1983. Updated by S. S. Wagstaff, Jr., The

Cunningham Project , http://homes.cerias.purdue.edu/~ssw/cun/.
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