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Abstract

In this thesis we study the effect of noise on delayed bifurcations in PDE’s. Two

particular problems with slowly varying parameter and noise are considered: a single

PDE and a modified version of Klausmeier model. We first study the combined effect

of spatio-temporal noise and slowly varying parameter on the onset of the Turing

bifurcation. The noise helps to trigger the spatially inhomogeneous instability, and

we compute the delay in this instability. We review and extend the results of [1], to

more general situations, and also analyse the full distribution of the blowup time. We

also analyse the case where spatio-temporal noise is replaced by purely spatial noise

and we obtain the asymptotic density distribution of blow up time in the case where

the domain is sufficiently small. Full numerical simulations are used to validate our

analytical results.
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Chapter 1

Introduction

In stability and bifurcation analysis, the bifurcation parameter is usually assumed to

be independent of time. However, in many experiments, the bifurcation parameter

is not constant but rather slowly changing, and there are many examples of this

in physics [2, 3], engineering, biology [4] and ecology [5, 6, 7]. One of the most

important and interesting phenomena of this class of dynamical systems is that the

slow parameter drift can cause a delay in bifurcation: the trajectory of the full system

does not jump at the exact bifurcation point but is delayed as if it has memory of

former states. Delayed bifurcation was first introduced in [8, 9], and there is a growing

body of literature on the analysis of this phenomenon, especially in the context of

ODE’s (see [10] for a recent overview of the subject and references therein). In the

context of PDE systems, J. C. Tzou et al. studied delayed bifurcations for spike

solutions of three reaction-diffusion systems [11].

Recent studies have shown that noise also has an important effect on the transition

from homogeneous states to patterns through instability. The influence of noise on

a delayed bifurcation was theoretically investigated in [12, 13], where the Langevin

equation was analyzed by the method of moments, and in [14, 15], where the Fokker-

Plank equation was obtained and the probability density function was used to find the

delayed bifurcation points. In general, delay in bifurcation can be reduced by noise

even to the extent that the bifurcation point can occur before the static bifurcation

point [16].

There is a growing body of literature on the effect of noise on delayed bifurcation

with different applications such as climate change [17, 18, 19] and laser dynamics [20,

21]. Most of this work was done on ODE’s. More recently, in [1], we considered a slow

passage problem through a Turing bifurcation, where a modified reaction-advection-

diffusion system from Klausmeier model for vegetation patterns with Gaussian white

noise was studied.
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The goal of this thesis is to review and to give some extensions of the results in [1],

which concerns delayed bifurcation for a system of PDE’s in the presence of noise. We

study two PDE models with slowly varying parameters and additive Gaussian white

noise. The first model is a warm-up problem which consists of a single equation of

the following form:

{

ut = uxx + a(εt)u− u3 + noise, x ∈ (0, π),

u(0, t) = u(π, t) = 0.
(1.1)

The noise in (1.1) is Gaussian white noise and is modeled as

noise = σ0
dW

dt
, (1.2)

where σ0 is the intensity of noise and dW is spatio-temporal Wiener process defined

by [22]

dW =
√
dt

∞
∑

m=0

ξm(t) exp(imx),

of which ξm(t) is a normal distributed random variable (with mean zero and variance

one).

The corresponding ODE model is ut = au − u3, and it undergoes a supercritical

pitchfork bifurcation as a is increased past the pitchfork bifurcation point [23], and

the effect of noise on the delayed bifurcation is studied by R. Kuske [15], S. Varela,

et al. [16], and Nils Berglund, Barbara Gentz [24].

The second model is a modified Klausmeier model that was studied in [1]. It

was first introduced by Klausmeier in [25], and models the dynamics between plant

and water in semiarid regions on ecologically realistic assumptions. Many subsequent

models incorporate more specific details of this process. For example in [26, 27],

one of the variables which denotes water is separated as two variables–soil water and

surface water; some authors have also included rainfall variability [28, 29]. See [30]

and references therein for a recent overview of Klausmeier model. In this thesis, we

use a modified version of vegetation pattern formation system which has the following

non-dimensional form:

{

∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

b∂w
∂t

= d∂
2w
∂x2

+ c∂w
∂x

+ a(εt)− w − n2w + noise,
(1.3)
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where n(x, t) denotes plant density and w(x, t) corresponds to soil water concentra-

tion. In the model, δ ∂
2n
∂x2

denotes spread of plants and d∂
2w
∂x2

denotes the diffusion

of water within soil; c∂w
∂x

denotes downhill water flow. The parameter b represents

the differing timescales in changes in water level (in days, say) versus those in plant

density (in months). Parameter a represents the precipitation, and we consider what

happens as it is slowly decreased in time, thus we model it as

a = a0 − εt, 0 < ε� 1. (1.4)

The initial precipitation a0 is assumed to be sufficiently large so that the system has

full vegetation cover (corresponding to the nontrivial spatially homogeneous state)

when a(0) = a0. Moreover, there exists a Turing bifurcation point a = ap < a0

(where ap is derived in §2.1, see equation (2.11) there). Eventually, as a is decreased

below ap, this bifurcation is triggered. However it is fully manifested for values of a

well below ap. The delay in this bifurcation is the subject of this thesis.

1.1 Thesis outline and main contributions

The outline of this thesis is as follows. In §2, we give a brief review of the main

tools used in this thesis. This includes Turing instability, delayed bifuractions, and a

derivation of Fokker Planck PDE. In §3 we consider two slow passage problems with

Gaussian white spatio-temporal noise. In §3.1, we study the warm-up problem (1.1)

and characterize the distribution of blow up time. In §3.2, we consider the Klausmeier

model (1.3) in one dimension. We first discuss the system with noise under the

assumption that b = 0, c = 0. We summarize the methods used in [1] to obtain an

analytical threshold at which the variance of this density starts to grow exponentially

by using the Fokker-Planck PDE and solving for the density distribution function.

We also compare the full numerics and asymptotic results for different precipitation

rate ε. In §3.3 and §3.4, more general cases (b 6= 0 and c 6= 0) are considered and

new blow up time is obtained. We also verify these results using full numerics. The

results of §3 are based on [1].

In §4, we consider the case where the spatio-temporal noise is replaced by a purely

spatial noise. We first consider a linear deterministic ODE including a slowly changing

bifurcation parameter and random variable. We then obtain a canonical distribution
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of blow-up time (see Theorem 1). In §4.2 and §4.3, we apply Theorem 1 to the

two PDE problems studied in §3 with spatial noise by reducing them to the same

form as the linear deterministic ODE, and conclusions about density distributions of

blow up time are obtained with some scaling. Additionally, we compare the density

function obtained by analysis and the full numerical results. Ultimately, we conclude

by discussing our results and some future work in §5.
There have been many related works dealing with the effect of noise to delayed

bifurcation for ODE’s. On the other hand, much less is known about it in the context

of PDE’s [1]. The main difference between these past results and this current thesis

is that we obtain the distribution of the delay in bifurcation of the single PDE rather

than ODE. Also, we generalise the results of [1] to the more general reaction diffusion

systems. In addition, the noise is usually regarded as spatio-temporal noise, and very

little is known about dynamical systems for PDE systems driven by purely spatial

Gaussian white noise. In §4, we conduct the analysis of noisy delayed bifurcations for

PDE’s with delay in the bifurcation with purely spatial noise to obtain the distribution

of the blow up time in some simple cases.



Chapter 2

Brief reviews of Turing analysis and Fokker Planck PDE

2.1 Pattern formation and Turing instability

In this section we review Turing’s analysis of the stability of spatially uniform steady-

state solutions, which is named after Alan Turing, who in 1952 showed that an initially

stable steady-state of a dynamical system can become unstable if diffusion is added

to the system, and patterns are formed through the instability of the homogeneous

steady-state to small spatial perturbations [31]. It is a surprising and unexpected

phenomenon because diffusion usually has a smoothing effect. The loss of stability

due to diffusion is called Turing instability.

We first consider a single one-dimensional PDE with Neumann boundary condi-

tion.
{

ut = Duxx + f(u), x ∈ (0, L)

u′(0) = u′(L) = 0.
(2.1)

Suppose ū is a stable steady state of the ODE ut = f(u), so that f(ū) = 0 and

f ′(ū) < 0. Now add small perturbations around ū, i.e., u = ū + eλtφ(x), where

|φ| � 1. If small perturbations from the steady-state converge back to the steady-

state, i.e., λ < 0, then we say that the homogeneous steady-state solution is stable.

Plugging u = ū+ eλtφ(x) into (2.1) we obtain

{

λφ = Dφxx + f ′(ū)φ,

φ′(0) = φ′(L) = 0.
(2.2)

Solving for φ in (2.2) yields φ = cos(mx), where m = kπ
L

and k = 0, 1, 2, . . . , and

λ = −m2D + f ′(ū) < 0. Thus ū is still stable with the diffusion term.

Now we consider the following reaction diffusion system:















ut = D1uxx + f(u, v), x ∈ (0, L)

vt = D2vxx + g(u, v), x ∈ (0, L)

u′(0) = u′(L) = v′(0) = v′(L) = 0;

(2.3)

5
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where D1, D2 are positive constants. Suppose (2.3) has a homogenous steady state

(ū, v̄) which satisfies

f(ū, v̄) = 0, g(ū, v̄) = 0.

Moreover, we suppose (ū, v̄) are stable for the corresponding ODE system

{

ut = f(u, v),

vt = g(u, v).
(2.4)

Now we linearize u, v in (2.4) as u = ū + eλtφ and v = v̄ + eλtψ, and plug the

expressions in (2.4) to obtain

λ

(

φ

ψ

)

= J

(

φ

ψ

)

,

where J =

(

fu(ū, v̄) fv(ū, v̄)

gu(ū, v̄) gv(ū, v̄)

)

is the Jacobin matrix. The eigenvalues satisfy

λ2 − trace(J)λ+ det(J) = 0.

Since (ū, v̄) is assumed to be stable, we have trace(J) < 0 and det(J) > 0, i.e.,

fu + gv < 0 and fugv − gufv > 0.

Next we linearize u, v in (2.3) as u = ū +
∑∞

m=0 cos(mx)e
λtφ̂ and v = v̄ +

∑∞
m=0 cos(mx)e

λtψ̂, where φ̂, ψ̂ are constants and |φ̂|, |ψ̂| � 1,m = kπ
L
, k = 0, 1, 2, . . . .

Plugging all the expressions into (2.3) and we obtain

λ

(

φ̂

ψ̂

)

=

(

−D1m
2 + fu(ū, v̄) fv(ū, v̄)

gu(ū, v̄) −D2m
2 + gv(ū, v̄)

)(

φ̂

ψ̂

)

,

denote M =

(

−D1m
2 + fu(ū, v̄) fv(ū, v̄)

gu(ū, v̄) −D2m
2 + gv(ū, v̄)

)

, then λ satisfies

λ2 − trace(M)λ+ det(M) = 0.

Similarly we have (ū, v̄) is stable in (2.3) when trace(M) < 0 and det(M) > 0.

Since (ū, v̄) is stable in the corresponding ODE system, we have trace(M) = fu +

gv − (D1 +D2)m
2 < 0 is always true, thus (ū, v̄) is stable in (2.3) if det(M) > 0 for
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all m > 0 and unstable if det(M) < 0 for some m > 0, where det(M) is a quadratic

function which can be written as

det(M) = Q(m2) = D1D2m
4 − (D1gv +D2fu)m

2 + fugv − fvgu.

More specifically, the instability exists if and only if D1gv+D2fu ≥ 0 and (D1gv+

D2fu)
2 − 4D1D2(fugv − fvgu) > 0.

To illustrate Turing instability more clearly, we perform Turing analysis on the

Klausmeier model (1.3) with the assumption that b = 0, c = 0, d = 1 and constant a:

{

∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

0 = ∂2w
∂x2

+ a− w − n2w.
(2.5)

First we solve for the steady states of the corresponding ODE systems, which

satisfy
{

nt = −n+ wn2 = 0,

0 = a− w − wn2.
(2.6)

It is clear that for a < ac = 2, there is only one spatially homogeneous steady

state n = 0, w = a and for a > ac = 2 we have three steady states: n = 0, w = a and

n± =
a±

√
a2 − 4

2
, w± =

1

n±
. (2.7)

Separating w in the second equation in (2.6) and plugging into the first one we

obtain that

nt = −n+
an2

1 + n2
=

−n(n− n+)(n− n−)

1 + n2
. (2.8)

From Figure 2.1 and Figure 2.2 we can see that 0 and n+ are stable and n− is

unstable with respect to the ODE dynamics.

Next we linearize around n+, w+ in the PDE system (2.5), i.e., let n = n+ +

eλt cos(mx)φ̂ and w = w++e
λt cos(mx)ψ̂, wherem = kπ

L
, k = 0, 1, 2... and |φ̂|, |ψ̂| � 1.

Then we obtain
{

λφ̂ = (1− δm2)φ̂+ n2
+ψ̂,

0 = −2φ̂− (m2 + 1 + n2
+)ψ̂;

(2.9)

which can be simplified as one equation λφ̂ =
(

1− δm2 − 2n2
+

m2+1+n2
+

)

φ̂. Thus

λ = 1− δm2 − 2n2
+

m2 + 1 + n2
+

. (2.10)
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Figure 2.1: Evolution of nt (2.8) with re-
spect to n with different values of a.
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a

0
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1.5
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2.5

3

3.5

4

n

a
c

n
+

n_

Figure 2.2: Evolution of vegetation n with
respect to slow precipitation of a; the sol-
id line denotes the steady state n+, the
dashed line denotes the steady state n−.

Figure 2.3 shows how λ changes with respect to m with different values of param-

eter a. When a = 2.7, λ is always negative; when a = 2.1, there exists a unstable

band m ∈ (m1,m2). Turing bifurcation occurs when λ = ∂λ
∂m

= 0, thus the critical

point at which Turing instability occurs is

ap =
3− 2

√
2− 2δ

√

(3− 2
√
2− 2δ − δ)δ

. (2.11)

Hence the steady state n+ undergoes a Turing instability to a patterned state at

a = ap, where ap is express in (2.11).

Figure 2.4 illustrates the evolution of pattern formation induced from the stable

steady state n+, w+ with some random perturbations. The parameters are a = 2.1,

δ = 0.05 and the initial condition is the homogenous steady state n+ plus very

small random perturbations. After some transient period, the solution is no longer

homogenous and some patterns are formed, as shown at t = 500.

2.2 A brief review of delayed bifurcation

In this section we review delayed bifurcation phenomenon for ODE’s. This analysis

can also be applied to some PDEs when we reduce them to ODEs after linearization

around the steady states. For example, we consider the following problem in the
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Figure 2.3: λ with respect to m with different values of a .

domain (0, π):














ut = uxx + a(εt)u− u3,

u(0, t) = u(π, t) = 0,

u(x, 0) = 0,

(2.12)

where a(εt) = εt. The homogeneous steady state of (2.12) is u = 0. We linearize

around u = 0, i.e., u = 0 +
∑∞

m=0 φm(t) sin(mx) with |φm| � 1 and plug it in (2.12),

then we obtain

εφs = (s−m2)φ+O(φ2),m = 1, 2...; (2.13)

where s = εt. This is a ODE problem which has been studied in [15] and [11]. Solving

(2.13) under the assumption that φ(0) = φ0 we obtain the exact solution

φ = φ0e
1
ε
( s

2

2
−m2s), m = 1, 2 . . . . (2.14)

Here we define the blow-up time sb to be such that φ = φ0. Alternatively, φ starts

to grow rapidly at s = sb. Solve for s2

2
−m2s = 0 yields s = 0 or s = 2m2, since φ is

decreasing in (0,m2), Thus the blow up time of φ is sb = εtb = min(2m2) = 2. Note

that φ starts to grow at s = m2 but the growth is not observed until s = 2m2, which

is interpreted as delay in bifurcation.
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Figure 2.4: Example of Turing instability of Klausmeier model with a = 2.1, δ = 0.05.

2.3 Fokker-Planck PDE

There is a wide range of situations including population dynamics, protein kinetics,

turbulence, finance, and engineering that have non-deterministic dynamics, which can

be described by stochastic differential equations (SDE). Since in stochastic differen-

tial equations one or more of the terms is a stochastic process, the solution is also a

stochastic process. Moreover since most SDE are unsolvable analytically and to ana-

lyze properties of the stochastic process, it is important to get the density distribution

of the solution. In statistical mechanics, the Fokker-Planck equation is a partial dif-

ferential equation that describes the time evolution of the probability density function

of the velocity of a particle under the influence of drag forces and random forces, as

in Brownian motion. It was first used by Fokker [32] and Planck [33] to describe the

Brownian motion of particles and is also known as the Kolmogorov forward equation

(diffusion), named after Andrey Kolmogorov, who first introduced it in a 1931 paper
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[34]. Suppose we have following SDE in one dimension:

dXt = f(Xt, t)dt+ σ(Xt, t)dWt,

where dWt denotes the standard Wiener process. Then the probability density p(x, t)

satisfies Fokker-Planck partial differential equation

∂

∂t
p(x, t) = − ∂

∂x

(

f(x, t)p(x, t)
)

+
∂2

∂x2
(

D(x, t)p(x, t)
)

, (2.15)

where f(x, t) denotes drift term and D(x, t) = σ2(Xt,t)
2

is the diffusion coefficient.

2.3.1 Derivation of Fokker-Planck equation

The derivation of Fokker-Planck PDE and more details in this section can be found in

[35], [36] and [37]. We first consider a one-dimensional Markov process {X(t) : t > 0}
satisfying

dX(x, t) = a(x, t)dt+ b(x, t)dW,

where W is a standard Wiener Process. We use P (x, s) to denote the probabili-

ty that X(s) = x; moreover, we use P (X(t) = y;X(s) = x) to denote the joint

probability distribution, i.e. the probability that X(t) = y and X(s) = x; and

P (y, t|x, s) to denote conditional (or transition) probability distribution, i.e., the

probability that X(t) = y given that X(s) = x, defined as P (X(t) = y;X(s) =

x) = P (y, t|x, s)P (x, s).
For any continuous state Markov process, the Chapman-Kolmogorov equation is

satisfied, which is

P (X(t) = y|X(s) = x) = p(y, t|x, s) =
∫

p(y, t|z, τ)p(z, τ |x, s)dz, s < τ < t. (2.16)

This is the probability of going from x to y via z, ”summed” over all possible

intermediate z at time τ . To derive Fokker-planck equation, a partial differential

equation for the time evolution of the transition probability density function, we first

consider an integral
∫ ∞

−∞
g(y)

∂P (y, t|x, s)
∂t

dy,

where g(y) is a smooth function. Writing

∂P (y, t|x, s)
∂t

= lim
∆t→0

P (y, t+∆t|x, s)− P (y, t|x, s)
∆t

, (2.17)
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and interchanging the limit with the integral, it follows that
∫ ∞

−∞
g(y)

∂P (y, t|x, s)
∂t

dy = lim
∆t→0

∫ ∞

−∞
g(y)

(P (y, t+∆t|x, s)− P (y, t|x, s)
∆t

)

dy. (2.18)

Applying the Chapman-Kolmogorov identity (2.16), the right hand side of (2.18)

can be written as

lim
∆t→0

1

∆t

∫ ∞

−∞
g(y)

∫ ∞

−∞
P (y, t+∆t|z, t)P (z, t|x, s)dzdy −

∫ ∞

−∞
g(y)P (y, t|x, s)dy. (2.19)

Interchanging the limits of integration in the first term of (2.19), letting y → z in

the second term, and using the identity
∫∞
−∞ P (y, t+∆t, z, t) = 1, then (2.19) becomes

lim
∆t→0

1

∆t

∫ ∞

−∞
P (z, t|x, s)

∫ ∞

−∞
P (y, t+∆t|z, t)

(

g(y)− g(z)
)

dydz. (2.20)

Taylor expanding g(y) about z gives

lim
∆t→0

1

∆t

∫ ∞

−∞
P (z, t|x, s)

∫ ∞

−∞
P (y, t+∆t|z, t)

(

(y−z)g′(z)+(y − z)2

2
g′′3)

)

dydz. (2.21)

Since lim∆t→0
1
∆t

∫∞
−∞(y − z)P (y, t + ∆t|z, t)dy is the expectation of the process

X(t) and lim∆t→0
1
∆t

∫∞
−∞(y−z)2P (y, t+∆t|z, t)dy is the variance of the process X(t),

we have

lim
∆t→0

1

∆t

∫ ∞

−∞
(y−z)P (y, t+∆t|z, t)dy = lim

∆t→0

1

∆t
E(X(t+∆t)−X(t)) = a(z, t), (2.22)

lim
∆t→0

1

∆t

∫ ∞

−∞
(y−z)2P (y, t+∆t|z, t)dy= lim

∆t→0

1

∆t
E
(

(X(t+∆t)−X(t))2
)

=b2(z, t). (2.23)

Substituting (2.22) and (2.23) into (2.21), we have
∫ ∞

−∞
g(y)

∂P (y, t|x, s)
∂t

dy =

∫ ∞

−∞
P (z, t|x, s)

(

a(z, t)g′(z) +
b2(z, t)

2
g′′(z)

)

dz. (2.24)

Integrating the RHS of (2.24) by parts yields

∫ ∞

−∞
g(y)

∂P (y, t|x, s)
∂t

dy=g(z)a(z, t)P (z, t|x, s)
∣

∣

∞
−∞ −

∫ ∞

−∞
g(z)

∂
(

a(z, t)P (z, t|x, s)
)

∂z
dz

+g′(z)
b2(z, t)

2
P (z, t|x, s)

∣

∣

∞
−∞ − g(z)

∂
(

b2(z,t)
2

P (z, t|x, s)
)

∂y

∣

∣

∣

∞

−∞

+

∫ ∞

−∞
g(z)

∂2
( b2(z,t)

2
P (z, t|x, s)

)

∂z2
dz (2.25)

=

∫ ∞

−∞
g(z)

∂2
(

b2(z,t)
2

P (z, t|x, s)
)

∂z2
dz −

∫ ∞

−∞
g(z)

∂
(

a(z, t)P (z, t|x, s)
)

∂z
dz,
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where at z = ∞ and z = −∞, both the density function P and the derivatives of P

go to 0. Thus we finally have

∂

∂t
P (z, t|x, s) = − ∂

∂z

(

a(z, t)P (z, t|x, s)
)

+
∂2

∂z2
(b2(z, t)

2
P (z, t|x, s)

)

, (2.26)

which is precisely the statement (2.15).



Chapter 3

The effect of spatio-temporal noise on the onset of Turing

bifurcation

In this chapter we investigate the effect of small spatio-temporal noise on the onset

of pattern formation for PDE’s. The main mechanism responsible for the onset of

patterns is due to a Turing instability. This instability amplifies any initial small spa-

tial perturbation. A classical analysis of Turing instability concerns with computing

parameter thresholds which initiate such an amplification. However it may take some

time for the initial noise to fully develop into a Turing pattern. In this chapter we

quantify this process, and in particular we compute the time it takes for the initial

instability to grow fully, in the presence of spatio-temporal noise. The time it takes

the instability to grow once the threshold is reached is referred to as a delay in the

bifurcation.

We illustrate this theory on two examples. First, we consider a single cubic PDE

which serves as a toy model for Turing instability. We then generalize our method to

a system. In particular, we apply the method to Klausmeier model (1.3).

The results of this chapter are based on results in [1].

3.1 A single PDE

In this section, we consider the following single PDE with Dirichlet boundary condi-

tion in the 1-D domain [0, π]:















ut = uxx + a(εt)u− u3 + noise

u(0, t) = u(π, t) = 0,

u(x, 0) = 0,

(3.1)

where we take the spatio-temporal white noise to be

noise = σ0

∞
∑

m=0

√
dtξm(t) sin(mx);

14
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here σ0 is the intensity of the noise and
√
dtξm(t) represents a time-dependent Wiener

process; ξm(t) is normally distributed with mean zero and variance one. Additionally,

we assume that both the noise intesnity σ0 and the drift speed ε are small:

σ0 � 1, ε� 1.

We first linearize u(x, t) = 0 +
∑∞

m=0 φm(t) sin(mx). Along each mode we then

obtain

dφm = (s−m2)φmdt+ σ0
√
dtξm(t). (3.2)

Note that when s < m2, φm quickly decays and stays within a small interval of

zero, regardless of the initial conditions. We will therefore assume, without loss of

generality, that φm(0) = 0.

The density distribution ρ(φ, s) for (3.2) satisfies the following Fokker-Planck e-

quation:

ε
∂

∂s
ρ+ (s−m2)

∂

∂φm
(φmρ) =

σ2
0

2

∂2ρ

∂φ2
m

, (3.3)

with initial condition φ(0) = 0 corresponding to ρ(φ, 0) = δ(φ), where δ(φ) is the

Dirac delta function.

By doing the following change of variables,

ξ = φ exp

(

−s
2 − 2m2s

2ε

)

, S =
σ2
0

2ε

∫ s

0

exp

(

− ŝ
2 − 2m2ŝ

ε

)

dŝ,

and ρ(φ, s) = exp

(

−1

ε

∫ s

0

(
τ 2

2
−m2τ)dτ

)

v(ξ, S),

equation (3.3) can be transformed into a standard diffusion equation vS = vξξ subject

to initial condition v(ξ, 0) = δ(ξ). The solution for v(ξ, S) is simply the fundamental

solution of the diffusion equation v(ξ, S) = 1√
4πS

e−ξ
2/(4S). This yields the following

explicit solution for ρ(φ, s),

ρ(φ, s) =
1√
2πσ

e
−φ2

2σ2 , (3.4)

where σ2 is the variance of ρ(φ, s) given by

σ2(s ;m) = 2S exp
(s2 − 2m2s

ε

)

(3.5)

=
σ2
0

ε

∫ s

0

exp
(s2 − 2m2s− (ŝ2 − 2m2ŝ)

ε

)

dŝ.
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Next we can approximate σ2 using Laplace’s method for rapidly decaying integrals.

Recall [38] that the Laplace’s method is the formula

∫ b

a

f(x)e
1
ε
g(x) ∼

√

2επ

|g′′(x0)|
f(x0)e

1
ε
g(x0), (3.6)

where we assume that g(x) is a twice differentiable function on [a, b] and x0 ∈ [a, b]

is the unique point such that g(x0) = max[a,b] g(x); in addition, we assume that

g′′(x0) < 0.

Applying (3.6) to (3.5), we have a = 0, b = s, f(x) = 1 and g(x) = −x2 +2m2x+

s2 − 2m2s, thus x0 = m2 and g′′(x0) = −2. Assuming that s > m2, we then obtain

σ(s;m) ∼ σ0(
π

ε
)
1
4 exp

((s−m2)2

2ε

)

. (3.7)

Given any positive constant r, we now define the blow-up time s0 to be the first

time such that |φ(s)| = r. The distribution of the blow up time is then given by

F (s) = P
(

|φ| > r
)

(3.8)

=
2

σ
√
2π

∫ ∞

r

exp(− φ2

2σ2
)dφ,

where σ(s;m) is approximated by (3.7). Thus the density distribution of the blow up

time sb can be obtained by taking the derivative of F (s)

f(s) = F ′(s) =
2√
2πσ2

exp(− r2

2σ2
)
dσ

ds
, (s > m2). (3.9)

Note that σ implicitly depends on m; so that each different mode m yields a

different distribution of the blowup time. For the simple equation (3.1), the unstable

modes m = 1, 2, 3 . . . are well-separated and the corresponding blowup distributions

do not overlap except for exponentially small tail. Therefore the blowup of the mode

m = 1 occurs before any other mode, and it is the one that is observed. As we will

see in §3.2, this is no longer the case for more complex reaction-diffusion systems,

and the various unstable modes can bunch up together and interact with each-other

in a complicated way.

A simpler characterization of the blow-up time was proposed in [1]. Rather than

looking at the whole distribution, we defined a single “take-off” point to be the time
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at which the standard deviation σ starts to grow exponentially. This corresponds to

setting σ = 1 in (3.7), resulting in

sb = min
m

(

√

−2ε ln(σ0
(π

ε
)
1
4

)

+m2
)

=

√

−2ε ln(σ0
(π

ε
)
1
4

)

+ 1. (3.10)

The minimum is taken over all admissible modes m, in this case m = 1, 2, . . . .

Note that the distribution (3.9) depends on an arbitrary parameter r; on the other

hand the characterization (3.10) does not. In the next section we look at how well

the formulas (3.9) and (3.10) perform when compared with full numerical simulations

of the original model (3.1).

We now compare our density distribution (3.9) and the “take-off”point sb (3.10)

with numerical simulations of (3.1) obtained using MATLAB. To solve (3.1) numeri-

cally, we use finite differences method for the PDE, which we now describe.

Discretize in space using N gridpoints, ∆x = π
N
, and in time using stepsize ∆t so

that u(xk, tj) ≈ ukj where xk = k∆x with k = 1, 2, ...N , tj = j∆t. To ensure numerical

stability with a reasonably large time stepsize, we use a simple implicit-explicit Euler

scheme as follows:

ukj+1 − ukj
∆t

=
uk+1
j+1 + uk−1

j+1 − 2ukj+1

(∆x)2
+ a(εtj)u

k
j+1 − (ukj )

3 + σ0
1

∆t
dW k

j . (3.11)

Here dW k
j is the discretization of the Wiener process. Care must be taken to

truncate the infinite series to N modes to avoid oversampling,

dW k
j =

√
∆t

N−1
∑

m=0

ξm sin(mxk), (3.12)

where ξm is a normal random variable of mean zero and variance 1. Alternatively,

note from the definition (3.12) that dW k
j is normally distributed (since it is a sum of

normal variables), that its mean is zero and its variance is given by

var(dW k
j ) = ∆t

N

2
, (3.13)

where ξj(tk) is a real Gaussian random variable. To derive (3.13), we used the fact

that
N−1
∑

m=0

sin2(mxk) =
N−1
∑

m=0

sin

(

mkπ

N

)

=
N

2
.



18

For the numerical implementation, we therefore take dW k
j =

√

∆tN
2
×randn,

where randn is the Matlab command which generates a normally distributed random

number.

Figure 3.1 and 3.2 are plots with different values of drift speed ε, showing reason-

able agreement between our density distribution by analysis and the histogram by

simulations. We chose r = 0.05 and conducted 1000 full simulations of system (3.1)

using the finite differences method described above to obtain the histogram. The

solid curve denotes the density distribution of blow up time, and the red line denotes

the “take-off”value (3.10). From these figures, we observe that as ε increases, both

the mean and the variance of the blowup time increase as well. A larger choice of r

results in a slight shift of the distributions to the right, with a better agreement with

the vertical dashed line (3.10). However if r is chosen too large, the nonlinear term u3

in (3.1) is no longer negligible, so that the density distribution approximation (3.9)

breaks down.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

s
b

0

5

10

15
full simulation

density function

blow up point at

s=1.2301

Figure 3.1: Numerical verification of den-
sity distribution of sb with parameters ε =
0.005, σ0 = 0.001 and r = 0.05, the mean
of sb is 1.175 and variance is 0.1105;

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

s
b
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15
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density function

blow up point at

s=1.3308

Figure 3.2: Numerical verification of den-
sity distribution of sb with ε = 0.01, σ0 =
0.001 and r = 0.05, the mean of sb is 1.2459
and variance is 0.1444.

3.2 Klausmeier model with b = 0 and c = 0

In this section, we consider a modified version of Klausmeier model with Neumann

boundary condition in the domain [0, L] with the assumption that b = 0, c = 0. The
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results in this section were previously published in [1].

Scaling d = 1 results in the following equations:
{

∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

0 = ∂2w
∂x2

+ a(εt)− w − n2w + noise.
(3.14)

As in system (3.1), we take the spatio-temporal white noise to be

noise = σ0
∑

m

√
dtξm(t) cos(mx);

we used the cosine series here instead of sine since the boundary conditions are now

Neumann; the sum is taken over all modes m = kπ/L, k = 0, 1, 2, . . . . The precip-

itation a (εt) is assumed to be slowly decreasing with ε controlling the speed of the

decrease... Note that the steady state n+ doesn’t exist when a is below the fold point

ac = 2.

For concreteness, in the numerical simulations below we take

a(εt) = a0 − εt, (3.15)

where a0 is assumed to be above the Turing threshold ap =
3−2

√
2−2δ√

(3−2
√
2−2δ−δ)δ

. However

we give the theory for a general function a(εt). The precise form of a(εt) is not

important as long as a0 = a (0) is above ap and a decreases below ap with time.

We already conducted the stability analysis for the stable steady state n+, w+ from

(2.7) in §2.1. When a is replaced by a = a (εt), we obtain the following quasi-steady

states:

n±(εt) =
a(εt)±

√

a2(εt)− 4

2
, w±(εt) =

1

n±(εt)
. (3.16)

Linearizing near n+, w+, we write

n(x, t) = n+(εt) + φ(x, t), w(x, t) = w+(εt) + ψ(x, t),

where |φ|, |ψ| � 1 to obtain
{

dφ
dt

+ εn′
+(εt) = δ d

2φ
dx2

+ φ+ n2
+(εt)ψ,

0 = (d
2ψ
dx2

+ (−1− n2
+(εt))ψ − 2φ)dt+ σ0dWt.

(3.17)

Separating variables in space, we let φ(x, t) =
∑

φm(t) cos(mx) and ψ(x, t) =
∑

ψm(t) cos(mx) to obtain
{

dφm
dt

= −m2δφm + φm + n2
+ψm,

0 = (−m2ψm + (−1− n2
+)ψm − 2φm)dt+ σ0

√
dtξm(t).

(3.18)
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Solving for ψm in the second equation in (3.18) and substituting in the first one,

we have

dφm = α(εt)φmdt+ β(εt)dWt, φ(0) = 0; (3.19)

where

α(εt) = −m2δ + 1− 2n2
+(εt)

m2 + 1 + n2
+(εt)

, β(εt) =
σ0n

2
+(εt)

m2 + 1 + n2
+(εt)

. (3.20)

Recall that the steady state n+ undergoes Turing bifurcation at a = ap given by

(2.11) when there is no noise and slow parameter ε. However, the slow drift and noise

term have a combined effect which induce a delay in the bifurcation. To compute

this delay, we proceed similarly to §3.1 by studying the density distribution ρ(φ, s)

associated with (3.19). The density function ρ(φ, s) satisfies the following Fokker-

Planck PDE

ε
∂

∂s
ρ+ α(s)

∂

∂φ
(φρ) =

β2(s)

2

∂2ρ

∂φ2
(3.21)

with initial condition φ(0) = 0 in (3.21) corresponding to ρ(φ, 0) = δ(φ), where δ(φ)

is the Dirac delta function and s denotes the slow time εt.

Similar to §3.1, we first do the following change of variables

ξ̂ = φ exp

(

−1

ε

∫ s

0

α(τ)dτ

)

, Ŝ =

∫ s

0

β2(ŝ)

2ε
exp

(

−2

ε

∫ ŝ

0

α(τ)dτ

)

dŝ,

and

ρ(φ, t) = exp

(

−1

ε

∫ s

0

α(τ)dτ

)

v(ξ, S)

to obtain the solution

ρ(φ, s) =
1√
2πσ̂

e
−φ2

2σ̂2 , (3.22)

where σ̂2 is the variance of ρ given by

σ̂2(s ;m) =

∫ s

0

β2(τ) exp

(

−2

ε

∫ s

τ

α(τ)dτ

)

dτ. (3.23)

Let sp be the such that that α(sp) = 0. Applying Laplace’s method from (3.6),

for s > sp, we obtain

σ̂(s;m) ∼ exp

(

1

ε

∫ s

sp

α(τ)dτ

)

β(sp)

(

π

εα′(sp)

)1/4

,

where the dependence of σ̂ on m is through that of α and β in (3.20). As in §3.1, we
now define the “take-off” time sd = sd(m) for the mode m to be such that σ(sd;m) =
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1. Note that sd is such that σ � 1 when s < sd and σ � 1 when s > sd. For a fixed

mode m, the value of sd is therefore found by solving simultaneously

α(sp) = 0; (3.24)
∫ sd

sp

α(s)ds+ ε ln

(

β(sp)

(

π

εα′(sp)

)1/4
)

= 0. (3.25)

Note that, depending on the parameters, a solution for sd in (3.24) may not exist,

in which case the corresponding mode m is never activated.

The first mode that gets activated yields the delayed “take-off”value for a:

ad ≡ a(min
m

sd(m)), (3.26)

where the minimum is taken over all admissible modes m. These are the modes for

which the solution to the system (3.24) exists. If no such modes exist, no “take-

off”value of a exists, and the patterned state is never activated.

We now give numerical verification of ad with different values of ε as given in

(3.26) for system (3.15). The slow drift is taken to be a = a0 − εt with a0 = 3,

σ0 = 0.0001, L = 20 and δ = 0.05. Figure 3.3 compares the analytic prediction for ad

and the delayed value ad,num as observed from direct numerical simulations of (3.14).

To estimate ad from direct simulations, we first define the blow up time td,num at which

(maxx n −minx n)/meanx(n) first exceeds 1. We then calculate ad,num = a(εtd,num).

In Figure 3.3 we plot both the numerically computed ad,num the theoretical predictions

for ad given by (3.26). Good agreement is observed, at least for ad > 2.

The theoretical prediction (3.26) for ad ends at a = 2, which is the fold point of the

homogeneous steady state (see Figure 2.2). However, we can see that for the values of

ε ∈ (0.01, 0.015), full numerical simulations show that homogeneous quasi-state jumps

to the patterned state branch even when a has been decreased to below the fold point

a = 2 where the homogeneous steady state n+ no longer exists. This is due to the

presence of slow relaxation dynamics: it is well known (see for example [38], §6.5) that
there is a boundary layer of O(ε1/3) near the fold point, so that the homogeneous state

“falls off” not exactly at the fold point, but within O(ε1/3) of it. This delay is readily

apparent in Figure 3.3, where the numerics and asymptotics diverge near a = ac = 2.

To better capture this behaviour (and thus to better approximate the values of ε for

which the extinction is observed), we replace the quasi-steady state approximation
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Figure 3.3: Comparison of asymptotic and full numerical results for ad.

n+ and w+ in (3.16) by the solution to the homogeneous (ODE) system with a slowly

changing

nt = −n+ n2w, 0 = a(εt)− w − wn2.

Moreover, it is no longer true that n+w+ = 1 so that α, β in (3.20) are replaced

by

α (s) = −m2δ + (2nw − 1)− 2n2 (s)

m2 + 1 + n2 (s)
, (3.27)

β (s) =
σ0n

2 (s)

m2 + 1 + n2 (s)
. (3.28)

With this modification, the computation for ad is carried out as in before. This

allowed us to better capture the transition to the patterned state even a is slightly

below the tipping point a = ac. This is clearly shown in the curve labelled ”hybrid”

and its agreement with the full numerical result in Figure 3.3.

Figure 3.4 shows the evolution of max(n) for four different values of ε. It can

be observed that for bigger ε, we have smaller “take-off”value ad; when ε is too
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large, there is no “take-off”value exists, and the patterned state is never activated.

Moreover, we can see two simulations for ε = 0.004 from Figure 3.4, and each with

different random seeds. The bunching together of “take-off”points for different sim-

ulations when ε = 0.004 illustrates that ad is insensitive to the particular random

seeds chosen.

We also give the simulation of “take off” value ad with different value of diffusion

coefficient δ and noise σ0. Figure 3.5 shows how the “take off” value ad changes with

respect to δ. It can be observed that for greater δ, we have smaller “take off” value.

Figure 3.6 shows the effect of different size of noise to the “take off” value ad. We can

see that larger noise makes better resilience of a homogeneous state against tipping

points.
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Figure 3.4: The evolution of max n as a function of a with ε as indicated. The dashed
line shows ad as given by (3.26). The black solid curve shows the homogeneous steady
state. The curves denote simulations for four different values of ε each with different
random seeds. The bunching together of take-off points for ε = 0.004 illustrates that
ad is insensitive to the particular seed chosen.
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Figure 3.5: Comparison of asymptotic and full numerical results of ad with different
value of diffusion coefficient of vegetation δ. The other parameters are ε = 0.001,
σ0 = 0.0001 and b = c = 0.

3.3 Klausmeier model with b 6= 0 and c = 0

We now extend the analysis from [1] to consider the case where b is nonzero. As

before, we set d = 1 and c = 0 in (1.3) resulting in















∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

b∂w
∂t

= ∂2w
∂x2

+ a(εt)− w − n2w + σ0
dW
dt
,

dW =
∑

m

√
dtξm(t) cos(mx).

(3.29)

Linearizing around the homogeneous steady state n = n+ + φ(x, t), w = w+ +

ψ(x, t), where |φ(x, t)|, |ψ(x, t)| � 1 yields the system

{

∂φ
∂t

= δ ∂
2φ
∂x2

+ n2
+ψ + φ,

b∂ψ
∂t

= ∂2ψ
∂x2

− 2φ− (1 + n2
+)ψ + σ0

∑

m

√
dt
dt
ξm(t) cos(mx),

(3.30)
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Figure 3.6: Comparison of asymptotic and full numerical results of ad with different
value of noise intensity σ0. The other parameters are ε = 0.001, δ = 0.05 and
b = c = 0.

which can be written as function of slow time s
{

ε∂φ
∂s

= δ ∂
2φ
∂x2

+ n2
+ψ + φ,

ε∂ψ
∂s

= 1
b
∂2ψ
∂x2

− 2
b
φ− 1+n2

+

b
ψ + σ0

√
ε

b

∑

m

√
ds
ds
ξm(t) cos(mx).

(3.31)

Using separation of variables

φ(x, t) =
∑

m

cos (mx)φm(t); ψ(x, t) =
∑

m

cos (mx)ψm(t);

the resulting system can be written as

εYs = AY + F (s), (3.32)

where

Y =

(

φm

ψm

)

, A =

(

−δm2 + 1 n2
+(s)

−2
b

−m2+1+n2
+(s)

b

)

, F (s) =

(

0

σ0
b

√
ε
√
dsξm(t)
ds

)

. (3.33)
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To get the scalar form similar to (3.19), we use a WKB-type anzatz which we now

describe. Multiply (3.32) by W (s), where W satisfies WA = λW . That is, W is the

adjoint eigenvector corresponding to the eigenvalue λ(s) of A(s). Then system (3.32)

becomes

εWYs = WAY +W ~F (s)

= λWY +WF (s). (3.34)

Let X = W (s)Y (s), then we have

Xs = εWsY +WYs ∼ WYs.

Thus at the leading order, (3.32) becomes

εXs ∼ λX +WF. (3.35)

Since this equation is precisely of the form (3.19) with

α(s) = λ; β(s) = WF.

From here on, the analysis of §3.3 proceeds as before, and the take-off time is

given by the same formula (3.24) except the formulas for α and β are more involved.

The equation for α satisfies

α2 +Bα + C = 0, (3.36)

where

B = −trace(A) = m2 + 1 + n2
+(s)

b
+ δm2 − 1;

C = det(A) = (δm2 − 1)
(m2 + 1 + n2

+(s)

b

)

+
2n2

+(s)

b
.

In general, α can be complex; we treat an example of such a case in the subsequent

§3.4. Furthermore, as b is increased, the homogeneous steady state undergoes a Hopf

bifurcation when B = 0. For the purposes of this section, we only look at the regimes

where α is purely real to avoid dealing with oscillatory behaviour.

There are two possible values for α(s) that must be considered: α± = −B±
√
B2−4C
2

.

It turns out that α− is always negative; the only relevant eigenvalue which is respon-

sible for Turing instability is

α(s) =
−B +

√
B2 − 4C

2
. (3.37)
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The corresponding β is given by

β =
σ0

√

4
(λ+δm2−1)2

+ b2
. (3.38)

With these values, we evaluate ad using (3.26). The integrals are all evaluated

numerically using Matlab.

Figure 3.7 is the full simulation of the “take off” time ad with different value of b.

It’s observed that for greater b, we have greater ad.
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Figure 3.7: Comparison of asymptotic and full numerical results of ad with different
value of parameter b. The other parameters are ε = 0.005, δ = 0.05 and σ0 = 0.0001.

In the limit b → 0, we recover the results of §3.2. To see this, we expand α for

small b as α = α0 + bα1 + . . . ; substituting this expansion into (3.36) and collecting

the powers of b yields

(

m2 + 1 + n2
+

b

)

α0 + (δm2 − 1)(
m2 + 1 + n2

+

b
) +

2n2
+

b
+O (1) = 0;
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solving for α0 then recovers the formula (3.27). Similarly, the formula (3.28) is ob-

tained by taking the limit of (3.38) as b→ 0.

Note that b cannot be too large since the simulation shows that large b may trigger

Hopf bifurcation and the condition for Hopf bifurcation is that

B =
m2 + 1 + n2

+(s)

b
+ δm2 − 1 = 0, C = (δm2 − 1)

(m2 + 1 + n2
+(s)

b

)

+
2n2

+(s)

b
> 0,

which yields that for some m and s, Hopf bifurcation happens when b satisfies the

following condition

b =
m2 + 1 + n2

+

1− δm2
> 0 and 2n2

+ > (1− δm2)(m2 + 1 + n2
+). (3.39)

Note that for m = 0 mode, the second equation in (3.39) simplifies to n+ > 1

which is always the case (see (2.7)). The first equation in (3.39) then becomes

bhopf = 1 + n2
+.

Our analysis above implicitly assumes that b < bhopf .

3.4 Klausmeier model with b = 0 and c 6= 0

In this section we consider the case where c 6= 0. As before, we set d = 1 and b = 0

in (1.3) resulting in
{

∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

0 = ∂2w
∂x2

+ c∂w
∂x

+ a− w − n2w + σ0
dW
dt
;

(3.40)

where dW = σ0
∑

m

√
dtξm(t) exp(imx). Because of the non-zero drift, for simplicity

we consider periodic boundary conditions here, n(0, t) = n(L, t) and w(0, t) = w(L, t).

After linearization around n+, w+ with n = n+ + φ(x, t), w = w+ + ψ(x, t), we

obtain the following system
{

φt = δφxx + φ+ n2
+φ,

0 = ψxx + cψx − 2φ− (1 + n2
+)ψ + σ0

dWt

dt
.

(3.41)

Separating φ and ψ in space and time, i.e., φ =
∑m

0 φm(t) exp(imx) and ψ =
∑m

0 ψm(t) exp(imx), and substituting them into (3.41) yields

{

φmt = (1− δm2)φm + n2
+ψm,

0 = (icm−m2)ψm − 2φm − (1 + n2
+)ψm + σ0

√
dtξ
dt
.

(3.42)



29

Solving for ψ in the second equation in (3.42) and plug it in the first one we obtain

dφ = α̃(εt)φdt+ β̃(εt)dWt, (3.43)

where

α̃(εt) = −m2δ + 1− 2n2
+(εt)

m2 + 1 + n2
+(εt)− icm

; (3.44)

β̃(εt) =
σ0n

2
+(εt)

m2 + 1 + n2
+(εt)− icm

. (3.45)

From (3.44) and (3.45) we can see that when we include parameter c, the eigen-

values are complex, thus we need to find its real part to determine the stability of

steady states, which are

Re(α̃(εt)) = −m2δ + 1− 2n2
+(εt)(m

2 + 1 + n2
+(εt))

(

m2 + 1 + n2
+(εt)

)2
+ c2m2

; (3.46)

Re(β̃(εt)) =
σ0n

2
+(εt)(m

2 + 1 + n2
+(εt))

(

m2 + 1 + n2
+(εt)

)2
+ c2m2

. (3.47)

From here on, the analysis of §3.4 proceeds as in §3.2, and the take-off time is

given by the same formula (3.24) except the formulas for α and β are replaced by

Re(α̃(εt)) and Re(β̃(εt)).

In Figure 3.8 we compare our ”take off” value ad between direct simulations and

asymptotic simulations. In the figure a good agreement can be observed, and with

greater c, the solution will take off more earlier.

3.5 Conclusions

In this chapter we have studied the effect of spatio-temporal noise on the delay in the

Turing bifurcation, following [1]. The main idea is to decompose the PDE dynamics

along its Fourier modes, resulting in a decoupled infinite system of stochastic ODE’s.

Each SODE is an Ornstein-Uhlenbeck process, and we then use its associated density

to study the blowup behaviour.

We have extended the work in [1] to incorporate a more general case of reaction

diffusion systems (where b 6= 0 in §3.3), as well as to the case where there is a

drift (c 6= 0 in §3.4) which results in complex eigenvalues. The former case required

the use of adjoint eigenvector to reduce the system of stochastic ODE’s to a single

Ornstein-Uhlenbeck process.
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Figure 3.8: Comparison of asymptotic and full numerical results of ad with different
value of parameter c. The other parameters are b = 0, ε = 0.005, δ = 0.05 and
σ0 = 0.0005.

In [1], the blow-up time is defined in terms of a blowup of the variance of the

associated SODE’s, and an asymptotic formula (3.24, 3.25) was given for this time. In

reality, however, the blow-up times constitute a density distribution, and not a single

number. In this chapter we have computed this distribution directly for the case of

a single PDE (3.1). We used direct numerical simulations to validate our results.

Unfortunately, these techniques do not work well for the Klausmeier model. We

think that this is because the unstable modes in the Klausmeier model are clustered

together and interact; there is no single mode that dominates, unlike the single PDE

model (3.1), where the mode m = 1 becomes unstable well before any other. We are

currently looking at extending our methods to examine how mode interaction affects

the distribution of the blowup times.



Chapter 4

The effect of purely spatial noise on the onset of Turing

bifurcation

In this chapter we will consider the case where the noise is no longer spatio-temporal

noise, but replaced by purely spatial Gaussian white noise. Here we define the spatial

noise as

noise = σ0

∞
∑

m=0

ξm exp(imx); (4.1)

where ξm is normally distributed and is independent of time with mean 0 and variance

1, and σ0 is the noise intensity. Again we consider the examples from §3: a single

PDE and the Klausmeier model. Similar to the analysis of §3.1, the main idea is to

decompose the PDE dynamics into its Fourier modes. The difference here is that for

each mode, rather than obtaining a stochastic ODE (the Ornstein-Uhlenbeck process),

we obtain a deterministic linear ODE, but with random inhomogenuity. Based on

the ODE, we compute the distribution of delays in the bifurcation. We then compare

the results we get between spatio-temporal noise and purely spatial noise.

4.1 An ODE with random parameters

Let us first consider the following single ODE,

φt = α (εt)φ+ β (εt) ξ, (4.2)

where ξ is chosen from a standard normal distribution. As in §3.1, we assume that

β � 1, ε� 1

corresponds to low noise and slow parameter drift. We also assume that α (εt) is an

increasing function with α(0) < 0, and with α(sp) = 0 for some sp > 0. By making a

change of variables s = εt, this ODE is equivalent to

εφs = α(s)φ+ β(s)ξ. (4.3)

31
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Since α(s) is initially negative, the solution decays at first, then starts to grow

rapidly when s > sp. Given a positive constant r, we thus define the blow-up time to

be the first time sb > sp such that |φ (sb) | = r. We wish to know the distribution of

times for which φ starts to grow.

As in §3.1, we will assume sufficiently fast initial decay that we may take initial

conditions to be φ(0) = 0. The solution to (4.3) is then given by

φ(s) = ξ

∫ s

0

1

ε
β(τ) exp

(

−1

ε

∫ τ

s

α(ρ)dρ

)

dτ. (4.4)

As in §3.1, we apply Laplace’s method to further simplify this as follows. Let sp

be such that

α(sp) = 0. (4.5)

Then from Laplace’s Method (3.6), (4.4) yields

φ(s) ∼
√

2π

α′(sp)ε
β(sp)ξ exp

(

1

ε

∫ s

sp

α(ρ)dρ

)

. (4.6)

The blow-up time sb satisfies |φ(sb)| = r. To determine the distribution of the

blow-up time, we define the cumulitive distribution function F (s) to be

F (s) := P (|φ(s)| ≤ r).

Then

F (s) = P

(

|ξ| ≤ exp
(

−1
ε
A(s)

)

η

)

=
2√
2π

∫

exp(− 1
εA(s))
η

0

e−z
2/2dz, (4.7)

where we defined

η =
1

r

√

2π

α′(sp)ε
β(sp) � 1; and A(s) =

∫ s

sp

α(ρ)dρ. (4.8)

Because of the exponential growth in the upper limit of the integral, F (s) exhibits

sharp transition from zero to one around the point where
exp(− 1

ε
A(s))

η
∼ 1. In other

words, let sd be defined through

exp
(

−1
ε
A(sd)

)

η
= 1.
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or
∫ sd

sp

α(ρ)dρ = −ε ln
(

1

r

√

2π

α′(sp)ε
β(sp)

)

. (4.9)

Then we have the following dichotamy:

F (s) ∼
{

0 if (s− sd)/ε� 1

1 if (s− sd)/ε� 1

We can capture the shape of this transition by expanding s as

s = sd + εt.

Then Taylor expansion around sd yields

exp
(

−1
ε
A(s)

)

η
∼ exp (−α(sd)t)

and

F (s) ∼ 2√
2π

∫ exp(−α(sd)t)

0

e−z
2/2dz.

It follows that the density distribution of blow-up time is given by

F ′(s) ∼ 2√
2π

α (sd)

ε
exp

(

−exp
(

−2α(sd)
s−sd
ε

)

2

)

exp

(

−α(sd)
s− sd
ε

)

. (4.10)

We summarize this in the following theorem:

Theorem 1 Let f(s) be the distribution of the blow-up time for the ODE (4.2), that

is, the probability that |φ(s)| ≥ r. Then f(s) is given by

f(s) =
α(sd)

ε
f̂

(

α(sd)
s− sd
ε

)

, (4.11)

where sd is defined implicitly through

∫ sd

sp

α(ρ)dρ = −ε ln
(

1

r

√

2π

α′(sp)ε
β(sp)

)

(4.12)

and f̂(z) is given by

f̂(s) :=

√

2

π
exp

(

−exp (−2z)

2

)

exp (−z) . (4.13)
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Figure 4.1: Comparison of the blow-up time for the ODE (4.2): full simulations versus
asymptotic distribution (4.11). Here, α(s) = −1 + s, β(s) = 1, σ0 = 10−5, ε = 0.1
and r = 1. Histogram shows the result of 3000 simulations using the exact solution
to the ODE (4.2).

Note that the form (4.13) of the distribution is the same (up to shifts and transla-

tions) regardless of the choice of α(s), β(s). In this sense, (4.13) represents a canonical

distribution for the blow-up times.

The mean µ =
∫∞
−∞ f(s)sds is also easily computed as follows. Changing variables

z = α(sd)
s−sd
ε

we obtain

∫ ∞

0

f(s)sds ∼ 2√
2π

∫ ∞

−∞
exp

(

−exp (−2z)

2

)

exp (−z)
(

ε
z

α (sd)
+ sd

)

dz

= sd +
ε

α (sd)

2√
2π

∫ ∞

−∞
exp

(

−exp (−2z)

2

)

exp (−z) zdz.

The integral above can be evaluated with the help of Maple as follows:

2√
2π

∫ ∞

−∞
exp

(

−exp (−2z)

2

)

exp (−z) zdz

=
1√
2π

∫ ∞

0

exp

(

−u
2

2

)

ln

(

1

u

)

du

= (ln 2 + γ) /2 = 0.635181.
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Here, γ = 0.577 is the Euler’s constant. Similarly, we compute the variance:

var =

∫

f(s) (s− µ)2 ds

=
2√
2π

∫ ∞

−∞
exp

(

−exp (−2z)

2

)

exp (−z)
(

ε
z

α (sd)
+ sd − µ

)2

dz

=
2√
2π

(

ε

α (sd)

)2 ∫ ∞

−∞
exp

(

−exp (−2z)

2

)

exp (−z) (z − (ln 2 + γ) /2)2 dz

=
2√
2π

(

ε

α (sd)

)2 ∫ ∞

0

exp

(

−u
2

2

)

u (− ln u− (ln 2 + γ) /2)2 du

=

(

ε

α (sd)

)2 √
2π

24

(

24 (ln 2)2 + π2
)

= 2.2351

(

ε

α (sd)

)2

,

where we used Maple to symbolically evaluate the integral. We summarize our cal-

culations as follows:

Theorem 2 The distribution (4.11) has a mean and standard deviation given by

mean = sd + ε
(ln 2 + γ) /2

α (sd)
;

std =
ε

α (sd)

(√
2π

24

(

24 (ln 2)2 + π2
)

)1/2

.

This result shows that, to leading order, the mean is given by sd. In fact, sd

is precisely the maximizer of the distribution f(s). The “true” mean is close to it.

In addition, the computation of the standard deviation shows that the distribution

concentrates around sd.

We now validate Theorem 2 using numerics. Choose

α(s) = −1 + s; β(s) = σ0.

Then sp = 1 and (4.9) becomes

(sd − 1)2 = −2ε ln

(

1

r

√

2π

ε
σ0

)

. (4.14)

whereas the solution to (4.2) where α(s) = −1+ s and β(s) = σ0 has the exact form:

φ(s) = σ0ξ

√

π

2ε
exp

(

(−1 + s)2

2ε

){

erf

(

√

1

2ε

)

+ erf

(

√

1

2ε
(s− 1)

)}

.
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We take ε = 0.1, σ0 = 10−5, and r = 1. We then solve the ODE 3000 times. The

corresponding distribution of the blowup times |φ(s)| = r is shown as a histogram in

Figure 4.1. It compares very well with the asymptotic prediction (dashed line) given

by Theorem 1.

4.2 Single PDE

We now consider the following PDE with Dirichlet boundary condition in the domain

(0, π),

ut = uxx + a(εt)u− u3 + σ0

∞
∑

m=0

ξm sin(mx), (4.15)

where a = εt. Linearizing analysis around the zero steady state u(x, t) = 0 +
∑

m φm(t) sin (mx), we obtain

ε
d

ds
φm = (−m2 + s)φm + σ0ξm, m = 1, 2, . . . (4.16)

This is precisely of the form of the ODE (4.2) with

α(s) = −m2 + s; β(s) = σ0. (4.17)

As in §3.1, given a positive constant r, we define the blow-up distribution cor-

responding to each mode m to be the first time s such that |φm(s)| = r. These

distributions are determined in Theorem 1 for each individual mode m = 1, 2, . . . .

Similarly, we define the blow-up distribution for the solution u to be the first time

such that |u| = r.

Figure 4.2 shows the blowup distributions for φm with σ0 = 0.03, ε = 0.1 and

r = 0.05, as given by Theorem 1. As can be seen from this figure, these distributions

do not overlap, and the mode m = 1 blows up before any other. Therefore the overall

blowup distribution for u should coincide exactly with that of φm, m = 1.

Figure 4.3 and Figure 4.4 show the full numerical simulations of the single PDE

(4.15), where we plot maxx |u| as a function of s = εt. We used implicit-explicit finite

differences method similar to that used in §3.1 to numerically compute the solution.

The initial condition is u = 0. For each parameter set, several simulations are shown

starting with different random seeds. The blow-up times appear to cluster closely
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Figure 4.2: Asymptotic blowup distributions of modes φm from (4.9) with r = 0.05,
σ0 = 0.03, ε = 0.1, as given by Theorem 1. Note that the distributions do not overlap.

together. This is indeed predicted by Theorem 2, which shows that the standard

deviation of the blow-up distribution is of O(ε).

We also compare the density distribution of the blow up time s with the histogram

obtained by full simulation. To obtain the full numerical results of blow-up time, we

run the simulation for 2000 times by using the software Matlab, as shown in Figure

4.5 and Figure 4.6, and excellent agreement can be observed between the density

function and the numerical results.

4.3 Klausmeier model

We now consider the simple case of Klausmeier model studied in (3.14) but with

purely spatial noise

{

∂n
∂t

= δ ∂
2n
∂x2

+ n2w − n,

0 = ∂2w
∂x2

+ a(εt)− w − n2w + σ0
∑∞

m=0 ξm cos(mx).
(4.18)

Using the linearization

n = n+ +
∑

φm(t) cos(mx), w = w+ +
∑

ψm(t) cos(mx),
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Figure 4.3: Evolution of the singular PDE
with purely spatial noise and slow drift
with ε = 0.02, σ0 = 0.0005. The simula-
tion is ran three times on a domain L = π
with Dirichlet boundary condition.
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Figure 4.4: Evolution of the singular PDE
with purely spatial noise and slow drift
with ε = 0.02, σ0 = 0.0001. The simula-
tion is ran three times on a domain L = π
with Dirichlet boundary condition.
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Figure 4.5: Numerical verification of den-
sity distribution of blow-up time with ε =
0.02, σ0 = 0.0005 and r = 0.05.
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Figure 4.6: Numerical verification of den-
sity distribution of blow-up time with ε =
0.02, σ0 = 0.0001 and r = 0.05.
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we then obtain, along each mode,

εφs = α(s)φ+ β(s)ξm, (4.19)

where α(s) and β(s) are same as in (3.20) and ξm is independent of time. Similarly

to the cubic model (4.15), Theorem 1 then yields the distribution of blow-up time

for each of the mode separately. However when the domain is large, these modes

overlap. Consider, for example, the domain size L = 20 with ε = 0.001, r = 0.05, and

σ0 = 0.0001. The six most unstable modes are shown in Figure 4.7. Note that they

have significant overlap. As a result, no single mode can predict the overall blowup

distribution obtained by the full simulation (here the blow up time is defined such

that max(n)−min(n) first exceeds 2r = 0.1) – also shown in Figure 4.7.

2.3 2.32 2.34 2.36 2.38 2.4 2.42 2.44 2.46 2.48

a
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Turing point a
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other unstable modes

k=19 k=16

k=15
k=20

k=18

Figure 4.7: Asymptotic blowup distributions of modes φm from (4.19) for the Klaus-
meier model, compared with the blowup distribution for of the full system. Parameter
values are r = 0.05, ε = 0.001, σ0 = 0.00001 and δ = 0.05, a(εt) is taken as 3 − εt.
Note that the distributions for individual modes overlap, so that no single mode can
predict the overall blowup distribution.

4.4 Conclusions

In this chapter we have considered PDE’s driven by purely spatial (not spatio-

temporal) noise. By decomposing the dynamics along fourier modes, we have ob-

tained linear deterministic ODE’s but with random forcing (4.2). In the case where
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domain size is sufficiently small, the blowup profile along each mode is well separat-

ed from all others. As a result, the blowup distribution of the most unstable mode

yields the overall blowup distribution of the full system. However in the case of large

domain, the blowup distributions along individual modes overlap. In this case, no

individual mode is a good predictor of an overal blowup profile. Understanding how

the various modes interact is the subject of future research.



Chapter 5

Conclusion

In this thesis we studied the combined effect of noise and slow parameter drift on

the onset of Turing bifurcation by looking for the blow up time at which the solution

starts to deviate quickly from the homogeneous steady state. We considered two

models: a single PDE, and a modified version of Klausmeier model which is a system

of two PDE’s. We applied and extended the methods used in [1] to more general class

of systems, as well as to the case of purely spatial (not spatio-temporal) noise.

In §3.2 we reviewed the results of [1] as applied to the simplest case of Klausmeier

model (1.3) corresponding to b = 0, c = 0. We then extended the method to cover

the case of a system (b 6= 0), and complex eigenvalues (c 6= 0). When b 6= 0, lin-

earization results in two coupled ODE’s (rather than a single equation when b = 0).

We approximated the resulting system by a single equation, using adjoint eigenvec-

tors/eigenvalue pairs. At the end, we obtained a single Ornstein-Uhlenbeck process

and then the analysis proceeded the same as in §3.2. Moreover, we compared the

blow up point between analysis and numerics with respect to b. When c 6= 0, α(s)

and β(s) in (3.20) are not real but complex. In this case, we chose the real part

of new α(s) and β(s) and find out the “take-off” value using the similar analysis.

In all cases, we performed numerical simulations and good agreement were observed

between analysis results and full simulations.

To study the combined effect of noise and slow parameter drift, we considered

two alternative definitions of the “blowup time”. The first definition – and the one

used in [1] – is to look at the variance of the density distribution of the solution,

and to define the blowup to occur when this variance first exceeds one. This gives a

single number for the blowup time, which can be approximated by decomposing the

solution along its Fourier modes near the homogeneous steady state. A more detailed

definition is to consider the blowup time to be a distribution itself, rather than just a

single number. The latter definition provides for a more refined picture of the solution

41
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blowup. Both of these two notions involve the combined effect of noise and the slow

passage parameter.

We obtained two cases when looking for the distribution of blowup time. In the

case where the density distributions for various modes do not overlap too much, the

overall density distribution of blow up time is exactly the same as the mode that

blows up first. This is the case in particular for the single PDE system (3.1 and 4.15)

and more generally, when the domain size is sufficiently small. However when the

domain size is sufficiently large, such as an example of Klausmeier considered in §4.3,
density distributions for various modes overlap with each other and then the solution

may blow up earlier than any of the individual modes. It is an open problem to

understand this interaction which will enable us to describe the overall distribution

of delay in Turing bifurcation.

In §4 we studied the profile of the blowup distributions for the case of a purely

spatial noise. In this case, we obtained a linear deterministic ODE’s but with random

variables (4.2) rather than a Ornstein-Uhlenbeck process. A canonical density distri-

bution of the blow up time such that |φ| = r is obtained (see Theorem 1). We also

applied this method to the same problems in §3 and the density functions of blow up

time for each mode are in the same form as in Theorem 1 but with different scaling.

There are several outstanding questions that we plan to address in the future.

First, we would like to study the distribution of the blowup points when the domain

is large. As can be seen in Figure 4.7, in this case the individual modes are not good

predictors of the overall distribution and rather, the study of combined distribution

is needed. Another interesting question is to study the effect of oscillations on bifur-

cation delays. This is the case, for example, with the Klausmeier model when b is

sufficiently large. More general systems cases can also be considered for future work.

We would also like to extend these results to higher dimensions.
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