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Abstract

Space-borne altimeters typically have a repeat time of order 10 days and so alias

high frequency sea level variability. State-of-the-art de-aliasing methods are presently

based on tidal and atmospheric corrections from dynamical models. However, analysis

shows that significant high frequency variability remains after such corrections that

could cause aliasing problems. In order to further de-alias the altimetry products, a

statistical de-aliasing model is designed. Three methods are designed to fit the model

(i) in the lag domain, (ii) in the frequency domain, and (iii) in the time domain

using the lasso to limit the number of predictors. The three methods are first tested

in two simulation-based studies and shown to be both effective and interpretable.

The methods are then applied to the altimetry products. The lasso-based method

performs best and reduces the standard deviation of the satellite altimetry products

in the Gulf of St. Lawrence from about 8 cm to 6 cm.
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Chapter 1

Introduction

The stability of the Earth’s environment is a topic of great concern to society, in

large part because it has a major influence on human activity. This has resulted in

a significant effort by research scientists to reconstruct and understand past changes,

and also project future states of the Earth system. The changes occur on both long

and short time scales. The long-term changes (e.g., sea level rise, changing coastlines,

advance and retreat of polar ice caps) have shaped human society throughout history.

The short-term changes (e.g., hurricanes and storm surges) can have an immediate

influence on human activity (e.g., marine transportation, retreat of coastal popula-

tions to higher land in the event of an impending large storm surge). The changes on

both time scales are particularly important for sea level.

People have been observing the ocean for their own practical needs for thousands

of years. For example, Gill (1982) notes that Aristotle spent the final a few months

of his life observing tide conditions of the strait between the island of Evvoia (or

Euboea) and the Greek mainland. These early observations were generally anecdotal,

unorganized and limited to specific areas and periods of time (Pouliquen, 2006). The

most scientifically-valuable observations of sea level over the last few centuries have

been made by tide gauges. Tide gauges are distributed along the coast over the

globe and they provide measurements of local sea level height at regular intervals

of time. The oldest tide gauge records can be traced back 300 years in Amsterdam

and the earliest records were made by human observers using tide staffs. Thanks

to the installation of self-recording tide gauges over the last century, tide gauges

have now become the major source of sea level information. Normally tide gauges

provide hourly observations for an extended period of time (e.g., decades and longer);

the newest tide gauges can provide observations with a time spacing of minutes or

even seconds. Even though tide gauge observations are point measurements and thus

limited in their spatial distribution, they provide excellent information through time.

1
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All available tide gauge observations have been organized and made accessible to the

general public (e.g., through University of Hawaii Sea Level Center).

The launch of TOPEX/Poseidon satellite in 1992 started a new era of observing

the ocean. Along with its successors including Jason-1, 2 and 3, TOPEX/Poseidon

provides global sea level observations of high accuracy. The satellites orbit around the

earth and remotely sense the ocean using radar altimeters. By measuring the time

delay of the radar pulse, the distance between the altimeter and the ocean surface

can be obtained. Given the position of the satellite, the sea surface height can be

then estimated. Satellite altimetry has revolutionized ocean research and started the

era of ‘big data’ for global ocean measurements. The sea surface height observations

from a satellite altimeter over one cycle (less than 10 days) exceeds one hundred

years of tide gauge observations. These satellite measurements of sea level are not

only vast (with global coverage) but also accurate (within a few centimeters). Satellite

altimetry observations have been validated with various in-situ observations including

tide gauge observations (e.g., Chelton et al., 2001).

Satellite altimetry also has limitations. One of the most important problems is the

sampling constraint (Robinson, 2006). It normally takes approximately ten days for a

satellite to complete a cycle and repeat a track. Hence the sampling interval for a given

position on the Earth’s surface is approximately ten days and slow enough to miss

most high frequency sea level variations. This results in a severe “aliasing problem”

where high frequency signals are misrepresented and can contaminate low frequency

signals. Statistical description of aliasing effect is found in Chapter 2. Figure 1.1

illustrates the effect with an extreme example of aliasing: the hourly Halifax tide

gauge record is sub-sampled at the satellite altimetry sampling rate, leading to the

illusion of a 60-day period in sea level variability.

In order to reduce the aliasing problem, signals of frequency higher than the

Nyquist frequency (the highest frequency that can be captured at a given sampling

rate) should be removed from the observations. There is a large body of literature

on the de-aliasing of satellite altimetry. The state-of-the-art methods are based on

dynamical models that provide corrections for tides and storm surges. Tides are

the dominant high frequency signals in sea level variations. Driven by astronomical

forces, they are highly deterministic and periodic, and tide predictions are mostly of
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Figure 1.1: The effect of aliasing illustrated using a tidally dominated sea level record.
The blue line shows hourly sea level observed by the Halifax tide gauge for six months
in 2010. The red dots are the hourly values sub-sampled with a period of 10 days
(similar to the repeat time of a satellite altimeter). The aliasing of the hourly record
leads to an apparent oscillation (an alias) with a period of about 60 days.

high accuracy (e.g., FES2012 model of Carrère et al. (2012)). Surges also contribute

to major high frequency components in the sea level variations, especially over conti-

nental shelves. Dynamically-based surge predictions from Carrère and Lyard (2003)

are used widely to reduce the high frequency sea level variability and this correction

is usually referred to as the dynamic atmospheric correction. The standard deviation

of the sea level after the tide and surge corrections is typically reduced from meters

to about ten centimeters. However, if these corrections do not account for all the

variations, the aliasing problem is still a concern. This leads to the question: are

there high frequency signals left after all the dynamical tide and surge corrections

have been made and, if so, can we improve the corrections and further reduce the

aliasing effect?

In the present study, the hourly tide gauge records are used to help answer this

question. An analysis of several tide gauge records along the east coast of North

America and Canada indicates that there are significant, spatially coherent high fre-

quency signals remaining after the tidal and dynamic atmospheric corrections have

been made. In order to de-alias these high frequency signals that could be misrepre-

sented by satellite altimetry, a statistical model is designed. Unlike the deterministic

corrections given by ocean models, the statistical model extracts information on the
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aliased signals with the help of the tide gauge records and then provides an alias

correction for the satellite altimetry observations. The statistical method provides

improved de-aliasing results, but as importantly, motivates ocean research into the

causes of these aliased signals.

The statistical model assumes a linear relationship between the tide gauge mea-

surements and the satellite altimeter measurements. In this study, three methods

are developed: a lag domain method, a frequency domain method and one based

on the lasso. The lag and the frequency domain methods (Priestley, 1981) estimate

the parameters on different domains but are similar in principle. The lasso method

(Hastie et al., 2009) treats the problem as a simple regression problem; it is easy to

implement and also effective. With a fitted model, the high frequency signals aliased

by the altimeter can be predicted from the tide gauge observations within a certain

number of lags. The predictions for the aliased high frequency signals are used as

corrections to further reduce the sea level variability.

The structure of the thesis is as follows: Chapter 2 provides the statistical back-

ground of the study. Chapter 3 describes the aliasing problem mathematically and

introduces the three statistically based methods to solve the problem. Two simula-

tion cases are presented to demonstrate the implementation of the methods and to

test their performance. The tide gauge and altimetry data are introduced and their

initial processing is described in Chapter 4. Chapter 5 provides an analysis of the sea

level anomalies and motivates the de-aliasing study. The de-aliasing of the sea level

anomalies is conducted and the results are presented in Chapter 6. Finally, Chapter 7

summarizes the thesis and discusses topics for future research.



Chapter 2

Statistical Background

In this chapter, the statistical background for the study is provided. First of

all, I discuss the spectral representation of a stationary random process and some

spectral estimation methods. Then, I discuss linear transformations of a stationary

random process and related filtering techniques. The aliasing effect is discussed and

two examples are provided.

2.1 Preliminaries

This section summarizes important theoretical aspect of the spectral analysis of

stationary random processes. The theory was initially built on univariate continuous

parameter processes and then generalized to the discrete case and bivariate processes.

2.1.1 Spectral Representation of Stationary Processes

The spectral representation theorem (Priestley, 1981, p. 246) is the basis for

spectral analysis and is described in Theorem 1.

Theorem 1. Let {X(t)}, −∞ < t < ∞, be a zero-mean stochastic continuous sta-

tionary process. Then there exists an orthogonal process, {Z(ω)}, such that, for all

t, X(t) may be written in the form,

X(t) =

∫ ∞

−∞
eitωdZ(ω) (2.1)

the integral being defined in the mean-squared sense. The process {Z(ω)} has the

following properties: (i) E [dZ(ω)] = 0, all ω (ii) E
[|dZ(ω)|2] = dH(ω), all ω,

where H(ω) is the (non-normalized) integrated spectrum of X(t) (iii) for any two

distinct frequencies ω �= ω′,

cov {dZ(ω), dZ(ω′)} = E [dZ(ω) · dZ(ω′)] = 0

5
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Note that the zero-mean processX(t) is stationary to second order if cov {X(t), X(s)}
is a function of (t − s) only. Theorem 1 provides a canonical form for the spectral

decomposition (or transformation) of any stationary processes, and is the basis for

spectral analysis. The theorem carries over to discrete parameter process as with a

limited frequency range from −π to π. The reason for the frequency range restriction

is that any frequency outside this range has an ‘alias’ in the range (the aliasing effect

is discussed in Section 2.4).

If {X(t)} has a purely continuous spectrum, then

dH(ω) = h(ω)dω

h(ω) is known as the spectral density function of {X(t)}, or more simply, the spectrum

of {X(t)}.

2.1.2 Spectrum and Auto-covariance Function

Suppose {X(t)} is a zero-mean continuous parameter stationary process with

spectral density function, h(ω), and auto-covariance function (ACVF) defined by

R(τ) = cov {X(t), X(t+ τ)} = E [X(t)X(t+ τ)] (2.2)

where τ is the lag. Then h(ω) is simply the Fourier transform of R(τ), and R(τ) is

the inverse Fourier transform of h(ω) (Priestley, 1981, p.211):

h(ω) =
1

2π

∫ ∞

−∞
e−iωτR(τ)dτ (2.3)

R(τ) =

∫ ∞

−∞
eiωτh(ω)dω (2.4)

Note that the spectral density function h(ω) exists for all ω if R(τ) is absolutely

integrable, i.e., ∫ ∞

−∞
|R(τ)| dτ < ∞

In practice this limits how slowly the ‘tails’ of R(τ) tend to zero with increasing lag

τ .

It follows that h(ω) and R(τ) form a Fourier transform pair. They provide equiva-

lent information of the process {X(t)}: one in the “frequency domain” and the other
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in the “lag domain”. Equations (2.4) and (2.3) are crucial in moving from one to the

other.

This leads to the normalized spectral density function of {X(t)} and the auto-

correlation function (ACF) of {X(t)}. Let σ2
X denote the variance of {X(t)} and

divide both sides of (2.3) and (2.4) by σ2
X . We obtain

f(ω) =
1

2π

∫ ∞

−∞
e−iωτρ(τ)dτ (2.5)

ρ(τ) =

∫ ∞

−∞
eiωτf(ω)dω (2.6)

Clearly the normalized spectrum and auto-correlation function also form a Fourier

transform pair.

Equations (2.3)-(2.6) give the spectral representations of the auto-covariance and

auto-correlation functions. The spectrum is a decomposition of variance into different

frequency components. Specifically, take lag τ = 0 in (2.4) and we have,

var {Xt} =

∫ ∞

−∞
h(ω)dω

In addition, it is obvious that h(ω) ≥ 0 and h(ω) = h(−ω). The spectrum of a

process describes how the variance (often in physics referred as power or energy)

is distributed over different frequency ranges and, in this sense, is analogous to a

probability distribution function.

2.1.3 Bivariate Processes

Theorem 1 can be carried over to bivariate processes. Equations (2.3)-(2.6) have

natural generalizations correspondingly where the auto-spectrum and auto-covariance

functions are replaced by cross-spectrum and cross-covariance functions.

Cross-covariance Function: Suppose Xt = [X1,t, X2,t]
T is a discrete parameter

zero-mean stationary bivariate process. Bivariate stationarity to second order means

{X1,t} and {X2,t} are jointly stationary:

1. {X1,t} and {X2,t} are each univariate stationary, and

2. cov {X1,t, X2,s} is a function of s− t only.
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Then we may define the auto-covariance function (ACVF) in the usual way as in

(2.2), namely,

R11(s) = E [X1,tX1,t+s]

R22(s) = E [X2,tX2,t+s]
(2.7)

The ACVF describes the correlation within each process. It is natural to generalize

it to a cross-covariance function (CCVF) to describe the correlation between the two

processes. The CCVF between {X1,t} and {X2,t} is defined by

R21(s) = cov {X1,t, X2,t+s} = E [X1,tX2,t+s] (2.8)

The cross-correlation function (CCF) is then given by

ρ21(s) =
R21(s)√

R11(0)R22(0)
(2.9)

Unlike auto-covariance and correlation functions, the cross-covariance and correlation

functions are normally not symmetric.

Cross-spectrum: For the bivariate process Xt = [X1,t, X2,t]
T , suppose {X1,t} and

{X2,t} have purely continuous spectra with spectral density functions h11(ω) and

h22(ω):

h11(ω) =
1

2π

∞∑
s=−∞

R11(s)e
−isω

h22(ω) =
1

2π

∞∑
s=−∞

R22(s)e
−isω

(2.10)

Then the (non-normalized) cross spectral density function (cross-spectrum) exists for

all ω provided that
∑

s |R21(s)| < ∞. It is defined (Priestley, 1981, p.655) as

h21(ω) =
1

2π

∞∑
s=−∞

R21(s)e
−isω (2.11)

Generalizing the spectral representation of Theorem 1 it can be shown

h21(ω)dω = E[dZ∗1(ω)dZ2(ω)] (2.12)

where * denotes complex conjugation. Note that h21(ω) is usually complex-valued and

Hermitian: h21(ω) = h∗21(−ω). Cross-spectrum is a natural generalization of auto-

spectrum and describes how the cross-covariance between two processes is distributed

over different frequencies.
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Co- and Quadrature spectra: Write h21(ω) in terms of its real and imaginary

parts:

h21(ω) = c21(ω)− iq21(ω) (2.13)

c21(ω) is called the co-spectrum and q21(ω) is called the quadrature spectrum.(Priestley,

1981, p.659)

For real valued processes,

c21(ω) =
1

2π

∞∑
s=−∞

1

2
{R21(s) +R21(−s)} cos sω

q21(ω) =
1

2π

∞∑
s=−∞

1

2
{R21(s)−R21(−s)} sin sω

(2.14)

In this case it is obvious that c21(ω) is even function whereas q21(ω) is odd function

and h21(0) = c21(0), q21(0) = 0.

Gain and Phase: Write h21(ω) in polar form:

h21(ω) = α21(ω)e
iφ21(ω) (2.15)

α21(ω) is called the cross-amplitude spectrum or gain spectrum, and φ21(ω) is the

phase spectrum.(Priestley, 1981, p.660)

The gain and phase spectra can lead to useful physical interpretations of the

cross-spectrum and are frequently used in practice. At a given frequency ω, the gain

spectrum α21(ω) measures how {X2,t} is attenuated or amplified relative to {X1,t}
while the phase spectrum measures the phase shift of {X2,t} relative to {X1,t}.

It is also easy to show that

α21(ω) = |h21(ω)| =
√
c221(ω) + q221(ω)

φ21(ω) = tan−1{−q21(ω)/c21(ω)}
(2.16)

and it follows that the gain spectrum is also an even function and the phase spectrum

is an odd function.

Coherence: Complex coherency at frequency ω is defined by

w21(ω) =
h21(ω)√

h11(ω) · h22(ω)
(2.17)



10

|w21(ω)| is known as coherency spectrum. It is easy to show (Priestley, 1981, p.661)

that 0 ≤ |w21(ω)| ≤ 1.

From (2.12), an alternative representation of coherency is

w21(ω) =
cov {dZ1(ω), dZ2(ω)}√

var {dZ1(ω)} · var {dZ2(ω)}
(2.18)

By analogy with the correlation between two variables, w21(ω) is the ‘correlation’

coefficient between the random coefficients of the components in X1,t and X2,t at

frequency ω.

2.2 Covariance and Spectrum Estimation

In this section we discuss briefly the estimation of covariance functions and spectral

density functions from sample time series. Specifically, suppose we have a realization

of a zero-mean stationary process {Xt}, where t = 1, 2, · · · , N , and N is the length

of the sample time series.

2.2.1 Sample Covariance Functions

Estimates of the auto-covariance function of a zero-mean random process {Xt}
are known as the sample auto-covariance function (sample ACVF) and are given by

R̂(k) =
1

N

N−|k|∑
t=1

XtXt+|k| (2.19)

It is easy to show that the bias of the estimator isO(
1

N
) and the variance is alsoO(

1

N
).

So R̂(k) is an asymptotically unbiased estimator for R(k) and it is also consistent.

Sample cross-covariance function between zero-mean random processes {X1,t} and

{X2,t} is similarly defined:

R̂21(k) =
1

N

∑
t

X1,tX2,t+k (2.20)

where the summation goes from t = 1 to (N − k) for k ≥ 0, and from t = (1− k) to

N for k < 0.
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2.2.2 Periodogram

Suppose {Xt} has a purely continuous spectrum and the observed time series

contains N data points. Given that the spectrum is the Fourier transform of the

auto-covariance function (ACVF), a natural estimate for the spectrum is to plug in

the sample ACVF in (2.3):

I∗N(ω) =
1

2π

N−1∑
k=−(N−1))

R̂(k)e−iωk (2.21)

I∗N(ω) is known as the (raw) periodogram. In practice the periodogram can be cal-

culated through a finite Fourier transform (FFT). The FFT of the observations is

defined by

ζX(ω) =
1√
2πN

N∑
t=1

Xte
−iωt, −π ≤ ω ≤ π (2.22)

Hence the periodogram can be written

I∗N(ω) = |ζX(ω)|2 = ζX(ω)ζ
∗
X(ω) (2.23)

where * denotes the complex conjugation.

The periodogram I∗N(ω) is the natural estimate of the spectrum h(ω) and it is

unbiased. However, the periodogram is usually not a satisfactory estimate in that it

is not consistent (Priestley, 1981, p.420-429).

If we substitute in (2.21) and (2.22) the spectral representationXt =

∫ π

−π
eitθdZ(θ)

and then take expectations of I∗N(ω), then we have,

E [I∗N(ω)] =
∫ π

−π
FN(θ − ω)h(θ)dθ (2.24)

where F (θ) is known as a Fejer kernel:

FN(θ) =
1

2π
· sin

2(Nθ/2)

N sin2(θ/2)
(2.25)

Equation (2.24), however, is the form that inspires applying a spectral window (or

smoothing kernel) in the estimation process.

2.2.3 Consistent Estimators and Spectral Window

One reason for the inconsistency of the periodogram is that I∗N(ω) uses R̂(k)

with very large k. When k gets large, the estimates for R̂(k) deteriorates as it
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is using a decreasing portion of the sample time series. In this respect, we can

consider “controlling” the tails of R̂(k) by applying a lag window when estimating

the spectrum. A formal representation (Priestley, 1981, p.432) is as follows:

ĥ(ω) =
1

2π

(N−1)∑
k=−(N−1)

λ(k)R̂(k)e−ikω (2.26)

where {λ(k)} is known as the lag window. λ(k) is designed to control the amount of

information used from high lags. Some common windows are introduced in the next

section. In fact, (2.26) gives a weighted version of the periodogram as shown below.

Inverting (2.21) gives,

R̂(k) =

∫ π

−π
I∗N(θ)e

ikθdθ (2.27)

and substituting into (2.26) gives,

ĥ(ω) =

∫ π

−π
I∗N(θ)W (ω − θ)dθ (2.28)

where W (ω − θ) is the Fourier transform of the lag window, known as the spectral

window:

W (ω − θ) =
1

2π

(N−1)∑
k=−(N−1)

λ(k)e−ikω (2.29)

Equation (2.28) gives a smoothed version of the periodogram with the smoothing ker-

nelW (ω−θ). This smoothing technique is often used in function fitting or estimation.

Moreover, same techniques can be carried over to cross-spectral estimation.

With a fixed spectral window, the smoothed periodogram is an asymptotically un-

biased estimator for the spectrum. Compared to the raw periodogram, the smoothed

periodogram sacrifices bias to achieve consistency.

2.2.4 Choice of Window

The ‘Truncated Periodogram’ Window The simplest window is the ‘truncated

periodogram’ window. It uses 2M + 1 lags to estimate the spectrum with uniform

weights. The lag window is defined by

λ(k) =

{
1, |k| ≤ M,

0, |k| > M
(2.30)
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where M < N − 1 is the truncation point in (2.26). The corresponding spectral

window is given by

W (θ) =
1

2π

M∑
k=−M

cos kθ = DM(θ) (2.31)

The function DM(θ) is known as ‘Dirichilet kernel’.

The Daniell Window: The Daniell window is also known as the ‘rectangular’

window. The ‘truncated periodogram’ window is a rectangular window on the lag

domain, while the Daniel window is a rectangular window on the frequency domain.

The spectral window is defined by

W (θ) =

{
M/2π, |θ| ≤ π/M,

0, otherwise
(2.32)

with the corresponding lag window

λ(k) =
M

2π

∫ π/M

−π/M
eikθdθ =

sin πk/M

πk/M
(2.33)

Note that the lag window does not vanish after a certain lag as the ‘truncated peri-

odogram’ window, so there is no truncation point.

In the frequency domain, the Daniell window gives an average at each frequency

ω within the window −π/M ≤ ω ≤ π/M . M is called ‘window parameter’, or ‘width’

of the window. Smaller M means greater smoothing. The M in the ‘truncated

periodogram’ window plays a similar role.

The Parzen Window: The Parzen lag window, suggested by Parzen (1961), takes

the following form:

λ(k) =

⎧⎪⎪⎨
⎪⎪⎩

1− 6(k/M)2 + 6(|k| /M)3, |k| ≤ M/2,

2(1− |k| /M)3, M/2 ≤ |k| ≤ M

0, |k| > M

(2.34)

with the corresponding spectral window

W (θ) =
3

8πM3

(
sinMθ/4
1
2
sin θ/2

)4

(1− 2

3
sin2 θ/2) (2.35)

The Parzen window always produces non-negative estimates of the spectral density

function (Priestley, 1981, p.444). M is the truncation point. Figure 2.1 is the general

form for the Parzen lag window.
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−M 0 M

Parzen Window

k

λ
(k

)
1

Figure 2.1: The general form for the Parzen lag window. M is the truncation point of
the lag window in the sense that λ(k) = 0 outside the window. Within the window,
the weight λ(k) is 1 at k = 0 and decreases as |k| increases.

2.3 Linear Transformation and Filters

In this section, the linear transformation of a process and the associated transfer

function are introduced. The transfer function is essential in representing the linear

relationship in the frequency domain. Following the discussion of linear transforma-

tions, some filtering techniques are described.

2.3.1 Transfer Function

Suppose a stationary process {Xt} (consider discrete case for simplicity) admits

the spectral representation

Xt =

∫ π

−π
eiωtdZX(ω)

Now assume Yt is a linear transformation of Xt with weights
∑

k |ak| < ∞ thereby

ensures the stationarity of Yt. In signal processing, this gives a simple linear system

where {Xt} is often referred as an input and {Yt} as output:

Yt =
∞∑

k=−∞
akXt−k (2.36)

It is easy to show that the spectral representation of Yt is given by

Yt =

∫ π

−π
Γ(ω)eiωtdZX(ω) (2.37)
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where Γ(ω) is called the transfer function. For the linear transformation defined by

(2.36), the transfer function is the Fourier transform of the linear coefficients:

Γ(ω) =
∞∑

k=−∞
ake

−iωk (2.38)

Equation (2.37) also gives the connection between the two corresponding orthog-

onal processes by the transfer function:

dZY (ω) = Γ(ω)dZX(ω) (2.39)

If we multiply both sides of (2.39) by dZ∗X(ω) and then take expectations, we have

the connection between cross-spectrum of Yt and Xt and auto-spectrum of Xt:

hXY (ω) = Γ(ω)hXX(ω) (2.40)

Suppose hXX(ω) �= 0 for all ω and write (2.40) in form

Γ(ω) = hXY (ω)/hXX(ω) (2.41)

then the transfer function has the form of a frequency dependent regression coefficient.

Furthermore, the transfer function relates the spectrum of Yt to Xt with

hY Y (ω) = |Γ(ω)|2 hXX(ω) (2.42)

This form describes the effect of a linear filter. Usually Yt is referred to as a filtered

version of Xt. By choosing different weights {ak}, or equivalently the transfer func-

tions Γ(ω), we can design different filters as desired. The most frequently used filters

such as band-pass filter, low-pass filter and high-pass filter are introduced below.

2.3.2 Filters

High-pass Filter: If we choose {ak} such that

|Γ(ω)|2 =
{

1, |ω| > ω0,

0, |ω| ≤ ω0

(2.43)

we can get a high-pass filter. High-pass filter passes frequency components above ω0

and removes frequency components below ω0. ω0 is referred as the cut-off frequency.
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Low-pass Filter: Similarly a low pass filter can be obtained by choosing {ak} such

that

|Γ(ω)|2 =
{

1, |ω| ≤ ω0,

0, |ω| > ω0

(2.44)

By way of contrast to the high-pass filter, the low pass filter passes frequency com-

ponents below ω0 and removes frequency components above the cut-off frequency

ω0.

Band-pass Filter: If we choose {ak} such that

|Γ(ω)|2 =
{

1, ω1 ≤ |ω| ≤ ω2,

0, otherwise
(2.45)

then we have a band-pass filter. In between high-pass filter and low-pass filter, a band-

pass filter passes frequency components between ω1 and ω2 and suppresses frequency

components outside this frequency band.

2.3.3 Orthogonality of Frequency Components

The spectral representation of a stationary process, {Xt}, transforms the process

into orthogonal frequency components, {dZX(ω)}. Suppose {Xt} is decomposed into

low and high frequency components with a high-pass or low-pass filter with cut-off

frequency ω0,

Xt = XL
t +XH

t

The spectral representations of the two components are,

XL
t =

∫
|ω|≤ω0

eitωdZ(ω)

and

XH
t =

∫
|ω|>ω0

eitωdZ(ω)

Since there is no overlapping frequency, the two parts are statistically uncorrelated.

Suppose Yt is a linear transformation of Xt and a same high-pass or low-pass filter

gives the low and high frequency components:

Yt = Y L
t + Y H

t
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Then the spectral representation of the two components are

Y L
t =

∫
|ω|≤ω0

Γ(ω)eitωdZ(ω)

and

Y H
t =

∫
|ω|>ω0

Γ(ω)eitωdZ(ω)

Γ(ω) is the transfer function and is given by the Fourier transform of the linear

coefficients as in (2.38). Since the same cut-off frequency is used in filtering of Xt

and Yt, there is no overlapping frequency between XL
t and Y H

t , nor between Y L
t and

XH
t . As a result, both XL

t and Y L
t are uncorrelated with XH

t and Y H
t .

A consequence of the orthogonality of the frequency components is the separation

of the cross-covariance function into two components. Given XH is independent of

Y L, then the cross-covariance function between them, E
[
XH

t Y L
t+k

]
= 0. Hence,

E
[
XH

t Yt+k

]
= E

[
XH

t Y L
t+k +XH

t Y H
t+k

]
= E

[
XH

t Y H
t+k

]
(2.46)

This result indicates that the cross-covariance between XH and Y only depends on

the high frequency component, namely the cross-covariance between XH and Y H .

This result is crucial in our de-aliasing method discussed later.

2.4 The Aliasing Effect

In this section, the aliasing effect is described in detail. The aliasing theorem is

the fundamental theorem for the aliasing effect.

2.4.1 The Aliasing Theorem

Sampling from a continuous process {X(t)} at discrete time intervals Δ (or under-

sampling from a discrete process {Xt}) will lead to some loss of information on its

spectral properties. This is known as the aliasing effect. A mathematical statement

of the aliasing effect (Priestley, 1981, p. 506) is as follows:

Theorem 2 (Aliasing theorem). Suppose {X(t)} admits a spectral representation of

the form

X(t) =

∫ ∞

−∞
eitωdZX(ω) (2.47)
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Define the sampled process Yt ≡ X(t·Δ) for t = 0,±1, . . .. The spectral representation

of Yt is then given by

Yt =

∫ π/Δ

−π/Δ
eitω·ΔdZY (ω) (2.48)

where

dZY (ω) =
∞∑

k=−∞
dZX

(
ω +

2kπ

Δ

)
(2.49)

Equation (2.48) indicates that the spectral representation of Yt only extends over

the frequency range, (−π/Δ, π/Δ). π/Δ is called the Nyquist frequency of the sam-

pled time series and the sample contains no information about variation at frequencies

higher than Nyquist frequency. The components inX(t) with frequencies (ω+2kπ/Δ)

will all appear to have frequency ω. These frequencies are said to be aliases of ω.

Note that the Nyquist period is 2Δ and signals with periods smaller than the Nyquist

period are aliased.

If X(t) has a (non-normalized) spectral density function hX(ω), then the spectral

density function of Yt is defined by

hY (ω) =
∞∑

k=−∞
hX

(
ω +

2kπ

Δ

)
, |ω| ≤ π

Δ
(2.50)

Equation (2.50) is a fundamental result of Theorem 2. From the equation we see

that the value of hY (·) is a superposition of the values of hX(·) at all alias frequencies
{ω, ω ± 2π/Δ, ω ± 4π/Δ, ω ± 6π/Δ, · · · }.

From a graphical view, the construction of hY (ω) can be seen as first folding back

hX(ω) over (−∞,∞) at lines on {ω, ω ± 2π/Δ, ω ± 4π/Δ, ω ± 6π/Δ, · · · } and then

superimposing all the folded portions additively. The Nyquist frequency, π/Δ is also

called folding frequency for this reason.

2.4.2 Transformation of Frequency Range

We could usually treat the sampled process {Yt} as observations from a discrete

parameter process with spectral density function h∗Y (ω) defined on (−π, π), and we

can easily convert it back to hY (ω) with the original frequency range (−π/Δ, π/Δ)

(Priestley, 1981, p. 508).

hY (ω) = Δ · h∗Y (ω ·Δ), −π/Δ ≤ ω ≤ π/Δ (2.51)
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Most commonly used frequency ranges include (−π, π) and (−1
2
, 1
2
). In practice,

the physical period is defined as f = 2π/ω on the range (−π, π), while the frequency

range (−1
2
, 1
2
) makes it easy for conversion from frequency to period simply by inver-

sion: f = 1/ω.

2.4.3 Aliasing Theorem for Bivariate Processes

Suppose a bivariate processXt = [X1,t, X2,t]
T is under-sampled asYt = [Y1,t, Y2,t]

T

where {Y1,t} and {Y2,t} are sub-sampled at the same rate, say at a sampling interval

of Δ. The aliasing theorem for bivariate processes is a straightforward extension of

the univariate case. The spectra matrix of Yt is a folded version of the spectra matrix

of Xt. This is obvious for the auto-spectra of {Y1,t} and {Y2,t} so we only provide a

simple proof for the folding of the cross-spectrum below.

First of all, from Theorem 2 we have,

dZY1(ω) =
∞∑

k=−∞
dZX1

(
ω +

2kπ

Δ

)

dZY2(ω) =
∞∑

k=−∞
dZX2

(
ω +

2kπ

Δ

) (2.52)

Substituting (2.52) into (2.12) gives

dHY2Y1(ω) = E

[ ∞∑
k=−∞

dZ∗X1

(
ω +

2kπ

Δ

)
·

∞∑
k=−∞

dZX2

(
ω +

2kπ

Δ

)]
(2.53)

Theorem 1 gives that for any ω1 �= ω2,−π < ω1, ω2 < π,

E
[
dZ∗X1

(ω1) · dZX2(ω2)
]
= 0 (2.54)

It follows from (2.54) that for any −π/Δ < ω < π/Δ and any k1 �= k2,

E

[
dZ∗X1

(
ω +

2k1π

Δ

)
· dZX2

(
ω +

2k2π

Δ

)]
= 0 (2.55)
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Hence all cross terms in (2.53) are zero and the right side reduces to:

dHY2Y1(ω) = E

[ ∞∑
k1=−∞

dZ∗X1

(
ω +

2k1π

Δ

)
·

∞∑
k2=−∞

dZX2

(
ω +

2k2π

Δ

)]

= E

[ ∞∑
k1=−∞

∑
k2=k1

dZ∗X1

(
ω +

2k1π

Δ

)
· dZX2

(
ω +

2k2π

Δ

)]

= E

[ ∞∑
k=−∞

dZ∗X1

(
ω +

2kπ

Δ

)
· dZX2

(
ω +

2kπ

Δ

)]

=
∞∑

k=−∞
E

[
dZ∗X1

(
ω +

2kπ

Δ

)
· dZX2

(
ω +

2kπ

Δ

)]

=
∞∑

k=−∞
dHX2X1(ω +

2kπ

Δ
)

The cross-spectrum of the aliased process Yt is then given by

hY2Y1(ω) =
∞∑

k=−∞
hX2X1

(
ω +

2kπ

Δ

)
, − π

Δ
≤ ω ≤ π

Δ
(2.56)

Note (2.56) has a similar form to (2.50) for the univariate case.

Writing in terms of co- and quadrature spectra gives

hY2Y1(ω) =
∞∑

k=−∞
cX2X1

(
ω +

2kπ

Δ

)
− i

∞∑
k=−∞

qX2X1

(
ω +

2kπ

Δ

)
(2.57)

The co-spectrum and quadrature-spectrum are then given by

cY2Y1(ω) =
∞∑

k=−∞
cX2X1

(
ω +

2kπ

Δ

)

qY2Y1(ω) =
∞∑

k=−∞
qX2X1

(
ω +

2kπ

Δ

) (2.58)

The real and imaginary part of the cross-spectrum both conform to the folding the-

orem. This provides a graphic way to show the folding of cross-spectrum, which is

often complex valued.

2.5 Examples of the Aliasing Effect

Two simple examples are given in this section to illustrate the aliasing effect. One

is an univariate AR(1) process and another is a bivariate process known as linear

regression with decay.
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2.5.1 Discrete Parameter AR(1) Process

Consider a discrete parameter AR(1) process {Xt}:

Xt = aXt−1 + εt (2.59)

where {εt} is a purely random process (white noise) with εt ∼ N (0, σ2
ε ). It is easy to

show that the normalized spectrum of {Xt} is given by

fX(ω) =
1− a2

2π(1− 2a cosω + a2)
, −π ≤ ω ≤ π (2.60)

Suppose {Yt} is a sub-sample from {Xt} with a sampling interval Δ = 4. Hence

π/4 is the Nyquist frequency of {Yt}. From (2.50) the normalized spectrum of {Yt}
is only defined on −π/4 ≤ ω ≤ π/4 and is given by

fY (ω) =
∞∑

k=−∞
fX

(
ω +

2kπ

Δ

)

= fX(ω) + fX(ω − π

2
) + fX(ω +

π

2
) + fX(ω − π)

=
2(1− a8)

π(1− 2a4 cos 4ω + a8)
, −π/4 ≤ ω ≤ π/4

(2.61)

Transforming the frequency scale using (2.51) gives the spectrum on the −π ≤ ω ≤ π

scale. f ∗Y (ω) takes exactly the same form as fX(ω) except that the parameter, a, is

replaced by its fourth power and frequency, ω, is scaled by 1/4:

f ∗Y (ω) = Δ · fY (ω ·Δ)

=
(1− a8)

2π(1− 2a4 cosω + a8)
, −π ≤ ω ≤ π

(2.62)

To show the folding of the spectrum, we take a = 0.9 and then plot and compare

the normalized spectra of the two processes in Figure 2.5.1. The AR(1) process {Xt}
does not contain significant high frequency signals, so the aliasing effect is negligible.
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Figure 2.2: Power spectra of {Xt} and {Yt} in the discrete parameter AR(1) process
example. {Xt} is an AR(1) process with a = 0.9 and {Yt} is sub-sampled from {Xt}
at sampling interval Δ = 4. Nyquist frequency of {Yt} is π/4. The plot shows that
the spectrum of {Yt} is a superposition of the folded spectrum of {Xt}. However,
since the AR(1) process {Xt} does not contain significant high frequency signals, the
aliasing effect is negligible.

2.5.2 Linear Regression with Decay

Assume Xt = [X1,t, X2,t]
T is a bivariate stationary process. Let {X2,t} be a dis-

crete parameter AR(1) process. Suppose X1,t and X2,t satisfy a linear regression

relationship with a delay of d time units

X1,t = aX2,t−d + ε1,t

X2,t = bX2,t−1 + ε2,t
(2.63)

where ε1,t and ε2,t are two independent white noise processes with ε1,t ∼ N (0, σ2
1) and

ε2,t ∼ N (0, σ2
2).

It is straightforward to show that R12(k) = aR22(k − d). Then with (2.61) from

the last example, the cross-spectrum of X1,t and X2,t is given by

hX1X2(ω) =
a

2π

∞∑
k=−∞

R22(k − d)e−iωk

= ae−iωdh22(ω)

=
aσ2

2

2π
· e−iωd

1− 2b cosω + b2

(2.64)
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Now suppose Yt = [Y1,t, Y2,t]
T is a sub-sample of Xt at sampling interval Δ. From

(2.56), the cross-spectrum between Y1,t and Y2,t is given by

hY1Y2(ω) =
∞∑

k=−∞
hX1X2

(
ω +

2kπ

Δ

)

=
aσ2

2

2π

∞∑
k=−∞

exp (−i
(
ω + 2kπ

Δ

)
d)

1− 2b cos
(
ω + 2kπ

Δ

)
+ b2

=
aσ2

2

2π

∞∑
k=−∞

cos (
(
ω + 2kπ

Δ

)
d)− i sin (

(
ω + 2kπ

Δ

)
d)

1− 2b cos
(
ω + 2kπ

Δ

)
+ b2

(2.65)

The co-spectrum and quadrature-spectrum are then given by

cY1Y2(ω) =
aσ2

2

2π

∞∑
k=−∞

cos (
(
ω + 2kπ

Δ

)
d)

1− 2b cos
(
ω + 2kπ

Δ

)
+ b2

qY1Y2(ω) =
aσ2

2

2π

∞∑
k=−∞

sin (
(
ω + 2kπ

Δ

)
d)

1− 2b cos
(
ω + 2kπ

Δ

)
+ b2

(2.66)

Assume a = 0.9, b = 0.8, d = 2 and Δ = 3 to generate an Xt and its sub-sampled

process Yt. To illustrate the folding of the cross-spectrum, the co- and quadrature-

spectra of Xt and their aliased forms of Yt are plotted in Figure 2.3.

2.6 Principal Component Analysis

The main objective of Principal Component Analysis (PCA) is to explain the

variance-covariance structure with a set of linear combinations of the original vari-

ables, or principal components (Johnson and Wichern, 2007, p. 430). The principal

components usually provide better interpretation and can be selected to reduce di-

mensions. This section gives a basic introduction of principal component analysis.

The principal components are defined first and then the decomposition of the covari-

ance matrix are explained. At last, the frequency dependent principal component

analysis is introduced for this study.

2.6.1 Principal Components

Suppose the random vector X = [X1, X2, · · · , Xp]
T is made up of a set of p

random variables. Denote the covariance matrix by Σ and assume its eigenvalues
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Figure 2.3: The co- and quadrature spectra of Xt and its aliased form Yt in the linear
regression with decay example. The co- (quadrature) spectra of Xt and Yt are shown
in the upper (lower) panel. Similar to Figure 2.5.1 for the univariate AR(1) example,
the two plots show the superimposition of the spectra. Note that the co-spectra are
even functions and the quadrature spectra are odd functions.

are λ1 ≥ λ2 ≥ · · ·λp ≥ 0. Suppose Y = [Y1, Y2, · · · , Yp]
T is a new set of random

variables, where each Yk (k = 1, 2, · · · , p) is a linear combination of the original

random variables:

Yk = aT
kX = ak1X1 + ak2X2 + · · ·+ akpXp k = 1, 2, · · · , p

This defines a linear transformation from X to Y. It is easy to show that the variance

and covariance structure of Y can be represented as follows,

var {Yk} = aT
kΣak, k = 1, 2, · · · , p

cov {Yk, Yj} = aT
kΣaj, k, j = 1, 2, · · · , p

(2.67)

Based on the results above, the principal components are defined as the set of uncor-

related linear combinations with the following properties:
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1. The first principal component Y1 = aT
1X maximizes the variance of Y1 subject

to aT
1 a1 = 1, or equivalently, maximizes

aT
1Σa1

aT
1 a1

;

2. For k = 2, 3, · · · , p, the kth principal component Yk = aT
kX is uncorrelated with

Y1, Y2, · · · , Yk−1 and maximizes the variance of Yk subject to aT
k ak = 1. Equiva-

lently, the kth principal component maximizes
aT
kΣak

aT
k ak

subject to cov {Yk, Yj} =

0, for j < k.

In this way, the principal component analysis decomposes the variance of the original

variables. This is explained in the following section.

2.6.2 Variance Decomposition

Suppose the eigen-decomposition of the covariance matrix Σ gives the eigenvalue-

eigenvector pairs (λ1, e1), (λ2, e2), · · · , (λp, ep), where λ1 ≥ λ2 ≥ · · ·λp ≥ 0. It can

be shown that the kth principal component is given by Yk = eTkX and

var {Yk} = λk, k = 1, 2, · · · , p
cov {Yk, Yj} = 0, k �= j

(2.68)

If some λk are equal, then the choice of Yk is not unique (Johnson and Wichern, 2007).

It is also easy to show that the total variance of the principal components is equal

to the total variance of the original variables:

p∑
k=1

var {Xk} =

p∑
k=1

var {Yk} = tr(Σ) = λ1 + λ2 + · · ·+ λp (2.69)

The principal components provide a summary of the variance structure of the

original variables. This is very useful in practice because principal components not

only provide a direct interpretation of the sample variability of an observed data set

but are also linked with the original variables. Principal component analysis is widely

used in many areas to identify patterns of the data. In addition, if the original data

are standardized before analysis, the principal components provides a summary of

the correlation structure instead.
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2.6.3 Frequency Dependent Principal Component Analysis

In order to identify patterns within several time series, principal component analy-

sis (PCA) can be extended to the frequency domain. Various extensions exist includ-

ing complex principal component analysis (CPCA, see Horel (1984)) and frequency

dependent principal component analysis. In this study, frequency dependent principal

component analysis is used.

Suppose we have N time series, each containing T observations: xk(t), k =

1, 2, · · · , N and t = 1, · · · , T . Assume that the auto-spectrum of xk(t) is given by

hkk(ω) and the cross-spectrum between xk(t) and xj(t) is given by hkj(ω). (The spec-

tra can be normalized in order to emphasize the coherence-phase relationships among

the time series.) At each frequency ω, this leads to an N × N matrix, denoted by

H̃(ω). Note that H̃(ω) is Hermitian since hkj(ω) is the conjugate of hjk(ω).

Now if we apply PCA to H̃(ω), then we’ll have a set of eigenvalue-eigenvector pairs

(λk(ω), ek(ω)) (k = 1, 2, · · · , N) which are also defined at each frequency ω. Even

though the elements of the spectral matrix are normally complex-valued, the PCA

will give a set of real-valued eigenvalues and complex-valued eigenvectors (Petersen

and Pedersen, 2012). At each frequency a PCA process is applied, so the variance

decomposition equations (2.68)-(2.69) hold for every frequency with extension to an

Hermitian matrix. As a result, the total variance accounted by the kth principal

component is
∑k

j=1

∫ π

−π λj(ω)dω/
∑N

j=1

∫ π

−π λj(ω)dω. Note that in a discretized form,

it is equivalent to
∑k

j=1 λj/
∑N

j=1 λj where λj is the average of the kth principal

component over the frequency range.

Compared to PCA in the time domain, except from the similar variance de-

composition result above, the frequency dependent PCA can actually provide more

frequency-specific information. For example, the first eigenvalue λ1(ω) as a func-

tion of ω, is similar to a spectrum where the peaks indicate specific frequency ranges

where the variance can be represented largely by one or a few principal component(s).

This is useful in identifying certain frequencies where a simplified pattern of multiple

time series lies. Moreover, the eigenvector usually preserves dynamic information of

this pattern. This is illustrated in the analysis study in Chapter 5, where the eigen-

value and eigenvector of the first principal component is used to interpret important

frequency signals.



Chapter 3

De-aliasing Methods

This chapter starts with an overview of the de-aliasing problem from a mathemat-

ical perspective and outlines of three possible de-aliasing methods. This is followed

by a more detailed description of the de-aliasing methods and their evaluation using

simulated data from idealized test cases.

3.1 Overview

Suppose we have two related zero-mean stationary processes. The sample time

series associated with one of the processes, X say, contains N1 data points on the grid

G1 : {t = 1, 2, · · · , N1}. The sample series from the other process, Y say, is under-

sampled at an interval Δ and thus only contains N2 valid data points defined on a

coarser grid G2 : {t = Δ, 2Δ, · · · , N2Δ}. The two grids are illustrated in Figure 3.1.

Let X|G1 denote the sample time series on the fine grid: {Xt, t ∈ G1} and let Y |G2

denote the sample time series of the related process on the coarse grid, {Yt, t ∈ G2}.
Let Y |G1 denote the second process defined on the fine grid: {Yt, t ∈ G1}. In general

observations of Y |G1 will not be available. The Nyquist frequency of Y |G2 is π/Δ

and we may anticipate that Y |G2 will suffer from aliasing (see Section 2.4).

Δ�Δ�Δ� Δ�

Figure 3.1: Spacing of the sample time series of the two related processes on the time
axis. X is defined on G1, the fine grid marked with thin tick marks. Y , corresponding
to the sub-sampled process, is defined on G2 with a grid spacing of Δ as indicated by
the thick tick marks. In this case Δ = 10.
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For each process, assume a frequency decomposition that separates it into low

(superscript L) and high frequency (superscript H) components:

X = XL +XH

Y = Y L + Y H
(3.1)

where both XL and Y L are uncorrelated with XH and Y H (see Section 2.3.3). In

practice, the frequency decomposition is accomplished by a high-pass filter with cut-

off frequency that is set by the Nyquist frequency of G2, π/Δ. In order to reduce the

aliasing affecting Y |G2, we consider removing the high frequency component Y H |G2

that is potentially aliased. Since Y H |G2 is a sub-sample of Y H |G1, the de-aliasing

problem turns into the prediction of Y H |G1 given observations of X|G1 and Y |G2.

It is normally impossible to extract the aliased high frequency component from

Y |G2 alone. However, in some situations it may be possible to use information from

X|G1 which is sampled at a higher rate and can therefore provide high frequency

information directly. Since the processes are assumed related, the high frequency

information of X can be used to estimate the aliased high frequency information in

Y . For simplicity, we assume a linear relationship between the two processes and

write

Yt =

p∑
u=−p

auXt−u + ε̃t (3.2)

where {ε̃t} is a white noise process uncorrelated with the X for all time lags. We

can rewrite the model by decomposing X into high and low frequency components as

follows:

Yt =

p∑
u=−p

auX
H
t−u + εt (3.3)

where εt =
p∑

u=−p
auX

L
t−u+ ε̃t. Thus {εt} now includes both the low frequency informa-

tion of X and the white noise term. It follows that {εt} is uncorrelated with XH for

all time lags. Model (3.3) is a general linear model with autocorrelated errors. The

parameters in the model are denoted by θ = [a, p], where a = [a−p, · · · , ap] and p is

the order of the model (system).

Model (3.3) can be considered as a regression model, where XH
t−u, u = −p,−p+

1, · · · , p are the predictors and Yt is the response. This means that the lasso method

(Hastie et al., 2009, p. 68) can be used to estimate the linear coefficients. The main
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attraction of the lasso method is that it contains a penalty term (the L1 norm of the

regression coefficients) that is used to simplify the model. It also has a well developed

cross-validation procedure that can be used to estimate p.

Two other de-aliasing methods can be developed based on model fitting in the

lag and frequency domains. The lag domain method leads to a system of Yule-

Walker equations which can be solved to estimate the linear coefficients. The lag

domain method can also be transformed to the frequency domain, where the linear

coefficients are estimated via a frequency-dependent transfer function. Both methods

are conceptually similar but there are also differences as will be explained below.

Both the lag and frequency domain methods involve calculation of the sample

auto-covariance function of XH , and the sample cross-covariance function between

XH and Y H . The high-pass filter already gives XH |G1 from X|G1, so the sample

auto-covariance function comes directly from XH |G1. The sample cross-covariance

between XH and Y H is equivalent to the sample cross-covariance between XH and

Y because XH and Y L are uncorrelated. The latter, fortunately, can be readily

estimated from the data available for arbitrary lags: even though data for the two

time series, XH |G1 and Y |G2, are not on the same grid, sample cross-covariance at

arbitrary lag k can still be computed by shifting XH |G1 at each lag k, and then using

pairs of common data points from the two time series.

All three methods (lasso, lag domain and spectral domain) lead to estimates of

the parameter vector θ. Prediction of Y H |G1 follows from the fitted model,

Ŷ H
t =

p∑
u=−p

âuX
H
t−u, t ∈ G1 (3.4)

where âu denotes the estimate of au. The aliased high frequency component in Y |G2

can be estimated by sub-sampling the predictions Ŷ H |G1 to give Ŷ H |G2. Let Y c

denote the de-aliased time series of Y |G2, then we have

Y c
t = Yt − Ŷ H

t , t ∈ G2 (3.5)

3.2 De-aliasing Methods

The three de-aliasing methods are now described in more details. We start with

the lag domain and frequency domain methods. Although conceptually related, the
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implementation of these two methods leads to differences. The lasso method and its

implementation are then described.

3.2.1 Lag Domain Method

The estimation of the sample auto- and cross-covariance functions is described

first. (This is the basis for both the lag and frequency domain methods.) The Yule-

Walker equations are then constructed followed by more information on parameter

estimation.

Sample Auto- and Cross-covariance Functions: The auto-covariance func-

tion (ACVF) and cross-covariance function (CCVF) are fundamental in both the lag

domain and frequency domain methods. Natural estimates of the ACVF and CCVF

are the sample ACVF and the sample CCVF. For stationary zero-mean processes,

the sample ACVF and CCVF at lag k are defined by (2.19) and (2.20) respectively.

In the present situation, the sample time series XH |G1 contains N1 points and

the sample ACVF of XH is given by

R̂XHXH (k) =
1

N1

N1−|k|∑
t=1

XH
t ·XH

t+|k|, k = 0,±1, · · · ,±(N1 − 1) (3.6)

The sample CCVF between XH and Y H cannot be estimated is a similar way for

two reasons. First, observations of Y H are not readily available; we only have sample

time series XH |G1 and Y |G2. Second, the two sample time series are not on the same

grid.

To solve the first problem, Section 2.3.3 shows that the CCVF between XH and Y

is equivalent to the CCVF between XH and Y H because the low and high frequency

components are uncorrelated. As a result, we can estimate the CCVF between XH

and Y H by the sample CCVF between XH and Y .

To solve the second problem, we can first shift XH |G1 by arbitrary lag k and then

find the pairwise correlation between the shifted sample time series (as illustrated

in Figure 3.2). This means that the CCVF can estimated for lags, k = 0,±1, · · · .
Mathematically the sample CCVF is given by

R̂Y XH (k) =
1

N2

∑
t

XH
t·Δ−k · Yt·Δ, k = 0,±1, · · · ,±(N2 − 1) (3.7)
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where the summation goes from t = 1 to (N2 − k), k ≥ 0, and from t = (1 − k) to

N2, k < 0.

Δ�Δ�Δ� Δ�

Figure 3.2: Calculation of the sample CCVF at lag k. First we shift the time series
X|G2 by k where X is originally defined on G1 (thin tick marks). Then we find on
the grid G1 (thick tick marks) the times when both time series give valid data. We
then use these pairwise data points to estimate the sample CCVF at lag k.

Yule-Walker Equations: Multiplying both sides of (3.3) by XH
t−k and taking

expectations gives

E
[
Y H
t XH

t−k
]
= E

[
YtX

H
t−k

]
=

p∑
u=−p

auE
[
XH

t−uX
H
t−k

]
This leads to the following set of equations defined in terms of ACVF and CCVF:

RY HXH (k) =

p∑
u=−p

auRXHXH (k − u), k = −q,−q + 1, · · · , q − 1, q (3.8)

where q is flexible and normally q ≥ p. Note the CCVF is a convolution of the

predictor ACVF with the sequence of au coefficients. This leads to a system given by

r = Ra (3.9)

where r is a (2q+1)×1 vector, R is a (2q+1)×(2p+1) matrix, and a is a (2p+1)×1

vector:

R =

⎡
⎢⎢⎢⎢⎢⎣
RXHXH (p− q) RXHXH (p− q − 1) · · · RXHXH (−p− q)

RXHXH (p− q + 1) RXHXH (p− q) · · · RXHXH (−p− q + 1)
...

...
. . .

...

RXHXH (p+ q) RXHXH (p+ q − 1) · · · RXHXH (−p+ q)

⎤
⎥⎥⎥⎥⎥⎦

a = [a−p, a−p+1, · · · , ap]T

r = [RY HXH (−q), RY HXH (−q + 1), · · · , RY HXH (q)]T
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The form of (3.9) is similar to the traditional Yule-Walker equations (e.g., Shumway

and Stoffer, 2010, p.121) but it involves two processes. The left side of the equation

is replaced by the cross-covariances.

It is easy to see that RY HXH (k) for k from −q to q, and RXHXH (k) for k from

−p− q to p+ q, are used in the estimation process. This means that up to ±(p+ q)

lags are involved in the estimation process.

Parameter Estimation: Substituting the sample ACVF and CCVF into (3.9)

leads to estimates for R and r, denoted by R̂ and r̂. Then the parameter estimation

for model (3.3) is given by the solution of the above Yule-Walker like equations.

Note θ = [a; p] includes two parts, the linear coefficients a, and the order, p. First

consider the estimation of a for a known p. The Yule-Waler equations usually take

q = p and the coefficient estimates are then given by the unique solution (assuming

R̂ nonsingular)

a = R̂−1r̂

Improved estimates can be obtained by including more terms of R̂Y XH (k) and R̂XHXH (k).

This leads to the ‘modified Yule-Walker equations’ with q > p. This forms an over-

determined system whose solution is usually given by regression. q is selected to

be reasonably large to include enough information. Friedlander and Porat (1984)

provides an overview of parameter estimation based on the modified Yule-Walker

equations.

Since high lags often contain less information, the weighted least square solution

(Friedlander and Porat, 1984) was adopted in this study. It is generally given by

a = (R̂TWR̂)−1R̂TWr̂ (3.10)

where W is known as the weight matrix. For simplicity, the scalar weighting is often

used, where W is a diagonal matrix. In this case, the covariance between estimators

at different lags (Priestley, 1981, p. 326) is ignored. This gives a weight matrix with

a set of weights {wi, i = 1, 2, · · · , 2q+1} on the diagonal and zeros off-diagonal. The

weights are usually positive. The weight sequence is often chosen to be non-increasing

with |k|, based on the belief that higher lags contain less information and are more

affected by noise. This is essentially similar to applying a lag window.
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In general there is not a perfect method for determining the order of the modified

Yule-Walker equations. The choice of p leads to a ‘bias-variance’ trade-off problem:

large p increases the degrees of freedom and can cause an inflation of variance; small

p can result in poor model fit and bias.

One method to estimate p is to monitor the variance of the residual series (de-

aliased series). A decent model would give accurate predictions of the high frequency

component and thus, after removing these aliased signals, the residual series would

only include the low frequency component and the error term (white noise). The

variance of the residual series is the sum of the variance of the low frequency compo-

nent and the variance of the error term. Any model that doesn’t remove the aliased

signals adds additional variance to the residual variance, or equivalently, the optimal

model is supposed to give minimum residual variance. As a result, it is natural to use

cross-validation to select the optimal model that minimizes the residual variance.

3.2.2 Frequency Domain Method

Theorem 1 (Page 5) gives the spectral representation of a zero-mean stationary

process {Xt}. This theorem shows that {dX(ω)} provides equivalent information on

the process. The Fourier transform makes it easy to transform a time series from

the time domain to the frequency domain, and the inverse Fourier transform to move

from the frequency to time domain. The basis of the frequency domain approach

to de-aliasing is to first transform (3.3) to the frequency domain where the transfer

function is estimated. Inverse Fourier transforming the transfer function leads to

estimates of the linear coefficients in the time domain.

Estimating the Transfer Function: The auto-spectrum of XH can be esti-

mated from the sample ACVF of XH , and the cross-spectrum between XH and Y H

can be estimated from the sample CCVF. With the sample ACVF and CCVF as

defined above, the auto-spectrum and cross-spectrum are given by

ĥXHXH (ω) =
1

2π

M∑
k=−M

λ(k)R̂XHXH (k)e−iωk

ĥY HXH (ω) =
1

2π

M∑
k=−M

λ(k)R̂Y XH (k)e−iωk
(3.11)
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where {λ(k)} is the lag window and M is the width of the lag window (see Section

2.2 for definitions).

The lag window has a similar effect as the weight matrix W in the lag domain

method. W and q in the lag domain method together control the number of lags

and their corresponding contributions in estimating the ACVF and CCVF. Similarly,

the window λ(k) and window width M work together for the same purpose. More

specifically, the frequency domain method is conceptually the same as the lag domain

method when p = q where M is equivalent to p+ q in that M controls the number of

lags involved in the estimation process, and λ(k) is equivalent to the weights in the

matrix W in that λ(k) controls the weight or contribution at each lag. The difference

is that the two methods are implemented in different domains. In practice, we will

show later they give similar results using simulation cases.

Having estimated the auto- and cross-spectra, the estimated transfer function

Γ̂(ω) is then given by

Γ̂(ω) =
ĥY HXH (ω)

ĥXHXH (ω)
(3.12)

Parameter Estimation: Equation (2.37) defines the transfer function from XH

to Y H . For the linear transformation assumed here, the transfer function can also

be derived directly from the linear coefficients using (2.38). This means that we can

inverse Fourier transform the estimated transfer function Γ̂(ω) to estimate the linear

coefficients for model (3.3):

âu = 2π

∫ π

−π
Γ̂(ω)eiωudω (3.13)

The problem left is the estimation of the model order, p. The same method as

suggested for the lag domain method can be used, considering that the two methods

are only different in estimating linear coefficients a and both methods arrive at the

same point. That is, with a fixed model order, both methods give residual series and

then cross-validation can be used to select the optimum model order with minimum

residual variance.

However, in practice, the implementation of the cross-validation process is on M

instead of p since p is inherent in M . More specifically, with a fixed M , the transfer

function can be estimated and then the linear coefficients of any order can be derived.
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That is to say, if we consider the true linear coefficients au with |u| > |p| as zero,

M determines the estimations of all the linear coefficients including those outside |p|.
Nevertheless, a satisfying model would give trivial estimations for au with |u| > |p|.
In this way, the choice of p is inherent in the choice of M .

In the frequency domain method,M controls the number of lags taken into account

to fit the model. As the window width (Page 12 in Section 2.2.4), M also controls the

‘smoothness’ of the estimated spectra and the corresponding transfer function. It is

obvious that if M is inappropriately small, the delay information would be lost due

to the weights of the window. Whereas if M is overwhelmingly large, variance from

high lags will accumulate in the model and influence the model adaptability. Similar

to the choice of p in the lag domain method, the cross-validation process could be

applied to select an optimum M .

3.2.3 Lasso Method

As noted above, model (3.3) can be considered as a regression problem. Y is the

response and data for Y contains N2 points: {Yt, t = Δ, 2Δ, · · · , N2Δ}. There are

(2p + 1) predictors, {XH
t−u, u = −p,−p + 1, · · · , p} and data for each predictor also

contains N2 points: {XH
t−u, t = Δ, 2Δ, · · · , N2Δ}. Let Y denote the response data

vector and X denote the design matrix, then we have:

Y = Xa+ ε (3.14)

Parameter estimation also include the linear coefficients and the model order p.

The lasso method (Hastie et al., 2009, p. 68) is used in this study to estimate the

parameters, by solving the following minimization problem:

â = argmin
a

{
1

2

∑
t∈G2

(Yt −
p∑

u=−p
auX

H
t−u)

2 + λ

p∑
u=−p

|au|
}

(3.15)

Compared to ordinary least squares regression, the lasso method includes a penalty

term on the L1 norm of the the linear coefficients, λ
∑p

u=−p |au|. The effect of this

penalty term is equivalent to applying a constraint on the linear coefficients. But

what makes the lasso method useful in this study is that this penalty term can actu-

ally suppress the less significant contributors to zeros and therefore select variables

according to their contributions. More specifically, with a cross-validation process
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on λ to choose the model that gives the minimum residual variance, the linear co-

efficients can be selected according to their significance. In this way, only a small

number of coefficients are preserved but they are the most significant ones. The lasso

method gives a parsimonious model which is often more interpretable than usually

least square regression models.

Note that the intercept term in (3.14) is included in ε so that the a in the lasso

model (3.14) is consistent with {au, u = −p,−p + 1, · · · , p} in the original model

(3.3).

The lag domain and the frequency domain methods both apply windows to select

the lags or predictors within the window and suppress these outside the window. The

lasso method, however, select the predictors according to their contributions. All

these methods add prior informations.

3.3 Simulation Case 1

In this section, a simple simulation example (referred as SC1, Simulation Case

1) is designed to describe and test the de-aliasing methods introduced above. These

methods are applied to the simulation data and results are presented and discussed.

Note that the frequency ranges used in the simulation cases are all from −0.5 to 0.5

(See Section 2.4.2 for transformation of frequency range). Therefore the frequencies

are in terms of cycle per unit time.

3.3.1 Simulation Data

Let Xt be defined by the following AR(1) process,

Xt = 0.8Xt−1 + δt (3.16)

where {δt} is a white noise process with δt ∼ N (0, 1). Suppose X|G1 is a realization

of X. In order to satisfy the conditions at the method, I spun up the model to

approximate stationarity, and then removed the mean. The sample time series of X

is on the grid G1 : {t = 1, 2, · · · , 10000}.
Let Y be a linear transformation of X defined by the following constant delay

model with noise:

Yt = 2Xt−4 + εt (3.17)
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where {εt} is a white noise process independent of X with εt ∼ N (0, 1). Correspond-

ing to the sample X|G1 we have Y |G1. Sub-sampling Y |G1 at Δ = 20 gives the

aliased series Y |G2, which is on the grid G2 : {t = 1, 21, 41, · · · , 9981} and contains

500 data points.

Figure 3.3 presents the simulated data. It is obvious that Y |G2 aliases any signals

in Y |G1 with frequency above 0.05π (=
π

20
).
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Figure 3.3: Time series plot of the simulated data in SC1. The upper panel shows
X|G1 and Y |G1 for 100 time steps. Y is a linear transformation of X. The lower
panel shows Y |G1 and its sub-sampled series Y |G2 for 1000 time steps. Y |G2 is
sub-sampled at Δ = 20 and therefore aliases the high frequency signals.

3.3.2 High-pass Filter

Our goal is to de-alias Y |G2 using information fromX|G1 based on the assumption

of a linear relationship between X and Y . More specifically, if we suppose XH is the

high frequency component of X, and Y H is the high frequency component of Y , then

our goal is predict Y H |G1 using observations of XH |G1 and Y |G2.

The first step is to extract XH |G1 from X|G1. This is accomplished using a high-

pass filter and a cut-off frequency of 0.05π. With XH |G1 and Y |G2, model (3.3) can
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be fit using the methods described in Section 6.4 and then predictions for the aliased

high frequency component can be given with (3.4). Let Ŷ H |G2 denote the predictions.

In addition, the same high-pass filter was applied to Y |G1 to get the true aliased

high frequency component. Let Y H |G2 denote the true aliased high frequency com-

ponent. In this way, the predictions Ŷ H |G2 can be validated with Y H |G2 in order

to evaluate the model. The filter results of X|G1 and Y |G1 are presented in Fig-

ure 3.4. Comparison of the auto-spectra of X and Y shows that the amplification is

independent of the lag information.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

Frequency

High−pass Filter of X

 

 
X

X
H

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

Frequency

High−pass Filter of Y

 

 
Y

Y
H

Figure 3.4: High-pass filtering of the time series in SC1. The upper panel shows the
sample spectrum of X (blue line) and its high frequency component XH (red line).
The lower panel shows the sample spectrum of Y (blue line) and its high frequency
component Y H (red line). The black line marks the cut-off frequency, which is the
Nyquist frequency of Y . The high-pass filter passes the high frequency component so
the two spectral lines coincide above cut-off frequency. Note that the spectral slopes
of X (XH) and Y (Y H) are identical.

Before presenting results of the two de-aliasing methods, note that in this simu-

lation example, the true parameters in model (3.3) are given by

θ = [a−4 = 2, a−3 = a−2 = · · · = a4 = 0; p = 4] (3.18)
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3.3.3 Lag Domain Method

Sample Cross-covariance Function: The sample ACVF and CCVF are esti-

mated and plotted in Figure 3.5. The sample ACVF decays with increasing lags.

The sample CCVF, though estimated from XH |G1 and Y |G2, preserves most of the

properties, including the decaying property of an AR(1) process and the time delay

information: the peak is at lag k = −4, which indicates that Y H lags XH by four.
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Figure 3.5: The estimations for the ACVF of XH and the CCVF between XH and Y
in SC1. The CCVF is estimated using data of XH |G1 and Y |G2 but the estimation
preserves the 4-hour time delay information.

The sample ACVF and CCVF are both small after ±20 lags. Most of the infor-

mation should be contained within these lags. I chose q = 20 for the construction of

the Yule-Walker equations in (3.8).

Parameter Estimation: With a given model order p, the linear coefficients were

estimated using the weighted least square method based on the modified Yule-Walker

equations discussed earlier (Page 32 in Section 3.2.1). For comparison with the fre-

quency domain method later, the weight matrix W was specified with a Parzen win-

dow weight sequence on the diagonal and zeros elsewhere. The Parzen window weight
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sequence can be derived from (2.34).

The choice for p is based on a 5-fold cross-validation process. Specifically for each

p, the residual variance is calculated according to the following steps:

1. Y |G2 is randomly split into five equal portions;

2. Linear coefficients are estimated using the training set (four of the five portions)

and then used to fit model (3.3);

3. Y H is predicted for the test set (the one portion left) using the fitted model;

4. Subtract the predicted Y H from the Y and get the de-aliased series, which are

residuals for the test set;

5. Repeat steps 2-4 for each of the five portions and we have the residual series

from which the residual variance is computed.

Figure 3.6 shows the result of the cross-validation. The minimum residual variance

is given at p = 4, which is exactly the true model order.
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Figure 3.6: The cross-validation result of the lag domain method in SC1. For each
p, the residual variance through a 5-fold cross-validation is computed. The residual
variance reaches minimum at p = 4, which is exactly the true model order.

We use p = 4 and then estimate the linear coefficients. The parameter estimation

are given by

θ̂ = [2.1,−0.1, 0.3, 0,−0.1, 0,−0.1, 0.3,−0.1; p = 4] (3.19)
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Compared to the true parameter θ in (3.18), the determining parameters, p and a−4

are both well captured by the estimation. However, for other trivial coefficients, θ̂

seems to give an oscillating end effect.

De-aliasing Result: With the fitted model, the aliased high frequency component

Y H |G2 can be predicted. Denote the predictions by Ŷ H |G2. Then the de-aliased

series, denoted by Y c, can be derived by (3.5). The de-aliasing results are presented

in Figure 3.7. In addition, since the true Y H |G2 can be derived from the high-pass

filter and sub-sampling of Y |G1, the predictions Ŷ H |G2 and the true Y H |G2 are

presented together in Figure 3.7 in order to evaluate the predictions. In this simple

simulation example, the lag domain method gives satisfying results.
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Figure 3.7: The de-aliasing results for the lag domain method in SC1. The upper
panel shows the result of de-aliasing using the lag domain method. The de-aliased
series (red line) contains less spikes and has a smaller variance, because the high
frequency signals have been removed. The lower panel shows the validation result.
The predicted high frequency component (red line) is compared with the true high
frequency component (black line). Result shows that the predictions are very precise.



42

3.3.4 Frequency Domain Method

Parameter Estimation: The model order was first selected by a cross-validation

procedure where M is chosen to give the minimum residual variance. This is similar

to the lag domain method. Cross-validation results indicate that M = 25 is the

optimal choice. The cross-validation result is in Figure 3.8.

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

M

R
es

id
ua

l V
ar

ia
nc

e

Cross−Validation for M

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2
Estimated Linear Coefficients

p

Figure 3.8: The cross-validation result and the estimated coefficients using the fre-
quency domain method. The upper panel shows the cross-validation results. In the
simulation example, the residual variance becomes stable after M = 25. The lower
panel shows the estimated linear coefficients for this choice of window width M . The
coefficients within the window width are presented since those outside are zeros. Note
that a−4 is recovered well and other coefficients are much smaller as expected.

With M = 25, the auto- and cross-spectra and the transfer function can be

estimated. The linear coefficients are derived from the inverse Fourier transform of

the estimated transfer function Γ̂(ω) using (3.13). The coefficients within ±M are

plotted in Figure 3.8. The deterministic coefficient a−4 is recovered and all other

coefficients are small, consistent with (3.18).

Transfer Function: In order to better illustrate the frequency domain method,
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we provide a detailed description of the estimation of the transfer function in this

section.

The estimates for the sample ACVF and CCVF are given in the lag domain

method. The auto-spectrum and cross-spectrum can be estimated and denoted by

ĥXHXH (ω) and ĥY HXH (ω). Note that in the spectral estimation, a Parzen window

was applied and the window width M = 25. With ĥXHXH (ω) and ĥY HXH (ω), the

transfer function can be estimated by (3.12). In addition, the theoretical transfer

function is derived from (3.17). The estimated transfer function Γ̂(ω) and theoretical

transfer function are presented in Figure 3.9.
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Figure 3.9: The gain and phase of the estimated transfer function (blue line) and
theoretical transfer function (black line). The [−1/2, 0] range is omitted because
the gain is an even function and the phase is an odd function. The transfer function
provides information on the transformation from XH to Y H . In this simple simulation
example, the transformation consists of two parts, the lag and the amplification. It
is obvious that the amplification is contained in the phase spectrum and the lag is
contained in the phase spectrum.

The gain spectrum provides the information of the amplification from XH to

Y H , which is constantly close to two. The phase spectrum provides the time delay

information. The phase spectrum in Figure 3.9 is close to a straight line. Empirically
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this indicates a constant time delay at all frequencies. An approximation for this time

delay is given by the slope, which is close to 4 (≈ π

2π · 0.14) as expected.

De-aliasing Result: The de-aliasing results for the frequency domain method

are presented in Figure 3.10. They are comparable to the results in the lag domain

method (see Figure 3.7). Thus in SC1, the frequency domain method also works well.
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Figure 3.10: The de-aliasing results for the frequency domain method in SC1. The
results are presented in the same format as in Figure 3.7. The validation of predicted
high frequency component and true high frequency component of Y |G1 in the lower
panel indicates that the frequency domain method also performs well.

3.3.5 Lasso Method

Parameter Estimation: In the lasso model (3.14), we use lags within ±20 to

construct the design matrix X and the response data vector Y. In our case, Y =

Yt, t ∈ G2, where G2 = [Δ, 2Δ, · · · , N2Δ]T . X contains 42 columns: the first column

are all ones and the j-th column (2 ≤ j ≤ 42) corresponds to the data of XH
t−u, with

u = j − 22 (−20 ≤ u ≤ 20) and t ∈ G2.
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The lasso method was applied to the design matrix and the response data vector,

with a 5-fold cross-validation process to select the optimal λ as in (3.15). After several

tests, we chose the optimal λ = 0.03 which gives the minimum residual variance.

Corresponding linear coefficient estimates of the lasso method are presented in Figure

3.11. Similar to the frequency domain method, the main coefficient a−4 is captured

well but other coefficients are not perfectly suppressed.
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Figure 3.11: Plot of the linear coefficients estimated by the lasso method. Lags within
±20 are used as predictors so au with u within ±20 are estimated. The determining
coefficient a−4 is well recovered.

De-aliasing Results: We now fit the original model with the parameter esti-

mations and predict the aliased high frequency component. As in the lag domain

and frequency domain methods, the de-aliasing results and the validation results are

presented in Figure 3.12. The lasso method also gives satisfying predictions.
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Figure 3.12: The de-aliasing results for the lasso method in SC1. The results are
presented in the same format as in Figure 3.7. The predictions are also very precise.

3.4 Simulation Case 2

Simulation Case 1 is very simple. It helps describe the implementation of the

methods, but in order to test the performances of the methods we need a more

complex example. In this section, another simulation case (SC2, Simulation Case 2)

is designed to test the de-aliasing methods and results are presented and discussed.

3.4.1 Simulation Data

First of all, we design a set of linear coefficients to give an amplification of signals

within a certain frequency band. Figure 3.13 presents the linear coefficients and the

corresponding (theoretical) transfer function. The gain spectrum shows that this

linear system corresponds to a band-pass filter where there is an amplification of

signals over a certain frequency band. This transfer function is more realistic and

similar to the real data examined in this study.

SC1 is now updated with this new set of linear coefficients. More specifically, the

process X remains an AR(1) process and the sample time series X|G1 is the same as
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Figure 3.13: Linear coefficients au and the gain spectrum |Γ(ω)| corresponding to
the linear coefficients for SC2. The set of 31 linear coefficients together creates an
amplification at a frequency band, which is similar to a band-pass filter.

in SC1; the process Y is a linear transformation of X using the new transformation

system; the sub-sample procedure and the implementations of the de-aliasing methods

are also the same as in the simulation case 1.

The specifics of the implementations of the de-aliasing methods have already been

described in SC1, and so I focus below on the estimation and de-aliasing results.

3.4.2 Parameter Estimation

For the lag domain method, I chose q = 30 and the cross-validation gives the

optimal p = 11. For the frequency domain method, the cross-validation gives the

optimal M = 25. For the frequency domain method, the ±20 lags are used as

predictors. the cross-validation gives the optimal λ = 0.013. For all three methods,

the linear coefficients are estimated and plotted in Figure 3.14, along with the true

coefficients.

The true linear coefficients are smooth but all three methods give erratic shapes,
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Figure 3.14: The true linear coefficients (black line) and the estimated linear coeffi-
cients (blue line) for the lag domain, frequency domain and lasso methods. All three
methods give similar results to some extent. However, each of the three methods has
its own advantages.

especially at the most significant coefficients. The lag domain method gives the least

number of parameters and thus the simplest model, but the coefficients at the end are

not well suppressed. The frequency domain method gives the most number of coeffi-

cients and the estimates best approximate the original shape, with both tails close to

zeros. Note that the lag and the frequency domain methods are very similar within

±10. This is because both the two methods are from a same origin. On the other

hand, the lasso method seems to perform best at keeping the relative contributions

of the coefficients and thus gives the smoothest shape.
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3.4.3 De-aliasing results

In order to evaluate the three methods, the predictions for the aliased high fre-

quency component, Ŷ H |G2 is compared with the true high frequency component,

Y H |G2. Results are presented in Figure 3.15. All the methods seem to give satisfy-

ing, and very similar predictions.
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Figure 3.15: Predictions (red lines) and truth (black lines) for the aliased high fre-
quency component of Y |G2 for SC2. The first 50 data points in the time series are
plotted. All three methods give satisfying predictions.



Chapter 4

Description of Observations and Initial Processing

The de-aliasing methods described in the previous chapter are now applied to sea

level observations made in the Gulf of Maine, Scotian Shelf and Gulf of St. Lawrence.

This chapter describes the sea level observations made by coastal tide gauges and

space-borne altimeters. The altimeter observations are made with a minimum time

spacing of about 10 days and so severely alias the strong tides of the region. (The Bay

of Fundy in the Gulf of Maine has the largest tides in the world with a range of over

15 m.) The tide gauge observations are made hourly and they form the high frequency

supplementary information (Chapter 3) used to de-alias the altimeter observations.

Before applying the de-aliasing method, the tide gauge and altimeter data sets

were processed and organized. This chapter describes this initial processing including

the removal of (i) tides and (ii) the effect of atmospheric forcing using a dynamically-

based ocean model. Table 4.1 defines the processed variables used in the rest of this

thesis.

Table 4.1: Notation for the processed sea level variables. The cut-off frequency of
the high pass filter is defined by the Nyquist frequency of the satellite observations
(1/2Δ cycles per day where Δ = 9.9156 days). All sea levels are in meters.

Notation Description
ηObs Observed sea level
ηT ide Tidal component of ηObs, used as a tidal correction
ηSurge Surge component of ηObs from the dynamical ocean model
ηSLA Sea level anomaly, ηObs − ηT ide − ηSurge

ηAH High frequency (above 1/2Δ) component of ηSLA

ηAL Low frequency (below 1/2Δ) component of ηSLA defined by ηSLA−ηAH

50
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4.1 Tide Gauge Observations

High frequency signals are normally aliased in satellite altimetry records due to

their long sampling interval. To correct for the aliasing effect, use is made of the

high frequency information contained in hourly tide gauge observations of sea level.

In general, tide gauge observations are also more precise and reliable than altimetry

measurements although there spatial coverage is not as good. In the present study

hourly sea level observations were used from the 22 tide gauges shown in Figure 4.1

and listed in Table 4.2.

Figure 4.1: Distribution of tide gauge stations and satellite altimeter tracks. The
location of the 22 stations are shown by the black dots and marked with numbers 1
to 22. The satellite altimeter tracks are shown as red lines and marked as A1 to A9.
These observations cover the Gulf of Maine (GoM), Scotian Shelf (SS), Gulf of St.
Lawrence (GSL) and Labrador Shelf (LS).

The hourly tide gauge records came from the Global Sea Level Observing Sys-

tem (GLOSS)1. The core network of GLOSS consists of 290 sea level stations around

the world and is designed to provide measurements of global coastal sea level varia-

tions. The 22 tide gauges used in the present study are distributed along the Gulf of

1http://www.gloss-sealevel.org/
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Maine, Gulf of St. Lawrence and coast of Newfoundland, Canada. Records for the 18

Canadian stations were downloaded from Fisheries and Oceans Canada2. For the US

stations, Boston, Portland and Eastport records were obtained from the University

of Hawaii Sea Level Center3 and the Bar Harbor record came from National Oceanic

and Atmospheric Administration of United States4.

The original tide gauge records contained numerous gaps and had many other

problems making it necessary to provide a thorough and comprehensive initial pro-

cessing. The following corrections were made:

1. Repeat records were removed.

2. All records were converted to universal time (UTC) and interpolated to hourly

values.

3. Records were trimmed to the time period of the satellite observations (1 January,

1993 to 31 December, 2014).

4. Missing values were denoted by NaN (“not a number”).

5. Systematic one-point gaps were filled by interpolation (e.g., observations at 4:00

UTC are missing every day from the Nain record after 2012/10/30)

6. Each of the 22 stations were carefully scrutinized for possible datum shifts,

outliers and other problems.

A brief summary of the tide gauge observations, and the results of the initial process-

ing, are given in Table 4.2.

4.2 Tidal Correction

Tides dominate the variablity of all of the 22 tide gauge records (see, for example,

Figure 4.2). The tides result from the gravitational pull of the Sun and Moon and

also the rotation of the Earth. These tidal signals can be treated as deterministic and

periodic with known frequencies. For example, the largest tidal constituent at most

2http://www.dfo-mpo.gc.ca/
3http://uhslc.soest.hawaii.edu/
4http://www.noaa.gov/
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Table 4.2: Summary statistics of tide gauge observations and results of the initial
processing. The first three columns give the name and location of tide gauges. The
fourth column is the percentage of valid hourly data. The remaining columns give
the standard deviations (in meters) of ηObs, ηT ide, ηSurge and ηSLA. Data are for the
period 1 January, 1993 to 31 December, 2014.

Station name Lon Lat Data σObs σT ide σSurge σSLA

1 Boston -71.05 42.35 99.37 1.035 1.027 0.102 0.074
2 Portland -70.25 43.66 99.14 1.032 1.026 0.101 0.069
3 Bar Harbor -68.21 44.39 71.97 1.171 1.166 0.101 0.065
4 Eastport -66.99 44.91 97.69 1.967 1.964 0.096 0.071
5 Saint John -66.06 45.25 86.34 2.231 2.228 0.097 0.094
6 Yarmouth -66.12 43.83 93.06 1.238 1.233 0.107 0.076
7 Halifax -63.58 44.67 89.42 0.490 0.477 0.099 0.074
8 North Sydney -60.25 46.22 98.10 0.324 0.301 0.103 0.080
9 Charlottetown -63.12 46.23 93.62 0.619 0.597 0.130 0.105
10 Shediac Bay -64.55 46.23 38.82 0.355 0.299 0.145 0.119
11 Lower Escuminac -64.88 47.08 93.58 0.331 0.291 0.140 0.093
12 Belledune -65.85 47.90 63.34 0.539 0.516 0.137 0.096
13 Rivière-au-Renard -64.38 49.00 91.00 0.448 0.428 0.122 0.083
14 Rimouski -68.51 48.48 96.09 1.013 1.001 0.144 0.092
15 Sept-Iles -66.38 50.19 97.16 0.745 0.730 0.135 0.088
16 Cap-aux-Meules -61.86 47.38 34.12 0.246 0.213 0.114 0.072
17 Port-aux-Basques -59.13 47.57 88.80 0.357 0.337 0.104 0.066
18 St. Lawrence -55.39 46.92 36.87 0.501 0.484 0.117 0.090
19 Argentia -53.98 47.30 93.74 0.538 0.523 0.116 0.083
20 St John’s -52.72 47.57 97.01 0.325 0.295 0.127 0.078
21 Bonavista -53.12 48.65 39.80 0.283 0.255 0.118 0.072
22 Nain -61.68 56.55 46.54 0.603 0.591 0.118 0.069
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of the tide gauges is the principle lunar semi-diurnal constituent (usually denoted by

M2). It has a period of about 12 hours and 25.2 minutes. These high frequency tidal

signals are aliased by the satellites and need to be corrected.

Tides can be estimated in several ways. For example, bandpass filters can be used

but, in general, they are not efficient because of difficulties in filter design (the tides

have a discrete spectrum to first order) and also handling gaps in the sea level record.

The most popular way of estimating the tides is based on classical harmonic analysis.

Given the specific tidal frequencies, classical harmonic analysis assumes a regression

model which is essentially a sum of sinusoids at the given frequencies. Least squares is

then used to estimate the tidal amplitude and phase and thus the time-varying tide.

It is generally accepted that harmonic analysis is more effective than bandpass filters.

However, classical harmonic analysis also has some drawbacks and this has led to more

sophisticated and effective forms of regression model as implemented for example in

the T Tide package (Pawlowicz et al., 2002). This package allows for “inference” of

tidal constituents that are so close in frequency to dominant constituents like M2

that they cannot be resolved with just the available data record. The package also

allows for nodal variations in tidal amplitude and phase which occur with a period of

18.6 years (due to slow variations in the Moon’s orbit).

For each of the 22 tide gauge records, above package was used to predict the tide.

For a better performance, the following steps were taken:

1. Each record was divided into yearly time series for separate tidal analysis by

T Tide.

2. Long gaps at the head and tail of each yearly time series were removed prior to

tidal analysis as suggested in Pawlowicz et al. (2002).

3. Periods with insufficient data were replaced by missing values. Insufficient was

defined by at least 764 hourly values. This ensures that the major tidal con-

stituents will be reliably estimated by T Tide.

Sea level variations were reduced significantly after removal of the tides as shown in

Figure 4.2 and Table 4.2 (compare the standard deviation of the observations and

tide).
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Figure 4.2: Decomposition of observed hourly sea level series (top panel) into tide
(middle panel) and residuals (bottom panel). Tides were estimated using T Tide,
a MATLAB package designed by Pawlowicz et al. (2002). The tidal residuals are
given by subtraction of the tides from the observations. Note the expanded vertical
scale for the bottom panel, illustrating the dominance of the tides over the residual
variability. The observations are for Halifax, Nova Scotia for two months in 2006.

4.3 Dynamic Atmospheric Correction

Changes in wind and air pressure can cause storm surges over the shallow water

close to shore (i.e., the continental shelf, normally defined as water shallower than

200 m). Large storm surges can cause sea level changes of meters over a short period

of time, as seen in Figure 4.2. These high frequency signals, like tides, are normally

aliased by altimeters and need to be removed. One way to estimate and remove wind

and atmospheric effects is by using a dynamically-based model of the ocean forced by
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wind and air pressure. The result is the so-called “Dynamic Atmospheric Correction

(DAC)”.

In the 1990s, the DAC simply came from the inverted barometer correction (IB).

The IB approximation assumes a static ocean response to atmospheric pressure for

low frequencies (i.e., periods longer than about 20 days). The IB associates a 1 mil-

libar increase in atmospheric pressure with a 1 cm drop in sea level. Wind effects

were ignored. However, more recent studies have shown that the ocean response to

atmospheric forcing is more complicated at high frequency and the effect of the wind

cannot be ignored.

Figure 4.3: Finite element mesh of the MOG2D-G model used to predict storm surges.
Smaller grid elements (higher resolution) are used in coastal areas where the storm
surges are generally largest. From Carrère and Lyard (2003).

To improve on the static assumption, Carrère and Lyard (2003) developed a

dynamically-based model called MOG2D-G. It is a nonlinear, time-stepping, dynam-

ical ocean model based on the approach of Lynch and Gray (1979). It uses a finite

element space discretization of the global ocean and adjacent shelves. The use of

finite elements allows increased resolution in coastal and shallow water areas. Figure

4.3 shows the global grid. The grid size is approximately 400 km in the deep ocean,

reducing to about 20 km approaching coastal areas. Using such a grid it is possible

to achieve high resolution in important coastal areas at relatively low computational
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cost. Carrère and Lyard (2003) performed a global simulation for the Topex/Poseidon

(T/P) period (1992-2002) and compared the sea level predictions to de-tided sea level

records from tide gauges and satellite altimeters. It was shown that MOG2D-G sim-

ulates the high frequency, atmospherically-forced sea level variability of the global

ocean with unprecedented accuracy. For example, the model correction reduces the

variance of the tidal residuals by typically 50%.

The DAC predictions produced by MOG2D-G are widely adapted for oceano-

graphic research. The data are distributed by AVISO (Archiving, Validation and

Interpretation of Satellite Oceanographic data) with support from CNES (Centre

National d’Etudes Spatiales) 5. Data are archived in year-by-year directories start-

ing from 1992, with day-by-day groups of files with four files per day (0, 6, 12 and

18 hour, UTC). Each file stores global DAC data for a given time on a 0.25◦ × 0.25◦

grid.

For each of the 22 tide gauges, DAC data are needed to further correct the tidal

residuals. However, the stations are not distributed precisely on the surge model

grid. To get DAC data for each station it is sometimes necessary to interpolate and

extrapolate the model output. Unfortunately this is not straightforward because the

1/4◦ grid distributed by Aviso is sometimes more than 20 km from the coast. To

obtain the optimal DAC predictions for a given tide gauge, and avoid complicated

interpolation and extrapolation procedures, the following statistical approach was

used. For each tide gauge, all of surge model grid points less than 0.5◦ are identified.

The correlation between each selected grid point time series and the observed residual

at the tide is calculated. The grid point time series with the highest correlation is

then used to provide the DAC for the given tide gauge. Finally this 6-hour DAC time

series is linearly interpolated to the hourly time spacing of the sea level observations.

Dynamic atmospheric corrections and sea level anomaly (SLA) after corrections are

shown in Figure 4.4.

For further study, each sea level anomaly series was high-pass filtered to separate

low and high frequency components. The cut-off frequency is the Nyquist frequency

of the satellite altimetry record, π/Δ. The high frequency component is denoted by

ηAH and the low frequency component is denoted by by ηAL.

5http://www.aviso.altimetry.fr/
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Figure 4.4: Dynamic atmospheric correction and tidal residuals (top panel) and their
difference (bottom panel). The agreement between the red and blue lines in the upper
panel illustrates the accuracy of the surge model predictions. The smoothly varying
character of the sea level anomaly plotted in the lower panel shows that much of the
high frequency variability in the tidal residual (ηObs − ηT ide) has been removed by
subtraction of ηSurge, i.e., the DAC. Data are for Halifax, Nova Scotia for two months
in 2006.

4.4 Altimeter Observations

Satellite altimetry has revolutionized oceanography research since the early 1990s.

The observations are accurate (within cm) and provide unprecedented global moni-

toring of the deep ocean and the adjacent continental shelves. The amount of data is

vast: the number of sea level observations from satellite altimeters over one one cycle

(repeated every 10 days) exceeds a hundred year’s tide gauge observations from the

present global array.

There are however some issues with satellite altimetry. A critical issue is the

subject of the present research: aliasing. The satellite altimeter orbits the earth and

measures the sea surface along fixed tracks with a revisit time of roughly 10 days.
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For each point on the track, the sampling interval is thus roughly Δ = 10 days. Con-

sequently any information below the Nyquist period of 20 days is aliased and will

contaminate the altimeter record. Figure 1.1 illustrates the aliasing effect using the

observed Halifax tide gauge record. Another issue is the accuracy of the observa-

tions close to shore. Although the altimeters perform well over the open ocean their

accuracy is significantly degraded in coastal areas: the presence of land increases

instrumental error and additional geophysical corrections are required. Several pre-

processing techniques used to extract more accurate altimetric information in coastal

areas are described by Vignudelli et al. (2011).

Regional along-track sea level anomaly (SLA) products from CTOH/LEGOS are

used in this study. These SLA products are based on a combination of data from

multiple satellite missions (Topex/Posiden, Jason-1 and Jason-2) and they have been

corrected by state of the art processing techniques. For example, in coastal areas,

outliers were removed using criteria described in AVISO (1996). Several geographic

corrections were then applied by CTOH/LEGOS to improve product quality. De-

terministic high frequency components such as tides and surges were removed using

X-track tidal correction (Carrère et al., 2012) and dynamic atmospheric correction

(Carrère and Lyard, 2003). Finally, potential remaining outliers in SLA were removed

using a 3 standard deviation filter. See Vignudelli et al. (2005), Roblou et al. (2011),

and Durand et al. (2008) for details of processing.

Regional along-track sea level anomaly (SLA) products distributed by Aviso are

archived by track. Each track file contains satellite information about the track,

latitudes and longitudes for points along the track, and along-track data, including

observation time, sea level anomaly, tidal correction, dynamic atmospheric correction

and so on. In this study, nine tracks that cover the Gulf of St. Lawrence were selected

for study (Figure 4.1). Figure 4.5 shows a representative altimetric time series for a

position in the Gulf of St. Lawrence and compares it to the sea level anomalies for a

nearby tide gauge.

4.5 Organization and Storage of Observations

For both datasets, all intermediate results and final results of the initial process-

ing were organized into a MATLAB data structure for further analysis. The tide
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Figure 4.5: Comparison of tide gauge and altimeter observations. Both sets of data
have been corrected for tides and the DAC. The hourly sea level anomalies (blue line)
are from the Cap-aux-Meules tide gauge (-61.86◦E, 47.38◦N). The altimeter sea level
anomalies, defined every 10 days, are from position (-62.40◦E, 47.71◦N), close to the
Cap-aux-Meules tide gauge. Data are for 2011 and 2012.

gauge data structure is organized by station. For each station, the original sea level

observations and their observation times, the tidal corrections, dynamic atmospheric

corrections, sea level anomalies, low and high frequency part of sea level anomalies

were saved, along with basic information of the station including station number,

station name, latitude and longitude. The satellite altimetry data structure is or-

ganized by track. For each track, sea level observations, tidal corrections, dynamic

atmospheric corrections and sea level anomalies are saved according to each point on

track. Observation times, latitudes and longitudes for each point are also stored in

the structure.



Chapter 5

Spatial Structure of Sea Level Anomalies of Tide Gauges

Removing the effect of tides and storm surges reduces significantly the variance

of the sea level observations. However, the remaining variance is not negligible. It

corresponds to a standard deviation of 6 to 12 cm at the 22 tide gauges (Table 4.2,

column labeled σSLA). If the sea level anomalies (ηSLA = ηObs−ηT ide−ηSurge) contain

high frequency signals, they will be aliased by the altimeter and this will contaminate

the signal the altimeter is attempting to observe. This leads to the following question:

Does ηSLA contain high frequency signals that will cause significant aliasing problems?

To answer this question, principal component analyses have been performed on the

hourly time series of ηSLA at the 22 tide gauges for the period 1993 to 2014 inclusive.

The basic idea is that if it can be shown that most of the ηSLA variance can be

accounted for by a small number of principal components then the anomalies are not

just noise and there is the potential to improve upon the tidal and surge corrections.

The structure of this chapter is as follows. A principal component analysis (PCA)

is first performed on the high frequency component of the sea level anomalies (ηAH) at

the tide gauge sites. (Overviews of PCA, and its frequency dependent generalization,

are given in Chapter 2.) This is followed by a frequency dependent PCA of ηSLA. Both

analyses lead to the conclusion that the tide and surge corrections are inadequate and

this motivates the statistical approach to de-aliasing described in Chapter 6.

5.1 Principal Component Analysis of ηAH

The correlation and covariance matrices of the high frequency component of the

hourly sea level anomalies (ηAH) at the 22 tide gauges is shown in Figure 5.1. Both

matrices suggest that most tide gauges can be placed into one of two groups based

on the similarity of their time series of ηAH . One group (stations 1 to 6) corresponds

to tide gauges in the Gulf on Maine (see Figure 4.1 and Table 4.2 for locations). The

other group (stations 8 to 17) corresponds to tide gauges in the Gulf on St. Lawrence.

61
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The within-group correlations are typically 0.7 and the Gulf of St. Lawrence group

is the most energetic (consistent with the column labelled σSLA in Table 4.2). Based

on this visual examination of the correlation and covariance matrices, it is concluded

that large scale signals remain in the time series of ηAH .

Figure 5.1: Covariance and correlation matrices of the hourly time series of ηAH at the
22 tide gauges. Based on data for the period 1/1/1993 to 12/31/2014. The numbers
1, 2, · · · 22 refer to the tide gauge station codes listed in Table 4.2

To define the dominant spatial modes of variability of ηAH , and the associated

time-varying amplitudes, a PCA was performed on the correlation matrix shown in

Figure 5.1. The first two principal components account for 44% of the total (stan-

dardized) variance and the first four account for 60% (upper panel of Figure 5.2).

The lower panels show the first principal component mainly picks up information

from stations 8 to 17 and the second mode mainly picks up information from stations

1 to 6. This is consistent with the visual interpretation of the correlation matrix given

above.

The time-varying amplitudes of the first two modes (i.e., the first two principal

components) are plotted in the upper panels of Figure 5.3. Both time series are

dominated by quasi-periodic variations. Power spectra of the first two modes are

plotted in the lower panels of Figure 5.3. Each time series was normalized by its

standard deviation prior to spectral analysis, thereby emphasizing the relative energy

distribution with regard to frequency. The major peak of the power spectrum of the

first principal component has a period of roughly 32.8 hours and the spectral peaks
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Figure 5.2: Results of a principal component analysis of the hourly time series of
ηAH at the 22 tide gauges. The correlation matrix was used. The upper panel shows
the cumulative proportion of explained variance as a function of mode number. The
bottom panels show the first and second eigenvectors of the correlation matrix plotted
against tide gauge index.

of the second principal component has a period of about 12.7 hours. This means that

both modes of variability contain significant signals above the Nyquist frequency of

satellite altimetry and that will lead to aliasing.

5.2 Frequency Dependent Principal Component Analysis of ηSLA

To better define the structure of the sea level anomalies as a function of frequency,

a principal component analysis was performed on the 22 time series of hourly ηSLA

in the frequency domain. (For details of frequency dependent PCA see Chapter 2.)

The 22 × 22 cross spectral matrix of the ηSLA time series at a given frequency

consists of power spectra on the diagonal and cross spectra off the diagonal (similar

to a covariance matrix). The cross spectral matrix is Hermitian. To estimate the

power and cross spectra, missing values in each of the ηSLA time series were replaced
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Figure 5.3: The first two principal components of the correlation matrix of ηAH and
their spectra. The principal components were reconstructed from the high-passed
hourly sea level anomalies at the 22 tide gauges for the period 1993 to 2014. Frequen-
cies corresponding to the two major peak periods are shown by the red lines. Data
for time series plot are one month from 2010.

by their means, and a Parzen lag window of length 100 (corresponding to a spectral

window with a bandwidth of 1/52.4 cycles per hour) was used. The result of the

frequency dependent PCA is a total of 96421 cross spectral matrices, one for each

frequency resolved by the spectral analysis. (The record length is N = 192840 and

this leads to N/2 + 1 = 96421 spectral estimates at equispaced frequencies between

0 and 0.5 cycles per hour.)

Let λk(ω) denote the kth eigenvalue of the cross spectral matrix at frequency ω. As

discussed in Chapter 2, λk(ω)/
∑22

k=1 λk(ω) is the proportion of total power explained

by the kth principal component at frequency ω. A frequency-averaged version of this

proportion is given by λk/
∑22

k=1 λk where λk =
∫
λk(ω) dω. The cumulative version of

this quantity is plotted in Figure 5.4. It can be seen that, when averaged with respect

to frequency, the first principal component explains 46.5% of total variance and the

first two explain almost 58.7%. As expected there values are higher than proportions



65

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1
Variance Explained

Number of Modes

P
ro

po
rt

io
n 

of
 V

ar
ia

nc
e

Figure 5.4: Cumulative proportion of total power at frequency ω explained by the
first k principal components of ηSLA. The quantity

∑k
j=1 λj/

∑22
j=1 λj is plotted as a

function of k.

of explained variance obtained with the standard PCA because the modes can change

with frequency.

The first principal component contains most of the information. The first eigen-

value of the cross spectral matrix, λ1(ω), is plotted as a function of frequency in the

upper panel of Figure 5.5. Two large peaks at nonzero frequency are evident at peri-

ods of approximately 30.3 hours and 12.7 hours. This is broadly consistent with the

standard PCA of ηAH and, in particular, the quasi-periodic variations of the first two

principal components shown in Figure 5.3 with periods of about 30 and 12.7 hours.

According to the first eigenvalue, the variance explained by the first principal compo-

nent with regard to each frequency, λ1(ω), is plotted in the lower panel of Figure 5.5.

Accordingly at the two large peaks, most variance is explained by the first principal

component. There are other peaks in λ1(ω), but peak frequencies only correspond to

minor energy.

In addition, the 30-hour signal has a wide band. The Nyquist frequency of the

altimetry record is comparatively very small which results in a narrow frequency

band. Consequently if the spectrum in Figure 5.5 is the truth, then the aliases of the

30-hour signal will appear at each frequency of the narrow altimetry frequency band.

That is, in the frequency domain, the aliasing effect could end up with a resemblance

to an overwhelming white noise.

Each cross spectral matrix has 22, complex-valued eigenvectors. The amplitude
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Figure 5.5: The first eigenvalue of the cross spectral matrix of ηSLA as a function of
frequency (top panel) and the proportion of variance explained by the first principal
component at each frequency (bottom panel). The frequency is in cycles per hour.
Frequencies corresponding to periods of 30 and 12.7 hours are shown by the red lines.

and phase of the first eigenvector are plotted in Figure 5.6. As discussed in Chapter 2,

the amplitude is analogous to the coefficients of principal components estimated in

the time domain and provide information on the contribution of the original variables

to each principal component. The phase, on the other hand, provides information

on lags between series and allows propagating features to be described by a single

mode (Chapter 2). To concentrate on the two dominant structures described above,

the upper limit of the frequencies plotted in Figure 5.6 is taken to be 0.02 to 0.1 cy-

cles per hour.

The amplitude plot clearly shows two main groupings of tide gauges that are de-

fined in different frequency ranges. The first group includes stations 1 to 6 (Gulf of Maine,

largest amplitudes in the Bay of Fundy) and the second group includes stations 9 to

15 (Gulf of St. Lawrence). The frequency ranges of the first and second groups are

approximately 0.06 to 0.1 (periods of 17 to 10 hours) and 0.02 to 0.06 (50 to 17 hours)

respectively. These frequency ranges are broadly consistent with the spectra of the
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Figure 5.6: Amplitude and phase of the first eigenvector of the cross spectral matrix
of ηSLA as a function of frequency. The plotted frequencies are between 0.02 and
0.1 cycles per hour. This is not true for the latest version of the plot.

first two principal components plotted in Figure 5.3.

The phases plotted in the right panel of Figure 5.6 suggests that the first group

of stations (Gulf of Maine, periods of 17 to 10 hours) is approximately in phase,

corresponding to a “standing mode”. The phase plot for the second group (Gulf

of St. Lawrence, periods 50 to 17 hours) suggests a counterclockwise propagation

around the Gulf of St. Lawrence. Station 16 is not in alignment with this propagation,

presumably because this station is on an island near the center of the Gulf where the

signal is weak while the other stations are distributed along the coastline where the

signal is large.

In summary, PCA of the sea level anomalies in the time and frequency domain

shows that the removal of high frequency variability using ηT ide and ηSurge is not

sufficient: large scale signals remain at frequencies that are high enough to be aliased

by the altimeter.



Chapter 6

De-aliasing of the Sea Level Anomaly

Spectral analysis of the sea level anomalies (SLA) in Chapter 5 showed that the

tidal and dynamic atmospheric corrections do not remove all the high frequency

signals in the hourly sea level variation observed at the tide gauges. There are high

frequency signals left that could cause aliasing problems in the satellite altimetry. To

de-alias the sea level anomaly products in the satellite altimetry, we need to remove

these high frequency signals.

Table 6.1: Notations used in this chapter and their corresponding real data or
variables (defined in Table 4.1).

Notation Data/Variables Description

Δ Sampling interval of satellite altimeter, Δ = 237.9754h
G1 tide gauge time grid, hourly interval from 01/01/1993 to 12/31/2014
G2 satellite altimetry time grid, Δ interval from 01/01/1993 to 12/31/2014
X tide gauge ηSLA

XH tide gauge ηAH

XL tide gauge ηAL

Y altimetry ηSLA

Y H altimetry ηAH

Y L altimetry ηAL

X|G1 observed hourly tide gauge ηSLA

Y |G1 hourly altimetry ηSLA, not observed
Y |G2 observed altimetry ηSLA at sampling interval Δ

In this chapter, the de-aliasing methods introduce in Chapter 3 are applied to the

sea level anomaly products. The methods are applied to observations from a single

point on a given track. The de-aliasing results show the potential of the methods.

The methods are then applied to the sea level anomaly products for a complete track.

De-aliased sea level anomalies are presented as the final result of this study.

For clarity and convenience, the notations used in this chapter are inherited from
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Chapter 3 although real data are used in this chapter. Table 6.1 defines these nota-

tions (also see Table 4.1).

6.1 Test of De-aliasing Methods

In this section, a single tide gauge and a single point on a given track are selected

to test the three de-aliasing methods introduced in Chapter 3.

6.1.1 Data Description

The tide gauge station position and the track point position are marked in the map

in Figure 6.1. For both tide gauge and altimetry records, time period from 01/01/2008

to 12/21/2012 is selected for maximum overlap. In this case, X|G1 corresponds to the

hourly observations of tide gauges and Y |G2 corresponds to the altimetry observations

with a sampling interval of Δ (see Table 6.1).

Figure 6.1: The tide gauge station position (black dot) and the satellite altimetry
track point position (red dot). Tide gauge data are from the 16th station, Cap-aux-
Meules. Satellite altimetry data are from one point on track 9, which is close to the
station but still some distance off the coast. Both positions are inside the Gulf of St.
Lawrence so that they both contain the 30-hour spatial-coherent signals.

Tide gauge data, XH |G1, used in this test are from the 16th station, Cap-aux-

Meules, which is in the middle of the Gulf of St. Lawrence. Plot of the time series is
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given in Figure 6.2. This tide gauge record clearly contains many gaps. However, the

30-hour signal (see Chapter 5) is significant in the record as shown in the spectrum

in Figure 6.2. As a result, the significant high frequency signals could be used as

information for predicting the aliased high frequency signals in the altimetry. The

number of valid hourly data points in the tide gauge record is 35465.
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Figure 6.2: Time series plot (upper panel) and spectrum (lower panel) of XH |G1

for tide gauge record form station 16. Time period of data is from 01/01/2008 to
12/21/2012 for best overlap with altimetry data. There are numerous gaps in the
record. The spectral estimation is based on a 100-point Parzen window. The 30-hour
(marked with black line) signal is significant in this record.

Satellite altimetry record, Y |G2 used in this test is from one point on track 9, which

is close to the station, but some distance off the coast. The track point is not chosen

to be the nearest to the station because satellite altimetry normally deteriorates very

close to the coast. Plots of Y |G2 and X|G1 are shown in Figure 6.3. It is noticeable

that Y |G2 is aliasing X|G1. The number of valid data points in the satellite altimetry

record is only 157.



71

2008 2009 2010 2011 2012 2013

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

Figure 6.3: Time series plot of the satellite altimetry sea level anomaly (red line), and
the hourly tide gauge sea level anomaly (blue line). Most high frequency variations
are aliased by the satellite. Time period is from 01/01/2008 to 12/21/2012.

6.1.2 Lag Domain Method

Sample Auto-Covariance and Cross-Covariance: The lag domain method

uses the sample auto-covariance function (ACVF) of XH |G1 to estimate the ACVF of

XH , and uses the sample cross-covariance function (CCVF) betweenXH |G1 and Y |G2

to estimate the CCVF between XH and Y H . The sample ACVF and sample CCVF

within 100 lags are plotted in Figure 6.4. The sample CCVF appears more erratic

than the sample ACVF. This is due to different sample size used in estimation. The

sample ACVF uses time series XH |G1 with data points up to 105, while the sample

CCVF uses pairwise data points between XH |G1 and Y |G2 where valid data points

are only up to order 102.

Both the ACVF and CCVF are significant within a few lags and indicate peri-

odicity of the processes. Moreover, the CCVF is highest at k = 1. This indicates

that Y H (the process at the track point) leads XH (the process at the station point)

by approximately one hour. Both ACVF and CCVF decay with increasing lag and

become almost zeros after ±30 lags. This indicates that most of the information are

contained within these lags. As a result, I chose q = 20 for parameter estimation and

chose p = 1, 2, · · · , 15 for the cross-validation process. That means we use the lags

up to 35 to fit the model.
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Figure 6.4: Plot of R̂XHXH (k) in the top panel and R̂Y XH (k) in the bottom panel.
R̂XHXH (k) is estimated using hourly tide gauge records from station 16 and R̂Y XH (k)
is estimated using this tide gauge record and the altimetry record from one point on
track 9. Both are presented for ±100 lags. It is obvious that both R̂XHXH (k) and
R̂Y XH (k) decay for large lags and become effectively zero after ±30 lags. Note that
the spike at R̂XHXH (0) indicates noise in the record.

Parameter Estimation: The model order p is first selected by a 5-fold cross-

validation. Details of the implementation can be found in SC1 (Page 36 in Sec-

tion 3.3). Plot of the residual variance resulting from the cross-validation procedures

is given in Figure 6.5. This gives the optimal model order p = 3. Note that there are

different ways of choosing the optimal order p in the cross-validation process. The

common method is to simply choose the p giving minimum residual variance. Another

typical method (Hastie et al., 2009, p. 244) also computes the standard deviation of a

set of residual variance corresponding to each fold. Means and standard deviations for

each possible p are both considered. In this method, the optimal p is chosen to give

the most parsimonious model whose mean is no more than one standard deviation

above the mean of the best model. In this study, the simple method is used.

With p = 3, the linear coefficients are then estimated by the weighted least square
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Figure 6.5: The cross-validated residual variance for the lag domain method. The
residual variance has a minimum at p = 3.

method on the modified Yule-Walker Equations. The weight matrix W used here is

a Parzen window weight sequence on the diagonal and zeros elsewhere. The Parzen

window weight sequence can be derived from (2.34). The estimated linear coefficients

of the lag domain method are plotted in the top panel of Figure 6.6.

The lag domain method gives a simple model. The predictors only involve ±3

lags from the tide gauge records and the estimated linear coefficients has a waveform.

The predictability decreases for large lags. This indicates a short ‘memory’.

Results: With the parameters estimated, model (3.3) can be used to predict Y H

from XH , where XH is the high frequency component of the tide gauge sea level

anomalies. The predictions for Y H is also a time series defined on the hourly grid G1.

Sub-sampling the predictions of Y H |G1 gives predictions on the satellite altimetry

grid G2, denoted by Ŷ H |G2. Ŷ H |G2 is subtracted from Y |G2 to de-alias as in (3.5),

where the de-aliased series is denoted by Y c|G2.

The de-aliased series given by the model is plotted in the top panel of Figure 6.7

on top of the original time series Y |G2. It is obvious that Y
c|G2 is less variable than

Y |G2 and contains less extreme values. The low frequency variability in Y c|G2 is thus

more visible.

The standard deviations of Y |G2, Ŷ
H |G2 and Y c|G2 are listed in Table 6.2. The
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Figure 6.6: Plot of the estimated linear coefficients au (u = −p,−p + 1, · · · , p) for
the three de-aliasing methods. The lag domain and frequency domain methods both
select predictors within a few small lags and the results are similar. But the frequency
domain method gives a smoother shape of the coefficients. The lasso method also
selects a small number of predictors but it can pick up some significant predictors
corresponding to large lags.
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Figure 6.7: Plot of the de-aliased altimetry sea level anomalies (SLA) using the three
de-aliasing methods (red line) and the original altimetry SLA (blue line). The de-
aliased SLAs given by the three methods all reduce the variance of original SLA by
reducing the spikes and extreme values. Results of the lag domain and the frequency
domain methods are similar as expected. The lasso method performs better than the
other two methods.
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lag domain de-aliasing method reduces the standard deviation of the sea level anomaly

by 1.55 cm.

Table 6.2: De-aliasing results of the three methods. Time series Y |G2 corresponds
to the original satellite altimetry sea level anomalies. Ŷ H |G2 is the predicted
high frequency component in Y |G2 and Y c|G2 is the de-aliased version of Y |G2.
The sample standard deviations (unit in meters) of these time series for the three
de-aliasing methods are listed.

Time series Y |G2 Ŷ H |G2 Y c|G2

Lag 0.0835 0.0483 0.0680
Frequency 0.0835 0.0442 0.0683

Lasso 0.0835 0.0498 0.0621

6.1.3 Frequency Domain Method

Parameter Estimation: The frequency domain method first selects a window

width M (instead of p) using a 5-fold cross-validation process. Figure 6.8 shows the

result of the cross-validation, where the minimum residual variance is at M = 7.
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Figure 6.8: The cross-validation result for the frequency domain method. M = 7
gives the minimum residual variance and is used as the window width in the spectral
estimations.

With M = 7, the linear coefficients are estimated from the inverse Fourier trans-

form of the transfer function. The coefficients within ±M are estimated and plotted
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in the middle panel of Figure 6.6. The frequency domain method gives similar results

as the lag domain method. The predictors are within a few small lags and the coeffi-

cients has a waveform. The difference is that the frequency domain methods gives a

smoother shape at the ‘tails’.

Transfer Function: The estimation for the transfer function is provided to

give details of the frequency domain method and physical interpretations. The

auto-spectrum hXX(ω) is estimated from the sample ACVF, R̂XHXH (k). The cross-

spectrum hY X(ω) is estimated from the sample CCVF, R̂Y XH (k). For each spectrum

estimation, a Parzen window with window width of M = 7 is used where M is se-

lected by the cross-validation as explained above. Details of the estimation process is

the same as in SC1 (Page 36 in Section 3.3). The transfer function is estimated and

plotted in Figure 6.9.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1
Gain

Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−3

−2

−1

0

1

2

3

Phase

Frequency

Figure 6.9: The gain and phase of the estimated transfer function on frequency range
[0, 1/2]. The transfer function from the given tide gauge observations to the altimetry
observations is estimated. The window width used in the estimation process isM = 7.
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The gain of the transfer function indicates the amplification of signals at each fre-

quency and the phase of the transfer function indicates the time delay relationship at

each frequency. The amplification on the frequency band 0-0.15 (on a 0-1/2 scale) are

relatively more significant than higher frequencies. Correspondingly on this frequency

band, there is a small phase change. At frequencies higher than 0.15, the signals are

attenuated. But noting that these signals contribute little to sea level variance (see

spectrum of the tide gauge record in Figure 6.2), the overall effect is not significant.

Results: Similar to the lag domain method, predictions for Y H |G1 can be derived

from the fitted model (3.3) and sub-sampling gives predictions for the aliased high

frequency component Y H |G2. Subtracting Y H |G2 from Y |G2 gives the de-aliased

time series Y c|G2. De-aliasing results are in the middle panel of Figure 6.7 and the

standard deviations of Y |G2, Ŷ
H |G2 and Y c|G2 are listed in Table 6.2. The frequency

domain method reduces the standard deviation of the sea level anomaly by 1.52 cm.

As expected, the results are similar to the lag domain method.

6.1.4 Lasso Method

Parameter Estimation: We now consider the problem as a regression problem and

see how the lasso method works on real data. The response data vector is the satellite

altimetry sea level anomaly Y |G2, which includes 143 data points. The design matrix

is constructed from the hourly tide gauge sea level anomaly XH |G1. The predictors

include 61 lags, XH
t−u, u = −30,−29, · · · , 30, because higher lags are close to zeros

(see Figure 6.4). As a result, the design matrix include 61 predictors and 143 data

points for each predictors. However, as shown in Figure 6.3, there are some gaps and

this leads to occasional NaNs for the predictors and response. Removing the missing

data columns means that the number of valid data points is 149.

The lasso method chooses the significant predictors by constraints on the coeffi-

cients. A 5-fold cross-validation process was used to estimated λ. The optimal value

was 0.006. In this way, the optimal model is selected to give minimum residual vari-

ance. The linear coefficients estimated by the lasso method are given in the bottom

panel of Figure 6.6.

The lasso method selects the predictors according their effect on the residual
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variance. Only a few predictors are preserved. Similar to the lag domain and the

frequency domain methods, the au, u == −1, 0, · · · , 4 indicate a short ‘memory’ and

also a small time delay of the signals. Different from the other two methods, the

predictors corresponding to large lags are selected by the lasso method. Results show

that there are some significant predictors corresponding to large lags. For example,

the au, u = −13, 23 are not picked up by the other two methods. However, they

indicate amplifications of signals at certain frequencies. Actually, analysis of the

prediction for the aliased component show that the 30-hour signal as indicated in

Chapter 5 is picked up by the lasso method. Overall, the lasso method performs

better than the other two methods at detecting this specific signal.

Results: Similar to the other two methods, Y |G2 can be de-aliased with the fitted

model. Results are in the bottom panel of Figure 6.7. The standard deviations

of Y |G2, Ŷ
H |G2 and Y c|G2 are listed in Table 6.2. The lasso method reduces the

variance of the sea level anomaly by 2.14 cm. The improvement compared to the

other two methods is also explained by the 30-hour signal.

6.2 Application of De-aliasing Method

Results of the last section showed promise for these methods. In this section, the

frequency domain method is applied to a full satellite track and the de-aliasing results

are assessed.

6.2.1 Data Description

Sea level anomaly time series from tide gauge station 13, Rivière-au-Renard, was

used to de-alias the sea level anomaly products from satellite altimetry track 9. This

track contains 176 points. The tide gauge station position and the track points are

plotted on the map in Figure 6.10. Tide gauge station 13 was selected because this

record is relatively more complete (see Table 4.2 for proportion of valid data of each

tide gauge record).
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Figure 6.10: Plot of the tide gauge station position (black dot) and satellite altime-
try track (red dot). Tide gauge data are from the 13th station, Rivière-au-Renard.
Satellite altimetry data are from track 9 and this track contains 176 points. The
tide gauge station is inside the Gulf of St. Lawrence. The satellite altimetry track,
however, contains points both inside and outside the Gulf of St. Lawrence.

6.2.2 De-aliasing Results

The lasso method was applied to each point on track. Specific details of imple-

mentation are the same as in SC1 in Section 6.1.3. Figure 6.11 shows the de-aliasing

results for track 9. For each point on track, the standard deviation of sea level

anomaly (SLA) product ηSLA (Y |G2) and standard deviation of the de-aliased SLA

(Y c|G2) are plotted in the upper panel of Figure 6.11. The bathymetry corresponding

to the track point positions are plotted in the lower panel.

The de-aliasing method normally reduces the standard deviations by 1-2 centime-

ters for track points inside the Gulf of St. Lawrence (longitude range between −65◦

and −62◦). SLA is not improved as significantly for track points outside the Gulf of

St. Lawrence, especially in deep ocean area. This is expected. The main reason is

that a large portion of the aliased high frequency variations came from the 30-hour

signals in the Gulf of St. Lawrence (as indicated in Chapter 5). In addition, the points

on the track have different distances from the tide gauge position; it is expected that
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Figure 6.11: Standard deviation of sea level anomaly before and after de-alising at
each track point (upper panel) and the bathymetry corresponding to each track point
position (lower panel). The de-aliasing method reduces the variance of sea level
anomaly, especially at positions inside the Gulf of St. Lawrence. The standard
deviations went down by approximately 0.02 m. For positions outside the Gulf of
St. Lawrence the de-aliasing results are not significant.

the information transferred from a distant position should attenuate and thus be less

predictable. To illustrate this, we calculated the correlation between SLA of the tide

gauge and SLA along the satellite track and results show that the correlation goes

down as distance increases. Note that the gaps in the figures corresponds to lands.

The variance of the sea level is high in coastal areas and deep ocean areas.

Figure 6.12 shows the SLA time series before and after de-aliasing for track points

between −64.5◦ and −62.5◦ where the de-aliasing method gives good results. The

de-aliasing technique smoothed out some of the extreme observations including e.g.,

a red part (extremely high values) in year 2011 between −63.5◦ and −62.5◦, a blue

part (extremely low values) in year 2002.
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Figure 6.12: Altimetry sea level anomalies before (left panel) and after (middle panel)
de-aliasing and the difference between them (right panel). The difference is also
the predictions of the aliased high frequency component in the altimetry sea level
anomalies. Data are for longitude range from −64.5◦ to −62.5◦.



Chapter 7

Summary and Future Work

7.1 Summary

Satellite altimeters sample sea level about every ten days and thus alias the high

frequency variability of sea level. Conventional de-aliasing techniques in oceanography

remove the high frequency signals (above the Nyquist frequency of satellite altimetry)

using dynamical model predictions. These predictions are ocean model outputs and

account for the deterministic high frequency signals due, for example, to tides and

surges. Tidal corrections (predictions for tides) and dynamic atmospheric corrections

(predictions for surges) nowadays are very effective, usually reducing the standard

deviation of sea level variability from meters to centimeters (Chapter 4).

However, these corrections do not account for all of the high frequency signals

in sea level. The analysis presented in Chapter 5 indicates other significant high

frequency signals, in addition to tides and surges, that are potentially aliased by

satellite altimeters. Specifically, hourly tide gauge observations after corrections for

tides and surges (termed as sea level anomaly, SLA) indicate there are large scale, high

frequency signals left in the sea level which could cause an aliasing problem. Principal

component analysis was applied to multiple tide gauge SLA time series to determine

the frequency and spacial characteristics of the remaining signals. Several structures

were found, including an amplified 30-hour signal within the Gulf of St. Lawrence.

In order to effectively de-alias the satellite altimetry SLA product, it was con-

cluded additional techniques must be designed. It is natural to base the new tech-

niques on the tide gauge records used in the principal component analysis above.

Compared to the altimetry data, the tide gauge records are sparse in spatial dis-

tribution. However, as hourly records, they provide more information on the high

frequency sea level variability. This inspired the development of three statistical

de-aliasing methods, where tide gauge records are used to predict the aliased high

frequency component in altimetry SLA.

83
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The statistically-based prediction model assumes stationarity of sea level varia-

tions and a linear relationship between the altimetry and tide gauges measurements.

This is equivalent to a linear relationship between the high frequency component of

the tide gauge SLA, denoted by XH , and the satellite altimetry SLA, denoted by Y .

The predictors in the model are XH within ±p lags and the response is Y . Parameters

in the model include 2p+1 linear coefficients associated with the predictors stepping

from −p to p (see Chapter 3).

Three methods were designed to fit the model (Chapter 3). The lag domain

method adapts the modified Yule-Walker equations (Shumway and Stoffer, 2010).

The frequency domain method transforms the problem to the frequency domain where

the transfer function is estimated and then transformed back to get the coefficient

estimates for each predictor. The lag domain and the frequency domain methods are

similar but implemented differently. A critical step in the lag domain and frequency

domain methods is the estimation of the cross-covariance function between XH and

Y . The estimation is possible using the special techniques discussed in Section 3.2.1.

The lasso method treats the estimation as a regression problem. All three methods

use cross-validation to determine the optimal model order.

The three methods all end up with a fitted model. Although the model response

is the satellite altimetry SLA (or Y ), the predictions are for the high frequency com-

ponent of Y (denoted by Y H) because the low and high frequency components are

uncorrelated (see Section 2.3.3). With the fitted model and the hourly tide gauge

SLA, the predictions are also hourly. To de-alias, the predicted time series is sub-

sampled at the altimetry sampling interval and then subtracted from the satellite

altimetry SLA products.

The mathematical statement of the statistical de-aliasing model including the

three methods of parameter estimation is presented in Chapter 3. Two simulation

cases are used to evaluate and compare the performance of the three methods. All

methods give promising results as measured by the comparison of the prediction of

the high frequency component with the truth (which is available in the simulation

cases).

Finally, the statistical de-aliasing methods were applied to the satellite altimetry

SLA and the tide gauge SLA. In order to show how these methods work, the methods
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were tested on a single tide gauge station and a single point on track. Both the tide

gauge and altimetry positions are located within the Gulf of St. Lawrence so that they

both contain the 30-hour signal. Details are given in Section 6.1. All methods gave

similar de-aliasing results in terms of reducing the sea level variance. Specifically, the

lag domain method reduced the standard deviation of sea level variation by 1.55 cm,

the frequency domain method by 1.52 cm and the lasso method by 2.14 cm. Overall,

the lasso method gives most effective and interpretable results in this study. The lasso

method was then applied to a complete satellite altimetry track using the record of

one tide gauge station. De-aliasing results are stable. The standard deviations at

track points inside the Gulf of St. Lawrence are normally reduced by about 2 cm.

The reductions in standard deviations outside the Gulf of St. Lawrence are small, as

expected.

7.2 Future Work

The most obvious next step is to apply the de-aliasing methods to all the satellite

altimetry tracks to improve the overall quality of the altimetry product. However,

as mentioned in Section 6.2, it is not easy to determine a universal model for all

the track points based on one tide gauge. This statistical de-aliasing method is

a local method, where local tide gauge information is used to predict the satellite

altimetry information. As a result, the quality of the predictions is highly dependent

on the choice of tide gauge. Sea level at each track point may contain high frequency

signals not present at the tide gauge station. As a result, more flexible and effectives

technique need to be developed to extract specific information from certain tide gauge

records, with which altimetry products for a specific track point can be de-aliased.

The statistically-based model in this study can be improved. One promising way

would be to include more tide gauge stations as predictors. As shown in Figure 5.6,

the dominant 30-hour signal among the aliased signals is propagating around the

Gulf of St. Lawrence. A single tide gauge record may not fully capture the spatial

characteristics of the propagating signal. Predictions based on multiple tide gauge

stations will likely be much more effective.
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Additional improvements may also include extension and generalization of the de-

aliasing model. The current model has a very simple form as is based on the assump-

tions of stationarity and linearity. Stationarity of the underlying processes admits

spectral representation theorem discussed in Theorem 1. Linearity is the cornerstone

for the relationship between the coefficients and transfer function (Equation 2.38). It

is also the basis for the zero correlation between the low and high frequency compo-

nents (Section 2.3.3). Both assumptions are used in the development of the present

model. In practice, stationarity of the time series used in the application process

was approximated by simply removing a linear trend. However, it would be more

precise to take into account seasonality of the sea level variability. It would also be

interesting to consider generalization to a nonlinear model.

Finally, my discovery of the spatially-coherent signal within the Gulf of Maine

and Gulf of St. Lawrence is already stimulating further research in ocean modelling.

Eventually it will be necessary to model these local high frequency signals determin-

istically, based on physical principles.



Bibliography

User Handbook AVISO. Merged topex/poseidon products. Romonville St-Agne,
France, page 201, 1996.

Loren Carrère and Florent Lyard. Modeling the barotropic response of the global
ocean to atmospheric wind and pressure forcing comparisons with observations.
Geophysical Research Letters, 30(1275):4, 2003.

Loren Carrère, Florent Lyard, M Cancet, A Guillot, and Laurent Roblou. Fes2012:
A new global tidal model taking advantage of nearly 20 years of altimetry. In
Proceedings of meeting, volume 20, 2012.

Dudley B Chelton, John C Ries, Bruce J Haines, Lee-Lueng Fu, and Philip S Callahan.
Satellite altimetry. International Geophysics, 69:1–ii, 2001.

Fabien Durand, Doraiswamy Shankar, Florence Birol, and S Satheesh Chandra
Shenoi. Estimating boundary currents from satellite altimetry: A case study for
the east coast of india. Journal of oceanography, 64(6):831–845, 2008.

Benjamin Friedlander and Boaz Porat. The modified yule-walker method of arma
spectral estimation. Aerospace and Electronic Systems, IEEE Transactions on,
(2):158–173, 1984.

Adrian E Gill. Atmosphere-ocean dynamics, volume 30. Academic press, 1982.

Trevor J.. Hastie, Robert John Tibshirani, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction. Springer, 2009.

JD Horel. Complex principal component analysis: Theory and examples. Journal of
climate and Applied Meteorology, 23(12):1660–1673, 1984.

R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. Ap-
plied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007. ISBN
9780131877153. URL https://books.google.ca/books?id=gFWcQgAACAAJ.

Daniel R Lynch and William G Gray. A wave equation model for finite element tidal
computations. Computers & fluids, 7(3):207–228, 1979.

Emanuel Parzen. Mathematical considerations in the estimation of spectra. Techno-
metrics, 3(2):167–190, 1961.

Rich Pawlowicz, Bob Beardsley, and Steve Lentz. Classical tidal harmonic analysis
including error estimates in matlab using t tide. Computers & Geosciences, 28(8):
929–937, 2002.

87



88

K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. URL http:

//www2.imm.dtu.dk/pubdb/p.php?3274. Version 20121115.

Sylvie Pouliquen. In-situ observations: Operational systems and data management.
In Ocean Weather Forecasting, pages 207–227. Springer, 2006.

M.B.M.B. Priestley. Spectral Analysis and Time Series. Probability and math-
ematical statistics. Academic Press, 1981. ISBN 9780125649223. URL http:

//books.google.ca/books?id=0Ge0ngEACAAJ.

Ian Robinson. Satellite measurements for operational ocean models. In Ocean
Weather Forecasting, pages 147–189. Springer, 2006.

Laurent Roblou, Julien Lamouroux, Jérôme Bouffard, Florent Lyard, Matthieu
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