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ABSTRACT

The processing conditions of edible fats determine the crystalline structure of a product. This
affects the product’s texture, flavor, mouthfeel, moisture content, etc. To improve the quality of
fat-based foods, it is necessary to study the effects of processing conditions, chiefly lipid
composition, cooling temperature, shear rate and holding time under shear, on the crystalline fat

structure at a mesoscopic scale.

Crystallization experiments were done using different weight proportions (3:7, 5:5, 7:3) of the
triacylglycerols trilaurin and trimyristin, diluted in 60% by weight triolein. Polarized light
microscopy, coupled with a shear cell, was used to obtain time-resolved micrographs of the
crystallization. Experiments were conducted at temperatures between 11 and 21°C and shear rates
of 0.8, 8, 80 and 800 s™'. Micrographs were captured at regular time intervals, up to 30 minutes.

2640 images of 1600x1200 pixels were collected in total.

To improve the available image analysis tools for TAGs crystallization two types of methods were

devised and tested:

Firstly, a “histogram and texture classification” procedure, followed by a hierarchical clustering
method was developed. The procedure was successful at establishing clear relationships between
the processing conditions (shear rate & temperature) and the characteristic histograms and textures
of the micrographs. The groups obtained from the clustering were used to develop a method to

estimate the type of images produced by specific processing conditions.

Secondly, characteristic fast Fourier transform images, CFFT, were created from the two-
dimensional Fast Fourier Transform power spectra (2DPS) of the micrographs. Then, the Pearson
correlations between time-matched pairs of CFFT images were averaged to obtain correlation
values between pairs of experiments. These correlation values were used to produce pair distances.
Hierarchical clustering was used to group the experiments based on these distances. The clusters
obtained were similar to those from the histogram and texture distance method. However, the

differences warrant the inclusion of more information from each two-dimensional power spectrum.
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Additional analysis were done on onset times, histogram intensities, and size and orientation.
These offer new methods to analyze micrographs, that will help develop better understanding of

the crystallization processes of fats.
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Chapter 1 Introduction

1.1 BASIC INTRODUCTION TO SOME ESSENTIAL CONCEPTS AND METHODS

Triacylglycerols (TAGs) are the most common form of energy storage in most living organisms
and are present in all cell membranes. The study of crystallization of TAGs is important for the
food, pharmaceutical, and cosmetics industries. It is also necessary for understanding the medical
and biological behavior of TAGs. One of the tools employed most frequently to study TAGs
crystallization is Polarized Light Microscopy (PLM). The images obtained provide a visual
impression of the different structures that these materials form under different processing
conditions such as cooling rate, temperature and shear rate. Controlled temperatures and shear
rates are employed in the industrial manufacturing of various fat-based food products such as ice
creams, shortenings, margarine, and chocolate. However, the systematic study of the effects of

shear is only recently been undertaken by the scientific community.

The main focus of this thesis is to study the microstructure during the crystallization of a
multicomponent triacylglycerol system under several constant shear rates. This model system
represents a typical partial liquid fat in an industrial process in which crystal nucleation and growth
occur simultaneously. The thesis thus explores methods to use quantitative descriptors of grayscale
images obtained from diluted TAG mixtures crystallized under different temperatures and shear
conditions. This chapter introduces the main concepts, whereas the Materials and Methods chapter

includes more details.

The term “microstructure” is used in two different, sometimes confusing, ways. The most physical
meaning refers to the three-dimensional distribution of material in space. The second meaning
refers to the appearance of a material at a micro scale level, which can be observed using a range
of microscopic techniques (PLM in our case). To avoid confusion, the term “microstructure” will
be used throughout the thesis in its first sense, i.e., to denote the actual physical structure of the

material. For the appearance of the material in the micrographs, the word “texture” will be used.

The analysis of images to extract scientifically relevant information based on size, shape, etc. is

performed using a broad suite of mathematical methods. In some cases, the analysis is precise,
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simple, and straightforward. This is normally the case for discrete, well-separated particles that

offer a good contrast with the background (e.g., opaque solids in a liquid).

Unfortunately, the crystallization process of TAGs does not result in materials that conform to this
simple case. Fat crystals are of nanoscopic dimensions, and by using light microscopy, we can
only image the relatively large aggregates that these nanocrystals form during crystallization.
Additionally, these systems are multiphasic, contain several components, and crystallize in
different kinds of clusters. The problem is further complicated when the material studied is under

shear flow.

To image the crystals, it is necessary to have a source of contrast. TAG crystals exhibit
birefringence, an optical property in which the refractive index of the material depends upon the
direction of the polarization of light transmitted through it. The main source of contrast in polarized
light imaging is this directional difference in the refractive index between the crystals and the
liquid. Even though the numerical difference in the values of refractive index is not very big, the
birefringence of the crystals provides an excellent source of contrast under polarized light. For this
reason, most research works make use of PLM, as reported in papers describing the microscopic

imaging studies of TAGs crystallization.

PLM is usually carried out along with other essential techniques used to study crystallizing TAGs.
X-Ray Diffraction (XRD) provides information about the nanostructure of the crystals, whereas
Nuclear Magnetic Resonance (NMR) provides ratios of solid/liquid, as well as some nanostructural
characteristics. PLM complements these methods by imaging the microstructures, which are
outside of the length scales that can be sampled with XRD and NMR. XRD and NMR are
sophisticated and expensive methods, whereas PLM is a cheaper and more accessible technique.
It is therefore also used to carry experiments exploring broader or more detailed sets of conditions

than those explored with NMR and XRD.

Time-resolved micrographs provide large amounts of qualitative data. Since these micrographs
can be obtained and analyzed quickly, PLM is a desirable method for studying fat crystallization
processes. However, to obtain useful quantitative information, this method must rely upon the

development and use of an appropriate analytical method.



One limitation of translating PLM micrographs into quantitative data arises from the fact that
crystalline bodies in the sample are positioned at many angles, thus producing many different
intensities. In some regions, the angle does not produce sufficient contrast to be distinguished from
the uncrystallized liquid. A second limitation is the very small field of view. With a 10X objective
the typical field of view is about 1 mm?. This is about ~0.02% of the sample on a 25 mm sample
disc. However, the actual length scale of features that can be considered “bulk” depends on the
size of the clusters and their distribution, and it is usually only a few millimeters. To reduce the
effect of both limitations it is necessary to take the average of frequently captured micrographs
and perform enough repetitions of the experiments. This solution clearly necessitates a
representative and meaningful averaging process between images obtained under the same

conditions in repeated experiments.
1.1.1  Digital images and histograms

To clarify how digital images are created and analyzed, a pedagogical model square 2-D matrix
made of 16 x 16 spots is shown in Figure 1, representing a digital image. This square has 256 spots,
and each one is identified by a pair of coordinates in the horizontal (x) and vertical (y) direction.
In imaging, the (0,0) coordinate is usually the upper left corner, rather than at the lower left corner.
In an image obtained directly from the camera, each one of the spots would correspond to the
location on an electronic device, e.g., on a charge-coupled device (CCD) chip. Both the physical
spot and its computer representation are called a “pixel.” “Pixel” is also used to refer to the spot in
a computer screen. Figure 1 shows an enlarged view of the 16 x 16 = 256 pixels of the model

image.

In many CCD devices, each pixel has the ability to store a value that can be a multiple of 8, because
of the standard binary architecture of computers (1 byte = 8-bit). The value represents the intensity
of the light that was sensed by the CCD pixel at the time of exposure. Thus, each pixel can have a
value, or intensity, that is represented by a number. In an 8-bit image, each pixel can take 2% values,
i.e. values between 0 and 255. The visual representation of these values using shades of gray is

called a grayscale, and their representation is termed grayscale tones or values. In the image in



Figure 1, each pixel has been sequentially filled with numbers between 0 and 255 following the

pixel coordinates: grayscale = y*15 + x.

Figure 1. Model image of 16x16 pixels. Each pixel has been sequentially filled with
grayscale values between 0 and 255 computed from the pixel coordinates: grayscale = y*15

+ X.



(a) (b)

Figure 2. Model 16 x 16 pixel images (a) & (b). The pixel values were randomly set from

nine different values: 0, 32, 64... etc.

This thesis explores, among other options, the use of histograms to characterize and therefore
classify images. A histogram is the distribution of the number of pixels of each grayscale intensities

value, regardless the coordinates of the pixels.

To illustrate how histograms are obtained, a set of model images are presented in Figure 2 and in
Figure 4, and their histograms discussed. Figure 2 displays two images, having pixel values set
randomly from nine different values between 0-255 (0, 32, 64... etc.). The histograms for the two
images in Figure 2 are plotted in Figure 3. Three common ways of presenting histograms are bars,
lines and dots. The blue histogram bars, histogram lines and histogram dots in Figure 3 correspond
to the image (a), and illustrate the three different methods to visualize histograms. The green bars
correspond to the image (b). The different distributions of grayscale intensities lead to different
appearance of the histograms. The total intensity, sometimes called integrated intensity, is the sum

of the values of all the pixels. For the image (a) the total is 31,153, and for the image (b) is 35,983.



vl
o

N w =
o o o
1 I I

Number of pixels

[
o
]

0 32 64 96 128 160 192 224 255
Pixel grayscale value, i.e., intensity

Figure 3. Histograms of the images in Figure 2, representing the distribution of grayscale
pixel values, where bars, dots, and lines represent three ways to represent histogram data.
The blue bars and lines correspond to Figure 2 (a) whereas the green bars correspond to

Figure 2 (b).

The second set of model images has the pixel values following a sinusoidal variation, as displayed
in Figure 4. The directionality of the sinusoidal curve is different in images (a) and (b): image (a)
has variation in the x-direction: grayscale = 127-sin(2-n-x/8). Image (b) has variation in the
diagonal direction: grayscale = 127-sin[2-7-(x+y)/8]. Image (c) is the average, pixel by pixel, of
the two images (a) & (b).



77

(a) (b) ()

Figure 4. Images created using a sine function for the grayscale values (see text): (a) in the

“x” direction, (b) in a diagonal direction, (c) average of images (a) and (b).
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Figure 5. Histograms from Figure 4, the sinusoidal images. The green bars correspond to the
images (a) and (b), whereas the blue corresponds to the averaged image (c). Bars, dots, and

lines show three ways to represent histogram data.

The histograms of the two sinusoidal images (a) and (b) in Figure 4 are shown as green bars in
Figure 5. They are identical and therefore overlap each other. The difference between images (a)
and (b) in Figure 4 is the direction of the sinusoidal function, not the number of pixels of each
grayscale intensity. Hence, the histograms look the same. Their total intensities are also the same,
32,512. The total intensity of the averaged image (c), 32,464, is only slightly different. However,
the histogram of image (c), in blue, is quite different from that of its parent images, and it includes
values that were not in the parent image. These values were created in the process of averaging the
pixels of images (a) and (b). The histogram in Figure 5 includes more values than the one in Figure

3 because the image in Figure 4 (c) has more grayscale intensities.



1.1.2  Discrete 2D-FFT of images

The histograms provide some differentiation between images, but do not offer a direct connection
between the values of the pixels and their position in the image. A more advanced method, Fourier
analysis, may provide better information, since it is sensitive to the position of the grayscale values

of the pixels. It is, however, more complicated to compute and to interpret than a histogram.

In Fast Fourier Transform (FFT) analysis of images, the spatial size domain (the original image)
is transformed into the spatial frequency domain, a two-dimensional power spectrum image
(2DPS). Essentially, each image is decomposed into a finite number of plane sine waves, using a

very efficient algorithm, and the information of all the waves is stored in the 2DPS.

¥

Figure 6. Representation of how an image containing the 2D-power spectrum (2DPS) of a
2D-FFT stores information. The image is symmetric with respect to its centre. The phase
information is stored in a similar way in a separate image. The coordinates in the image of
the 2D-FFT are (xc,y.) for the center and (x,yp) for a given pixel. The coordinates relative to

the center are xr = xp - xc and yr = yc - yp. The orientation angle is given by 8 = arctan(yr /xy).

The original image can be reconstructed by adding-up all the plane waves, each one with four

characteristics: wavelength, amplitude, phase, and direction. Each pixel of the 2DPS contains the



four characteristics, as described in Figure 6. The red dot indicates the center of the power

spectrum.

The FFT converts the spatial size domain into spatial frequency domain. The spatial frequency v,
as indicated below, can be converted to its corresponding characteristic wavelength or space period
“s”, which is calculated as the ratio of the number of pixels in one side of the image(7max) divided

by the spatial frequency. The frequency and the space period are given by

_ [ 2
V=4/x,+y,

s = nmax/\/'

The space period is often called “size”, since it refers to the size of the repeating pattern in the

original image.

The value stored in the pixel, i.e., its grayscale intensity, corresponds to a logarithmic function of
the power, which is the square of the amplitude of its wave, represented by a number between 1

and 254 for FFT of 8-bit images.

The large images in this thesis were transformed to spatial frequency by discrete 2D-FFT power
spectrum using the ImageJ software. The FFT of the much simpler images in Figure 4 are presented
now in Figure 7, to provide the reader with a basic sense of how this method works. The center
point of the 2DPS is represented by the red dot in each case. Note that the small number of pixels
require the centre to be at coordinates (8,8), since there are no fractional pixels. In FFT analysis of
digital images, the centre is offset by one pixel, though this is hardly noticeable in 2DPS images
that are 2048 x 2048 pixels, as are those in the thesis. Because of mathematical symmetry, each
point has its mirror image across the center point. Hence, in practice, only half of the 2DPS image

1s needed.
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(a) (b) (c)

Figure 7. 2DPS of the sinusoidal images (a), (b) and (c) in Figure 4, respectively.

The 2DPS of image (a) shows that the image can be represented by a wave in the “x” direction,
that has its main frequency (the white dots) at two pixels from the centre. This corresponds to a
spatial period, or size, of eight pixels. The weaker gray pixels represent the first harmonic of the

original wave.

The 2DPS of image (b) from Figure 4, display the same amplitudes but different period and

direction. It also contains more harmonics.

The 2DPS of the image made by averaging the first and second waves is shown in Figure 7 (c).
The individual contributions of the original images are clearly present as the major contributors to
the image, which appear as the brightest pixels adjacent to the center (red). It is possible, then, to
decompose the averaged image (c) into its original components (a) and (b). The original harmonics

are present, as well as many combinations of them.

The presence of harmonics introduces an added difficulty in the FFT analysis of images. It is often
circumvented by taking only the main intensities, since the harmonics have lower intensity than

their parent waves.

To illustrate how the pattern is detected by the 2DPS, the image in Figure 8 (a) was created by

averaging the first image in Figure 4 (a) with an image similar to Figure 4 (b), but with half its
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amplitude. The 2DPS of the resulting image is seen in Figure 8 (b). The characteristic frequencies

and orientations are the same as in Figure 7 (¢).

(a) (b)

Figure 8. (a) Image obtained by averaging the sinusoidal image in Figure 4 (a) with the
diagonal sinusoidal in Figure 4 (b), made with the amplitude reduced by a factor of 2. (b)
2DPS of the sinusoidal image (a).

Could the histograms “catch” the similarity between the images in Figure 4 (c) and Figure 8 (a)?
The histogram of image in Figure 8 (a) is plotted in Figure 9. It is very different from the one in
Figure 5. Though the histograms offer some degree of analytical power, they may fail to serve as
indicators of similarity or difference between images. It seems, thus, worthwhile to explore the

possibility of using FFT analysis, even if its computation and interpretation may be far more

difficult.
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Figure 9. Histogram of Figure 8 (a), in points and lines format. It is very different from

Figure 5, despite the similarity of the images that produced both histograms.

Another potentially useful feature of FFT analysis is the separation of the phase information
contained in the image. For images of similar structures that have been shifted, or rotated due to
their movement in the shear field, the removal of the phase information may aid in the
identification of characteristic sizes. To illustrate this, the image in Figure 10 (b) was obtained by
averaging the first image in Figure 4 (a) with an image similar to Figure 4 (b), but with a phase
shift of 4 pixels. It is plotted beside Figure 4 (a) (here Figure 10 (a)) to highlight the difference.
The 2DPS of Figure 10 (b) is seen in Figure 10 (c¢). The characteristic frequencies and orientations,
as well as the power values, are the same as in Figure 7 (c). It can be noted that the phase has no

effect on the FFT or the histogram. Both methods, histogram and FFT, are independent of phase.
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(a) (b) (c)

Figure 10. (a) Sinusoidal image in Figure 4 (c); (b) Image obtained by averaging the
sinusoidal image in Figure 4 (a) with the diagonal sinusoidal (Figure 4 (b)), made with a

phase shift of 4 pixels. (c) 2DPS of the sinusoidal image Figure 10 (b).

The basic concepts presented above suggest that both tools, i.e., histograms and FFT, can likely

be used to obtain “fingerprints” of images, which can then be then used to classify the images.

With actual images, the distribution of pixel values, obtained from the polarized light transmitted
through the sample, is far more complex. To illustrate the challenge of classification, consider the
two images, (a) and (b) in Figure 11. Intuitively, the brain can tell that they are likely “of the same
kind.” However, one could not simply take the average of pixel values, and compare them with

the average image (a) and (b) in Figure 11.

There is no effective averaging process available in the literature to include images from different
parts of the sample that have different versions of similar microstructures. Such kind of ‘averaging’

process is necessary for comparison between images and subsequent classification.
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(©)

Figure 11. Images from 3L7M40 at 21°C and under shear rate of 0.8 s™'; (a) after 252 seconds

(b) after 288 seconds; and (c) image formed by overlaying the above two images (white line

in each micrograph corresponds to 100 um).
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Figure 12. Histogram of the images in Figure 11 (a) and (b).

In Figure 11, the images (a) and (b) were added to illustrate the averaging problem. The two images
are identical in terms of texture type, intensity, and crystal sizes. In addition, the histograms of the
two images are quite similar with the distribution of the grayscale intensity in the 2D space,
irrespective of the position as observed in Figure 12. With the application of shear, the field of
view changes every time the camera captures an image. Some parts of the images may overlap, as
seen in the superimposed image Figure 11 (c), while others do not. In this composite image, green
is from image (a) and red from (b). Averaging crystal images with liquid being present is
meaningless. If the number of images summed increases to the range of 10-15, the final averaged
image will be an uneven gray image consisting of different textures overlapping each other, which
implies nothing. Hence, a better classification process is needed to preserve the visual

characteristics of these microstructures obtained under shear.

This thesis explores the use of visual appearance, histograms and FFT to provide a characterization
of the images. The characteristics were used to produce a “distance of dissimilarity” between
images, where the distance between similar images is zero and between dissimilar images is one.
The images were then classified into groups using hierarchical clustering. The groups were later

related to the processing conditions used to produce the images, chiefly temperature and shear rate.
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1.1.3  Hierarchical clustering

The main purpose of the histogram and FFT analysis was to characterize the images, and
eventually develop some scale of dissimilarity between them. This was done in order to explore if
the experiments could be classified into groups, and if these groups would be related to the
processing conditions. The most common methodology for this type of classification is

hierarchical clustering.

Hierarchical clustering is a widely used data analysis tool. The main idea is to build a binary tree
of the data that successively merges similar groups of points in a form of cluster tree, also known
as a dendrogram. The cluster tree or dendogram provides a visual summary of the data. In this
thesis, the methodology followed was that provided by the software MATLAB, and it is briefly

introduced here.

MATLAB offers a brief introduction to hierarchical clustering that is partially summarized here,
by starting with a group of five arbitrary points in a Cartesian plane. These points are considered

objects, and the distance between them is their dissimilarity.

The first step in hierarchical clustering is to look for the pairs that are most similar. Based on the
similarity or dissimilarity, the objects (1,2,3,4,5 in Figure 13 (b)), or their groups (objects 6,7 and
8 in Figure 13 (b)) are further grouped into a hierarchical cluster tree. In the first round, the system
builds a complete linkage between all pairs. The data is later partitioned into branches in

MATLAB, which depend upon more or less arbitrary cut-off criteria to separate the groups.

“Consider a data set, X, made up of five objects where each object is a set of x,y coordinates (which

are completely arbitrary), i.e.,:

Object1: 1,2
Object 2: 2.5, 4.5
Object 3: 2,2
Object4: 4, 1.5
Object 5: 4,2.5”

o O O O O
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Figure 13. (a) Calculation of the distance between two elements, (b) grouping the elements

of sets, (c) representation of grouping in dendogram form depicting the linkage and the

heights of the clustering (From MATLAB documentation).
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The Cartesian distance, shown in Figure 13 (a) between objects 2 and 3, is calculated for each pair
of elements. Based on the proximity of the objects, linkages are calculated, and new ‘objects’ are
successfully created by grouping, as shown in Figure 13 (b). Using these links, a dendrogram, in
Figure 13 (c), is obtained. The decision of where to cutoff the branches determines the number of
groups. The groups 6, 7, 8, and 9 were created based on the distance between them. These groups

contain objects 4 and 5; 1 and 3; 1,3,4 and 5; and 1,2,3,4 and 5, respectively.”
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1.2 THESIS STRUCTURE

After this introductory chapter, the thesis provides a brief literature review of pertinent topics in

Chapter 2.

The third chapter is devoted to an explanation of the materials and the methods used in the thesis,
expanding upon concepts presented in the introduction. However, since part of this work was to
find and implement or modify methods, some of the details of the methods are further discussed

or presented in the fourth chapter, dedicated to the presentation and discussion of results.

In the first part of Chapter 4-Results and Discussion, a sample selected from the 2640 micrographs
is presented, along with a discussion of their general visual appearance. An analysis of orientation
and its relationship to shear follows, to provide the basis for some of the discussions in the second
and third parts of the chapter. Finally, a quantitative analysis of the onset times is included, as it

often provides important information on the kinetics of nucleation and growth.

In the second part of the Results and Discussion Chapter, the visual appearance of the micrographs
and their histograms were characterized based upon various features. The characteristics were used
to produce an identifying code for each experiment. The codes were then used to estimate a
histogram and texture distance method (H&T) correlation between pairs of experiments. The
correlations were fed to a hierarchical clustering algorithm to group the experiments. This led to
suggest a possible method to predict the probability that a given set of processing conditions
(material + temperature+ shear rate) will produce a type of texture and histogram. A discussion on
the effect of shear on the cumulative histograms is included at the end of the section, and an

additional set of possible characteristics is presented.

The third part of the Results and Discussion chapter used the most significant eight values of four
characteristics (rank, intensity, size, orientation), obtained from the 2DPS of each micrograph.
These characteristics were used to create a simplified image, i.e., a characteristic FFT (CFFT)
image. The Pearson correlation between each pair of these CFFT images was then computed. A
set of ‘blind’ image-to-image correlations were plotted to see if there was a strong evident

clustering. However, the data set was too large, and there are too many unrelated images. It was
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thus decided to average the individual Pearson coefficients for equal-time images, and thus obtain
a value for each pair of experiments. The experiments were then grouped using the same
hierarchical clustering algorithm as in part two. The results from both methods were compared,
and they were found to be similar, albeit far from identical. The final section of part three explores

specifically the characteristics of ‘size’ and ‘orientation’.

Both the H&T characteristics and the CFFT characteristics proved sensitive to the shear rates

applied, and to a lesser extent to the material and the temperature.

The final chapter offers a summary and conclusion, along with specific recommendations for

future work and for the implementation of the methods discussed in the thesis.

The findings of this thesis should be of both academic and industrial interest, owing to the
importance of understanding how to better compare different micrographs of materials crystallized
under shear. This work also offers a collection of images of binary mixtures of fats under controlled

shear that can be used in the future as a model for studying multicomponent systems.
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1.3 RESEARCH OBJECTIVES

The aim of this study was the development of methods for the comparison and analysis of
micrographs obtained under different conditions (temperature and shear) to better understand fat

crystallization.
To contribute to that general objective, the specific research objectives of this thesis include:

e Acquiring time-resolved micrographs from the microstructures formed by TAGs under the
combined effect of shear and temperature.

e Testing standard grayscale image analysis methods for their ability to describe the textures
produced by various microstructures as a function of processing conditions. These methods
include:

o Qualitative classification.

o Onset time analysis.

o Histogram comparison and classification.
o Total grayscale intensity evaluation.

e Using hierarchical clustering methods to find relationships between the image groups in
each experiment and their processing conditions.

¢ Developing methods to estimate the type of images that will be obtained under a given set
of processing conditions.

e Testing non-traditional grayscale image analysis methods to:

o Calculate Pearson correlations between the pairs of FFT images converted from the
micrographs.
o Study the effect of shear on the intensity progression of the PLM images.

o Study the effect of shear on the size and orientation of TAG crystal clusters.

22



Chapter 2 Literature Review

2.1 GENERAL CONCEPTS ON TAG CRYSTALLIZATION
2.1.1 TAGs

TAGs are one of the major constituents of fats. TAGs are esters of glycerol bound to three fatty
acids. Wide ranges of TAGs are found in nature, each consisting of different fatty acids at various
positions within a TAG molecule. The acyl chains of a TAG molecule (the chains bearing an alkyl
group) (Figure 14) can be saturated, unsaturated, branched or linear, and can contain either odd or

even numbers of carbon atoms.

o
CH0-CR;
0
CH-O-C-R,
o
CH,~O-C-R;

Figure 14. General structure of a TAG molecule.

TAGs are further classified into two subtypes: 1) simple, or monoacid, TAGs, and ii) mixed TAGs,
depending upon the acyl groups attached to the glycerol backbone. If R1, R2 and R3 in Figure 14
are identical then the TAG is considered a simple TAG, whereas if one or more R groups are

different, then the TAG is known as a mixed TAG (Sato et al., 1999).
2.1.2 Polymorphism

Polymorphism is defined as the ability of a substance to exist in multiple structural forms. This

phenomenon has been well-established for pure TAGs and natural fats. In TAGs, the existence of
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different crystalline structures was known as early as 1849 (reported by Chapman ,1962). A TAG

molecule has three major polymorphic forms: o, B’ and p (Figure 15).

Melt

/ A A

B

Figure 15. Dynamics of polymorphic transformations in TAGs and fats. (Figure 1.18,
Chapter 1 in Marangoni & Wesdorp (2012)).

Q
e

Polymorphism in TAGs arises from variations in hydrocarbon chain packing. These variations can

be described using the sub-cell concept (Vand & Bell, 1951) (Figure 16).

At the time of the fat crystallization, a TAG molecule tends to adopt a conformation with the lowest
possible Gibbs free energy (i.e., the most energetically stable conformation at those conditions)
(Larsson et al., 2012). The arrows between the polymorphs in Figure 15 depict the order of

thermodynamic stability.

The three polymorphic forms differ in the lateral arrangement of the molecules or the sub-cell
packing (Bailey et al., 1979; Vand & Bell, 1951). The polymorphic form a has hexagonal sub-cell
packing; B’ has an orthorhombic perpendicular packing; and B has triclinic parallel packing

(Lutton, 1950). These packing forms are depicted in Figure 16.
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Figure 16. The sub-cell structures of the three most common TAG polymorphs (Sato, 1999).

(Permission has been obtained from Elsevier Scientific Publishing Co.).
2.1.3 Crystallization of fats

Solids can be divided into two distinct classes, amorphous and crystalline. The molecules in
amorphous solids are stochastically distributed in space. On the other hand, a crystalline solid is
composed of atoms, ions, or molecules that display a long-range periodic order in three

dimensions. In other words, a crystal structure is an orderly array of atoms or molecules.

Fat molecules in a solid are usually arranged into crystals. Therefore, the study of solid fats must
include the understanding of the fat crystallization process. Crystallization can be regarded as the

process of forming solid crystals from the melt (liquid).

Fat crystallization is ubiquitous in nature and it is observed in biological structures as well as in
commercial products and applications. During fat processing, crystallization is used to alter
various properties of the fat (Bailey et al., 1979). The process of fat crystallization begins when
the fat is super-cooled (sometimes called subcooled or undercooled). In other words, when the
temperature of the liquid is lowered below its freezing point but no solid is yet formed (Frank,

1952).

Hartel (2013) classified the fat crystallization process into four different stages and the last three

were also discussed by Hamadan et al. (2006). These stages are:
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I.  Super-saturation: the system first needs to reach the super-saturated state, i.e., the state in
which there is a driving force for the crystallization. The process conditions of this stage
must be controlled carefully if a product is to achieve its desired performance (Roos,
2010).

II.  Nucleation or primary crystallization: molecules in the liquid phase come together to form
a stable nucleus. The primary crystallization process is affected by the chemical
composition; in the case of fats, the composition of each TAG in the mixture and the
processing conditions (temperature, time, and shear rate).

II.  Crystal growth: additional molecules are incorporated into the growing crystal lattice,
alleviating the driving force of super-saturation. The number, size, and shape of the
particles and large clusters will define the resulting microstructure and, in turn, will
determine the physical and mechanical properties of the eventual fats and fat products. The
visual texture will be thus defined as well.

IV.  Ripening: in most cases, the fourth and final stage of crystallization occurs during storage.
In this stage, a large population of crystals undergo recrystallization to reach a global state
closer to equilibrium. The recrystallization process can proceed over time spans ranging
from minutes to months and influences some of the fundamental properties of the resulting

crystalline solid, e.g., hardness. The visual texture usually reflects this process.

A greater understanding of fat crystallization will directly result in more efficient food processing
and the optimization of fat production for use in foods and other economically valuable products.
For instance, an improved understanding of fat crystallization at the micro and nano levels has
resulted in the ability to select for a desirable crystal form (form V) in the production of the food-
grade form of crystalline cocoa butter. This crystal polymorph is necessary for maintaining the

quality of the chocolate over long storage periods (Mazzanti et al., 2003).

Advanced knowledge of equilibrium phase behavior and of nucleation and growth kinetics is vital
for obtaining a desired crystalline microstructure (Metin & Hartel, 2005). For example, Mazzanti
et al. (2008), have reported a relationship between phase behavior and growth kinetics. This
research demonstrates that the growth of a multicomponent lipid system conforms to a two-regime

system under shear flow. An Ordinary Differential Equation (ODE) model describes the first
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regime of this system. As the system reaches equilibrium, a second regime dependent on the square

root of the time (+/t dependence) become dominant.

The three most important operating parameters that affect the crystallization processes are

temperature, cooling rate and shear rate.
2.1.3.1 Temperature

Temperature is the most important parameter that influences fat crystallization. Undercooling by
approximately 5-10 C° is required to begin the process of fats crystallizing (Marangoni &
Wesdorp, 2012). As the extent of undercooling increases, the nucleation rate increases and the
induction time (the time that elapses before the first appearance of crystals) decreases (Marangoni
& Wesdorp, 2012). The effect of the crystallization temperature is associated with the cooling rate

used to reach that temperature, as is explained in the following section.
2.1.3.2 Cooling rate

The crystallization of TAGs is highly sensitive to the rate of cooling (Campos et al., 2002). Rapid
cooling of the liquid fat to low temperatures (large undercooling) normally results in the formation
of less organized (loosely packed) crystals, as there is insufficient time for the molecules to
incorporate into an ideally packed lattice structure. Large cooling rates result in a decrease in the
crystallization onset temperature and an increase in the nucleation rate. As a consequence,
increasing the cooling rate usually results in a decrease in a greater number of smaller crystals
(Marangoni & Wesdorp, 2012), whereas slow cooling results in fewer and large fat crystals
(Campos et al., 2002). Thus, slow cooling favours small numbers of large crystal aggregates

whereas fast cooling favours large numbers of small crystal aggregates (Campos et al., 2002).

The cooling rate influences also the type of polymorphic forms obtained (Cebula & Smith, 1991).
Slow cooling rates favour the formation of more stable polymorphic forms, whereas fast cooling
rates favour the formation of unstable or metastable forms. Many reports have confirmed these
types of effects. For instance, the effect of cooling rate on the polymorphism of milk fat crystals
has been extensively studied (Lopez et al., 2002). In that work, the formation of a more stable

polymorph (B’) and traces of the most stable polymorph (B) resulted only from a low cooling rate
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(0.15°C/min). In contrast, a higher cooling rate (3°C/min) resulted in the formation of a less stable

polymorph (o).

2.1.3.3 Shear rate

Shear rate has a significant effect on fat crystallization and is known to affect the nucleation rate

and other factors related to crystal growth (Lee, 1993). A more detailed discussion of shear will

be presented in Section 2.2. In summary, shear rate affects the crystallization kinetics of TAGs by:

L.

II.

I1I.

IV.

Moditfying crystal aggregation: As shown in Figure 17, TAG nano crystals form
aggregates. Shear is known to promote the formation of these aggregates up to a certain
threshold. If the shear is increased past this critical threshold, these aggregates are broken.
Because small aggregates surrounded by uncrystallized liquid provide an overall greater
surface area compared to large aggregates, they provide more area for the attachment of
liquid molecules. For this reason, shear promotes crystal growth. This process generally
results in the formation of more stable polymorphs (Mazzanti et al., 2005). Shear is also
known to produce compact assemblies by influencing the internal rearrangement of the
aggregates (Marangoni et al., 2012). Moderate to high shear rates are known to prevent
cluster formation (aggregation of crystals).

Promoting the nucleation of a stable form from a less stable one (polymorphic transition):
This seems to be a consequence of the segregation of crystalline nanoplatelets (crystalline
platelets of nanoscale dimensions).

Furthering the orientation of the crystalline nanoplatelets as they get segregated from large
clusters.

Fragmenting the fat crystal network. Shear disrupts not only individual clusters; the larger
structures formed by the linked clusters, i.e., the network, is also modified by the shear

flow.
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Bulk fat

Lamella

Figure 17. The organization of TAG molecules and crystals at different scales, giving rise to
the macroscopic structure of solid fat (Acevedo & Marangoni, 2010). (Permission has been

obtained from the American Chemical Society).
2.1.4 Microstructure

The microstructure, which is the hierarchical distribution of the nanocrystals in space, is
responsible for the texture observed as the appearance of a material under the microscope. For fat
crystals, the length scale of these structures usually ranges from 0.25 pum to 200 pm. The

microstructure of fat crystal networks is often called “the mesoscale”. The characteristics of a
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crystal network on a mesoscale level have great influence on the macroscopic rheological
properties of the overall material (Narine & Marangoni, 1999). Therefore, it has been studied in
great detail, and many microscopy techniques such as Polarized Light Microscopy (PLM),
Confocal Laser Scanning Microscopy, and Electron Microscopy, have been employed for studying

it (Marangoni & Wesdorp, 2012).

PLM is the most popular method for the visualization of fat microstructures because the anisotropy
of fat crystals produces an inherent birefringence, as mentioned earlier (Shi et al., 2005 and Teich

& Saleh, 199)).

50 um

Figure 18. Polarized microscopy images of the two-dimensional (2D) spherulites of LLL (a)
B’ and (b) B form, where arrows indicate the presence and absence of a “Maltese cross”

(Ueno et al., 2008). (Permission has been obtained from the American Chemical Society).

In Figure 18 (a), a Maltese cross (black cross) is visible in LLL B’ crystals, highlighted by the
arrow. The appearance of this black cross indicates that this is a spherulite (spherical semi-
crystalline regions), formed due to the coincidence of the mutually perpendicular optical axes of
the nanocrystals with the respective orientations of the polarizer and the analyzer (Marentette &
Brown, 1993). The polymorphic B’ form of the nanocrystals inside the spherulite later transitioned
into a spherulitic center 3 crystal cluster (Figure 18 (b) via solid-state transformation (Ueno et al.,
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2008). The arrows in Figure 18 (a) and (b) point to the presence and absence of the Maltese cross,
which is an indication of the transformation of B’ crystals into B crystals, which induces some

randomization of the orientation of the nanocrystals.

Time-resolved micrographs obtained from PLM allow us to study the formation of a crystal
network from its early stages. Thus, one can follow the effect that processing conditions have on
the formation of the final network. Apart from quantifying the microstructural elements of a crystal
network, PLM is also used for imaging early crystal growth (Marangoni & Wesdorp, 2012) to

determine onset times.

Various reports have demonstrated a clear relationship between processing conditions and
microstructure, but this relationship has seldom been quantified (Martini et al., 2002; Singh et al.,
2004). The visual appearance of crystalline TAGs and their mixtures is not always spherulitic
(Figure 18), i.e., an aggregate made up of a large number of crystalline ribbons that grow radially
from a central nucleus. Spherulitic growth is common, but the crystal growth mechanisms that
produce it are not well understood (Marangoni & Narine, 2002). There is a multitude of other
growth patterns that produce very different visual textures, and very often, the textures are

combinations of several subtypes.
In 1960, Hoerr classified the microscopic appearance of most fats as follows:

1. Crystals in the a-form appear as platelets of about 5 um and appear fragile under the
microscope.

2. Crystals in the B' form appear as small needles not exceeding 1 um in length.

3. Crystals in the  form appear large and coarse and range in size from 20 to 100 pm,
often growing in clumps. Clumps of B} crystals are a millimeter or more in diameter

(Hoerr, 1960).

Later work by Narine & Marangoni (1999), Litwinenko & Marangoni (2005), Campos et al. (2002)
and Wiking et al. (2009) demonstrated that the size and shape of fat crystal clusters are strongly
dependent upon the processing conditions and the Solid Fat Content (SFC), and depend far less on
the final polymorphism of the fat crystals.
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2.1.5 Microscopy studies of TAG crystallization

Microscopy enables the visual observation in real time of dynamic changes that occur during
nucleation and crystal growth. These include the formation of morphological shapes like

spherulites and other structures with lengths ranging between approximately 1 to 200 pm.

Various microscopy techniques are used to analyze food microstructures. Atomic force
microscopy (AFM), electron microscopy (EM), light microscopy (LM) are some of the most
commonly used for this purpose. For some advanced purposes, x-ray microscopy is used. Each
technique has inherent advantages and disadvantages. For example, electron microscopy is best
suited for observations at the nanoscale level. Electron microscopy has high resolution but
conditioning of the sample is very complicated. The two microscopy techniques most frequently

used in fat research, PLM and CLSM, are further described below.
2.1.5.1 Polarized Light Microscopy

PLM is used to visualize samples using plane polarized light. A first polarizer produces the
polarized light, and the images are formed when the light emerging from the sample crosses
another polarizer (called the ‘analyzer’) perpendicular to the first one. The sample must be placed
between these two polarizers. The polarizers work by allowing light oriented parallel to a specific
plane to pass through, while filtering out light that has any other orientation. Since the analyzer is
placed perpendicular to the first polarizer, light should not be able to pass through the analyzer,
unless something in the sample changes the direction of its polarization before it reaches the
analyzer. PLM uses this to afford a distinction between isotropic materials (the liquid phase of fat
material trapped within the crystal network) and anisotropic materials (the crystal network itself).
This distinction depends upon the orientation of the crystals (i.e., the angle of orientation). The
speed of light in a body or material is inversely proportional to the refractive index of that bodys; it
follows that in birefringent materials, two components of polarized light will travel through it at
different speeds (Finzi & Dunlap, 2001). Since the crystals are birefringent, they change the
direction of the polarization. The liquid, being isotropic, does not. This creates a source of contrast

between crystals and liquid, that forms an image, captured by a camera. Thus, a very significant
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advantage of PLM over other microscopy techniques is that there is no need to use stain for sample

visualization.

One of the major limitations of optical microscopy is its inherent low resolution, i.e., ~ 0.5 pm
(Marangoni & Wesdorp, 2012). Furthermore, the composite picture of a fat crystal network cannot
be fully described using any single method or technique. The combination of a given method with
another technique such as XRD or NMR is hence necessary to obtain a complete picture of the
material. Sonwai & Mackley (2006) reported a nice example of the use of combined optical
microscopy and XRD in the study on the effect of shear on the crystallization of cocoa butter at a
single crystallization temperature of 20°C. At a low shear rate of 3 s”!, the morphology of cocoa
butter crystals was unchanged and remained comparable to the morphology of unsheared cocoa
butter crystals. After exposing crystals to a high shear rate of 100 s over 10 minutes at 20°C, two
crystal morphology classes were observed. The higher shear rate affected the primary induction
time of crystallization. In cocoa butter crystallization, continuous shear results in primarily form
V crystallization (Sonwai & Mackley, 2006). Form V is one of the six polymorphs of cocoa butter,
which has a melting point of 33.8°C, and its formation is encouraged by tempering. The combined
methods allowed determining that the form V was being crystallized from the melt, rather than

from the unstable crystals.
2.1.5.2 Confocal Laser Scanning Microscopy

Some materials are too opaque for effective use of PLM. In these cases, CLSM is the preferred
technique (Cardona et al., 2013). CLSM is used to study three-dimensional structures as images
can be acquired at varying depths using a feature known as optical sectioning. CLSM is frequently
used for the study of low fat-based foods, chocolates, deep fried food, etc. CLSM uses a focused
scanning laser to illuminate a subsurface layer of the sample in such a way that information from
this focal plane passes back through the sample and is projected onto a pinhole (confocal aperture)
in front of a detector (Brakenhoff et al., 1979). CLSM combined with other techniques can be used
to examine the internal structure of a sample in three dimensions (Cardona et al., 2013). CLSM is
used in conjunction with other techniques to study food structure and its relation to macroscopic

properties (Cardona et al., 2013).
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1.1.1 Other common methods used to study fat crystallization

The principal techniques used to study fat crystallization are XRD, NMR, differential scanning
calorimetry (DSC), and optical microscopy. These techniques are briefly discussed below, except

microscopy, which is discussed in more detail in Section 2.1.6.
2.1.5.3 X-ray Diffraction

XRD is one of the most important non-destructive tools used to analyze all sorts of solid matter.
The XRD technique uses diffraction to study microcrystalline samples. Nearly 95% of solid
materials are crystalline in nature (Silberberg, 2007). The XRD technique is used for both
qualitative and quantitative analyses. When x-rays interact with the crystalline materials, they
produce a diffraction pattern, which is unique to a particular crystalline solid. A diffraction pattern
contains information about the atomic arrangement within the crystal, therefore diffraction patterns
are known as “fingerprints” of crystalline solids. Qualitative analysis can be used to determine the
number and type of phases present. Quantitative analysis can provide details about the relative

percentage of each phase in a mixture by measuring the relative peak intensities.

Atoms in a crystal are arranged in a periodic array of coherent distributions and can therefore
diffract x-rays with wavelengths of comparable magnitude to the spaces separating the atoms.
Bragg’s law, also known as the fundamental law of crystallography, states that when a beam of x-

rays of wavelength A enters a crystal the maximum intensity of the reflected ray occurs when

n+J =2-d-sinf
where n is an integer, @ is the angle of incidence (also known as Bragg’s angle), 4 is the wavelength
of the incident x-rays, and d is the distance between layers of atoms. The angle of incidence and

reflection are equal (Cullity, 1978). Bragg’s law is therefore a simple model for understanding the

conditions required for diffraction (Marangoni & Wesdorp, 2012).
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Figure 19. Schematic of x-rays reflecting between two planes of atoms. The dotted lines
represent molecules in two consecutive layers separated by a distance ‘d’. X-rays having a
wavelength 4 are projected at an angle '0' and are deflected from these two consecutive layers
(Marangoni & Wesdorp, (2012); Mazzanti, (2004)). Bragg’s law was deduced from the fact
that the path length difference between the two x-ray beams needed to produce a constructive

interference must be an integer multiple of 4.
2.1.5.4 Nuclear Magnetic Resonance

NMR is widely used for the direct determination of SFC. SFC determination is important for
controlling food processing and the maturation of fat in the bakery, confectionery and margarine
industries. The ratio of solid fat to liquid oil affects the texture, stability and the mouthfeel of
foodstuffs (Coupland, 2001). The SFC value is calculated from the NMR signal determined
simultaneously from the liquid and solid components of the fat sample (Andrew, 2009). The SFC
can be determined as a function of sample temperature as a tool to predict performance of the

material (Coupland, 2001).
2.1.5.5 Differential Scanning Calorimetry

DSC is an important tool for thermodynamic analysis. In this technique, thermodynamic quantities
of a process (enthalpy, specific heat) are estimated by measuring the amount of heat absorbed or

released in a system during a temperature-controlled process. The rate of heat flow to the sample
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is compared to that of a reference sample, which is heated or cooled at the same rate. Changes in
the sample associated with the change in differential heat flow are recorded as a peak (Biliaderis,
1983). The area under the peak is directly proportional to the change in enthalpy and the direction
of the change depicts whether the thermal event is exothermic or endothermic. Results from DSC
experiments are usually obtained as curves of heat fluxes as a function of time or temperature
(Lavigne et al., 1993). From these curves, the system’s glass transition temperature, melting and
boiling points, crystallization time/temperature, heats of fusion and reactions, specific heat, heat

capacity, and purity can be determined (Hohne et al., 2003).

TAGs display a complex monotropic polymorphism, i.e., they exhibit 3 to 6 crystalline varieties.
Transitions between polymorphic forms is only possible during the formation of a more stable
polymorphic form; this irreversible process is known as monotropism (Perrenot & Widmann,
1994). Curves of heat fluxes as a function of time or temperature are used to calculate enthalpies
of transition. These results can be used to afford information describing crystallization events,
observe phase changes, and estimate the crystallization onset temperature (Figure 20) (Freire,

1995).

Complete crystallization cycles (crystal formation from melt and melting of the resulting crystals)
at different cooling rates for 3L7M is shown in Figure 20. The figure depicts the output of a typical
DSC experiment of this type (Al-Qatami, 2011).
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Figure 20. DSC thermal analysis showing crystallization of 3L7M from the melt using

different cooling rates, and the subsequent melting traces at 5°C/min (Al-Qatami, 2011).

2.2 CRYSTALLIZATION UNDER SHEAR
2.2.1 Previous studies on crystallization under shear

The crystallization of various fat-based industrial food products necessitates the use of shear (e.g.,
chocolate). Processing conditions such as shear rate and cooling rate affect the quality of the final
product; for example, the consistency and spreadability of shortenings, butter and margarine
depend upon the conditions used to process them (Mazzanti et al., 2005). Thus, an improved
understanding of the effect of shear on crystallization kinetics would aid in the design of food

processing equipment.

Shear favours a more homogeneous product and saves energy by enhancing the rate of heat transfer
(Feuge et al., 1962). Recently a number of studies on the effect of shear on the crystallization of

commercial fats and materials such as milk fat and cocoa butter have been reported. Briggs &
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Wang (2004) studied the impact of shear and time on the rheological properties of milk chocolate
during tempering. Shearing rates of 15 and 30 s™! and tempering times of 0, 400, 600 and 800
seconds were investigated to study the role of shear, time, and temperature on final product quality.
The practical limitation of this traditional method is the occurrence of shear-induced crystallization
due to the excessive contraction of the crystals. This limitation became especially problematic at

a shear rate of 45 s! and above.

MacMillan et al. (2002) performed studies on cocoa butter crystallizing under shear flow, and for
the first time under shear, the polymorphic determination was possible using time-resolved
synchrotron XRD patterns for crystallizing fats. Type Il and IV polymorphic forms of cocoa butter
were formed when the sample was not sheared, whereas shear resulted in the formation of type I11
and V polymorphic forms. The role of temperature in the formation times of individual polymorphs
was also determined. The formation of type V was significantly dependent upon shear. The effect
of shear on the crystallization behavior and structure of various edible fats, milk fat, cocoa butter
and palm oil was studied by Mazzanti et al. (2003). The orientation of the crystallites formed
during crystallization from the melt was studied for commercial fat systems using a Couette shear
cell (concentric cylinders). In that case the inner cylinder remained static and the outer one rotated.
The effect of shear on the phase transition was also studied. Under high rates of shear (90 and 1440
s), both samples transitioned to a more stable phase. These results were obtained using

synchrotron XRD.

Sonwai & Mackley (2006) studied the effect of shear on the crystallization of cocoa butter using
three different instruments. Comparable results from the previous studies (Deman & Beers, 1987)
confirmed that increased shear resulted in a decrease in the induction time of the formation of type
V polymorphs. An inverse relation can be found between these two processing conditions. For
cocoa butter, the application of a high shear rates leads to selective crystallization and the
formation of a compositionally different form V crystal with fewer defects compared to

experiments where low or no rate of shear was employed (Mazzanti et al., 2007; Guthrie, 2008).

The effect of shear on the nanoscale structure and physical properties of TAGs crystal networks
was quantified by Maleky & Marangoni (2011). It was also observed in this study that a higher
modulus of elasticity was found in the fat made of oriented crystals compared to the statically

formed crystals.
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To improve the understanding of the effect of shear on the micro structure formation, it is necessary
to conduct microscopy studies on fat crystallization in a shearing device. The orientation of the
crystals under shear can be visualized through the change in the intensity of the polarized light
collected on the detector. The crystallization experiments on various diluted mixtures using PLM
in this work will provide valuable information that will contribute to a better understanding of fat

crystallization.
2.2.2 Rheo-NMR

The term rheology was coined by E. C. Bingham in 1929 and is defined as the study of the
deformation of the flow of matter (Tanner & Walters, 1998). Rheo-NMR combines Nuclear
Magnetic Resonance with the application of mechanical stress and is used to study the rheological

properties of a material.

NMR was discovered by Edward Purcell, Felix Bloch and their co-workers in 1945 at Harvard and
Stanford Universities (Wright et al., 2000). After that discovery, NMR was determined to be
sensitive to the nuclear environment of condensed matter. This sensitivity is related to the chemical
environment of the molecular host, to the orientational order of the host molecules, to the spatial

and orientational distribution of these molecules, and to molecular dynamics (Gonnella, 2013).

Rheo-NMR is commonly used to study the rheology of complex fluids. Rheo-NMR combines
rheology techniques with Nuclear Magnetic Resonance, amplifying rheological data and affording
information relevant to fluid properties under shear. A Rheo-NMR is an indirect way of measuring
SFC in any sample. Rheo-NMR allows unique investigation of complex systems and enables new
applications in fundamental and industrial research (Kahle et al., 2008). Rheo-NMR has been used
to study the molecular properties of fluids under shear for the purpose of explaining molecular

ordering under high shear conditions (Badiger et al., (2001); Mudge & Mazzanti, (2009)).

Essential qualities of chocolate (such as texture) are dependent upon the shear forces applied
during the manufacturing process. Rheo-NMR can be used to assess effect of shear stress on these

qualities for the purpose of improving manufacturing processes (Mudge & Mazzanti, 2009).

SFC calculations for binary mixtures of LLL and MMM were performed by Li (2011) in her work

using the Avrami model to smooth the experimental measurements. The SFC was measured using
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a custom-made Rheo-NMR instrument. Figure 21 represents a sample plot of SFC calculation

obtained by Rheo-NMR for 7L.3M40. The plot depicts the change in SFC with respect to time at

16°C.
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Figure 21. A sample plot of SFC calculation for 7L3M40 at 16°C from a Rheo-NMR

instrument. ‘SF calc’ is the SFC calculated using an ODE-Avrami model followed by a

diffusion-controlled model. ‘SF meas’ is the SFC measured using the Rheo-NMR (Li, 2011).
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Chapter 3 Materials and Methods

3.1 MATERIALS

Experiments were performed using various binary mixtures of LLL and MMM. LLL and MMM
are both saturated monoacid TAGs with chain lengths of 12 and 14 carbons, respectively. This
small length difference favours the formation of a solid solution. A solid solution has a
homogeneous molecular distribution of one component in the other component, while conserving
the general crystalline structure. TAGs form substitutional solid solutions in which a particular
type of TAG replaces the other in its crystal lattice. For the shear experiments, LLL and MMM
were dissolved in triolein (OOO) which acts as a liquid solvent. A sample containing LLL, MMM
and OOO as a solvent affords a simple ternary mixture in which LLL and MMM crystallize and
OOO remains liquid. The melting point of the B phase of OOO is 4°C which is well below the
temperature conditions (11°C and above) employed in this research. The above ternary sample
mimics many industrial mixes, which have both liquid and solid TAGs. These TAGs were chosen
because Li (2011) used identical diluted binary mixtures in her work, and this work was intended
as a complement to her research. LLL and MMM are extensively distributed in nature and have
lower melting points than other more common TAGs such as tristearin or tripalmitin. The two

TAGs (LLL and MMM) are used in pharmaceuticals, cosmetics, and the food industry.

3.2 SAMPLE PREPARATION FOR CRYSTALLIZATION EXPERIMENTS

Pure LLL, MMM and OOO samples were purchased from Sigma-Aldrich Chemical Co., Missouri,
USA. The purity of the samples was reported to be greater than 99%. Different binary mixtures of
LLL and MMM were prepared on weight (w/w) basis to maintain consistency and to facilitate
future comparison between these studies and the work by Li (2011). Three binary mixtures were
made having LLL: MMM ratios of 30:70, 50:50, and 70:30. These were denoted as 3L7M, 5L5M,
and 7L3M, respectively. The three binary mixtures were diluted with 60% OOO (by weight) to
obtain a sample with 40% crystallisable material (LLL-MMM), under the conditions tested (Table
1) and were denoted by 3L7M40, SL5M40, and 7L3M40, respectively. Three repetitions of each

experiment set were performed, without taking the sample out from the shear cell. The three diluted
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binary mixtures of LLL and MMM were melted and kept at 100°C for 10 minutes to obtain a

homogeneous mixture of the TAGs.

Table 1. Experimental plan for the samples at different conditions of time, temperature and

shear.
. SHORT TIMES (6 Minutes) LONG TIMES (30 Minutes)
Experiment Number i n . . " .
Material ~ Temperature(°C)  Shear Rate (s”) Repetition Time (seconds) | Material  Temperature(°C) ~ Shear Rate (s”) Repetition Time (seconds)

1 0.8 R1 0 0.8 R1 0

2 8 R2 3 8 | R | 180
15 1 15 1

3 80 R3 n 80 B3 360

4 800 108 800 540

5 0.8 144 0.8 720

6 8 180 8 900
18 o 18 T

7 3L7M40 m 216 3L7M40 %0 1080

8 800 252 800 1260

9 0.8 288 0.8 1440

10 2 8 324 2 8 1620

1 80 360 80 1800

12 800 800

13 0.8 0.8

u 11 8 11 8

15 80 80

16 800 800

17 0.8 0.8

18 14 8 14 8

19 80 80

w 5L5M40 800 5L5M40 800

21 0.8 0.8

2 17 8 17 8

23 80 80

24 800 800

25 0.8 0.8

2

6 21 8 21 8

27 80 80

28 800 800

29 0.8 0.8

30 14 8 14 8

31 80 80

32 800 800

33 0.8 0.8

34 8 8

7L3M4 16 713M4 16

35 3MA0 80 M40 80

36 800 800

37 0.8 0.8

3 18 8 18 8

39 80 80

40 800 800

As summarized in Table 1, 80 sets of experiments (40 of short duration, and 40 of long duration)
of different material, temperature and shear rates were performed using the Linkam CSS 450 shear
stage cell described later in Section 3.5. Three repetitions were performed for each set. Eleven

durations (times) were sampled in each case in the order indicated in Table 1.
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3.3 POLARIZED LIGHT MICROSCOPE (OLYMPUS BX 51)

An Olympus BX 51 (Shinjuku, Japan) light microscope was used to acquire polarized light
micrographs of the samples (Figure 22). The microscope is equipped with (1) a Charge Couple
Device camera, (2) a phase contrast (phl) long working distance (WD 10.0 mm) 10X objective
lens (UPlanFl), having a numerical aperture of 0.30 and a depth of field of 9 um, and (3) a
condenser (Note: The phase contrast ring was not used). A temperature and shear controlled stage
(Linkam CSS 450, Linkam, Surrey, UK) (described below) was used to control the temperature
and the shear rates. Images were analyzed using ImageJ software version 1.47 (Schneider et al.,
2012) as described later in this chapter. The sample mixtures were first heated on a hot plate and
were then transferred to the shear stage cell with the use of ‘Wiretrol II” glass pipets (Drummond
Scientific Company, Pennsylvania, USA). Approximately 30 uL of melted sample were placed on
the center of the hot shear stage cell, the lid was replaced and brought down to a gap of 50 um,
distributing the sample all over the cell surface. The desired temperature profile and shear rate

were then applied to the material to conduct an experiment.

Figure 22. Olympus BX51 Polarized Light Microscope (Retrieved from Olympus website:
http://www.olympusmicro.com/brochures/pdfs/bx51.pdf).
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3.4 QIMAGING RETIGA 2000R CAMERA

The Qimaging Retiga 2000R (Figure 23) is the CCD digital camera that was used for image
acquisition. The Olympus BX51 is an upright microscope, allowing the camera to be mounted on
top of the microscope to preview live images on a computer. The camera has a resolution of 1.9
megapixels (1600x1200) with a pixel size of 7.4 um x 7.4 um, and can thus resolve very small
objects having distinct boundaries. It has a 12-bit/pixel digital output. The electronic sensor of the
Qimaging Retiga 2000R has a maximum frame rate of 190 frames per second (fps) and is capable

of capturing up to ten fps in full resolution, if enough light is available.

Elll-u-.!.|1|| ity .

RETIGA 230O00K

Figure 23. Qimaging Retiga 2000R camera (Retrieved from Qimaging website:
http://www.qimaging.com/products/cameras/scientific/retiga2000r.php).

Bit depth and compression are two essential concepts of digital imaging, described below to clarify

how digital images are obtained, stored and processed.

Bit depth: Bit depth (also known as color depth) is the breadth of the intensity information that
can be stored in an image, i.e., it is the number of bits used to define each pixel. The greater the
number of bits in each pixel, the more tones, grayscale and color are possible in a digital image. A
bit is the smallest unit of data in digital imaging. The simplest example of this is a 1-bit image,
i.e., an image with either of two values 0 (black) and 1 (white), such as pure black and white old

newsprint photos.

Bit depth is measured by the formula 2", which provides the bit size of the pixel. For an 8-bit (2%)
grayscale image, there are 256 different possible intensity values, i.e., shades of gray (0-255). The
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histogram for an 8-bit image will graphically display 256 numbers showing the distribution of
pixels among those grayscale values. In a 12-bit image, there are 2'2= 4096 intensities and for a
16-bit image, there are 2'® = 65536 tones. With the increase in the bit depth, the amount of
information increases and so does the size of the image. Due to the 8-bit-multiple architecture of
computers (8-bit = 1 byte), the most common formats are 8-bit-multiples: 8-bit, 16-bit, 32-bit and
more recently 64-bit. Some cameras have other bit depths. The Retiga camera used in this work
has 12-bit pixels. For convenience in using standard software, its raw images were converted to
one of the 8-bit-multiple formats, in our case to the 8-bit format. Note that on a computer screen

the human eye can distinguish less than 256 grayscale values.

Compression: Compression is used to reduce the size of an image for storage, processing or
transmission. Several standard compression techniques available offer efficient compression
and/or better quality images. Compression techniques are further classified into two main
categories, i.e., “lossless” and “lossy” compression. In lossless compression, the binary code is
abbreviated without discarding any information. Conversely, the lossy techniques work by
discarding or averaging the least significant information, which is selected based on visual
perception. Lossless compression is often used for medical imaging, technical drawings, clip art,
or comics, whereas lossy compression is commonly used for streaming media and internet images

(Kaimal et al., 2013).

3.5 OPTICAL SHEARING STAGE

The Linkam Optical Shearing Stage CSS 450 (Figure 24) allows the observation of the
microstructural changes that occur during crystallization. This device allows for the direct viewing
of a complex fluid using any standard optical microscope, including polarized optical microscope
(POM). The system can be used to study the microstructural dynamics and rheology of complex
fluids under precisely controlled temperatures and various shear modes. The shear stage has a
temperature range of —50 to +450°C with a temperature stability of +/- 0.2°C. Cooling and heating
rates can vary from 0.01 to 30°C/min. The top optical plate has a diameter 30 mm for sample
placement. Special precautions are needed for placing the sample on the optical cell as dirt particles

can land on the sample or the cell and can alter the view of the images by distorting them. The gap
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between the two plates can be adjusted from 5 to 2500 um with the help of a personal computer
(PC). The gap o was set to 50 um for all experiments performed here (except two experiment sets,
three repetitions each of SL5M40 at temperatures of 11 and 14°C and shear rate of 8s™!, which was

12 pm). The sample amount, in puL, needed to cover the glass disk is 7-(15)*-(8/1000). For & = 50
um the volume is about 35 pL.
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Side view

Top view

(b)

Figure 24. (a) Illustration of the shearing microscopy system. (b) Side view and top view of

the shear cell (Modified from Tanaka et al., 2002). (Permission has been obtained from John
Wiley and Sons).

The images were captured with the CCD camera described above (QImaging retiga 2000R

camera).
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3.5.1 Shear rate calculations

The shear is produced by a differences in velocity between adjacent parts of a fluid. In the shear
cell, the top window is stationary, whereas the bottom window rotates. This creates a distribution
of velocities in the fluid from zero at the top to a maximum at the bottom. The shear rate in the
vertical direction (y") is related to the angular velocity of the bottom window, the position where
transmitted light passes through the sample and the thickness of the sample (Figure 25). The
vertical shear rate, henceforth simply called shear rate, is estimated as the ratio between the
tangential velocity ‘u’ and the gap ‘0’. The tangential velocity is computed from the radius and the
angular velocity. Thus, the shear rate is Y= r®/d, where ¢ is the angular velocity (radians/second);
r is the observation radius, which corresponds to the radius from the center of the bottom window
of the shear cell stage to the center of the hole in the aperture; and § corresponds to the gap between
the two plates of the shear cell. For the CSS 450 shear cell the value of 7 is 7.5 mm and the gap ‘9’
was adjusted to 50 um. In this setup, the radial shear rate is negligible when compared to the

vertical shear rate.

u=ro y=u/d y=ru/d

Figure 25. Simple schematic of the inside of the shear cell where the sample is loaded.

(Modified from Linkam’s manual of operation for the CSS 450).
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3.6 DEWAR FLASKS

The Dewar flask (Figure 26) is a double-wall-vacuum glass container used for short-term storage
of liquid nitrogen. The lid of the flask has two siphons. The lid and the base protruding from the
top of the Dewar into the optical cell are connected to the top plate and base of the optical shearing
system, respectively. The siphons are connected to the optical shear system described above and
are used to pump evaporated liquid nitrogen to the system to maintain the desired temperature,

which is below room temperature and can be brought as low as -50°C.

Figure 26. A 1 Litre Dilvac Dewar flask.
3.7 LINKSYS32

The Linksys32 software (Linkam, Surrey, UK) is used to display the output from the CCD camera
in real time to the computer and to control the temperature and shear rate of the CSS 450 stage.
Figure 27 is a screenshot of the Graphical User Interface (GUI) of the Linksys32 software
displaying the controls and live output from the microscope. The software has an option to create
different profiles containing different sets of temperatures and shear rates. Apart from temperature

and shear control, it also has a toolbar designated for recording images.
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Figure 27. A screenshot of the Linksys32 software GUI.

3.7.1 Features
3.7.1.1 Temperature control and temperature display

The temperature control unit and video capture toolbar is shown in Figure 28. The temperature of
the shear cell is displayed in this toolbar. This toolbar has an option to insert the final temperature,
the holding time at that temperature, the desired rate to reach that temperature, and an option to
manually control the flow of liquid nitrogen. The video capture toolbar has a small graphical user
interface to set the delay time in seconds between the capture of two subsequent images. The video

capture toolbar has a camera icon button to start image capture.
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Figure 28. Temperature and video capture toolbar.
3.7.1.2 Shear control toolbar

The shear control toolbar (Figure 29) controls the movement of the shear stage and the gap between
the two plates of the optical shearing system. The gap, as explained above, can be set from 5 to
2500 um. The angular velocity can be manually set between 0 and 10 radians/second. The direction

of rotation can also be set to clockwise or anti-clockwise.

&L P m | B Ldo Refo Zewnl T8O
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Figure 29. Shear control toolbar.
3.7.1.3 Cooling temperature conditions

The crystallization temperatures used for the three diluted binary mixtures are shown in Table 2.

A temperature profile consists of a complete cycle, which includes cooling from 80°C to the
desired temperature, holding at the desired temperature, and heating from the desired temperature

back to 80°C. A typical temperature profile (Figure 30) has been exported from the Linksys32
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software described above. Temperature is shown on the left y-axis; the number of images recorded

is shown on the right y-axis, and time in seconds is plotted on the x-axis.

Table 2. Temperatures used to crystallize diluted binary mixtures heated to 80°C.

Mixture Temperature (°C)
3L7M40 15, 18, 21
SL5M40 11, 14,17, 21
7L3M40 14, 16, 18
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Figure 30. A typical temperature profile of an experiment from 80°C to 25°C.

For the above example, images were captured at 2-second intervals (the minimum delay time

possible for image capture in Linksys32). A cooling/heating rate of 30 C°/min was used.
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3.7.1.4 Shear rate conditions

Three mixtures of LLL and MMM were tested under identical shear conditions (Table 3). At very
high shear rates (i.e., 80 s™ and higher), the exposure time for the camera needs to be extremely
short to capture images without blur or distortion. Hence, shear was not applied continuously.
Instead, after the application of shear for a given time period, the motor was stopped for about two
seconds for image acquisition at regular fixed intervals, and restarted immediately after the
acquisition. This method was successfully used by Sonwai & Mackley (2006) in their microscopy

study of crystallization of cocoa butter.

Table 3. Shear rates used for diluted binary mixtures.

Mixture Shear Rate (s)
3L7M40 0.8, 8, 80, 800
5L5M40 0.8, 8, 80, 800
7L3M40 0.8, 8, 80, 800

Li (2011) used the shear rates in red in Table 3. The experiments at a shear rate of 0.8 s were

done to extend Li’s work.
3.7.1.5 Acquisition of images

The time gap (acquisition time) between two consecutive image captures was set to 36 seconds for
short duration (6 minutes) experiments and 180 seconds for the long duration (30 minutes)
experiments. The exposure time of the CCD camera was set to 14.6 milliseconds based on the
visual perception of selected preliminary sample images. The exposure time needs to be chosen
carefully to ensure that a sufficient amount of light can enter into the CCD camera to allow for
image capture of the desired quality. Excess light would saturate the CCD and the image would
become over-exposed. Image quality is, therefore, a balance between brightness and contrast.
Automatic adjustment of the acquisition time was disabled to ensure that all images were exposed

for the same duration and at the same gain setting (a multiplication factor used by the camera).
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3.8 IMAGEJ

ImageJ (Schneider et al., 2012) is an open source, Java-based image processing software package
used, among many other applications, to process time-resolved micrographs. Imagel is in the
public domain and hence it is widely available. ImageJ provides extensibility with the help of Java

plugins and recorded macros. The GUI of Image] is very simple which makes it very easy to use.

As explained in the introduction, the histogram of a micrograph normally refers to a frequency
table of pixel intensity values using bars of different heights. A screenshot of a typical micrograph
histogram is shown in Figure 31. From this histogram, the minimum, maximum, mean, mode, and
standard deviation of the intensity values can be determined. These histograms are often used to

compare images.

E
=
3
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=
B 1]
0 Grayscale intensity 255
Count: 1920000 Min: 0
Mean: 64.166 Max: 255

StdDev: 35537 Mode: 42 (30845)
Figure 31. A typical Image]J histogram in linear scale (black) and log scale (gray) with

grayscale intensities on x-axis and pixel count on y-axis depicting the distribution of the

grayscale intensities irrespective of the coordinates of the grayscale intensities values.
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3.9 IMAGE ANALYSIS

The development of image acquisition techniques is of utmost importance in image analysis as it
enhances the understanding of material properties at the microscopic level. Image analysis often

consists of three consecutive processes:
3.9.1 Imaging

Imaging is performed using a camera, in our case the QImaging Retiga 2000R mounted to the
microscope. Several factors contribute to the quality of the micrographs, therefore a good balance
between the background and material should be maintained for acquiring images of the desired
quality. To accurately quantify the micrographs, the images must be acquired using a constant set
of conditions. Exposure time is one such condition. Another important one is illumination, which
depends upon the light source intensity, the aperture of the diaphragms and the position of the

condenser.

In this work, the images were saved by the Linksys32 software in JPEG-LS format, as it features
a lossless compression algorithm, allowing the user to retain all the information when saving the

images to disk.

The sample is confined to a thickness of 50 um between the plates of the shear cell. For this reason,
it is essential to employ proper focus for the acquisition of high quality micrographs. Since the
objective has a depth of field of 9 um, it was possible to focus on a narrow slice of the confined

thickness.
3.9.2 Thresholding

Thresholding is an operation that converts a grayscale image into a binary image (Figure 32) or
removes pixels that comply with a specified rule. This can be done by a simple segmentation
method used to separate out regions of the image corresponding to the objects that need to be
analyzed. By thresholding, the image is portioned into a foreground and background. Any region
of the image having a custom value in the range of 0-255 (grayscale) can be separated in this way.
Generally, 0 is regarded as complete black and 255 as complete white. For example, the

micrograph in Figure 32 (a) was thresholded by setting the value of the threshold point to 129,
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which implies anything below 129 will appear as black, whereas anything above 129 will appear
as white. The resulting image is presented in Figure 32 (b). Custom shading between black and
white can have any value from 0-255. In Figure 33, the color bar depicting the shades from 0-255

is presented.

(a) (b)

Figure 32. Micrograph (a) and thresholded image (b) of 3L7M40 at 18°C and 8 s™..
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Figure 33. (a) Thresholding GUI of ImageJ for the micrograph in Figure 32 (a), (b) Grayscale
bar depicting shades ranging from black (0) to white (255).

3.9.3 Data analysis

The process of extracting useful information from processed micrographs is known as data
analysis. In this thesis, the time-resolved micrographs were first plotted using ImageJ in “montage
form” organized sequentially with respect to time, temperature, and shear. As processing
conditions were modified, the effect on structure was visually apparent. Due to instrumental
limitations, the micrographs obtained do not have an even background (the illumination varies
across the micrograph). The time-resolved micrographs were therefore normalized using the

software package IgorPro (Wavemetrics, Lake Oswega, FL, USA).

Data were later extracted from the normalized images to plot their histograms. The histograms
were plotted using Microsoft Excel. These histograms were later divided into various groups based
on their appearance. The morphology of a crystalline system, that was deduced through visual
observation, was also related to its corresponding histogram. A detailed analysis of these

comparison methods is discussed in the Results and Discussion Section.
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FFT was also performed on each one of the time-resolved micrographs using ImageJ. The 2DPS
of each micrograph was compared with the 2DPS of each and every other micrograph. This
comparison was performed to establish a level of similarity. This comparison was quantified using

Pearson’s correlation method.

3.10 IGORPRO

IgorPro is a scientific data analysis software developed by Wavemetrics, Lake Oswega, FL, USA.
IgorPro features a scripting language and a compiler. IgorPro has a very powerful tool used for
image neutralization (balancing uneven background light). For each experiment, a control
micrograph of the liquid mixture, captured before the appearance of the first nucleus, was selected
for normalizing the other micrographs in the experiment. A Gaussian 2D surface was fit to the
control micrograph. The coefficients of this fitted surface were then used to generate a background
for later comparison. Each subsequent micrograph generated in the experiment was corrected using

this control background to correct for uneven levels of illumination.

3.11 FFT OF IMAGES

The FFT is an algorithm used to compute a Discrete Fourier Transform (DFT) and its inverse from
a numerical data set. FFT is used to generate a two-dimensional power spectrum (2DPS) which is
a plot of the distribution of power values as a function of frequency, where power is considered to
be the average of the signal. As was explained in the introduction, the FFT of an image made of a
finite number of pixels produces two bi-dimensional matrices. These matrices represent the image
as the result of a collection of superimposed sinusoidal waves. At each location (X,y) of the 2DPS,
one matrix stores the intensity of one of these waves, whereas at the same location (x,y) in the
other matrix it stores the relative phase of the wave. A discrete image can thus be exactly
reconstructed if the two matrices are used to produce the aforementioned waves, and then the
waves are superimposed on one image. The latter operation, of recovering the image, is called the

inverse Fourier transform. In this thesis the frequency is a spatial frequency, and therefore its
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inverse is not a time period, but rather a characteristic distance, that can be understood as a

wavelength or as the repeating size of a feature.

Three macros (Appendix C, D and E) were developed in ImageJ to perform the FFT analysis of

the images. ImageJ uses a 2D Fast Hartley Transform (FHT) algorithm for this transformation.

The functionalities of these macros are:

1)

2)

The first macro (Appendix C) extracts the FFT power spectrum (2048 x 2048) from each
time-resolved micrograph (1600 x 1200). Then the macro produces a text file containing a
list of the local maxima (intensity in grayscale units) of each combination of x and y
coordinates in the upper central region (512 x 256) of the FFT power spectrum. The values
of that region include the most significant information of the image that corresponds to
frequencies larger than eight pixels. The scale of the micrographs is such that 1.35 um
correspond to one pixel. Thus, the included features have a size of at least 10.8 um. Entities
smaller than this were considered ‘noise’ and their contribution was discarded. The text

file containing the maxima serves as an input for the second macro, described below.

The second macro (Appendix D) plots the top eight main frequencies (those with highest
local intensities) along with their orientation (x and y coordinates). For all the micrographs,
the top eight intensities are the main descriptors of the behavior of the particular file
generated by the first macro. Selecting a larger number of main frequencies produced very
complex patterns, whereas smaller numbers did not seem to contain enough useful
information. These top eight main frequencies were employed for the generation of what
in this thesis is called a "characteristic FFT" (CFFT) image. The procedure to generate a
CFFT image from a micrograph is illustrated in Figure 34. These types of CFFT images
are made of superimposed thick lines generated so that they visually presented the main
FFT information. Thus, the rank was represented by the width, the size was represented by
the length, the intensity was represented by color (grayscale value), and the direction was
represented by the angle. The CFFT image file is of dimensions 256 x 256, i.e., it has a
total of 65536 pixels. The image is of 8-bit quality meaning that any pixel of the image can

have a value from 0-255.
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Micrograph

Core of the FFT

FS_xy_0541
Rank X y Intensity  Size Angle
Pixels  Pixels Grayscale Microns Radians
1 253 2 215 268 236
2 254 10 211 75 167
3 248 11 204 58 214
4 37 4 202 4 292
5 274 11 201 35 0.52
b 243 14 200 41 128
7 277 20 199 26 0.74
g 293 21 197 17 0.50
CFFT Top main eight frequencies

Figure 34. Process depicting the generation of a CFFT from the micrograph of 3L7M40 at a

shear rate of 0.8 s and temperature of 18°C after 3 minutes of holding.

3) The third macro (Appendix E) performs the Pearson correlation (which is a linear

correlation between two variables, used to measure the strength of a linear association)

producing a value of R’ for the pair of CFFT extracted images from the time-resolved

micrographs.

z(x,.y,.)_Zx}-va,-

R2

e
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The macro plots and saves an image that contains the correlation in a scale from 0 to 255
that corresponds to 0 to 1 on the Pearson correlation scale (R?), where 0 corresponds to
random localization and one corresponds to perfect correlation. Figure 35 depicts the
relationship between 32 images; the diagonal of Figure 35 corresponds to the relation of

each image with itself (white color), indicating that each image is fully correlated to itself.

Image number

1 Image number 32

Figure 35. A Pearson correlation matrix, presented as an image relating 32 randomly chosen
images. The upper triangular region is symmetric across the diagonal; thus the bottom is not

plotted.

This third macro, however, turned out to be too slow to plot the (2640 x 2640) correlations

of the images, and it was re-implemented in MATLAB. Since the comparison of FFTs of
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micrographs on a Pearson correlation scale is the core of this thesis, a more detailed

explanation on the comparison is presented later in Results and Discussion.

The FFT analysis of the images transformed the information from the spatial size domain
to the spatial frequency domain. The information contained in an FFT image is in the form
of size (size is the reciprocal of the frequency), intensity, orientation and phase angle. As

discussed in the introduction, the CFFT contains everything except the phase information.

The CFFT is an extreme form of filter. Filter functions are used to modify the FFT from

an image in order to remove undesired features, leaving only relevant features.

An example of the effect of a more moderate filter is described in what follows. The image
in Figure 36 (a) was transformed into its corresponding FFT. From the power spectrum
obtained, the rest of the information was removed with the help of a square filter that
removed features smaller than 11 um. This was done by deleting from the power spectrum
the region outside of a central square region corresponding to 11 pm. When the inverse
Fourier transform was applied to the modified FFT, the simplified image in Figure 36 (b)

was obtained.

One could use the power spectrum of the FFT modified with a filter to delete every point in
the center having size of 11 um or more to compare images. However, this would leave a
very large number of points to correlate for each pair of images, and would take an inordinate
amount of time. This is why it was decided to use only the top eight ranked points, based on
intensities (Figure 37), out of the resulting power spectrum to form the CFFT image, which

is characteristic to each micrograph, as calculated in Figure 34.
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(b)

Figure 36. (a) Original micrograph from Figure 34, (b) image from (a) filtered by square

filter.
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Figure 37. (a) Plot of the location of the top eight ranked frequencies in the FFT 2DPS (from
Figure 34) for the micrograph from Figure 36 (a). The points are symmetrical around a
central point (50 x 40 pixels). (b) Inverse FFT of (a) (including the phase information). Only

the most predominant features from Figure 36 (a) are conserved by this procedure.

3.12 HIERARCHICAL CLUSTERING

The field of statistical pattern recognition is almost as old as statistics themselves. Clustering
techniques have been applied to DNA sequencing and species ecology, logistical manufacturing
and distribution problems, psychology of associations, economic prediction and long list of other
areas. The applications in image analysis are also very numerous. However, it has not been used
so far to attempt classification of the images obtained when analyzing crystallization of fat
materials (Jain et al., 2000). In this thesis, some of the most basic tools available were used to
provide a classification of sets of micrographs belonging to each experiment. The clusters formed
were then compared to the processing conditions used to produce the materials micrographed. This
was accomplished by developing a measurement (a metric) of the correlation between pairs of
objects, and using this correlation to estimate the dissimilarity between these objects (sets of

micrographs, in our case).

A matrix of correlation values can be used to group experiments using hierarchical clustering.
Hierarchical clustering is a collection of statistical methods that have been developed to use the

relative “distance” of pairs in order to group them. In our case, the “distance” was “measured” as
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one minus the “correlation” coefficient derived from the assignment of texture and histogram

categories (Murtagh, 1984), or one minus the Pearson coefficient between CFFT images.
Borrowing from the “help” of MATLAB (v 8.3.0.532, R2014a, Mathworks, Natick, MA, USA):

“The algorithm to perform agglomerative hierarchical cluster analysis on a data set follows
this procedure:

1. Find the similarity or dissimilarity between every pair of objects in the data set, as a
distance between objects.

2. Group the objects into a binary, hierarchical cluster tree, by linking pairs of objects
that are in close proximity.

3. Determine where to cut the hierarchical tree into clusters, by pruning branches off the
bottom of the hierarchical tree, and assign all the objects below each cut to a single cluster.”

MATLAB has several possible agglomerative methods that are applicable to our type of data in

order to establish “links” between the objects (experiments in our case).

The methods available for linking included the ‘average’ method (Unweighted Pair Group Method
with Arithmetic Mean, UPGMA); the ‘complete’ method (uses the furthest distance); the ‘single’
method (uses the shortest distance); and the ‘weighted’” method (uses a weighted average distance,

WPGMA) (Sokal, 1958).

The four possible methods can be used to produce a linking matrix. Each matrix is then evaluated
by calculating the correlation coefficient between the cophenetic inter-pair distances (from the
Greek root phainein/fangs/gpavy¢ “to show”, meaning the characteristics of the objects, such as
“phenotype”). This provides a measure of how well a dendrogram representation preserves the

original distance between pairs.

The cophenetic coefficient c. is computed as

c = Z<](); _J’XZ,]-—Z)
C \/Zq(Yt/ —y)ZZq(Zij —Z)Z

e Yjis the distance between objects i and ;.

e Z;is the cophenetic distance between objects i and ;.

e yand z are the average of Y and Z, respectively (Sokal & Rohlf, 1962).
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The distance matrix Yj; is often generated as 1 — Rj;, where R;; are the correlation coefficients
normalized between 0 and 1. Thus, two experiments that have high correlation (R ~1) are at a very
short “distance”, whereas pairs that have low correlation (R ~0) are at a far distance. Though the
letter R is most frequently used for the Pearson correlation coefficient, it must be noted that
Pearson’s is not the only type of correlation coefficient possible. In the thesis, Pearson’s correlation

coefficient will be denoted as Rp.

In the Results and Discussion session it will be shown that for the data in this thesis the best linking
method was UPGMA, where the mean distance between elements of two clusters 4 and B is

computed from the distances of elements of the clusters, d(x,y), as
YY)
| | : |B| xeAd yeB

The Y matrix can be plotted as a dendrogram and can be used to produce a list that indicates to
which cluster each experiment belongs. This information can then be paired with known levels of

the controlled variables (material, temperature, and shear) to find relationships.
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Chapter 4 Results and Discussion

4.1 MICROGRAPH SERIES ~-GENERAL MORPHOLOGY AND ONSET TIMES

The polarized light time-resolved micrograph series of the diluted binary mixtures were plotted
against time for the temperatures and shear rates studied, as the example shown in Figure 38. One
complete set from each experiment has been included in Appendix A, sorted by material and shear
rate. These time-resolved micrographs were used to observe the effect of processing conditions
(shear rate, time and temperature) on the visual appearance (shape, size, onset, etc.) of the diluted
binary mixtures. The montages show a clear variation in the micrographs with respect to
temperature and shear. This variation is present for the three materials studied: 3L7M40, SL5M40
and 7L3M40.

Each experiment was performed in two different time series: short duration experiments (with a
holding time of 6 minutes), and longer duration experiments (with a holding time of 30 minutes).
The following pages contain selected montages of the time-resolved micrographs. The montages
include only micrographs of one of the three repetitions performed, selected for image clarity.

Therefore, the montages show 880 of the 2640 micrographs taken.
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4.1.1 Description of the visual texture of the crystalline structures

The short time experiments with 3L7M40 displayed a significant variation in the appearance of
their crystalline structures in the micrographs obtained at 15 °C, when compared to those taken at
18 °C. This variation was irrespective of shear rate. On the other hand, the appearance of the
crystalline system at 18 °C and 21 °C was qualitatively similar at all shear rates except for 80 s
Though crystalline structures obtained at temperatures of 18 °C and 21 °C appeared similar,
nucleation occurred earlier in the case of the experiments performed at 18 °C, due to the larger

undercooling.

For the longer duration experiments of 3L7M40, a significant difference in visual appearance was
found between micrographs obtained at the three temperatures tested, i.e., 15 °C, 18 °C and 21 °C,

for all the shear rates.

For 5L.5M40, a grainy texture was observed in experiments performed at the four temperatures
tested: 11, 14, 17 and 19 °C. Only subtle variations in texture were observed throughout the time
course for each of these temperatures. Nucleation at higher shear rates (80 and 800 s™') was faster

than at lower shear rates.

For 7L3M40, short and long duration experiments performed at its three temperatures (14, 16 and
18 °C), produced consistent textures between temperatures. However, variations related to the
shear rate were observed. At low shear rates the micrographs showed large liquid patches
surrounding big crystalline clusters. At high shear rates, the micrographs showed streaks aligned
with the rotation of the lower surface of the shear stage. They often showed bubbles, either circular
or elongated and deformed in the direction of the movement. Early crystal growth was noted at

higher shear rates, as discussed in the previous section.
4.1.2 Shear-induced effects: segregation, orientation and bubbles

Segregation. An important effect of the application of shear is the decrease in the size of the crystal
clusters as shear rates increased, as was observed for all the samples. It is known from previous
work that shear promotes the breakage of existing aggregates and hinders the formation of new
aggregates (Mazzanti et al., 2007). Furthermore, it is a simple mathematical consequence that as

the size of a cluster decreases, the surface area to volume ratio increases. Thus, one could speculate
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that the occurrence of small aggregates increases the number of nucleation/attachment sites per
unit volume of free liquid available. This effect would further promote secondary crystal

nucleation as well as crystal growth (Mazzanti et al., 2007).

Orientation. The segregation effect due to the shear on the crystalline nanoplatelets allows them
to be oriented in the flow field. If the nanoplatelets are bundled in a sphere-like shape, the entire
shape will roll around, and there will be no net orientation of the crystals. The strong evidence of
orientation indicates that the crystals are not clustered randomly. For instance, a common trend for
experiments at shear rates of 80 and 800 s!, was that the transmitted light intensity increased until
about 3 minutes in the experiment, and later decreased progressively as time went on. It is known
from the experiments of Li (2011) that the total crystalline mass did not decrease. Therefore, the
reversing trend in intensity may result from an initial random orientation of the crystals that may
provide maximum transmitted intensity of the polarized light, due to birefringence. As time goes
on, the cumulative effect of shear progressively reduces this randomness by increasing the
proportion of crystals that are aligned to the shear flow (Mazzanti et al., 2007; Mazzanti et al.,
2003) at an angle that transmits less polarized light. To understand this more accurately, consider
that the “optical volume” observed using the 10X objective with a ~10 um depth of field, together
with the Retiga camera, is approximately 1200x900x10 pm = 107 um®. A typical size of the
crystalline nanoplatelets is 0.1x0.3x0.7 um = 2x10?2 um? or 20 nm® (Acevedo & Marangoni,
2010). Neglecting the small difference in density between the crystal and the liquid, about 40% of
the volume could be crystals, i.e., 4x10° um?®. Thus, a reasonable mean number of crystals in the
optical volume is about 4x10°/2x102 =2x10?, i.e., 200 million crystals. These crystals have some
three-dimensional positional distribution, and the light transmitted will depend on this distribution.
As time goes on, the distribution becomes narrower in the direction of preferred orientation. In our

case, this direction produces a low transmission of polarized light across the analyzer.

Due to the setup of the cell and microscope, the alignment that happens is likely to increase the
proportion of nanoplatelets that have their larger surface parallel to the glass surfaces of the shear
cell. This is the thinnest dimension of the nanoplatelets. If one was measuring the total transmitted
light (not between crossed polarizers) it would be expected that an increase in transmission would
happen, since the absorption by the nanoplatelets is less than randomly oriented fat crystals.
However, in PLM what one sees is the proportion of light that gets “twisted” to a plane that is

parallel to the analyzer, hence oriented 90 degrees with respect to the polarizer. The degree of
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“twisting” increases linearly with the thickness of the crystal and the birefringence coefficient ‘B’
in that direction. The birefringence coefficient is the ratio of the refractive indexes of the axes of
the crystal perpendicular to the light pathway. The orientation of a larger proportion of crystals
with their thin dimension perpendicular to the light pathway results in less twisting of the light
plane, and hence less intensity crossing the analyzer. Similar findings were reported by Li (2011)
from work using 2D time-resolved synchrotron XRD. In those experiments, higher shear rates of
80 and 800 s™!' induced reorientation that was observed for all the three samples. Previous published
work by Blaak et al. (2004), Mazzanti et al. (2005), Guthrie (2008), Mazzanti et al. (2003),
Tarabukina et al. (2009) and Sonwai & Mackley (2006) also confirm the strong orientation effects

at high shear rates.

Figure 39. Micrograph from 5L5M40, 14°C, nominal 0.8 s'. The white scale line
corresponds to 100 um. The horizontal red arrow corresponds to an angle of 0 radians,
whereas the vertical arrows correspond to + 1/2. The cylindrical clusters appear as parallel
lines. The cell gap was found to be approximately 10 pum, which changes the shear rate to 4

sl

Figure 39 is a useful micrograph to illustrate the effect of shear on orientation, and hence on light

intensity. In this experiment, which was performed with a gap of ~10 um, the crystalline
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nanoplatelets formed cylindrical aggregates. The cylinders appear as thin rectangles bound by very

bright or dark straight lines separated by a distance similar to the gap, i.e., ~10 pm.

These lines are likely formed by nanoplatelets that have the same orientation, parallel to the axis
of the cylinder. The angle of the edge with respect to the horizontal (taking horizontal as a
reference) was measured for most of the cylinders, and was plotted in Figure 40. It is clear that
there is a strongly preferred orientation around 22 degrees from the horizontal, consistent with the
cylinders rolling under the movement of the lower plate of the cell. Due to the variation of shear
in radial direction. The external side of the cylinders (to the right of the figure) will move slightly
faster (towards the top of the figure) than the internal side. There are collisions, tumbling, and
other randomizing movements that prevent all the cylinders from being aligned, yet there is an
averaged preferred orientation. If the brightness of the cylinder edges is plotted against their angle
with respect to the horizontal (Figure 41), it is also found that they are very bright when closely
aligned with the analyzer (at 45 degrees) and some with the polarizer (at -45 degrees). The average
liquid background is plotted as well as a reference. The clusters present at other angles appear

darker than the background.
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Figure 40. Number of cylindrical crystal clusters as a function of their angle of orientation.

72



250

200 - Q

% Q : @c
] i '
E.. 150 :Q : 4
5 | |
100 - @ E
50 ; :
a0 45 0 45 an

Angle I_Dégrees]

Figure 41. Grayscale value (0 = Black to 255 = White) as a function of angle, from the
cylindrical clusters in figure 39. In the legend “c” indicates crystal cylinders; “b” liquid
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background; and “p” angles of the filters (polarizer and analyzer) as observed.

This highlights the fact that alignment can cause either increase or decrease in intensity, depending
on the orientation of the crystals. This concept will be used later to explain the reduction in

intensity that happens over time in high shear rate experiments.

Bubbles. Greater shear rates induce a large number of bubbles, which can be observed in most
800 s™! experiments, usually as dark rimmed regions. At this high shear rate, air is caught at the
edges of the rotating disk and incorporated into the moving material as crystallization progresses.
The bubble interfaces can act as secondary nucleation sites (Walstra, 1998). However, their major
influence is the disruption of the normal flow in the shear cell and the occasional reduction of the
combined observable field of liquid and crystals. Though it was considered, the bubbles were not
excluded from the micrographs by using digital methods. Instead, they were included as part of

the features of the visual texture of the micrographs.

73



4.1.3 Onset times of crystallization

PLM can be used to estimate the onset of crystallization and monitor early crystal growth (Skoda
& Van den Tempel, 1967). The onset times were estimated for each experiment by looking at the
live video feed, and noting the time in seconds when the first crystals were observed. This time
was compared to the time at which the sample reached the desired temperature, after the cooling
ramp of 30°C/min from the melt. If the crystallization started before the final temperature, the
reported time was negative. This is, for instance, the case for 3L7M40 at 15°C, under all shear
rates. The average of six onsets, 3 from short and 3 from long time ranges, for all the samples at
all temperature and shear rates, are plotted in Figure 42. A few outlier points were left out of the

averages.

The averaged onset times for the three materials were plotted in Figure 43. The standard deviation
of the onsets for each material were 10 seconds for 7L.3M40, 7 seconds for 5L.5M40 and 3 seconds
for 3L7M40.
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Figure 42. Onset times of crystallization vs. temperature, at the four shear rates (s™!), for the

three materials: (a) 37L.M40, (b) SL5M40, and (c) 7L3M40.
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Figure 43. Average onset times (combining all the shear rates) for each material vs.

temperature.
4.1.3.1 Effect of temperature on onset times

As expected, an increase in temperature produced generally longer onset times, due to the
reduction in the undercooling of the material. This fact is often used in crystallization research to
estimate the interfacial tension of an ideal spherical crystal, using the Fisher-Turnbull method.
This method is based on a model of nucleation kinetics expressed as a relationship where the
temperature and the undercooling, along with other properties, can be used to predict the onset
time ‘. An algebraic transformation of the model indicates that a plot of (z-T) vs. 1/(T-AT?) should
be linear if the model is followed (Marangoni & Wesdorp, 2012). In summary,

aNk, m. 1

T-(AT)

In(z-T)oc—In

Lo (¥
 3k,(AH,)

76



For the diluted systems, the dissolution temperature is used instead of the melting temperature,
due to the presence of the solvent. For an ideal solute-solvent pair, the dissolution temperature Zyiss
can be roughly estimated using the phase equilibrium equations, as a function of the mole fraction

yi of solute in the liquid (Batchu, 2014; Marangoni & Wesdorp, 2012):

y_xyeXpAHL(l 1)
L=/ P —
Rgas Tdiss TL

AH, (11
—(1=x,)-y, -exp| 2w |~ _ 1
v =(=x,) 74 p{ o ( T H

gas

For the dry mixtures the values of the mole fraction for each material x,, were 0.327, 0.531, and
0.725 for 3L7M, 5L5M and 7L3M, respectively. Using standard values of melting point and
enthalpy for p LLL and MMM, obtained from literature, the ideal melting temperature of the three
dry mixtures are 55.2, 53.6 and 51.5°C for 3L7M, 5L5M and 7L3M. The corresponding overall
molar fractions in solution y, were 0.459, 0.465, and 0.471 moles of crystallisable material per
mole of solution for 3L7M40, 5L5M40 and 7L3M40. The mole fractions of trilaurin and
trimyristin in the liquid were calculated as yr = xm - ym and ym, = (1- Xm) * Ym. Assuming that the
activity coefficients are unity (ideal behavior, no interactions between each component type with
other), the dissolution temperatures obtained were 50.4, 48.9, and 46.9°C, corresponding to a
depression of ~ 4.6 to 4.8 C° from the thermodynamic melting point of the dry mixtures that

contain no solvent.

The undercooling values (47 = Tuiss-T) were quite high, ranging from 29 to 38°C. The plot of the
onset times as a function of the undercooling shows that the 7L3M40 material behaves somewhat
abnormally, since it appears between the other two. The Fisher-Turnbull plot is clearly not linear
(Figure 45 (b)). Thus, this model is not adequate to describe the onsets of these mixtures, at least
under the assumption of ideal equilibrium properties and a surface tension value independent of
temperature. Since the surface tension decreases as the temperature increases, it is possible that

the decrease in the slope of the curves is due to its dependency of the cube of the surface tension.
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Figure 44. Melting temperature (Tm) of the dry binary mixtures (green); and dissolution

temperature (Tdiss) of the 40% diluted mixtures (red).
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Figure 45. Onset times of crystallization vs. undercooling (obtained from subtracting the

dissolution temperature from the experimental temperatures) for the three diluted binary

blends. (a) in normal form; and (b) following the Fisher-Turnbull model.
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4.1.3.2 Effect of shear on onset times

The effect of shear rate on the onset times of binary mixtures was not clear, since no particular
trend is observed. In some instances, an increase in shear rate between two experiments with the
same material and temperature produced a reduction in crystallization onset time. Such is the case
of 3L7M40 at 18°C, where the crystallization started much later (after 30 seconds) at 0.8 s than
at higher shear rates. In other cases, increased shear rates produced a delay in crystallization onset.
These positive and negative onset time variations were within the range of the averaged standard
deviations. In consequence, it is not possible to attribute unequivocally a single specific effect of
shear rate on the onset time. This ‘randomness’ of the effect of shear allowed the collating of the

data for each temperature, to give an overall picture.

A peculiar observation from Figure 42 is that the experiments at 0.8 s' were, in most cases,
somewhat different from the average onsets of the higher shear rates. For 3L7M40 and 5L5M40
the onset usually took longer at 0.8 s™!, whereas for 7L3M40 it happened sooner. This ‘funny’

behavior of 7L3M40 is seen also as a function of its estimated undercooling in Figure 42.

In the literature it is sometimes indicated that the strongest effect of shear is the induction of
nucleation, whereas it seems to be much less significant in altering the growth kinetics (Tiang &
Dealy, 2012). It is argued that shear promotes nucleation as a consequence of mixing, due to the
mechanical energy transfer into the system (Tarabukina et al., 2009). However, for materials with
high viscosity, high shear rates can produce local heating of the sample under study, thus reducing
the effective undercooling and delaying the crystallization onset (Mazzanti et al., 2007). These two
competing processes perhaps explain the reduction of onset times for the higher shear rate
experiments in 7L3M40 compared to the other two materials, since 7L3M40 has a lower viscosity,

on account of its smaller average molecular weight.
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4.2 IMAGE CLASSIFICATION BASED ON VISUAL TEXTURE AND HISTOGRAM
TYPE

It is clear that the processing conditions affect crystallization in such way that they produce
structures that display different visual texture types. In order to find a relationship between
processing conditions and structure types, it is necessary to define what those “structure types”
are. Hence, a classification is needed. Classification rules require, in turn, the definition of
characteristics. It also requires the establishment of procedures to determine the presence or
absence of those characteristics, and, if possible, how to measure them. Two main procedures were
used to characterize the experiments, based on the images obtained from them. One, discussed in
this section, uses the visual texture and histograms of the images. The other one, discussed in

Section 4.3, employs a selection of FFT data.
4.2.1 Relationship between shear rate and visual texture of the images

The three materials (3L7M40, SL5M40 and 7L3M40) were subjected to four shear rates (0.8, 8,
80 and 800 s™!). The previous study by Li (2011) explored, among other things, the reduction in
crystal aggregate size with increasing shear rates. In her experiments, Li (2011) observed that,
although there is an increase in crystalline mass during crystallization, the size of the aggregates

is reduced when the shear rate increases.

At high shear rates such as 800 s!, the visual texture of the micrographs in this thesis was found
to be of a more granular type (Figure 46) compared to the visual texture observed at the lowest
shear rate of 0.8 s™! (Figure 47). At this low shear rate, the visual structure better resembles a coarse
spherulitic growth, as seen in Figure 47, with large aggregates. At the high shear rate, the
mechanical energy transferred to the system by shear fragments crystal aggregates, and hinders
the formation of large clusters. This fragmentation further results in the formation of a large
number of segregated crystals. The segregated crystals can therefore be surrounded by
uncrystallized liquid. This leads to further crystallization, which subsequently leads to an increase
in crystal mass (Figure 46). The breakage of the crystalline structure promotes a finer/grainy

structure, and this produces a finer visual texture as well, as observed at higher shear rates.
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A case in point is seen in sample 3L7M40 after 3 minutes. The total crystalline mass under 800
s™! appears larger than under 0.8 s'. No uncrystallized liquid seems obvious at 800 s!, whereas

large patches of liquid can be clearly observed at 0.8 s™! (Figure 47).

and at 18°C after 3 minutes of holding.

-1

Figure 47. 3L7M40 at low shear rate of 0.8 s

From Figures 46 and 47, it is evident that shear reduces the crystal cluster size. Similar behavior
was observed in milk fat and lard in the work performed by Campos et al., (2002). The reduction
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in the size of crystal aggregates in milk fat, lard, and diluted binary mixtures suggests that the TAG

systems behave alike despite the composition of the system.
4.2.2 Classification of visual textures

Based on their appearance, the micrographs obtained were subjectively classified into distinct
visual textures. It was found that four groups were enough to provide a reasonable characterization
of the micrographs: grainy (W); spherulitic (X); circular (Y); and messy (Z). The four images

shown in Figure 48 were used as models for visual comparison and characterization.

(Y) Circular (Z) Messy

Figure 48. Four types of texture found during these studies: (W) grainy; (X) spherulitic; (Y)

circular; and (Z) messy.
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The characterization was not performed on individual images, but rather on each one of the 80
groups of 33 images (3 repetitions of 11 images) taken under each set of experimental conditions.
Therefore, each experimental triplet treatment combination of [material, temperature and shear
rate] received two letters, one for the three short duration experiments, and one for the three long

duration experiments.

Table 4 describes the occurrence of different types of textures as a function of shear rate. It can be
noted from Table 4 and Figure 49 that the most abundant texture observed was the granular W,
accounting for almost half of the experiments (39 out of 80). About three quarters of these
happened at the higher shear rates of 80 and 800 s (28 out of 39). Conversely, the spherulitic
texture (X) did appear only in experiments done at 0.8 or 8 s™!, as did most of the messy textures
(Z) observed (15 out of 16). This distribution is consistent with shear disrupting the crystal
aggregates. The circular texture (Y) was prevalent at the medium high shear rate of 80 s™'. The
clusters seem to be compacted into balls at this shear rate by a rolling motion. At lower rates, the

balls have less tendency to form, whereas at higher shear rates these balls are disrupted.

From Table 4, it is evident that the granular (W) texture prevails at higher shear rates, since 72%
of the experiments at shear rates of 80 and 800 s displayed a granular structure (Figure 49),
whereas low shear rates favoured spherulitic (X) and messy (Z) textures. The variation in the
structure as a function of shear might result from the tendency of shear to fragment the aggregate
formations. The segregated crystals surrounded by the liquid can easily undergo transformation to
a more stable polymorph (Mazzanti et al., 2007), whereas crystals “trapped” in a cluster have a
more difficult time rearranging their molecules. The visual texture predominant at each shear rate

is highlighted in green in Table 4.

The relative trend of the texture types as a function of shear rate is seen clearly in Figure 49. The
spherulitic type is mostly present at the lowest shear and decreases with increase in shear. The
messy type increases and then decreases: it has its maximum at 8 s™'. A similar trend is shown by
the circular type, which appears at 8 s, has a maximum at 80 s”!, and then declines again at
800 s’!. The granular type, present at all shears rates, decreases at first from 0.8 s to 8 s”!, but

increases thereafter.

Not all soft materials are affected by the application of shear in this manner. For example, in the

work on polystyrene by Soos et al. (2008), shear (up to 1350 s!) did not influence the structure,
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shape, or aggregation of polystyrene. Yet, in this thesis, a clear effect can be seen on the binary

mixtures of TAGs even at 80 s™'. TAG crystal clusters are thus very sensitive to shear.

Table 4. Number of experiments showing a type of visual texture, for each shear rate.

0.8s! 85! 80 s! 800 s! Total
Granular (W) 7 4 11 17 39
Spherulitic (X) 8 2 0 0 12
Circular (Y) 0 4 8 3 15
Messy (Z) 5 10 1 0 16
18
16 | | MGranular (W) .
La || BSeheruitic ()
@Circular (¥)
1= Messy (2)

=
o

(0)]

Occurence (Number)
(04}

0.8
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&

8
Shear Rate (s%)
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Figure 49. Number of experiments showing a type of visual texture as a function of the shear

rate.
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4.2.3 Use of histograms to improve the classification of micrographs

Images are sometimes characterized by their histograms, since the distribution of intensities, under
specific conditions, is often related to the microstructure. There is not, however, an absolute or

general correlation between texture and histogram applicable to all sorts of images.

The visual texture and the type of histogram obtained from the micrographs are examined in this

section, to find out if it is possible to establish a relationship between them.

As discussed in the previous section, the experiments produced four different types of visual
textures. The following section describes how the histogram collections of each experiment fell
into five categories, distinguished chiefly by their distribution around the maximum frequency of

the histograms.
4.2.3.1 Types of histograms

The histograms were plotted with the help of Microsoft Excel from the intensities acquired for
each particular image from ImageJ for 3L7M40, SL5M40 and 7L3M40 at different temperatures
and shear rates. Each image has 1600 x 1200 = 1,920,000 pixels in total. Each pixel has a grayscale
intensity between 0 and 255, from black to white. The numbers of pixels with a given intensity are
plotted on a semi-logarithmic scale with the grayscale intensities, since they are distributed with a

wide range of frequencies, between 1 and 1x10°.

About 60% of the pixels should be, on average, reflecting the presence of the liquid. That is
1,152,000 pixels out of the 1,920,000 total pixels of the image. There is bound to be some overlap,
since some crystals may produce intensities that are in the same ranges as the intensities of the
liquid. Of course, this as an expected averaged behavior and particular images will usually deviate
considerably from it, since they sample only a very limited space. It is also possible that some light
reflected from the crystals diffuses through the liquid, and thus the liquid surrounded by a

‘crystalline’ environment can appear brighter than when it is on its own.

The histograms of the “liquid” images at the beginning of an experiment are very useful to get a
sense of the expected distribution of the non-crystalline pixels. However, due to the light artifacts
that appeared even in the “liquid” images, the liquid had a distribution of grayscale values broader

than expected. The liquid had intensities around a particular grayscale value that depended on the
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illumination intensity. For some it was around 80, for others 50, 30, or 20. If the light source was
intensified during the experiment, the value increased, and this can be seen in the displacement of

the narrow range of pixels that correspond to the liquid.

The histograms were classified into five broad categories based on salient features of the

histogram, particularly the hump near the expected liquid values (maximum), as seen in Figure 50.
The hypotheses here are that:

a. The liquid has a distinguishable contribution to the histogram (a hump)
b. The non-liquid part can be separated and its shape reflects image characteristics that are

produced by the treatments (often another hump).
Therefore, general descriptions of five kinds of histograms were established as:

(A) one maximum even, Figure 50 (a) (Sharp liquid peak)

(B) one maximum uneven, Figure 50 (b)

(C) two maxima, Figure 50 (c) (Broad liquid peak remains)

(D) more than two maxima, Figure 50 (d) (Sharp liquid peak remains)
(E) random distribution, Figure 50 (e)

The histogram sets for each one of the 80 experiments (40 at short times, 40 at long times) were
plotted, and a letter was assigned based on the visual appearance of the set. These assignments,
along with the texture assignment of each experiment, are listed in Table 5. Table 6 and Table 7
summarize the number of experiments that belonged to each category. Histogram types A, B and
C are almost equally present, and account for 80 % of the experiments. Type D was the least

common histogram, 5 %, whereas type E accounts for the other 15 %.
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Figure 50. (a), (b), (c), (d) and (e) Representative histogram types A, B, C, D and E

respectively. The significant features as mentioned above are indicated by the arrows.

Table 5. Types of histogram and texture code assigned to each experiment set, in the

following order: short time histogram (SH), long time histogram (LH), short time texture

(ST) and long time texture (LT).

3L7M40 5L5M40 7L3M40

1 AAWW 13 ACWW 29 BEZX
2 ACWW 14 BBYW 30 CEZz
3 BAYW 15 cBWW 31 BAYW
4 BBWW 16 ACWW 32 CAYW
5 CDXX 17 AEWZ 33 BEZX
6 CEXZ 18 BBYZ 34 DBZZ
7 CBYW 19 CCYwW 35 CAYW
8 AAWW 20 BAWW 36 CCYW
9 CCXX 21 BEWZ 37 EBZX
10 CEXW 22 CEYZ 38 CEZzZ
11 CDhYZz 23 DBYW 39 EAYW
12 AAWW 24 ABWW 40 CAYW

25 BCWX

26 AEYZ

27 BCWW

28 BAWW
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Table 6. Summary of number of occurrences of histograms and textures.

Histogram types
A B C D E Total

2 W 19 12 7 0 1 39
z

g X 0 1 6 1 2 10
™

= Y 1 4 8 1 1 15

Z 0 4 2 2 8 16

Total 20 21 23 4 12 80

Table 6 provides an idea of the interactions between the classifications based on type of histogram

and on the texture type.

The histogram type A and the texture type W (AW pair), along with histogram type B and texture
type W (BW pair) combinations, account together for about 40% of the experiments. They are
followed by combinations of histogram C and texture Y (CY pair) and histogram E and texture Z

(EZ pair), with 10% each. The remaining 40% is distributed among other combinations.

Clearly, type A histogram (one maximum evenly distributed histogram, Figure 57), relates to the
granular type structure (W type, Figure 48(a)), which corresponds to 95% of the total histograms
of type ‘one maximum even’. So do the histograms with ‘one maximum uneven’ (Type B), since
12 out of the 21 correspond to a granular structure. It can thus be safely estimated that the granular
visual texture corresponds to the one maximum type of histograms, either even or uneven. Types

A and B account for 31 of the 39 type W textures, i.e., ~80%.

In Table 7, histogram-texture pairs were ordered based on their frequency.
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Table 7. Histogram and texture (H&T) type ordered by frequency.

% | Frequency | Histogram Texture
23.8% 19 A w
15.0% 12 B w
10.0% 8 C Y
10.0% 8 E Z

8.8% 7 C w
7.5% 6 C X
5.0% 4 B Y
5.0% 4 B Z
2.5% 2 C Z
2.5% 2 D Z
2.5% 2 E X
1.3% 1 A Y
1.3% 1 B X
1.3% 1 D X
1.3% 1 D Y
1.3% 1 E w
1.3% 1 E Y

4.2.3.2 Clustering of experiments using histograms and textures

A method was developed to produce a semi-quantitative correlation value between experiments
based on visual texture (W to Z) and histogram (A to E). Since each part of an experiment (short
or long time) had received a letter for its texture and a letter for its histogram, it was decided to
assign values to those characteristics, and thus evaluate the similarity of two experiments. Initially
each letter was given the same weight, and thus five possible values of similarity R were possible,
i.e. 0.00, 0.25, 0.50, 0.75 and 1.00. The relative dissimilarity, 1-R, or distance, is thus equal to the
number of different letters at the same location. This coarse type of distance metric is credited to
Hamming (Hamming, 1950). A far smoother metric was devised by changing the weight for each
place in the code, and by including a cross-presence term in each one of the two parts of the H&T
code. The long-term experiments were given more weight, since they tended to approach a steady
state (100% crystallization possible). The visual texture was assigned from a direct observation of
the micrographs, whereas the histograms were obtained as derived information. The weights

assigned for each group were thus 0.4 for LT, 0.3 for LH, 0.2 for ST and 0.1 for SH, where LT,
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LH, ST and SH corresponds to long time texture, long time histogram, short time texture and short

time histogram respectively.

Two experimental sets that shared their four characteristics (e.g., ABWW) would have a score of
0.4+0.2+0.3+0.1=1.0. On the other end of the spectrum, two experiments that did not share
any (e.g., ABWW vs. EEYZ) would get a score of 0. Experiments sharing some characteristics
would get a partial score; (e.g., ABWW vs. ACWW) would get a score of 0.4 + 0.0 + 0.3 + 0.1 =

0.8. The “correlation” value would thus be between 0 and 1 in intervals of 0.1.

A cross-presence weight was added to this weighted Hamming criterion. Consider the experiment
BAXW when compared to ABWX. The previous coefficient would be zero. However, it seems
clear that it should be closer to ABWX than CDYZ, since all the letters are the same. Thus, the
short and long time letters of the histograms were compared, and for each match the pair was
awarded 0.05 points. For the texture section, the short and long time letters were also compared,
and every match was awarded 0.075. There are, therefore, eight comparisons: four direct
comparisons and four cross comparisons. The pair ABWX vs. CDYZ will get zero, but the pair
ABWX vs. BAXW will get 0.05 + 0.05 + 0.075 +0.075 = 0.25. The maximum possible proximity
R-value is 1.25. Hence, the distance metric was defined as [1 — (R/1.25)]. This method of

determining the dissimilarity distance will be called ‘cross’.

Figure 51 presents the weighted Hamming correlation R-values (without the cross terms, for
simplicity) as colors in a matrix with the experiment numbers as coordinates. The correlation is
represented by the color scale where, maroon colour depicts high correlation and white

corresponds to no correlation at all.
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Figure 51. Weighted Hamming correlation coefficients R; between experiment sets,
combining the texture and histograms from short and long-term experiments (no cross

terms). The correlation is represented by the color scale between 0 and 1.

For the simple Hamming distances, the “average” method of linking (Unweighted Pair Group
Method with Arithmetic Mean, UPGMA) produced the best cophenetic correlation coefficient
with a value of c. = 0.78. The UPGMA also produced the best cophenetic coefficient for the cross

distances, with a value of cc = 0.91. The dendrograms obtained are shown in Figure 52.
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Figure 52. Dendrograms derived from the H&T correlation values. (a) Six groups of

experiments (Hamming metric) (b) Three groups of experiments (cross metric).
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Based on the dendograms in Figure 52, the data were clustered into four groups, i.e., G1, G2, G3

and G4 as shown in Table 8.

Table 8. Hierarchical clustering of the experiments using the H&T correlation values.

Cluster H&T Exp_N Group Grou.p Material Temperature Shear Rate Avg  Avg
cross Hamming Temp SR
AAWW 1 3 3 15 0.8
ACWW 2 3 3 15 8
BBWW 4 3 3 15
AAWW 8 3 3 18
AAWW 12 3 3
G1 ACWW 13 3 5
ceww 15 3 5 " 155 117
ACWW 16 3 5
BAWW 20 3 5
ABWW 24 3 5
BCWW 27 3 5
BAWW 28 3 5
BAYW 3 3 2 3
CBYW 7 3 2 3
BBYW 14 3 2 5
ccyw 19 3 2 5
DBYW 23 3 2 5
BAYW 31 3 2 97
G2 CAYW 32 3 2
CAYW 35 3 2
ccYyw 36 3 2
EAYW 39 3 2
CAYW 40 3 2
CEXW 10 3 8
BBYZ 18 14 8
DBZZ 34 16 8
CEXz 6 3 18 8
covz 11 3 2 o
G3 AEWZ 17 5 14 0.8 " 168 6.4
BEWZ 21 5 17 0.8
CEYZ 22 5 17 8
AEYZ 26 5 19 8
CEZZ 30 14 8
CEZ 38 18 8
EBZX 37 18 0.8
BCWX 25 5 19 0.8
G4 BEZX 29 14 0.8 YA 0.8
BEZX 33 16 0.8
CDXX 5 3 18 0.8
cox 9 3 DR os

The colors and numbers assigned to each group for the construction of the dendrograms were
placed in Table 8 beside the experiment numbers, along with the four-letter code formed by the
combination of the histograms and the textures (H&T). The conditions of each experiment were
tabulated as well. The shear rate was given a logarithmic value along with its original value to
account for the wide range of values used: 1 for 0.8 s, 2 for 8 s™! and so on. These logarithmic

values were averaged for each group, rather than the original values.
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Despite some small differences in grouping between both metrics, the classification was
consistent, once the classification via Hamming was reduced to four groups: Part of #1 Hamming
coincided with part of #3 cross, whereas #2 Hamming corresponded to the rest of #3 cross; #3, #4

and # 5 Hamming coincided with #2 cross; and #6 Hamming coincided with #1 cross.

The first cluster contains only experiments performed with 3L7M40 and SL5M40, whereas the

others contain experiments with the three materials.

Clusters G1 and G2 contain, in general, experiments done at higher shear rates, whereas clusters
G3 and G4 do not contain any experiments at 800 s™!, and just one of them is at 80 s™'. A coarse
logarithmic average of the shear values included in each group is tabulated in the last column,
providing some quantitative measure of this distribution. The temperatures, averaged by groups,
indicate that G1&G2 include lower temperatures, whereas G3&G4 include slightly higher
temperatures. There is, thus, a tendency of the experiments to cluster through an inverse
relationship of shear and temperature, as summarized in Figure 53. From a general point of view,

it is reasonable, since lower undercooling and higher shear rates tend to produce smaller clusters

of crystals.
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Figure 53. Averaged values for the shear rates of the four clusters (G1, G2, G3 and G4
respectively) versus averaged values for (a) the temperatures derived from Table 8 and (b)
the undercooling (AT). The bars denote the variation in shear rates, temperature and
undercooling.
The results of the clustering can be considered successful, since they offer a method that produces
a reasonable classification of the experiments, starting from an independent classification of the

appearance of the textures and the histograms. The probability that a particular histogram or texture
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will be found in a particular group was calculated based on the frequency of the characteristics of
the members of each group, and it is summarized in

Table 9 and Figure 54.

Table 9. Probability that a particular histogram (A, B, C, D and E) or texture (W, X, Y and

Z) will be found in a given group.

A B Cc D E w X Y Y4
G1| 0.50 | 0.29 | 0.21 A 0.00 | 0.00 G1| 1.00 | 0.00 | 0.00 | 0.00
G2| 0.25 | 0.25 | 0.38 H 0.04 | 0.08 G2| 0.50 | 0.04 | 0.46 | 0.00
G3| 0.10 | 0.20 | 0.25  0.10 | 0.35 G3| 0.10 A 0.05 | 0.20 | 0.65
G4 | 0.00 | 0.33 | 0.33  0.08 | 0.25 G4| 0.08  0.67 | 0.00 | 0.25

0.50

0.40 +
0.30 -
0.20 -
0.10 -

mGl
mG2
G3

uGA
0.00 +

Figure 54. Probability that a particular histogram or texture will be found in a given group, derived
from Table 9.

The clustering could be used to approximately predict to what group a set of processing conditions
would send a material. The undercooling (AT) varies with the temperature and the composition of
a material, i.e., different for each sample, as clear from Figure 44. It may thus be possible to find

an empirical predictive function of the group number G from only y and AT. A full quadratic

function in both variables (with cross-product terms, i.e., nine coefficients) was tested, and its

predictive capacity is summarized in Figure 55 and Figure 56.

1 AT AT? Aoy Ay Ay )
M=y y-AT 7'AT2 A=y 4 4y | G:ZZ<Mi,j 'ai,j)
7}2 ?}2 AT 7}2 -AT? yy dy Ay o
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The coefficients in the matrix ‘a;” were obtained by least squares fitting to the values of G of 1, 2,
3 or 4, according to the group of a given experiment. The values used for the shear rate were the
logarithmic values (1, 2, 3 and 4 for 0.8, 8, 80 and 800 s!). Since the largest order of the polynomial
equation is 4, the values of the coefficients matrix are given with five significant figures to avoid
polynomial instability.

The pairs (y, AT) were then replaced into the equation for G and the average and standard
deviation G was computed for each group, assuming a Gaussian distribution.

The coefficients ‘a;” along with the parameters of the probability distribution functions for the

predictive equations are summarized in Table 10.

Table 10. Values of the coefficients matrix “a” and of the probability distribution functions

for the predictive equations.

a 0 1 2
0 -3.8279E+01 3.2535E+00 -5.9444E-02
1 1.4740E+01 -1.3691E+00 2.68074E-02
2 -1.3537E+00 1.5247E-01 -3.2621E-03
G1 G2 G3 G4
HG 1.44 1.70 2.47 3.72
66 0.42 0.31 0.46 0.30

The curves in in Figure 55 represent the probability, pc, of assigning an experiment to a group

based on the value G computed from a pair (7, AT). It is not surprising that differentiating between

G1 and G2 is difficult, but assigning (G1+G2), G3 or G4 should be possible with better confidence.

Using the coefficients in Table 10, the value of p; was calculated for many (y, AT) pairs and

plotted in Figure 56. It is therefore possible, within the limits of this study, to approximately predict
what set of processing conditions are required to obtain a particular type of histogram + texture.
Conversely, it is also possible to estimate what set of histogram + texture will be obtained from a

given pair (7, AT) of processing conditions.
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Figure 55. Probability density distributions for groups G1, G2, G3 and G4 from the

predictive function of y and AT.
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For example, one can estimate the probability distribution between groups for two given
experimental conditions. Let’s take an experiment done under shear rate of 800 s™! (log coefficient

7= 4) and an undercooling of AT 32 C°, and one done under shear rate of 0.8 s™! (log coefficient
7= 1) and an undercooling of AT 30 C°. The probabilities that the experiment has to belong to

each group has been calculated with the model, and tabulated in Table 11.

Table 11. Two examples of the probability that an experiment will belong to a given group.

Conditions Probability of belonging
yst ATC°| &1 G2 G3 G4
Exp. 1 800 32.0 0.56 0.39 0.04 0.00
Exp. 2 0.80 30.0 0.00 0.00 0.01 0.99

4.2.3.3 Improving the understanding of micrographs through their histograms

In an attempt to understand better how a histogram relates to its parent image, model images for
each histogram type were divided according to the salient features of the histogram. These features

had been used to place the histogram into a particular category.

A representative micrograph for each one of the five-histogram types was selected, and plotted
along with its histogram, from Figure 57 to Figure 62. Each histogram was divided into three
regions using two grayscale break point values. The grayscale range of the sub-images is presented
in Table 12. The grayscale values were chosen based on the appearance of the histogram around

the perceived liquid portion.
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Table 12. Break points (selected by looking at each histogram and noting the change in the
histogram line) in grayscale units for the visualization of the parts of the micrographs

represented in the histograms.

Histogram type Grayscz}le Graysc:.lle
Break Point 1 Break Point 2
A 79 92
B 60 100
C 45 60
D 48 65
E 20 49

Each one of the sub-images shows in darker shades the values that are included in each range:
from 0 to break point 1; from break point 1 to break point 2; and from break point 2 to 255. Since
the scale is logarithmic, a very large number of pixels are included in the top part of the histogram,
i.e., on the high logarithmic scale of value 100000 or more, whereas the lower pixel counts includes
smaller numbers. However, these smaller number parts are very sensitive to the type of texture.
The texture, in turn, depends on the composition, polymorph, size, distribution, and orientation of
the crystalline nanoplatelets. In Figure 57, the narrow mid-range clearly selects most of what
appear to be the liquid areas. This micrograph has the crystals clustered in two types of structures:
random clusters and cylindrical clusters. Though some cylindrical clusters are isolated in the
liquid, most liquid “lakes” are open, and the random or cylindrical clusters are gathered in dense
packs of “land”. In this case it is not too difficult do find the correspondence between the histogram
and specific features. Both darker and brighter areas, to the left and right of the mid-zone, include
most of the crystalline objects and exclude the liquid. However, it can be seen that in the mid-
range there are also some pixels representing crystalline material. Therefore, if one was to try to
count pixels that represent liquid and that represent crystals, then a method is needed to discern
between them. Rather than picking specific pixels based on their location on the picture, the
histograms suggested that each process produced a characteristic distribution of grayscales.

Superimposed on those, would be the light from the pixels at a liquid location.
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Log Poxel Count

Figure 57. Pixel count (log scale) vs. grayscale showing Type A histogram with
corresponding image and its grayscale sub-range images (5L5M40, 14°C, where the bar in

each micrograph corresponds to 100 um).

As shown in Figure 58, one could interpolate the hypothetical crystalline distribution (small blue
dots) using the pixel frequencies near to, but outside, the selected mid-range. The total number of
pixels underneath the curve is attributed to the crystalline source, whereas the peak superimposed
is attributed to light from the liquid. Since this image has rather well defined liquid patches, it was
also possible to estimate an approximate distribution of the grayscale of the liquid, which placed
it between values 79 and 92 of the grayscale. Some of the crystal pixels will thus appear darker,
and others brighter. The reason why crystals may appear darker has been discussed before when
explaining the relationship between orientation and polarized light transmission, from Figure 39
to Figure 41. In some cases, light may exceed the dynamic range of the camera, and the pixels
appear saturated, i.e., they register a value of 255. That is why in many histograms there is a jump

for the grayscale value of 255, which is an artifact.
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Figure 58. Number of pixels vs. grayscale for Type A histogram in which blue dotted line
(S) depicts solids, orange is liquid and solid combined (L+S) and the sky blue line depicts
the base of the hump, which separates with the one with no liquid (5L5M40, 14°C, 0.8 s1).

Table 13 contains a summary of the values calculated from the histogram in Figure 58. The values
are the number of pixels (not of their intensities) that belong to each category. The “optical

fractions” are calculated from these numbers. The average liquid fraction is 60%, but it seems

reasonable that a single picture deviates substantially from the average.
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Table 13. Pixel and grayscale statistics for liquid and solid points in the micrograph, as

obtained from analysis of its histogram.

Category Number of pixels
Total in the image (1600x1200) 1,920,000
Sub-total in range 79 — 92 1,412,739
"Solid" in range 79 — 92 460,784
"Total liquid" in range 79 - 92 951,955
Optical liquid fraction 50%
"Total Solid" 968,045
Optical solid fraction 50%

This is a novel approach to analyze quantitatively the relationship between solid fraction and
micrographs in fat crystallization studies. Due to limitations of scope and time, it was not applied

to the data of the thesis, but remains here as a proposed method for further studies.

For histograms of type B (Figure 59) and E (Figure 62) it is more difficult to identify the underlying
crystalline distribution, and therefore the pixels that should be assigned to the liquid. It may seem
at first that using the histograms from the liquid at time zero would provide a good reference to
locate the liquid in subsequent images. This may be true in cases where the intensity of the light
source was not adjusted during the experiment. However most experiments required illumination
adjustments, hence the liquid region was displaced, as is seen in the histogram collections in Figure
50. A way around this problem can be to follow the histogram sequence in time, and thus locate

the approximate region of the liquid from one image to the next.
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Log Pixel Count
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Figure 59. Pixel count (log scale) vs. grayscale showing Type B histogram with
corresponding image and its grayscale sub-range images. (7L3M40, 14°C, 0.8 s”!, where the

bar in each micrograph corresponds to 100 pm).
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Figure 60. Pixel count (log scale) vs. grayscale showing Type C histogram with
corresponding image and its grayscale sub-range images. (7L3M40, 14°C, 800 s™!, where the

bar in each micrograph corresponds to 100 um).
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Figure 61. Pixel count (log scale) vs. grayscale showing Type D histogram with

corresponding image and its grayscale sub-range images. (7L3M40, 16°C, 8 s!, where the

bar in each micrograph corresponds to 100 pm).
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Figure

62. Pixel count (log scale) vs. grayscale showing Type E histogram with

corresponding image and its grayscale sub-range images. (7L.3M40, 18°C, 80 s™!, where the

bar in each micrograph corresponds to 100 pm).
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4.2.3.4 Relationship between shear flow and transmitted light intensity

During crystallization, the formation of crystals is often associated in the literature with an increase
in signal intensity across the polarizer (Marangoni & Wesdorp, 2012). As has been explained, this
happens because the liquid is anisotropic, and thus remains dark. However, when crystals are
formed, only a fraction of them will be oriented in a way that contributes towards the increase in
intensity. It is important to remember, then, that a large number of crystals formed can also be in
an unfavorable orientation, and thus not contribute towards the observed total intensity. Therefore,
with the constant application of shear, the orientation of the crystals along an unfavorable direction
for the twisting of the polarized light can lead to a decrease in the light intensity, compared to the

one at low shear rate.

At low shear rates a clear trend exists of increase in transmitted light intensity with time. However,
at higher shear rates, an initial fast increase is followed by a consistent decrease as time goes by.
The most likely explanation is linked to the orientation of crystallites, due to shear, against the
shear planes of the experimental cell. In the discussion of the light transmitted by the cylindrical
clusters in Figure 39, the clusters appear very bright at their edges, but much dimmer inside. If one
envisions these cylinders are made of platelets that are more or less parallel to the axis, then the
platelets at the edges have their larger surface perpendicular to the shearing surfaces, thus parallel
to the light path. On the other hand, platelets that are at the center of the cylinder have their larger
surface parallel to the shearing planes, and thus perpendicular to the polarized light beams. Since
the platelets are thin compared to their length and width, it follows that the weakest birefringence
effect happens when light travels parallel to the shortest dimension of the nanoplatelet, i.e., its

thickness.

Shear tends to reduce clustering and orient the segregated platelets (or small oriented groups of
them) with their thin thickness perpendicular to the light, and their largest flat surface parallel to
the shearing planes (can be noticed by comparing Figure 46 and Figure 47). The combination of
these two effects over time produces a progressive reduction in the amount of polarized light being
transmitted, even if there is no evidence that the mass of crystals is decreasing. This was confirmed

by the Rheo-NMR experiments done by Li (2011).
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To illustrate this behavior, the relative distributions of pixel numbers for 7L3M40 at the three

temperatures and the four shear rates are depicted in the graphs in Figures 63, 64 and 65.
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Figure 63. Ratio of integrated intensity to total integrated intensity vs. grayscale for 7L.3M40
at 14°C at (a) 0.8 s and (b) 800 s™!. Each line represents a different time. In (a) the intensity
increases steadily with time, as indicated by the arrow. In (b) the black dotted arrow line

points at the time (106 s) where the trend is reversed, and the intensity starts to decrease.

108



Raticof integrated intensity to botal integrated intensity

0.4
0.2
L1} I
50 100 150 200
Gray Scale Unit
—_— — —_— 1=
— e — i * =
= 1| e 15

(a)

Ratio of integrated intensity 1o tetal integrated intemity

50 100 150 200
Gray Scale Unit
—_— — 14 —— T2 e
o 181 120 o 24 —
kS ] - L

(b)

Figure 64. Ratio of integrated intensity to total integrated intensity vs. grayscale for 7L.3M40

at 16°C at (a) 0.8 s and (b) 800 s\
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Figure 65. Ratio of integrated intensity to total integrated intensity vs. grayscale for 7L3M40
at 18°C at(a) 0.8 s! and (b) 800 s™.
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The effect of shear rate on light transmission is particularly clear in Figure 63, Figure 64 and Figure
65, plotted for 7L3M40 between the extreme shear rates of 0.8 s and 800 s™!' at the three
temperatures tested (14, 16 and 18 °C).

The plots in Figure 63, Figure 64 and Figure 65 show the normalized intensity ratios J: (y-axis)
against the grayscale /; (x-axis). These are normalized ratios of the integrated intensity at a

particular time with respect to the total integrated intensity:

255

Z(Ni’li)
Z(Ni']i)

0
Ni is the number of pixels that have intensity /i.

Not all experiments followed one of these two clear trends. Some of them did not have a clear
trend with time. The frequency of experiments that fell into each one of these three categories is
plotted as function of temperature, shear, and material in Figure 66, Figure 67 and Figure 68
respectively. The legend Forward indicates an increase in intensity with time, displayed by 31
experiments (39%). The Backward legend denotes the decrease in signal intensity with time,
displayed by 16 experiments (20%). The No Trend legend denotes no trend with increased or
decreased time, displayed by 33 experiments (41%).

As seen in Figure 66, the temperature does not seem to have a clear effect on the type of change
of light intensity with time. Figure 67 highlights the influence of shear on the light intensity
behaviour with time. At low shear rate (0.8 s!), the intensity of light increases with time. As shear
increases, the number of experiments with type F legend (refers to increase in intensity with the
passage of time) decreases. The decreasing trend (Backward), on the other hand, was observed
only for experiments at 80 and 800 s'. Experiments showing no clear trend were present under

all conditions.
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Figure 66. Number of experiments vs. temperature, for the three samples, that show forward,

backward and no trend.
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Figure 67. Number of experiments vs. shear rates, for the three samples, that show forward,

backward and no trend.
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Figure 68. Number of experiments that show, forward, backward and no trend vs. type of

sample and experiment duration.

The classification table (Table 8) was extended in Table 14 to include a column for the intensity
behaviour under the heading “FNB”. The number of experiments for each category were counted
for the different shear rates, and for the different groups. This highlights the prevalence of the
“forward” increase in intensity at low shear rate, and of “backwards” intensity behaviour at low
shear rates. The probability of finding a particular characteristic in each group was also calculated,
and presented in the summary Table 14. This set of probabilities complements the predictive model
proposed in section 4.2.3.2. Once a set of processing conditions is selected, it is possible to estimate
the probability that the experiment will belong to a given group, and therefore the probability of it
producing a given intensity behaviour. To illustrate this, the probabilities that the examples from
Table 11 belong to each intensity behaviour category were calculated. The values are summarized

in Table 15.
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Table 14. Hierarchical clustering of the experiments, including the Forward (F), Backward

(B) and No Trend (N) categories added under the heading “FNB”.

Cluster H&T Exp_N Group Grou.p FNB Material Temperature Shear Rate F N B
cross Hamming
AAWW 1 3 800 3 0 7
ACWW 2 3 80 2 2 G
BBWW 4 3
AAWW 8 3 8 6 4 0
AAWW 12 3
o1 Acww 13 3 0.8 0 0
cBWW 15 3
ACWW 16 3
BAWW 20 3 F N B
ABWW 24 3
BCWW 27 3 G1 5 1 6
BAWW 28 3
3 2 G2 3! 2 7
3 2
3 > G3 6 2 0
9 2 G4 5 0 0
3 2
3 2
3 2 F N B
3 2
3 2 G1| 0.42 | 0.08 | 0.50
3 2
z 2 G2| 0.25 | 0.17 | 0.58
3

G3| 0.70 | 0.30 | 0.00
G4| 1.00 | 0.00 | 0.00

EG1
=G2

=G4

MTAT TN TAAMTATMTZITIMZIATMNMZMOO0O00TOOZZTINMODOODTMTTTTTTOOEZN

Table 15. The two examples of the probability that an experiment will belong to a given
group from Table 11, with the added probability to belong to each intensity behaviour
category.

Conditions Probability of belonging

yst ATC°| 61 G2 G3 G4 F N B
Exp. 1 800 32.0 0.56 0.39 0.04 0.00 0.36 0.05 0.59
Exp. 2 0.80 30.0 0.00 0.00 0.01 0.99 0.83 0.15 0.03
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4.3 IMAGE CLASSIFICATION BASED ON CORRELATION OF MICROGRAPHS
FROM FFT

As explained in the methods section, ImageJ was used to generate 2D-FFT power spectra (2DPS
in spatial frequency domain) of the PLM micrographs. From each one of these 2DPS a
characteristic FFT image, CFFT, was created for each micrograph using the top 8 ranked
frequencies (based on their intensities). The correlation between each pair of images CFFT was
evaluated using Pearson’s method, taking one image as an “x” set of data and other as a “y” set.
In order to reduce the computational load, only the top 8 frequencies were investigated. However,
the general method can be used including more information from each 2DPS, if more

computational power/time is available.
4.3.1 Correlation between pairs of CFFT images: overall view

An example of the application of the methodology to a small set of images helps to obtain a clearer
understanding of the FFT methodology developed, and of its advantages and limitations. Six
micrographs are shown in Figure 69, along with their corresponding CFFT images. The group on
the left corresponds to the three repetitions of a low shear rate experiment. The group on the right
corresponds to the three repetitions of an experiment done under the same conditions, except at a
high shear rate. It can be seen that within an experiment the micrographs cannot only have
similarities, but also considerable differences. More pronounced differences are seen between

experiments, as expected. The numbers are the sequential identifiers of the images in the overall

data set (1 to 2640).

The values of the Pearson correlation coefficients between the pairs of CFFT images are
summarized in Figure 70, with a color scale, in an upper left triangular matrix. The numbers on
the horizontal and vertical axes correspond to each image. The upper right corner contains the
three correlations between the images from repetitions of the experiment at 800 s!, which are high,
as expected. The lower left corner contains the correlations between the images from repetitions
of the experiment at 0.8 s'. The values are lower than those for the high shear experiments. It is

clear that micrograph 137 has a texture considerably different from 148 and 159. However, 148
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and 159 are similar. The problem here is that the main size is rather circular, and the FFT may

place it vertical or horizontal.

The correlations between images from the two experiments occupy the 3x3 upper left corner. The
correlation between the high shear images and image 137 is very high. The pair with the least

similarity is 148 — 258.

The correlations of all the possible pairs between the 2640 images were calculated, and stored in
a file for analysis. A graphical representation of the file is presented in Figure 71. A mix of blue
pixels corresponds to values in the range of 0 to 0.4. Horizontal or vertical runs of such pixels
signify that a particular image is not related to the rest of the images. Runs of cyan indicate

intermediate correlations.

Regions of high and of low Pearson coefficients are observed throughout the plot of 2640x2640
CFFT images. The distribution is uneven throughout, where regions of high and low Pearson
coefficient were present. Straight lines (both horizontal and vertical) of dark red color (depicting
high Pearson coefficient) were present which indicates high resemblance of the series with that

particular image.

Image numbers from 1-792 belong to 3L7M40, from 793-1848 belong to SL5M40 and 1849-2640
belong to 7L3M40. In, dark red (having value in range of 0.85-1) corresponds to the most
predominant correlation. Therefore, from the plot it can be concluded that most of the images are

highly correlated to each other.
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Figure 70. Color representation of the correlation values from low and high shear

experiments, three repetitions.
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Figure 71. Graphical representation of the Pearson correlation, as a color scale, between all pairs of the 2640 images.



The frequency distribution of the Pearson correlation coefficients for all the image pairs is shown
in Figure 72. There are 3,483,480 possible image pairs, from the 2640 images. This corresponds
to the area under the curve of Figure 72. The distribution is strongly skewed, with its median

around 0.87.

Number of Image Pairs

%.3 04 05 0.6 0.7 08 0.9 1
Pearson Correlation Coefficient

Figure 72. Pearson correlation coefficient distribution of number of image pairs for all three

samples.

The integral of the distribution produces the cumulative distribution of the Pearson coefficients
(Figure 73). Around 50% of the total pairs have a Pearson correlation coefficient of 0.73 or more.
There are 214,900 image pairs (~6% of the total), that have a value of 0.95 or more in the Pearson

correlation scale.

119



3_5x 10

ra
o

]

Total Pairs of Images
— o

0.5

0 0.2 0.4 0.6 0.8 1
Pearson Correlation Coefficient

Figure 73. Cumulative distribution of the Pearson correlation coefficient of the total pairs of

images for all the three samples.

In order to develop an overall view of the distribution of the pairs having more value more than
0.95, three comparative groupings of these pairs were plotted on the coordinate system of image

numbers.

Graphs organized by material, shear and temperature and having high value of Pearson correlation

coefficient (95% and above) were plotted in Figure 74, 75 and 76, and are described below.

The first graph is clustered by material in Figure 74. There are three “triangles”, corresponding to
3L7M40, SL5M40 and 7L3M40. SL5M40, the center triangle, has four temperatures (11, 14, 17
and 19 °C) whereas the remaining two materials have three (15, 18 and 21°C for 3L7M40 and 14,
16 and 18 °C for 7L3M40), and thus their triangles are smaller. The white streaks represent
‘poorly’ (£0.95) correlated micrographs. Note that the points presented are less than 6% of the

total micrographs for each experiment.

120



2640
&
L5
207 - %
0% i
£ s i
1849 - 3
% 1585 |-
z
ga 1321
1057 -
] 3L7M40
5L5M40
£ b TLIMA0
H_
e 1057 1321 1565 1849 2113 2317 %40

image Numbser

Figure 74. Pairs of images with high Pearson coefficient (20.95) and same material.

The high Pearson value pairs (0.95 and above) of the second group, clustered by shear rate, are
plotted in Figure 75. The overall picture does not have enough detail to clearly see all the white or
colored streaks. Notice, however, that even for experiments at the same shear rate and material

there are blank streaks.

Figure 76 shows the third group, pairs with high Pearson values (0.95 and above) clustered by
temperature. There were eight temperatures in total (11, 14, 15, 16, 17, 18, 19 and 21°C), though
not all were used for each material. The appearance of Figure 76 results from the fact that two

materials share two temperatures (14 and 18°C).

The last group, in Figure 77, shows the pairs that share the same shear, temperature, material and

high Pearson coefficient (20.95). The only variability comes from the times and the repetitions.
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Figure 75. Pairs of images with high Pearson coefficient (20.95) and same shear rate.
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Figure 76. Pairs of images with high Pearson coefficient (20.95) and same temperature.
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Figure 77. Pairs of images with same shear, temperature, material and high Pearson

coefficient (>0.95).

These attempts at a “blind” comparison of all images with themselves was done as an initial effort
to take an unbiased look at the images, and see if they would simply “clump” themselves together
by virtue of the similarities between their CFFTs. It turned out that there were far too many pairs
to observe clustering or draw any useful conclusions. Additionally, many liquid time images had
no information whatsoever about the treatment, and thus made little sense to try to correlate them
as the result of a treatment. It was therefore decided to group together the images by pairs that
belonged to the same times, and average their correlations by experiment sets, as discussed in the

next section.
4.3.2 Correlation between pairs of CFFT images grouped by experiment sets

For short time and long time experiments, each particular set of 11 images from each repetition
(same temperature and shear) was paired with all other triplets of 11 images. The images were
paired in such way that only images with the same time were compared (Figure 78). An average

value from the 11 pairs was then computed for each one of the nine combinations, as shown in the
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box in Figure 78. The average of these nine pairings was assigned as the correlation coefficient

between the pair of experiments.
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Figure 78. Pairing of images between two experiments of the same time series (Long or

short).

These coefficients, averaged between experiments, are plotted in Figure 79 for short times, and in
Figure 80 for long times. The range that is most common in both of the plots is 0.78-0.82 (yellow
color). After yellow, sky blue color is also predominant in the plot. Hence, most of the points in
both plots are in the range above 0.7. Dark blue is present in greater number in the long-term
experiments compared to the short-term experiments, which suggests better correlation between

the short-term experiments than between the corresponding long-term experiments.
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Figure 79. Correlation between experiment sets for short time series.
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Figure 80. Correlation between experiment sets for long time series.
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The distribution of the averaged Pearson correlation coefficients is presented in Figure 81, for both
short time and long time experiments. The plots are quite similar, though the long-term
experiments are more biased towards higher values than the short experiments.
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Number of experiment sets
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(b)
Figure 81. Pearson correlation coefficient distribution for (a) short time (S) and (b) for long

time (L) experiments.
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To explore whether the coefficients from the two different time series were strongly correlated,
they were plotted against each other in Figure 82. The dense “cloud” near the center, along with
the distribution does not indicate a clear correlation trend. A plot of the number of pairs that fell
within each range is shown in Figure 83. If it had shown a clear “ridge”, that would be an indication
that there was a region of correlation. It showed however more of a “single peak” shape, suggesting
only a very weak relationship between the correlation values from short and long time experiments.

However, the values were clustered around a similar zone, as can be observed in Figure 83.

0.9

0.83¢

0.75}

07}

065+

0.6% :

Figure 82. Relation between short-term experiments with the long-term experiments on a
Pearson correlation scale, depicting the common area between the two series as a centre

cloud.

It thus seemed unnecessary to use the values separately, and the coefficients for short and long
time experiments were averaged. Each pair was thus converted into a single coefficient for each
experiment, characterized by a material, a temperature, a shear rate, and the same time series (short
+ long). Note that each group of 11 micrographs was correlated to the three groups of the other

experiments that shared the same time, for each time type.
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Figure 83. Distribution of short and long experiment sets based on the frequency of sharing

a common value of Pearson coefficient.

Hence, the correlation coefficient for each pair of experiments is derived from 18 pairings, i.e., 3
x 3 x 2. The combined coefficients are plotted as colors in Figure 84, at the crossing of the
experiments being compared. The coefficients ranged from 0.745 to 0.961, though most
coefficients with values larger than 0.9 were from the 3x3 self-comparison of each experiment. As
in the separate coefficients, experiments 3 and 5 showed only a very meager correlation with all
the other experiments. Similar low correlations were seen in other zones, such as experiments 24

to 30 when compared to experiments of higher numbers.

128



Combined L&S Pearson

40 T
36 S T T W U FUE N
Lo ............. ............. .............. .............. ............. ............. ............. .......... . = = ; 084
S T T N O T D Tt
32_ ............ .............. ............. _ ............. ............. .............. .............. ..... ... .... - 083
28l .............. .............. ............. S S .......... _ s Na EEE . omm- 0.82
24_ llllllllllll lllllllllllll lllllllllllll llllllllllllll llllllllllllll lllllllll l = llllll _”ll == lll -.--.-I 081
: : : : : EEEENE : EEEENEN
5 5 ‘mE_ [ H ]
§ N N ENEEENNEEENN EEE
: - HEPEESNEEEENSE EEEE'B®H HE N
: : : EEE EEEm LN | ENEEENESEENENERN
.IIII-I.I- II- AENE EEEEEEN '
| EEENENER EENE HE | EEEER HE
| u HE an i H H EER ENEENE
8_ oiir- - - - HEEREERDER AEE EERE ‘A-E rEEDE L _0?7
[ N ] EEEENEEENRE EEE HEEEE L u
u I EEEEER IEEE VN EENEEEN | | | B
4_ u ... .......=.......=......... ...-...... .-.......-.. OEEC R _0?6
] ]  HAEE EEEE Il-l -ll.. ] ' u ! HE
Oll | IIllI II-II | IIIII .I. Illl i LN | _0?5
0 4 8 12 16 20 24 28 32 36 40 '

Figure 84. Combined Pearson coefficients, averaging short and long experiment results.

The smooth monomodal distribution seen in Figure 85 indicates that the method is not providing
a strong separation between similar and different images. If this was the case, one would have a
bimodal distribution. This also means that classification in groups using these correlation values
is going to depend strongly on arbitrary boundaries. Note that the contribution of the self-

comparison is shown as a blue highlight on the histogram.

As was done earlier with the histograms and textures coefficients, the inter-experimental averaged

coefficients derived from the CFFT were organized using hierarchical clustering.

The best clustering algorithm, as determined by the cophenetic coefficient, was again the UPGMA
method. The dendrogram obtained using MATLAB is displayed in Figure 86. The corresponding
experiments are highlighted in Table 16. The largest cluster contains almost half of the

experiments, similar to what happened with texture type W.
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Figure 85. Distribution of combined Pearson coefficients, varied from 0.75-1 on the Pearson

coefficient scale. Blue bars indicate correlations between repetitions.
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Figure 86. Dendrogram of experiments obtained using the CFFT combined Pearson

coefficients.

The cophenetic coefficient for the dendrogram was 0.70. This value is lower than the 0.78 obtained
from the Hamming/UPGMA method. The hierarchical clusters obtained using the distances from
the CFFT Pearson coefficients were compared to those obtained earlier using histograms and
textures. The comparison is presented in Table 16 organized by the H&T clusters, and in Table 17
organized by the CFFT clusters.
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Table 16. Hierarchical clustering grouped by H&T cross, showing the CFFT combined

Pearson coefficients group assignments.

Cluster H&T Exp_N Group
cross
AAWW 1 3
ACWW 2 3
BBWW 4 3
AAWW 8 3
AAWW 12 3
G1 ACWW 13 3
CBWW 15 3
ACWW 16 3
BAWW 20 3
ABWW 24 3
BCWW 27 3
BAWW 28 3
BAYW 3 3
CBYW 7 3
BBYW 14 3
CcCcYw 19 3
DBYW 23 3
G2 BAYW 31 3
CAYW 32 3
CAYW 35 3
CCYW 36 3
EAYW 39 3
CAYW 40 3
CEXW 10 3
BBYZ 18
DBzz 34
CEXZ 6
CcDYZ 11
G3 AEWZ 17
BEWZ 21
CEYZ 22
AEYZ 26
CEzz 30
CEZZ 38
EBZX 37
BCWX 25
G4 BEZX 29
BEZX 33
CDXX 5
CCXX 9

Group
Hamming

N NMDNMDNMDMMNMDMDMNMDMDMDDNDN

G;:.ll‘_p Material Temperature Shear Rate T’z‘r"?p Asvg
4 3 15 0.8
3 15 8
2 3 15
2 3 18
2 3
2 5
2 5 "155 117
2 5
2 5
2 5
5 5
5 5
5 3
2 3
.
2 5
2 5
2 7 160 97
2 7
2 7
2 7
2 7
5 7
3 8
5 14 8
7 16 8
3 18 8
3
5 14 0.8 "16.8 6.4
5 17 0.8
5 17 8
5 19 8
7 14 8
7 18 8
7 18 0.8
5 19 0.8
7 14 0.8 "177 08
7
3
3
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Table 17. Hierarchical clustering grouped by CFFT combined Pearson coefficients,

showing the H&T cross group assignments.

Cluster H&T Exp_N S::g:: HaGr:\?:iﬁg G;:.ll‘.p Material Temperature Shear Rate szrg Asvg
ccxx 9 N 5 2 3 2000 o
CBYW 7 3 2 2 3 18 80
coyz 11 2 3 80
BBWW 4 3 2 3 15
AAWW 8 3 2 3 18
AAWW 12 3 2 3
G1  ACWW 13 3 2 5 62
CBWW 15 3 2 5
ccYyw 19 3 2 2 5
DBYW 23 3 2 2 5
ACWW 16 3 2 5
BAWW 20 3 2 5
ABWW 24 3 2 5
BAYW 31 3 2 2 7
CAYW 35 3 2 2 7
EAYW 39 3 2 2 7 18 80
CAYW 32 3 2 2 7 14
G2 CCYW 36 3 2 2 7 16 311 223
BAYW 3 3 2 5 3 15 80
BCWW 27 3 - 5 5 19 80
BAWW 28 3 5 5
CAYW 40 3 2 5 7
ACWW 2 3 3
CEXW 10 3 3
AEWZ 17 5 }
BEWZ 21 5 17 0.8
BBYZ 18 5
CEYZ 22 5
G3  AEVZ 26 5
DBZz 34 7 326 45
CEzz 38 7
CEXZ 6 3
BBYW 14 5
BEZX 29 7
AAWW 1 3
BEZX 33 7
ca CDXX 5 3 317 12
BCWX 25 5
EBZX 37 7
CEZZ 30 7
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The clustering results from the CFFT method are sensitive to the shear rates, as were the results
from the H&T method. They are far more consistent with the H&T cross groups than with the
H&T Hamming groups, despite the lower cophenetic coefficient. In fact, the Hamming groups are
quite disintegrated, according to this clustering. The CFFT clustering is less sensitive to the
undercooling than the H&T method. Considering that the CFFT clustering is the result of an
automated operation that has sampled only eight of the hundreds of thousands of FFT results for
each image, the classification is rather successful. It seems a promising avenue to develop a
predictive method analogous to the one developed based on the H&T coefficients. However, a

larger number of FFT features should be used for the generation of the correlation coefficients.

The predictive method was not implemented with the CFFT results, and is left as a proposed
avenue for the work that will search for the optimal number of points to be taken from the 2DPS,

by balancing selectivity against computational load.
4.3.3 Combination of Texture and Histogram Correlations with FFT correlations

The linkage between experiments can be done using combined dimensions, i.e., the first dimension
can be H&T distance, and the second dimension the CFFT distance. The clustering algorithm then
uses both dimensions to find the experiments that are closer to each other, and uses them to
generate the dendrogram. The resulting clustering (not shown) was essentially random. This is
likely because, as seen in Figure 89, the two “distance measuring” methods are very poorly
correlated, if at all. Given the similarities in the group assignments, this is somewhat surprising.
The source of randomness between both methods prompted a comparison of their ways to assign

similarity between experiments.
At the single micrograph level, the selected model images were paired using the CFFT method.

First, the CFFT images from the four different texture types (Figure 48) were correlated with each

other. The result of the correlation is presented in Figure 87.
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Figure 87. Correlation between four different types of basic structures found.

Based on the values from the Pearson correlation, it is clear that the four different structures have
minimal correlation with each other, since their coefficients vary from 0 to 0.25. Since these
textures are not related to each other, they should have served as a good model of independent
standards for the H&T as well as for the CFFT methods. Though the final values were obtained
by averaging 99 x 2 = 198 single images, it would seem that groups of images should have

performed even better, especially considering that they have been aligned in time.

Similar correlations were established for the images that had produced the five different types of
histograms (Figure 57 - Figure 62) in this work. The correlation values are shown in Figure 88.
The correlation coefficients between these five images were also found to be in a range of 0 to
0.25, and many were 0.125 or less. Thus, it seemed that the images selected to produce the five
different classes of histograms were well differentiated, as far as the CFFT Pearson correlation

coefficients go.
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Figure 88. Correlation between five different types of histograms.

Thus, the CFFT method seemed capable of distinguishing the images that had been chosen as
“paradigms” for the textures and histograms. So the selection of these paradigms was not the origin

of the randomness between both methods.

To further explore this problem, both sets of correlations were plotted against each other, as shown
in Figure 89. There is no strong correlation between the two collections of values. Since they
produced similar clusters, it is to be expected that they would be correlated. It is puzzling that the
correlation coefficients between CFFT do not show a strong correlation with those from the H&T

cross method. The explanation of this apparent contradiction requires further research.

136



0.95}

0.9

L

0.85F

OGIETEDOD O

@O @O o (hEEEmEY O

0.8

0 OIS I
0 @D CEEIEENEROED O

o®: 0 O OW O

@ CHOODEHDD ©GD

Combined correlation from FFT
©o

O OmNED GEENEED GO

000D (e ¢«

| E—— ]

o 0 0.2 0.4 0.6 0.8 1

Average correlation from Texture and Histograms

Figure 89. Combined CFFT Pearson coefficients plotted against the H&T correlation values.
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4.3.4 Size and orientation from FFT

The FFT analysis was used to obtain eight ‘top characteristics’ of each micrograph that were
summarized in its corresponding CFFT image. Two of these parameters are the ‘size’ of the

repeating feature, and the ‘orientation’ of the feature expressed as an angle between 0 and 7.

4.3.4.1 Size
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Figure 90. Average size of the top eight ranked intensities (in the power spectrum) for

different experiment sets.

For the three samples and for both short and long time experiments, the average size of the last
eight images was calculated and plotted in Figure 90. The initial images, often just liquid, were
not included, since they would hardly show any meaningful size or direction. The average size
seemed higher for 3L7M40 and 7L3M40 than for SL5M40, despite the large variability. It also

seemed that the sizes were larger for the high shear rate experiments. The largest average size was
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found for 7L3M40 at 70 um, in the long-term experiment set. The smaller one was 20 um for
5L5M40 in one of the short-term sets. The long-term experiments seemed to reach a larger size

than the average size for short-term experiments, likely due to the increase in size with the passage

of time.
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Figure 91. Average size of last eight images (excluding the first three images for each

experiment set that contains liquid) with the shear rate for all the experiments.

The average size was plotted as a function of the shear rate in Figure 91. Though there are no
strong obvious trends, it is possible to get a sense of the somewhat different behavior of each

material with respect to shear.

To get a summary picture of this effect, the values for each material and shear rate were averaged,
regardless of temperature or experiment duration. As can be seen in Figure 92, at 8 s' or more the
size increases with the shear rate. For the lower shear rate an increase was seen in 3L7M40 and

7L3M40, whereas SL.5M40 decreased. The general lower size of SL5M40 is also more clear in
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this figure. The highest shear rate (800 s™!) produced the biggest average size, while the lowest

average size was found for 5L5M40 at a shear rate of 0.8 s

The ratio found dividing the overall average size at a shear rate over the minimum size for that
shear rate was plotted for every shear rate in Figure 93. As in Figure 91, the ratio was the lowest
at a shear rate of 8 s™! and the highest at 800 s™!. This result is somewhat counterintuitive, since at
low shear rates the formation of large clusters seems more likely to produce “large size dominant
features”, whereas at high shear rates the “smoothed” grainy textures seem more likely to produce

“small size dominant features”. This result also points to the need of expanding the number of

points used to build the CFFT.

@ 3L7M40

@ 5L5M40 o

0 7L3M40

(=2}
o
L

v
o

F-3
o

Average size (um)
»
@0 @
" NON |

30 T T T T
0.8 8 80 800

Shear rate (s?)

Figure 92. Average size of the top eight ranked intensities (in the power spectrum) as a

function of shear rate for all experiments done with each material, including long and short

series.
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Figure 93. Ratio between the average and the minimum size of the top eight ranked

intensities (in the power spectrum) with shear rate for all experiment sets.
4.3.4.2 Orientation

Another piece of information that was obtained from the 2DPS was the direction of repetition of
each one of the eight top points. Figure 94 shows a set of blue arrows representing these directions
for a particular image. By taking the vectorial average of these directions, using their intensities as
magnitudes, it is possible to obtain an average direction, expressed as an angle 6.y with respect to

the horizontal direction of the image, in the range of 0 to x radians.

The average angle 6.y can be calculated for each image as

6, =arctan

The average orientation (fav_exp) for each experiment set is plotted in Figure 95. There is no obvious
trend in the plot. It was expected that high shear rates would produce a strong orientation that
would be displayed by the directionality of the FFT features. Once again, it is recommended for

future work that more than 8 points be taken from the FFT.
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Figure 94. Display of direction of repetition of the eight frequencies of a given CFFT (blue)

and their vectorial average (red).
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Figure 95. Average orientation angle in radians (theta, fuv exp) for each experiment set.

The ‘order parameter’ (sav_exp) 1S @ non-dimensional parameter often evaluated to determine how

much the individual orientations (blue arrows) depart from their average (red arrow). The value of
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order parameter varies from 0 to 1, where 0 implies random orientation and 1 implies that all blue

arrows are parallel to each other. For a 2D set of vectors, the order parameter for each image is

s, =2- <cosz(%j> -1

The values of s> from the 24 images from each experiment (last eight images of each of the three

calculated as

repetition 3 repetitions, to exclude liquid) were averaged to obtain sav exp. The values of the order

parameter for each experiment are plotted in Figure 96.
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Figure 96. Average order parameter from each experiment set.

There does not seem to be a clear trend here either. In this case, simply averaging more points
from the FFT would only result in a smoothing and evening of the order parameter. It would be a
better strategy to use a larger number of points, but to classify them according to their directional

information, rather than averaging them out.
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To explore if the average angle of orientation had a correlation with the order parameter, they were

plotted against each other for the 2640 images. The polar plot, in Figure 97, also distinguishes the

shear rate to which an image belongs, by using a color scale. The purpose was to see if the different

shear rates clustered naturally around some pairs of orientation + order parameter. With the current

number of points from each FFT, there is no preferred shear rate at the region that represents the

higher order parameter values, which is represented by the magnitude of the vector between the

origin (0, 0) and each point. The angle of the vector is given by the average orientation of the

image.

The values averaged by experiment, were plotted in Cartesian coordinates (6av, Sav exp) in Figure

98, with the same color scale for the shear rates. No trend was seen either.
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Figure 97. Polar plot using the order parameter as radius and the orientation angle for

direction, including the 2640 images, colored by shear rate.
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Chapter 5 Conclusions and Future Work

As was proposed in the objectives of the thesis, a collection of time-resolved micrographs was
collected from three solutions of binary mixtures of saturated TAGs, under different temperatures
and shear rates. For each set of material, temperature and shear rate, two different time series were
explored, and each one was repeated thrice. In most cases, micrographs from the repetitions were
similar, but in some cases, one of the repetitions looked different from the others. Some
randomness is natural in these processes. It was also found afterwards that one of the series was

done with a smaller gap due to a malfunction of the vertical motor of the cell.

Most previous studies involving image analysis of fat crystallization were mostly focused on the
calculation of the fractal dimensions, leaving other possible perspectives unexplored. This thesis

is the first work to use grayscale descriptors as a tool to study the crystallization process.

Thus, within the first set of objectives of the thesis, it was proposed to test some standard
grayscale image analysis methods for their ability to describe the textures produced by
microstructures as a function of processing conditions. This was accomplished by providing a
qualitative classification of the image series of the experiments into four types of visual textures,
namely grainy (W); spherulitic (X); circular (Y); and messy (Z). These are not necessarily the only
types of visual texture present in TAGs crystallization experiments, but they served to show that
even using some subjective modes of classification could eventually lead to a meaningful
predictive method for the prediction of texture formed under a given set of processing conditions.
A similar qualitative method was used for classification of histograms, where five types were
selected (A to E) based on the appearance of the histogram. These methods rely on the brain’s
ability to ‘average’ patterns. As was mentioned in the introduction, a difficult problem for image
analysis is to find a meaningful way to average the information. The relationship between the
micrographs (a two-dimensional light intensity distribution) and fat crystal processing conditions
(material, shear and temperature) was studied for the first time for diluted binary mixtures of

TAGs.

Here, for the first time, a strong relationship between histograms and the microstructure of TAGs
was observed. Due to many experimental limitations, it is often difficult to compare two
micrographs. In such cases, the shape of a histogram can be used as an identifier to predict the

microstructure and to compare related micrographs. From these results, a relationship between
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histogram and microstructure can be used to provide some characterization of the fat crystal
microstructure from the histogram of the micrographs. The histogram can be further linked to the

calculation of SFC.

The creative step that followed was to translate the qualitative code used to characterize the
experiments into a quantitative measure of correlation, and eventually of ‘dissimilarity’ between
experiments. In the field of data mining and bioinformatics this ‘dissimilarity’ has been
traditionally called “distance” once it is quantified. The two methods to generate the distance from
the four-letter codes of the experiments were part of the exploratory process. The Hamming
distance is a well-established, simple method that does not require any ‘a priori’ knowledge of the
system. The ‘cross’ method was invented by including some of the valuable ‘a priori’ knowledge
about how these codes were obtained. The distances were then used in a standard hierarchical
clustering algorithm to produce a dendrogram, and hence classify the experiments in groups. The
cophenetic values for the dendrograms produced by the clustering methods were 0.78 for
Hamming/UPGMA and 0.91 for cross/lUPGMA. This showed that the cross-distance metric

improved substantially the quality of the classification, with respect to the Hamming metric.

From this classification, an interpolation method was devised to predict the likelihood that a given
set of conditions (Shear + Undercooling) would produce one of the textures and histogram types
(H&T) that had been used to classify the images. Of course, it would also be possible to use this
interpolation method backwards, i.e., given a targeted texture/histogram combination, find the
conditions that would produce it. A caveat here is that the H&T space does not always map to a

real place in the Shear & Undercooling map.

This method can be used in industry to target specific visual textures that are known to be
associated with desired properties of the material, especially in terms of rheological and stability
characteristics. The spatial distribution of the nanoplatelets changes the interaction points and
forces between them. The spatial distribution also changes diffusion pathways in the liquid trapped
in the network, affecting stability. Insofar as the textures and histograms can predict such

characteristics, the image analysis method may be a useful tool for prediction.

The foundation of future work to devise a method to relate the distribution of light intensity with
the SFC was laid in Section 4.2.3.3. The analysis of the histograms let to a new method to ‘isolate’

the solid and liquid portions of the histogram, by a process different from raw thresholding. This
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work still needs to be carried out, and comparison with SFC, accounting for orientation due to

shear (L1, 2011) is necessary.

The distribution of grayscale intensities in the histograms was analysed by means of normalized
cumulative versions of the histograms, to study the effect of shear on the intensity progression of
the PLM images. This type of normalized histograms is not commonly used, so they could be
considered as a non-traditional method for grayscale image analysis. Two clear types of behavior
were observed: forward increase in the fraction of bright pixels (Forward) or a decrease in the
bright fraction after the initial crystallization (Backward). The experiments that did not show a
clear trend were thrown into a third ‘mixed bag’ (No Trend). It was found that high shear rates
promoted the (Backward) type, and a discussion of the relationship of this process with crystalline

orientation is included in three sections of the thesis.

Essentially, with increased shear rates, a decrease in light intensity with time was observed,
probably arising from a change in the orientation of the crystal clusters with respect to the plane
polarized light. Orientation effects was also observed at high shear rates for all three samples using
the XRD technique (Li, 2011). It was observed by Li in her thesis that crystallites orient even under
the relatively low shear rate of 8 s™!. More work in this direction is needed to confirm this behavior,

with an emphasis on finding an orientation angle based on the placement of the polarizer.

The “onset time” analysis served two purposes. Firstly, it gave a sense of the effect of processing
on the initiation of the processes, and explored the possible estimate of interfacial tension using
the Fisher-Turnbull equation. Second, the analysis provided a basic thermodynamic reference
frame for the undercooling, which turned out to be a very useful tool for the analysis of the
clustering and as a predictive tool, since it combines temperature and composition in a rather
logical manner. Though it has been computed assuming ideality, it is to be expected that the actual
values of undercooling will be roughly proportional to the ideal ones. The effect of temperature on
the onset times was clear and was compared to the theoretical behavior via the Fisher-Turnbull
equation. It did not follow the usual assumption of linearity in the model, unless a variable value
of the interfacial tension is included. The onset times showed some trends as a function of shear
within some experiment groups, but did not show a completely generalized trend. The shear rates
of 8, 80 and 800 s produced onset times more or less clustered together (for a given material),

whereas the onsets from 0.8 s™! tended to stand apart, either above or below the others. The method
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to estimate the onset must be improved by running short experiments with higher frequency of
pictures. This can be done by using the camera in ‘direct’ mode, controlled by a different software.
The challenge is to synchronize the camera capture software with the Linkam temperature

controller.

The second set of objectives of the thesis was to test non-traditional grayscale image analysis
methods. The use of normalized histograms has been discussed above. Of particular interest to
develop an automated way to classify (and therefore ‘average’) sets of images was to extract
information from the FFT obtained from the micrographs. The 2DPS were used to select repetitive
features regardless of their position in an image. These were then summarized in a graphical way
in a special image named CFFT. To estimate similarity between pairs of images, the Pearson
correlation was computed for each pair of CFFT. A direct plotting of highly correlated images did
not immediately provide useful information. Future work can be done on looking at the local

distributions of coefficients.

It was thus realized that it made more sense to only pair time-matched images. Each pair of
experiments had 99 individual correlations (3x3 cross-correlated repetitions of 11 time-matched
pairs). Eighty single-experiment values were thus obtained (40 short-term, 40 long-term), each one
as the average of the 99 values of that experiment. The correlations of the short-term experiments
were later averaged with those of their corresponding long-term experiment, to obtain a single
correlation value for each pair of condition sets (material + temperature + shear rate). Since there
were 40 sets, there were 780 cross-correlations, and 40 self-correlations. These correlations were
used to generate a set of distances that were fed to the hierarchical clustering program for grouping.
The clustering produced groups that were similar to the ones obtained using the cross metric. The
cophenetic coefficient was 0.70, lower than the previous two. In the thesis it was mentioned several
times that the weaker performance of the CFFT approach is likely due to choosing only 8 data
points from the full 2DPS. It is very likely that increasing this number will increase the quality of
the clustering. The optimization of the number of values needed (more precision vs. more

complexity and computational load) is left for a future study.

Since the values used to plot the CFFT images provided values for characteristic sizes and
orientations, it was explored whether a clear effect of shear rate on these parameters could be

measured. Surprisingly, it was not possible to find a clear tendency. As discussed in the thesis, it
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is possible that the averaging method used, which ignores the sequences in time inside an
experiment, may have blurred completely the correlation. It is also possible that a larger number
of points from the 2DPS are needed to identify these trends. Probably the combination of these
factors led as well to the lack of correlation between the individual coefficients of the H&T and

the CFFT procedures.
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Appendices

APPENDIX A: MONTAGES OF ALL THE THREE BINARY MIXTURES DEPICTING
THE EFFECT OF SHEAR AND TEMPERATURE
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APPENDIX B: MACRO TO CALCULATE INTENSITY OF SERIES OF IMAGES WITH
RESPECT TO TIME

macro "Intime" {

run("Image Sequence...", "open=[] starting=1 increment=1 scale=100 file=[] or=[] sort");
run("8-bit");

run("Set Measurements...", " mean display redirect=None decimal=5");

run("Plot Z-axis Profile");

saveAs("Results");

close();

close();

}
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APPENDIX C: MACRO TO CREATE AN
BACKGROUND LIGHT BASED ON THE LIQUID IMAGE

n onn

run("Conversions...", " ");

newlmage("BckgndNorm 3L7M 17 8000", "32-bit White", 1600, 1200, 1);
//Polynomial coefficients: z0, x, y, x2, Xy, y2, x3, x2y, xy2, y3

KO = ;

K1 = ;

K2 = ;

K3 = ;

K4 = ;

K5 = ;

K6 = ;

K7 = ;

K8 = ;

K9 = ;

pxvaltot=0;

for (ry=0;ry<1200;ry++){

for (cx=0;cx<1600;cx++) {
pxval=KO0;
pxval=pxval+K1*cx;
pxval=pxval+K2*ry;
pxval=pxval+K3*cx*cx;
pxval=pxval+K4*cx*ry;
pxval=pxval+K5*ry*ry;
pxval=pxval+K6*cx*cx*cx;
pxval=pxval+K7*cx*cx*ry;
pxval=pxval+K8*cx*ry*ry;
pxval=pxval+K9*ry*ry*ry;
setPixel(cx,ry,pxval);
pxvaltot=pxvaltot+pxval,
}

}

npx=1200*1600;

avg_pxval=pxvaltot/npx;

run("Divide...", "value="+avg_pxval);

run("Reciprocal");

run("Spectrum");

//run("Brightness/Contrast...");

run("Enhance Contrast","Saturation = 0.35");

IMAGE TO BALANCE UNEVEN
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APPENDIX D: MACRO TO EXTRACT FFT FROM THE MICROGRAPHS

macro "AFFT PLM" {

//Macro to extract FFT 2048x2048 information from micrographs 1600wx1200h
//The list of image paths is in the PLM_shear list.txt file

//The output is a list with three columns X,Y,Value of the Maxima

// in the upper 512wx256h central region of the FFT

// the values are later analyzed by macro AVG or Excel

// Images obtained by P. Arora 2012-2014

// Macro by G. Mazzanti, November 2014

setBatchMode(true);
// Standard images:
stdimg=newArray(29,161,359,1855,942,1855,1965,2020,2196);
numimgs=2640;
Slines=newArray(numimgs);
xydir = "C:\\PAT\\"
//pathfile=File.openDialog;
SList=File.openAsString("J:\\Pranav\\Boss 15th Nov\\PLM _shear list.txt");
Slines=split(SList,"\n");
startimg=1;
endimg=2640;
/I "E:WSHEAR EXPERIMENTS IN ORDER\\Shear Experiments\\3L7M40 6Mins\\15 C\\0008s-
JA\WANGK
for (im=startimg; im<=endimg; im++) {
imgpath=Slines[im-1];
open(imgpath);
run("FFT");
makeRectangle(769, 769, 512, 256);
run("Duplicate...", "title=[FFT_S]");
run("Find Maxima...", "noise=10 output=[Single Points]");
run("Divide...", "value=255");
imageCalculator("Multiply create", "FFT S","FFT S Maxima");

selectWindow("Result of FFT S");
setPixel(255,255,0);
getMinAndMax(min,max);

/! imnum=IJ.pad(stdimg[im-1], 4);
imnum=I1J.pad(im, 4);
xyfile="FS xy "+imnum;
run("Save XY Coordinates...", "background=0 save=["+xydir+xyfile+".txt]");
close("\\Others");
close();

} //End of im For cycle

setBatchMode(false);

}+ //End of macro
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APPENDIX E: MACRO TO PLOT THE MAIN SIZES, WITH THEIR ORIENTATIONS,

AND THEIR FREQUENCY AS INTENSITY

macro "AVG_FFT PLM" {

/*

v05.1

Macro to extract FFT 2048x2048 information from micrographs 1600wx1200

This macro plots the main sizes, with their orientations, and their frequency as intensity
The input is a collection of text files with three columns X,Y,Value from

the Maxima produced by Macro AFFT PLM_0x.ijm

Images obtained by P. Arora 2012-2014

Macro by G. Mazzanti, November 2014

*/

setBatchMode(true);

nmax_pt=8; //define how many points to look at

Pxs = 1/1.35; //conversion to microns

div=exp(1)-1; //exponential contrast factor

run("Conversions...", " "); / Turn off the grayscale scaling for type conversions
newlmage("AV_0000", "16-bit white", 256, 256, 1);

xydir = "C:\\PAT\\";

fsimg_dir ="C:\KAT\\";

numimgs=2640;

startimg=1;

endimg=2640;

for (im=startimg; im<=endimg; im++) {

/! imnum=I1J.pad(stdimg[im-1], 4);
imnum=IJ.pad(im, 4);
avimg="AV_"+imnum;
newlmage(avimg, "16-bit white", 256, 256, 1);
xyfile="FS xy "+imnum+".txt";
run("Text Image... ", "open="+xydir+xyfile);
npts=getHeight();
run("16-bit");

Xd=newArray(npts);
Y d=newArray(npts);
PVd=newArray(npts);
XA=newArray(npts);
Y A=newArray(npts);
PV A=newArray(npts);
//Read into the arrays the x y pv values from txt file via text-img
selectimage(xyfile);
for(pt = 0; pt < npts; pt++){
Xd[pt] = getPixel(0,pt);
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Yd[pt] = getPixel(1,pt);
PVd[pt]=getPixel(2,pt);

}
close(xyfile);

// Sort values in order of decreasing frequency
rankPosArr = Array.rankPositions(PVd);
ranks = Array.rankPositions(rankPosArr);
for (jj = 0; jj <PVd.length; jj++){
rk=ranks[jj];
PVA[rk]=PVd[jj];
XA[rk]=Xd[j];
YA[rk]=Yd[jj];
}
Array.reverse(PVA);
Array.reverse(XA);
Array.reverse(YA);
// ' End of sorting procedure
Array.getStatistics(PVA, Pn, Pm);
DP=Pm-Pn;
if (nmax_pt!=0) {npts = nmax_pt;}

for(pt = 0; pt < npts; pt++){

X =XAlpt];

Y = YA[pt];

PV=PVA[pt];

pvc=PV;

if(false) { //true = exp contrast; false = no exp contrast
DPV = (PV-Pn)/DP;
pve =round( 255* ((exp( DPV ) -1)/div));

}

Xr=(X-255)*(X-255);

FL =sqrt( Xr + (Y*Y) );

LP = (2048/FL ) /2 * Pxs;

chi = acos ((X-255)/FL);

x1=round( LP*cos(chi) );

yl=round( LP*sin(chi) );

selectimage("AV_0000");
run("Select All");

run("Clear", "slice");

run("Select None");
line_w=round(2+ 14*(npts-pt)/npts);
setColor(pve);
setLineWidth(line_w);
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drawLine(127+x1, 127+yl, 127-x1,127-y1);
run("Select All");
run("Copy");

selectlmage(avimg);
setPasteMode("Add");
run("Paste");

+//End of points

selectlmage(avimg);

getStatistics(ar, me, Pn, Pm);

sc=255/Pm;

run("Multiply...", "value=&sc");

run("8-bit");

res_nm=fsimg_dir+avimg+".png";
saveAs("PNG", res nm); // Saves the CFFT image

if (false){
getStatistics(ar, me, Pn, Pm);
setMinAndMax(Pn,Pm);
setBatchMode("show");

h

else{
close(avimg);

}

close(xyfile);

} //End of files

setBatchMode(false);

if (false) { // make it "true" to display the stack
run("Images to Stack", "name=AVGFFT title=[] use");
run("Z Project...", "projection=[Max Intensity]");
getStatistics(ar, me, Pn, Pm);
close();
sc=255/Pm;
selectWindow("AVGFFT");

run("Multiply...", "value=&sc stack");
run("8-bit");

run("16 colors");
run("Enhance Contrast", "saturated=0.35");
run("In [+]");
run("In [+]");
}
} //End of macro
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APPENDIX F: MACRO TO CORRELATE FFT EXTRACTED IMAGES BASED ON
PEARSON CORRELATION

macro Acorr {

/*

v03.2

Macro to find the Pearson Correlation R*2 between pairs of FFT extracted from images
This macro plots and saves an image "ACorr" that contains the correlations

in a scale from 0 to 255 corresponding to 0 to 1 for Pearson

The input is a collection of PNG image files

produced by Macro AVG_FFT PLM 0x.ijjm

Images obtained by P. Arora 2012-2014
Macro by G. Mazzanti, November 2014
*/

to=getTime();

setBatchMode(true);
run("Conversions...", " ");

nim=32;
newlmage("ACorr", "8-bit white", nim, nim, 1);

xydir ="C:\KAT\\";

startimg=116;
endimg=startimg +nim-1;

for (imgl = startimg; imgl<endimg; imgl++) {
imnum=IJ.pad(imgl, 4);
iml nm="AV _"+imnum+".png";
open(xydir+iml_nm);

for (img2 = imgl+1; img2<=endimg; img2++) {

imnum=I[J.pad(img2, 4);
im2_nm="AV_"+Himnum+".png";
open(xydir+im2_nm);

imageCalculator("Add create", iml _nm,im2 nm);
selectWindow("Result of "+im1 nm);
setThreshold(1, 255);
setOption("BlackBackground", false);
run("Convert to Mask");

174



makeRectangle(0,0,256,128);

run("Save XY Coordinates...", "background=0 suppress save=[C:\\xy.txt]");
close("Result of "+iml_nm);,

run("Text Image... ", "open=[C:\\xy.txt]");

run("8-bit");

np = getHeight();

X = newArray(np);

Y = newArray(np);

for(pp=0;pp<np;pp++) {
selectlmage("xy.txt");
clx=getPixel(0,pp);
rwy=255-getPixel(1,pp);
selectlmage(iml_nm);
X[ppl=getPixel(clx,rwy);

selectlmage(im2 nm);
Y[ppl=getPixel(clx,rwy);

}// pp
close("xy.txt");

Fit.doFit("Straight Line", X, Y);
R2 = round(Fit.rSquared*255);
selectlmage("ACorr");
setPixel(img2-startimg,img1-startimg,R2);
close(img2);
+// img2

close(imgl);

1/ imgl

selectimage("ACorr");
res_nm=xydir+"Acorr 01.png";
saveAs("PNG", res_nm);

run("16 colors");
run("Enhance Contrast", "saturated=0.35");
setBatchMode("Show");

setBatchMode(false);
tp=getTime()-to;
print("time: "+tp);

} //end macro
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APPENDIX G: MACRO TO PLOT AND CORRELATE FFT EXTRACTED IMAGES
BASED ON PEARSON CORRELATION USING MATLAB

clear;

N=2640;

TRT(1:2640,1:6) = csvread('C:\KAT\Treatments.csv',0,0,[0,0,2639,5]);
% NR max value = (N/2)*(N-1);

NO=0;

NR =214900;

XYZ = zeros(NR,3,'uint16');
filename ='C:\KAT\XYZ3.csv'; %sorted file

XYZ(1:NR,1:3) = csvread(filename,N0,0,[N0,0,(NO+NR-1),2]);

NRS=1;

NRB = 214900;

SZ=ones(0,NRB,'uint8")*0.00001;

HS = zeros(0,NRB,"'uint16");

HS(I:NRB)=(TRT(XYZ(1:NRB,1),4) == TRT(XYZ(1:NRB,2),4))*255;
%scatter(XYZ(NRS:NRB,1),XYZ(NRS:NRB,2),10,HS);
figure('Name','Same_Shear');scatter(XYZ(1:NRB,1).*(HS'/255),XYZ(1:NRB,2).*(HS'/255),SZ,
HS);

figure('Name','/R2");plot(1:NR,XYZ(1:NR,3));

HT = zeros(0,NRB,'uint16");

HT(1:NRB)=(TRT(XYZ(1:NRB,1),3) == TRT(XYZ(1:NRB,2),3))*255;

figure('Name','Same Temperature');scatter(XYZ(1:NRB,1).*(HT'/255),XYZ(1:NRB,2).*(HT'/25
5),SZ*1,HT);

HM = zeros(0,NRB,'uint16");

HM(1:NRB)=(TRT(XYZ(1:NRB,1),2) == TRT(XYZ(1:NRB,2),2))*255;

figure('Name','Same Material');scatter(XYZ(1:NRB,1).*(HM'/255),XYZ(1:NRB,2).*(HM'/255),
SZ,HM);
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APPENDIX H: MATLAB CODE TO GENERATE THE CORRELATIONS BETWEEN
EXPERIMENTS

% File: Correlation_between_experiments_v02.m
% G. Mazzanti June 2015

N=2640;

NO=0;

NR = N*(N-1)/2;
NRF =NR - 1;

XYZ = zeros(NR,3,'uint16");
XYZO = zeros(NR,1,'uint16");

filename ='C:\KAT\XYZ3.csv'; %sorted file
XYZ(1:NR,1:3) = csvread(filename,N0,0,[N0,0,(NO+NRF),2]);

for im=1:NR;
cl =uint32(XYZ(im,1));
rw = uint32(XYZ(im,2));
pp = 1+(rw-1)*(uint32(N)-rw/2);
impos = pp + (cl-rw-1);
XYZO(impos) = XYZ(im,3);
end

%There are 40 experiments in three groups by materials:
% 1to 12 3L7M - images 1 to 792

% 13 to 28 SL5M - images 793 to 1848

% 29 to 40 7L3M - images 1849 to 2640

Nexp=40;
NRExp = Nexp*(Nexp+1)/2; %includes the diagonal term

Cor_exp = zeros(NRExp,4,'double');

% The images are organized for each material in two blocks:
% The first block contains the short time experiment images
% The second block the long time experiments

% Hence the short time blocks are:

% 1 to 12 3L7M - images 1 to 396 (396 images)

% 13 to 28 SL5M - images 793 to 1320 (528 images)

% 29 to 40 7L3M - images 1849 to 2244 (396 9mages)

177



% Similarly, the long time blocks are

% Hence the short time blocks are:

% 1 to 12 3L7M - images 397 to 792 (396 images)

% 13 to 28 5SL5M - images 1321 to 1848 (528 images)

% 29 to 40 7L3M - images 2245 to 2640 (396 9mages)

% Each experiment contains 33 images in groups of 11 odered by time.
% The three repetitions make the 33 images.

% The correlation between experiments are done by comparing the nine
% possible pairs of combinations

% For the autocorrelation of an experiment, the different repetitions are
% compared, while the selfcorrelation adds three values of "1"

% The matrix TTS contains the initial image index for each experiment
% The index for short time experiments is in column 1
% The index for long time experiments is in column 2

TTS=zeros(Nexp,2);

st=1;
foren=1:12

TTS(en,1) = (en-1)*33+st ;
end

st=793-33*12;

for en = 13:28
TTS(en,1) = (en-1)*33+st ;
end

st=1849-33*28;

for en =29:40
TTS(en,1) = (en-1)*33+st ;
end

TTS(1:12,2)= TTS(1:12,1) + 396;
TTS(13:28,2)= TTS(13:28,1) + 528;
TTS(29:40,2)= TTS(29:40,1) + 396;

time type=2; % 1 for short times, 2 for long times

for Expn_rw = 1:Nexp
Erw_start = TTS(Expn_rw,time type);
for Expn_cl = Expn_rw:Nexp
Ecl start = TTS(Expn_cl,time type);
ex_pos_start = 1+(Expn_rw-1)*((Nexp+1)-Expn_rw/2);
ex_pos = ex_pos_start + (Expn_cl-Expn_rw);
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for Rp_rw = 0:2 % Replicates of the 'row' experiment
scl =0;
cse=1;
if Expn_rw == Expn_cl % if it is the same experiment
scl=Rp rw;
cse=2;
end
for Rp_cl=scl:2 % Replicates of the 'column' experiment
for Imn=2:11 % image number, except the first image (liquid)
pos rw = Erw_start + Rp rw*11 + Imn-1;
pos_cl=Ecl start + Rp cl*11 + Imn-1;
if (pos_cl ==pos_rw) % if it is the same image
cor=1;
else % for different images
cl = uint32(pos_cl);
rw = uint32(pos_rw);
pp = 1+(rw-1)*(uint32(N)-rw/2);
impos = pp + (cl-rw-1);
cor = (double(XYZO(impos))/(2"16))*cse;
end
Cor_exp(ex_pos,1) = Cor_exp(ex_pos,1)+ cor;
end
end
end
end
end

for rw = 1:Nexp
for cl = rw:1:Nexp
pp = 1+(w-1)*((Nexp+1)-rw/2)+ (cl-rw);
if (pp < NRExp+1)
cvl(pp) = Cor_exp(pp,1)/90; %The sum of cor is divided by 90 images
yrw(pp) = rw;
xcl(pp) =cl;
end
end
end

if time_type ==

tmt = 'Experiments Correlation * Short Times";
else

tmt = 'Experiments Correlation * Long Times';
end
figure2 = figure('Name',tmt);
% Create axes
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axes| = axes('Parent',figure2,'YTick',[0 4 8 12 16 20 24 28 32 36 40]....
"XTick',[04 8 12 16 20 24 28 32 36 40],...
'FontSize',14);

grid(axesl,'on");

hold(axesl,'all');

scatter(xcl,yrw,60,cvl,'s' 'fill', 'Parent',axes1);

% Create colorbar
colorbar('peer',axes1, FontSize',14);
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APPENDIX I: MATLAB CODE FOR THE OVERALL CORRELATION PLOTS

% LOADXYZ3c.m
% G. Mazzanti, November 2014/May&June 2015

% This Matlab macro uses the Pearson correlation values stored
% in file XYZ3.csv, generated by the macro Acorr7.m

% It creates graphs with same treatment conditions:

% shear, temperature or material.

% In the XYZ3.csv file has 3482159 correlations:

% the first column is an image number (X)

% the second column is the other image number (Y) and

% the third column is their Pearson correlation coefficient

%  (0->65535 correspondsto 0 -> 1)

% The file is ordered from highest to lowest Pearson value

clear;

N=2640;

TRT(1:2640,1:6) = csvread('C:\KAT\Treatments.csv',0,0,[0,0,2639,5]);
% NR max value = (N/2)*(N-1);

NO=0;

NR =214900; % Corresponds to Pearson 95% and up

XYZ = zeros(NR,3,'uint16');
filename ='C:\KAT\XYZ3.csv'; %sorted file

XYZ(1:NR,1:3) = csvread(filename,N0,0,[N0,0,(NO+NR-1),2]);
figure('Name','R2");plot(1:NR,XYZ(1:NR,3));

NRS=1;

NRB = NR;

%SZ=ones(0,NRB,'uint8'");

HS = zeros(0,NRB,'uint16'");
S1=TRT(XYZ(1:NRB,1),4); %Shear rate of image X
S2 = TRT(XYZ(1:NRB,2),4); %Shear rate of image Y
HS(1:NRB)=(S1 == S2)*255;

HK = (uint16(log10(S1/0.8)*64-1))';

HC = HK.*(HS/255);
%scatter(XYZ(NRS:NRB,1),XYZ(NRS:NRB,2),10,HS);
figure('Name','Same_Shear');scatter(XYZ(1:NRB,1).*(HS'/255),XYZ(1:NRB,2).*(HS'/255),1,H
0);

axis([1 N 1 NJ);

HT = zeros(0,NRB,'uint16");
T1 =TRT(XYZ(1:NRB,1),3); %Temperature of image X
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T2 = TRT(XYZ(1:NRB,2),3); %Temperature of image Y

HKT = (uint16(15+10*(T1-9)))";

HT(1:NRB)=(T1 == T2)*255;

HCT = HKT.*(HT/255);

figure('Name','Same Temperature');scatter(XYZ(1:NRB,1).*(HT'/255),XYZ(1:NRB,2).*(HT'/25
5),1,LHCT);

axis([1 N 1 NJ);

HM = zeros(0,NRB,'uint16");

M1 = TRT(XYZ(1:NRB,1),2); %Material of image X

M2 = TRT(XYZ(1:NRB,2),2); %Material of image Y

HKM = uint16(M1*64)';

HM(1:NRB)=(M1 == M2)*255;

HCM = HKM.*(HM/255);

figure('Name','Same Material');scatter(XYZ(1:NRB,1).*(HM'/255),XYZ(1:NRB,2).*(HM'/255),
1LHCM);

axis([1 N 1 NJ);

HA = ((HT/255).*(HM/255)).*HS;

figure('Name','Same MTS');scatter(XYZ(1:NRB,1).*(HA'"/255),XYZ(1:NRB,2).*(HA'/255),2,H
A);

axis([1 N 1 NJ);
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