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ABSTRACT 

The present study investigated whether there was a relationship between statistical 

learning and the ability to use top-down processing to predict incoming speech using 

electroencephalography (EEG). Statistical learning abilities were measured via an 

artificial grammar learning (AGL) task, where assimilation of transitional probabilities of 

stimuli were indexed using learning scores and the P600, an event-related potential (ERP) 

component that responds to syntactic violations. Top-down processing was indexed using 

the N400 — an ERP component that responds to semantic violations — in response to a 

speech perception task with two conditions: with and without noise. It was hypothesized 

that without noise, an N400 would be seen when the final word of a sentence was 

semantically incorrect, and that noise should attenuate this effect. Without noise, N400 

and P600 amplitudes were expected to correlate, supporting evidence for a relationship 

between these neurocognitive processes. In the presence of noise, people who were better 

at the statistical learning task should have a reduced N400-mismatch effect, as they 

would rely on top-down processing to fill in the missing information. This should not be 

observed in people who were worse at the AGL task. Based on the median of the AGL 

learning scores, people were split into two groups: learners and non-learners. The AGL 

task did not elicit any significant effects in non-learners. Learners had an N400-like effect 

in the central parietal scalp and a frontal positivity. An N400 in response to the speech 

perception task was found for both quiet and noise conditions. Furthermore, there was a 

relationship between statistical learning and speech perception. Non-learners had a 

positive correlation between the N400 and AGL grammaticality effect regardless of the 

listening condition. In contrast, learners had a negative correlation in the absence of 

noise; this relationship reversed in the presence of noise, coinciding with their reduction 

in N400 amplitude. This reduction in N400 amplitude in noise suggests that learners may 

have strong expectations of what the final word should be. When hearing is impaired, 

learners may perceive the final word as a match rather than a mismatch. The results 

suggest that people who are more sensitive to the underlying statistical frequencies of 

stimuli may rely more on top-down processing to fill in missing information when 

engaged in a noisy environment.  
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CHAPTER 1 INTRODUCTION 

Speech perception is the ability to both perceive and process incoming auditory 

information in a variety of conditions, including quiet and noisy situations. Some 

individuals are better at perceiving speech than others, especially when in engaged in an 

environment like a noisy party. Speech perception may be impaired by a variety of 

factors, including hearing loss, reading abilities, short-term memory, and other cognitive 

factors (Lorenzi, Gilbert, Carn, Garnier, & Brian, 2006; McBride-Chang, 1995).  

Statistical learning is the ability to implicitly pick up on statistical regularities of 

events in the environment (Kaufman et al., 2010). Statistical learning is distinct from 

explicit learning because it is an innate and unconscious process (Kaufman et al., 2010). 

Research has focused on determining whether there is a relationship between statistical 

learning, considered a domain-general ability, and the domain-specific abilities involved 

in language learning (Frost, Siegelman, Narkiss, & Afek, 2013). Research has shown that 

even infants appear to rely on statistical learning abilities to learn how to segment speech 

sounds (Aslin, Saffran, & Newport, 1998). 

Statistical learning may explain why some individuals are better than others when 

perceiving speech: those who are better at statistical learning tasks may be better at 

picking up on the statistical regularities of events that they experience in general. For 

example, some words occur more frequently in language than other words. Based on this, 

statistical learning may be a key ability in understanding speech perception, and this may 

in part explain why some people are better at perceiving speech, especially in a noisy 

environment.  
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1.1 Speech Perception 

The Mechanics of Speech Perception 

Accurately perceiving spoken language relies on the perception of auditory 

information and the ability to process this input in a meaningful way. This perception 

may be impaired either at the beginning of the process, the sound signal and audition 

(e.g., hearing loss), or at the central processing system (e.g., aphasia). Hearing loss 

typically involves mechanical issues in the detection and/or transduction of the sound to 

action potential in the auditory nerve. Sound waves are transmitted through a medium, 

such as air, and are conducted through the ear canal before eventually causing the inner 

hair cells of the cochlea to oscillate (Yost, 2003). These vibrations are transduced into an 

electrical neural signal, transmitting a train of action potentials through the auditory nerve 

to the cochlear nucleus, located in the brainstem. From the cochlear nucleus, auditory 

information is eventually relayed through the thalamus before reaching the primary 

auditory cortex (Yost, 2003). Hearing loss can occur at multiple sites throughout this 

pathway, including the ossification of the ear bones (otosclerosis), loss of hair cells 

(either due to aging, trauma, etc), or auditory nerve damage. If the auditory signal cannot 

be conducted, then speech perception will be significantly, if not totally, impaired. 

Hearing impairment can range from mild to severe, for example, in a quiet environment, 

an individual with hearing loss may have a difficult time hearing a conversation and this 

impairment can be worsened when in a noisy environment such as a restaurant (Lorenzi 

et al., 2006).  

The cognitive processing of auditory input, such as mapping auditory signals onto the 

mental lexicon, may also be impaired. Processing impairment will affect how well people 



 3 

perceive speech, and processing can be affected through various ways. For example, 

aphasia is an acquired language deficit, typically caused by brain damage such as a stroke 

(A. R. Damasio, 1991, 1992; H. Damasio, 1991). Broadly, people with aphasia often 

have deficits in either producing or comprehending speech (Caramazza & Zurif, 1976; 

Goodglass, Kaplan, & Barresi, 2001; Goodglass, 1993; Hickok, 2009). Another example 

of a processing impairment that negatively affects speech perception is central auditory 

processing disorder (Bamiou, Musiek, & Luxon, 2001). Central auditory processing 

disorder results in impaired speech processing, especially in the presence of noise; the 

auditory nervous system is intact, yet there is discordance between what signal was 

received and how it is processed (Bamiou, Musiek, & Luxon, 2001; Rintelmann, 1985).  

Processing Speech 

Speech perception deficits can result from impairment at any point in the pathway. 

Even without impairment, spoken language is difficult to process because the auditory 

signal is extended through time (McClelland & Elman, 1986). The temporal nature of 

spoken language makes its processing complex, because speech is not processed as whole 

words, but rather in meaningful segments such as phonemes. Furthermore, in order to 

derive meaning, a record of what has been previously processed must also be maintained 

(McClelland & Elman, 1986).  

After the auditory signal has been received in the brain, the acoustic information 

must be processed and mapped in a manner that leads to recognizable and meaningful 

stimuli such as words. McClelland and Elman (1986) developed the TRACE model to 

explain the mechanics behind speech processing. Spoken language is theorized to first be 

processed based on the acoustic features of the input, and these features provide the basic 
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inventory for categorizing different language sounds (Hickok & Poeppel, 2007). 

Spectrograms are often used to visualize the frequency spectrum for spoken language 

across time. Feature processing for spoken language is important because it can 

discriminate between the beginnings and endings of words (McClelland & Elman, 1986). 

After feature processing, speech signals are theorized to be processed based on 

phonemes. For example, the word talk has an initial phoneme of /t/. As the initial 

phoneme /t/ is processed, words that begin with the same initial phoneme, are activated in 

the mental lexicon (Marslen-Wilson & Tyler, 1980). So, processing the initial phoneme 

/t/ may lead to activation of words such as tree, trip, take, tale, tall, and talc. Phoneme 

processing in the TRACE model overlaps with the COHORT model of speech perception 

by Marslen-Wilson and Tyler (1980). As the auditory input is further processed, words 

that are dissimilar (e.g., tree and trip) to the signal are eliminated from the model and 

those that remain similar become more highly activated (e.g., take, tale, tall, and talc) 

(Luce & Pisoni, 1998). As further processing occurs, potential candidates that are 

dissimilar or are not compatible with top-down processing are eliminated until eventually 

a single word is left: talk (Luce, 1986; McClelland & Elman, 1986). Unlike the 

COHORT model, the TRACE model is able to account for different errors that may occur 

in the speech signal, due to the fact that the TRACE model accounts for feature level 

processing. For example, if the initial phoneme of a word is mispronounced, the 

COHORT model cannot account for why people can understand these mispronunciations 

but the TRACE model can. This is representative of real speech signals because there are 

instances in which speakers accidentally mispronounce words, but listeners are still 

typically able to process and understand the word. In summary, the TRACE model 
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theorizes that auditory signal is processed based on the acoustic features of the input, 

which are eventually mapped onto known phonemes. As the input is further processed, 

more information becomes available so that the phonemes can be linked to eventually 

create a meaningful stimulus: a word (McClelland & Elman, 1986). 

Many factors influence how spoken language is processed: some phonemes, such as 

/m/ and /n/, share similar acoustic features which can result in words that contain these 

phonemes to be mistaken for one another (Jay, 2003). For example, the words mice and 

nice may be confused with one another. Phonemes are also often restructured based on 

the preceding and proceeding words, for example, the consonant /p/ changes depending 

on whether it is used in the word pig or spiral (McClelland & Elman, 1986). Speech rate 

and dialectical variations can also affect the pronunciation of phonemes. Another 

challenge with recognizing speech is that while we perceive clear boundaries between 

words in our native language, spectrograms show a different story. Often there is a 

distinct lack of boundaries between words and sounds frequently overlap. Errors in 

speech perception may arise due to incorrect word segmentation, and these errors can be 

influenced by context (McClelland & Elman, 1986). An additional factor that can 

influence how spoken language is processed is context (McClelland & Elman, 1986). 

Sentence context influences how both subsequent and prior information is processed 

(McClelland & Elman, 1986). Clearly, speech perception is influenced by a myriad of 

factors.  

The Effect of Noise on Speech Perception 

Speech perception also depends on the hearer’s ability to detect and encode the 

speech signal in the presence of noise. Noise can be defined as any acoustic information 
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unrelated to the speech signal. Under ideal conditions (e.g., a quiet room with a slow, 

careful speaker), speech perception is generally highly accurate. In the absence of 

interfering noise, speech perception can be viewed as a largely “bottom-up” process in 

which auditory input is mapped to linguistic representations (Sörqvist & Rönnberg, 

2012). However, speech often occurs outside of this ideal scenario, such as in a busy 

coffee shop or at a restaurant. These situations introduce background noise that may be 

louder than the target speech and occupy similar frequency ranges, which makes 

accurately perceiving speech difficult, even with normal hearing (Anderson, Skoe, 

Chandrasekaran, & Kraus, 2010). In order to make sense of the incoming input, people 

need to be able to focus on the target signal while ignoring extraneous auditory input 

(Bregman, 1994). In a noisy environment, bottom-up processing is more likely to result 

in a noisy target speech signal, due to the extraneous auditory signals in the environment. 

Thus, there may be a shift to increasingly rely on top-down processing in combination 

with bottom-up processing to derive meaning from the target signal.  

Research on how speech is processed in a noisy environment has found several 

factors that are necessary to accurately perceive speech. People with normal hearing rely 

on environmental cues such as temporal and spectral dips to aid with processing (Peters, 

Moore, & Baer, 1998). Temporal dips are moments when the background noise is lower 

than the target signal, resulting in a higher signal-to-noise ratio (SNR) thus improving 

accuracy (Stuart, Givens, Walker, & Elangovan, 2006; Stuart, 2008). Spectral dips are 

when the target spectrum becomes more noticeable than the background input, which 

also improves speech perception accuracy (Peters et al., 1998; Stuart, 2008). Other cues 

can also be used to aid with speech perception under degraded listening conditions, such 
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as visual cues (Cooke, Barker, Cunningham, & Shao, 2006; Summerfield, 1992). For 

example, reading lips can help listeners discriminate whether the phoneme /m/ or /n/ was 

said, which in the absence of visual input can be difficult to discriminate (Cooke et al., 

2006; Summerfield, 1992). 

Temporal cues, such as pauses in words or transitions between syllables (Nourski et 

al., 2009), are another important factor for speech perception because they are necessary 

for segregating auditory input, for example, phoneme discrimination to know when one 

word ends and a new one begins (Anderson et al., 2010). However, in a noisy room the 

boundaries between words may become less clear and words may be inaccurately 

segmented, resulting in confusion. While inaccuracies do occur, people generally are 

adept at filling in missing information to determine what was actually said. Warren 

(1970) examined whether people used top-down processing to fill in missing information 

when speech was either masked by noise or segments of the speech were replaced with a 

non-speech sound such as a tone. Participants listened to recorded sentences and a portion 

of the target word was masked by a cough, tone, or silence. After listening to the 

recordings, participants were given a piece of paper that contained the sentence and were 

asked to circle the area in which the mask or silence occurred. Warren (1970) found that 

when a portion of the target word was silent, participants were able to accurately identify 

where the silence occurred. However, when the target word was masked with a tone or a 

cough, people filled in the missing information via sentence context to perceive the 

masked word. This effect, the phonemic restoration effect, demonstrates the effects of 

top-down processing and how it can be used to fill in missing auditory input (Warren, 

1970).  
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The effect of noise on speech perception has been studied using 

electroencephalography (EEG), which records the continuous neural activity of the brain 

that occurs naturally. In order to investigate the relationship between EEG and specific 

cognitive, motor, or sensory events, EEG is time-locked to experimentally controlled 

events of interest, to elicit event-related potential (ERPs). ERPs are calculated by 

averaging the recorded activity over numerous trials (Bressler & Ding, 2006; Kaan, 

Harris, Gibson, & Holcomb, 2000). ERPs can reveal information about processes that 

may be activated by experimental procedures (Bressler & Ding, 2006). ERPs can either 

be positively or negatively going waveforms, and conventionally are named after the 

polarity and time period of the waveform (Bressler & Ding, 2006). In this way, changes 

in ERP amplitude can be used to investigate neurocognitive processes surrounding 

speech perception and the effect of noise. 

One method to investigate the neurocognitive processes involved in speech 

perception is through the speech perception in noise (SPIN) task. In this task, people 

listen to sentences that either end with a predictable or unpredictable word. Predictability 

of the final word is measured by the Cloze probability, which is based on the context of 

the sentence (Block & Baldwin, 2010). To measure Cloze probability, people read 

sentences that are missing a word and are asked to supply what they think the correct 

word should be. The proportion of people who supply the same word can be measured, 

and this measurement is the Cloze probability. Therefore, the higher the Cloze probability 

of a sentence, the more predictable the final word of the sentence is. By changing the 

highly predictable final word of a sentence to have 0% Cloze probability, researchers can 
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measure the electrical activity differences between sentences that have a highly expected 

final word, and those that deviate from expectations (Block & Baldwin, 2010).  

Kutas and Hillyard (1980) found a negative going ERP that began 400 ms post-

stimulus onset during a sentence-reading task (Kutas & Federmeier, 2011). The authors 

used sentences that either had semantically congruous or incongruous final words. An 

example of an incongruous sentence would be “He takes his coffee with sugar and 

horse”, where horse is an unexpected final word. The authors expected that the 

difference in activity between semantically incongruous and congruous sentences would 

elicit a positivity at 300 ms but instead found the N400 (Kutas & Hillyard, 1980). The 

N400 is related to semantic processing during language comprehension tasks (Brown & 

Hagoort, 1993) and is elicited by both visual and auditory words (Kutas & Federmeier, 

2011). Auditory stimuli tend to elicit an N400 effect that begins approximately 200 – 600 

ms post-stimulus onset (earlier than visual N400 effects) and tends to be maximal at 

midline electrodes around the vertex of the head (Kutas & Federmeier, 2011). Research 

has demonstrated that the amplitude of the N400 effect is inversely proportional to the 

expectancy of a target word: the smaller the Cloze probability, the higher the amplitude 

(Brown & Hagoort, 1993; Kutas & Federmeier, 2011). Studies have shown that the 

addition of background noise reduces the N400 effect (Aydelott, Dick, & Mills, 2006; 

Strauß, Kotz, & Obleser, 2013). It has also been shown that different levels of 

background noise can either enhance (high SNRs) or abolish (low SNRs) the N400 effect 

(Daltrozzo, Wioland, & Kotchoubey, 2012). Specifically, high SNRs increase the dB 

level of the target speech signal relative to the background noise, thus making it easier to 

hear the target speech signal. In contrast, low SNRs increase the dB level of the noise 
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signal relative to the target speech signal, making perception more difficult. In a low 

SNR, people may not hear the mismatch final word of the sentence and thus an N400 

effect may not be elicited. 

Other Factors that Affect Speech Perception 

Research has shown that aside from the systems involved in speech perception, 

cognitive abilities such as executive function, reading abilities, and working memory are 

also important for accurate speech perception. Executive functioning is the ability to 

coordinate and control our behaviour and thoughts (Luria, 1966; Shallice, 1982). 

Executive functioning is involved in abilities such as decision-making, selective 

attention, and response inhibition (Blakemore & Choudhury, 2006). Selective attention is 

an important ability because it allows people to ignore unimportant information, which is 

especially important for speech perception because listeners may have to attend to one 

speaker and ignore others. Mesgarani and Chang (2012) had people selectively listen to 

one speaker while listening to a recording with two speakers. The authors reconstructed 

spectrograms based on the cortical responses of participant as they selectively attended to 

one listener. The spectrograms demonstrated salient features of the attended speaker, as if 

the participants had attended to that speaker in isolation. This study demonstrated that the 

cortical responses to speech are not solely based on the acoustic input, but also reflect 

relevant information regarding the intentions of the listener (Mesgarani & Chang, 2012).  

Reading abilities are also implicated in speech perception: children with reading 

disabilities are less accurate in speech perception tasks including discrimination and 

identification tasks (Werker & Tees, 1987). Children with dyslexia show deficits in 

speech perception when performing speech perception in noise tasks (Ziegler, Pech-
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Georgel, George, & Lorenzi, 2009). Other studies have concluded that decreased 

performance in speech perception in reading-disabled children may either be due to 

speech perception difficulties, decreased short-term memory, or a combination of both 

(De Weirdt, 1988). Phonological working memory is also known to be an important 

factor in speech perception. Working memory capacity is important for speech perception 

because of the temporal aspects of auditory input: people need to be able to remember 

what was previously said in order to contextualize and understand new input (McClelland 

& Elman, 1986). Sörqvist and Rönnberg (2012) investigated the relationship between 

working memory capacity and speech perception abilities. In this experiment, participants 

compared item sizes, completed a reading span test, as well as listened to stories that 

were either normal speech or distorted and then answered questions about the stories. 

Sörqvist and Rönnberg (2012) determined that people with large working memory 

capacities are less adversely affected by distorted listening conditions. It is likely that 

larger working memory capacities are advantageous in this situation because a larger 

memory span likely allows people to hold more information at once, which can be used 

to understand sentence context, and may also have more cognitive resources available to 

filter noise and perceive speech (Pichora-Fuller, Schneider, & Daneman, 1995). Pichora-

Fuller et al. (1995) examined how well older and young adults performed on a SPIN task, 

as well as tested the working memory capacity of each group by asking participants to 

recall final words from the SPIN task. Older adults had lower recall compared to young 

adults on the working memory task, and working memory capacity was adversely 

affected by noise for both groups. The authors hypothesized that when noise is present, 
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working memory capacity decreases in both groups because the energetic resources used 

for working memory are reallocated for auditory processing (Pichora-Fuller et al., 1995). 

Statistical learning may be a reason why some people are better than others at 

accurately perceiving speech under degraded listening conditions. Statistical learning 

involves the implicit knowledge about the underlying frequencies of stimuli in the natural 

environment. For example, to determine the final word in the following sentence, The 

doctor’s suitcase was worn and obviously very ..., people can use the context of the 

sentence to determine that the final word should be old, because if something is worn out 

it is likely not new. People who are able to accurately predict incoming information based 

on prior context are examples of individuals relying on statistical learning abilities, which 

the current study hypothesizes is an important ability involved in accurately perceiving 

speech under degraded listening conditions.  

1.2 Statistical Learning  

Statistical Learning Abilities 

Statistical learning has been defined as the fundamental ability to implicitly learn the 

underlying statistical frequencies of stimuli within the environment (Kaufman et al., 

2010). Aslin et al. (1998) provided infants with a continuous auditory stream containing 

speech syllables that had no prosodic or acoustic (e.g., pauses) cues for word boundaries. 

The presentation of the stimuli followed specific patterns so that some syllables were 

more likely than others to co-occur. The authors found that after a short time period, 

infants were able to segment these syllables into word-like units (Aslin et al., 1998). This 

study is an example of how statistical learning can be used to extract the statistical 

information characterizing stimuli and how expectations are formed based on these 
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probabilities. Statistical learning is a useful process because it allows people to 

unconsciously segment continuous information in a meaningful way (Frost, Armstrong, 

Siegelman, & Christiansen, 2015).  

Statistical learning has been implicated in many domains. Saffran, Aslin, and 

Newport (1996) exposed 8-month old infants to a stream of nonsense syllables for a two-

minute period. These nonsense syllables were presented in a probabilistic fashion, so 

some syllables were more likely to co-occur together than with other syllables. The 

speech was presented without any acoustic (e.g., pauses) or prosodic cues, as to not alert 

the infants to any word boundaries. Afterwards, the infants listened to non-words 

composed of three nonsense syllables that had a higher probability of co-occurrence and 

non-words of syllables that did not co-occur together. The authors found that infants 

listened longer to non-words in which the syllables did not co-occur in the original 

speech stream, suggesting that the infants found these types of non-words to be novel. 

Thus, infants were found to be able to use statistical learning to extract meaningful 

information about the underlying statistical regularities of the nonsense syllables 

(Saffran, Aslin, & Newport, 1996).  

Statistical learning has been implicated outside of the auditory domain and in other 

sensory domains such as vision and touch (Conway & Christiansen, 2005). For example, 

in a visual statistical learning task, participants were exposed to sequences of different 

shapes that followed specific patterns during a learning phase (Fiser & Aslin, 2002). 

After the learning phase, participants were asked to judge how familiar sequences were to 

them. Participants were shown novel sequences that followed the shape patterns from the 

learning phase as well as novel sequences that did not follow the pre-established patterns. 
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The results demonstrated that participants were able to implicitly learn the patterns of 

shapes without specific instructions within a relatively short time period (Fiser & Aslin, 

2002). Participants are also able to detect statistical regularities in other visual stimuli 

such as colours (Conway, Bauernschmidt, Huang, & Pisoni, 2010). 

Statistical learning has also been demonstrated in a variety of language tasks. For 

example, infants who were exposed to auditory phonotactic regularities of non-English 

syllables for a brief period listened longer to violation syllables (Chambers, Onishi, & 

Fisher, 2003). Statistical learning has also been used to study how well people can detect 

long-distance statistical frequencies between words (Gómez, 2002; Onnis, Christiansen, 

Chater, & Gómez, 2003). Misyak, Christiansen, and Tomblin (2010) found that people’s 

ability to detect non-adjacent dependencies in a statistical learning paradigm correlated 

with performance in accurately processing written sentences that contained non-adjacent 

dependencies. 

Assessing Statistical Learning 

A popular way to assess statistical learning is through a serial reaction time task, 

which involves the presentation of visual stimuli in four different locations on a computer 

monitor (Kaufman et al., 2010; Robertson, 2007). Participants are asked to respond as 

quickly as possible to the visual stimuli by pressing the corresponding key on the 

keyboard (Robertson, 2007). Unbeknownst to participants, the presentation order of the 

visual stimuli have an underlying transitional probability, so that certain stimuli 

sequentially appear more often than others. For example, there is a 50% probability that 

the next item shown after the letter A is either B or C, but there is a 0% chance of the 

letter D following A (Reber, 1989). Control sequences, in which the visual stimuli no 
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longer follow the pre-established grammar, are intermixed throughout the task 

(Robertson, 2007). The reaction times in response to the visual stimuli are recorded. 

Through repeated exposures, participants implicitly learn the statistical frequencies of the 

sequences and become faster at responding to the sequences that follow the pre-

established grammar (Robertson, 2007). 

Another method of assessing statistical learning involves the use of an artificial 

grammar learning (AGL) task, which involves exposing participants to items with certain 

transitional probabilities. After a “learning” period of repeated exposure to these 

statistical frequencies (grammatical sequences), a “testing” period occurs in which 

participants are shown a mixture of sequences that follow the grammar and sequences 

that do not follow this grammar (Frost et al., 2015). In some experiments, participants are 

explicitly aware about the existence of patterns in the sequences, while in others 

participants are naïve. Generally, in these types of experiments, participants are asked to 

either repeat back each sequence immediately after being exposed to it (Conway et al., 

2010; Conway, Ellefson, & Christiansen, 2003; Conway, Karpicke, & Pisoni, 2007; 

Conway, Pisoni, Anaya, Karpicke, & Henning, 2011) or to judge the familiarity of 

sequences (Conway & Christiansen, 2005, 2006; Conway et al., 2003).  

People who are better at acquiring these statistical regularities are assumed to have 

formed expectations based on the transitional probabilities they were exposed to (Frost et 

al., 2015). Depending on the AGL paradigm, learning is assessed in two different ways. 

If people were asked to judge the grammaticality of the testing sequences, people who 

perform above chance level are assumed to have assimilated the statistical regularities of 

the task (Frost et al., 2015). If people are asked to repeat back the sequences, a “learning 
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score” can be generated: the sum of correctly repeated ungrammatical sequences 

(multiplied by the length of each sequence) are subtracted from the sum of correctly 

repeated grammatical sequences (multiplied by the length of each sequence) (see Conway 

et al., 2010). The use of a learning score as a way to measure statistical learning has been 

argued to be superior over judgments based on the grammaticality of sequences because 

learning scores indirectly measure an individual’s learning (Conway et al., 2010). 

Generalizability of Statistical Learning 

Over the past decade, research on statistical learning has focused on determining 

whether statistical learning is a comprehensive general cognitive ability that stretches 

across domains and explains how all cognitive systems learn (Frost et al., 2015). 

Statistical learning was initially believed to be generalizable so that if someone excelled 

at statistical learning in one domain (e.g., visual AGL task), they would also excel for 

similar tasks in other domains (e.g., auditory AGL task). However, research has 

consistently shown that statistical learning is not generalizable across domains as 

previously believed. Instead, research demonstrates that statistical learning is subject to 

both stimulus and modality specificity (Redington & Chater, 1996; Tunney & Altmann, 

1999).  

As an example, when people participate in a visual AGL task they may extract the 

information about the transitional probabilities of the sequences (Redington & Chater, 

1996). However, when they participate in a subsequent auditory AGL task that uses 

sequences with the same transitional probabilities but different stimuli, the theory of the 

generalizability of statistical learning would predict that these participants would apply 

the previous rules from the visual task to the auditory task. This would be an example of 
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rule transfer across modalities. However, research has shown that this does not happen; 

people do not apply their previous knowledge about statistical frequencies from one task 

to another (Redington & Chater, 1996).  

Instead, it appears that statistical learning is only generalizable within the same 

domain (Frost et al., 2015). For example, if people participate in two visual AGL tasks 

that use colours as the stimuli, people apply their knowledge about the statistical 

frequencies from the first task to the next. Sometimes though, this generalizability may 

not occur even within the same modality depending on whether the tasks use stimuli with 

perceptually different characteristics, for example, letters versus shapes (Conway & 

Christiansen, 2006). Conway and Christiansen (2006) performed three separate 

experiments investigating the generalizability of statistical learning across and within 

domains. The authors examined whether knowledge about the statistical frequencies of 

stimuli would be transferred across different modalities (visual versus auditory), across 

different dimensions in the same modality (shapes versus colours), and across dimensions 

of the same modality (different sets of shapes). Participants received training on 

grammatical sequences from both AGL tasks. For example, when comparing 

generalizability across visual and auditory domains, the training phase involved exposing 

participants to both visual and auditory sequences that each had a separate pre-established 

grammar. After training, participants were exposed to sequences in only one modality; 

half of the sequences followed the correct grammar for the modality while the other half 

followed the grammar from the other modality. For example, if testing was done in the 

visual domain, participants only saw visual stimuli but half of the sequences followed the 

same grammar as the visual sequences from the training phase and the other half 
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followed the grammar from the auditory sequences. The authors theorized that if 

statistical learning generalized, participants would classify all sequences as grammatical 

because all sequences followed the training grammar. However, if statistical learning was 

not generalizable across domains, participants should only judge sequences that 

corresponded to the same modality as grammatical (Conway & Christiansen, 2006). 

Conway and Christiansen (2006) found that participants only judged sequences to be 

grammatical when the sequences corresponded to the modality that the testing phase 

occurred in. For example, if the testing phase was in the visual modality, sequences that 

followed the visual grammar from the training phase were identified as grammatical 

while sequences that followed the auditory grammar from the training phase were 

identified as ungrammatical. This suggests that participants did not generalize the 

transitional probabilities of the auditory grammar to the visual modality. Instead, 

participants discriminated between different modalities and did not apply previous rules 

to the new sequences. Similarly, across different dimensions of the same modality, 

participants were able to simultaneously learn two sets of grammar and did not apply 

previous knowledge of statistical frequencies to the new sequences. This suggests that 

rule transfer did not occur across different dimensions of the same modality (regardless 

of the modality). However, when participants performed the tasks across the same 

dimension of the same modality, participants were not able to learn both grammars and 

instead could only learn one. Thus, statistical learning is impaired when dealing with 

perceptually similar input and is stimulus-specific rather than generalizable (Conway & 

Christiansen, 2006).  
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Statistical Learning and its Relation to Language 

Numerous studies have found that statistical learning abilities are related to language 

abilities in some manner. For example, individuals who are better at picking up on the 

non-adjacent dependencies (e.g., X-a-Y, in which X and Y are non-adjacent to one 

another and are more likely to appear non-adjacent to one another than Z-a-Y) of a 

statistical learning task are also better at reading object relative clauses (Misyak et al., 

2010). Object relative clauses contain an embedded clause that pertains to the noun at the 

beginning of the sentence, and are generally more difficult to read. An example of an 

object relative clause is, The cat that ate the fish was missing (Misyak et al., 2010). There 

is much debate on whether the mechanisms involved in language learning are specific to 

only language, or if these mechanisms perhaps rely on general abilities such as statistical 

learning (Frost et al., 2013).  

Frost et al. (2013) examined whether statistical learning could predict how well a 

native English speaker would learn to read Hebrew as a second language. Hebrew was 

chosen as the second-language because the statistical properties of each language differ 

from one another and are both different branches of language (English is an Indo-

European language and Hebrew is Semitic). It was predicted that the ability to learn how 

to read Hebrew might be supported by statistical learning. Thus a visual AGL task was 

used because the ability to learn statistical frequencies of random shapes may be 

predictive of both success and speed for reading a new language (Frost et al., 2013). Frost 

et al. (2013) found that people who performed well on the visual statistical learning task 

had higher proficiency for reading Hebrew. The authors theorized that reading relies on 

the extraction of the statistical regularities of the stimuli, similar to statistical learning. 
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Other studies have found similar results: Misyak et al. (2010) studied how 

performance between a statistical learning task and reading differed between individuals. 

The authors used a combination of an auditory AGL and serial-reaction time task that 

tested how well people could extract non-adjacent dependencies from three non-word 

strings. For example, the first word of the triplet would always be matched to the same 

final word (e.g., pel and dek always go together) but the middle word could be any other 

word (e.g., pel, wiffle, and dek versus pel, nilbo, dek). After training, participants judged 

the grammaticality of the sequences. Afterwards, participants completed a self-paced 

reading task that contained both subject-relative and object-relative clauses; participants 

were scored based on their comprehension of the sentence. Comprehension for the 

object-relative clauses was lower than for the subject-relative clauses. Misyak et al. 

(2010) divided individuals into learners or non-learners based on their reaction times for 

the statistical learning task, and the authors found that learners were significantly faster at 

reading the critical verb region of object-relative clauses. This result is interesting 

because it suggests that there is a relationship between how well people can process non-

adjacent dependencies in language and in a statistical learning paradigm (Misyak et al., 

2010).  

Given the evidence described above, statistical learning appears to be important for 

reading abilities (Frost et al., 2013; Misyak et al., 2010). Researchers are also interested 

in the relationship between spoken language and statistical learning. Conway et al. (2010) 

were interested in whether successful acquisition of the rules from an AGL task would 

correlate with speech perception in degraded listening conditions. Previous studies have 

shown that knowledge about the statistical regularities of language can help a listener 
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better predict what word should come next (Miller, Heise, & Lichten, 1951; Onnis, 

Farmer, Baroni, Christiansen, & Spivey, 2008). This is especially true when listening 

conditions are degraded, such as a noisy room (Elliott, 1995; Kalikow, Stevens, & Elliott, 

1977; McClelland, Mirman, & Holt, 2006). Conway et al. (2010) hypothesized that 

statistical learning ability would correlate with better speech perception in a degraded 

listening condition. Speech perception ability was measured as the difference in how well 

participants perceived the final word of sentences that were either highly predictable or 

unpredictable. Statistical learning was assessed via various AGL tasks: a visual AGL task 

that used colours as stimuli and an auditory AGL that used spoken non-words. The 

authors found that there was a high correlation between speech perception in noise 

abilities and statistical learning and this correlation was significant for the visual AGL 

task but not the auditory AGL task. Based on these results, it appears that statistical 

learning plays an important role for language processing (Conway et al., 2010).  

Another study by Conway et al. (2011) investigated statistical learning abilities in 

deaf children who received cochlear implants. In this study, deaf children who received 

cochlear implants were tested on their statistical learning abilities in comparison to 

normally hearing children. Statistical learning was assessed via a visual AGL task. To 

assess how well participants assimilated the transitional probabilities of the training 

sequences, learning scores were calculated based on the methods previously explained. 

The authors found that half of the normally hearing children had learning scores above 

zero, but only a third of the deaf children with cochlear implants had learning scores 

above zero (Conway et al., 2011). The authors then controlled for age and computed 

partial correlations on the duration of implant use and age of implantation for the deaf 
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children and found that the later a child received their implant, the lower their learning 

score. They also found that children who had longer durations of cochlear implant use 

had higher learning scores. The authors additionally reported a link between language 

abilities and statistical learning for deaf children with cochlear implants. The results of 

the study suggest that statistical learning abilities are important for language outcomes in 

deaf children with cochlear implants. The authors speculated that this relationship 

between statistical learning abilities and language may explain why some individuals fare 

better with a cochlear implant than others: those who are better at statistical learning may 

be better at picking up on the statistical regularities of spoken language (Conway et al., 

2011). 

Many studies have found correlations between language and statistical learning 

abilities (Conway et al., 2010, 2011; Frost et al., 2013; Misyak et al., 2010). It seems 

highly likely that language learning may in part rely on a general ability such as statistical 

learning (Conway et al., 2011). Logically, it would be redundant for two separate abilities 

to exist in the human brain that are used for the extraction of the statistical frequencies of 

events, though may be possible. Tallal, Stark, Kallman, and Mellits (1981) investigated 

temporal processing disorders in language-impaired children who had both visual and 

auditory deficits. The authors found that the visual deficits resolved, but not the auditory 

deficits, due to age. This study suggests that the auditory and visual deficits associated 

with temporal processing rely on different processing systems (Tallal et al., 1981). 

Christiansen, Conway, and Onnis (2012) investigated the relationship between statistical 

learning and language processing using an EEG paradigm. The authors investigated 

whether language and statistical learning processing relied on the same processes to 
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process syntactic violations. After training on an AGL task, participants were asked to 

judge whether the testing sequences were grammatical or not. Afterwards, participants 

read sentences and decided whether the sentence contained a grammatical violation or 

not. The authors found evidence that suggested that statistical learning utilized a similar 

system as language to process the presence of a syntactic violation. The authors found an 

ERP that was common to both tasks — the P600 — and it was maximal over the central 

parietal regions of the scalp (Christiansen et al., 2012). 

The P600 is a positive deflection that begins 600 ms post-stimulus onset (Brouwer, 

Fitz, & Hoeks, 2012). The P600 was discovered by Osterhout and Holcomb (1992) when 

participants read sentences that contained different grammatical errors (phrase structure 

violations and sub-categorization constraint deviations). For example, the word to in the 

following sentence, The broker persuaded to sell the stock was tall, elicited a P600 effect. 

The authors found that these types of syntactic violations resulted in an P600 effect over 

the right anterior scalp that was positive deflecting and slow (Osterhout & Holcomb, 

1992). The P600 is elicited by syntactic anomalies including grammar violations and 

syntactically correct sentences that result in inaccurate parsing (garden path sentences) 

and commonly found in the central parietal region of the scalp (Kaan et al., 2000; 

Osterhout & Holcomb, 1992). The P600 is generally interpreted to reflect revisions in 

syntactic processing (Coulson, King, & Kutas, 1998). The P600 is elicited by both visual 

and auditory words, similar to the N400 (Hagoort & Brown, 2000). Interestingly, studies 

have shown that the P600 may be frontally distributed rather than posteriorly, when 

exposed to sentences that are syntactically correct but are not preferred (Friederici, 

Hahne, & Saddy, 2002; Kaan & Swaab, 2003a, 2003b; Osterhout & Holcomb, 1992). 
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These differences in scalp distribution may reflect costs that are associated with reading 

non-preferred sentences when the P600 is frontally distributed versus parsing failure 

when a more posterior distribution is seen (Friederici et al., 2002; Hagoort & Brown, 

2000; Kaan & Swaab, 2003a).  

1.3 The Current Study 

The objective of the current study was to determine whether there was a relationship 

between statistical learning and speech perception in noise abilities for normally hearing 

listeners. More specifically, whether implicit statistical learning in a visual AGL task — 

indexed via the P600 effect — would correlate with the ability to predict a final word on 

a SPIN task, as indexed via the N400 effect.  

The visual AGL task involved exposing participants to sequences of letters. 

Unbeknownst to participants, the letters followed pre-established transitional 

probabilities so that some letters were more likely to sequentially occur, while other 

letters would never sequentially occur. For example, the letters B and C had a 50% 

chance to occur after the letter A, but the letter D would never follow the letter A. 

Participants received extensive training in which they were asked to reproduce the 

sequences immediately after they saw the sequence. After training, participants were 

shown sequences of letters that either followed the grammar from the training phase or 

saw sequences that violated the grammar at either the third, fourth, or fifth letter of the 

sequence. It was expected that participants would extract the statistical frequencies of the 

letters during the training phase. Learning was assessed via the learning scores and 

through the P600 effect, which has been previously shown to be elicited by syntactic 

violations on an AGL task (Christiansen et al., 2012). 



 25 

The SPIN task was used to measure people’s ability to apply prior knowledge about 

the context of a sentence in order to predict incoming information. People listened to pre-

recorded sentences and were asked to repeat the final word. However, half of the 

sentences had a final word that had a high Cloze probability and the other half had 0% 

Cloze probability. The SPIN task was presented under two different conditions: in quiet 

and with background noise (-1 dB SNR). The background noise was multi-talker babble 

and the SNR was chosen in order to simulate real-life environments in which speech 

perception accuracy decreases and people must increase their reliance on top-down 

processing in order to accurately perceive speech.  

1.4 Hypotheses 

Based on the experiment by Christiansen et al. (2012), I hypothesized that the 

syntactic violations of the ungrammatical sequences would elicit a central parietal P600 

effect in people who were sensitive to the underlying statistical regularities of the stimuli. 

Additionally, learning scores were expected to vary between participants. People with 

higher learning scores were expected to have an enhanced P600 effect in contrast to those 

with lower learning scores. 

The SPIN task was predicted to elicit an N400 effect in both quiet and with 

background noise conditions, but I expected that behavioural performance would be 

negatively affected by background noise. Additionally, it was expected that the low SNR 

chosen for the background noise condition would diminish the N400 mismatch effect as 

previous studies have demonstrated that background noise reduces the N400 mismatch 

effect (Aydelott et al., 2006; Strauß et al., 2013). This was because the purpose of the 
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noise condition was to mimic a natural environment, so speech perception should be 

slightly impaired, and mismatch words may erroneously be heard as a match.  

Finally, it was hypothesized that there would be a significant positive correlation 

between the amplitude of the N400 and P600 effects in the SPIN and AGL tasks, 

respectively. In other words, as the amplitude of the N400 effect became more negative 

in the SPIN task, the amplitude of the P600 effect was predicted to become more positive 

for the AGL task. Thus, people who were more aware of the underlying statistical 

frequencies of language would have a greater N400 effect, and this would correlate with 

higher awareness for the transitional probabilities of the AGL sequences, resulting in an 

enhanced P600. It was expected that when background noise was added to the SPIN task, 

there would be a reduced correlation in people who were more sensitive to the 

transitional probabilities of the AGL task, because these people were predicted to be 

better at using the context of the sentence to supply a correct match word, thus showing a 

reduced N400. The correlation between N400 and P600 amplitude was expected to be 

maintained in people who were worse at the AGL task, regardless of the SPIN condition, 

because they would be worse at generating a correct match word.  
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CHAPTER 2 METHODS 

2.1 Participants 

Fourteen adults (5 males, mean age = 25, SD = 8, range = 18 – 50; mean years of 

education = 18, SD = 3, range = 13 – 23) with normal hearing (defined as hearing 

threshold of 30 dB or lower in the worse ear at 1000 Hz and confirmed through pure-tone 

audiometry at 1000 Hz during the study) were recruited for this study. All subjects were 

native English speakers, right-handed, and were not taking medication known to affect 

EEG or attention. Participants provided informed consent to participate in this study and 

were compensated $50. The study was approved by the Dalhousie University ethics 

board. 

Four of the fourteen participants had previously participated (range = 1 – 2 years) in a 

behavioural study that used an AGL task with the same stimuli as the one used here. 

However, the AGL task for the current study used unique sequences that were not 

previously used in the behavioural AGL task. Additionally, the ungrammatical sequences 

for the current AGL task were otherwise grammatical but contained a single 

ungrammaticality in the sequence, after which the sequence became grammatical again. 

In contrast, the AGL task of the previous study did not follow this procedure. 

2.2 Experimental Design 

The study took place at the NeuroCognitive Imaging Lab at Dalhousie University 

over two study sessions: the first session involved acquiring informed consent, and 

completing a variety of questionnaires and cognitive measures which are outside of the 

scope of the present study and are thus not mentioned further. The final session of the 
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study involved the collection of neuroimaging data. Each session took place inside of the 

same quiet, isolated room. 

2.3 EEG Tasks 

The EEG tasks and data collection took place inside of the same quiet, isolated room 

that was used for collecting the cognitive measures. Both EEG tasks were programmed 

using DirectRT version 2014.1.114 (Jarvis, 2012). Both tasks were delivered on a 

computer monitor that was specialized for enhanced graphics (BenQ, Taiwan) with a 

refresh rate of 120 Hz.  

2.3.1 Artificial Grammar Learning Task 

The AGL task was used to assess people’s ability to implicitly learn arbitrary 

sequences. Previous studies have determined that there is a relationship between speech 

comprehension and performance on the AGL task in both children with cochlear implants 

(Conway et al., 2007) and in adults (Conway et al., 2011).  

Stimuli 

Four letters were chosen as the stimuli for the AGL task: Q, X, N, and D. These four 

letters were chosen based on the fact that their names are not phonetically similar, and 

they are visually distinct from one another. One-hundred and thirty-three unique 

sequences of 5 – 7 letters in length were generated for the AGL task and were based on a 

Markovian finite-state grammar (Conway et al., 2010).  

From the perspective of the experimental design, the AGL task was divided into 

seven blocks: a practice block (seven sequences), two learning bocks (21 sequences per 

block), and four testing blocks (21 sequences per block). However, during the study 

participants were only alerted to the practice versus “real” blocks; they were not told that 
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there were sequences to learn nor that there would be a testing phase. The practice block 

was used to familiarize participants with the AGL task and used different letters as 

stimuli for the task (L, K, W, and B). The sequences in the practice block did not use the 

same Markovian finite-state grammar as the rest of the experiment. Participants started 

with three letter sequences and progressed to seven letter sequences. The learning blocks 

each consisted of 21 ‘grammatical’ sequences: sequences that followed the pre-

established Markovian final-state grammar. Based on the recommendations from , who 

recommend that participants are trained on shorter grammatical sequences first, the first 

learning block started with five letter sequences and sequentially increased to seven letter 

sequences in the final learning block. 

The testing blocks were used to determine how well participants picked up on 

statistical frequencies of the grammatical sequences. Of the 84 sequences in the learning 

blocks, half followed the Markovian finite-state grammar used in the learning blocks. The 

remaining 42 sequences were ‘ungrammatical’: the sequences followed the pre-

established Markovian finite-state grammar, but contained a violation of the grammar at 

either the third, fourth, or fifth letter of the sequence. An example of a grammatical 

sequence is, “DXNQD”, in which the third stimulus (N) is the grammaticality of interest. 

For the ungrammatical sequence, “XNXQD”, the sequence followed the pre-established 

grammar until there is a syntactic violation at the third stimulus (X), the sequence again 

follows the pre-established grammar after the ungrammaticality. The grammatical and 

ungrammatical sequences were pseudo-randomly assigned so that there was an equal 

distribution of grammatical and ungrammatical sequences in each block. Constraints 

were also placed on sequence length and the position of a violation in an ungrammatical 
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sequence for each block. For example, each testing block contained sequences that 

ranged from 5 – 7 letters.  

Procedure 

At the start of the AGL task, participants received both verbal and written instructions 

on how to complete the task. Written instructions were provided after every rest break. 

Participants were informed that they would see a series of letters that they then had to 

repeat back using a keypad. The keypad (a USB numeric keypad) was labeled with the 

four letters used in the AGL task. This was done so that the response keys would be 

located in a single row, rather than their typical positions on a QWERTY keyboard. 

Participants completed the practice block, then after ensuring that they understood the 

task, participants were provided with a rest break before beginning the experiment. 

The sequence of events in a trial is shown schematically in Figure 1. At the start of 

each trial, a fixation cross (1.9 degrees viewing angle) was presented in the centre of the 

computer screen for a random interval of 500 – 1500 ms. After fixation, an empty box 

(9.5 degrees viewing angle) appeared in the centre of the screen and remained on for the 

duration of the trial. This box cued the participant that the sequence was starting, and 

participants were asked to try to not blink while the box was shown. The first letter in the 

sequence appeared 500 ms after the box appeared. During sequence presentation, each 

letter (1.9 degree viewing angle) was displayed in the centre of the box for 500 ms, 

followed by an empty box for 500 ms, after which the next letter in the sequence was 

shown. After the trial finished, there was a 1500 ms delay period in which participants 

saw an ellipsis in the centre of the screen. After this delay period, a response prompt 

appeared on the screen asking participants to type back the sequence that they had just 
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observed via the keypad. Participants received six rest breaks throughout the duration of 

the experiment. After completing the AGL task, participants answered a questionnaire on 

how they remembered the sequences and whether they noticed any patterns in the 

sequences.  

 

Figure 1. Schematic of the procedure for the AGL task. 

For two participants, technical problems occurred during the tasks in which the visual 

stimuli of a sequence stopped appearing, but the response prompt still appeared. This 

problem occurred on random trials: once within the learning block and another time in 

the final experimental block. The AGL task was restarted at the last sequence prior to the 

problem’s occurrence. These technical difficulties were accounted for in both participants 
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by removing both the behavioural and EEG data for the trials where sequences did not 

display.  

Behavioural Analysis 

An AGL learning score was calculated using the following equation: 

AGL Learning Score = ∑(gc ∗ L) − ∑(ugc ∗ L) 

Where gc is the number of correctly answered grammatical sequences, ugc is the number 

of correctly answered ungrammatical sequences, and L is length of the sentence. Positive 

learning scores thus indicate superior performance on grammatical than ungrammatical 

sequences. 

Generalized linear mixed-effects modelling with a binomial family was used to 

analyze the AGL accuracy for all trials as a function of fixed effects including 

grammaticality and learning status, as well as random effects of subject and sequences. 

2.3.2 Speech Perception in Noise Task 

Stimuli 

A SPIN task was used to investigate sentence-processing abilities. Short, declarative 

sentences that were normed (Block & Baldwin, 2010) based on the predictability of the 

final word (Cloze probability) were chosen for this task. The Cloze probability of the 176 

chosen sentences ranged from 83% – 99%. None of the chosen sentences ended with the 

same final word as another chosen sentence in order to avoid practice effects. 

The Corpus of Contemporary American English database was used to generate 

alternate final words (mismatches) for each of the 176 sentences. Mismatches were 

generated based on the following criteria: the natural log of the frequency of occurrences 
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of the mismatch word in English was matched to the original final word (matches), 

mismatches contained the same number of letters as matches; mismatches were of the 

same class as the matches; mismatches did not begin with the same letter as matches (to 

avoid priming effects); mismatch words did not rhyme with match words; and, while the 

mismatches were semantically incongruent, they were grammatically correct. For 

example, In the heat of his performance, Sean broke a guitar string / clinic, in which 

string is the expected match (Cloze probability of 87%) and clinic is the mismatch. A 

two-tailed t-test was performed to ensure that the natural log of the frequencies for match 

and mismatch words were not significantly different from one another, t(350) = -0.27, p = 

0.79.  

The sentences used in this task were recorded by a male native Canadian English 

speaker in a neutral tone. Each of the 176 sentences with the expected match word were 

recorded as separate audio files; each mismatch word was recorded as a separate audio 

file. Sentences were normalized so that there would be no volume (dB) differences 

between sentences. Sentences were presented at 65 dB within an isolated room. Each 

audio file was modified to include 500 ms of silence at the beginning and at the end of 

each sentence. Each audio file was also clipped so that the final word in the sentence was 

a separate audio file from the rest of the sentence.  

For the second condition (with background noise), sentences were masked with a 

multi-talker babble audio file that began 500 ms prior to stimulus presentation and 

continued after stimulus presentation ended. The original multi-talker babble audio file 

from the Words-in Noise test (NIH Toolbox, Illinois) was normalized so that the multi-

talker babble audio file was not louder than the pre-recorded sentences. The multi-talker 
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babble audio file was randomly sampled to generate 500 unique audio files that were 

6860 ms long. This was to ensure that participants were not inadvertently prompted to the 

beginning of the stimulus. The multi-talker babble audio files were presented at a -1 dB 

SNR relative to the sentence audio files. 

The 176 sentences were randomly divided into two lists of 88 sentences per list. Each 

stimulus list was divided between the two SPIN conditions so that only one list was 

completed per condition. List order was counterbalanced between participants. Within 

each list, 44 sentences were randomly selected to end with a mismatch word rather than 

the expected match word. Each list was constrained so that there would be no more than 

four consecutive sentences that had a match or mismatch final word. Additionally, the 

first eight sentences within each list were used as a practice block. The remaining 80 

sentences were then divided into four testing blocks of twenty sentences per testing 

block.  

Procedure 

Each participant began the SPIN task in the no background noise condition then 

began the with background noise condition. Only one stimulus list was completed per 

condition. List order was counterbalanced between participants. Prior to beginning the 

experiment, participants received written and verbal instructions on how to complete the 

task. Participants also received written instructions at the start of every block.  

At the beginning of each trial, an outline of a white box (9.5 degrees visual angle) 

appeared in the centre of the screen to direct the participant’s attention to the screen and 

to inform participants when a new trial began. The box was displayed for a random 

interval of 250 – 1000 ms prior to auditory stimulus presentation and remained on screen 



 35 

until 1000 ms post auditory stimulus presentation. After the box disappeared, a response 

prompt appeared on the screen that asked participants to repeat the final word of the 

sentence that they had just heard into the microphone. If participants did not know what 

the final word was, they were instructed to guess or to say “pass”, to begin the next trial. 

The reaction time of the spoken utterance was coded automatically through DirectRT 

using an algorithm that determined voice onset time according to a loudness threshold 

(Jarvis, 2012). The next trial began after a two second delay. Participants did not receive 

any feedback regarding the identity of the final word nor about their accuracy. 

Participants received rest breaks after completing 25%, 50%, and 75% of the experiment. 

Behavioural Analysis 

Any trials that did not contain a response or were labeled as missing were removed 

from the data set. Linear mixed-effects modelling (Baayen, Davidson, & Bates, 2008) 

was used to analyze reaction times for all trials, as a function of fixed effects including 

condition, target word category (match or mismatch), as well as random effects of subject 

and the target word. Outliers were defined as data points that fell more than 2.5 standard 

deviations outside of the mean and were removed from analysis. Afterwards, the model 

was refitted to the trimmed data.  

Generalized linear mixed-effects modelling using a binomial family was used to 

analyze accuracy for all trials as a function of fixed effects including condition, target 

word category, as well as random effects of subject and target word category. 

Additionally, a linear mixed-effects model was used to correlate the SPIN accuracy 

scores with the AGL learning scores, with a random by-subject effect.  
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2.4 EEG Data Acquisition 

EEG data were collected using a 64 channel QuickAmp (Advanced Neuro 

Technology, Enschede, Netherlands) amplifier that was connected to an Acticap (Brain 

Vision, Morrisville) electrode system. This system had active preamplifiers located on 

each electrode in order to improve signal quality. The electrodes were attached to an 

elastic cap. 

Participants were prepared for EEG recording by cleaning areas of exposed skin 

(including behind the ears, forehead, and cheeks) where the electrodes sat with a 

hypoallergenic NuPrep cream. After participants were prepared, the electrode cap was 

placed on the head and the electrodes were positioned. In order to ensure a good electrode 

connection, each electrode was filled with hypoallergenic electrolyte gel (SuperVisc) 

through a blunt-tipped syringe. The gel was gently rubbed into the scalp. Impedance was 

lowered below a threshold of 30 kΩ at each electrode. To monitor eye movement and 

blinks, bipolar, self-adhesive electrodes were also placed above and below the left eye 

and on the outer canthi lateral to each eye. This allowed me to correct for artefacts in the 

EEG recordings. Data were on-line filtered at 138 Hz, were averaged-reference, digitized 

at a sampling rate of 512 Hz via ASALAB software (Advanced Neuro Technology, 

Enschede, Netherlands), and stored on a computer for later analysis.  

2.5 EEG Data Analysis 

Data were processed offline through EEGLAB 13.4.3b (Delorme & Makeig, 

2004).The EEG data were band-pass filtered in the 0.1 – 30 Hz range for the AGL task 

and in the 0.3 – 30 Hz range for the SPIN task. After filtering, trials that contained 

excessive noise (e.g., channel drift, head movement) were identified and were removed 
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from each individual participant’s dataset. Excessively noisy channels were also 

eliminated from each individual participant’s dataset. Ocular artefacts as well as other 

artefacts such as channel drift were identified and corrected using independent 

component analysis (ICA) with the FastICA 2.5 MATLAB package (Hyvärinen & Oja, 

2000). The ICA components were visually inspected to determine the components that 

contained ocular artefacts as well as other type of noise. These components were 

removed from the dataset.  

After ICA, noisy channels that had been removed prior to ICA were interpolated 

using data from the surrounding channels with spherical spline interpolation. Continuous 

EEG data were segmented into discrete epochs (200 ms pre-stimulus onset and 1000 ms 

post-stimulus onset) that were time-locked onto the events of interest. For the AGL task, 

events that were of interest were stimuli that were either grammatical or ungrammatical 

at the third, fourth, or fifth position of the sequence. For the SPIN task, events of interest 

were the target word category (match or mismatch). Epochs were baseline corrected by 

subtracting the mean of the 200 ms pre-stimulus period. After epoching, EEG data were 

re-referenced to an average of the left and right mastoids.  

To investigate the effects of the experimental conditions on ERP amplitude, the ERP 

amplitude, timing, and scalp distribution, were exported from EEGLAB to R version 

3.2.1 (R Core Team, 2013). The mean amplitude at each electrode for each trial was 

computed and exported for the time windows of interest: 300 – 500, and 600 – 800. 

These time windows were selected based on the time range that the N400 and P600 ERPs 

were expected to occur (300 – 500 ms for the N400, 600 – 800 ms for the P600) for the 

SPIN and AGL task, respectively. Electrode positions on the scalp were categorized into 
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seven regions of interest (ROI) based on areas where the ERPs of interest appear. 

Electrodes in the midline central (electrodes C1, Cz, C2, CP1, CPz, CP2, P1, Pz, and P2) 

were chosen as an ROI for the N400 and for the P600. As an exploratory measure, other 

ROIs were examined and included the left anterior (electrodes AF7, AF3, F7, F5, and 

F3), middle anterior (electrodes Fp1, Fp2, F1, Fz, F2, FC1, and FC2), right anterior 

(electrodes AF4, AF8, F4, F6, and F8), left central (electrodes FT9, FT7, FC5, FC3, T7, 

C5, C3, TP7, CP5, and CP3), right central (electrodes FC4, FC6, FT8, FT10, C4, C6, T8, 

CP4, CP6, and TP8), and the posterior (electrodes P7, P5, P3, P4, P6, P8, PO7, PO3, 

POz, PO4, PO8, O1, Oz, O2, PO9, and PO10). 

Outliers were defined as data points that fell more than 2.5 standard deviations 

outside of the mean and were removed from analysis. A generalized additive mixed-

effects model (GAM) was used to analyze the amplitude of the EEG data as a function of 

the variables of interest, as well as random effects such as trial and subject. GAM is an 

extension of the general linear model and is well suited for EEG analysis because it is 

able to minimize the amount of time required for data processing and thus is optimal for 

processing large data sets (Wood, Shaw, & Goude, 2015). Additionally, GAM is able to 

include non-linear factors and non-linear interactions in the model (Meulman, Wieling, 

Sprenger, Stowe, & Schmid, 2014). Since GAM is able to detect non-linear effects, GAM 

is an optimal method for analyzing EEG data because there may be non-linear effects 

(Meulman et al., 2014). For example, the mean amplitude of all electrodes at each trial 

may vary in a non-linear way.  

It was important that an optimal GAM was identified for data analysis. Iterative tests 

that compared more complex models to simpler models were performed for each 
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dependent measure in order to determine the optimal model (Tremblay & Ransijn, 2013; 

Tremblay & Tucker, 2011). By comparing simpler models to more complex models, I 

was able to remove variables and interactions that did not explain significant amounts of 

data variation (Baayen, Davidson, & Bates, 2008). The optimal model was defined as the 

model that accounted for the most variance with the fewest interactions and factors, and 

was evaluated using the restricted maximum likelihood (REML) (Dodge, 2006). REML 

removes effects of nuisance parameters by using the likelihood function calculated from 

the dataset (Dodge, 2006). 

Artificial Grammar Learning 

GAM was used to analyze the amplitude of the EEG data at the time window of 

interest (600 – 800 ms), as a function of grammaticality, learning (non-learners or 

learners), ROIs, as well as a non-linear effect of trial, random intercepts for each subject, 

and a random non-linear effect of trial for each combination of subject and ROI. Outliers 

were identified and removed from analysis. Afterwards, the model was refitted to the 

trimmed data. The model explained 5.69% of the deviance in the data. 

Speech Perception in Noise 

GAM was used to analyze the amplitude of the EEG data at the time window of 

interest (300 – 500 ms), as a function of condition (no background noise or noise), target 

word category, ROIs, as well as a non-linear effect of trial, random intercepts for each 

subject, and a random non-linear effect of trial for each combination of subject and ROI. 

Outliers were identified and removed from analysis. Afterwards, the model was refitted 

to the trimmed data. The model explained 5.79% of the deviance. 
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Speech Perception in Noise Amplitude Correlated with Artificial Grammar Learning 

Amplitude 

To determine whether there was a relationship between the amplitudes for the SPIN 

and AGL tasks, the ERP data from each task were correlated using GAM. To simplify 

this analysis and isolate the effect of interest in each experiment, the differences in 

amplitude between mismatch and match conditions (mismatch – match sentences for the 

SPIN task; ungrammatical – grammatical sequences for the AGL task) for each subject, 

ROI, and SPIN condition (without or with background noise) were calculated. The mean 

amplitude at each electrode was calculated independently, but those within an ROI were 

not differentiated from one another during modelling. This reduced the dataset to n = 98 

per SPIN condition. When there was no background noise, the model explained 75.1% of 

the deviance. With background noise, the model explained 69.6% of the deviance.  
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CHAPTER 3 RESULTS 

3.1 Behavioural Results 

3.1.1 Artificial Grammar Learning 

Learning Scores 

The mean (M) AGL learning score was 6.64 (median = 4). The descriptive statistics 

for the learning scores can be seen in Table 1.  

Table 1. Descriptive statistics for the grammatical span, ungrammatical span, and 

learning score for the AGL task. 

Measure Mean Standard deviation 

(SD) 

Minimum score Maximum score 

Grammatical span 55.43 22.55 19 89 

Ungrammatical span 48.79 12.94 25 72 

Learning score 6.64 18.25 -26 36 

 

While the range of the learning scores was similar to other studies that used a visual 

AGL task (Conway et al., 2010, 2011), it was a concern that ERP effects in response to 

grammaticality might not be seen at the group level if there were participants who did not 

successfully acquire the statistical probabilities of the sequences. Participants were 

divided into two groups, learners and non-learners, based on the median of the AGL 

learning scores, as shown in Figure 2.  
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Figure 2. Distribution of the AGL learning scores, by subject. Red indicates participants 

defined as non-learners and blue indicates participants defined as learners, based on a 

median split of learning scores. 

 

There were seven learners and seven non-learners on the AGL task. The average 

learning score for learners was 21.43  95% confidence interval (CI) of 3.98 (range = 5 – 

36). The average learning score for non-learners was -8.14  5.04 (range = -26 – 3). A 

two-tailed t-test revealed that learners had a significantly higher learning score than non-

learners on the AGL task, t(12) = 3.45, p = 0.005.  

Accuracy 

The average accuracy on the AGL task demonstrated that learners were more accurate 

for grammatical (M = 66%, SD = 48%) than ungrammatical sequences (M = 55%, SD = 

50%). Non-learners were less accurate for grammatical (M = 43%, SD = 50%) than 



 43 

ungrammatical sequences (M = 47%, SD = 50%). A generalized linear mixed-effects 

model was fitted in which the logits of accuracy were regressed onto a two-way 

interaction including grammaticality and learning status, with random effects of subject 

and sequences. There were no significant main effects of grammaticality, F(1, 1074) = 

0.2, p = 0.67, or learning status, F(1, 1074) = 0.4, p = 0.53. However, there was a 

significant interaction between grammaticality and learning status, F(1, 1074) = 10.2, p = 

0.002. Post-hoc analysis was performed to determine the nature of the interaction; 

probability values were two-tailed and were Bonferroni corrected for three comparisons.  

Figure 3 demonstrates that learners were not significantly more accurate for 

grammatical (M = 72% ± 27%) than ungrammatical sequences (M = 57% ± 31%; 

difference = 14%, z = 1.53, corrected p = 0.38). Non-learners were not significantly more 

accurate for grammatical (M = 46% ± 31%) than ungrammatical sequences (M = 53% ± 

31%; difference = -7%, z = -0.79, uncorrected p = 0.43). Finally, while the accuracy 

differences between ungrammatical and grammatical sequences did significantly differ 

between learners (M = -14%) and non-learners (M = 7%), this difference did not survive 

multiple comparison correction (difference = 28%, z = -3.1, corrected p = 0.054). 
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Figure 3. Model predicted accuracy (%) for grammatical (blue) and ungrammatical (red) 

sequences for non-learners and learners. 

3.1.2 Speech Perception in Noise 

Reaction Times 

When there was no background noise, the average reaction time for participants to 

repeat the final word of the sentence was 794.73 ms (SD = 1.51 ms) and 981.42 ms (SD = 

1.46 ms) when there was background noise. On average, people took approximately 

866.10 ms, (SD = 1.47 ms) to repeat the final word when it was a match and 908.69 ms 

(SD = 1.54 ms) when the final word was a mismatch. A linear mixed-effects model was 

fitted where the log of the reaction times were regressed on a two-way interaction 

including the condition and target word category. The model also included by-subject and 

by-item random intercepts. Outliers were removed from analysis and represented 4.13% 

of the data (90 trials of 2179 trials were removed). There were main effects of condition, 

F(1, 1912) = 211.4, p < 0.001, and target word category, F(1, 1912) = 7.2, p = 0.007, on 
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reaction times. There was no significant interaction between condition and target word 

category. Post-hoc testing was performed to determine the significant differences 

condition and target identity; probability values were two-tailed and were Bonferroni 

corrected for two comparisons.  

Post-hoc testing revealed that participants were significantly faster at repeating the 

target word in the no-noise condition (M = 794.61 ms  116.15 ms) in comparison to the 

with noise condition (M = 960.61 ms  140.28 ms; difference = 165.70 ms, t(1912) = 

0.01, corrected p < 0.001), as seen in Figure 4. Participants were also significantly faster 

at repeating the target word when it was a match (M = 794.61 ms  116.15 ms) rather 

than a mismatch (M = 832.54  121.74 ms; difference = -37.93 ms, t(1912) = 0.02, 

corrected p = 0.02), as shown in Figure 5.  

 

Figure 4. Model predicted reaction time (ms) of responses on the SPIN task for the no-

noise (blue) and with noise (red) conditions. Error bars represent the 95% confidence 

interval. *** indicates a p < 0.001. 
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Figure 5. Model predicted reaction time (ms) for responses on the SPIN task for the 

match (blue) and mismatch (red) sentences. Error bars represent the 95% confidence 

interval. * indicates a p < 0.05. 

Accuracy 

When there was no background noise, the mean accuracy for participants correctly 

identifying the final word of the sentence was 99% (SD = 8%) and accuracy decreased to 

82% (SD = 38%) when there was background noise. When the final word of the sentence 

was a match, participants accurately identified the final word 96% (SD = 21%) of the 

time. When the final word was a mismatch, accuracy decreased to 85% (SD = 36%). A 

generalized linear mixed-effects model was fitted where the logits of accuracy were 

regressed onto a two-way interaction including the target word category and condition. 

The model also included by-subject and by-item random intercepts. There was a 

significant interaction between target word category and condition on accuracy, F(1, 

1911) = 4.07, p = 0.044. There were main effects of condition, F(1, 1911) = 71.14, p < 

0.001, and target word category, F(1, 1911) = 28.71, p < 0.001, on accuracy.  
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To elucidate the nature of the differences, post-hoc analysis was performed. 

Probability values were two-tailed and Bonferroni corrected for three comparisons. 

Figure 6 shows that in the with noise condition, participants were more accurate at 

identifying the final word when it was a match (M = 97%  2.19%) rather than a 

mismatch (M = 81%  8.1%; difference = 15%, z = -5.17, corrected p < 0.001). In the no-

noise condition, accuracy was not significantly different between match (M = 99%  

0.31%) and mismatch words (M = 99%  0.31%; difference = 0.01%, z = 0.07, 

uncorrected p = 0.94). Accuracy did not significantly differ between both conditions, z = 

-2.21, corrected p = 0.08.  

 

Figure 6. Model predicted accuracy (%) of the responses for each condition (no-noise and 

with noise) and for the target word category (match or mismatch) for the SPIN task. Error 

bars represent the 95% confidence interval. ** indicates a significance of p < 0.01. 
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3.1.3 Behavioural Correlations 

A linear mixed-effects model was fitted in which the behavioural performances on the 

SPIN task were regressed as a function of the AGL learning scores, with a by-subject 

random effect. Figure 7 demonstrates that there was no correlation between accuracy on 

the SPIN task and the AGL learning scores, weight = 0.02, t(12) = 0.18, p = 0.86. 

 

Figure 7. The correlation between SPIN Accuracy (%) and AGL learning scores. Line 

represents the trend line.  
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3.2  EEG Results 

For the purposes of ERP visualization only, EEGLAB (Delorme & Makeig, 2004) 

was used to smooth the grand average and difference waveforms with a 15 Hz low pass 

filter. 

3.2.1 Artificial Grammar Learning 

Event-Related Potential Data 

Visual inspection of the ERP waveforms of learners and non-learners suggested that 

there were clear differences in how learners and non-learners processed the stimuli for 

the AGL task. The grand averaged waveforms for learners are shown in Figure 8. Over 

the central parietal and anterior electrodes, the waveforms for both grammatical and 

ungrammatical stimuli had an initial positive deflection at approximately 50 ms, followed 

by a negative deflection at 100 ms, after which there was a positive deflection at 

approximately 150 ms then at approximately 200 ms, a second negative deflection. These 

patterns are representative of the P1-N1-P2-N2 complex that typically occurs in response 

to visual stimuli. 
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Figure 8. The grand average waveforms across time for learners in response to 

ungrammatical (red) and grammatical (blue) stimuli on the AGL task, across all 

electrodes. Negative is plotted upward.  

Figure 9 shows that learners had larger apparent differences between the grammatical 

and ungrammatical waveforms at both the central parietal and anterior electrodes. At the 

central parietal electrodes, the ungrammatical waveform was less positive than the 

grammatical waveform beginning approximately 250 ms post-stimulus onset, with 

maximal positivity at 600 ms. While there was no evidence of a P600 difference at the 

central parietal electrodes, the ungrammatical waveform at the most anterior electrode 

sites had an increased positivity relative to grammatical that began at 600 ms and peaked 
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around 700 ms post-stimulus onset, as seen in Figure 9. The central parietal negativity 

and anterior positivity can also be observed in the scalp topography maps in Figure 13. 

 

Figure 9. The grand average waveforms across time for learners in response to 

ungrammatical (red) and grammatical (blue), at the midline frontal and central ROIs. 

Negative is plotted upward. Scale is -8 to 8 µV. 

Figure 10 shows that for non-learners, the grammatical and ungrammatical 

waveforms were similar across all electrodes with the exception of the anterior 

electrodes. At the anterior electrodes, the grammatical waveform had a larger negativity 

relative to the ungrammatical waveform. There was no clear suggestion of a typical P600 

difference between the waveforms.  
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Figure 10. The grand average waveforms across time for ungrammatical (red) and 

grammatical (blue) sequences on the AGL task for non-learners, across all electrodes. 

Negative is plotted upward. 

Figure 11 shows that similar to learners, non-learners had a typical visual P1-N1-P2-

N2 complex. The ungrammatical and grammatical waveforms were similar to one 

another at central parietal electrode sites. In contrast to learners, the most apparent 

differences between grammatical and ungrammatical waveforms for non-learners was an 

enhanced negativity for grammatical items over anterior electrode sites, particularly over 

the right hemisphere, that lasted from approximately 300 – 800 ms. In contrast, the 
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ungrammatical waveforms at the anterior electrode sites were more positive-going than 

the grammatical waveforms, and this can also be seen in Figure 13. 

 

Figure 11. The grand average waveforms across time for non-learners in response to 

ungrammatical (red) and grammatical (blue), at the midline frontal and central ROIs. 

Negative is plotted upward. Scale is -8 to 8 µV. 

The difference waveforms (ungrammatical – grammatical) at the midline frontal and 

central ROIs are shown in Figure 12 and allow a direct visual comparison of the effects 

elicited in each group. The central parietal negativity and later-onset anterior positivity in 

learners appear distinct from the difference waveforms for non-learners. Although both 

groups showed an anterior positivity for ungrammatical sequences, this was larger in 

amplitude and later in onset, as well as longer-lasting, in learners. 
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Figure 12. The difference waveforms between learners (blue) and non-learners (red) for 

the AGL task, at midline frontal and central ROIs. Negative is plotted upward. Scale is -8 

to 8 µV. 

Figure 13 shows the scalp distributions for the difference waves, averaged over three 

consecutive time windows for learners and non-learners. Learners had a sustained 

negativity, which was maximal over the central-parietal region (midline central ROI) and 

began in the 200 – 400 ms time window. This negativity was sustained for the duration of 

the trial, though gradually dissipated over time. Additionally, there was maximal 

positivity over the anterior regions approximately 600 – 800 ms post-stimulus onset, 

suggestive of a frontal P600. In contrast, non-learners had little activity until the 400 – 

600 ms time window, in which there was a positivity that was maximal over the anterior 

ROIs. After 600 ms, this positivity disappeared.  
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Figure 13. Scalp voltage maps for the AGL task showing the differences in voltage 

distribution between ungrammatical and grammatical sequences, averaged over selected 

time windows, for the non-learners and learners. Scale is -2.5 V (blue) to 2.5 V (red). 

Statistical Analysis 

A GAM was fitted in which the amplitude of the EEG data from the 600 – 800 ms 

time window were regressed as a function of grammaticality interacting with learning 

status, ROI, as well as error terms including a non-linear effect of trial, random intercepts 

for each subject, and a random non-linear effect of trial for each combination of subject 

and ROI. There were main effects of ROI, learning status, and grammaticality. Outliers 

were removed and represented approximately 2.11% of the data. There was a significant 

three-way interaction between grammaticality, learning status, and ROI. There were 

significant two-way interactions between learning status and ROI, as well as between 

grammaticality and learning status. There was no significant interaction between 

grammaticality and ROI. The main effects and interactions are shown in Table 2. 
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Table 2. Summary table for the AGL GAM in the 600 – 800 ms time window 

(Denominator Lower-bound df = 68743.4). 

Coefficient df F p-value 

Grammaticality 1 4.94 0.026 

Learning Status 1 7.81 0.005 

ROI 6 2.10 0.05 

Grammaticality x Learning Status 1 20.72 0.001 

Grammaticality x ROI 6 0.433 0.858 

Learning Status x ROI 6 9.13 < 0.001 

Grammaticality x Learning Status x ROI 6 4.95 < 0.001 

 

Post-hoc testing was performed to determine where the significant differences for 

each variable originated, the summary for each post-hoc comparisons are shown in Table 

3, along with the means for each condition and learner group, within each ROI. The 

threshold probability values (α) were Bonferroni corrected for 21 comparisons (3 

comparisons per ROI).  
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Table 3. AGL post-hoc comparisons in the 600 – 800 ms time window (Denominator 

lower-bound df = 68743.4). U = ungrammatical, G = grammatical, n.s. = non-significant. 

Comparisons  Estimate (µV) Standard error t-value Corrected p-value 

Amplitude differences (U – G) for learners at each ROI 

Left anterior 0.99 0.28 3.56 0.008 

Midline anterior 0.47 0.24 1.98 n.s. 

Right anterior 0.90 0.28 3.22 0.027 

Left central 0.10 0.20 0.51 n.s. 

Midline central -0.88 0.21 -4.21 < 0.001 

Right central -0.33 0.20 -1.67 n.s. 

Posterior -0.60 0.16 -3.85 0.002 

Amplitude differences (U – G) for non-learners at each ROI 

Left anterior 0.18 0.29 0.62 n.s. 

Midline anterior 0.38 0.24 1.56 n.s. 

Right anterior 0.38 0.29 1.34 n.s. 

Left central 0.45 0.20 2.24 n.s. 

Midline central 0.47 0.21 2.22 n.s. 

Right central 0.20 0.20 1.00 n.s. 

Posterior 0.16 0.16 1.02 n.s. 

The ERP effect differences (U – G) between learners and non-learners at each ROI 

Left anterior 0.81 0.40 2.03 n.s. 

Midline anterior 0.09 0.34 0.26 n.s. 

Right anterior 0.51 0.40 1.28 n.s. 

Left central -0.35 0.28 -1.26 n.s. 

Midline central -1.35 0.30 -4.55 < 0.001 

Right central -0.53 0.28 -1.89 n.s. 

Posterior -0.76 0.22 -3.45 0.011 
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 There was a significant difference in the ERP amplitude (ungrammatical – 

grammatical) at several different ROIs for learners, as shown in Figure 14. This 

difference was significantly positive at the left and right anterior ROIs for learners. In the 

midline central and posterior ROIs, learners had a significant sustained negativity. In 

contrast, there were no differences in the amplitudes between ungrammatical and 

grammatical stimuli for non-learners. There were also significant differences in the ERP 

amplitudes between learners and non-learners: at the midline central and posterior ROIs, 

learners had a significantly more negative ERP amplitude than non-learners.  
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Figure 14. The amplitude (μV) for the AGL task in response to grammatical and 

ungrammatical sequences, across the seven different ROIs. Negative amplitude is plotted 

in the upward direction. Error bars represent the 95% confidence interval. * indicates a 

significance of p < 0.05, ** indicates a significance of p < 0.01, and *** indicates a 

significance of p < 0.001. 
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3.2.2 Speech Perception in Noise 

Event-Related Potential Waveforms 

Visual inspection of the ERP waveforms for the SPIN task suggested that there were 

N400 effects in each condition. Figure 15 shows the grand averaged waveforms for 

mismatch and match stimuli in the no-noise SPIN condition across all electrodes. The 

waveform in response to match items was generally positive-going; the mismatch 

waveform negative-going.  

 

Figure 15. The grand average waveforms across time for mismatch (red) and match 

(blue) sentences in the no-noise SPIN task, across all electrodes. Negative is plotted 

upward. 
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Figure 16 shows that at the central parietal and anterior electrodes, there was an initial 

P1-N1-P2-N2 complex for both mismatch and match words. For mismatch words, an 

enhanced negativity began during the N1 peak and was sustained throughout the epoch, 

relative to match words. The peak difference occurred at around 500 ms. 

 

Figure 16. The grand average waveforms across time for mismatch (red) and match 

(blue) sentences in the no-noise SPIN task, at electrode CPz. Negative is plotted upward. 

In the noise condition, the grand-averaged waveforms for mismatch and match 

stimuli followed a similar trend as those observed in the no-noise condition although, as 

seen in Figure 17, the P1-N1-P2-N2 complex was reduced. ERPs for match and 

mismatch words began to diverge between 100 – 200 ms, with an enhanced negativity 

typical of the N400 for mismatch words that peaked between 500 – 600 ms and was 

sustained until approximately 900 ms. This effect can be seen more clearly in Figure 18 

depicting electrode CPz, where the negativity was maximal.  
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Figure 17. The grand average waveforms across time for mismatch (red) and match 

(blue) sentences in the with noise SPIN task, across all electrodes. Negative is plotted 

upward. 
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Figure 18. The grand average waveforms across time for mismatch (red) and match 

(blue) sentences in the with noise SPIN task, at electrode CPz. Negative is plotted 

upward. 

Figure 19 shows the difference waveforms (mismatch – match), for both the noise 

and no-noise conditions at electrode CPz (where the difference waves were maximal). 

Overall, the difference waveforms were very similar in their amplitude and timing. Close 

inspection of the difference waveforms does suggest however that the effect of 

mismatches elicited an earlier response in the no-noise condition, whereas the effect in 

the with noise condition had higher amplitude later in the time window than the no-noise 

condition. 
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Figure 19. ERP difference waveforms (mismatch – match sentences) between the with 

noise (black) and no noise (red) conditions of the SPIN task, at electrode CPz. Negative 

is plotted upward.  

Figure 20 shows the scalp distributions for the difference waves, averaged over three 

consecutive time windows, for each SPIN condition. The scalp distribution of the N400 

was maximal over the central-parietal regions (midline central ROI) for both SPIN 

conditions. However, Figure 20 again illustrates the earlier onset of the N400 effect in the 

no-noise condition, with a more widespread negativity in the 100 – 300 ms time window 

compared to the with noise condition. Likewise, the N400 effect in the with noise 

condition is more widespread in the latest time window shown, from 500 – 800 ms.  
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Figure 20. Scalp voltage maps for the SPIN task showing the differences in voltage 

distribution between mismatch and match sentences, averaged over selected time 

windows, for the no-noise and with noise conditions. Scale is -2.5 V (blue) to 2.5 V 
(red). 

Statistical Analysis 

A GAM was fitted in which the amplitude of the SPIN EEG data from the 300 – 500 

ms time window were regressed as a function of noise (no-noise or with noise) 

interacting with the category of the target word (match or mismatch), ROI, as well as a 

non-linear effect of trial, random intercepts for each subject, and random non-linear effect 

of trial for each combination of ROIs and subject. Outliers were removed and represented 

approximately 2.40% of the data. There were main effects for noise, target word 

category, and ROI, as can be seen in Table 4. There was a significant three-way 

interaction between noise, target word category, and ROI. Finally, there was a significant 

two-way interaction between target word category and ROI, between noise and ROI, and 

between noise and target word category.  
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Table 4. Summary table for the SPIN GAM in the 300 – 500 ms time window 

(Denominator Lower-bound df = 134044.5). 

Coefficient df F p-value 

Noise 1 4.57 0.033 

Target word category 1 461.36 < 0.001 

ROI 6 93.51 < 0.001 

Noise x Target word category 1 6.99 0.008 

Noise x ROI 6 4.40 < 0.001 

Target word category x ROI 6 23.96 < 0.001 

Noise x Target word category x ROI 6 3.52 0.002 

 

Post-hoc testing was performed to determine where the significant differences the 

interactions originated, by examining differences between mismatch and match words for 

each noise condition, within each individual ROI. The amplitude differences for each 

contrast can be seen in Table 5. The threshold probability values (α) were Bonferroni 

corrected for 21 comparisons (3 comparisons per ROI). The N400 mismatch effect 

(mismatch – match difference) was significant in each individual ROI in both the with 

background noise and no-noise conditions, except in the left anterior ROI in the with 

background noise condition. The amplitude of the N400 mismatch effect did not differ 

between noise conditions at any ROI except for the left central ROI where it was smaller 

in the with noise condition, as shown in Figure 21.  
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Table 5. SPIN post-hoc comparisons in the 300 – 500 ms time window (Denominator 

Lower-bound df = 134044.5). MS = mismatch, M = match, n.s. = non-significant.  

Comparisons  Estimate (µV) Standard error t-value Corrected p-value 

Amplitude differences between MS and M stimuli at each ROI (No-noise) 

Left anterior -0.74 0.18 -3.98 0.001 

Midline anterior -1.65 0.16 -10.56 < 0.001 

Right anterior -1.14 0.19 -6.16 < 0.001 

Left central -1.09 0.13 -8.54 < 0.001 

Midline central -2.90 0.14 -21.48 < 0.001 

Right central -1.44 0.13 -11.31 < 0.001 

Posterior -1.31 0.10 -13.06 < 0.001 

Amplitude differences between MS and M stimuli at each ROI (With noise) 

Left anterior 0.04 0.18 0.20 n.s. 

Midline anterior -1.34 0.15 -8.68 < 0.001 

Right anterior -0.65 0.18 -3.54 0.008 

Left central -0.48 0.13 -3.79 0.003 

Midline central -2.40 0.13 -17.82 < 0.001 

Right central -0.92 0.13 -7.21 < 0.001 

Posterior -1.50 0.10 -15.00 < 0.001 

The N400 effect differences between with noise and no-noise at each ROI 

Left anterior 0.77 0.26 2.98 n.s. 

Midline anterior 0.32 0.22 1.44 n.s. 

Right anterior 0.49 0.26 1.90 n.s. 

Left central 0.61 0.18 3.38 0.015 

Midline central 0.50 0.19 2.64 n.s. 

Right central 0.53 0.18 2.94 n.s. 

Posterior -0.19 0.14 -1.33 n.s. 
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Figure 21. The amplitude (μV) for the SPIN task in response to match and mismatch 

sentences when there was no background noise and with background noise conditions, 

across the seven different ROIs. Negative amplitude is plotted in the upward direction. 

Error bars represent the 95% confidence interval. * indicates a significance of p < 0.05, 

** indicates a significance of p < 0.01, and *** indicates a significance of p < 0.001. 
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3.2.3 Correlations between Statistical Learning and Speech Perception 

GAMs were used to determine whether there was a relationship between the 

amplitudes of the SPIN and AGL tasks. For each model, the amplitude differences for 

each task (e.g., mismatch – match sentences for SPIN, ungrammatical – grammatical for 

AGL) were used. A GAM was fitted in which the amplitude differences of no-noise SPIN 

task were regressed as a function of AGL amplitude differences interacting with learning 

status on the AGL task, as well random intercepts for each subject and ROI. A second 

GAM was fitted in which the amplitude differences for the with background noise SPIN 

task were regressed as a function of the amplitude differences in the AGL task interacting 

with learning status, as well as random intercepts for each subject and ROI.  

Figure 22 shows that in the no-noise condition, non-learners had a significant positive 

correlation between SPIN and AGL amplitudes, weight = 0.48, t(78.09) = 2.0, p = 0.049 

— as the N400 in the SPIN task became larger, so did the negativity of the AGL 

grammaticality effect. Learners did not have a significant correlation between SPIN and 

AGL amplitudes, weight = -0.08, t(78.09) = -0.73, p = 0.472. The slopes of the 

correlations for learners and non-learners also significantly interacted, weight = -0.56, 

t(78.09) = -2.13, p = 0.037. 
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Figure 22. The correlation between SPIN and AGL amplitudes (μV) in the no-noise 

condition for the non-learners (red) and learners (blue). The points represent the 

amplitude differences for each subject at all ROIs. Lines represent the trend lines. 

Negative is plotted upward for the y-axis and on the right for the x-axis. 

Figure 23 shows that in contrast to the no-noise condition, learners had a significant 

positive correlation between SPIN and AGL amplitudes in the with noise condition, 

weight = 0.53, t(79.41) = 5.86, p < 0.001 — as the N400 in the SPIN task became larger, 

so did the negativity of the AGL grammaticality effect. Similar to the no-noise condition, 

non-learners had a positive correlation between SPIN and AGL amplitudes in the with 
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noise condition, however this correlation trended towards significance, weight = 0.34, 

t(79.41) = 1.90, p = 0.062. Unlike the no-noise condition, there was no significant 

interaction for the with noise condition between the slopes of the correlations between 

learners and non-learners, weight = 0.18; t(79.41) = 0.91, p = 0.36. 

 

Figure 23. The correlation between SPIN and AGL amplitudes (μV) in the presence of 

background noise for non-learners (red) and learners (blue). The points represent the 

differences in amplitude for each subject for all seven ROIs. Lines represent the trend 

lines. Negative is plotted upward on the y-axis, and on the right for the x-axis. 
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CHAPTER 4 DISCUSSION 

This study aimed to determine whether there was a relationship between the 

neurocognitive systems supporting statistical learning and speech perception in noise. 

This relationship was investigated by testing whether people’s performance on an AGL 

task correlated with their ability to accurately predict incoming information in a SPIN 

task. The results of the present study confirmed many of the hypotheses, and posed 

several new questions regarding this relationship. 

Based on the literature, I hypothesized that the AGL task would elicit a P600 effect in 

response to the differences in amplitudes between ungrammatical and grammatical 

sequences in the central parietal regions of the scalp (Christiansen et al., 2012). I also 

predicted that people who were more sensitive to the transitional probabilities of the 

stimuli — measured by the learning scores — would have an enhanced P600 effect in 

comparison to those who were less sensitive. 

Secondly, I predicted that both SPIN conditions would elicit an N400 effect, 

regardless of whether there was background noise or not. It was expected that the 

addition of background noise to the SPIN task would impair behavioural performance, 

because it would be more difficult to hear the target word. Additionally, it was 

hypothesized that the presence of background noise with a low SNR would reduce the 

observed N400 effect, in comparison to when there was no background noise.  

Lastly, I predicted that there would be a significant correlation between the P600 in 

the AGL task and the N400 in the SPIN task. Specifically, I predicted that as the 

amplitude of the P600 increased (became more positive) in the AGL task, the amplitude 

of the N400 in the SPIN task would also increase (become more negative). It was also 
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predicted that in the presence of background noise, this correlation would be reversed in 

people who were better at the AGL task. 

4.1 Artificial Grammar Learning 

Behavioural Performance 

Behaviorally, I expected to see variation in learning scores across participants for the 

AGL task. This hypothesis was confirmed by the behavioural results as the learning 

scores ranged from the negatives to the positives, and this range was similar to those 

observed in other AGL tasks (Conway et al., 2010, 2011). Due to the range of learning 

scores — and in particular the fact that learning scores less than zero indicate that the 

person did not extract the statistical probabilities of the sequences — I was concerned 

that combining data from all participants might dilute any possible P600 effect at the 

group level. To circumvent this issue, participants were split into two groups, non-

learners or learners, based on the median of the learning scores. This follows the practice 

of other statistical learning studies e.g., Sanders, Newport, and Neville (2002) . The t-

tests on the learning scores also supported this split, as learners had significantly higher 

learning scores than non-learners. Additionally, learners had higher accuracy (65%) than 

non-learners (50%), but this difference did not survive multiple comparison correction.  

ERP Responses to Artificial Grammar Learning 

Based on the literature, I hypothesized that the AGL task would elicit a P600 in the 

midline central ROI, and that the P600 would be modulated by learning scores 

(Christiansen et al., 2012). People who were more sensitive to the statistical frequencies 

of the stimuli were expected to have an enhanced P600 effect in comparison to people 

who were less sensitive. The grand average waveforms of non-learners did not differ in 
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response to grammatical and ungrammatical stimuli. Statistical analysis demonstrated 

that for non-learners, there were no significant differences between the amplitudes for 

grammatical and ungrammatical stimuli across any ROI. In contrast the difference 

waveforms at the midline central ROI for learners demonstrated a significant negative 

deflection at approximately 100 ms that was sustained for the duration of the epoch. 

Additionally, this negativity for learners was significantly larger than the ungrammatical 

– grammatical difference wave for bad learners. 

While the expected P600 at the central parietal region was not observed, the sustained 

negativity for learners but not non-learners suggests that it is an effect of the AGL 

grammatical violations. Another study investigating ERPs in response to statistical 

learning paradigms found a similar sustained negativity (Lang & Kotchoubey, 2000). 

This study reported an N2 effect 200 – 360 ms post-stimulus onset, and another large 

negative deflection beginning at 390 ms, which was sustained until approximately 700 

ms and was also largest at midline anterior electrode. Lang and Kotchoubey (2000) 

hypothesized that this “slow negative wave” (SNW) may be a member of an N400 

family, though separate from the N400 itself, as it was elicited in response to incongruous 

stimuli. The effect in the present study was later than the typical 300 – 500 ms time 

window in which the N400 tends to occur. However, other studies have shown that the 

N400 effect can be delayed by a multitude of factors, including accuracy and confidence 

in responses (Cansino & Tellez-Alanis, 2000). Furthermore, Kutas and Federmeier 

(2011) note that the N400 effect can occur between a longer time period of 200 – 600 ms.  

It is possible that the sustained negativity observed in learners may be the SNW or 

another N400-like effect. It seems more likely that this sustained negativity is 
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representative of an N400-like effect, because it was maximal over the midline central 

and posterior ROIs, rather than the anterior ROIs where the SNW was observed by Lang 

and Kotchoubey (2000). Learners had higher learning scores on the AGL task compared 

to non-learners and it is possible that learners assimilated enough of the transitional 

probabilities of the stimuli to develop expectations as to what the sequences should look 

like. This may be true, especially in light of the research done by Lang and Kotchoubey 

(2000), who found that even passive statistical learning paradigms can elicit ERP effects. 

Thus, learners may have acquired enough of the statistical frequencies of the stimuli to be 

“surprised” when presented with an unexpected stimulus (an ungrammaticality). The 

evidence suggests that learners may have developed expectations about what a 

grammatical sequence should look like and when the target stimulus violated this 

expectation, an N400-like response was elicited. 

While there was an absence of a P600 effect in learners at the midline central ROI, 

scalp topography maps and statistical modelling indicated a significant positivity that 

began 650 ms post-stimulus onset in the anterior ROIs. Statistical modelling 

demonstrated that the difference in amplitudes between ungrammatical and grammatical 

sequences was significantly positive in the left and right anterior ROIs, though not at the 

midline anterior ROI. While the P600 elicited by syntactic violations is typically found in 

the midline central and posterior regions of the scalp (Coulson et al., 1998; Friederici et 

al., 2002; Hagoort & Brown, 2000; Kaan & Swaab, 2003a; Osterhout & Holcomb, 1992); 

other studies have reported more anterior positivities (Federmeier, Wlotko, De Ochoa-

Dewald, & Kutas, 2007; Friederici et al., 2002; Kaan & Swaab, 2003a, 2003b; Osterhout 

& Holcomb, 1992). Kaan and Swaab (2003b) reported an anterior positivity for 
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syntactically more complex sentences compared to simpler constructions, in contrast to a 

typical posterior P600 for syntactic violations. Federmeier et al. (2007) found that 

sentences containing semantic violations elicited a frontal P600-like effect in response to 

sentences that were strongly constrained and contained a mismatch, following the N400. 

The authors hypothesized that the frontal P600 may instead reflect costs associated with 

processing sentences that violated large expectations, because this effect was only found 

for highly constrained sentences containing a mismatch. Other studies, however, have 

found a more posterior P600 following highly-constrained semantic violations (Coulson 

& Van Petten, 2002; Juottonen, Revonsuo, & Lang, 1996; Kuperberg, Kreher, Sitnikova, 

Caplan, & Holcomb, 2007; Moreno & Kutas, 2005; Newman, Tremblay, Nichols, 

Neville, & Ullman, 2012; Ojima, Nakata, & Kakigi, 2005; van de Meerendonk, Kolk, 

Chwilla, & Vissers, 2009). Following Kaan and Swaab's (2003b) finding of a greater 

anterior P600 for increased grammatical complexity, it is possible in the present study 

that learners — although not consciously aware of the statistical probabilities of the 

stimuli — at some level processed the grammar but because this was not well-learned (as 

evidenced by their generally poor accuracy) the system processing the grammar was 

taxed, thus leading to the anterior positivity.  

The combination of the frontal P600-like effect along with the N400-like effect in the 

midline central and posterior ROIs suggests that learners were somewhat implicitly aware 

of the underlying grammar, especially as they more accurately reproduced grammatical 

sequences (as indexed by their learning scores). Learners may have engaged a system that 

was involved in the processing of the transitional probabilities of the stimuli, and this 
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system was highly activated in response to ungrammatical stimuli because the system 

was sensitized to the grammar.  

Implicit versus Explicit Learning 

Based on the literature, I expected that the current AGL task — which was a modified 

version of the AGL paradigm used by Christiansen et al. (2012) — would elicit a central 

parietal P600 effect. Christiansen et al. (2012) investigated whether language and 

statistical learning relied on a similar system to process syntactic violations. The authors 

found that there was a P600 effect in the central parietal region of the scalp that was 

common between both the statistical learning paradigm (an AGL task) and the language 

task. These results suggest that statistical learning relies on a similar system as language 

to process syntactic violations. However, unlike the AGL paradigm used in the current 

study, Christiansen et al. (2012) informed participants before they began the task that the 

sequences they would see followed specific patterns. Participants were shown different 

grammatical segments of the stimuli and eventually were exposed to the full sequences. 

Additionally, participants repeatedly observed the same sequences. This was to ensure 

that participants would have high levels of accuracy and thus develop implicit 

expectations about the sequences. After training, participants were tested on how well 

they acquired the grammar and were asked to judge whether a sequence was grammatical 

or not. Participants were highly accurate in their judgments (>90%) (Christiansen et al., 

2012). The AGL paradigm used in the current study did not follow these methods: 

participants received less training than those in the Christiansen et al. (2012) experiment, 

were naïve about the grammar, and were asked to reproduce the sequences.  
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These differences between the AGL tasks are arguably why the hypothesized P600 

effects were not elicited in this study. It is possible that the P600 effect may only be 

elicited when participants are proficient enough to know whether a violation occurred. 

Most research on the P600 involves people contrasting sentences that are syntactically 

correct to sentences that either have a syntactic violation or are ambiguous (e.g., garden 

path sentences) (Federmeier et al., 2007; Kaan & Swaab, 2003b). In these types of 

experiments, people are generally aware of the violation and can likely identify where the 

error occurs. For example in the following sentence, She shook the sands off of her beach 

towel, most people can identify the location of the syntactic violation, though they may 

not know the precise reason why it is wrong (e.g., sand is a mass noun). Similarly, 

Christiansen et al. (2012) trained people to high accuracy on the AGL task so that they 

could develop expectations about the sequences, as well as informed participants that the 

sequences did follow grammatical rules. Statistical learning was measured only by the 

accuracy of their responses, but participants likely could have articulated where the 

violation in an ungrammatical sequence occurred, if not the reason why the sequence was 

incorrect. Thus, the P600 effect may only be found in experiments in which people 1) are 

aware of the violation and 2) can identify the violation. This theory could explain why the 

expected P600 was not found for this study: participants were not informed about the 

underlying grammar and thus while they may have developed an expectation about what 

a target stimulus should look like, they may not have been aware enough to know what 

the issue was. 

In support of this theory, van de Meerendonk et al. (2009) theorized that when a 

strong expectation of a stimulus is violated, such as in the Christiansen et al. (2012) AGL 
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task, the P600 reflects a general reanalysis rather than a syntactic reanalysis. van de 

Meerendonk et al. (2009) speculate that the P600 effect is elicited by semantic violations 

when stimuli do not match people’s strong expectations. The participants in the 

Christiansen et al. (2012) AGL task likely had strong expectations about what the 

frequencies of the stimuli were because they were trained to have high levels of accuracy, 

and a P600 effect was observed when their expectations were violated. In contrast, 

participants for the current AGL task may not have developed strong enough expectations 

to elicit this effect. This may explain why I instead saw an N400-like effect in the central 

parietal and posterior electrodes.  

Other EEG experiments on statistical learning have found N400s in response to 

grammatical violations (Abla, Katahira, & Okanoya, 2008; Abla & Okanoya, 2009). Abla 

and Okanoya (2009) examined ERP responses as people watched streams of shapes in 

which certain shape triplets had a higher transitional probability than others. Afterwards, 

participants were shown two pairs of shape triplets, one of which had appeared during the 

continuous stream, and were asked to indicate which was familiar. Participants were split 

into high and low learners. High learners had an N400 effect in response to the first shape 

in triplets with lower transitional probabilities; this effect decreased over time as high 

learners saw more triplets that had lower occurrences. In contrast, low learners had no 

N400 effect at any point. These results suggest that people sensitive to the transitional 

probabilities of stimuli experience an N400 effect when they observe stimuli with lower 

transitional probabilities (Abla & Okanoya, 2009). The results of the Abla and Okanoya 

(2009) experiment are similar to the current AGL paradigm for both accuracy and that an 

N400-like effect was observed in learners. Similar results were also observed when 
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people listened to streams of nonlinguistic auditory stimuli, such as tones (Abla et al., 

2008). Another study used triplets of non-verbal sounds, such as glass breaking, but an 

N100 ERP in response to the initial sound of the triplet was found rather than an N400 

(Sanders, Ameral, & Sayles, 2009). Mueller, Oberecker, and Friederici (2009) presented 

native and non-native Italian speakers with syntactically correct spoken Italian sentences 

that had non-adjacent dependencies between words. After training, participants listened 

to syntactically correct and incorrect sentences, and had to judge whether the sentence 

was grammatically correct or not. Native speakers had an N400 followed by a P600 

effect in response to syntactically incorrect sentences; non-native speakers showed a 

similar N400-like effect followed by an anterior P600-like effect (Mueller et al., 2009). 

These results are in accordance with those of the present study, in that learners showed 

both an N400-like effect and an anterior P600-like effect similar to those observed in 

non-native speakers. It appears that statistical learning paradigms tend to elicit ERP 

responses other than the P600 (Abla et al., 2008; Abla & Okanoya, 2009; Lang & 

Kotchoubey, 2000; Mueller et al., 2009; Sanders et al., 2009). Interestingly, a similar 

pattern has been found in second language learning, which can be considered in part a 

much more complex statistical learning task. Osterhout, McLaughlin, Pitkänen, Frenck-

Mestre, and Molinaro (2006) investigated how ERP responses to semantically anomalous 

and syntactically incorrect sentences changed over time in adults who were learning a 

second language. The authors found that participants initially had an N400 effect in 

response to syntactically incorrect sentences, rather than a P600. However, the N400 

effect was replaced by a P600 after four months of language learning, after which time 

the amplitude of the P600 increased with proficiency (Osterhout et al., 2006).  
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In light of the results of these studies (Abla et al., 2008; Abla & Okanoya, 2009; Lang 

& Kotchoubey, 2000; Mueller et al., 2009; Sanders et al., 2009) as well as those from 

Osterhout et al. (2006), it appears that the N400 effect is initially elicited in response to 

stimuli with lower transitional probabilities. As people receive further exposure to stimuli 

and become more accurate in identifying grammatical stimuli, it appears that the N400 

effect is gradually replaced by a P600 (Osterhout et al., 2006). This could explain why 

Christiansen et al. (2012) observed a P600 effect in response to ungrammatical sequences 

in their statistical learning paradigm: people received extensive training and were highly 

accurate (>90%) at identifying which sequences were grammatical. It may be that more 

extensive training, higher accuracy, as well as explicit awareness of the artificial 

grammar for the current study would have elicited a more typical central parietal P600 

rather than an N400-like effect (Abla et al., 2008; Abla & Okanoya, 2009; Mueller et al., 

2009; Osterhout et al., 2006; Sanders et al., 2009). Future studies should investigate 

whether there is a difference in the type of ERP response elicited in participants when 

they are naïve to the grammar versus when they are informed that the sequences follow a 

pattern.  

4.2 Speech Perception in Noise 

Behavioural Performance 

It was hypothesized that behavioural performance on the SPIN task would be 

impaired through the addition of background noise. The behavioural results for the SPIN 

task supported this hypothesis, as participants were both more accurate and faster at 

repeating the target word of the sentence in the absence of background noise. Participants 

were faster at repeating the target word when the target word was a match rather than a 



 82 

mismatch, regardless of condition. This result was expected as previous studies have 

demonstrated that people are slower at repeating target words that are unrelated to the 

preceding context (e.g., mismatches) (Holcomb, 1993; Neely, 1991). In the presence of 

background noise, people accurately identified match target words significantly more 

than mismatch target words. The behavioural results for the SPIN task supported the 

hypothesis that the addition of background noise would make the task more difficult.  

Speech Perception in Noise and the N400  

ERPs to the final words in sentences showed the predicted N400 mismatch effect, in 

both the quiet and noise conditions. The amplitude of the N400 mismatch effect was 

somewhat larger in quiet than background noise, however this difference did not reach 

statistical significance except in the left central ROI. The significance of this finding is 

unclear, because this was not where the N400 amplitude was maximal. An additional 

observation, which was not anticipated and so no statistical analyses were conducted, was 

that the onset and offset of the N400 in background noise was delayed by approximately 

100 ms. This finding warrants further investigation but is outside of the scope of the 

current study. 

The lack of widespread differences in N400 amplitude between quiet and noise 

conditions was surprising, as I had predicted that the N400 mismatch should be reduced 

in the presence of background noise. Other studies have shown that the addition of 

background noise reduces the N400 effect (Aydelott et al., 2006; Strauß et al., 2013). 

This is likely because the addition of background noise makes the task more difficult, and 

thus people may not perceive the mismatch targets as a mismatch. A low SNR (-1 dB) 

was used for the SPIN task in the current study because I wanted to ensure that accuracy 
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was above chance (this was the case, as demonstrated by the behavioural results), as well 

as to ensure that the N400 effect was still elicited (which it was). However, it appears that 

the low SNR of the background noise did not reduce the N400 effect as much as 

expected. The SNR chosen for this task may not have been low enough to induce a 

significant reduction in the N400 mismatch effect in comparison to when there was no 

background noise. This is also reflected in the behavioural data, in which the differences 

in accuracy between both SPIN conditions did not survive multiple comparison 

correction.  

4.3 Correlations between Statistical Learning and Speech Perception 

I hypothesized that there would be a significant correlation between the size of the 

AGL P600 and SPIN N400 effects. It was predicted that in the absence of background 

noise, as the N400 effect increased (became more negative), so should the P600 effect 

(more positive). The reasoning behind the hypothesis for the AGL-SPIN correlation was 

that higher learning scores in the AGL task reflected greater ability to use prior, relevant 

information to predict upcoming information – and given this ability, these same people 

would show a larger N400 effect to semantic violations since strong predictions about the 

sentence endings were made but then violated. These people may also be unconsciously 

expecting target words with higher Cloze probabilities, resulting in a larger N400 effect 

when the target word did not meet their expectations 

It was hypothesized that adding background noise to the SPIN task would make the 

SPIN task more difficult and reduce the N400 mismatch effect. The N400 mismatch 

effect was expected to reduce because by making it more difficult to hear, people would 

rely more on the context of the sentence and top-down processing to guess what the final 
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word of the sentence was. Thus, if participants did not hear the final word and had to 

guess, they would be more likely to guess a match word, and this would reduce the N400 

mismatch effect. It was expected that people with higher learning scores would have an 

even more reduced N400 mismatch effect, because they would be better at using the 

context of the sentence to predict what the final word should have been. In contrast, 

people with low learning scores should experience a greater N400 effect than people with 

high learning scores, since people with low learning scores should be less adept at using 

the context of the sentence to predict what the final word should have been. Instead, they 

may have predicted an equally wrong word, rather than the match word thus eliciting an 

N400 mismatch effect. 

The results of the EEG data and statistical modelling provided partial support for 

these hypotheses. Since the predicted P600 effect was not obtained for AGL violations, 

clearly the predicted correlation could not be found. However, the effect that was 

observed for AGL — a greater negativity in the midline central ROI — did correlate with 

the N400 mismatch effect from the SPIN task. Interestingly, the statistical modelling for 

the behavioural data demonstrated that there was no significant correlation between AGL 

learning scores and accuracy on the SPIN task. This suggests that the effects observed in 

the ERP data did not translate into behaviour. This demonstrates the importance of using 

EEG for these types of paradigms, as EEG is capable of bringing to light how processing 

can be affected by experimental manipulations even in the absence of behavioural 

changes. Non-learners had a significant correlation between SPIN and AGL ERP effects 

in the quiet condition, suggesting that non-learners may have had less expectations about 

what the final word of the sentence should have been, this correlation was non-significant 
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(though still marginal) in the presence of noise. Thus, the correlation for people who were 

less sensitive to the transitional probabilities of the grammatical stimuli were not strongly 

affected by the addition of background noise. This supports the hypothesis that non-

learners would still misperceive the target word when background noise was added, 

eliciting an N400 mismatch effect. However, learners showed the opposite trend: when 

there was no background noise, learners showed no significant correlation but in the 

presence of background noise the correlation became significant — as the N400 

mismatch effect increased, so did the AGL grammaticality effect. Thus, the hypothesis 

that people who were more sensitive to the transitional probabilities of the AGL stimuli 

would be more affected by the addition of background noise was supported.  

The results suggest that learners rely on sentence context to develop expectations 

about what the final word of the sentence for the SPIN task should be. In the absence of 

noise, learners had large N400 mismatch effects suggesting that they formed expectations 

about what the final word of the sentence should have been. However, the relationship 

between SPIN and AGL ERP amplitude for learners was non-significant, suggesting that 

the N400 mismatch effect did not change regardless of the AGL amplitude. In the 

presence of background noise, learners had a significant positive relationship between 

N400 and AGL ERP amplitudes. This relationship for learners in the presence of 

background noise may indicate the use of top-down processing to predict the final word 

of the SPIN task. In contrast, the significant positive correlation in non-learners in the 

absence of noise may reflect greater reliance on top-down processing even in quiet; the 

reduced, non-significant correlation in noise may reflect an interruption of the processing 

system. However, since non-learners as a group did not show a significant ERP 
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difference between grammatical and ungrammatical sequences in the AGL task, the 

correlation in this group is difficult to interpret.  

4.4 Limitations of the Study 

One important consideration in interpreting the results of the present study is that for 

the EEG tasks, all trials were analyzed regardless of whether participants were correct or 

not for each trial. This type of analysis is generally acceptable, as other EEG tasks 

investigating the ERP responses to AGL paradigms have analyzed all trials (Christiansen 

et al., 2012; Lang & Kotchoubey, 2000; Sanders et al., 2002). It is unlikely that the 

results of the SPIN task in the absence of background noise would be affected by this 

method of analysis, due to high accuracy. However, it is possible that the N400 effect 

when background noise was added to the SPIN task could be affected because accuracy 

was significantly lower and for some mismatch trials, participants supplied the original 

correct word. For example, when participants heard the following mismatch sentence 

with background noise, To prevent football injury, all players must wear shoulder pads / 

bats, most participants repeated the final word as the actual match word (pads), rather 

than the mismatch word (bats). While this is a clear example of top-down processing, it 

means that on that trial, the expected enhancement of the N400 would not be seen 

because the person “heard” a matching word rather than a mismatch. This may explain 

the somewhat reduced amplitude of the N400 mismatch effect in the noise condition.  

Additionally, this analysis method may have affected the EEG results for the AGL 

task. By analyzing all trials, rather than only correct trials, sensitivity to either the P600 

or N400-like ERPs may have been lost since incorrect responses may reflect a lack of 

sensitivity to the underlying grammar. While it could be argued that the P600 should 
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have been elicited regardless of accuracy, as Lang and Kotchoubey (2000) demonstrated 

that passive statistical learning paradigms still elicit ERP responses, it seems more likely 

that accuracy on the AGL task affected sensitivity to the P600 ERP. Overall accuracy for 

the AGL task was less than 70% (65% for learners, 50% for non-learners). Thus, the lack 

of a midline central P600 effect may be due to low accuracy (compared to the accuracy 

observed by Christiansen et al., 2012) on the AGL task. This may also explain why I 

observed an N400-like effect at the midline central ROI for learners; learners may have 

been accurate enough to develop some expectations about the grammar and when thus an 

N400-like effect was observed when these expectations were violated. Future studies 

should investigate whether high accuracy is required to elicit a P600 effect on an AGL 

task. 

The current analysis method did not attempt to parse out these effects out and future 

analysis should examine the ERP responses for correct trials rather than all trials for both 

the SPIN and AGL tasks. This method of analysis would likely also impact the results of 

the correlations, and it is possible that the non-significant negative relationship between 

SPIN and AGL amplitudes for learners in the absence of background noise may become 

significantly negative. A significant positive correlation would support the hypothesis 

that people who are better at statistical learning are also better at using their prior 

knowledge about sentence context to predict incoming information.  

4.5 Future Studies 

The present study aimed to determine whether there was a relationship between 

statistical learning and speech perception in noise abilities. It was hypothesized that the 

AGL task would elicit a P600 in the central parietal region of the scalp, and that the P600 
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would be modulated by learning scores. People who were more sensitive to the 

transitional probabilities of the sequences were predicted to have an enhanced P600 effect 

in comparison to people who were less sensitive. These hypotheses were not supported. 

Once people were divided into learners and non-learners, there was some evidence of a 

P600-like effect in the anterior ROIs as well as an N400-like effect in the midline central 

ROI for learners. Future studies should investigate whether the absence of P600 effects 

elicited by the current AGL paradigm is due to either low accuracy on the AGL task 

(lower than Christiansen et al., 2012) or if it is due to the naivety of participants regarding 

the grammaticality of the sequences.  

To determine whether the lack of a P600 effect in the current AGL task is due to 

lower accuracy than that observed by Christiansen et al. (2012), participants should 

receive more extensive training that what they received in the current paradigm and 

should perhaps use the same training method as used by Christiansen et al. (2012). Unlike 

the Christiansen et al. (2012) AGL paradigm though, participants should not be informed 

at any point that the sequences follow any type of grammar. Christiansen et al. (2012) 

started training with small segments of grammatical sequences (two stimuli), and 

incrementally lengthened the sequences until people were observing full sequences. 

Additionally, people observed the same sequences more than once during the training 

phase. This training method should be used to investigate whether the P600 effect is only 

elicited in an AGL task when people have extensive training, as second language studies 

have demonstrated that the N400 is gradually replaced by a P600 (Osterhout et al., 2006). 

After training, people can be tested on how well they learned the grammar using the same 

method as the current AGL paradigm. If overall accuracy increases and a P600 effect is 
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observed, this would suggest that training people until they have high levels of accuracy 

is necessary in order to observe a P600 effect.  

An additional study should examine the differences in ERP responses between two 

AGL tasks: one in which participants are informed before beginning the AGL task that 

the sequences follow specific patterns and another in which participants are not informed 

about the underlying grammaticality of the sequences. This would help determine 

whether there are differences in the type of statistical learning abilities that are being 

tested by these different AGL paradigms. If a P600 is elicited in response to an AGL task 

where participants are aware of the grammar, this suggests that having the ability to 

create concrete rules about the sequences is important for eliciting P600s in response to 

syntactic violations. If an N400-like response similar to those observed in the current 

AGL paradigm and by others (Abla et al., 2008; Abla & Okanoya, 2009; Lang & 

Kotchoubey, 2000; Mueller et al., 2009; Osterhout et al., 2006) is found when 

participants are naïve to the grammar, this would suggest that an N400-like effect is 

found when participants are unconsciously aware of grammaticality but still generate 

expectations based on the statistical frequencies of the stimuli. If an N400 effect was 

found, this would suggest that participants need to be able to ascribe a reason to why the 

sequences violate the grammar in order to elicit a P600 effect. 

Finally, it would be interesting to combine the methods for each of the future studies 

to determine whether extensive training or prior knowledge about grammar is important 

in order to elicit a P600 effect. This could be investigated through a between-subject 

paradigm. Two groups would receive extensive training on the AGL paradigm following 

the methods used by Christiansen et al. (2012). A third group would perform the same 
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AGL task as that used in the current paradigm. Those who receive minimal training 

should be informed beforehand that the sequences follow a grammar. One of the groups 

who receive extensive training should also be informed about the grammaticality of the 

sequences prior to beginning the task; the other group should be naïve. This type of 

experiment would allow researchers to elucidate whether extensive training, prior 

knowledge, or a combination of both is required in order to elicit a P600 effect. 

4.6 Conclusions 

The present study aimed to determine whether there was a relationship between an 

individual’s sensitivity to the statistical frequencies of stimuli in their environment and 

the ability to predict incoming information. I found evidence that suggests that such a 

relationship exists in brain responses during these two tasks, especially under degraded 

listening conditions. However, this relationship did not appear to manifest at the level of 

behavioural performance. When there was no background noise, people sensitive to the 

transitional probabilities of the AGL task had a non-significant negative correlation 

between the N400 and AGL ERP amplitudes. When background noise was added, 

learners had a significant positive correlation between the amplitudes. These results 

suggest that learners were more likely relying on sentence context and top-down 

processing to predict what the final word of the SPIN task should be. In the absence of 

noise, a large N400 mismatch effect was elicited because the mismatch word violated 

their expectations, but in the presence of background noise, learners most likely 

perceived a mismatch word as the accurate match word. In contrast, the positive 

correlations for non-learners only marginally differed between SPIN conditions. These 
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results suggest that non-learners were less adept at using the context of the sentence to 

predict what the final word of the SPIN task should be.   
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