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Abstract 
 

This paper assesses the economic damages from 94 tropical cyclones between 1992 and 

2012 along the US Gulf and Atlantic coasts. I used the Geographical Information System  

ArcGIS to buffer the digital track of each storm into 200 km wide swaths and extract data 

on the storm intensity, coverage of various land cover types, and nighttime light 

emissions. I built a double log model in which the ratio of economic damages to an 

estimated gross state product was regressed on maximum sustained winds, rainfall per 

hour, physical exposure and on wetlands. I also included a dummy variable that equals 

one when maximum sustained winds are less than 119km/hr and zero otherwise. I found 

that the wind speed of a tropical cyclone increases damages on average to the 6th power 

and that rainfall per hour significantly increases damages for hurricanes.  
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Glossary 
 

Damage: the physical impact and losses as monetized values, which could be direct or 

indirect in the form of economic follow-on effects (Surminski et al. 2014) 

Disaster: a severe alteration in the normal functioning of a community or a society due to 

hazardous physical events interacting with vulnerable social conditions, leading to widespread 

adverse human, material, economic, or environmental effects that require immediate emergency 

response to satisfy critical human needs and that may require external support for recovery (Field, 

2013, pg. 3). 

Economic Damage: An estimate constructed by the National Oceanographic and Atmospheric 

Administration (NOAA) that doubles reported insurance losses The doubling of insurance 

damage estimates from NOAA is an attempt to capture all uninsured losses (NOAA, 2014). 

Flood Plain: is the relatively flat lowland that borders a river, which is usually dry but is 

periodically subject to flooding. Floodplain soils actually are former flood deposits (USGSb, 

2014a).  

Loss: negative impacts in relation to which reparation or restoration is impossible, such as 

loss of freshwater resources (Surminsky, 2014) 

Maximum Sustained Winds: are the highest 2 min surface winds occurring within the 

circulation of the system. These "surface" winds are those observed to occur at the standard 

meteorological height of 10 m (33 ft) in an unobstructed exposure (i.e., not blocked by buildings 

or trees) (Powell et al. 1996). 

The Estuarine System: consists of deep-water tidal habitats and adjacent tidal wetlands that are 

usually semi-enclosed by land but have open, partly obstructed, or sporadic access to the open 

ocean, and in which ocean water is at least occasionally diluted by freshwater runoff from the 

land. The salinity may be periodically increased above that of the open ocean by evaporation. 

Along some low-energy coastlines there is appreciable dilution of sea water. Offshore areas with 
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typical estuarine plants and animals, such as red mangroves (Rhizophora mangle) and eastern 

oysters (Crassostrea virginica), are also included in the Estuarine System (USGS, 2013a). 

The Palustrine System: includes all non-tidal wetlands dominated by trees, shrubs, persistent 

emergents, emergent mosses or lichens, and all such wetlands that occur in tidal areas where 

salinity due to ocean-derived salts is below 0.5 ‰. It also includes wetlands lacking such 

vegetation, but with all of the following four characteristics: (1) area less than 8 ha (20 acres); (2) 

active wave-formed or bedrock shoreline features lacking; (3) water depth in the deepest part of 

basin less than 2 m at low water; and (4) salinity due to ocean-derived salts less than 0.5 ‰ 

(USGS, 2013b) 

Exposure: is defined as “the presence of people; livelihoods; environmental services and 

resources; infrastructure; or economic, social, or cultural assets in places that could be 

adversely affected” (Field, 2012, p.3). 

Risk: The term risk refers to the expected losses from a particular hazard to a specified element at 

risk in a particular future time period. Loss may be estimated in terms of human lives, or 

buildings destroyed or in financial terms (Peduzzi et al. 2002). 

Watershed: “a watershed is an area of land that drains all the streams and rainfall to a common 

outlet such as the outflow of a reservoir, mouth of a bay, or any point along a stream channel” 

(USGS, 2014b). 

 

Vulnerability: The propensity or predisposition to be adversely affected (Field, 2012 pg. 

3). 
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Chapter 1:Introduction  
 

Section 1.0: Introduction 
 

Climate change has been cited as one of the most important global risks that 

decision makers will face in the years to come (IPCC, 2014). The complexity and scope 

of the adverse effects of climate change presents a unique challenge for economics due to 

the long-time horizons involved, the uncertainty associated with the risk and the 

unprecedented scale at which one needs to envision such a problem (Stern, 2007). 

Tropical cyclones of greater severity in the next century impose an economic problem 

that demands public policy planning under uncertainty, through time, and which imposes 

a high degree of risk applied to a very large geographic scale (IPCC, 2014). 

With stronger storms comes a heightened importance for adaptation policy to 

mitigate the market and non-market loss and damages that result. In the regions they 

affect, tropical cyclones are often the most damaging storms and are of primary 

importance when assessing flood risk (Woodruff et al. 2013, pg.44). There is mounting 

evidence that land use characteristics in the path of these storms are important in 

determining the economic damage that will result from tropical cyclones in addition to 

their intensity (Zia, 2012). As such, policy makers must be informed on how these storms 

interact with land use and land cover of areas exposed to these storms. Adaptation to 

climate change and reducing the risk of disasters has been shown to be the most effective 

way to manage the economic damages that are expected to result from tropical cyclones 

through to 2050 (Pielke, 2007; Zia, 2012).  
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To create an effective climate change adaptation (CCA) plan for future storms, 

policy makers require assessment from many different perspectives, economics being just 

one. The purpose of this present paper is to inform policy makers on how economic 

damages from tropical cyclones may be explained by the interaction of a given storm’s 

intensity, the physical exposure of the affected area and its vulnerability to disasters 

occurring. The results of this study are intended to strengthen CCA policies as people 

plan for future tropical cyclones influenced by a changing climate.

Section 1.1: Background  
 

There is little agreement on whether climate change is causing an increase in 

damages from tropical cyclones at all (Pielke, 2007) or if the recent observations of high 

damages are due more to increases in physical exposure and/or vulnerability of cities to 

storms (Nordhaus, 2006; Zia, 2012). In addition to the disagreement surrounding the 

cause or existence of rising damages resulting from tropical cyclones, there are 

suggestions that storms may increase in their intensity and frequency into the 21st century 

(IPCC, 2014). With such disagreement in the literature and pressure to act quickly, policy 

makers are left with problems that transcend economics, ethics, and political science with 

little to guide policy in a direction that will bring the best result.  

This paper is concerned with providing policy makers with an understanding of 

how economic damages from tropical storms on the US Gulf and Atlantic coasts may be a 

product of the intensity of storms and characteristics of land use and land cover. There is 

evidence that storm intensity (Nordhaus 2006), land-use characteristics such as the 

density of populations and structures (Peduzzi, 2002; Zia, 2012), presence of wetlands 



 3 

and agriculture (Brody et al. 2007; Zia, 2012), vulnerability (Peduzzi et al., 2002; Zia, 

2012) and physical exposure (Peduzzi 2002; Nordhaus 2006) have influenced the 

damages that result from tropical cyclones.  

Nordhaus (2006), Pielke (2007), and Zia (2013) have pointed to the importance of 

managing our physical exposure and vulnerability to tropical cyclones, though the 

definitions of vulnerability have differed from paper to paper. Reliable sets of data on 

vulnerability and a reasonable proxy for exposure are lacking (Surminski, 2014) and 

represents a key area of focus for this present paper. I used the coverage of wetlands as a 

proxy for vulnerability for reasons described in chapter 3. In short, I use the findings 

presented by Brody et al. (2007) and Costanza et al., (2008) that wetlands may act as a 

natural buffer to storm flooding and therefore reduce the probability of flood damage in 

the area they protect. 

Given the evidence presented, this paper will use regression analysis to attempt to 

statistically determine the contributions of maximum sustained winds, rainfall, frequency 

of storms, density of buildings, and spatial extent of wetlands in influencing economic 

damages from tropical cyclones in the US between 1992 and 2012.  

To use the language of the IPCC (2014) and that of Peduzzi et al. (2002), the latter 

of whom has contributed to analysis for the United Nations Environment Programme 

Global Resource Information Database, this present paper will speak interchangeably 

about economic damages being a function of intensity, physical exposure and 

vulnerability to storms and the proxy measures for each where applicable. The intensity 

of a storm is measured as the maximum sustained winds (MSW) and total rainfall, while 
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physical exposure is a product of the frequency of storms and the area of densely 

developed urban areas.  Vulnerability to storms is measured as the area (in km2) of two 

different wetland types as a proportion of the total area covered by each storm. 

The contribution of wetlands to economic damages that result from tropical 

storms is a particularly interesting component of this analysis. While the main goal in this 

study is to understand how economic damages may fluctuate with changing intensities, 

exposure and vulnerabilities; the proportion of damages explained by wetland extent 

provides a monetary value for those wetlands. This monetary value should be added onto 

existing monetary figures for wetlands to give an overall value of a given area of wetland 

to be used in cost-benefit analysis and other such tools to inform policy decisions.  

           Chapter 2 provides a literature review to help understand what has been done and 

which characteristics of areas hit by tropical cyclones could determine the variations in 

economic damages that result. Chapter 3 presents a detailed description of the methods 

used in this present study to understand the variables important to explaining the 

variations in economic damages. The results of this paper and a discussion on their 

interpretation are presented in chapters 4 and 5, respectively.   
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Chapter 2: Literature Review 

Section 2.0: Introduction 
 

This chapter will review the literature on what can explain the variations in 

economic damages that result from tropical cyclones, how disaster risk is quantified, and 

the variables used to assess disaster risk.  I review five recently published works on these 

topics in an effort to clarify the nuances of this present paper’s research question as it 

pertains to the functional form that damages may take, the explanatory variables involved 

in the equation, and methods for assessing the relationship between explanatory variables 

and economic damages. What is of interest to this study is which characteristics of land 

use and specifically wetland extent have any relationship with the variations in economic 

damages.  

Section 2.1: Literature Review 
 

A paper by Peduzzi et al. (2002) used the UN (1971) definition to form three 

hypotheses about risks resulting from earthquakes, cyclones, floods and volcanoes. They 

suggested that risk is a function of some specified hazard occurrence probability, 

elements at risk and vulnerability (Peduzzi et al, 2002, pg. 4). The first hypothesis was 

that the three factors explaining risk should be multiplied together such that, 

 𝐾 =  𝐻 ×  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × Vulnerability    [1] 

In equation 1, K = risk of the potential loss resulting from a future hazard, H = hazard 

probability, Population = population exposed to a hazard and Vulnerability = a vector of 

vulnerability variables of individuals based on socio-politico-economic factors. Their 
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argument supporting this hypothesis went as follows. There is zero risk of a disaster if 

any number of vulnerable individuals are not exposed to a hazard. Moreover, at the other 

extreme, even if hazards are great, the risk is also zero if nobody lives in the area exposed 

to hazards (population=0) or if the population is invulnerable to hazards (Vulnerability=0).

   

Peduzzi et al. used human lives lost as a proxy for risk and suggested that hazard 

probability in [1] multiplied by the population could then be replaced by physical 

exposure. Expected human lives lost is now a function of physical exposure and 

vulnerability to a given hazard such that 

K= Phyexp x Vulnerability.    [2] 

 Peduzzi et al. (2002) hypothesized that physical exposure and vulnerability will 

influence the number of lives lost to some power, be it to the power of one or otherwise. 

What is of further interest is the relationship between the variables that make up 

vulnerability and physical exposure. Peduzzi et al. (2002) argued that products and ratios 

of variables allow for the identification of combined effects between different variables 

that make up both physical exposure and vulnerability. For example, rapid urban growth 

and low GDP per capita may lead to higher vulnerability, whereas the two factors taken 

individually cannot be related to vulnerability.  

Adding a power term to each variable in equation [2] gives the multiplicative model: 

K = C (Phyexp)α (Vi)β
i  .             [3] 
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Note that there are subscript i’s on the vulnerability variable. This is because Peduzzi 

suggested that vulnerability is a vector of variables and used stepwise regressions to 

determine which of the vulnerability variables should be included in the regression. 

Peduzzi et al. wanted to estimate the relative effects of physical exposure and 

vulnerability on the number of lives lost from given hazards. To linearize [3] in order to 

give an estimate the coefficients on each variable, the natural logarithms of both sides of 

equation [3] were taken giving  

ln K= ln(C) + α ln Phyexp + βi ln Vi .        [4] 

Now that the model has been described, I will look at the results from Peduzzi et 

al. (2002) and the variables used in their risk analysis are discussed. As discussed above, 

expected human lives lost were used as a proxy for risk. Human lives lost was used 

because other indicators such as wounded, homeless, and the number of people affected, 

either had variances too high for Peduzzi et al. (2002, pg. 9) to use in their analysis or 

were not usable because of large gaps in the data. For their analysis, they regressed 

human lives lost on physical exposure and vulnerability parameters to assess the expected 

lives lost for earthquakes, cyclones, volcanoes, and floods.  

Since only the impact of tropical cyclones are of interest in this paper, the only 

two types of hazards from Peduzzi et al. (2002) that will be reviewed here are flooding 

and windstorm losses. When attempting to calculate the physical exposure to flooding, 

Peduzzi et al. (2002) ran into data problems in that they were unable to find a global 

database on floods. Due to the lack of information on the duration and severity of floods, 

only one class of intensity could be made, though this intensity class remains undefined in 
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their paper.  In the Centre for Research on the Epidemiology of Disasters (CRED) 

database, a georeference of the floods was produced and a link between the watershed 

and the events was made.  

 Watersheds affected were mapped for the period of 1980-2000 and a frequency of 

flooding was derived for each by dividing the total number of events by 21 years. The 

watersheds were then split to follow country borders, and the population of individuals 

living within each watershed was extracted using Geographical Information Systems 

(GIS) and multiplied by the frequency of flooding events to get the average yearly 

physical exposure.  

Peduzzi et al (2002) define tropical cyclones using the Saffir-Simpson tropical 

cyclones classification based on the maximum sustained surface wind (MSW) where 

MSW is defined as the peak 1-minute wind at the standard meteorological observation 

height of 10 m over unobstructed exposure (Schott et al. 2012). Tropical cyclones are 

considered to be storms where the maximum sustained surface wind speed is greater than 

33m/s and is divided into four sub categories based on their geographical location. These 

categories are: "hurricanes", "typhoons", "severe tropical cyclones", "severe cyclonic 

storms" (Landsea, 2000). The authors looked at only 11 years worth of storms and don’t 

describe the number of storms considered for their analysis, which throws the credibility 

of their results into question due to a shortage of observations.  

  For the compilation of physical exposure to cyclones, there were again problems 

with data collection and two approaches were used. Under the first approach, the authors 

used a horizontal wind structure model or the raster approach depending on the data 
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available (Peduzzi et al., 2002, pg. 17). “The horizontal wind structure model calculates 

the symmetric winds and it assumes that the tropical cyclone surface pressure field 

follows a modified rectangular hyperbola” (Peduzzi et al., 2002, pg 17). The raster 

approach delineates annual probabilities of occurrence of tropical cyclones into 5 x 5 

decimal degrees cells. Probabilities are based on tropical cyclone activity of a specific 

record period, except for several estimated values attributed to areas that may present 

occasional activity but where no tropical cyclones were observed during the record period. 

A frequency per year is derived for each cell. Cells are divided to follow country border, 

then population is extracted and multiplied by the frequency in order to obtain the average 

yearly physical exposure for each cell (Peduzzi et al., 2002).  

 In an effort to extract the number of persons affected by a specific cyclone, 

information on tracks, sustained wind, and central pressure were obtained (Peduzzi et al., 

2002, pg 17). The computation of a frequency could not be derived in absence of a 

coherent spatial unit (due to large discrepancies in country size). To overcome this 

difficulty, the computation was made by adding the population affected and then divided 

by the number of years (pg.18). 

 Peduzzi et al. (2002) selected variables for each type of hazard using numerous 

stepwise linear regressions in order to highlight significant independent variables using 

[4]. Peduzzi et al. validate each regression by evaluating R2, conducting variance analysis 

and detailed residual analysis. They showed that this model allows the identification of 

parameters leading to higher/lower risk and the estimation of coefficients.  (p. 25).  
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 The stepwise selection process and subsequent reliance on R2 for model validation 

introduces significant problems with the results described in their paper. First, models 

using stepwise regression have been shown to frequently fail to replicate when applied to 

new sets of comparable data (Judd and McClelland, 1989). This drawback of not having 

external validity is problematic for policy makers who might use this information to 

create policy for areas outside of the specific locations used in Peduzzi et al. (2002).  

Second, the reliance on stepwise regression produces R2 values that are biased 

upwards (Judd and McClelland 1989). Since Peduzzi et al. (2002) relied on these R2 

values to select dependent variables and these R2 values are higher than they ought to be, 

the results may not yield the true model for risk. Judd and McClelland (1989) sum up the 

problems with stepwise regression analysis quite succinctly in saying “It is our experience 

and strong belief that better models and a better understanding of one’s data result from 

focused data analysis, guided by substantive theory,” (p. 204). That said, results might be 

used to guide new theories that could then be tested using new data.  

The variables selected by the statistical analysis for floods are physical exposure, 

GDP per capita and local density of population. These two socioeconomic vulnerability 

variables show that when a population is more physically exposed with fewer means to 

rebound from a flood, there will be a higher number of casualties. More surprisingly, 

countries with low population density were found to be more vulnerable than countries 

with high population density (pg. 34). The authors wondered whether this could be due to 

a higher level of organization in more densely populated areas resulting in faster response 

times and more general aid available.  
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This could indeed be the case and when the dependent variable in the model is 

lives lost, however the sign of the coefficient may change when considering economic 

damages. For example, if a higher population density has a better emergency response 

time, total lives lost could fall. However, building damages might be independent of 

emergency response and (assuming a higher population density brings a larger number of 

buildings) more buildings would cause damages to rise. That said, for a given frequency 

of storms, a greater population density may also bring better adaptation plans and lessen 

the vulnerability of the population to flood damage. 

The stepwise regression results for cyclones suggest that besides the physical 

exposure, the Human Development Index (HDI) and the percentage of arable land are 

selected indicators for vulnerability to cyclone hazards (pg. 33). The resulting regression 

equation suggests that HDI is inversely related to lives lost while percentage of arable 

land is positively related to lives lost. Again, it should be expected that a higher HDI 

score be associated with a lower level of lives lost as a country with higher development 

should have the capacity to deal with cyclone related injuries far faster than a country 

with a lower score.  

The percentage of arable land is an interesting variable to have included when the 

dependent variable is lives lost. Peduzzi et al. argue that those countries with a high 

dependence on agriculture would suffer greater lives lost due to cyclones. The causal link 

behind this relationship is not very well explored however and further discussion as to 

why this may be the case is unfortunately missing. It would be understandable to see this 

relationship exist if the dependent variable were economic damages, as the income of 

those affected would be significantly reduced immediately with large amounts of crop 
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damage. If storms destroy large percentages of agricultural land in regions where 

agriculture makes up a large share of GDP, then economic damages should not only be 

high but also lead to a disaster, as defined in chapter 1. It could be the case that this 

percentage of arable land variable shouldn’t be in the model and is present because of the 

limitations in using stepwise procedures, for example due to a spurious relationship (Judd 

and McClelland, 1989). 

One shortcoming of Peduzzi et al. (2002) is not taking into account variables 

relevant to individual hurricanes such as maximum wind speeds, rainfall, duration 

overland etc. As noted with regards to the next paper to be reviewed, there is a significant 

relationship between maximum sustained winds of a hurricane and the economic damages 

which result. One would expect higher number of persons killed as the MSW increases, 

though possibly not to the same degree as described below.  

 Nordhaus (2006)  investigates several broad questions about trends in the 

frequency and power of hurricanes, trends in vulnerability to hurricanes, how maximum 

sustained winds at landfall relate to economic damages, and finally how ocean warming is 

likely to lead to stronger hurricanes. I will not discuss Nordhaus’s work on the 

relationship between warming and strength of hurricanes as they are not directly related 

to the questions posed in this paper.   

Nordhaus describes how, in a given year, damages statistically depend upon total 

output, the capital-intensity of output, the location of economic activity, the number of 

storms, the intensity of storms, and the geographical features of the affected areas (Part III, 

pg. 5) He suggests that the economic impact of storms is linear in frequency, i.e. that 
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more storms cause more damage in the same year. However, damages from individual 

events across years may not be linear in frequency because societies should be learning 

and adapting to storms. For example, an area that gets hit more frequently by storms year 

after year should be better equipped to prevent damages and have different building 

standards in comparison with prevent an area that rarely gets hit with storms. It could also 

be the case the a greater number of storms in the same year cause damages to rise 

exponentially as infrastructure meant to protect against storms gets diminished with 

repeated storms.  

Nordhaus (2006, pg.7) investigated what he calls the “damage-intensity function”, 

which is the relationship between wind speed at landfall and damages. Nordhaus noted 

that the conventional assumption about the relationship between damages and wind speed 

is to assume that damages are a function of wind speed to either the second or third power 

(See the footnote in Nordhaus on pg. 6). He pointed out however that this presumption is 

based on an energy-wind speed relationship, which is not necessarily applicable to the 

impact of wind and water on damages to designed structures (Nordhaus, 2006, pg. 7).  

Nordhaus used a simple OLS regression to estimate the relationship between 

economic damages and maximum sustained wind speed, while controlling for “drift 

factors” by including the year of the hurricane. He used a double log model in which 

damages per unit GDP were the dependent variable regressed on the log of wind speed 

and the year. Nordhaus (pg. 7) found that economic damages increase to the 8th power of 

wind speed. He mentioned three possible causes of this incredibly high result including 

potential biases because of the omitted storm variables, statistical bias, and the highly 

non-linear relationship between physical damages and wind stress. 
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Nordhaus discussed other important variables not included in the initial OLS 

regression, including measures of the entire time series of central wind speeds of the 

storm, the wind speeds for the entire region affected by the storm, and the quantity of 

vulnerable capital affected by the storm. For assessing the changes in vulnerability to 

hurricanes over time, Nordhaus uses his G-Econ Dataset to get a rough estimate of the 

“intrinsic vulnerability” by examining the magnitude of the nation’s capital stock that is 

in coastal areas and at low elevation (pg.4). To get a better resolution of vulnerability, 

Nordhaus, on pg. 5, further divided the country into subgridcells of 10’ by 10’ 

(approximately 15 by 15 kilometers) for the vulnerable Atlantic coast of the United States, 

and then estimated the capital stocks for each subgridcell (pg. 5).  

Nordhaus found that accounting for vulnerable capital and the entire storm path 

not only improved the fit of the model, it also increased the coefficient estimate for wind 

speed to 8.5. Furthermore, the time trend in the OLS full-sample equation found that 

normalized damages rose by 2.9 percent per year, indicating increased vulnerability to 

storms of a given size (Nordhaus, 2006, pg.12) 

Nordhaus correctly hypothesized that wind speeds calculated in years prior to 

1960, when the use of satellite measuring came into popular use, were subject to more 

error. To ensure that there was no contamination of measurement error from wind speeds 

early on in the sample he used a TSLS approach using minimum pressure as an 

instrument for wind speeds (Nordhaus, 2006). Nordhaus found that the TSLS estimates 

yielded a high elasticity of damage per unit GDP with respect to wind speeds. He found 

that this elasticity was 9.1, which he says would be expected if the wind speed is 

measured with substantial error. 
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The final check on the relationship between wind speed and economic damages 

was to look at how designed structures interact with wind speeds when a fracture occurs 

in the structure. Nordhaus argued that structures are designed to take a certain wind stress 

load, which if exceeded causes the structure to crumble. If I were to estimate the elasticity 

of damages with respect to a stress (such as wind or water) on a building, it would be very 

small up to the fracture level and then extremely high as the material fractured. His 

argument is then that I see such high elasticity of damages to wind speed because of the 

relationship between the strength of a building relative to the strength of the storm. At 

wind speeds within the capability of buildings, there should be little to no damage 

occurring. At wind speeds greater than the intended use of a building, the building 

material will fracture and damages will exponentially increase. This is a logically sound 

argument but no information directly observing damages at lower wind speed relative to 

damages at hurricane strength wind speeds was presented. Having data on storms with 

lower wind speeds would help strengthen his argument if the data showed consistently 

lower damages at lower wind speeds.  

Nordhaus concluded that damages statistically increase to the 8th power of MSW 

as the result is robust to several different measures and estimation techniques. What’s 

more, economic vulnerability increases sharply with MSW and because hurricanes are 

rare events, I am likely to observe the wind speed – damage relationship at the point 

where sharply non-linear failures arise (Nordhaus, pg.12). In other words, when studying 

only hurricanes, we are observing damages that result from structural failure of buildings, 

which increases exponentially once an initial structural break happens and thus the 

elasticity of damages is not constant.   
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Section 2.2: Land cover variables for explaining economic damages 
 

There are only two empirical studies utilizing regression methods to understand 

whether economic damages from flooding events can be explained by wetlands (Costanza 

et al. 2008; Brody et al. 2007).  While neither study looked at risk or classified variables 

into physical exposure and vulnerability categories, Brody et al. (2007) did control for 

physical and socioeconomic characteristics while Constanza et al. (2008) controlled for 

wind speed. Further, Brody et al. (2007) did not look at hurricanes in particular but did 

assess economic damages in-relation to flooding events in general. They were unable to 

identify the specific source of a given flood but it is generally understood that these 

floods resulted from precipitation.    

Brody et al. (2007) motivated their paper by saying that “despite the prevalence of 

policy and engineering measures to reduce the adverse impacts of floods, they remain one 

of the greatest threats to the property and safety of human communities in the United 

States among all natural hazards” (pg.1). Due to the lack of GIS data, the authors note 

that no study to date has thoroughly tested the impact of the human built environment 

based only on multiple flood events over time, at large spatial scales, while controlling for 

biophysical and socio-economic characteristics (pg. 2).  

The authors argue throughout the introductory sections of the paper that increases 

in population density, the number of impervious surfaces, the alteration of hydrological 

systems and an overall diminishing capacity for these systems to hold and store surface 

water, contribute to an increase the damage due to flooding (Brody et al., 2007. pg. 4). 

 To address the current lack of research as noted above, Brody et al. (2007, pg. 5) assess 
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how the built environment influences flooding impacts in the eastern portion of Texas. 

This area was chosen because Texas experiences the highest amount of damages due to 

flooding in comparison to any other state. Eastern Texas specifically has been 

experiencing large increases in impervious surfaces and   alteration of wetlands 

associated with rapid coastal development (pg. 5). 

It is important to note that this study excluded tidal and storm-surge flooding and so only 

focused on flooding events due to rainfall. Why tidal and storm surge flooding were 

excluded is not very clear. The area of study is mostly coastal and it is well established 

that coastal wetlands help reduce storm surge flooding (Wamsely et al. 2010) and so there 

is some theoretical basis for their inclusion. The implication for Brody et al. (2007) is that 

coastal wetlands that should be excluded based on the exclusion of coastal flooding data 

may have been included in their analysis where they shouldn’t be. To view a map of the 

study area, see Brody et al. (2007, pg. 10). 

Furthermore, their study doesn’t differentiate wetland types that have been shown to 

interact differently with storm surge and rainfall flooding (Wamsely et al. 2010).  This 

reason for the lack of delineation of wetland types not explained and is especially 

confusing as the authors spend a few paragraphs detailing how different wetland types 

contribute in different ways to peak flood (the highest point of the flood water level).  

The authors calculated property damage measured as the total dollar loss 

(consumer price index adjusted 1997 UD) resulting from 423 flood events between 1997 

and 2001 at the county level.  Using multiple regression analysis, the impact of wetland 

alteration, impervious surface, and dams on reported property damages was estimated 
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while controlling for biophysical and socio-economic characteristics (Brody et al. 2007, 

pg. 2).   

They controlled for biophysical, built environment and socio-economic variables 

including precipitation, flood duration and flood plain overlap, impervious surfaces 

(calculated as the percentage of land covered by buildings and pavement in a county area), 

wetland alteration (measured as the cumulative total of spatially defined wetland permits1 

the day of a flood event), median household income (which is the sum of money income 

received in calendar year 1999 by all household members of 15 years and over, including 

household members not related to the householder, people living alone, and other non-

family household members) and a Federal Emergency Management Agency (FEMA) 

rating score for each county.  

The socio-economic variable ‘FEMA rating score’ is based on the FEMA 

Community Rating System (CRS). The CRS promotes mitigation of flood damage 

through insurance premium discounts and other financial incentives to counties, which 

have shown they have taken actions to mitigate flooding events (Brody et al. 2007, pg.8).  

  The second socio-economic variable, median income, was used because the 

authors presumed that wealthier communities have the financial capacity to mitigate 

flooding more effectively but at the same time can lose greater amounts of financial 

capital from damaging floods (Brody et al. 2007, pg. 8). 

                                                        
1 Wetland Permits are permits to destroy wetlands for development and include general permits, 

nationwide permits, letters of permission and individual permits (Brody et al., 2007). 
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For their analysis the authors sequentially added the previously mentioned three 

suites of variables (biophysical; built; and socio-economic environments) to the model to 

test their effects both individually and as a group (Brody et al. 2007, pg. 9).  The first 

iteration controlled only for biophysical variables and found the amount of rainfall the 

day before the event to be the greatest predictor of damage followed by the duration of 

the flood (pg. 9). When built environment and socio-economic variables were added to 

the model a surprising result was realized what is gained by dams in the mitigation of 

flood outcomes is statistically offset by development activities in wetlands (Brody et al. 

2007, pg. 12).  When only built environment and biophysical variables were included, the 

presence of dams as flood control reduced the amount of damage almost to the same 

degree to which damages were exacerbated by wetland alteration. Impervious surfaces 

were also highlighted as a statistically significant variable since increasing the area of 

impervious surfaces lead to an increase in flood damage.  

When the fully specified model including socio-economic variables was used, the 

offsetting relationship between dams and wetlands expanded. Wetland alteration 

continued to have the largest effect on the dependent variable among built environment 

variables while the predictive power of the total number of dams within a county, 

representing structural solutions to flood mitigation, decreases (pg. 12).  

This paper by Brody et al. provides a great start to understanding the relationship 

between our built environment and flood damages. Their methods could easily be applied 

to areas outside of Texas if wetland permit data is available, however; their work does not 

consider flooding from storm surge and so may not be accurate along coastal regions.  
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The next paper reviewed is by Costanza et al., (2008) where they used a very 

unique method for assessing the value of wetlands relative to hurricane damage in the 

United States.  They investigated 34 hurricanes between 1980 and 2004 and created a 

dataset for the area of wetlands within a 100km wide X 100km inland swath of each 

hurricane. They then used nighttime light imagery to estimate the GDP within each 

swath; a method proven to be a very accurate estimate of GDP in recent literature, see 

Sutton et al. (2002). Estimating GDP with satellite imagery is not however without its 

critics when used in countries with sufficient data such as the US (Nordhaus, 2010). 

Costanza et al. (2008) used this GDP proxy to normalize the associated economic 

damages from each hurricane. Normalization methods vary widely (see Pielke et al. 1998; 

Neumayer et al., 2011; Nordhaus, 2006) but the general goal is to adjust damages to allow 

better comparisons across geographic regions.  

 As impressive as the methodology in Costanza et al. (2008) is, there are a few 

gaps in their study. First, wetland data used was from only one year, yet their study 

covered hurricanes dating back to 1985. They used wetland data from the year 2000 as a 

layer2 for every hurricane over all years in the study and only accounted for the decrease 

in wetland extent for Louisiana because of the substantial wetland loss over the period of 

study (Costanza et al. 2008, pg. 242). This method was employed in spite of the 

availability of wetland data from 1992-present compiled every five years by the NOAA. 

                                                        
2 A layer in GIS is a slice or stratum of the geographic reality in a particular area, and is more or less 

equivalent to a legend item on a paper map. On a road map, for example, roads, national parks, political 

boundaries, and rivers might be considered different layers (Esri, 2014). 
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This oversight may have introduced substantial error for wetland extent outside of year 

2000. 

 Another oversight in the Costanza et al. (2008) paper is that the regression 

equation used suffers from a similar draw back as Peduzzi et al. (2002) in that any 

theoretical basis for the explanatory variables being selected is seemingly arbitrary.  For 

example, using the model presented in Costanza et al. (2008), economic damages can be 

explained by wind damage and wetland extent alone. They do control for one aspect of 

vulnerability in that they divided total damages by GDP but what about other potentially 

important factors such as density of buildings, impermeable surfaces, and physical 

exposure? These are important elements that could explain the variation in economic 

damages due to hurricane and are not explored in the paper.  

 One could argue, however, that the exclusion of socioeconomic variables and 

alike is not a problem if the omitted variables are not causing omitted variable bias or if 

one could not improve the fit of the model by including them. Costanza et al. (2008) does 

use Akaike’s Information Criterion (AIC) to compare their model shown in equation 5 

below, against a model containing only damages and maximum sustained winds. They 

results suggest that the better model was   

  𝑙𝑛
𝑇𝐷𝑖 

𝐺𝐷𝑃𝑖
= 𝛼 + 𝛽1𝑙𝑛 𝑀𝑆𝑊𝑖 + 𝛽2 ln 𝑤𝑖 +  𝜀i,               [5] 

Where EDi/GDPi represents total damages per unit GDP from hurricane i, MSWi 

represent the maximum sustained wind speed of a given hurricane i, and wi represent the 

hectares of wetlands present in the swath of the hurricane.  
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One problem with this test using AIC is that it only says that equation 5 is better 

than a more reduced model and doesn’t extend to give suggestions about models with 

more variables. Furthermore, they did not test for omitted variable bias and so we aren’t 

sure if their model could be improved by adding in other explanatory variables.    

The results of their regression suggest that the coefficient on wind speed is 

different than that of Nordhaus (2006) but is in line with the standard relationship 

estimated between power and maximum sustained wind speed where the economic 

damages increases to the 3.878 power of speed (Costanza et al., 2008, pg. 243). While 

their estimate lines up with the relationship between power and wind speed and building 

destruction, this doesn’t necessarily mean that the relationship between wind speed and 

economic damages behaves the same see Nordhaus (2006, pg.3).  

Costanza et al. (2008) were able to differentiate between two wetland types, 

herbaceous wetlands and forested wetlands. They found that forested wetlands did not 

produce a significant result while herbaceous wetlands were significant. The estimated 

coefficient of the elasticity of damages per unit GDP with respect to wetland extent of -

0.77 suggests that economic damages decrease quite rapidly with increases in wetland 

area. To calculate the marginal value of wetlands, Costanza et al., (2008, pg. 243) look at 

the avoided damages per unit area of wetlands. The difference in total damages from 

cyclone i (TDi) with a loss of area a of wetland area (wi) is represented by the equation 

∆𝑇𝐷𝑖 = 𝑒𝛼 × 𝑀𝑆𝑊𝑖
𝛽1

× [ (𝑤𝑖 − 𝑎)𝛽2 −  𝑤𝑖
𝛽2

]  × 𝐺𝐷𝑃𝑖.  [6] 

If a is small relative to wi, this represents the marginal value per unit area of wetlands in 

preventing storm damage from a specific hurricane (Costanza et al. 2008, pg. 244).  



 23 

Costanza et al. (2008) calculated the marginal value of wetlands for each of the 34 

hurricanes covered in their study. They found the median value to be $5000 ha-1 with an 

average reduction in damages to be  $33,000 ha-1 (Costanza et al., 2008, pg. 244). This 

information is very useful for policy makers at the state and municipal level because the 

marginal value of wetlands for storm protection gives a cost to developing over wetlands 

in hurricane prone areas. The authors go on to calculate the annual total value of wetlands 

for storm protection, however these calculations are outside the scope of this present 

study and thus will not be reviewed here.  

The final paper reviewed is one by Zia (2012) which studies the long-term 

economic damage function while including land use and land cover trends in an effort to 

accurately forecast inflation adjusted expected damages under different climate change 

scenarios. His study developed a time series forecasting model to predict the inflation 

adjusted damages at different intensities of hurricanes, while controlling for housing 

densities of areas impacted by the hurricanes (Zia, 2012, pg. 920). This review only 

covers the beginning of Zia (2012) as this present study is not looking to predict changes 

in damages due to varying climate change scenarios.  

 Zia (2012) estimated that the average adjusted annual damages from hurricanes in 

the US was $2937.73 million in 2005 dollars with an average of 1.62 hurricanes making 

landfall annually.  Zia’s estimate of average population density affected by hurricanes 

was 182 persons/square mile and on average 1.01 million houses were affected every year. 

Also, similar to Nordhaus (2006), Zia found an upward trend in annualized damages but 

no such trend between the frequency of hurricanes making landfall and the presence of La 

Nina or El Nino years.   
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Changing the functional form of the linear model by taking the log of damages 

sufficiently reduced the heteroskedasticity and, though still present, lessened the 

significance of autocorrelation (Zia, 2012). To account for the temporal autocorrelation, 

both Prais-Winsten and ARMA modeling approaches were used. Zia (2012) reported that 

the Prais-Winsten model appeared to be the most robust with no evidence for 

heteroskedasticity and first order autocorrelation. Their model predicted that a one 

percent increase in the average intensity of land falling hurricanes would be significantly 

(p < 0.01) correlated with a 130% increase in the log of annualized damages, holding all 

else constant. For context, Zia reported that the mean intensity of hurricanes was 1.71 on 

the Saffir-Simpson scale and the expected increase in storm intensity was between 8-16% 

over the 21st century (pg. 927). This change, according to his results would cause 

damages to increase by $US 305.84 million to US$611.69 million in 2005 constant 

dollars.  

With respect to land use and land cover, their model predicted that a 1% increase 

in the agricultural land cover increases annualized damages by 1.51%, which is 

equivalent to approximately US$ 44.35 million. This finding is intuitively understandable 

as total damages reported included damages to crops and livestock. If more agricultural 

land cover was affected by a given hurricane, one would reasonably expect there to be 

greater damages on average.  Zia found that an average increase of 1 house per square 

mile of affected area resulted in a 2.68% increase in damages, or, in monetary terms, an 

increase of US$ 78.73 million.  

The summary of Zia’s results is that the effects of housing density and agricultural 

land-cover have a significantly positive effect on damages from hurricanes (Zia, 2012, pg. 
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928). His paper suggests that a medium to long term land use adaptation, in the form of 

capping housing density and agricultural cover in the coastal states, can significantly 

reduce economic damages from intense hurricanes (Zia, 2012, pg.  931).  

Section 2.3: Conclusion 

The review suggests that storm intensity (Nordhaus, 2006; Costanza et al., 2008; 

Zia, 2013), a given population’s physical exposure to hazards (Peduzzi et al. 2002) and 

it’s vulnerability (Nordhaus, 2012) are all significant variables to be considered when 

building a economic damages function. Furthermore, Brody et al. (2007) and to a more 

limited degree Costanza et al. (2008) show that wetlands have a significant influence on 

economic damages from flooding events. In the following chapter, a detailed description 

of the methods used to understand to what degree the aforementioned variables are 

important and with what functional form they are predicted to influence economic 

damages is presented.   
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Chapter 3: Data and Variables  
 
Section 3.0: Introduction to methods 
 

In this paper I am seeking to understand how the economic damages per unit gross 

spatial product (GSP) may be explained by the intensity of tropical cyclones, physical 

exposure and vulnerability of populations to storms occurring.  Storm intensity is a vector 

containing MSW, total rainfall and the duration in hours of each storm. Vulnerability to 

storms is measured by the proportion of wetlands relative to the total area affected by 

each storm. I created a double log model to estimate the elasticity of economic damages 

per unit GSP to all three vectors. The regression equation used for estimation is 

𝑙𝑛(𝐸𝐷𝑖 /𝐺𝑆𝑃𝑖) =  𝛼 + 𝛽1ln (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖) + 𝛽2ln (𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖) + 𝛽3ln(𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖) + 𝜀𝑖. [7] 

The methods employed to generate data on dependent variables and the tracks of 

the storm were largely borrowed from Costanza et al. (2008). The work of Peduzzi et al. 

(2002) was drawn upon and modified with different variables to model the economic 

damages associated with tropical cyclones. This chapter outlines the variables used, the 

justification for their inclusion, their source and, where applicable, the details of the units 

of measure.  

Section 3.1: Creating the dataset 
 

Data on land classifications for wetlands and high intensity development, was 

downloaded from the NOAA Coastal Change Analysis Program (C-CAP) for years 

available (1992-2010) for 18 states: Texas, Louisiana, Mississippi, Alabama, Georgia, 

Florida, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, 
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New Jersey, New York, Connecticut, New Hampshire, Massachusetts, and Maine. 

Data on economic damages were downloaded from The National Hurricane 

Center and filtered to include all named tropical cyclones to come within 200 km of shore 

in the US between the years 1992 and 2012. The filtered results produced 94 hurricanes 

and tropical storms. The digital track of each storm was downloaded from the NOAA 

Historical Hurricane Tracker (NOAA, 2014) along with a detailed storm report explaining 

the meteorological characteristics, damages, and other detailed information throughout 

the life of the storm.  

Using Geographical Information Systems (GIS) software, a distance of 100 km on 

either side of each storm track was measured to create a continuous swath until the storm 

became a tropical depression and/or was 200km or greater from the coast. See Figure 1 

below for an example. The square area of each variable within the swath was measured 

and recorded (see Costanza et al. 2008).  

 

Figure 1: Swath for hurricane Bill overlaid on the US in ArcGIS.  
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Section 3.2: Hurricane Swath justification 
 

In Costanza et al. (2008) the size of the swath was determined using visual 

observations of destruction. As discussed in the previous chapter, this is a poor estimate 

of the scale of flood damage and would be more appropriate if wind damage was the only 

dependent variable. The economic damage data used in this study was not disaggregated 

to reveal which proportion of total damages was from flooding or wind. As there is often 

substantial damage caused by both wind and flooding from tropical cyclones (NOAA, 

2014), I could not use the wind field radius to provide information about the width of the 

swath.  

The ideal method for defining the size of the swath would be to use a combination 

of storm surge distribution along the coast and location of heavy rainfall relative to the 

center of the hurricane track. Neither of these two options had available or reliable data.  

In comparing the size of the swath used in Costanza et al. (2008) with the storm reports 

from NOAA, the 100 km total width and 100 km inland from the shore was too small to 

include damages reported in various locations in the storm reports. Creating a 200 km 

wide swath (100 km on either side) on the center of the storm tracks downloaded from 

NOAA was sufficient to cover the majority of the locations cited with damages in the 

storm report.  

 In further contrast to the methods employed in Costanza et al. (2008), this study 

continues the buffer throughout the life of the storm to include inland areas where 

damages from flooding were reported in addition to those damages reported along the 
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coast. I did this because NOAA reports substantial inland flooding damage from tropical 

storms and stopping the buffer only 100 km from the shore as done in Costanza et al. 

(2008) would not be accurate.  

Section 3.3.0: Dependent variable 
 

The dependent variable used in this study was economic damages (adjusted for 

inflation using the US housing price index to year 2000) per unit GSP. I used the 

unadjusted economic damages as reported by NOAA and then normalized them 

according to the methods described below. NOAA’s method of calculating total damages 

is to take reported insurance damage from a given storm and double that number to 

account for damages not covered by insurance (Zia, 2012). This method of doubling 

insured loss data has been found to produce large errors in some estimates for individual 

counties within the US, but no statistically significant tendency to underestimate or 

overestimate (Downton et al., 2005). The methods used by NOAA to calculate damages 

are undesirable but at least consistent. As damages were reported unadjusted for inflation, 

I converted all damages to constant dollars for the year 2000 using the US Housing Price 

Index (HPI).  

Section 3.3.1: Normalization of damages using nighttime satellite imagery 
 

Based on earlier analysis, when comparing economic damages through time, those 

damages should be “normalized” to account for changes in GDP and population per 

capita (Pielke, 1998; Nordhaus, 2006; Neumayer et al. 2011). In this present paper, I did 

not look for trends in damages over time but was nonetheless comparing damages from 

different storms across space and years in an effort to understand how those damages 
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were influenced by the independent variables described below.  

Unfortunately data on GDP, wealth per capita, or population in the US was only 

readily available at metropolitan or state levels. Yet the track for each storm cut across 

defined metropolitan lines and often only affects a portion of several metropolitan areas at 

the same time. Because of this, I was unable to collect data directly and had to appeal to 

alternative methods.  

I applied a method used previously by Constanza et al. (2008) and Sutton et al. 

(2002) to estimate the Gross Spatial Product (GSP) within each swath by using nighttime 

satellite imagery. This method has been shown to be quite accurate in measuring the 

extent of urban land cover, population density, energy consumption, greenhouse gas 

emissions and other socio-economic parameters (Elvidge et al., 1997; Sutton et al., 1997; 

Doll et al., 2000). Estimating GSP, GDP and other such economic variables using satellite 

imagery is not without its critics, however, especially when used for developed countries 

such as the US, see (Chen and Nordhaus, 2011).  

  Using light imagery data from the Defense Meteorological Satellite Program’s 

Operational Linescan System (DMSP OLS) between 1992 and 2012, I used GIS to 

measure a total light energy value for each swath in this study. The DMSP OLS images 

have been screened for clouds and ephemeral lights such as lightning, forest fires, gas 

flares, and lantern fishing (Elvidge et al., 1999). The image is radiance calibrated so an 

integration of the values of the pixels over the land area of a given swath is a measure of 

total light energy (Sutton et al. 2002).  

Once the light energy (LE) values were calculated for each storm, I used the 
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findings from Sutton et al. (2002) to estimate the GSP within each swath by 

         ln(𝐺𝑆𝑃) =  −4.25 + 1.05 ln(𝐿𝐸).                                                 [8] 

The coefficients in [8] were calculated for the year 1995 across the US by Sutten 

et al. 2002). The results of this conversion for each storm in our study can be found in 

Table 4a in the appendix where values are given in millions and constant year 2000 USD. 

The average GSP in this sample was $67176.8 (million year 2000 US). Using the 

estimated GSP for each swath, I was then able to normalize economic damages by taking 

the ratio of real economic damages in swath i relative to the estimated real GSP present in 

the same swath to get, 

  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑖  =  𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑖/ 𝐺𝑆𝑃𝑖.  [9] 

From the papers reviewed in the previous chapter, there is a clear trend in the 

literature to take the natural log of damages (Costanza et al. 2008; Zia 2012; Nordhaus, 

2006; Pielke et al. 2008). One problem encountered with this transformation, at least with 

respect to the data used in this present study, was that there were 16 storms for which 

economic damage was reported as zero and so applying a natural log was not possible. 

The smallest value, other than 0, for normalized economic damages was 0.0009 and so 

storms for which normalized economic damage was reported as zero, a value of 1x10-6 

was used in place of zero. 

Section 3.4: Storm intensity variables 
 

The intensity of storms has been found to dramatically influence the economic 

damages associated with tropical cyclones; see Zia (2012), Costanza et al. (2008), 
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Nordhaus (2006) and Stern (2007).  In Brody et al. (2007, pg. 12), the amount of rainfall 

the day prior to each flooding event was found to have a significant influence on the 

economic damages from a flooding event.  

Variables used in this study as a proxy for intensity include maximum sustained 

winds at landfall (MSW) and the average amount of rain per hour of the storm over land. 

Storm intensity variables were taken from the storm reports presented by NOAA and the 

digital information contained in the downloaded track of each storm. 

The digital track of each storm contains details on the maximum sustained winds 

(MSW) of the storm in knots every six hours of the storms life. Using GIS, the MSW of 

each storm at landfall was recorded using information contained in the digital data, in 

accord with Nordhaus (2006). For storms that did not hit land but came within 200km of 

the shore, the MSW at the storm’s closest point to land was used. Further, the time at 

which each storm either made landfall or was within 200 km of the coast was recorded 

until each storm was either more than 200 km from the coast or became a tropical 

depression. The time spent overland or duration for short is simply the total number of 

hours each storm spent within 200km of shore and/or overland.  

There was sufficient information from all 94 storms to compute an average 

rainfall total from each storm though the method used to calculate the average was 

slightly different for some. For each storm with data on the amount of rainfall in 

(measured in mm) in each county affected by a given storm, all observations were 

recorded and then averaged over locations. For storms in which the rainfall location was 

not available, the storm report gave a range of rainfall that fell over all locations affected 
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by the storm. For storms with this level of detail, the average between the lowest and the 

highest figure was used.  

Section 3.5: Frequency of storms 
 

To test Nordhaus’s (2006) assumption that damages increase at a rate greater than 

linear in frequency I hypothesize that the coefficient on frequency will be 𝛽𝑖 > 1. I argue 

that each additional storm of similar intensity to make landfall in a given area creates 

more damages if critical infrastructure is destroyed from the previous storm. For example, 

if Tallahassee Florida is hit by two category 1 hurricanes in one year, the damages from 

the second should be greater than the first because infrastructure designed to lessen 

damages may have a diminished capacity to buffer the energy from the second hurricane.   

 To generate a measure of frequency, I counted the number of tropical cyclones 

classified as at least a tropical storm that passed through a 200km diameter circle centered 

at the landfall point of the storm being assessed and then divided that number by the 

number of years in this study.  

Figure 2 below displays visually how I counted the frequency value for hurricane 

Alberto in 2006. First, the point of landfall (just to the South East of Tallahassee) was 

assigned to be the center of a 200km diameter circle. Then, all storms between 1992 and 

2012 that passed through this circle were counted and then divided by the number of 

years in the study to get the average number of storms per year to strike the landfall 

location of Alberto.  
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Figure 2: Tropical cyclones passing within a 200km circle centered on hurricane Alberto. Each line 
represents a different storm where the colour represents the intensity of the storm.

 

Section 3.6: Physical Exposure 

 
Exposure to hazards can be understood as the “presence of human and ecosystem 

tangible and intangible assets and activities (including services) in areas affected by 

weather extremes (Field 2012, pg. 3). For Peduzzi et al. (2002), where human lives lost 

was the dependent variable, physical exposure was defined as the frequency of storms 

multiplied by population of a given country.  

 In this present paper, the use of population in place of elements at risk does not 

make sense with our dependent variable being only insured and non-insured losses. Since 

I am looking at economic damages that result from insured and non-insured losses, using 

the value of buildings, infrastructure, agricultural production, and services lost within a 
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storm track would be ideal. Unfortunately, data for these options was not directly 

available and so a proxy measure was used. 

A variable called High Intensity Development (HID) was used as a proxy for 

elements in the storm track. High intensity development was the area (in km2) of the sum 

of high intensity residential (HIR) and commercial/ industrial development (CID). The 

argument for using HID in physical exposure is two fold. First, HIR and CID both require 

80-100% of land cover to be constructed material and could be added together to find the 

total area of land covered by impervious surfaces. Second, while HIR includes such 

buildings as apartment complexes and row houses, CID includes areas of infrastructure 

(e.g. roads, railroads, etc. and all highly developed areas, which are not classified as high 

intensity residential). Therefore, it was reasonable to combine both into one variable that 

measures densely built, structures and infrastructure that could be at risk of being 

damaged in a storm.  

Recall from chapter 2 that Brody et al. (2007) found that, between 1997 and 2001, 

the amount of impervious surfaces was significantly related to damages from flooding 

events while Zia (2012) found that the density of buildings had significant explanatory 

power for economic damages from tropical cyclones. It was then reasonable to 

hypothesize that, given a certain frequency of storms (as calculated above), a city would 

be more physically exposed to a tropical cyclone as the square area of HID increases. 

Therefore, explanatory variables in this paper will include frequency and high intensity 

development as a proportion of total land area in a given swath. 
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Section 3.6: Vulnerability 
 

Field (2012, pg. 2) has a lengthy discussion on vulnerability being composed of 

two elements: the susceptibility of what is exposed to harm (loss or damage) and the 

capacity to recover from a hazard. The definition of vulnerability is the propensity or 

predisposition to be adversely affected (Field, 2012). Using this definition and 

considering that normalized economic damage is the dependent variable in this present 

paper, it follows that vulnerability to tropical cyclones should include those aspects of 

how much protection exists for individuals living in the path of a storm.  

 Given the evidence found in Brody et al. (2007) and Wamsley, et al. (2010) that 

wetlands may reduce damages due to flooding and storm surges, the presence of wetlands 

changes the probability of harm from flood and storm surge damages. In line with the 

definition of vulnerability from Field (2012), it can be argued that wetlands may lessen 

the vulnerability of a given area to damages from flooding and storm surge. In other 

words, an area is more vulnerable to storms if they have relatively less wetland area to 

lessen the impact of the storm.  

There are two broader categories of wetlands used in this study (Estuarine and 

Palustrine) and there are several subtypes of wetlands that were included in the land cover 

data files. Palustrine wetlands may be situated shoreward of lakes, river channels, or 

estuaries; on river floodplains; in isolated catchments; or on slopes (USGS, 2014c). 

Estuarine wetlands are found exclusively near ocean shores where they are semi-enclosed 

by land but have open, partly obstructed, or sporadic access to the open ocean, and in 
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which ocean water is at least occasionally diluted by freshwater runoff from the land 

(USGS, 2013). More detailed classifications of Estuarine and Palustrine wetlands are 

illustrated in figures 3 and 4 respectively.   

 

Figure 3 Classification of Estuarine wetlands as one progresses further from shore (left to right in the 
figure). Source: USGS (2013a). 
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Figure 4 Classification of Palustrine wetlands relative to their positioning within an inland ecosystem. 
USGS (2013b). 

As previously discussed, total wetland area was measured using GIS for each 

storm in this study. Each storm had a constant swath width of 200km, however the length 

of each swath may be different. As the total area covered by each storm was not constant, 

the ratio of wetland area to the total area was used to properly compare the effect of 

wetland extent on economic damages for different storm.

Section 3.7: Summary statistics 

 

The first step in this analysis was to look at summary statistics for each variable, 

relationships between dependent and independent variables, distributions, and 

correlations between independent variables. The second step was to perform the 

necessary transformations of variables according to their kernel density plots. The 

summary statistics for all variables included in this study are displayed in Table 1 below.  

The average HPI inflation adjusted damages over the study are $2.9 billion (US 
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2000) per storm with a minimum value of 0 damages ranging to a maximum value of $73 

billion (US 2000). When damages are normalized using real GSP, the average damage 

was 11.3% of GSP with a maximum of 281% of GSP in the case of Hurricane Katrina. To 

give some context, Katrina caused damages of 280% of the GSP in the area that it 

affected. The average MSW at landfall was 116.9 km/hr (63 knots), which is a very 

strong tropical storm and just 3km/hr away from being classified a category 1 hurricane 

on the Saffir-Simpson wind scale. The average frequency of storms was 0.78 storms per 

year with an average rainfall of 6.35 mm/hr. 

Table 1: Summary statistics 

      

Variable Obs Mean Std. Dev. Min Max 

      

Economic 

Damages (real 

yr. 2000 in 

millions) 

94 2913 9611 0 73004 

Normalized 

Damages  

94 0.113 0.367 0.0001 2.81 

MSW (km/hr) 94 116.9 48.80 46.75 268.5 

Rain per hour 

(mm/hr) 

94 6.35 5.58 0.05 33.78 

Frequency 

(storms/year) 

94 0.786 .2675 .33 1.466 

High Intensity 

Development  

94 0.076 0.613 0.007 0.29 

Palustrine 

wetlands/ total 

area 

94 0.064 0.015 0.0013 0.867 

Estuarine 

Wetlands/total 

area 

94 0.092 0.111 0.0014 0.79 
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Section 3.8: Data analysis  
 

There has been some interest in previous work about trends in economic damage from 

hurricanes (see Pielke et al. 1998). Figure 5 below shows the natural log of normalized 

economic damages spread over time and does not display any visible trend.  

 

Figure 5: Natural log of normalized damages between 1992 and 2012 

There has also been mention by Zia (2012) that policy makers ought to cap the 

density of development in hurricane prone areas. The concern in Zia (2012) is that the 

greater the amount of highly dense development, the higher economic damage ought to be. 

The data found in this present study can shed light on whether there are any observable 

trends in the level of development that exists in areas prone to tropical cyclones.  

Figure 6 below shows a clear trend in the average amount of high intensity 

development areas (in km2) to be hit by tropical storms per year between 1992-2012. This 
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trend could be the result of more and more development along coastlines as mentioned in 

Nordhaus (2006) and Zia (2012).  

 

Figure 6: The average area of high intensity development hit by tropical cyclones per year 

 

Section 3.9 Relations between normalized damages and maximum sustained 
winds 
 

The first important relationship I observed was the relationship between the 

natural log of normalized damages and the natural log of maximum sustained winds as 

there is established evidence that suggests the relationship is exponential (Nordhaus, 

2006; Costanza et al. 2008).  

Figure 7 below shows a scatter plot of the natural log of normalized damages over 

the natural log of MSW. It was found that the variance of damages at lower wind speeds 

appears to be much greater than the variance of damages at higher wind speeds.  
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Figure 7: The natural log of normalized damages over the natural log of maximum sustained winds 

for all storms 

 

Having an unequal variance over the sample causes concern for heteroskedasticity 

with this data. Further, it could be the case that damages vary more at lower MSW 

because other variables are more influential in causing damages than the winds. Therefore, 

a dummy variable was used such that D = 1 if MSW are below 116 km/hr, which is the 

sustained wind speed at which a storm becomes a category 1 hurricane, and D = 0 

otherwise. This dummy variable will allow for the identification of a change in damages 

as storms become hurricanes.

Section 3.10: Transformation of different variables 
 

When looking at the kernel density of unadjusted normalized economic damages 

(ED) as shown in Figure 9a, it is clear that a transformation was needed. Figure 10a 

shows that taking the natural log of normalized ED revealed a much more symmetric 
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distribution of damages. After adjusting for inflation using both HPI and CPI and 

normalizing for GSP, it was evident that taking the natural log was the appropriate 

transformation for them as well.  

Looking at the kernel density of variables listed in Table 1 above revealed that 

they needed to be transformed by logs. The kernel density estimates for all log 

transformations are given in Figure 19a through Figure 115a.  Given the necessary 

transformations using natural logs, using a log-linear regression was not an option with 

this data and a double log will be used.  

As noted previously, there are 16 observations where economic damages are zero 

out of 94 total observations. Having almost 20% of the observations in the sample being 

zero, it was suggested that a probit specification maybe more appropriate. Since I am 

concerned about heteroskedasticity however, it makes sense to use a linear probability 

model with robust standard errors instead of a probit specification because probit models 

are more sensitive to heteroskedastic errors than are LPMs (Kennedy, 2003). The linear 

probability model allowed me to identify the change in the probability of normalized 

damages occurring with a dichotomous dependent variable that represents normalized 

economic damages (ED) where ED = 1 if normalized damages > 0 and ED = 0 otherwise. 

This model asks the same question as the probit but with less interference from violating 

the unequal variance assumption. 
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Chapter 4: Data Analysis and Results 

Section 4.0: Regression equation 
 

I have made the case over the course of the last few chapters that economic 

damage as a proportion of the total GSP in each swath can be modeled as a function of 

storm intensity, physical exposure and vulnerability. In model 1 below, intensity includes 

maximum sustained winds and the amount of rainfall per hour. Physical exposure 

includes the frequency of storms and the proportion of high intensity development in a 

swath while vulnerability contains the proportion of wetlands in a given swath and 

included both palustrine and esturine wetlands. Further, as mentioned in the previous 

chapter, there is good evidence from figure 7 that the variance of damages at lower 

sustained wind speeds is greater than at higher sustained wind speeds. Therefore I 

included a dummy variable which is equal to 1 if MSW < 116km/hr and is 0 otherwise.  

The main model we tested, model 1, is: 

ln (
𝐸𝐷𝑖 

𝐺𝑆𝑃𝑖
) =  𝛼 + 𝛽1 ln 𝑀𝑆𝑊𝑖 + 𝛽6

𝑅𝑖

𝐻𝑅𝑖
+ 𝛽2𝑙𝑛𝐹𝑖 + 𝛽3𝑙𝑛𝐻𝐼𝐷𝑖 + 𝛽4 ln (

𝑃𝑊𝑖

𝑇𝐴𝑖
) + 𝛽5 ln(

𝐸𝑊𝑖

𝑇𝐴𝑖
) + 𝛽7𝐷𝑖 + 𝜀𝑖.   [11] 

The subscript i denotes an individual storm.  EDi/GSPi represents the economic 

damage per unit GSP, MSWi represents the maximum sustained winds, F represents the 

frequency of cyclones, HID represents high intensity development, PWi/TAi is the area of 

palustrine wetlands present as a proportion of total area (TAi) in the swath, EWi/TAi is the 

area of estuarine wetlands as a proportion of the total area, Ri/HRi is the rainfall per hour, 

D is a dummy variable. 

 



 45 

The linear probability model has a dichotomous variable ED, where ED= 1 if the 

economic damages per gross special product are greater than 0 and are 0 otherwise. The 

model is then,   

𝐸𝐷𝑖 =   𝛼 +  𝛽
1

ln 𝑀𝑆𝑊𝑖 + 𝛽
6

𝑅𝑖

𝐻𝑅𝑖

+ 𝛽
2
𝑙𝑛𝐹𝑖 + 𝛽

3
𝑙𝑛𝐻𝐼𝐷𝑖 + 𝛽

4
ln (

𝑃𝑊𝑖

𝑇𝐴𝑖

) + 𝛽
5

ln(
𝐸𝑊𝑖

𝑇𝐴𝑖

) + 𝛽
7

𝐷𝑖 + 𝜀
𝑖

 

Section 4.1: Regression results for double log and linear probability models 
 

This section describes the regression results from the two models run for analysis. 

Table 2 below displays regression results for the OLS model and the LPM model. The 

results for the OLS model show that only maximum sustained winds and the dummy 

variable are significant at the 1% and 10% level, respectively. The LPM results are 

displayed but no significance was found, even for maximum sustained winds..  

Table 2:  OLS models where the natural log of normalized damages was the dependent variable and 

for the linear probability model it was a dichotomous variable.  

Variable Names OLS Model OLS Model 

with 

interactions 

Linear 

Probability 

Model  

Linear 

Probability 

model with 

interactions 

Ln Maximum 

sustained winds  

6.18*** 

(2.13) 

6.18 

(4.03) 

0.107 

(0.17) 

-0.148 

(0.105) 

Ln Frequency -0.20 

(1.53) 

-0.425 

(2.30) 

-0.175 

(0.12) 

-0.014 

(0.045) 

Ln High Intensity 

Development 

0.326 

(0.83) 

1.48 

(1.95) 

0.058 

(0.66) 

0.04 

(0.04) 

Ln Paulstrine 

Wetlands 

0.94 

(1.94) 

4.24 

(5.33) 

0.242 

(0.15) 

0.315 

(0.188) 

Ln Estuarine 

wetlands 

0.25 

(0.44) 

0.91 

(0.70) 

0.013 

(0.35) 

0.026 

(0.193) 

Ln Rainfall per 

hour 

0.29 

(0.41) 

2.02* 

(1.07) 

0.617 

(0.33) 

0.115 

(0.050) 

Dummy -2.68* 

(1.82) 

-16.54 

(23.55) 

0.133 

(0.145) 

-2.36 

(1.36) 

Dummy* Ln 

Maximum 

sustained winds 

 -0.89 

(4.75) 

 0.404 

(0.157) 
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Dummy*Ln 

Frequency 

 -1.35 

(3.14) 

 -0.39 

(0.209) 

Dummy*ln High 

intensity 

development 

 -1.54 

(2.18) 

 0.028 

(0.101) 

Dummy*ln 

Palustrine wetlands 

 -3.87 

(5.73) 

 -0.065 

(0.303) 

Dummy*ln 

Estuarine wetlands 

 -1.04 

(0.91) 

 -0.026 

(0.060) 

Dummy*ln  

Rainfall per hour 

 -2.22* 

(1.16) 

 -0.083 

(0.07) 

Constant -21.99 

(5.56) 

-19.00 

(20.94) 

0.74 

(0.68) 

2.20 

(0.680) 

Observations 94 94 94 94 

R2 0.41 0.49 0.23 0.23 

Note: All standard errors are in parenthesis and * =10% **= 5% ***= 1% significance.

 

Section 4.2: Testing for Heteroskedasticity 
 

One concern raised above with respect to the variance of damages at lower levels 

of lnMSW was that heteroskedasticity could be present in the data. Heteroskedasticity 

was further suspected based upon the results described in Zia (2012) who found 

heteroskedasticity to persist in economic damages as well. To test our own results for 

heteroskedasticity, the Breush-Pagan/ Cook-Weisberg (BP/CW) test was used and gave a 

chi square statistic of 9.25 (p > chi2 = 0.0024) for the OLS model. Given this large 

number, the null hypothesis of constant variance was rejected in favor of the hypothesis 

that heteroskedasticity was present. 

Section 4.3: Accounting for Heteroskedasticity 
 

To account for the heteroskedasticity and present more robust standard errors, 

White’s robust standard errors were used; the results of these two methods appear in 

Table 4 below. For the OLS model, the robust standard errors are smaller for the lnMSW 

and the dummy variable than with the original model.  
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Table 3: Results of OLS using regular standard errors and OLS using White's robust estimates. The 
dependent variable is the natural log of normalized damages.  

Variable Names OLS 

Model 

with 

regular 

standard 

errors 

OLS 

Model 

White’s 

robust 

standard 

errors 

OLS 

Model with 

interactions 

OLS 

Model with 

interactions 

and robust 

standard 

errors 

Ln Maximum 

sustained winds  

6.18*** 

(2.13) 

6.18*** 

(2.09) 

6.18 

(4.03) 

6.18*** 

(4.03) 

Ln Frequency -0.27 

(1.53) 

-0.27 

(1.57) 

-0.425 

(2.30) 

-0.425 

(2.30) 

Ln High Intensity 

Development 

0.326 

(0.540) 

0.326 

(0.564) 

1.48 

(1.95) 

1.48 

(1.95) 

Ln Paulstrine 

Wetlands 

0.551 

(1.24) 

0.551 

(1.65) 

4.24 

(5.33) 

4.24 

(5.33) 

Ln Estuarine 

wetlands 

0.336 

(0.288) 

0.336 

(0.272) 

0.91 

(0.70) 

0.91** 

(0.70) 

Ln Rainfall per 

hour 

0.176 

(0.270) 

0.176 

(0.431) 

2.02* 

(1.07) 

2.02** 

(1.07) 

Dummy -2.69 

(1.82) 

-2.69* 

(1.58) 

-16.54 

(23.55) 

-16.54 

(17.46) 

Dummy* Ln 

Maximum 

sustained winds 

  -0.89 

(4.75) 

-0.89 

(3.59) 

Dummy*Ln 

Frequency 

  -1.35 

(3.14) 

-1.35 

(3.14) 

Dummy*ln High 

intensity 

development 

  -1.54 

(2.18) 

-1.54 

(2.18) 

Dummy*ln 

Palustrine 

wetlands 

  -3.87 

(5.73) 

-3.87 

(5.73) 

Dummy*ln 

Estuarine wetlands 

  -1.04 

(0.91) 

-1.04 

(0.91) 

Dummy*ln  

Rainfall per hour 

  -2.22* 

(1.16) 

-2.22** 

(1.16) 

Constant -31.99*** 

(8.57) 

-31.99*** 

(9.71) 

-19.00 

(20.94) 

-19.00 

(20.94) 

Observations 94 94 94 94 

R2 0.45 0.45 0.49 0.49 

Note: All standard errors are in parenthesis and * =10% **= 5% ***= 1% significance.

Section 4.4: Interpretation of OLS model with and without interaction terms. 
 

From the OLS model without interaction terms one can expect a 1% increase in 

MSW to cause an increase in economic damages per unit GSP of 6.18%. The data for 
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economic damage per unit GSP has a skewness of 5.26 suggesting a fairly skewed 

distribution. As such the median economic damage per GSP of 0.00103 differs greatly 

from the mean of 0.113 and therefore using the median to calculate the change in 

normalized economic damages would possibly underestimate the impacts of the 

coefficients on normalized damages. From the OLS model with out interactions then, a 

6.18% increase in the mean of normalized damages would cause the average damages per 

unit GSP to increase by 0.0069 or 0.6% of gross spatial product. 

The dummy variable in the OLS model has a coefficient of -2.69 and as such 

when D= 1, a -269% change in economic damages per unit gross spatial product can be 

expected. Therefore, a tropical storm is expected to cause much less damage than a 

hurricane; the average economic damage will decrease by 30% of the total GSP in the 

swath.  

For the OLS model with interaction terms, once robust standard errors were used 

four variables returned significant results. Since I included interaction terms and the 

dummy variables used for these interactions are such that D =1 when MSW < 119km/hr, 

the variables without interaction terms give us the impact of those variables for hurricanes 

only. As such, for the natural log of MSW, a 1% increase in the MSW results in a 6.18% 

increase in damages for hurricanes only. The interaction between the dummy variable and 

lnMSW was not significant at even the 10% level.  

 

The other variables that showed significance were estuarine wetlands, the natural 

log of rainfall per hour and the interaction term of the dummy and rainfall per hour. For 

estuarine wetlands, a 1% increase in the proportion of estuarine wetlands to total area 

affected by a storm results in a 0.91% change in damages, which is almost negligible. The 
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amount of rainfall per hour is significant as well both for hurricanes and for tropical 

storms. The natural log of rainfall per hour, without the interaction term, was 2.02 and so 

a 1% increase in the amount of rain per hour of a hurricane results in a 2.02% increase in 

damages. For the interaction term, and consequently for tropical storms, the impact of 

rainfall per hour is -2.22 and so the impact on damages is -0.2. This means that an 

increase in the rainfall per hour actually decreases the amount of damage slightly by 0.2%. 

Section 4.5: Chapter Summary 
 

In this chapter, I specified an OLS with and without interaction terms as well as a 

linear probability model. I found heteroskedasticity to be present in both models and so 

used White’s robust standard errors to correct for the heteroskedasticity. The only two 

variables in the OLS model that were significant were the natural log of maximum 

sustained winds and the dummy variable. For the OLS model with interaction terms, the 

natural log of MSW, estuarine wetlands, the natural log of rainfall per hour, and the 

interaction term of rainfall per hour are significant.  
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Chapter 5: Discussion and concluding remarks 
 

Section 5.0: Introduction 

 This chapter discusses the results found in the previous chapter and suggests 

possible improvements to the data gathering process described in chapter 3. This chapter 

will start with a discussion on importance of maximum sustained winds in describing 

economic damages. I will then discuss the insignificant variables and possible methods to 

improve the data collection process.  

Section 5.1: Maximum sustained wind speed and economic damages 
 

The elasticity of normalized damages to maximum sustained winds was 6.18, 

which is close to Nordhaus’s (2006) finding and double that of Costanza et al’s (2008) 

findings, which are both discussed in chapter 2. In chapter 4, the variance of the natural 

log of normalized damages was larger than at higher log MSW. At lower values of MSW, 

the variance of damages may be high because of a wide range of building codes, wetland 

extent, severity of floods, frequency of storms as well as other factors not considered in 

this study. This should mean that there is also potentially more error in damages at lower 

log MSW and so I plotted the square residuals against lnMSW as shown in Figure 8 

below.  

The relationship shows a clear negative relationship and a break just after the log 

MSW of 4. After the break, the errors are much lower than before the break as well as 

appearing to be more uniform. This is well in line with the uniform variance of log 

normalized damages at high MSW.  



 51 

 

Figure 8: Squared residuals from the OLS model with robust standard errors presented as a function of 
the natural log of maximum sustained winds 

It is quite clear from a comparison between Figure 7 and 8 that the results are 

consistent with Nordhaus’s (2006) structural failure theory. The OLS model and the OLS 

model with interaction terms show support for Nordhaus’ findings.  After a storm 

becomes a hurricane, damages rise exponentially with much less error; one may be less 

likely to see structural damage from wind during a tropical storm than in a hurricane 

because the power being produced by the wind isn’t sufficient enough to cause a 

structural failure in buildings. At lower sustained wind speeds, the structural integrity of 

building isn’t compromised by the power of the wind and so damages should, at least on 

average, be less in total but also vary more. This greater variance could be the result of 

variables not included in this present study.  

The OLS with interaction terms also showed that the natural log of estuarine 

wetlands to cause a significant, yet small, increase in damages for hurricanes. This result 
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is in contrast to Costanza et al’s (2008) finding that coastal wetlands reduce economic 

damages from storms. In future research it would be good to interact estuarine wetlands 

with storm surge heights to get a clearer picture of how these wetlands interact with 

hurricanes.  

For the amount of rainfall per hour, there is a significant and relatively large 

impact for hurricanes but a negligible impact for tropical storms. I looked at the average 

rainfall per hour for hurricanes and for tropical storms and found there to be no 

significant difference in their means. For tropical storms the average rainfall per hour was 

0.7 mm/hr and for hurricanes it was 0.6mm/hr. In future studies, I would like to interact 

the amount of rainfall per hour with characteristics of land such as wetlands and 

impervious surfaces to get a better understanding of how these interact. 

Section 5.2: Variables showing no significance 
 

I first hypothesized in chapter 3 that normalized economic damages can be 

described by the maximum sustained winds, high intensity development, palustrine 

wetlands, and frequency of storms. The results from both OLS and the linear probability 

model suggest that only the maximum sustained winds, the rainfall per hour and, for 

hurricanes at least, estuarine wetlands are statistically significant explanatory variables 

for the variation in normalized damages.  

It is unclear why there is such a contrast between the results in this study and 

those of Costanza et al. (2008), Zia (2012), Brody et al. (2007) who all found land 

characteristics to be significant predictors of economic damages in one form or another. It 

could be the case that there is some measurement error that resulted from the GIS 
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methods or that the selection of the buffer width was too large or too small. In future 

studies of this kind, different buffer widths, depths and potentially different GIS 

techniques could be considered to lessen the noise in the data.  One method could be to 

measure land characteristics only 100km inland as done in Costanza et al. (2008) or to 

simply measure different characteristics. Another option would be to use the distribution 

of storm surge heights to inform the butter width. The center of the buffer could be where 

the highest storm surge occurred and be as wide as the storm surge is above some 

determined number.  

There could also be variables not included in this study that have significant 

explanatory power over normalized damages. Variables such as soil porosity, as used in 

Brody et al. (2007), and a dummy variable indicating whether or not the area affected by 

a storm is in a flood plane could be used. These are easily attainable using GIS and could 

be added to our model. Soil porosity could be important because, if the soil were dense or 

saturated at the time of a storm, one would expect less absorption and therefore more 

surface runoff to cause damages. Further, having development in a floodplain ought to be 

a significant predictor of damages, as observed with the flooding of Calgary in 2013.  

Section 5.3: Conclusion 
 

This chapter discussed the results highlighting several notable themes. First, the 

relationship between normalized damages and MSW at landfall is statistically significant 

and more in line with the findings of Nordhaus (2006) than with those of Costanza et al. 

(2008). Second, the frequency and percentage of land classified as high intensity 

development or as palustrine wetlands turned out to be insignificant. Future research 
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should be done on the contribution of the characteristics of cities and urban areas to 

economic damages as there may be a significant variable undiscovered in this study.  
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Appendix  
 

Table 4a: Estimated GSP from each storm in the sample between 1992-2012 

Storm Name GSP (millions year 

2000) 

Storm Name GSP (millions year 

2000) 

Andrew 22314 Henri 40319 

Dannielle 95325 Isabel 15287 

Earl 6359. Alex 19147 

Arlene 9991 Bonnie 121701 

Emily 5908 Charley 51057 

Alberto 91753 Frances 24564 

Beryl 284118 Gaston 18508 

Gordon 24432 Hermine 53635 

Allison 68245 Ivan 103711 

Dean  52765 Jeanne 121480 

Erin 21444 Matthew 44260 

Jerry 105015 Arlene 54490 

Opal 9600 Cindy  351906 

Arthur 31618 Dennis 193634 

Bertha 221853 Emily (NT) 11082 

Fran 30658 Katrina 29084 

Josephine 159480 Ophelia 44028 

Danny 231336 Rita 14844 

Bonnie 6258 Wilma 8895 

Charley 19779 Tammy 79630 

Frances 3350 Alberto 114997 

Georges 10357 Ernesto 95597 

Hermine 33627 Andrea 20963 

Mitch 34816 Barry 195128 

Bret 2162 Erin 26741 

Dennis 91442 Gabrielle 18270 

Floyd 110195 Humberto 53237 

Harvey 26189 Christobal  21391 

Irene 25976 Dolly 20472 

Gordon 303884 Edouard 68487 

Helene 164951 Fay 147501 

Leslie 21482 Gustav 22701 

Allison 91753  Hanna 111675 

Barry 81917  Ike 21168 

Gabrielle 43253 Claudette 55620 

Arthur 24071 Ida 12308 

Bertha 61217 Bonnie 69897 

Edouard 37829  Earl 21598 

Fay 46017 Hermine 47255 

Gustav 5805 Nicole 23016 

Hanna 70853 Irene 68928 

Isidore 15103  Lee 71532 

Kyle 71404 Alberto 195128 

Lili 8282 Beryl 115379 

Bill 55621 Debby 68101 

Claudette 37652  Isaac 47052 

Grace 76153  Sandy 125488 
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Figure 9a: Kernel density for normalized economic damage 

 

Figure 10a: Kernel density for log normalized economic damage 
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Figure 11a: Kernel density of the natural log of maximum sustained winds 

 

Figure 12a: Kernel density of the natural log of high intensity development 
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 Figure 13a Kernel density of the natural log of palustrine wetlands as a proportion of total area 
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Figure 14a Kernel density of the natural log of frequency 
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Figure 15a: Kernel density of residuals from OLS 

 

 

 


