

COMBINING MULTIPLE ENCRYPTION ALGORITHMS AND A

DISTRIBUTED SYSTEM TO IMPROVE DATABASE SECURITY IN

CLOUD COMPUTING

by

Amjad F. Alsirhani

Submitted in partial fulfilment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

August 2014

© Copyright by Amjad F. Alsirhani, 2014

ii

DEDICATION

II dedicate this thesis to my late father, Faleh �1940-2011�.

Three years have passed
I�l l never forget the day

Someone rang to tell me

That you�d gone away
© Diana Doyle

iii

TABLE OF CONTENTS

�

���������	
���
�

���
��

	
���	���
����

��������	

����	���

	���

��	��

���������	�
���
����	���	��

���

�������������������	��

��������	���

��	��������
	���������	������	���

��������������
���

���������	�
��
�

������������������
����	��
�����	��

��������������������
��

��������������������
�����	�
��

����
�������������
�������	
�� �

����������
�
��

������!���"��#��
$%�
������	�%���&�

��������
�'����	���(%�%�����������	�%���)�

����
�!��������("����	�%��*�

�������	���("����	�%���+�

��	���

������������	���

���������
��

�����,��	���
�������	
��� �

�����-	%�����%�
���!����
.��

���
�!���/����%�%��
��

��	����� �����������	�����	�����	���	�� �

iv

�����	����������	���

������������������
���!�����%������0
��	%�
��
��

������!���1	�2�3��-����
��%�
��
4�

�����������	���

������,�%��%�
���
�

������,�%��%�
���5�
�����%���
�%��� �

����
�(��%���(�	
����5�
���������%���
�%��4&�

������ ,�%��%�
���5�
��������
��� �

����4�6���������%���
��%���(
�����
��&4�

��	�����!�������������	��" �

�����������	��� ��

����!������
��� ��

���"#�

v

LIST OF TABLES
�$%&'��(�����$)*&'�+,�-.'/�'0�0.**+/1'2�%3�14'�)$01'/�5&+.2�((��"�

�$%&'��(�����$)*&'0�+,�-.'/�'0�0.**+/1'2�%3�����((��6�

�$%&'��(�����$)*&'0�+,�-.'/�'0�0.**+/1'2�%3�����(((��7�

�$%&'��(����$)*&'0�+,�-.'/�'0�0.**+/1'2�%3��'$/54�((����

�$%&'��(!���$01'/�5&+.2�-.'/�'0�((��!�

�$%&'��(8����$)*&'0�+,�$&&�-.'/�'0�14$1�$/'��9�1�$1'2�,/+)�14'�.0'/�$92�14'�*/+�3�((((((((((((((((((((((((((����

�$%&'� (����:.'/3���(��'&'51�
�1�'0�$92��$/$)'1'/��$&.'0�� �

�$%&'� (����:.'/3���(��'&'51�
�1�'0�$92��$/$)'1'/��$&.'0�� !�

�$%&'� (����:.'/3��(��'&'51�
�1�'0�$92��$/$)'1'/��$&.'0��� #�

�$%&'� (� ���4'�5+)).9�5$1�+9�2'&$30��9�)�&&�0'5+92�� 6�

�$%&'� (�!���4'�-.'/3�*/+5'00�9;�2'&$30��9�)�&&�0'5+92��!��

�$%&'� (�#���4'��/3*1+�2'&$30��9�)�&&�0'5+92���!��

�$%&'� (�8���4'�*/+�3�2'&$30��9�)�&&�0'5+92���! �

�$%&'� (�"���4'�1+1$&�2'&$30��9�)�&&�0'5+92�+,�,+./�054')'0�,+/�:.'/3��!"�

�$%&'� (�6���4'�1+1$&�2'&$30��9�)�&&�0'5+92�+,�,+./�054')'0�,+/�:.'/3��#��

�$%&'� (��7���4'�1+1$&�2'&$30��9�)�&&�0'5+92�+,�,+./�054')'0�,+/�:.'/3���# �

�$%&'� (������4'�1+1$&�2'&$30��9�)�&&�0'5+92�+,�14/''�054')'0�,+/�:.'/3���#"�

�$%&'� (������4'�1+1$&�2'&$30��9�)�&&�0'5+92�+,�14/''�054')'0�,+/�:.'/3���87�

�$%&'� (�������'&$30��9�)�&&�0'5+92�+,�14/''�054')'0�,+/�:.'/3��8��

vi

LIST OF FIGURES
��;./'��(����&+.2�5+)*.1�9;�$/54�1'51./' ------ ---3

��;./'��(����'/
�5'�&$3'/0�*/+
�2'2�%3�5&+.2�5+)*.1�9; --- 5

��;./'��(����4'�$/54�1'51./'�+,�14'�%.5<'1�=$1�+9�$**/+$54 -- 7

��;./'��(���4'�$/54�1'51./'�+,�14'�54�*(0'5./'2�2$1$�$55'00�$**/+$54 -- 8

��;./'��(!���4'�$/54�1'51./'�+,�14'��4+01�
�$**/+$54 -- 9

��;./'��(#���$)*&'�+,�1$%&'�+,��/3*1�
�$**/+$54 --- 10

��;./'��(����4'�$/54�1'51./'�+,�+./�054')'-------------------- --------------------- -------------------------------------13

��;./'��(����
'/
�'>�+,�+./�054')'--------------------------------- --------------------- ----------------------------------15

��;./'��(�����*4'/(%&+5<�54$�9�9;�?�
�@�)+2'�'95/3*1�+9--------- -------------------- -----------------------------17

��;./'��(���&'51/+9�5��+2'�
++<�?��
@��95/3*1�+9�	&;+/�14) -- 24

��;./'��(!���4'�,/$;)'91$1�+9�1'549�-.'�.0'2��9�+./�054')' --- 27

��;./'� (����$)*&'�+,�14'��91'/,$5' --- 42

��;./'� (�����'1'/)�9�9;�14'�5+)).9�5$1�+9�2'&$3�*$/$)'1'/��!7�

,�;./'� (�����4'�-.'/3�*/+5'00�9;�2'&$30���!��

��;./'� (� ���/3*1+�2'&$3�*$/$)'1'/0���!��

��;./'� (�!��*/+�3�2'&$3�*$/$)'1'/���!!�

��;./'� (�#���4'�2'&$30�+,�2�,,'/'91�5+)*+9'910�,+/�$�0)$&&�)'00$;'�0�='��!#�

��;./'� (�8���4'�2'&$30�+,�2�,,'/'91�5+)*+9'910�,+/�$�&$/;'�)'00$;'�0�='���!8�

��;./'� (�"���+)*+9'91�2'&$30�,+/��90'5./'2�5'91/$&�='2�(�:.'/3��!6�

��;./'� (�6���4'�5+)*+9'91�2'&$30�,+/�0'5./'2�5'91/$&�='2��9�14'�,�/01���!6�

��;./'� (��7���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���#7�

��;./'� (������4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�*$/$&&'&�,+/�:.'/3���#7�

��;./'� (������4'�5+)*+9'910�2'&$30�,+/��90'5./'2�5'91/$&�='2�,+/�:.'/3���#��

��;./'� (������4'�5+)*+9'910�2'&$30�,+/�0'5./'2�5'91/$&�='2�,+/�:.'/3���#��

��;./'� (�� ���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���#��

��;./'� (��!���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�*$/$&&'&�,+/�:.'/3���#��

��;./'� (��#���4'�5+)*+9'910�2'&$30�,+/��90'5./'�5'91/$&�='2�,+/�:.'/3��# �

��;./'� (��8���4'�5+)*+9'910�2'&$30�,+/��'5./'�5'91/$&�='2�,+/�:.'/3���#!�

��;./'� (��"���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���#!�

��;./'� (��6���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�*$/$&&'&�,+/�:.'/3���##�

��;./'� (��7���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���#6�

��;./'� (������4'�5+)*+9'910�2'&$30�,+/�0'5./'�5'91/$&�='2�,+/�:.'/3���#6�

��;./'� (������4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���87�

��;./'� (������4'�5+)*+9'910�2'&$30�,+/�.90'5./'2�5'91/$&�='2�,+/�:.'/3��8��

��;./'� (�� ���4'�5+)*+9'910�2'&$30�,+/�0'5./'�5'91/$&�='2�,+/�:.'/3���8��

vii

��;./'� (��!���4'�5+)*+9'910�2'&$30�,+/�0'5./'2�2�01/�%.1'2�0'/�$&�,+/�:.'/3���8��

��;./'� (��#���4'�5+)*+9'910�2'&$30�,+/�.90'5./'2�5'91/$&�='2�,+/�:.'/3��8��

��;./'� (��8���4'�5+)*+9'910�2'&$30�,+/�0'5./'�5'91/$&�='2�,+/�:.'/3���8 �

��;./'� (��"���4'�5+)*+9'910�2'&$30�,+/�0'5./'�2�01/�%.1'2�0'/�$&�,+/�:.'/3���8 �

��;./'� (��6��5+)).9�5$1�+9�2'&$30�,+/�.90'5./'�5'91/$&�='2�$**/+$54��8!�

��;./'� (��7���+)).9�5$1�+9�2'&$30�,+/�0'5./'�5'91/$&�='2�$**/+$54��8#�

��;./'� (������+)).9�5$1�+9�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54��88�

��;./'� (�����:.'/3�*/+5'00�9;�2'&$30�,+/�.90'5./'2�5'91/$&�='2�$**/+$54��8"�

��;./'� (�����:.'/3�*/+5'00�9;�2'&$30�,+/�0'5./'2�5'91/$&�='2�$**/+$54���86�

��;./'� (�� ��:.'/3�*/+5'00�9;�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54���"7�

��;./'� (��!���/3*1+�2'&$30�,+/�0'5./'�5'91/$&�='2�$**/+$54���"��

��;./'� (��#���/3*1+�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54���"��

��;./'� (��8���/+�3�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54��"��

viii

ABSTRACT

 Cloud computing is a technology that facilitates the storing and managing of data in a

decentralized manner. It includes a number of models and provides numerous services. It has

many advantages and relatively few disadvantages, which makes the move to cloud computing

quite attractive. However, since the data is out of the owner’s control, concerns have arisen with

regards to data confidentiality. Encryption techniques have previously been proposed to provide

users with confidentiality in terms of outsource storage. These encryption algorithms allow for

queries to be processed using encrypted data without decryption. However, a number of these

encryption algorithms are weak, enabling adversaries to compromise data simply by

compromising an algorithm. We propose a combination of encryption algorithms and a

distribution system to improve database confidentiality. This scheme distributes the database

across the clouds based on the level of security that is provided by the encryption algorithms

utilized. A hybrid cloud model is used in this research, which is a combination of public and

private clouds, with the critical activities taking place within the private cloud. We analyzed our

scheme by designing and conducting an experiment and by comparing our scheme with existing

solutions. The results demonstrate that our scheme offers a highly secure approach that provides

users with data confidentiality. It also provides acceptable overhead performance and supports

query processing.

ix

LIST OF ABBREVIATIONS USED
AES Advanced Encryption Standard

AES-CBC Advanced Encryption Standard – Block cipher mode

AES-ECB Advanced Encryption Standard – Electronic Code Book

ASPs Application Service Providers

CCP Cloud Computing Provider

DBaaS Database as a Service

DET Deterministic Encryption algorithm

HOM Homomorphic Encryption

IaaS Infrastructure as a Service

JSP Java Server Page

OPE Order-Preserving Encryption

PaaS Platform as a Service

QoS Quality of Service

SaaS Software as a Service

SDA Secure Distributed Approach

SQL Structured Query Language

SSL Secure Socket Layer

 VPN Virtual Private Network

WWW World Wide Web

x

ACKNOWLEDGEMENTS
First of all, I would like to express my very great appreciation to my supervisors,

Professor Srinivas Sampalli and Professor Peter Bodorik, for their guidance, encouragement and

useful critique with regards to this research.

I would also like to offer my special thanks to my mother where no words can describe the

gratitude I feel.

To my wife, Muram, who has always been there for me, and to my daughters, Hams, and

Nagham and my son, Adi, for their patience while I spent much of my time pursuing my

master’s degree.

To my brothers, sisters and friends—thank you for your constant encouragement, without

which this degree would not have been possible.

Lastly, I would like to acknowledge the financial support of Aljouf University for the

scholarship granted to me for the duration of my master’s degree.

 1

CHAPTER 1: INTRODUCTION

1.1 Overview and Motivation

 Cloud computing involves storing data using a third-party or non-central storage

mechanism and having the ability to access this data from anywhere at any time. It offers a

number of services and includes a variety of models to meet users’ needs at affordable prices.

Cloud computing providers have experts who operate the cloud so that users do not themselves

need to be experts in order to obtain these services. Scalability is a cloud computing

characteristic whereby data is scaled around the cloud provider’s servers to guarantee high

availability. The powerful devices that cloud providers rely on to operate the cloud give users

high-performance processing, fast network speed, and a huge amount of storage space.

 Despite the perceived benefits of cloud computing, many of which are discussed in this

thesis, there are still major security concerns surrounding shifting data to the cloud. One of these

concerns is adequately protecting the confidentiality of sensitive data. This ongoing and very

important concern has motivated us to seek a way to improve security in a cloud computing

environment and to create a viable real-life application. Gaining experience in the field of

security and cloud computing is another of the author’s motivations, along with becoming more

involved in and contributing to computer science research.

1.2 Problem Statement

Cloud computing has many attractive advantages that encourage potential users to consider

moving to a new style of computing. However, these advantages, as Hacıg (2005) claims, come

at a high price, with users facing greater privacy risks and increased vulnerabilities when they

move their (often private) data to a cloud. More importantly, this data is often not under the

direct control of the owner, so concerns arise regarding data confidentiality. Under these

circumstances, providers are able to compromise the data and access sensitive data, which

constitutes an invasion of the database owner’s privacy. Anciaux et al. (2007) point out that

finding trusted providers to store sensitive data is not an easy task, as many cloud computing

providers may not even trust their own employees. Additionally, in some cases, as Weippl

 2

(2012) has stated, providers also reserve the right to change their terms and conditions, which

means that data confidentiality and privacy risks are even more critical to consider.

In light of these ongoing security-related issues, encryption emerges as the simplest

solution, as encrypting data before sending it to the cloud can prevent providers from obtaining

sensitive information. Unfortunately, however, encrypted data cannot be easily queried, making

it difficult for users to access their data. Some proposed solutions to this dilemma involve using

asymmetric cryptography, with the private key being shared with the providers. However, the

provider can still infer sensitive information with this method when they perform the decryption

in response to the client’s query. Similarly, symmetric key cryptography involves decryption on

the provider’s side, allowing providers to infer sensitive information in this case as well. Hence,

neither symmetric nor asymmetric cryptography offer a suitable solution.

Since there is no single encryption algorithm that is able to support all Structured Query

Language (SQL) queries without decryption, there is a need for a system that provides users with

security while also supporting a variety of query structures. This leads us to the following

questions: How can we guarantee data confidentiality while using untrusted cloud computing

provider resources, and what encryption algorithms can support a variety of queries?

1.3 Research Objectives

The proposed scheme in this thesis aims to meet the following objectives:

1. Provide cloud computing users with confidentiality by preventing untrusted

providers from obtaining meaningful and sensitive information.

2. Develop a cloud computing system that supports a variety of queries that can

process encrypted data.

3. Develop a cloud computing system that provides an acceptable performance

overhead.

1.4 Outline

The thesis is organized as follows: Chapter 2 covers the background of this study as well as

the literature review. In Chapter 3, the proposal design is presented, followed by the

implementation of the prototype and evaluation in Chapter 4. Finally, the conclusion and ideas

for future research are presented in Chapter 5.

3

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1. Background

2.1.1 Overview:

Cloud computing is an emerging technology that is changing computing styles. Hacıg and

Li (2002) define the cloud as a concept whereby data and programs can be stored in a

decentralized manner (i.e., in a cloud) and accessed at anytime, anywhere, through thin clients

and lightweight mobile devices. Hore et al. (2004) summarize cloud computing’s advantages as

including on-demand self-service, ubiquitous network access, location-independent resource

pooling, rapid resource elasticity, usage-based pricing, and transference of risk.

Additionally, cloud providers, as Hacıg and Li (2002) state, may be able to afford to invest

in better and more up-to-date security technologies and practices than data owners. Thus, cloud

resources are scalable over the Internet network, through which the service is provided on

Figure 2-1: Cloud computing architecture
(Adapted from Capitani, Foresti, Samarati and Informatica [2012])

 4

demand to the users. There is also flexibility in cloud computing, as users can access data

from anywhere, such as from a web page interface Furthermore, in addition to scalable resources

that can be easily configured, the cloud providers also offer clients guaranteed quality of service

(QoS). All of these advantages, combined with an affordable pricing scheme, make the cloud

technology very attractive.

2.1.2 Cloud Computing Architecture

 The architecture of cloud computing mainly consists of models and services that make

the cloud feasible and accessible. In the next two subsections, further details on these models and

services are provided.

2.1.2.1 Cloud Computing Models

 Cloud computing models provide an idea of how the clouds are accessed and point to

where the data centers are located. Sakhi (2012) summarizes cloud computing models into four

types: public cloud, private cloud, community cloud, and hybrid cloud. In a public cloud, data

centers are located anywhere around the world and are accessed by the public via the Internet.

This type of cloud is less secure than other models because it is open to the general public. In a

private cloud, data centers are located at a user’s location and are accessed only by authorized

personnel. An Internet secure channel (e.g., a virtual private network [VPN] or Secure Sockets

Layer [SSL]) is usually used to facilitate communications between clients and the cloud. A third

model is the community cloud, where a number of private clouds are integrated with each other.

Finally, the hybrid cloud involves both public and private clouds that are connected to each

other. In this hybrid model, most of the critical activity takes place in the private cloud, for

security reasons.

2.1.2.2 Cloud Computing Services

Cloud computing provides a number of services. Figure 1 shows that these services include

but are not limited to the following:

Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)

5

Software as a Service (SaaS)

Database as a Service (DBaaS)

 These services arise in-between the back end and the front end, as Nalinipriya and Aswin

Kumar (2013) describe. The service follows a bottom-up approach in which the lower layer

provides users with computation power and memory in a virtual environment. In the middle, the

service layers deliver services such as offering a framework for application development and

software outsourcing. A number of studies state that these services eliminate the need for

software maintenance or licensing (Bouganim & Pucheral, 2002; Hore et al., 2011). End users,

therefore, can access software running at a remote site through Application Service Providers

(ASPs) and avoid software installation and expensive software license fees. Users instead pay

only for the services they use at the cloud. A simple “pay as you go” model is followed, which,

as stated by Hore et al. (2011), allows users to pay only for the services they use. As our research

concerns DBaaS security, the next section will discuss DBaaS services in detail.

Figure 2-2: Service layers provided by cloud computing
(Adapted from Modi et al. [2012])

 6

2.1.2.2.1 Database as a Service (DBaaS)

 The database is provided as a service by cloud computing operators. Sakhi (2012)

describes the process of creating databases in the cloud. There are two ways to create databases

involved in cloud computing: by using a virtual machine image, and by accessing the DBaaS.

Unlike traditional databases, the provider takes full responsibility for managing and operating the

database. Compared to traditional database systems, the DaaS provides QoS in terms of

scalability, availability, multi-tenancy, and a resource allocation mechanism. Users require only

an interface to access the DaaS. Hence, there is no need to hire database experts or

administrators, as is necessitated by traditional database systems. DBaaS has more advantages

compared to traditional databases. Take performance as an example: when using a high-powered

computation (e.g., CPU, memory capacity and storage space), there is a potential increase in the

performance. However, the challenge arises with regards to DBaaS-related security risks,

especially if the data that needs to be stored is sensitive information.

2.1.3 Cloud Computing Security

Since communication in most cloud computing models is established via the Internet, any

Internet security risk can apply to the DBaaS. Although cloud computing has many advantages,

there are still a number of vulnerabilities, including vulnerabilities in Internet protocol,

unauthorized access to management interface, injection vulnerabilities, and vulnerabilities in

browsers and APIs. Furthermore, Hore et al. (2011) state that there are a number of threats in

cloud computing, including changes to business models, abuse of cloud computing, insecure

interfaces and APIs, malicious insiders, shared technology issues arising from multi-tenancy,

data loss and leakage, and service hijacking. Moreover, as Modi et al. (2012) point out, possible

attacks in cloud computing include zombie attacks, service injection attacks, attacks on

virtualization, man-in-the-middle attacks, metadata spoofing attacks, phishing attacks, and

backdoor channel attacks. A number of these potential attacks have been considered during the

building of web applications, whereas others are still under investigation. Our scheme only

considers the insider attack (i.e., an attack by the cloud computing provider).

7

2.2 Related Work

In this section, related work is presented in subsections. Work regarding the
confidentiality of data stored through outsourcing is categorized into four groups.

2.2.1 The Bucketization Approach

Hacıg and Li (2002) propose a fragmentation scheme, which is a column-based partition.

Figure 2-3 shows the architecture of their scheme, where, on the server side, there are only

encrypted fragments (i.e., vertical fragmentation).

Each fragment has a unique id used to support the query. Queries are processed twice. The

first query fetches the whole fragment to the client, based on the fragment’s id. Once the client

obtains the fragment, it will be decrypted to apply the query again on top of the fetched

fragment. Finally, the result will be returned after the second query is executed. While this

approach could be suitable for small data sets, it requires a considerable amount of overhead time

to fetch the whole fragments. In this approach, there is a case where the whole database has to be

fetched to the client side, which raises questions around the benefit of using cloud computing.

Additionally, processing the query twice slows overall performance. Hence, this approach is not

a suitable solution for this problem because it eliminates cloud computing’s main benefit in

terms of providing storage. It also requires a lot of overhead time to execute the query.

Figure 2-3: The architecture of the bucketization approach
(Adapted from Hacıg and Li [2002])

8

Other studies have considered this approach (Hore et al., 2011; Hacıg, 2005; Hore et al.,

n.d.). They mainly focus on the query optimization technique as a means of trying to tackle the

Hacıg and Li (2002) limitation, which concerns performance.

2.2.2 Chip-Secured Data Access Approach

Bouganim and Pucheral (2002) propose a hardware-software solution for the database

outsource confidentiality issue, claiming that no software solution is guaranteed, given Internet

security variability. Their idea is basically to install a smartcard on the cloud side that will work

as a mediator. The data is then encrypted by the smartcard before being inserted into the

database, and then decrypted before being sent to the user. This method is premised on an

assumption of secure communication between the user and the cloud.

 The smart card is fully controlled by the client, so the cloud is simply used as encrypted

data storage. This approach has limitations in terms of processing power as well as memory

capacity and thus does not offer a practical solution for the outsourcing of confidential data due

to the weakness of the smartcard and the difficulty of installing the card into the cloud provider’s

server. The situation worsens if the database system needs to be distributed.

Figure 2-4: The architecture of the chip-secured data access approach
(Adapted from Bouganim and Pucheral [2002])

9

2.2.3 The ChostDB Approach

Anciaux et al. (2007) propose a different approach to ensure data confidentiality when data are

stored with untrusted cloud providers. They divide the database into private and public data. The

private data is the sensitive data that needs to be kept in a safe place, whereas the

public data is the non-sensitive data that can be seen by the general public. They encrypt and

store the sensitive information on a smart USB key, which has to be on the client side. The

insensitive data are stored on a public cloud server in plain text. The user cannot query the data

unless the smart USB key is plugged into the user’s device. When the smart USB key is plugged

in, the two partitions are joined using a distributed technique. This approach could be a solution

for one user, but is not really feasible for widespread usage due to the difficulty of distributing

the USB keys. Moreover, this approach limits the benefits of cloud computing by storing private

data with the client (using a smart USB key). It key also eliminates the scalability of the system.

Therefore, this approach cannot be used in practice.

Figure 2-5: The architecture of the ChostDB approach
(Adapted from Anciaux et al. [2007])

10

2.2.4 CryptDB Approach

Popa et al. (2012) recently proposed a practical solution to improve the confidentiality

level for outsourced data from curious cloud providers. Their scheme consists of a number of

components, including encryption algorithms, proxy, and a users’ application. This concept

relies on the fact that no single encryption algorithm can support all types of queries, so the

researchers investigated encryption algorithms that allow for queries to be issued to encrypted

data. They came up with six encryption algorithms that can be used to support the fundamental

query structure. These algorithms are: RAN, DET, OPE, JOIN, HOM and Search, which are

already proposed by (Desai, 2000; Daemen, 2002; Liu et al. 2009; Popa et al, 2012; Stern &

Dijk et al., 2010; Wagner & Perrig, 2000), respectively. However, Popa et al. (2012) models

them in such way that the keys are not shared with cloud providers.

 In RAN, there is no query that can be supported by this encryption algorithm. It is used

to randomize the data so that the pattern can be hidden. The next encryption algorithm is DET,

which supports the equality query because it is a deterministic encryption algorithm. In

deterministic algorithms, if a plain text is 𝑃� � �𝑃��, then the cipher-text is 𝐸𝑘� 𝑃� � �𝐸𝑘� 𝑃� .

Thus, this encryption algorithm can be used to support equality predicate. However, the DET

encryption algorithm is weak on revealing the equality. Popa et al. (2012) state that the DET

encryption algorithm is one of the weak encryption algorithms they have included in their

scheme. The adversary can infer the key if she/he has the plain text as well as its cipher text.

The third encryption algorithm is OPE, where the comparison is supported. This

encryption preserves the order of encrypted values using a given key. The encryption has the

property such that: if plain text �� � ��� , then the encryption �� � �� � ��� � �� with a given

key. This encryption algorithm will support any comparison query, but the algorithm reveals

Figure 2-6: Sample of table of CryptDB approach
(Adapted from Popa et al. [2012])

 11

the order of encrypted values and thus also the maximum and minimum of encrypted values.

DET and OPE algorithms are the weakest encryption algorithms used in this approach.

The fourth encryption algorithm is JOIN. This encryption algorithm is needed to support

equality between columns. It works basically the same as DET, but Popa et al. (2012) cannot

use DET to join columns. JOIN is deterministic encryption that supports equality and has been

used for the purpose of joining columns.

The fifth encryption algorithm is HOM, which has a general reputation for being highly

secure. It is used to support different kinds of arithmetic queries, such as summation. In HOM,

the summation of two plain texts is the product of their encryption. This property allows

performing the summation and determining the average of the number of items over which the

summation is performed. The encryption does not reveal any information, which means that it

is secure enough to encrypt sensitive data that is outsourced for storage.

The sixth encryption algorithm is Search. Due to the fact that most web applications

require a word match query for which the researchers found that Search is the best choice. The

Search encryption algorithm is used in this approach to support word match queries.

 Thus different encryption algorithms are applied to each column based on the column’s

data type and also based on the desired queries to be applied on column: the same data in each

column may be encrypted more than once using different encryption algorithms. Each

encryption algorithm is applied to the base column and the result of the encryption is stored in a

new column. In this way, the number of columns is extended; hence, this encryption process is

referred to as extending the base column by using different encryption algorithms. Each base

(plain text) column is extended based on the number of encryption algorithms to be used for

that column, where each of the extended columns containing encrypted values supports a

different comparison method used in different queries. All of these columns are then stored at

the DBaaS, with the assumption that the provider is not trusted to hold sensitive data.

 The proxy also plays an important role in their scheme. In fact, most of the critical

activities are performed at the proxy server. The proxy is a trusted server that runs in the middle

between the public cloud and the user application. All communication between users and the

proxy are assumed to move through a secure channel. When a user issues a query to the proxy,

the proxy will transform it into a query on extended columns and encrypt it before sending it to

the cloud. The proxy receives encrypted results, decrypts them, and and sends them, over a

 12

secure channel, as a query reply to the user with the plain text result. There is no shared key

with the cloud, so the encryption and decryption key is stored at the proxy server. Although the

proxy is a single point of failure, it is located within the private cloud so that a distributes proxy

system within the private cloud - we target the single point of failure issue as future research.

13

CHAPTER 3: THE PROPOSED DESIGN
In this chapter, the design utilized in the thesis is presented in detail. The chapter is

organized as follows: it begins with the architecture of our scheme, which is then followed by

the methodology. The methodology is divided into two sections: a subsection for encryption

algorithms, and a subsection for the fragmentation technique.

Figure 3-1: The architecture of our scheme

 14

3.1 The Architecture

Our architecture is a hybrid cloud that mainly consists of two parts: public clouds and a

private cloud. Based on our fragmentation technique, the encrypted database is only stored on

public clouds. Figure 3-1 represents the architecture of our scheme. The public clouds consist of

a master cloud and a number of slave clouds. The master cloud, stores an encrypted replica of

the entire database while individual public clouds store extended columns. We assume that the

public clouds are operated by different cloud providers. In fact, the providers of public clouds

should not even know that there are fragments of the database stored on other providers clouds.

The idea is to improve security by hiding this information among the clouds. Of course, this

assumption causes problems with scalability in terms of the number of columns as each of the

columns should be stored on different cloud offered by a different provider and that the

providers do not collaborate. When we run out of cloud providers, we can start storing more

than one column at each cloud as long as no two columns are encrypted using the same

encryption algorithm, or at least not using the same keys if the same encryption algorithm is

used. We acknowledge this scalability problem and target it for future research. More detail

with regards to this point is provided in the security analysis section.

On the other hand, private clouds consist of a proxy and user’s devices. The proxy is

located at the center of communication, between the client and the public clouds. The proxy is a

server that works as an agency. Figure 3-2 shows an overview of the architecture. There is no

immediate communication between users and public clouds. Instead, the proxy translates any

received query from the users to the cloud.

When the proxy receives the results from the master cloud, it decrypts them and responds

to the user with the final result. The proxy performs all of the encryption and decryption. One

of the more significant roles of the proxy is to act as the query parser. In query processing, the

proxy has to decide which of the encryption algorithms to use, and which clouds to query.

15

Figure 3-2: Overview of our scheme

3.2 Methodology

The proposed scheme is a combination of encryption algorithms and a fragmentation

technique, the latter, which is a novel contribution to the research.

Encryption algorithms have already been proposed with a variety of properties, but to the

best our knowledge, the scheme proposed by Popa et al. (2012) is the only approach that uses

these algorithms together to provide confidentiality for outsourced data storage. We used these

encryption algorithms in our scheme as well to encrypt the fragments. Furthermore, because it

has been proven that AES-CBC is a highly secure encryption algorithm, we utilized it in our

scheme for the master cloud database. Of course, other encryption algorithms are also

candidates for use. The AES-CBC master cloud is proposed in this scheme to provide the user

Plain Text
Data

Encryption
&

Decryption

Encrypted
Data

Data

rypted

Users

The Proxy

Clouds

 16

with increased confidentiality. In section 3.2.2.1, additional details are provided on the master

cloud.

The fragmentation technique is the truly novel aspect of our scheme. In comparison with

the work conducted by Popa et al. (2012), our work is significantly advanced. Whereas Popa

and colleagues use only one cloud to store the whole relation, the table in our scheme is

vertically fragmented and each column is stored on a different cloud.

 In the following subsections, the encryption algorithm and novel fragmentation technique

are discussed in greater detail.

3.2.1 Encryption Algorithms

The algorithms used in our scheme are the same as the encryption algorithms used in

Popa et al.’s (2012) approach. These algorithms include AES, OPE, HOM, Search, and DET. In

our scheme, the usage is slightly different due to differences in the architecture between the two

approaches. As was stated in the section on related work, the researchers extend the column as

per the encryption algorithms needed for the column’s data type. In our scheme, the concept of

extending columns also exists, but the column is fragmented.

3.2.1.1 Advanced Encryption Standard (AES) Algorithm

The AES algorithm is used to encrypt the entire database in the master cloud, except for

the index column. The index column is a system-generated primary key used to identify the

tuples of the relation and is replicated in each cloud, including the master cloud. When a base

column is encrypted using a specific algorithm, the resulting encrypted column is stored,

together with the corresponding unencrypted index column, in a slave cloud. Thus, each slave

cloud contains a table with two columns, an unencrypted index column, and the encrypted

values of a base column. Each tuple has two values – the encrypted value from the base

column, and the index value that identifies the tuple in the master cloud from which the

encrypted value was derived. The encryption/decryption keys are stored at the proxy so that

encryption and decryption can only be performed on the proxy side.

17

The cipher-block chaining (CBC) mode is used here due to its numerous security

advantages, confidentiality being the main one. Hence, we use CBC to encrypt the master cloud

replica.

Figure 3-3 shows how the AES-CBC works. The algorithm begins with three parameters,

as Stallings (1999) describes: the message, the key, and the initialization vector. The algorithm

is 𝐶𝑖 �� �𝐸𝐾� 𝑃𝑖��𝐶𝑖�� �𝑤�𝑒𝑟𝑒�𝐶� � �𝐼𝑉��First, the message is divided into specific blocks.

The first block is XORed with the initialization vector and then encrypted with the key. This

results in a new cipher-text, which will be used again as the initialization vector for the next

block of plain text. As an example, if the plain text is divided into three blocks, the ciphers will

be as follows: 𝐶� � 𝐸 𝐾�𝑃� 𝐼𝑉 , 𝐶� � 𝐸 𝐾�𝑃� 𝑃� 𝐶� and 𝐶� � 𝐸�𝐾�𝑃��𝑃��𝐶�� .

The encryption process goes through four rounds, as Stallings, (1999) describes, including sub-

bytes, shift rows, mix columns, and add round key. The blocks, along with the key, are

scrambled through these rounds, producing the cipher-text.

As has been proven in the AES algorithm, the longer the key length is, the more secure

the data encryption. Therefore, the key length chosen was 256 bits. The number of keys has

been limited in our algorithm, due to the space needed to store them. The idea is to avoid any

kind of storage mechanism at a private cloud. Storing data at a private cloud is not only against

the concept of cloud computing in terms of storing data on the client side, but also the size of

the database needed to store keys has to be almost equal to the size of the database in the master

cloud. For these reasons, the number of keys is limited.

Figure 3-3: Cipher-block chaining (CBC) mode encryption
(Adopted from Stallings (1999))

 18

The only queries that can be processed upon encrypted data using this algorithm are

shown in Table 3-1. Therefore, this algorithm cannot support any query that has a where clause.

The idea is to fetch either the whole encrypted relation or a portion thereof.
Table 3-1: Example of queries supported by the master cloud

Query Predicate
Select * From Table No Where Clause

Select * From Table LIMIT Value No Where Clause

3.2.1.2 Order-Preserving Encryption (OPE) Algorithm

The OPE algorithm is one of the fundamental encryption algorithms used in relational

databases. Generally speaking, most databases need to be able to compare between values,

especially numerical ones. With this in mind, the OPE algorithm has been proposed by Liu et

al. (2012) so that the query can be applied to encrypted data to provide a comparison operation.

This algorithm is based on linear expression as well as random noise. Algorithm 10 shows

our implementation of OPE as described by Liu et al. (2012). The encryption algorithm is

𝑎 � 𝑣� 𝑏� 𝑛𝑜𝑖𝑠𝑒 where the coefficients 𝑎�𝑎𝑛𝑑�𝑏�are the keys. The�𝑣 is the value that needs to be

encrypted.

The noise part of the expression is added to improve security. The noise is a random

number of ranges, “0” to the coefficient “a” multiplied by sensitivity. The sensitivity depends

on the data type of the value that needs to be encrypted. Thus, it is 1 or 0.01, depending on

whether the value is an integer or double, respectively.

Basically, the cipher-text produced from this algorithm for a certain value will be in a

range between zero and the coefficient “a”. The range can be partially controlled, based on the

coefficient “a”. Therefore, the algorithm will produce a different cipher-text for the same plain

text, which will enhance security because the pattern will be hidden.

One of the problems we faced when implementing this algorithm is that the comparison

was not accurate if we had repeated values. The accuracy also decreased, as the number of

repetitions increased. If the range of a given cipher-text exceeds 100, for example, then any

encrypted value will be encrypted by one of these values. Meanwhile, the encrypted query

value will also be encrypted by one of these values as well. For instance, if our range is 50, then

encrypted values 𝑥� and 𝑥�represent the plain text 𝑋. Assuming that the user initiated a query

 19

asking for values greater than 𝑋, then the query-encrypted value is one of the possible values.

Therefore, in this case, the 𝑥�is greater than 𝑥� , whereas, in fact, both �𝑥�and 𝑥� are equal

because both represent the 𝑋 value using the OPE algorithm. The retrieved result for the

previous query will include any value greater than 𝑥� , which is not correct. As a result, this

issue has to be overcome to make this algorithm fully accurate. We added two functions to the

algorithm that are included to determine the maximum and minimum values of the range.

Therefore, these values can be used to determine the greater value. This algorithm is the

weakest algorithm used by Popa et al. (2012) because it reveals the maximum and minimum

values and the order of the data set. It is also susceptible to plain-text attack. More details with

regards to the security aspect, and in particular the weakness of OPE, are presented in the

security analysis section.

Table 3-2 shows some examples of SQL queries that use the OPE algorithm.
Table 3-2: Examples of queries supported by OPE

3.2.1.3 Homomorphic Encryption (HOM) Algorithm

The HOM encryption algorithm is needed in most encrypted relation databases due to the

mathematical properties that it can support, such as multiplication, summation, averages, etc.

the HOM algorithm can perform queries that require mathematical operations.

 Algorithm 11 describes the HOM as proposed by Dijk et al. (2010), who begin by

defining the key generation function variables. First, p and q are two random prime numbers,

such that ��� ��� � � � � � � � � because they have to be in the same length. The

function in the second step will compute the � � � � ������� � ������ � �� � � ��. The 𝑔

variable will be integer random number. Then, � � � �����������
��

������ , where

� � � �
���

�
� They are used in the encryption function as the public key. The 𝑛�𝑎𝑛𝑑�𝑔�are used in

the decryption function as the private key. The encryption function has two parameters, which

 Query Predicate

1
Select * From Table Where column_name < encrypted
value Less Than

2
Select * From Table Where column_name > encrypted
wvalue Greater Than

3 SELECT * From Table Where column_name > encrypted
value ORDER BY column_name

ORDER BY, Greater
Than

 20

are the message 𝑀 that needs to be encrypted and 𝑅, which is a random prime number. Then,

the cipher-text will be�� � ��� � ���������. The decryption function, on the other hand,

returns the original message m by computing � � � ��������� � ��������� In our scheme, �

is a primary key that used in the encryption and decryption.

This algorithm has the ability to compute the summation or average over cipher-text,

making it a suitable solution for applications that require mathematical functionality. The

product of two cipher-texts will decrypt to the sum of their corresponding plaintexts. We

calculate the sum of values by ������ � ����� �� �� � � and divide the sum by the number of

elements in case of the average is desired. A number of queries can be performed upon an

encrypted database using HOM. Table 3-3 shows some examples of these queries.
Table 3-3: Examples of queries supported by HOM

 Query Predicate

1 Select AVG (column_name) From Table Average

2 Select SUM (column_name) From Table Summation

3.2.1.4 Search Encryption Algorithm

Many cloud computing applications need to perform word search queries. The only way

to perform a search query upon encrypted data is to use a deterministic encryption algorithm. In

our proposal, we use the concept of the search algorithm in the same way that Popa et al. (2012)

previously proposed with regards to search queries. This algorithm (Search) was originally

proposed to search for words in text files by reserving the letter position as one of the

algorithm’s parameters. Popa et al. (2012) change the algorithm to support a word search in the

context of databases (e.g., searching for someone’s name). Serving the same purpose, RC4 is

not only a deterministic encryption algorithm but is also faster at encrypting and decrypting.

This makes it one of the best choices for supporting these kinds of queries.

The RC4 encryption algorithm is a popular encryption algorithm that has been used in

many protocols, such as SSL, TLS, WEP, and WPA (Stallings, 1999). The algorithm begins

with a key generation, which is a pseudorandom stream of bits. However, in our scheme the

keys are statically chosen from the proxy storage. The selected key is then combined with the

stream bit of the original message by the xor operation to produce the cipher-text stream. The

 21

decryption, on the other hand, is the inverse of the procedure. Algorithm 1, adopted from

Stallings (1999) and shown in Figure 1, was used as a basis for our implementation.

Algorithm 1:Search Encryption algorithm (Adopted from (Stallings (1999))

 22

In this encryption algorithm, the two identical plain text messages have two identical

cipher-texts. In spite of the fact that RC4 has known weaknesses, in practice it is a popularly

used algorithm. As we need different encryption algorithms for our thesis, RC4 was chosen.

Table 3-4 below shows some examples of queries that use the Search encryption

algorithm.

 23

Table 3-4: Examples of queries supported by Search

 Query Predicate

1 Select * From Table Where column_name = encrypted value Equal

2 Select column_name(s) From table1 INNER JOIN table2 ON
table1.column_name=table2.column_name; Join

3.2.1.5 Deterministic Encryption Algorithm (DET): Advanced Encryption Standard

(AES) – Electronic Code Book (ECB)

The AES algorithm has many operating modes in which security and performance differ

(Stallings, 1999). The ECB mode is one of the deterministic encryption algorithms in which the

cipher-texts produced from the algorithm by the same plain texts and key are the same, making

it possible to perform the equality operation upon encrypted data. Popa et al. (2012) used this

algorithm to support equality and join operations.

Figure 3-4 shows how the AES-ECB works. As Daemen (2002) explains, the AES-ECB

is a block-cipher encryption algorithm in which the message is segmented into a number of

blocks. Each block is encrypted independently with the same key. Unlike the CBC mode, the

ECB mode can be processed in parallel, which means that this algorithm is faster. The

combination of these encrypted blocks is the cipher-text of the message.

24

 Although this algorithm has the weakness of showing patterns, the fragmantation

technique used in this proposal will improve the confidentiality of the user’s data. Samarati et

al. (2001) provide an in-depth analysis regarding how obtaining data from a single column does

not reveal any senistive information.

3.2.2 Fragmentation Technique

In the previous sections, the algorithms used in Popa et al.’s (2012) approach are

explained, along with the potential uses of these algorithms. These algorithms are also used in

our proposed approach, but the novel aspect of our proposal is the fragmentation technique,

which, we argue, improves a user’s data confidentiality. The fragmentation technique involves

two aspects: a master database and slave clouds (i.e., column-based fragmentation).

3.2.2.1 Master Cloud Computing

 In the first phase, the replica of the entire database is encrypted using a highly secure

encryption algorithm. The replica is then sent to the master cloud. The master cloud is the core

part of our scheme, due to the fact that it maintains the entire relation database in one place.

Hence, the encryption algorithm that is to be used in the master cloud has to be secure enough

to hold sensitive data. A number of studies have proven that AES-CBC is a secure and reliable

algorithm for the outsourced storage of sensitive data (Damen, 2002; Blomer, 2003).

Consequently, several studies have used AES-CBC to store sensitive data (Mohamed, 2012;

Block cipher
encryption Key

Plaintext

l k i h

Ciphertext

Block cipher
encryption Key

Plaintext

l k i h

Ciphertext

Block cipher
encryption Key

Plaintext

l k i h

Ciphertext

Figure 3-4: Electronic Code Book (ECB) Encryption Algorithm
(Adopted from Stallings [1999])

 25

Arasu et al., 2013; Nalinipriya & Kumar, 2013). Therefore, in our scheme, the AES-CBC

encryption algorithm is used to encrypt all inputs to the master cloud database. The index is the

only column kept in plain text, so that only the user can query the database through that index.

The index is synchronous with other fragments’ indexes as well.

The idea of storing an entire replica is to obtain the greatest benefit from cloud computing

by preventing any kind of data storage on the client side. In most cases, the query has to travel

to the master cloud to obtain encrypted data; however, this is not always the case. Furthermore,

only two kinds of queries can be submitted to the master cloud database because any data

encrypted by the AES-CBC algorithm cannot be queried directly without decryption. Table 3-5

shows some examples of queries, assuming there is only one table in the database.
Table 3-5: Master cloud queries

Table 3-6 shows how data stored in the master cloud looks. Despite the fact that the real

columns’ names are hidden in the master cloud, they are written here in plain text in order to

illustrate the idea.

 Query Result

1 Select * From Table Return whole table

2 Select column_name(s) From Table Return whole column(s)

3 Select * From Table Limit value Return number of tuple(s) based
on the limit value

4 Select * From Table Where index in (value_1,
value2_2, value_n)

Return tuple(s) based on the
index value

26

3.2.2.2 The Slave Cloud

In the second phase, the vertical fragmentation approach is applied to a second replica of

the database. The table is fragmented based on the columns. For each fragment, a new column

is created with a synchronous plain text index amongst the fragments and a replica in the master

cloud, as shown in Figure 3-5. In the master cloud, there is only one encryption algorithm used,

but this is not the case with slave clouds. Slave clouds may need more than one encryption

algorithm to support different kinds of queries. Hence, the columns will be extended based on

the number of encryption algorithms needed. The number of columns in any slave cloud

is�𝐶𝑛� � � , because each fragment has at least one encryption algorithm column, along with the

plain text index column.

Table 3-6: The encrypted relation stored at the master cloud

27

The algorithm used to encrypt a fragment depends on the type of data in that fragment.

The choice of encryption algorithms also depends on the application needs. Generally speaking,

numeric columns usually require mathematical operations, whereas string columns require

search and matching operations. The encryption algorithms are used in an approach similar to

that of Popa et al. (2012), so that the encrypted database will be directly queried without any

decryption. Finally, the fragment will be sent to its slave clouds. Figure 3-5 illustrates how this

process proceeds.

3.2.2.3 The Proxy Server

The proxy is an important part of our scheme, as it performs most of the processing.

Processes performed by the proxy server include creation, insertion, encryption, decryption,

query parsing and the retrieval of results. The proxy sever has to be on the private cloud side

and run through a highly secure channel, such as SSL.

Figure 3-5: The fragmentation technique used in our scheme

 28

 3.2.2.3.1 Initialize Database

The scenario of our scheme begins with a plain text query from the user to create a table.

When the proxy receives the query, it will create two tables: the master table and the slaves’

tables. The proxy first sends the created query table to the master. Next, it will fragment the

relation vertically. These fragments have only one column so far, yet the proxy has to determine

what type of data is in each fragment so that the number of columns will be extended to the

number of encryption algorithms needed. Finally, before the proxy sends the created table

query, it will determine which fragment in which slave clouds will be created. Figure 3-6

describes the process of creating tables.

 3.2.2.3.2 The Insertion Query

The insertion process is a significant phase in the process. When a user initiates the insert

query, the proxy will receive that query in plain text. The proxy will then encrypt each row

using the AES-CBC and send them to the master cloud. Concurrently, the same data will be

inserted into the slave clouds with the appropriate encryption algorithm(s), depending on the

data type. Algorithm 2 shows how the proxy sends the insertion query to the master cloud.

 29

To create any fragment of the database, the proxy has to determine the data type for that

column. The proxy then encrypts the data using the encryption algorithms that are appropriate

to that data type. Finally, the encrypted data will be sent to the cloud database. For numeric

values, the algorithms used are OPE, HOM, and DET, whereas when the data type is string, the

Search encryption algorithm is used. Algorithms 3 and 4 describe the insertion process for both

numeric and string values, respectively.

 30

 31

 3.2.2.3.3 The Selection Query

 Retrieving the query result from the database requires a number of steps. First, the proxy

has to parse the query syntax to determine not only which slaves need to be accessed but also

the encryption algorithm needed to encrypt or decrypt. After this is determined, the proxy will

encrypt where clause value(s) and then send the query to the slave clouds. If no where clause is

found in the parser phase, then only the master cloud database is queried. Otherwise, the slave

clouds will process the query and return only the plain text index.

 Finally, the proxy will query the master cloud database by using the indexes that were

retrieved from the slave clouds. After the proxy receives the encrypted results from the master,

it will decrypt the data and send it to the user. Table 3-7 shows a number of examples of queries

submitted to the master cloud database after obtaining the indexes.

 32

Table 3-7: Examples of queries that are initiated from the user and the proxy

 Query The initiator The receiver

1
Select * From Table Where column_name > value

The user The proxy

2 Select id From Table Where column_name >
E(value)

The proxy The slaves clouds

3 Select * From Table Where index in (id_1, id_2,
id_n)

The proxy The Master cloud

3.2.3 The Key Management

According to Stallings (1999), using a random generation keys technique increases the

security level of an encryption algorithm. In our scheme, however, the keys are not shared with

public clouds but are instead stored in the proxy. Therefore, we do not generate a key for each

cell because, if we did so, we would have database on the proxy for the keys that is almost the

same size as the original database stored on the master cloud. Accordingly, we design our key

generation mechanism so that the number of the keys is limited to ten keys. The concept is to

eliminate the usage of proxy storage, so the number of the keys can be more or less than ten

keys. For simplicity, we only store ten keys at the proxy to encrypt/decrypt master relation.

The key technique used to encrypt and decrypt the master cloud’s tables is a key for all cells

within a tuple. If the number of tuples in the master relation is greater than the number of keys,

then there are at least two of the tuples encrypted by the same key. The keys are chosen in a

semi-random manner. We call it semi-random key generation because it is not truly random as

the key is chosen based on both the primary key index value and the number of the key stored

at the proxy which is ten keys in our case. The tuple’s index is one of the algorithm’s important

parameters. Algorithm 5 illustrates how the keys are assigned to a tuple. In the initial stage, a

number of keys are generated and stored in an array. Then, the algorithm computes the

𝑥 � 𝑖𝑛𝑑𝑒𝑥���𝐾𝑒𝑦𝑠�𝐴𝑟𝑟𝑎𝑦� 𝑙𝑒𝑛𝑔𝑡ℎ . Based on the 𝑥 , the 𝐾 � 𝐾𝑒𝑦𝑠�𝐴𝑟𝑟𝑎𝑦 𝑥 � Using this

technique reduces the space needed to store keys at the proxy while there is no shared key with

the cloud provider. Of course, this technique is based on the assumption that the public cloud

provider, where the encrypted tuples of the master table are stored, does not know how the keys

 33

are generated - otherwise the attacker can treat the encrypted master replica as 10 smaller

tables, each one containing tuples encrypted using one key.

 34

CHAPTER 4: IMPLEMENTATION AND EVALUTAION
In this chapter, the implementation of the prototype as a proof of the concept is described.

First, we will illustrate the tools that used and then the proxy’s functionality will be described.

Finally, evaluation of the implementation will be presented.

4.1. Implementation

4.1.1 Cloud Computing Tools and Configuration

As a first step in proving our concept, we created a public cloud computing account at

Rackspace, which offers open source cloud computing. We then created a number of servers

equal to the number of fragments that we need, plus one more for the master cloud. These

servers have the following features:

• Linux OS, XAMPP Server

• CPU: 2 vCPUs

• RAM: 4 GB

• System Disk: 160 GB

• Network: 400 Mb/s

Both the master cloud and the slave clouds are running the Linux operating system. They

are also running the XAMPP server to house MySQL DBMS. This tool is needed to store a

master relation and the fragments in the slaves.

The proxy, on the other hand, is a server at the private cloud. It is running the OS X. It is

also running with the Tomcat server.

• OS X

• Tomcat server 7.0.53

• CPU: 2.4 GHz Intel Core i5

• RAM: 10 GB RAM

• System Disk: 500 GB

• Network: 150 Mbps

 35

The proxy is significant to our scheme because all queries have to go through the proxy.

In the next section, the proxy’s functionality will be described in detail.

4.1.2 The Proxy’s Functionality

The proxy’s processes can be divided into two major functions: query translation and

encryption/decryption. These functions will be discussed in detail in the next subsection.

 4.1.2.1 The Query Translation

 In our scheme, the proxy is located in-between the users and the public cloud, where the

data is stored. Therefore, the user cannot query the database directly; instead, the proxy will

process the query.

The user first initiates a query and sends it to the proxy. The proxy will rewrite the query

based on the Where clause and send it to the slave clouds. As a proof of concept we implement

the process of querying the slave clouds only in serial fashion. Utilizing the serial fashion has

no performance effect on a query that has no predicates as the master cloud storing the

encrypted replica is accessed. The effect increases with the increases in the number of

predicates as for each predicate a slave is queried and the slaves are queried in a serial fashion,

one after another as opposed to in parallel. We propose the parallel request implementation as

future work. The proxy will receive only the plain text indices of the match results, if any. The

union or intersection algorithm is applied to the indexes if there is more than one where

condition/predicate in the Where clause. If these conditions are separated by OR, the union

algorithm is used; otherwise, the intersection algorithm is used. Algorithm 6 shows how the

proxy queries the slave clouds to retrieve the indexes.

Second, when the slaves return the indexes to the proxy. The proxy rewrites another

query to the master relation and fetches the tuples that have the same index. Algorithm 7 shows

how the proxy rewrites the second query to query the master relation.

 36

 37

 4.1.2.2 The Query Parser

 Building the queries is the most important function of the proxy. As the prototype of our

scheme requires it, we created a number of functions to build slave queries. These functions are

created to query the string and numeric values. Algorithms 8 and 9 show how the parser works

for string and numeric values, respectively.

 38

 39

 4.1.2.3 The Encryption Algorithm

 In our scheme, the proxy performs all of the encryption and decryption. In the

encryption process, the proxy encrypts any inserted values that come from the user before

storing them at the clouds. The selection query value also has to be encrypted by the proxy

before querying any slave clouds. None of the clouds store data in plain text except the indexes,

and the slaves do not decrypt any query. In our scheme, five encryption algorithms are used.

Some of these are standard encryption algorithms, while others are proposed for the purpose of

querying outsourced encrypted data. These algorithms are explained in section 3.2.1’s

encryption algorithms and include AES, DET, Search, OPE, and HOM. Algorithms 6 and 8

shows our implementation of OPE and HOM, as described by Liu et al. (2012) and Dijk et al.

(2010), respectively, whereas the others are already explained in section 3.2.1 (encryption

algorithms).

 40

 41

42

4.1.2.4 The Interface

In this section, the interface of the prototype is described. The interface is designed as a

web page (i.e., JSP files), where a sample of only 15 rows of the master encrypted database and

the slave encrypted fragments are presented. The user can choose which kind of query she/he

wants to submit (e.g., insert, select). If the user chooses insert, there will be input boxes for all

of the columns; when the user inputs the data and clicks the submit button, the information will

be inserted into all of the clouds. On the other hand, if the user chooses the select option, there

is an input box for the user to input the query parameters and a submit button. The result and

the execution time will appear soon after the submit button is clicked.

 Figures 4-1 shows samples of the interface where the user can issue the query to the

proxy. The proxy encrypts any values appearing in a where clause or the insert statement and

sends it to the cloud. Finally, the proxy decrypts the retuned result and sends it to the user.

Our scheme supports a simple select, insert, delete, and update where figure 4-1 shows

only select and Insert options. However, it does not support the aggregation select query due to

the lack of the encryption algorithms that support this kind of query. Investigating the area of

supporting aggregation query could be a fruitful future research.

Figure 4-1: Sample of the interface

 43

4.2 Evaluation

We evaluate of our method by determining the total delay using an analytical model and

through modeling. In the evaluation, we concentrate on the total delay (in ms) per user SQL

request. As the user will receive the whole query result in one response, the total delay in our

experiments is also latency. Our method is compared to two base methods: (a) The first is an

unsecured method in which the DB is stored in one cloud and there are no efforts to provide

confidentiality. Thus, data is stored and communicated in plain text. We refer to this method

as the Unsecured approach. (b) The second method is that of Popa et al. (2012) approach, which

is the method we extended by fragmentation of data. Recall that in Popa et al. (2012) approach,

the data is encrypted and stored in one master cloud. In the master cloud, each column is

encrypted using encryption algorithms that support desired operations, such as equality

selection supported by the encryption method DET and summation supported by the encryption

method HOM. We refer to this approach as Secured centralized approach, or simply

Centralized approach/method. In our method, in addition to storing the whole relation encrypted

using AES in the master cloud, we partition the relation vertically and store each column

together with an index column in a different cloud. The column is encrypted using the same

methods as were used in Popa et al. (2012) approach. Thus, our method will be referred to as

Secure Distributed Approach (SDA), or simply Distributed approach/method.

4.2.1 Evaluation Method

Our evaluation has several major steps in which experiments, in which queries are issued,

are used for evaluation. Experiments report delays due to communication, crypto processing

(encryption/decryption), query processing, and the total delay. When modeling is used, each

experiment is repeated a number of times, and we report the average delay and variance.

 4.2.1.1 Major Steps

1. We first develop an analytical model in which delays are predicted on the basis of

various parameters that characterize delays for communication, cryptographic operations, query

processing, and proxy delays. To do the evaluation using the developed analytical model, we

need a set of experiments to measure the parameters that characterize the costs/delays. For

instance, we measure the average delays for sending messages of various sizes. We then

 44

perform evaluation using a set of queries for which delays of user queries are predicted using

the analytical method. The queries will be described presently.

2. We perform the evaluation using modeling. In other words, we build the proxy, store

the encrypted and plaintext relation in the master cloud, and also store encrypted columns of the

relation in different clouds for our method. We perform the set of experiments, using the same

queries as for the analytical model, and measure delays.

3. We analyze the results.

 4.2.1.2 Set of queries

The set of queries used for evaluation has been selected and categorized to three groups as

follows:

1. Select statement in which the Where clause contains one simple predicate.

The Select statement retrieves a certain number of tuples based on the selectivity factor.

In the Secure distributed method, the proxy sends the request directly to the slave cloud in order

to obtain the indices from the slave cloud that match predicate and these indices are then used

to query the master cloud. Therefore, the communication delay for a query with one predicate

is two round trips. It begins from the proxy to the slave cloud, back from the slave cloud to the

proxy, then from the proxy to the master cloud, and finally back from the master cloud to the

proxy Table 4-1 shows the first set of queries as well as their selectivity factors. The relation

size is kept in fixed to 8000 tuples.

Table 4- 1: Query 1 - Selectivities and Parameter Values

Query

Sel.
Fac. for
Master
Cloud

Select * From Employee where Age Op a

of tuples Operator & values Selectivity factors for
Cloud 1

Op a Cloud 1
Query1.1 0.2 < 28 0.2 8000

Query1.2 0.4 > 42 0.4 8000

Query1.3 0.6 < 43 0.6 8000

Query1.4 0.8 > 27 0.8 8000

Query1.5 1 > 5 1 8000

2. Select statement in which the Where clause contains two predicates.

 45

The Select Statement has a Where clause containing two predicates. In the Unsecured and

Secure Centralized approaches, the proxy has to query only the master. Recall that in SDA,

that is the Secured Decentralized approach, the proxy first queries the slave clouds that returns,

as the query result, indices that serve as primary keys to the selected tuples. After the proxy

receives these indices from the slave clouds, the proxy finds their intersection and uses the

result to query the master. As the number of predicates is increased, , the number of round trips

increases,. It should be noticed also that each slave cloud returns a result with a different

selectivity factor, while their product yields the selectivity factor for the query answer. Table 4-

2 shows the second set of queries as well as their selectivity factors
Table 4- 2: Query 2 - Selectivities and Parameter Values

Query
Sel.Fac. for

Master
Cloud

Select * From Employee where Age Op a and salary
Op s # of

tuples Operator & values Selectivity factors for
Clouds

Op a Op s Cloud 1 Cloud 2
Query 2.1 0.2 > 31 < 367 0.3 0.7 8000

Query 2.2 0.4 > 23 < 618 0.9 0.4 8000

Query 2.3 0.6 > 28 < 300 0.8 0.8 8000

Query 2.4 0.8 > 23 < 200 0.9 0.9 8000

Query 2.5 1 > 5 < 99 1 1 8000

3. Select statement in which the Where clause contains three predicates

The last set of experiments is a Select statement that has a where clause with three

predicates, i.e., it is a conjunction of a three of predicates. The proxy first encrypts the values

appearing in the predicates and then, for the unsecured and Secured centralized methods the

query is sent to the one (master) cloud which returns results. In the case of our SDA method,

the proxy builds sub-queries, encrypts each query value, and then sends the sub-queries to the

slave clouds. As stated in the previous chapter, the returned results from the slave clouds are

indices serving as primary keys for tuples stored in the master cloud. As in the experimentation

we only use a conjunction of predicates (predicates connected with the AND operator), the

proxy performs an intersection over the returned results to build the query for the master cloud.

The proxy delay in this experiment increases in comparison to the previous experiments

because the query has more than one predicate. It requires more processing at the proxy side in

 46

terms of building and sending sub-queries to the slave clouds and performing intersection of the

sets of returned indices from the slave clouds in order to query the master. Additionally, the

total delay is further increased if the proxy handles sub-queries in a serial fashion. Table 4-3

shows the set of queries as well as their selectivity factors.

Table 4- 3: Query 3- Selectivities and Parameter Values

Query

Sel.
Fac.
For

master

Select * From Employee where Age Op a and salary Op s and Age
Op a # of

tuples Operator & values
Selectivity factors

for clouds
Op a Op s Op a C # 1 C # 2 C # 3

Query3.1 0.2 > 51 > 367 > 51 0.3 0.7 0.3 8000
Query3.2 0.4 > 23 > 618 > 23 0.9 0.4 0.9 8000
Query3.3 0.6 > 28 > 300 > 28 0.8 0.8 0.8 8000
Query3.4 0.8 > 23 > 200 > 23 0.9 0.9 0.9 8000
Query3.5 1 > 5 > 99 > 5 1 1 1 8000

4.2.2 Evaluation Using Analytical Model

 4.2.2.1 Analytical model

 Processing a query incurs the following costs/delays: communication, crypto

(encryption/decryption), query processing, and proxy delays.

 4.2.2.1.1 Communication Delay

1. We model the communication delay of a message transfer by using the generally

accepted Equation 4.1:

 �� � �� � ��� Equation 4.1

The delay is a linear function of a set-up overhead and the size of the message. As we are

using Internet for communication, we are not able to determine the maximum size of packets

and hence we model communication on a message basis, as opposed to a more detailed

modeling in which a message is sent in packets if it exceeds the maximum packet size. The

communication delay is affected by the propagation delay, serialization, data protocol and

latency, routing and switching latencies, and queuing and buffer management and each of these

factors has an impact on the total delay (Stallings, 1995). Since the messages are going over

 47

Internet, however, we have no control or real knowledge on the individual delay components

and hence resort to a simple model represented by Equation 4.1.

4.2.2.1.2 Crypto Delay

 This is a delay for encryption/decryption, and is modeled by Equation 4.2:

 ��� � ���� Equation 4.2

Crypto delay is directly proportional to n, where n is the number of items to be

encrypted/decrypted and c is the cost of encrypting/decrypting one item.

 4.2.2.1.3 Query Processing Delay

Under the general term of query processing delays, we include delays for the basic SQL

operations of Insert, Delete, Update, and Select.

1. Insert

It depends on the number of tuples to be inserted so the time complexity to insert to

database is ����, where the n is the number of tuples.

2. Delete / Update / Select

In order to find the tuples affected by the operation, the tuples need to be identified.

Delay thus depends on finding the tuples. Before we provide equations, we note that the delay

to select/find tuples of a relation depends on whether or not there is a fast access data structure

that can be exploited to find the desired tuples. Thus, (i) if there is no fast access method, all

tuples are scanned and hence the delay is directly proportional to the number of tuples in the

relation, which is modeled by ���� where n is the number of tuples in the relation and p is the

delay to handle one tuple. If there is a fast access method, then the delay is proportional to log

n, where n is the number of tuples, and it is modeled as p’ log n. Once the tuples are identified,

they are processed as per delete, update, or select operation that we assume causes

equivalent/same delays. However, this processing delay is directly proportional to the number

of affected tuples. We need to note that the above simplifications are reasonable only under the

assumption that the Select queries are one-variable only, i.e. that they do not involve a join. As

we deal with an evaluation in which we only have a single relation, that means that the

assumption is that the query does not specify a self-join. Furthermore, the equation also does

 48

not properly represent delays for an SQL query that has a Group-by operator that would result

in sorting of resulting tuples.

Since our experimental relation is relatively small-sized, we do not build indices

explicitly, and we model the Delete / Update / Select by equation 4.3 under the assumption that

there is no fast access method available and hence the processing delay is directly proportional

to the number of tuples in the relation:

one tuple.

��� � �� � ��� � ������ Equation 4.3

 In Equation 4.3, c is the overhead delay, n is the number of tuples in a relation, p is the

delay to process one tuple, and s is the selectivity factor. The delay to process a query is thus

modeled by overhead delay, c; delay of p n for scanning all tuples of the relations for those

tuples that satisfy the predicate, which could be a conjunction of simple terms; delay of p s n to

handle the result. .

 4.2.2.1.4 Proxy Delays

The proxy, as stated in the previous chapter, is playing an important role. It performs

several tasks that include: encryption, decryption, query parsing, and key management. The

proxy parses the query and rewrites it into another query or queries depending on to which

slaves sub-queries need to be sent. The number of sub-queries will be issued if there is a

conjunction of simple terms. The time complexity for rewriting a query is modeled as O(1) –

although there are a number of slaves, the number is small and fixed.

 The proxy does both the encryption and the decryption so the delay is already modeled

within a separate section dealing with crypto delays. However, the key management is one of

the proxy duties, so its delay has to be included in the proxy overhead delay. The key

management algorithm was described in detail in the implementation section. The time

complexity is equal to a search in an array by the element’s position, which is O(1) because the

keys are chosen based on their position in the array. On the other hand, the proxy has to

determine which encryption algorithm is needed to encrypt the query(s) value. Since we have a

fixed number of the encryption algorithms, the delay to determine the encryption algorithm is

also O(1).

 49

The proxy also deals with the unions and intersects, as a result of querying more than one

slave cloud in our method. We implement the union and the intersect algorithm by using the

TreeSet build-in Java function which is based on the binary search technique. The retrieved

results of each slave cloud will be stored on an array at proxy. The proxy performs the union

and the intersect upon the two arrays. In the case there are more then two slave clouds involved,

the result of intersect/union of first two arrays will be stored on a temporary array where the

intersect with a third array can be performed and so on. Thus, the delay for an union is

���� �� and the intersect operation is ��� ����� where m is the size of the first array and n is

the size of the second array. Equation 4.4 is used to model the proxy’s delay:

 ��� � ����� ���� � Equation 4.4

In Equation 4.4, the variable “x” is the number of element in the first array, and “y”

variable represent the size of the second array.

 4.2.2.2 Determining the Parameters of the Model

To determine the values of the model’s parameters, we perform the following set of

experiments.

4.2.2.2.1 Communication Delays

For communication delays, we use the ping utility program to send a message of varying

size between the proxy and a cloud in order to determine the parameters in Equation 4.1. We

perform the experiment repeatedly in order to obtain an average and variance of parameters.

The results are reported in table 4-4.
Table 4- 4: The communication delays in millisecond

Message Size Minimum Average Maximum Standard
deviation

2008 byte 60.232 64.469 78.285 3.035

4008 byte 61.640 66.743 186.621 13.314

8008 byte 64.331 68.381 96.689 3.461

16008 byte 67.193 71.534 93.650 4.370

32008 byte 74.874 79.371 132.211 6.320

Columns show the minimum, average, maximum delays as well as the standard

deviation of a message sent hundred times. The message delay is for a round-trip, i.e., it

50

includes the delay for sending a message from the proxy to a cloud and also the delay of the

response message from the cloud to the proxy. Thus, we assume that the delay for sending a

message of a certain size from the proxy to a cloud is the same as for sending the same message

from the cloud to the proxy. The row headings identify the size of messages that were sent one

after another.

Figure 4- 2: Determining the communication delay parameter

Figure 4-2 shows the parameters that are used for Equation 4.1. The values of the

constant “a” and “b” are 0.0005 and 64.238, respectively, and were determined using the

standard line fitting method that minimizes the sum of the squares distances of points from the

fitted line. We observe that the communication delay is 64 ms for a message of 2000 byte, and

it is slightly increased with a message size due to a small value of the coefficient “a”. We

assume for simplification purposes in this thesis, that the communication delay of sending a

message from the proxy to a cloud is the same as sending a message of the same size from the

cloud to the proxy.

4.2.2.2.2 Query Processing Delays

We make an observation that in most online transaction processing relational DB systems,

there is a general rule of thumb that states that most queries are of retrieval type (SQL Select

3�A�7�777!��B�# ���"�

"#�

"��

�#�

���

 #�

 ��

#� �� � ��� �"� �#� ��� � � ���

1�
)
'�
�9
�)
0�
�

14'�)00;'�0�='��

�4+.0$920�

�4'�5+)).9�5$1�+9�2'&$3�

�$%&'(%�)*�+),,-./+'0/).�

1%2'34�

!/00%1�2/.%��

 51

statements), while the rest are update queries (SQL Insert, Delete, and Update statements). For

that reason and simplification on the volume of experimentation, we also concentrate on the

Select statement. Recall that Insert operation is relatively simple in that its delay depends on

the number of tuples to be inserted. It was also shown in the previous sub-section that the

delays of the Delete and Update statements are similar to the delays of the Select statement.

To determine the parameters of the analytical model for the Select statement, we

performed the following experiments. We use a relational DBMS on a cloud, and we issue

Select statements that use the Where clause to vary the selectivity factors. The range of

selectivity factors begins from 0.2 to 1.

We also vary the number of tuples in a relation and also the number of resulting tuples,

i.e., the selectivity factor in a range clause. Note that for our modeling experimentation, we use

the same configuration for all DBMSs, i.e., for DBMSs for the master and slave clouds. That

is; the DBMSs run on servers such that their parameters used to configure them are the same,

and the configuration parameters for the DBMSs are also the same. Hence, we just need to

measure the query processing delays on one DBMS. We remotely log to the DMBS, perform

the experiments (issue queries), and use the DBMS control panel to measure the processing

delays. Our measurements are reported in table 4-5.

Table 4- 5: The query processing delays in millisecond

Query Selectivity factors Total number of tuples
500 1000 2000 4000 8000

Query1.1 0.2 2 3 7 13 27

Query1.2 0.4 3 5 9 17 33

Query1.3 0.6 3 7 13 23 38

Query1.4 0.8 4 9 14 26 59

Query1.5 1 5 10 19 39 72

Table 4-5 shows the query processing delay in millisecond. There is a positive

relationship between the number of the tuples of the relation and the query processing delay.

52

Figure 4- 3: The query processing delays

Figure 4-3 shows the delays that were presented in Table 4-5 and also shows the results of

line fitting that minimizes distance square. Recall that n is the number of the tuples in the

relation,s is the selectivity factor. This is what was expected as the selected tuples can be

determined on one pass through the relation regardless of the type of a predicated (point query

or a range query) or the number of terms as we do not use any two-variable query predicates

that are processed by self-joins.

4.2.2.2.3 Crypto Delays

For crypto delays, we determine only the parameter of the AES-CBC encryption

algorithm because it is the only encryption algorithm that is being used at the master cloud.

Since the size of the plain-text record that needs to be inserted to the master cloud is much less

than the same cipher record, we determine each of the encryption and decryption separately.

For simplicity in determining the parameter values, we assume that the size of plain text record

is 25 bytes while that it is 100 bytes for the corresponded cipher-text record. We determine the

parameter by calculating the time to encrypt/decrypt by varying the size of message. Table 4.2

shows the crypto delays in milliseconds. We performed the experiments on an isolated system

that has no other activities/program and hence did not observe variation in delays when the

experiments were repeated. Thus, deviations are not reported.

c = c +p n + p s n �

#�

�#�

�#�

�#�

�#�

�#�

"#�

�#�

 #�

#� �###� �###� "###� ###� �####�

��
)
'�
�9
��)

0�
�

�+1$&�9.)%'/�+,�1.*&'0��

:.'/3�*/+5'00�9;��

5-%&3�����

5-%&3�����

5-%&3�����

5-%&3�����

5-%&3�����

!/00%1�2/.%�

53

Table 4- 6: The Crypto delays in millisecond

The number of retrieved tuples
 200 400 800 1600 3200

Encryption\ Decryption

Encryption (1 tuple = 25 bytes) 261 266 275 267 292

Decryption (1 tuple = 100 bytes) 0.93 1.12 1.44 2.12 3.64

Figure 4-4 shows the delays that were presented in Table 4-6 and also shows the results of

line fitting that minimizes distance square. One line is for encryption and one is for decryption.

The observation about the parameters value is that the decryption delay takes much less than

the encryption delay because the AES-CBC encrypts blocks only in a sequential manner.

However, it decrypts the blocks in parallel where the blocks size is always 128 bits in AES.

Figure 4- 4: Crypto delay parameters

4.2.2.2.4 Proxy Delays

 Proxy performs encryption, decryption, and query translation. The encryption was

discussed in previous sub-section. The proxy has to transform a query into a number of sub-

3�6�#�## 7�8��"�����

�

3�6�#�###97�8�#������

�
#�

�#�

�##�

��#�

�##�

��#�

�##�

��#�

#� �� � ��� �"� �#� ��� � � ���

��
)
'�
�9
�)
0�
�

�.)%'/�+,�1.*&'0��9�4.92/'20�

�/3*1+��'&$3��

�.+&3:0/).��

1%+&3:0/).��

�/.%'&�;�.+&3:0/).�<�

�/.%'&�;1%+&3:0/).�<�

 54

queries when predicates appear in the Where clause. It then sends each sub-query to a slave

cloud that has the column of desired values on which a predicate applies. Since each of the

slave clouds has only one vertical fragment (one column plus an index column), an intersect or

union of the returning result needs to be performed by the proxy. We determine the parameters

of Equation 4.4 by calculating the time in millisecond as we vary the size of the two arrays

that hold the indexes returned by the slave clouds. Table 4.4 shows the time in millisecond for

different sizes of the arrays. We determine the delay of the intersect or union by taking

timestamp at the beginning and the end of the function. We also separate the number of

elements equally between the arrays. For instance, in case of 2000 elements, we design a query

that has returning results from two slave clouds in which each slave cloud has to return

thousand elements.
 Table 4- 7: The proxy delays in millisecond

Elements in the arrays
 2000 4000 8000 16000 32000
The operation
The Intersect 2 3 5 8 9
The union 3 6 10 14 17

Figure 4-5 shows the delays that were presented in Table 4-7 and also shows the results of

line fitting that minimizes distance square. One line is for intersect and one is for the union.

55

Figure 4- 5: proxy delay parameter

4.2.2.3 Observations

Based on determining the parameters of the analytical model, we observe that the

communication delay is the highest delays, in case of small message size. The equation

D=0.0005x+64.238 represent the communication delay, where x is the size of the message. See

Figure 4-6 for comparison of the magnitude of parameters and the resulting delays in a Query in

which the number of tuples in the database is fixed to 32000 tuples. The number of clouds

involved is three clouds, including the master cloud, and the number of retrieved tuples is 32

tuples. The communication delay is due to the message size of 3200 bytes when each tuple is

hundred bytes of the size. The number of the tuples (32000 tuples) is used as the query-

processing variable. The number of retrieved tuples is also used to determine the crypto delay.

Lastly, the intersect equation is used to determine the proxy delay since we assume a

conjunction of predicates.

3�6�#�###�7�8��� ���

3�6�#�###"7�8��������

#�

��

��

"�

 �

�#�

���

���

�"�

� �

�#�

#� �###� �####� ��###� �####� ��###� �####�

��
)
'�
�9
�)
0�
�

�.)%'/�+,�'&')'910��9�14+.0$92��9�14'�$//$30��

�/+�3��'&$3��

�=%�/.0%&4%+0�

�=%�-./).��

!/00%1�2/.%��

>/00%1�2/.%��

56

Figure 4- 6: The delays of different components for a small message size

Figure 4-6 shows the delays in percentages that are 1%0%&,/.%1�?3 the analytical model.

If we examine the resulting parameters, we can observe that the communication delays are

dominant by far. Query processing delays are next but much smaller than the communication

delays. The proxy and crypto delays are very small in comparison.

On the other hand, we did the same calculation for a larger message size (see figure 4-7).

The result shows that the crypto delay is higher than the communication delay by 19%.

Therefore, our scheme is affected by the message size in that if the message size is large then

the crypto delay is the highest, and if the message size is small then the communication delay is

highest. Examining the equations 4-1, used for communication delay, and equation 4-2, used

for decryption delays, the decryption has a higher slope but communication has a higher fixed

overhead.

�+)).9�5$1�+9�
�'&$3��
8 C�

�/3*1+��'&$3��
�C�

:.'/3�*/+5'00�9;�
�'&$3��
�!C�

�/+�3��'&$3��
7C�

�4'�5+)*+9'910�2'&$30�,+/�$�0)$&&�
)'00$;'�0�='�

D�+,�tuples on
the relation���
��777�
�
D�+,�/'1/�'
'2�
1.*&'0�������
�
)'00$;'�0�='��
��77��

57

Figure 4- 7: The delays of different components for a large message size

4.2.3 Delays Derived Using the Analytical Model

We are now ready to report on delays predicted by the analytical model. We explore two

scenarios for our Secure Distributed method, one is serial and one is parallel. That is, if a user

query results in more than one sub-query sent to the clouds in which columns are stored, we

analyze two cases: (a) The sub-queries are issued in a serial fashion, one after another, and (b)

sub-queries are issued in parallel, i.e., concurrently. Once the results from sub-queries are

retrieved, the proxy determines the intersection of tuples, of the results, based on the returned

indices - this intersection is then sent to the master to get the query answer. We report on delays

obtained by applying the analytical model on the queries described below.

Based on the analytical model, we compare four approaches: Unsecured centralized,

Secure centralized, Secure distributed serial, and the Secure distributed parallel. We calculate

the total delays of each of these approaches. We calculate the delays using the analytical model

while varying the selectivity to vary the number of retrieved tuples and also the number of

predicates. In all cases the DB size is fixed at 8000 tuples.

Table 4-1 shows the first set of queries, which have only one predicate. Recall that the

results are retrieved from two clouds: one slave cloud and the master cloud. Thus, we apply the

same selectivity factor when querying the cloud and also when querying the master cloud.

�),,-./+'0/).�

%2'3��

�"@�

�&3:0)�

%2'3��

��@�

5-%&3�:&)+%44/.(�

%2'3��

�@�

�&)73�
%2'3��

�@�

�4'�5+)*+9'910�2'&$30�,+/�$�&$/;'�
)'00$;'�0�='�

of tuples on
the relation :
32000

of retrieved
tuples : 32000

the message
size: 3200000
byte

 58

Table 4- 8: The total delays in millisecond of four schemes for Query 1

S.F.

Unsecure
centralized

Secure
centralized

Secure
distributed serial

Secure distributed
parallel

C
om

m
.

Q
uery
pro

C
om

m
.

Q
uery
pro

C
rypto

C
om

m
.

Q
uery
pro

C
rypto

Proxy

C
om

m
.

Q
uery
pro

C
rypto

Proxy

0.2 134 339 445 445
84 50 144 50 144 211 77 144 2 211 77 144 2

0.4 160 569 674 674
104 56 224 56 288 282 82 288 2 282 82 288 2

0.6 186 798 904 904
124 62 304 62 432 378 88 432 3 378 88 432 3

0.8 211 1028 1134 1134
144 67 384 67 576 461 94 576 4 461 94 576 4

1 237 1258 1363 1422
164 73 464 73 720 928 99 720 4 928 99 720 4

Table 4-8 shows the delays in millisecond for Query 1, which has a Where Clause A/0=�

).%�:&%1/+'0%. We also $'&3 the selectivity factors (S.F.) for the master cloud when forming

the results. The Secure distributed serial and parallel have the same delay since, in this Query,

there is no parallelized process.�The delays for the Secure Centralized method are less than for

the Secure Distributed (serial and parallel) methods because in the centralized case only the

master cloud is accessed while the distributed methods, in additional to accessing the master

cloud, also accesses one slave cloud.

 The next figures show the components contribution on the total delays for Query 1.

Figure 4-8 shows the delays of the communication and the query processing for unsecured

centralized approach. In this approach, there are two components that have an impact of the

total delay, which are the communication and the query processing. The communication delay

is higher than the query processing delay.�

�

59

Figure 4- 8: Component delays for Unsecured centralized for Query 1�

!/(-&%��B9�4=)A4�0=%�1%2'34�)*�0=%�+),:).%.04�*)&�4%+-&%�+%.0&'2/C%1�'::&)'+=�*)&�

5-%&3���� 	.� 0=/4�'::&)'+=D� 0=%&%� /4�).%�,)&%�+),:).%.0� 0='0�='4�'.� /,:'+0�).�0=%� 0)0'2�

1%2'3� '.1� 0='0� /4� 0=%� +&3:0)� 1%2'3�� � 	.� *'+0D� 0=%� +&3:0)� 1%2'3� /4� =/(=%&� 0='.�)0=%&�

+),:).%.04�A=%.�0=%�4%2%+0/$/03�*'+0)&�/4�#���)&�(&%'0%&���

Figure 4- 9: The component delays for secured centralized for Query 1�

!/(-&%� �B�#� 4=)A4� 0=%� 1%2'34�)*� 0=%� +),:).%.04� *)&� 4%+-&%� 1/40&/?-0%1� 4%&/'2�

'::&)'+=���=%&%�'&%�*)-&�+),:).%.04�0='0�='$%�'�,'E)&�/,:'+0�).�0=%�0)0'2�1%2'3���%+'22�

0='0� 0=%&%� '&%� 0A)� +2)-14� /.$)2$%1� 0)� &%0&/%$%� 0=%� */.'2� &%4-204D� 0=%�,'40%&� +2)-1� '.1� '�

42'$%�+2)-1���=%�+),,-./+'0/).�1%2'3�/4�0=%�=/(=%40�1%2'3�A=%.�0=%�4%2%+0/$/03�*'+0)&4�'&%�

2%44�0='.�#�����=%�+),,-./+'0/).�'.1�0=%�+&3:0)�1%2'34�'&%�/.0%&4%+0/.(�'0�#���4%2%+0/$/03�

*'+0)&�A=%&%�0=%�+&3:0)�1%2'34�?%+),%�=/(=%&�0='.�0=%�+),,-./+'0/).�1%2'3���.�0=%�)0=%&�

#�

�#�

�##�

��#�

�##�

#� #��� #��� #�"� #� � �� ����

1�
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

60

='.1D�0=%�:&)73�'.1�F-%&3�:&)+%44/.(�1%2'34�'&%�'2,)40�0=%�4',%�?-0�0=%3�'&%�2%44�0='.�

)0=%&4�0A)�+),:).%.04�'4�0=%�4%2%+0/$/03�*'+0)&�/.+&%'4%4��

Figure 4- 10: The components delays for secure distributed serial for Query 1.

�

!/(-&%� �B��� 4=)A4� 0=%� 1%2'34�)*� 0=%� +),:).%.04� *)&� 4%+-&%� 1/40&/?-0%1� :'&'22%2�

'::&)'+=�*)&�5-%&3�����=/4�'::&)'+=�/4�1/**%&%.0�0='.�0=%�:&%$/)-4�'::&)'+=�/.�0=%�A'3�)*�

=)A�0=%�42'$%�+2)-14�'&%�F-%&/%1���)A%$%&D� /.�0=/4�F-%&3�:&)+%44/.(�0=%�:'&'22%2/4,�='4�

.)�%**%+0�?%+'-4%�A%�='$%�).23�).%�:&%1/+'0%�,%'./.(�).%�42'$%�+2)-1�0)�F-%&3�'.1�0=-4�

0=%�:'&'22%2�'.1�4%&/'2�'::&)'+=%4�'&%�0=%�4',%����

Figure 4- 11: The components delays for secure distributed parallel for Query 1

In Query 2, there is one more predicate in the Where clause, which means that one more

slave cloud is involved in our scheme. We vary the final results selectivity factors so that it

increases by 0.2. Slave clouds selectivity factors are also reported and are always greater than

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

1�
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

�&)73�
%23�

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

1�
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�*$/$&&'&��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

:&)73�
%23�

 61

the master selectivity factors because their product will determine the selectivity factor for the

final result retrieved from the master cloud. We use the usual assumptions of uniform

distribution of values in columns and also of independence of values across columns.

Table 4-2 shows the Query 2 that have two predicates, and each slave cloud has different

selectivity factors.

Table 4- 9: The total delays in millisecond of four schemes for Query 2

S.F.

Unsecure
centralize

d

Secure
centralized

Secure
distributed serial

Secure distributed
parallel

C
om

m
.

Q
uery
pro

C
om

m
.

Q
uery
pro

C
rypto

C
om

m
.

Q
uery
pro

C
rypto

Proxy

C
om

m
.

Q
uery
pro

C
rypto

Proxy

0.2
134 338 536 469

84 50 144 50 144 288 103 144 1 220 103 144 2

0.4
160 568 845 740

104 56 224 56 288 445 109 288 3 302 109 288 3

0.6
186 798 1008 931

124 62 304 62 432 457 114 432 5 381 114 432 4

0.8
211 1027 1244 1163

144 67 384 67 576 541 120 576 7 462 120 576 5

1
237 1257 1479 1396

164 73 464 73 720 624 126 720 9 544 126 720 6

Table 4-9 shows the total delays in millisecond across the approaches. Recall that in the

Secure distributed parallel approach, there are two communications: parallelized slave clouds

queries and the master cloud query. Thus, as there is more than one predicate in comparison to

the previous Query, the delays for the Secure distributed serial method are increased.

Figure 4-12 shows the components delays of unsecured centralized approach. The

communication delay is higher than query processing delay by far and there are neither crypto

nor proxy delays in this approach. Hence the total delay is less than for the other methods.

62

Figure 4- 12: The components delays for Unsecured centralized for Query 2

Figure 4-13 shows the delays of the major components of secure centralized approach.

The crypto delays are the highest in most of the selectivity factor points especially if it is

greater than 0.4. The communication delay is a bit higher than the crypto delay at 0.2 selectivity

factors.

Figure 4- 13: The components delays for secured centralized for Query 2�

Figure 4-14 shows the communication, query processing, crypto, and proxy delays of

Secure distributed serial approach. Before the selectivity factor of 0.6, the communication

delays are higher than others because there is more slave clouds are accessed to form the final

results. Recall that the selectivity factors for each of the slave clouds are greater than the final

results selectivity factors. Thus, the selectivity factors have an impact on the total

communication delay. The crypto delays become the highest after selectivity factor of 0.8. The

query processing and the proxy delays are much less than the others delays.

#�

�#�

�##�

��#�

�##�

#� #��� #��� #�"� #� � �� ����

1�
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0�

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

63

Figure 4- 14: The components delays for secure distributed serial for Query 2

Figure 4-15 shows the delays of the components in the secure distributed parallel

approach. The communication delays are the highest until the 0.4 selectivity factor. In general,

the communication delays are less in comparison to the communication delays on the secure

distributed serial approach because the slave clouds are queried in parallel. However, crypto

delays are the same in both approaches.

Figure 4- 15: The components delays for secure distributed parallel for Query 2

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

:&)73�
%23�

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�*$/$&&'&��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

:&)73�
%23�

64

Table 4- 10: The total delays in millisecond of four schemes for Query 3

Table 4-10 shows the delays in millisecond of the four approaches for Query 3, which has

three predicates. The delays are increased in our scheme because one slave cloud is accessed for

each of the predicates. The communication delay, as we stated previously, dominates the other

factors that can impact the total delay.

Figure 4-16 shows the communication and query processing delays for unsecured

centralized approach. The communication delays increased as the selectivity factor is increased

- this is because the communication delay is proportionally effected by the message size so that

the bigger the message size, the higher the delay.

Figure 4- 16: The components delays for Unsecure centralized for Query 3

#�

�#�

�##�

��#�

�##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

S.F.

Unsecure
centralize

d

Secure
centralized

Secure
distributed serial

Secure distributed
parallel

C
om

m
.

Q
uery
pro

C
om

m
.

Q
uery
pro

C
rypto

C
om

m
.

Q
uery
pro

C
rypto

Proxy

C
om

m
.

Q
uery
pro

C
rypto

Proxy

0.2
134 339 634 497

84 50 144 50 144 357 130 144 3 220 130 144 3

0.4
160 569 879 729

104 56 224 56 288 452 135 288 4 302 135 288 4

0.6
186 798 1108 960

124 62 304 62 432 529 141 432 6 381 141 432 6

0.8
211 1028 1350 1111

144 67 384 67 576 620 147 576 7 463 147 576 7

1
237 1258 1585 1425

164 73 464 73 720 704 152 720 9 544 152 720 9

65

Figure 4-17 shows the delay of three major components that impact the total delays of the

secure centralized approach. The communication and the crypto delay are higher than the query

processing delay. The variances between these two components increase as the selectivity

factor increases.

Figure 4- 17: The components delays for Secure centralized for Query 3

Figure 4-18 shows the delays of the different components for secure distributed serial

approach for Query 3. The communication delays have the highest delays across the selectivity

factors except the selectivity factor of one where the communication and the crypto delays are

the same. The communication delays are higher than in the previous Query because of the

increases of the number of the slave clouds to perform the query.

Figure 4- 18: The components delays for secure distributed serial for Query 3

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

1�
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

:&)73�
%23�

66

Figure 4-19 shows the delays of components of secure distributed parallel approach for

Query 3 . The delays end with the highest delay for crypto delay. The communication and

crypto delays are intersecting at 0.5 selectivity factor. The crypto delay keeps increasing ending

with the largest delay.

Figure 4- 19: The components delays for secure distributed parallel for Query 3

4.2.4 Evaluation Using Modeling

We created a proxy for each of the methods the Unsecured, Secured Centralized, and

Secured Distributed methods. For each method, we instrumented the queries described in the

section 4.2 and then measured and reported the component and total delays. We first describe

how we measured the component delays and then we report on experimentation and its results.

It should be noted that for simplification, in order to reduce the instrumentation task, we

use only one cloud that is used both for the master cloud and also the clouds storing individual

columns. Furthermore, we also model in the Secured Distributed method only the case wherein

individual sub-queries are issued by the proxy in a serial fashion. We did not instrument a

proxy with concurrent processing in order to be able to send sub-queries to the clouds

concurrently.

Communication between the cloud and the proxy was over Internet and thus we are

confident that the bandwidths on the local ports of the proxy and the cloud were sufficient to

attain the maximum bandwidth attainable using Internet. For the instrumentation, we used the

following systems: First, we created a public cloud computing account at Rackspace, which

offers open source cloud computing. Then, we created a number of servers equal to the number

#�

�##�

�##�

"##�

 ##�

#� #��� #��� #�"� #� � �� ����

��
)
'�
�9
�)
0�
�

�'&'51�
�13��$51+/0��

�'5./'�2�01/�%.1'2�*$/$&&'&��

�),,-./+'0/).�1%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

:&)73�
%23�

 67

of fragments that we need, plus one more for the master cloud. All servers in the cloud were

configured with the following features:

� Linux OS, XAMPP Server

� CPU: 2 vCPUs

� RAM: 4 GB

� System Disk: 160 GB

� Network: 400 Mb/s

Both the master cloud and the salve clouds are configured using the Linux operating

system. They are also configured using the XAMPP server to house MySQL DBMS. This tool

is needed to store a master relation and the fragments in the nodes.

The proxy, on the other hand, is a server at the private cloud and have the following

features:

� OS X

� Tomcat server 7.0.53

� CPU: 2.4 GHz Intel Core i5

� RAM: 10 GB RAM

� System Disk: 500 GB

� Network: 150 Mbps

 4.2.4.1 Determining Component Delays

To measure the component delays we utilize timestamps. We acknowledge that there

may be a skew between the clock of the proxy system and the clock of the cloud virtual system,

which might have an impact when calculating overall delays. However, considering the

magnitude of the measured delays, particularly over the network, the clock skew should be

insignificant. To measure the component delays we take a timestamp at the beginning of an

operation and a timestamp at its conclusion. Thus, to measure the communication delay, we

take a timestamp just before sending a message and then send the message. Upon the reception

of the result, we immediately take the timestamp, and we calculate the difference between the

two time stamps and use it as a message delay. Similarly, we take a timestamp before any

encryption, decryption, and query issuance, and also the timestamp at the conclusion of the

operation and use them to calculate the delay.

 68

 4.2.4.2 Delays Derived Modeling

 We measure the total delays while varying the selectivity factor and the number of

predicates in the Where clause. The selectivity factors that are used are 0.2, 0.4, 0.6, 0.8, 1.0

and we hold the total number of tuples in the relation to 8000. We start the experiments with a

query that has a Where Clause with one predicate then we increase the number of predicates by

one up to three predicates. We submit the queries hundred times and report the averages. The

experiments are applied for the methods; Unsecured Centralized, Secured Centralized, and

Secured Distributed methods.

In the Query 1, as shown in table 4-5, the query has only one predicates indicating that the

number of clouds is increased resulting on an increase on the total delays.

Table 4- 11: The total delays in millisecond of three schemes for Query 1

S.F.

Unsecure centralized Secure
centralized

Secure
distributed serial

C
om

m
.

Q
uery pro

C
om

m
.

Q
uery pro

C
rypto

C
om

m
.

Q
uery pro

C
rypto

Proxy

0.2
130 451 777

106.2 23.8 253 30.5 168 566 41 169 1

0.4
115 585 1147

84.8 30.2 314 49 222 881 74 191 1

0.6
143 804 1492

102.9 40.1 495 62.8 247 1168 103 221 2

0.8
152 983 1757

102.9 49.1 593 83 307 1328 142 285 2

1
171 1287 2073

115.2 55.8 790 98.7 390 1580 148 343 2

Table 4-11 shows the total delays in milliseconds of the three approaches when the

selectivity factor is varied from 0.2 to 1. Recall that the database on all approaches has 8000

records. Take the selectivity factor of 0.2 an example, then the number of retrieved tuples is

1600 tuples. The query only has one predicate where the master cloud and one more slave cloud

are involved in order to complete the task in the Secure Distributed method. The results show

the impact of the communication delays of the extra round trip in the Secure Distributed

method in comparison to the Secure Centralized method. Of course, the Unsecured method has

much less delays not only because there is no decryption process after retrieved the result but

69

also the information is stored in clear text, which means that the tuples are smaller in size

resulting in faster communication.

Figure 4-20 shows the delays for communication and query processing in an unsecured

centralized method. There is a similarity between the results of unsecured centralized in the

analytical model and the modeling. The communication delays are higher than the query

processing delays.

Figure 4- 20: The components delays for secure distributed serial for Query 1

Figure 4-21 shows the delays of the communication, query processing, and crypto delays

for secure centralized approach. Unlike the corresponding result of the analytical model, the

communication delays are the highest on all selectivity factors.

Figure 4- 21: The components delays for secure centralized for Query 1

Figure 4-22 shows how the delays of the components of secure distributed serial method.

The communication delays are the highest, and the increase as the selectivity factors increase.

#�

�##�

�##�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

#�

�##�

�##�

"##�

 ##�

�###�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

70

Figure 4- 22: The components delays for secure distributed serial for Query 1

The Query 2 have two predicates so that two slave clouds have to be queried. The

selectivity factors for the slave query are larger than the desired final selectively factors.

Table 4- 12: The total delays in millisecond of three schemes for Query 2

S.F.

Unsecure centralized Secure
centralized

Secure
distributed serial

C
om

m
.

Q
uery
pro

C
om

m
.

Q
uery
pro

C
rypto

C
om

m
.

Q
uery
pro

C
rypto

Proxy

0.2
153 493 976

128 25 283 42 168 733 79 163 1

0.4
160 710 1459

107 35 396 93 221 1162 104 191 2

0.6
185 884 1707

143 42 536 109 239 1347 139 219 2

0.8
200 972 2165

149 51 549 113 310 1694 179 290 2

1
210 1582 2223

151 59 1036 139 407 1687 187 346 3

Table 4-12 shows the total delays in milliseconds for Query 2. In this Query, the number

of predicates is increased to two predicates meaning that the number of clouds is increased to

three clouds. The effect of the communication is increased by far.

#�

�##�

�###�

��##�

�###�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

�&)73�
%23�

71

Figure 4- 23: The components delays for unsecured centralized for Query 2

Figure 2-23 shows the delays of communication and query processing delay, as they are

the two major delays that have the impact in an unsecured centralized system. The

communication is the higher by far than query processing.

Figure 4- 24: The components delays for secure centralized for Query 2

Figure 4-24 shows the component delays that have an impact on the secure centralized

approach. The communication is the highest delay because there is a number of factors effect

the communication delays include the bandwidth, the Internet speed, the distances and many

others that we can not control.

#�

�#�

�##�

��#�

�##�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

#�

�##�

�##�

"##�

 ##�

�###�

��##�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

72

Figure 4- 25: The components delays for secured distributed serial for Query 2

Figure 4-25 shows the delays of the secure distributed serial system. In Query 2, the

communication delays are much higher because there are two slave clouds that need to be

queried before querying the master cloud.

In Query 3, there are three predicates in each query and hence three slave clouds are

accesses. Recall that the selectivity factor represents the final selectivity factors where each of

slave clouds has greater or equal selectivity factor. Therefore, any increase of the final result

selectivity factor results in increase of the selectivity factor for each of the slave. Table 4-3

shows the queries of Query 3 with the selectivity factors.

#�

�##�

�###�

��##�

�###�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/0��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

�&)73�
%23�

73

Table 4- 13: Delays in millisecond of three schemes for Query 3

S.F.

Unsecure centralized Secure
centralized

Secure
distributed serial

C
om

m
.

Q
uery pro

C
om

m
.

Q
uery pro

C
rypto

C
om

m
.

Q
uery pro

C
rypto

Proxy

0.2
155 504 1196

129 26 277 62 165 939 91 165 1

0.4
175 660 1729

138 37 336 101 223 1417 122 188 2

0.6
207 775 1950

164 43 429 109 237 1580 159 209 2

0.8
273 1194 2291

220 53 777 115 302 1805 203 281 2

1
220 1441 2763

159 61 933 137 371 2196 213 350 4

Table 4-13 shows the total delays in milliseconds for Query 3. In this Query, the number

of predicates is increased to three predicates meaning that the number of clouds is increased to

four clouds i.e. three slave clouds and the master cloud. The effect of the communication is

increased by far.

Figure 4- 26: The components delays for unsecured centralized for Query 3

#�

�#�

�#�

"#�

 #�

�##�

��#�

��#�

�"#�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�90'5./'2�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

74

Figure 2-26 shows the delays of unsecured centralized components; the communication

and the query processing. There is no difference between the delays of the unsecure centralized

approach in three the Queries.

Figure 4- 27: The components delays for secure centralized for Query 3

Figure 2-27 shows the delays of the secure centralized approach. The communication

delays are the highest. The crypto delays and the query processing delays are next.

Figure 4- 28: The components delays for secure distributed serial for Query 3

Figure 4-28 shows how the communication delays affect the total delays. Recall that the

communication is going through the Internet, so we have no control over it. As we stated, there

#�

�##�

�###�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�'5./'�5'91/$&�='2��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

#�

�##�

�###�

��##�

�###�

��##�

#��� #��� #�"� #� � ��

��
)
'�
�9
�)
0�
�

�'&'51�
�13�,$51+/��

�'5./'�2�01/�%.1'2�0'/�$&��

�),,-./+'0/).�
%23�

5-%&3�:&)+%44/.(��

�&3:0)�
%23�

�&)73�
%23�

 75

are many factors that are involved on the communication so that we cannot estimate the exact

delays.

 4.2.5 Results Analysis and Discussion

In the previous section, we report the delays of the components for each approach. In this

section, however, we are comparing the delays of each component on the analytical model with

the corresponding delays of the emulation modeling across all queries for every approach.

 4.2.5.1 Communication delay

 Figure 4-29 shows the communication delays for all queries in both models for

unsecured centralized approach. The communication delays have the same delays in the

analytical model in all the queries because the message size is the same between the queries;

and the same applies for emulation modeling. Delays derived through emulation modeling, in

comparison to those derived through analytical modeling, are somewhat lower at smaller

selectivities, while somewhat lower at high selectivities.

Figure 4- 29: communication delays for unsecured centralized approach

#�

�#�

�#�

"#�

 #�

�##�

��#�

��#�

�"#�

� #�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
�9
�)
0�
�

5+)).9�5$1�+9�2'&$30�,+/�.90'5./'2�5'91/$&�='2�$**/+$54�

#���

#���

#�"�

#� �

��

 76

Figure 4-30 shows the communication delays for all queries in both models for secure

centralized approach. The delays of the analytical model are the same in all queries as the

previous approach. It can be observed that the delays obtained by emulation are higher and

becoming more prominent with increased selectivities.

Figure 4- 30: Communication delays for secure centralized approach

#�

�##�

�##�

"##�

 ##�

�###�

��##�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
�9
�)
0�
�

�+)).9�5$1�+9�2'&$30�,+/�0'5./'�5'91/$&�='2�$**/+$54��

#���

#���

#�"�

#� �

��

 77

Figure 4- 31:�Communication delays for distributed secure approach

Figure 4-31 shows the communication delays for all queries in both models for distributed

secure approach. In the previous approaches, the communication delays are increased mostly

due to the increases of the selectivity factors. In our scheme, however, the communication is

increased as the number of clouds is increased as will as the increases of the selectivity factors.

The differences in delays between the analytical model and the emulation model are higher than

in previous Queries, and they have the same trend, as in previous Queries, in that the

differences in delays derived through emulation and modeling increases with increased

selectivities. There are several reasons of the increases of the variances of the delays between

the analytical model and the emulation model.

#�

�##�

�###�

��##�

�###�

��##�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
�9
�)
0�
�

�+)).9�5$1�+9�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54�

#���

#���

#�"�

#� �

��

 78

 4.1.5.2 Query processing delay

Figure 4- 32: Query processing delays for unsecured centralized approach

Figure 4-32 shows the query processing delays for all queries in both models for

unsecured centralized approach. The delays on the analytical model are the same across the

queries, and they are the same on the emulation model. The differences between the models are

so small in range of 10 -20 ms.

#�

�#�

�#�

�#�

�#�

�#�

"#�

�#�

 #�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
��9

�)
0�
�

:.'/3�*/+5'00�9;�2'&$30�,+/�.90'5./'2�5'91/$&�='2�$**/+$54�

#���

#���

#�"�

#� �

��

 79

Figure 4- 33:�Query processing delays for secured centralized approach

Figure 4-33 shows the query processing delays for all queries in both models for secured

centralized approach. The difference on the delays between the models is varying with the

selectivity and also with an increase in the number of predicates.

Figure 4-34 shows the query processing delays for all queries in both models for

distributed secure approach. It can be observed that for small selectivity, delays through

analytical modeling are higher than those obtained through emulation. However, for higher

selectivity, delays obtained via emulation are much higher than those obtained by analytical

modeling.

#�

�#�

�#�

"#�

 #�

�##�

��#�

��#�

�"#�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
�9
�)
0�
�

:.'/3�*/+5'00�9;�2'&$30�,+/�0'5./'2�5'91/$&�='2�$**/+$54�

#���

#���

#�"�

#� �

��

 80

Figure 4- 34:�Query processing delays for distributed secure approach

 4.1.5.3 Crypto processing delay

In the crypto delays, we have only two approaches to compare with; the secure

centralized and the distributed secure. The crypto delays are proportionally affected by the

message size. Recall that we only decrypt the final result retrieved from the master cloud so that

the size of decryption work depends on the selectivity factor. Thus delays obtained by

analytical are the same for both Secure Centralized and Secure Distributed approaches. Same

applies for delays derived through emulation. However, delays derived through analytical

modeling are higher than those obtained through emulation.

#�

�#�

�##�

��#�

�##�

��#�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

��
)
'�
�9
�)
0�
�

:.'/3�*/+5'00�9;�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54�

#���

#���

#�"�

#� �

��

 81

Figure 4- 35:�Crypto delays for secure centralized approach

Figure 4- 36: Crypto delays for distributed secure approach

#�

�##�

�##�

�##�

�##�

�##�

"##�

�##�

 ##�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

1�
)
'�
�9
�)
0�
�

�/3*1+�2'&$30�,+/�0'5./'�5'91/$&�='2�$**/+$54��

#���

#���

#�"�

#� �

��

#�

�##�

�##�

�##�

�##�

�##�

"##�

�##�

 ##�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

1�
)
'�
�9
�)
0�
�

�/3*1+�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54�

#���

#���

#�"�

#� �

��

 82

 4.1.5.4 Proxy processing delay

 Figure 4-37 shows the proxy processing delays for all queries in both models for the

distributed secure approach. Recall that the proxy delays include delays to perform the

intersection of results returned form slave clouds and overhead associated in transforming the

user query to queries on clouds and also processing results received from the clouds. In general,

the proxy delays in both models are much less than delay of the other components. The

differences in the delays between analytical and emulation models are much less than the

differences in the other components.

Figure 4- 37: Proxy delays for distributed secure approach

 4.2.5.4 Discussion

We observe that the delays derived through analytical modeling, with the exception of

crypto delays, are less than those derived through emulation. Recall that in the analytical model,

we determine the component delays individually. Thus, the total delay of the analytical model is

the sum of the components delays. The analytical model is driven by first calibrating the

model’s parameters through measurements on average delays in communication, query

processing, and decryption, and then using such parameters in analytically predicting delays of

the methods under consideration. When making the measurements, we use communication

#�

��

��

��

��

��

"�

��

 �

9�

�#�

5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).� 5�B�.'230/+'2� 5�B�,-2'0/).�

1�
)
'�
�9
�)
0�
�

�/+�3�2'&$30�,+/�2�01/�%.1'2�0'5./'�$**/+$54�

#���

#���

#�"�

#� �

��

 83

over Internet and also measure decryption and query processing delays that are performed on

infrastructure provided by the cloud. Delays due to emulation are also obtained by using

Internet for communication and cloud infrastructure for decryption and query processing, and

thus, we can expect much variability in both the analytical and emulation approaches as both

depend on when measurements are done. We all accept and experience much variability in

delays when communicating over Internet. Delays in cloud infrastructure are also variable as

they depend on the load, resources allocated by the cloud provider, and also the cloud’s quality

of software that measures the load and balances allocation of resources to handle the load.

Thus, although analytical modeling does not predict the actual delays with accuracy, it

does provide guidelines on the general trend when variables, such as selectivity or type of

issued queries, are varied.

 84

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

Cloud computing technology is attractive for storing and managing data. However,

concerns over confidentiality with regards to storing sensitive data prevents many official and

commercial organizations from moving to the cloud. A number of researchers have attempted

to provide a solution to security concerns associated with outsourcing storage. The aim in this

thesis research was to prevent untrustworthy providers from obtaining sensitive data. We

proposed a combination of the encryption algorithm used in Popa et al.’s (2012) aproach and

obfuscation by distributing the data amongst different clouds. The encryption algorithms

provide the user with confidentiality and also support query processing of encrypted data, while

the distributed technique provides greater security and prevents cloud providers from obtaining

meaningful information. The prototype of the proposal was implemented, with the results

showing that our scheme provides greater security, however, at the cost of higher delays.

Whether such delays are acceptable would need to be ascertained in each specific scenario in

which the usage of our proposed method would be considered.

We used two modeling techniques to determine delays of our proposed method and also

of methods used for comparison. One method was based on an analytical model while the other

method used emulation using a prototype. We calibrated our analytical model’s parameters by

measurements. When we compared delays derived through analytical modeling to those

derived through emulation, we observed that in most cases the analytical model underestimated

the delays. Thus, the analytical model can be used to analyze the behavior of the system in

terms of the trends on delays but it cannot be used to accurately predict the delays. Of course,

the same can be applied about any method that is predicting delays when the load on the system

is not taken into account - the load in our case is load that affects delays due to communication

over Internet or due to delays of processing on a cloud infrastructure.

 85

5.2 Future Work

 This thesis is not the only research attempting to overcome the DBaaS security issue. A

number of researchers continue to conduct investigations in the area of cloud computing

security, especially in the area of outsourcing data storage. Our scheme is a combination of

encryption algorithms and a database distributed system, which aims to prevent sensitive data

from being obtained by the cloud computing provider. In both the encryption algorithms and

the distributed system, there are potential enhancements that could improve performance and

security. The following are some future research works that we believe should be undertaken:

Combining all or some of the encryption algorithms into one algorithm that can support

different kinds of queries, so that the number of columns is decreased.

• Using the session key mechanism to update the keys and thereby provide greater

security across the clouds.

• Ensuring integrity by making communication between the clouds within a secure

channel.

• Exploring whether using horizontal fragmentation coupled with vertical fragmentation

may provide greater security and improved performance.

• Using the machine learning technique to cluster fragments across the clouds.

 86

References
Anciaux, N., Benzine, M., Bouganim, L., Pucheral, P., Shasha, D., & Rocquencourt, I. (2007). GhostDB :

Querying Visible and Hidden Data Without Leaks.

Bouganim, L., & Pucheral, P. (2002). Chip-Secured Data Access: Confidential Data on Untrusted Servers.

Capitani, S. De, Foresti, S., Samarati, P., & Informatica, D. (2012). Managing and Accessing Data in the Cloud:

Privacy Risks and Approaches.

Ciriani, V., Vimercati, S. D. C. Di, Foresti, S., Jajodia, S., Paraboschi, S., & Samarati, P. (2010). Combining

fragmentation and encryption to protect privacy in data storage. ACM Transactions on Information and

System Security, 13(3), 1–33. doi:10.1145/1805974.1805978

Daemen, J. (2002). The design of Rijndael : AES - the advanced encryption standard with 17 tables. Berlin [u.a.]:

Springer.

Desai, A. (2000). New Paradigms for Constructing Symmetric Encryption Schemes Secure Against Chosen-

Ciphertext Attack, pages 394–412.

Dijk, M. Van, Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully Homomorphic Encryption over the

Integers, 24–43.

Hacıg, H. (2005). Query Optimization in Encrypted Database, 43–55.

Hacıg, H., & Li, C. (2002). Executing SQL over Encrypted Data in the Database-Service-Provider Model, 7.

Hore, B., Mehrotra, S., Canim, M., & Kantarcioglu, M. (2011). Secure multidimensional range queries over

outsourced data. The VLDB Journal, 21(3), 333–358. doi:10.1007/s00778-011-0245-7

Hore, B., Mehrotra, S., & Tsudik, G. (2004). A privacy-preserving index for range queries, 720–731. Retrieved

from http://dl.acm.org/citation.cfm?id=1316689.1316752

Liu, D., Wang, S., & Centre, C. I. C. T. (2012). Programmable Order-Preserving Secure Index for Encrypted

Database Query. 2012 IEEE Fifth International Conference on Cloud Computing, 502–509.

doi:10.1109/CLOUD.2012.65

Modi, C., Patel, D., Borisaniya, B., Patel, A., & Rajarajan, M. (2012). A survey on security issues and solutions at

different layers of Cloud computing. The Journal of Supercomputing, 63(2), 561–592. doi:10.1007/s11227-

012-0831-5

Nalinipriya, G., & Aswin Kumar, R. (2013). Extensive medical data storage with prominent symmetric algorithms

on cloud - A protected framework. International Conference on Smart Structures and Systems - Icsss’13,

171–177. doi:10.1109/ICSSS.2013.6623021

Popa, R. A., Redfield, C. M. S., Zeldovich, N., & Balakrishnan, H. (n.d.). CryptDB : Protecting Confidentiality

with Encrypted Query Processing, 85–100.

Sakhi, I. (2012). Database security in the cloud.

Samarati, P., & Society, I. C. (2001). Protecting Respondents ’ Identities in Microdata Release, 13(6), 1010–1027.

Stallings, W. (1999). Cryptography and network security: Principles and practice. Upper Saddle River, N.J. :

Prentice Hall,.

 87

Stern, P. J., & Eurocrypt, C. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,

1592.

Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data. In Proceeding 2000 IEEE

Symposium on Security and Privacy. S&P 2000 (pp. 44–55). IEEE Comput. Soc.

doi:10.1109/SECPRI.2000.848445

Weippl, E. R. (2012). Data Confidentiality using Fragmentation in Cloud Computing. Aleksandar Hudic Shareeful

Islam, 1(3).

