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Abstract

Two polynomials arise naturally from the notion of an independent set of vertices
in a graph G: (i) the chromatic polynomial, 7(G,z) = Y45, Tk z®) where 7 is the
number of partitions of V/(G) into k independent sets (and z(*) a falling factorial);
and (i) the independence polynomial, ic(T) = Y x>0k z*, where iy is the number of
independent sets in V' of cardinality k. We study here the roots of these polynomials,
each respect to a specific graph operation: chromatic roots with respect to edge
subdivision, independence roots with respect to graph composition.

For a connected graph G of co-rank k = |E| — [V| + 1, it is known that any
chromatic root z satisfies |z — 1| < k. We prove that large subdivisions of G. while
not changing its co-rank, draw the chromatic roots close to the disk |z — 1] < 1.
For ‘uniform’ subdivisions, we describe the limit points of the roots, and in turn
characterize graphs having a subdivision with a chromatic root with negative real
part. In fact, infinitely many such roots are achievable from graphs of corank 2, the
3-ary theta graphs. And for each 3 < k < 8, the k-ary theta graph with path lengths
2 has a chromatic root z which maximizes |z — 1|.

Independence polynomials are (essentially) closed under graph composition. We
prove this, and apply it to families of well covered and comparability graphs, finding
the topological closures of both real and complex independence roots. For higher
composites of a graph G with itself, we prove that their independence roots con-
verge (in the Hausdorff topology) to the Julia set of ig(z) — 1, thereby associating a
fractal with G. For graphs with independence number 2, we determine when these

fractals are connected. Further, the join of all sufficiently many copies of any graph

vii



has a disconnected fractal, proving the existence of many connected graphs with a

disconnected independence fractal.
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Chapter 1

Introduction and Background

1.1 Introduction

One method of investigating a combinatorial sequence is to associate a generating
function with the sequence, and study the function itself, including its roots (or ‘ze-
ros’). In this thesis, we will study the roots of two generating functions - chromatic
and independence polynomials — which arise naturally from the notion of an indepen-
dent set of vertices in a graph. In section 1.3, we will lay out the plan for the thesis.
For now, we simply introduce the two polynomials.

The chromatic polynomial of a graph G(V, E) is the function 7(G, ) = 3 45, rez®),
where 7y is the number of ways of partitioning V into k independent sets, and z(*) is
the falling factorial z(z — 1)---(z — k + 1). For z a positive integer, (G, ) counts
the number of proper vertex colourings of G using at most z given colours. Expand-
ing, then collecting terms of like degree, leads to an expansion of the form (G, z) =
Y iso(—1)*bez™*, where n = |V|. As it happens, the sequence (bo, b1, - - -, bny) is
also combinatorial: b counts the number of broken circuits (cf. [10}) in G.

Initial interest ([12, 13, 14]) in the roots of chromatic polynomials stemmed from
the former four colour conjecture, which states that 4 cannot be a chromatic root of
any planar graph. Roots of chromatic polynomials have since emerged as a rather

fascinating topic in its own right, having attracted considerable attention (cf. [9, 11,

1



18, 21, 22, 45, 57, 60]). Chromatic polynomials also arise in statistical physics as
zero-temperature limits of the partition function of the Potts model antiferromagnet
on G (cf. [55]). Its roots are closely linked to phase transitions [61], and as such have
received interest from physicists [52, 53, 54] in addition to mathematicians.

The independence polynomial of G(V, E) is the function ig(z) = 3,5 iz, where
i, is the number of independent sets in V having cardinality k. It is the generating
function for the ‘independence vector’ (iq, i, . ., ig), and generalizes the more familiar
matching polynomial (cf. (39]), M(G,z) = Zkzo(—l)"mkx"‘”‘, where m; is the
number of matchings in G on k edges. Indeed. a matching in G is an independent
set in L(G) (the line graph of G), and mere inspection reveals that M(G.z)=z"-
iye (—z72).

Matching polynomials also arise in statistical physics, as monomer-dimer partition
functions (cf. [42]). Again, the roots are associated with phase transitions. The
roots of matching polynomials are all real (cf. {42]). While the same is not true of
independence polynomials, it is known ([35]) that at least one their roots is real: in
fact, a root of smallest modulus is necessarily real. Further results on independence

polynomials and their roots can be found in [23, 35. 40, 42].

1.2 Background

Some basic terminology and results will be needed for the chapters which follow.

1.2.1 Graphs

A graph G(V, E) consists of a finite, nonempty set V' (the vertices of G) and a multiset
E of one- and two-element subsets of V (the edges of G). If not all of the elements of
E are distinct, then G is said to have parallel edges, since there are pairs of vertices in
G with at least two edges between them. A graph with no parallel edges is a simple
graph. Those edges in E which are one-element subsets of V are called loops.

Two vertices u and v in G are adjacent if they are joined by an edge, that is, if



{u,v} € E. We often write uv instead of {u,v}. The vertices u and v are the ends
of e = uv, and e is incident with both u and v; both u and v are incident with e.
The degree of a vertex v € V, written degwv, is the number of edges in G which are
incident with v. The maximum degree of a vertex in G is denoted by A(G). If every
vertex in G has degree k, then G is k-regular.

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). f His a
subgraph of G such that for all pairs of vertices » and v in V(H) it is true that
wv € E(H) if and only if uv € E(G), then H is an induced subgraph of G.

A cycle of length k > 2 in G is a finite sequence vpe,v1€z . . . €xUg Whose terms are
alternately vertices and edges, with e¢; = v;_yv; fori = 1,... ,k, and such that no
vertex is repeated. The girth of G is the length of the shortest cycle in G (or oo if G
has no cycles). If G has n vertices and consists of only a cycle, then G is an n-cycle,
written G = C,. Removing any single edge from an n-cycle leaves a path P, on n
vertices; P, has n — 1 edges (the length of the path).

If G and H are simple graphs such that V(G) = V(H) = V, and, for all distinct u
and v in V, uv € E(G) if and only if uv € E(H), then H (resp., G) is the complement
of G (resp., H). We write H = G (or G = H ). The union G = Gy U G of two
graphs G1(Wi, E1) and Ga(Vs, Es) is the graph with vertices V(G) = V(G,)UV(G2)
and edges E(G) = E(G1)U E(G>). If, in addition, V; NV, = 0, then G is the disjoint
union of G and Gy, written G = G, U Goa.

The simple graph G on n vertices having an edge between every pair vertices is
the complete graph K,. Its complement is the empty graph of order n, written K.

For a graph G(V,E), a subset U of V' is independent if, for all w and v in U,
edge uv is not in E. The largest size of an independent set in G is the independence
number of G. A k-partite graph is a graph whose vertex set can be partitioned into
k independent subsets. The graph is called bipartite if £ = 2. If G is a k-partite
graph, and Uy, . . ., Uk is a partition of V(G) into k independent subsets of cardinality
ny,..., Tk, respectively, and E(G) consists exactly of all possible edges between the



.....

A graph is connected if there exists a path between any two of its vertices, and
is disconnected otherwise. The components of a graph are its maximal connected
subgraphs.

The connectivity of G, written x(G), is the minimum number of vertices whose
removal disconnects G or reduces it to K;. G is said to be k-connected if k(G) > k.
A cut setin G is a subset of V(G) whose removal increases the number of components
in G. If v € V(G) and {v} is a cutset in G, then v is called a cut verter. So a graph
with cut vertices is not 2-connected. A block in G is a subgraph that is maximal
subject to being either K or 2-connected. An edge e of G whose removal increases
the number of componenets of G is called a bridge.

A colouring of a graph G is an assignment of colours to its vertices in such a way
that no two adjacent vertices get the same colour. If (at most) k colours are used,
we have a k-colouring of G, and G is k-colourable. More precisely . a k-colouring of
G is a function f : V(G) — {1,....k} such that, for all u and v in V(G), we have
that wv € E(G) implies f(u) # f(v). The chromatic number, x(G), is the minimum
number of colours required to colour G. Any colouring of G partitions V(G) into

independent subsets, which we call colour classes, one class for each colour used.

1.2.2 Roots of Polynomials

Throughout the thesis, we will make use of fundamental results on the roots (or
zeros) of (univariate) polynomials with real and complex coefficients. We collect
these results here, beginning with a necessary condition for a rational number to be
a root of an integer polynomial. The notation kfz] denotes the ring of polynomials

in  with coefficients from k.

Theorem 1.2.1 (Rational Root Theorem) Let f(z) = Y, aiz* € Z[z] with
a, #0. Ifa/b € Q is a root of f(z), with ged(a,b) = 1, then a|ao and b|an.



A polynomial f with real coefficients is Hurwitz quasi-stable [5, 58] if every root of
f has nonpositive real part. The statement of the Hermite-Biehler Theorem proved in
Gantmacher [37] is actually a criterion for deciding whether every root of a real poly-
nomial has strictly negative real part. Wagner [58] deduced from this an analogous
criterion for Hurwitz quasi-stability. It is the latter which we shall call the Hermite-
Biehler Theorem. As in 58], a polynomial is standard if it is either identically zero
or has positive leading coefficient, and is said to have only nonpositive zeros if it is

either identically zero or has all of its roots real and nonpositive.

Theorem 1.2.2 (Hermite-Biehler) Let P(z) € Rz be standard, and write P(z) =
P.(z?) + zP,(z?). Sett = z*. Then P(z) is Hurwitz quasi-stable if and only if both
P.(t) and P,(t) are standard, have only nonpositive zeros, and Po(t) < Pe(t).

Roughly speaking (and made precise in [58]), the notation Po(t) < F.(t) says that
the roots of P,(t) ‘interlace’ the roots of P.(t), but we need not concern ourselves

with that here. In fact, we shall use only the following.

Corollary 1.2.3 If either P.(t) or P,(t) has a nonreal root (and is not identically

zero), then P(z) is not Hurwitz quasi-stable.

Now Sturm’s Theorem (cf. [46]) gives rise to a useful test for deciding whether a
real polynomial has a nonreal root. We say that two consecutive terms of a sequence
s = (ag, ay, . - - , ax) of nonzero real numbers have a sign variation if they have opposite
signs, and denote by Var s the number of sign variations of s. If s contains zero entries,
then Var s is defined to be the number of sign variations of the subsequence of nonzero
terms of s.

The Sturm sequence of a real polynomial f(t) of positive degree is fo, fi, fa, -- -,
where fo = f, fi = f', and, for i > 2, f; = —rem(fi_1, fi—2), where rem(g, h) denotes
the remainder upon dividing g by h. The sequence is terminated at the last nonzero
f;, which is easily seen to be a constant times the greatest common divisor of f and

f' (just compare the process to the Euclidean Algorithm).



Theorem 1.2.4 (Sturm’s Theorem) Let f(t) € R[t] have positive degree, and
suppose (fo, f1, .- -, fx) is its Sturm sequence. Let a < b be reals that are not roots
of f. Then the number of distinct roots of f in (a,b) is V(a) — V(b), where V(c) =
Var (fo(c), fi(e), .- -, fi(e))-

A proof can be found in [46]. Now let us say that the Sturm sequence (fo, fr---0 fi)
of f(t) has gaps in degree if there is a j < k such that deg fi <deg fj_1—1. If thereis
a j < k such that f; has negative leading coefficient, then we say the Sturm sequence
contains a negative leading coefficient.

We shall make important use of the following corollary to Sturm’s Theorem which
is not explicitly found in the literature (a similar statement, though stated incorrectly,
is found in [4, p.176]).

Corollary 1.2.5 Let f(t) be a real polynomial whose degree and leading coefficient
are positive. Then f(t) has all real roots if and only if its Sturm sequence has no gaps

in degree and no negative leading coefficients.

Proof Let us begin with a few observations. We write f = g-h, where g = ged(f, f')-
Then the number of distinct roots of f is exactly degh, as the roots of g are the
multiple roots of f. Consider the Sturm sequence S¢(t) = (fo, f1-- - fi) of f. Recall
that fo = f and fi is a (nonzero) constant times g. Then since deg f = degg+degh,
we have that the number of terms in S(t) is k+ 1 < deg h + 1, with equality exactly
when it has no gaps in degree.

We define V(—00) and V/(00) to be, respectively, V(—M) and V(M), where M >0
is any number large enough that all real roots of each f; (i = 0,1,...,k) lie in
(=M, M). It is clear that

V(—00) = Var ((—1)%&%lcoeff fo, (~1)48/tlcoeft f1, .. ., (—1)%8/x]coeff fi)

and
V(00) = Var (lcoeff fo, lcoeff fi,-- -, lcoeff f),

where lcoeff 1 denotes the leading coefficient of .



All real roots of f lie in (~M, M) as f = fo. Then Sturm’s Theorem says that
the number of distinct real roots of f is V/(—o00) — V(o0).

With these observations, we prove the result. If Sy(t) has gaps in degree, then it
has k + 1 < degh + 1 terms, so in particular V(—o0) < k < degh , and so

# distinct real roots of f

V(—00) — V(o0)
V(—o0)

IA

< degh

# distinct roots of f,

which implies that f has a nonreal root. If S¢(t) has no gaps in degree but has a
negative leading coefficient, then let j be the first i such that lcoeff f, < 0. Then
lcoeff f;_; > 0 (as lcoeff fo is), and since deg f; = deg fi-1 — 1, we have that
(=1)dehi-tlcoeff f;_; and (—1)%E€Siicoeff f; have the same sign, so V(-o0) < k =
deg h, and again f has a nonreal root.

Conversely, if S;(t) has no gaps in degree and no negative leading coefficients,
then k = degh, V(—o0) =k, and V(o0) =0, so

# distinct real roots of f = V/(—o0) — V/(00)
= degh

= # distinct roots of f,

which says f has all real roots. o

For ¢ any positive real number, it is easy to see that if, on obtaining the term
f; (0 < j < k) in the construction of the Sturm sequence (fos f1s-- -+ fi) of f(t), we
were to change f; to cf; before continuing, then the resulting sequence would differ
from (fo, f1, - - -, fi) only in that some f;'s would now become ¢ f;, and so clearly that
sequence could be used in place of (fo, fi,..., f) when applying Theorem 1.2.4 or
Corollary 1.2.5. In fact, we may perform multiplications like this at any number



of steps (by repeatedly applying the above argument), and we consider any to be a
Sturm sequence of f(t). We shall make use of this observation in Section 2.1.2.

1.2.3 The Riemann Sphere

In Chapter 3, we will undertake a study of fractals which arise in a natural way from
independence polynomials of graphs. In the process, we will make nontrivial use of
results from the theory of iterating rational functions, an understanding of which
requires knowledge of a few specific facts about metric spaces — the Riemann sphere,
in particular. This material, which we now review, can be found in the works of
Barnsley [6] and Beardon (7].

We assume the reader is familiar with the definition of a metric space (X,d). a
complete metric space, and a compact subset of a metric space. The collection H(X)
of compact subsets of a metric space (X, d) forms a metric space in itself: if A and B

are two compact subsets of (X, d), then the distance d(A, B) from A to B is given by

d(A,B) = max min d(a,b).

The definition is not symmetric. However, if we define
ha(A, B) = max (d(A, B),d(B, A)),

then hy is a metric on H(X); in fact, if (X,d) is a complete metric space, then
(H(X), hq) is a complete metric space.

On the space X = C of complex numbers, the Euclidean metric | - | measures
the distance between points z and w as |z — w]; it is well known that (C,|- ) is
a complete metric space. As is the case with (R,| - |), however, the notion of a
sequence ‘converging to infinity’ requires a separate definition. While the fractals we
will consider in chapter 3 are bounded in (C, |-|), their study involves iteration theory
of polynomials, where it is important to eliminate this special significance of infinity.

First, an abstract point, denoted by oo, is adjoined to C, forming the set Coo =
C U {00}, called the ertended complex plane, or Riemann sphere. To obtain a metric



on Co,, we construct a model of Co, as a sphere, as follows. Identify C with the
horizontal plane in R® containing the origin, and let S be the sphere in R® with unit
radius and centered at the origin. The stereographic projection of C into S is the
map 7 which takes a complex number z and projects it linearly towards the top point
(0,0,1) of S until it meets S at a point 7(2); also, we set m(o0) = (0,0, 1). This
leads to two natural metrics on Coo: the chordal and spherical metrics o and oq,

respectively, are defined as follows. If z and w are two points in Co, then

o(z,w) = the Euclidean distance (in R®) between 7(z) and 7(w);

oo(z,w) = the great circle distance (on S) between 7(z) and m(w).

Recall that two metrics d; and do on X are equivalent if there exist positive real

constants ¢; and ¢; such that
adi(z.y) < do(x,y) < codi(z,y)

for all z,y € X. The chordal and spherical metrics on Co turn out to be equivalent.
Further, on a bounded subset of (C, | - |), each is equivalent to the Euclidean metric,

Theorem 1.2.6 Let X be a bounded subset of (C,|-|). Then, on X, the Euclidean,

spherical and chordal metrics are equivalent.

Proof It suffices to show that | - | is equivalent to o on X. As X is bounded with

respect to |- |, there exists a number M > 0 such that X is contained in an M- radius
2|z — w|
(1+{2)V2(1 + fw|)¥/?

of 0. For any two points z and w in X, then, o(z,w) =

known explicit formula (cf. [7]) for o(z, w)) satisfies

(a well

T +2M2 |z —w| € o(z,w) < 2|z —wl,
and | - | is thus equivalent to o on X, completing the proof. o

From this, we may conclude:
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Theorem 1.2.7 Let X be a compact subset of (C,|-]), and {An} a sequence in H(X).
Let A € H(X). Then A, — A with respect to hyy (or ho) if and only if A, — A with
respect to hy,.

In chaper 3, we consider sequences {An} which arise from root sets of an iterated
graph-theoretic polynomial, and which are always bounded in (C,|-|). We are natu-
rally led to consider their limit in that space. Theorem 1.2.7 tells us that their limit
in (Ceo, o) is identical, which then enables us to make important use of iteration

theory in describing that limit.

1.3 An Overview of the Thesis

The roots of a graph polynomial are studied from various standpoints, from bounding
the roots, to determining accurnulation points for the roots, to finding regions in the
complex plane or real line containing no root at all. The effects that familiar graph-
theoretic operations have on the roots are of interest as well, and this will be a
common thread in the thesis.

Our study of roots of chromatic polynomials (‘chromatic roots’) in chapter 2 is
directly related to the operation of subdividing an edge of G, that is, replacing an edge
with a path. If G consists of nothing more than two vertices joined by one or more
edges, then subdividing edges in G gives rise to what are known as generalized theta
graphs. Numerical calculations suggest that among all generalized theta graphs on &
paths, the one with a chromatic root z that maximizes |z — 1] is the graph with all
path lengths equal to 2; we will prove that for k < 8, this is indeed the case. Roots
of chromatic polynomials lying in the left-half plane have also received attention, and
we will prove that infinitely many such are achievable among theta graphs on 3 paths,
thereby providing a family of minimal co-rank (cf. chapter 2) having chromatic roots
with negative real part. Moreover, a graph G will possess a subdivision having a
chromatic root with negative real part if and only if G has a theta-subgraph. At the

same time, however, large subdivisions of all the edges in G draw the roots close to
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the disk |z — 1| £ 1.

In chapter 3, we turn our attention to roots of independence polynomials (‘inde-
pendence roots’). The work is based largely on the lezicographic product (or graph
composition) operation, which involves ‘replacing’ each vertex of G with a graph H.
We begin the chapter with the observation that independence polynomials are essen-
tially closed under graph composition, a result which we then exploit to show that
the real roots of independence polynomials have closure (—00,0], while the complex
roots are dense in C, even for some restricted families of graphs. We then consider, for
an arbitrary graph G, what happens to the independence roots of the graphs G[G),
(G[G))(G], and so on. The independence polynomials are iterates (with respect to
function composition) of i(G, z) (the independence polynomial of G), and their roots
approach (in a very strong sense) the Julia set of i(G, r) — 1, thereby associating with
G a fractal, Z(G), which we call the independence attractor of G. We are led to ask:
when is Z(G) connected? For graphs with independence number 2, as well as a few
infinite families of graphs with arbitrarily high independence numbers, we provide a

complete answer to the question.



Chapter 2

Roots of Chromatic Polynomials

The chromatic polynomial, 7(G,z), of a graph G is the polynomial whose value at
each positive integer r is the number of functions f : V — {1....,z} such that
uv € E implies f(u) # f(v), where V and E are the sets of vertices and edges of G.
respectively. The roots of m(G, ) are often called the chromatic roots of G, and in
general a chromatic root is any (complex) number which is a root of some chromatic
polynomial. Initial interest in chromatic roots stemmed from the former Four Colour
Conjecture, which states that no planar graph has 4 as a chromatic root. The study
of chromatic roots has since emerged as a rather fascinating topic in its own right,
having attracted considerable attention (c.f. [9, 11, 18, 20, 21, 22, 45, 50, 57, 60]).
However, much remains unknown.

We shall need a few basic facts about chromatic polynomials (all of which are
discussed in [10]), which we review now.

Let G be a graph, possibly containing parallel edges or loops. Parallel edges have
no effect on the chromatic polynomial, and it follows directly from the definition that
if G has a loop then indeed 7(G,z) = 0. If G has no loops, 7(G,z) is 2 monic
polynomial in z of degree |V|, whose coefficients are integers that alternate in sign.

The well known deletion-contraction reduction states that for e any edge of G,
7(G,z) = m(G —e,z) — (G e e,z), where Gee is the contraction of e in G, and

is obtained by removing e and identifying its end vertices. It is not hard to verify

12
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that the formula holds even if e is a parallel edge or loop. We sometimes rewrite the
deletion-contraction 7(G — e,z) = (G, z) + 7(G e e,z), which we will refer to as
addition-contraction.

Also, if two graphs G and H intersect exactly on a complete graph, K,, on p
vertices, then 7(G U H,z) = n(G,z)n(H,z)/m(K,, z); this is sometimes referred to
as the Complete Cutset Theorem.

Finally, the chromatic polynomials of K,, T, (any tree of order n), and C, (the
cycle of order n) are given by z(z — 1)---(z —n+ 1), z(z — 1)*"!, and (z - 1)* +
(-1)*(z — 1), respectively.

Here is an example of a chromatic polynomial calculation; let G be the graph

shown below:

We can use deletion-contraction and the complete cutset theorem to calculate

(G, z) as follows:

(A)(@) (A

(o) (0—0)

(A)(U'A)

"4

L ® o
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(G, 1) = z(z = 1)(z - 2) (z(z _1.1)3 —z(z — 1)(z — 2))

= z(z - 1)*(z - 2)(z? - 3z +3)
= 28 — 72% + 20z — 292° + 21x% — 6z

One avenue of investigation into caromatic roots has been determining bounds on
their moduli in terms of various graph parameters. Very recently, Sokal proved the

following, which confirms a 1972 conjecture of Biggs, Damerell, and Sands [11]:

Theorem 2.0.1 ([54]) If G is a graph of mazimum degree k, then every chromatic
root z of G lies in the disc |z| < 7.963907 k.

While the constant 7.963907 found in [54] can likely be improved, the linearity of the
bound is best possible, since the complete graph Ky, (which has maximum degree
k) has a chromatic root at z = k.

A complementary approach is to bound the chromatic roots in terms of the co-
rank (or cycle rank) of the graph. Recall that a connected graph with n vertices and

m edges has corank m — n + 1. Brown has has recently proved:

Theorem 2.0.2 ([21]) If G is a graph of corank k > 1, then every chromatic root 2
of G lies in the disc |z — 1| < k.

Unlike the bound in terms of maximum degree, however, it is not known whether
linear growth with corank is best possible.

It is natural to ask for suitably restricted subclasses of graphs which satisfy a
sublinear bound in either maximum degree or co-rank, and indeed in [29] a sublinear
bound on the chromatic roots of both corank and maximum degree was proven for
graphs called generalized theta graphs. Our numerical explorations with theta graphs
suggest an interesting conjecture which extends that result, and in section 2.1.1 we

prove our conjecture for ‘small’ theta graphs.



Roots of chromatic polynomials lying in the left-half plane have also attracted
interest, and very little is known about them. In section 2.1.2 we prove that indeed
infinitely many chromatic roots with negative real part are achievable among theta
graphs of co-rank 2, thereby providing a family of minimal corank having chromatic
roots with negative real part.

While theta graphs may be a very restricted subclass of graphs®, we prove in
section 2.2.4 that having a theta subgraph is both necessary and sufficient for a
graph to possess a subdivision whose chromatic polynomial has a root with negative
real part. In section 2.2.3 we are able to describe the limit points of the chromatic
roots of ‘uniform’ subdivisions of a graph. and finally, in section 2.2.5 we prove that

large subdivisions of any graph draw the chromatic roots close to the disk |z—1| < 1.

2.1 Generalized Theta Graphs

.....

a pair of vertices u, v (called the endvertices) and joining them by k internally disjoint
paths of lengths sy, ..., sk > 1. The adjective, -generalized’, is more philological than
mathematical, and we will often drop it in what follows. For brevity, we denote by
Ox.s) the k-ary theta graph whose path lengths are all equal to s.

Let us derive an expression for the chromatic polynomials of generalized theta
graphs. Observe that if one adjoins to a generalized theta graph O,, ., a new edge
e between the two endvertices, the resulting graph is a collection of cycles (of lengths

s;+ 1) that overlap in a complete graph K> (namely the edge e), so that

[ [ — )%+ + (~1)*(z - 1]

(O, +€,2) = = [z(z - D! . (2.1)

.....

*Sokal has recently proved that chromatic roots of theta graphs are dense in all of C, except
possibly the disk |z — 1| < 1. Thus, theta graphs are not such a “restricted” family after all.
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lengths s;) that overlap in a complete graph of order 1, so that

k

[Tz -1%+(-1)%@=-1)]

(0,0 9€,T) = = por : (2.2)

s, IS given by

.....

[ [(@ - 1%+ + (~1)**(z — 1]

.
il
—

7"(eal ..... skyx) - [I(I - 1)lk—l
(@ - 1"+ (-1 = D)
+ = k-1

k

;ls.—l _ k
e e [H (1-2)" - 1]

x
—-(1—z)*! H[(l S 1]] : (2.3)
i=1

Therefore, we need only concern ourselves with the roots of

k

k
forn® = [ -0 -y [Is" - u). (2.4)

i=1 i=1
where y = 1 —z. All of our calculations in section 2.1.1 will be expressed in terms of
the variable y.

Let us now dispose of some trivial cases. If k = 1, the theta graph ©,, is isomorphic
to the path P, so that its chromatic roots are 0 and 1. If k = 2, the theta graph
©,, s, is isomorphic to the cycle C,, +4,, so that its chromatic roots (other than z = 1)
all lie on the circle |z — 1| = 1. We shall therefore assume henceforth that & 2> 3.

If one or more of the path lengths s; equals 1, then the second product in (2.4)
vanishes, and all the chromatic roots (other than z = 1) again lie on the circle lyl =1,

i.e. |z — 1| = 1. We shall therefore assume henceforth that all path lengths s; are at

least 2.
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.....

and Tutte {51, pp. 29-30] for the case k = 3.

2.1.1 Theta Graphs with < 8 Paths

A k-ary theta graph clearly has maximum degree k and corank k — 1 (except for the
trivial case k = 1 with s; > 2, which has maximum degree 2). The main result of [29],
stated below, thus proves that the chromatic roots of the family of all k-ary theta

graphs are bounded sublinearly in both co-rank and maximum degree.

Theorem 2.1.1 ([29]) The chromatic roots of any k-ary generalized theta graph lie
in the disc |z — 1| < [1+0(1)] k/ log k, where o(1) denotes a constant C(k) that tends

to zero as k — o0.

This bound is asymptotically saturated by the graph ©(x.2) with all path lengths equal
to 2 (which is isomorphic to the complete bipartite graph Kog).

Now, numerical computations suggest that among all k-ary theta graphs Oy, . ..
the one with a chromatic root that maximizes |z —1| is the graph with all path lengths
s; equal to 2, i.e. the graph Oy ~ Kok We conjecture that this is indeed the case.
The general bound of Theorem 2.1.1 is not strong enough to prove this conjecture.
Nevertheless, by different techniques we shall show the validity of this conjecture for
all k < 8. As before, it suffices to consider k > 3 and sy,...,8 2 2. Denote by
p(sy,...,s) denotes the maximum modulus of a root of fo. .0(¥)-

Our method is based on the following trivial bound (see e.g. [47, Theorem 27.1]):
Proposition 2.1.2 Let P(y) = i a;y’ be a polynomial of degree n (so that as #0),

=0
and let R be the unique nonnegative real solution of

n-1

laa|R* = ) la;IR? = 0. (2.5)

=0
Then all the roots of P lie in the disc |y| < R. Moreover, in (2.5) the numbers |aj|
for 0 < j < 1—1 can be replaced by any numbers b; > la;|; this only makes the bound

weaker.
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At first sight it is surprising that such a crude estimation method — which throws
away all the sign or phase information in the coefficients of P — could yield reasonably
sharp results. And indeed, we do not entirely understand why it works so well in our
defined in (2.4) is divisible by (y — 1), we are free to pull out a factor (y — 1)! with
any 0 < [ < k before applying Proposition 2.1.2. It turns out that the right choice is
to take [ = 1. That is, we define the polynomial ¢, .. (y) by

foronne(Y) .

d”l ..... sk(y) = (26)

Let [k] denote the set {1,...,k}, and let ([’l‘l) denote the set of all subsets of [k] of
cardinality [. For a subset X = {iy,ip,....4} of [k]. let us define

{
Sy = E Sy, -
i=t

We then have:

frn®) = Tl -0 -y [JG" - (2.7)
k k
= S Y v =YD Y vt (29
m=0 xg(M, m=0 xe(M,
k
= Y0 Y v -yt (29)
m=0 xc(k)
k
= Ty -1) - Y (=)™ D g™ -1 (210)
m=2 o xc(M)

and hence

k
boom(®) = yETT =N (D)™ Yy (AHy e +y™) . (210)
m=2 xg(k[kl )

-t
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.....

nomial obtained from ¢,,, ., () by changing all subleading signs to — as in (2.5),
and letting 7(sy,...,sk) be the unique positive root of hs,, s (y). We then have
p(s1,. .., sk) < 7(s1,..-,5k), where (recall) p(s1, ..., sk) is the maximum modulus of
as it turns out that r(si,...,s:) is not a monotonically decreasing function of the
path lengths sy, ..., sx. We therefore throw away a bit more, by disregarding all sign

cancellations among the subleading terms of (2.11), and define

k
Ry (@) = &9 =N Y (U y+ YY) (2.12)
m=2 xg( {k} )

k-m
[Thus, the coefficient of ¢ in (2.12) is in general larger in magnitude than in (2.11)]

.....

from Proposition 2.1.2 that

p(sty---,86) < r(s1,...,8) < T(S1y---+5k) » (2.13)
or in other words:

.....

sty 1 5k)-

We now analyze the behaviour of the upper bound 7(sy, ..., sk):

Proposition 2.1.4 7(sy,...,sk) i symmetric in sq,..., 5k and strictly decreasing in

each s;.

Proof The symmetry is obvious. To prove the decreasing property, fix s1,...,sc and
set T = 7(sy, $2,...,Sk); by symmetry, it suffices to show that 7(s; + 1,ss,...,8) <
r. Now, equation (2.12) implies that » > 1. From equation (2.12) we can rewrite

7"3;,32 ..... sk(y) in the form

Broy sy (y) = yE=%07t 4" A(y) — B(y) (2.14)
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where A and B are polynomials in y with nonnegative integer coefficients that do not
depend on s;. Moreover, the degrees of y** A(y) and B(y) are less than P s)—1,
and B(0) = 1. It follows that r(Zi=12) — r91A(r) > 0. Now from (2.14) we have

Ropttga(r) = rE=t% —r A - B(r)
= r- (r(2§="‘)-1 - r"A(r)) — B(r)
> 0 DT L r*t A(r) — B(r)

—~

= hshlz,...,sk (T)

= 0. (2.15)

It follows that (s, + 1,82,...,8k) <T =T7(s1,82,...,5k), completing the proof. O

What may be surprising is how well the roots of h and k bound the roots of f for
small k (see Table 2.1). In particular, they are good enough to prove the following.
By p(k2) we mean p(2,2,...,2).

k
Theorem 2.1.5 For 3 < k < 8, we have p(sy,...,sk) < pP2), with equality only
when s; = -++ = s, = 2. In other words, among all k-ary theta graphs, the graph with

a chromatic root that mazimizes |z — 1| is the one with all path lengths equal to 2.

Proof By direct calculation (see Table 2.1) we have 7(2,2,3) < p(2,2,2),7(2,2,2, 3) <
p(2,2,2,2) and 7(2,2,2,2,3) < p(2,2,2,2,2). The result for 3 < k < 5 then follows
immediately from Propositions 2.1.3 and 2.1.4. For k = 6,7, a bit more work is
needed: the calculations show that p(2,...,2,2,3),7(2,...,2,2,4) and 7(2, ..., 2,3, 3)
are all bounded above by p(2, . ..,2,2,2), so that the result again follows from Propo-
sitions 2.1.3 and 2.1.4. Finally, for k = 8, the calculations show that p(2,...,2,2,3),
p(2,...,2,2,4), 7(2,...,2,2,5) and 7(2, .. .,2,3,3) are all bounded above by
p(2,...,2,2,2), which is again sufficient. a

This method of proof relies in an essential way on the fact that, for 3 <k <
8, only finitely many of the upper bounds 7(si,...,sk) are larger than the true



Path length sequence Actual value Upper bound
(S1y-- - 5k) p(sy,.- - 8k) | T(s1,---,86) | T(S1,---18k) |

(2,2, 2) 1.5247025799 | 1.5905667405 | 1.5905667405
(2,2, 3) 1.3247179572 | 1.4655712319 | 1.4655712319
(2,2,2,2) 1.9635530390 | 2.0652388409 | 2.0959187459
(2,2,2,3) 1.6180339887 | 1.8003794650 | 1.9038165409
(2,2,2,2,2) 2.3602010481 | 2.4788311017 | 2.5569445891
2,2,2,2,3) 1.9596554046 | 2.0481965587 | 2.3283569921
(2,2,2,2,4) 1.9125157044 | 2.0726410424 | 2.2158195963
(2,2,2,2,5) 2.0227195761 | 2.1137657905 | 2.1572723181
(2,2,2,2,6) 1.9492237868 | 2.0928219450 | 2.1267590770
2,2,2,2,2,2) 2.7305222731 | 2.8521866737 | 2.9891971006
(2,2,2,2,2,3) 9.3291754791 | 2.4702504048 | 2.7400794700
(2,2,2,2,2,4) 2.3208606055 | 2.4487347678 | 2.6342641478
(2,2,2,2,3,3) 2.0524815723 | 2.2641426827 | 2.5176585462
(2,2,2,2,2,2,2) 3.0823336669 | 3.1959268744 | 3.4006086206
(2,2,2,2,2,2,3) 2.6933092033 | 2.8543267466 | 3.1395749040
(2,2,2,2,2,2,4) 9.7030241913 | 2.8316875864 | 3.0429807861
(2,2,2,2,2,3,3) 2.3573224846 | 2.4527687226 | 2.8983449779
(2,2,2,2,2,2,2,2) 3.4201564280 | 3.5685068590 | 3.7959050193
(2,2,2,2,2,2,2,3) 3.0446178232 | 3.2040479885 | 3.5278440533
(2,2,2,2,2,2,2,4) 3.0625912820 | 3.2129169213 | 3.4402140830
(2,2,2,2,2,2,2,5) 3.0953618332 | 3.1953189320 | 3.4125677445
2,2,2,22,2,3,3) 26885399588 | 2.8486049323 | 3.2745245420
(2,2,2,2,2,2,2,2,2) |3.7468849281 3.9272779941 | 4.1781887719
(2,2,2,2,2,2,2,2,3) 3.3836067543 | 3.5282506474 | 3.9060114610
2,2,2,2,2,2,2,2,4) | 3.4054981704 3.5867024115 | 3.8263498519
2,2,2,2,2,2,2,2,5) 3.4292505541 | 3.5677746122 | 3.8040844502
(2,2,2,2,222,2,6) 3.4182415134 | 3.5704257784 | 3.7980747620
(2,2,2,2,2,2,2,2,7) 3.4200422197 | 3.5685857538 | 3.7964779130
(2,2,2,2,2,2,2,2,8) 3.4203605983 | 3.5684058522 | 3.7960560504
2,2,2,22222,9) 3.4200047731 | 3.5685249008 | 3.7959448158
(2,2,222,2,2,2,10) | 3.4201605551 3.5685220773 | 3.7959155041
2,222,222 2,11) | 3.4201602535 3.5685079914 | 3.7959077815
2,2,2222,22,12) 3.4201547358 | 3.5685071412 | 3.7959057470
2,2,2,2,22,2,2,13) 3.4201566935 | 3.5685072051 | 3.7959052110
(2,2,2,2,2,2,2,3,3) 3.0254986086 | 3.2079141314 | 3.6449248003

21

Table 2.1: Values of p(sy, ..., sk) and its upper bounds r(s1,---,8k) ST(s1,---» Sk)-
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value p(2,...,2) = pxo). Unfortunately, this fails for £ = 9: indeed, we have
im 7(sy,...,Sk-1,5k) =T7(S1,--.,5k-1) and in particular lim 7(2,...,2,89) =T =
) —0Q0 $9—00

3.7959050193 > 3.7468849281 = p(9;2). A genuinely new method, therefore, seems to
be required to prove Theorem 2.1.5 for & > 9.

2.1.2 Theta Graphs with 3 Paths: An Explicit Family having
Roots with Negative Real Part

Since the coefficients of any chromatic polynomial alternate in sign, no real root of a
chromatic polynomial is negative. But can a chromatic root have negative real part?
Based on the chromatic roots of all graphs on at most 8 vertices, the following was

conjectured in 1980.
Conjecture 2.1.6 [33] There are no chromatic roots with negative real part.

In 1991 Read and Royle computed the chromatic polynomials of all 3-regular
graphs on at most 16 vertices, noting that graphs with high girth appear to be
contributing the roots with smallest real part. They proceeded to plot the chromatic
roots of all 3-regular graphs of girth at least 5 on 18 vertices, and observed the

following, thus providing the smallest known counterexample to the above conjecture.

Proposition 2.1.7 [50] There are graphs of order 18 having a chromatic root with

negative real part.

They noted the same for the 3-regular graphs of girth at least 6 on 20 vertices,
and girth at least 7 on 26 vertices. More recently, Shrock and Tsai [53] have shown
how badly the conjecture fails by showing that as k — oo, the k-ary theta graphs (i.e.
graphs formed from two vertices joined by k internally disjoint paths) had chromatic
roots whose real parts tended to —oco. By different techniques (namely the Hermite-
Biehler and Sturm theorems on the roots of real polynomials), we show here that
indeed infinitely many chromatic roots with negative real part are achievable among
3-ary theta graphs themselves. These provide examples of the smallest corank.



To this end, we restrict our attention now to the subfamily {Buaa : @ = 2} of
generalized theta graphs whose u—v paths all have the same length. The smallest such
graph having a chromatic root with negative real part is found (by direct calculation)

to be ©ggs. We can say much more.

Theorem 2.1.8 For a > 8 the graph ©,., has a chromatic root with negative real

part.

Proof Setting k = 3 and s, = s; = s3 = a in equation (2.3), we find (after a little

simplification) that

(Onamz) = ST =D et 301 _per2-g]. (216)

T

For a > 8, we need to show that m(©,,., —z) has a root with positive real part. i.e..

that
Ya(z)=(1+ )% ' =3(1+2)+2+¢z (2.17)

is not Hurwitz quasi-stable. So let a > 8, and expand y,(z) into its even and odd
parts:
Yalz) = PA(a?) +TP3(c?). (2.18)

Now set ¢t = z2 (as in Theorem 1.2.2). Several calculations suggested that Pg(t) always
appears to have a nonreal root (for a > 8), and by Corollary 1.2.3 of the Hermite-
Biehler Theorem (Theorem 1.2.2), it is enough to show that this is indeed the case.
To that end, it would suffice (by Theorem 1.2.4) to show that its Sturm sequence
contains either a negative leading coefficient or gaps in degree. Our computations,
however, suggest that this does not occur until close to the end of its Sturm sequence.

So let us instead consider the polynomial
da(t) =t 5 FOP(1/1), (2.19)

which clearly has a nonreal root if and only if P2(t) does. Moreover, we can establish
the following.
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Lemma 2.1.9 For a > 14, the Sturm sequence of @.(t) has as its fifth term a poly-

nomial with negative leading coefficient.

We shall see, also, that before the fifth term in the sequence, there are neither
gaps in degree nor any negative leading coefficients. However, since Lemma 2.1.9
tells us the leading coefficient of the fifth term is negative, we conclude that ¢,(t) has
a nonreal root for a > 14, and in fact for a > 8 upon verifying the cases 8 < a < 13
directly. Hence, to prove Theorem 2.1.8, it remains only to prove Lemma 2.1.9. We
assume that a > 14 is even (the odd case is handled similarly). Then from (2.17),
(2.18), and (2.19) we find that

balt) = [C%5) -3@] T +[C7) -3
ok (7 - 3@+ (ER)T

a a+2

HERET + o+ ().

Let us denote the first five terms of the Sturm sequence of ¢, by ¢%(= ¢a),
oL (= ¢.), ¢2, 93, and ¢. Then it is clear, from the form of ¢, and the division
process, that lcoeff (¢}) is a real valued function of a, which we shall show is always
negative (for a > 14 even). We shall see that only the first 7 terms of ¢, are needed.

To begin, we have
0o = bt" +ct™ +dt"? tet™ S+ ft T gtm S AT

where b = (") = 3(3), e = (") =3(D), -, A= (%) —3(i), and n = 252

Note that b,c, ..., h and n are polynomials in a with rational coefficients. Now
¢, = bnt"4+c(n—1)t" 2 +d(n— 2)t"3 + e(n — 3)t"
+f(n— )t 5+ g(n —5)t" S + h(n — 6}t +---
Dividing ¢, by ¢, we find
An—-1)—2bdn , , cd(n—2)—3ben ,_
—rem(¢a, ¢:;) = ( b,12 ¢ ? + ( br22 t ’
ce(n—3)—4bfn .,  cf(n—4)—5bgn . s
+ 2 T+ 2 t
cg(n — 5) — 6bhn
+ 2

A S
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Since bn? > 0, we can (by an observation made in Section 1.2.2) clear the denomina-
tors by choosing ¢? = bn? - (—rem(¢q, ¢,)). Now it turns out that ¢*(n — 1) — 2bdn is
always positive (for @ > 14 even). Indeed, it is a polynomial in b, ¢, d, and n with in-
teger coefficients, each of which (recall) are themselves polynomials in a with rational
coefficients. Carrying out the substitutions in Maple, we obtain an exact expression
for 2(n — 1) — 2bdn € Qla], and find that it has positive leading coefficient, and so
is positive beyond its largest real root, a bound for which is obtained by applying a
standard result (c.f. (30, p.197]) to the polynomial. It is then verified directly that
the polynomial ¢?(n — 1) — 2bdn is also positive for those (even) values of a between
14 and that bound.

Moving on to the next term in the Sturm sequence, we divide ¢, by #2, and find

u n—3 U

(c2(n — 1) — 2bdn)? - (c2(n — 1) — 2bdn)?
w

* (c2(n — 1) — 2bdn)?

—rem(¢,, #2) = g4

n-5
cee,

where
u = —(c*(n-1)—2bdn) {d(n-2) (*(n ~ 1) — 2bdn)
—bn (ce(n — 3) — 4bfn)}
+ (cd(n — 2) — 3ben) {c(n — 1) (*(n — 1) — 2bdn)
—bn (cd(n — 2) — 3ben)},
v = —((n-1)-2bdn) {e(n-3) (A(n — 1) — 2bdn)
—bn (cf(n — 4) — Sbgn)}
+ (ce(n — 3) — 4bfn) {c(n — 1) (F(n — 1) — 2bdn)
—bn (cd(n — 2) — 3ben)},
and

w = —(*(n—1)-2bdn){f(n—-4) (c*(n — 1) — 2bdn)
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—bn (cg(n — 5) — 6bhn)}
+ (cf(n — 4) — 5bgn) {c(n — 1) (*(n — 1) — 2bdn)
—bn (cd(n — 2) — 3ben)} .

Multiplying by the positive number (c?(n — 1) — 2bdn.)2, we choose
O =ut" ottt wt"

Again, we have verified (with the aid of Maple) that indeed u is always positive (for
a > 14 even). Let us move on to the fifth term in the Sturm sequence. Dividing ¢?
by ¢3, we find

—rem(¢?, 43) = ;15 (v {(cd(n — 2) — 3ben)u — (c*(n — 1) — 2bdn) v}
—u {(ce(n —3) —4bfn)u - ((n - 1) — 2bdn) w}) £
4.

Multiplying by the positive number u?, we choose

¢ = (v {(cd(n —2) — 3ben)u — (c""(n — 1) — 2bdn) v}
—u {(ce(n — 3) —4bfn)u - (A(n—1) = 2bdn) w}) "™ + - --

We denote by lcoeff (¢%) the coefficient of t*~* in ¢} (no confusion arises in doing so,
as we are about to see that this coefficient is never zero, and so really is the leading
coefficient of ¢4). So lcoeff (¢3) is a polynomial in b,c,...,h, and n with integer
coefficients. Substituting (once again) our expressions for b,c,...,h as polynomials
in a with rational coefficients, we obtain an exact expression for lcoeff (¢3) € Q[a],

the first few terms of which are approximately
—342.7311661a™ + 22877.24435a%° — 718377.3180a%® + - - -.

In particular, the first term is negative, and so lcoeff (#%) is negative for a sufficiently
large, which is what we want. Applying a standard result (c.f. [30, p.197]) to the

polynomial lcoeff (¢¢), we obtain 134 as a bound on its largest real root, and so the
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proof of Lemma 2.1.9 for a even is completed by verifying directly that lcoeff (¢2) is
also negative for a = 14,16, 18,...,134.
We mentioned that the proof for a odd is similar. There we find

lcoeff (¢%) ~ —342.7311661a™ + 21277.832250%° — 617481.3554a% + - - -,

in which case an analysis like the previous paragraph is carried out.

This completes the proof of Lemma 2.1.9, and so of Theorem 2.1.8. m]

We remark that the smallest generalized theta graphs (in terms of number of
vertices) having a chromatic root with negative real part are ©,5555 and Osg6.6:

each of order 21.

2.2 Large Subdivisions of Graphs

We constructed theta graphs by taking a K- bond and replacing its edges by paths.
In general, if e is an edge of a graph G, then by subdividing e we mean replacing
e by a path. A subdivision of G is any graph formed by subdividing (one or more)
edges in G. It is natural to ask what effect this operations has on the roots of the
chromatic polynomial. In Section 2.2.2 we shall derive an expression for the chromatic
polynomials of subdivisions of G. This expression simplifies considerably in the case
of uniform subdivisions of G (c.f. Section 2.2.3). Their chromatic polynomials form
what is known as a recursive family of polynomials, and we will apply a theorem of
Beraha, Kahane, and Weiss [8] to describe the limits of their roots. We will see that
the circle |z — 1| = 1 plays a key role in describing the limits of chromatic roots of
uniform subdivisions of a graph, and is itself among those limits (Figure 2.1 shows
the roots of a subdivision (a theta graph with paths of length 10, 10 and 11) of K4y —e
along with the circle |z — 1| = 1).

We will derive two interesting consequences of our work here. Firstly, recall that

in the previous section we determined the family of graphs with minimal co-rank
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Figure 2.1: The chromatic roots of a subdivision of K4 — e with lz-1| =1

having chromatic roots with negative real part (some further graphs having chromatic
roots with negative real part are provided in [50, 52, 53, 55]). A corollary to our
expansion of chromatic polynomials of uniform subdivisions of graphs leads to a
complete characterization of those graphs which have a subdivision having a chromatic
root with negative real part.

Secondly, experimental evidence of chromatic roots of subdivisions leads to the
observation that the roots tend to be drawn towards the unit circle centered at z = 1.
We show that in fact for any € > 0, the chromatic roots of all large subdivisions ofa
graph have their roots in |z — 1| < 1 + ¢ (improving a recent result [20] which only

proves some subdivision has its roots in this region).
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2.2.1 Recursive Families of Polynomials

Before we proceed onto a discussion of the roots of chromatic polynomials of subdi-
visions of graphs, we need to state (in detail) an analytic result on particular families

of polynomials (namely, recursive fariles). We begin with the following definition.

Definition 2.2.1 If {fa(z)} is a family of (complex) polynomials, we say that a
number z € C is a limit of roots of { f.(z)} if either fo(2) = 0 for all sufficiently large
n or z is a limit point of the set R({f.(z)}), where R({fa(z)}) is the union of the
roots of the fn(T).

Now (as in [8]) a family {fa(z)} of polynomials is a recursive family of polynomials

if the f,(z) satisfy a homogenous linear recurrence

k

falz) =) alz) famul2), (2.20)

=1
where the a;(z) are fixed polynomials, with ai(z) # 0. The number k is the order of

the recurrence.

We can form from (2.20) its associated characteristic equation

AF = ay ()N = ag(z)AF2 — - = ag(z) =0, (2.21)
whose roots A = A(z) are algebraic functions, and there are exactly & of them counting
multiplicity (c.f. [1, 43]).

If these roots, say A(z), A2(Z), ..., M(z), are distinct, then the general solution
to (2.20) is known (8] to be

k
falz) = Zai(z)&(z)", (2.22)

with the ‘usual’ variant (cf. [8]) if some of the \i(z) were repeated. The functions
a1(z), az(z), . . - , ak(z) are determined from the initial conditions, that is, the k linear
equations in the a;(z) obtained by letting n = 0,1,...k — 1 in (2.22) or its variant.
The details are found in [8].
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Beraha et al. [§] proved the result below on recursive families of polynomials and

their roots.

Theorem 2.2.2 ([8]) If {fa(z)} is a recursive family of polynomials, then a complez
number z is a limit of roots of {fa(z)} if and only if there is a sequence {z,} in C

such that f.(z,) =0 for alln and z, — 2z asn — 0.

The main result of their paper characterizes precisely the limits of roots of a

recursive family of polynomials.

Theorem 2.2.3 ([8]) Under the non-degeneracy requirements that in (2.22) no o;(z)
is identically zero and that for no pair i # j is Ai(z) = wA;(z) for some complez
number w of unit modulus, then z € C is a limit of roots of {fa(z)} if and only if

either

(i) two or more of the \i(2) are of equal modulus, and strictly greater (in modulus)

than the others; or

(i) for some j. A\;(2) has modulus strictly greater than all the other \;(z) have, and
aj(z) =0.

This result has found application to the chromatic roots of recursive families of
graphs (cf. [11]), that is, families of graphs whose Tutte (and therefore chromatic)
polynomials satisfy a homogeneous linear recurrence; see [9, 50] for some examples.
It is also proved in [8] that the first non-degeneracy requirement in the statement of
the theorem is equivalent to fu(z) satisfying no lower order (homogeneous, linear)

recurrence. What we shall need here is the following.

Corollary 2.2.4 Suppose {fn(2)} is a family of polynomials such that

fa(z) = ar(@M(@)" + ax(2)Aa(2)" + -+ + a(T) ()" (2.23)
where the a;(z) and M;(z) are fized nonzero polynomials, such that for no pairt # j is

Xi(z) = whj(z) for some w € C of unit modulus. Then the limits of roots of {fa(z)}
are ezactly those z satisfying (i) or (ii) of Theorem 2.2.3.
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Proof It is enough to show that f,(z) satisfies a k-th order homogeneous linear
recurrence, for then Theorem 2.2.3 applies as the non-degeneracy requirements are

satisfied here. Such a recurrence is:

fal) = a1(2) foa1(T) + a2(T) fr2() + - - - + @k(T) fa-i(z) (R 2K)

together with the initial polynomials

k
film) =Y a@A(zy (=0,....k-1),
i=1
where the a;(z) are such that

(A =Ai(z) - (A = Me(@)) = N = @@V = aa(z) A2 = -+ — ax(z).
This completes the proof. ]

In the next section, we derive an expression for the chromatic polynomials of
subdivisions of a graph, that when restricted to the uniform case, provides a recursive
family of polynomials. The Beraha-Kahane-Weiss Theorem will then allow us to

derive some precise information on the limit points of these chromatic roots.

2.2.2 An Expression for the Chromatic Polynomials of Sub-
divisions

Let us assume, for the remainder of the chapter, that G is a graph, without loops, which
may indeed have parallel edges; its vertex and edge sets V and E have cardinalities
n and m, respectively. Also, any parallel edges and/or loops resulting from the
contraction of an edge at any time are pot to be thrown away.

We derive now a rather technical expression of the chromatic polynomial of a
general subdivision of a graph. What is crucial is the expansion of this polynomial in
terms of powers of 1 — z and coefficients that depend only on the underlying graph

(and not the exact subdivision we have taken).
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Theorem 2.2.5 Let E' = {ey,...ex} C E, and G}'""* the graph obtained from G
by subdividing edge e; into a path of length l; (i =1, ... ,k). Then

— 2?:1“1
W(Gf:"""ek,x) - ( 1) {W(G _ E',a:)(l _ I)Ef:l.l‘

rk

- 2 firpiz (@)1 = 1:)2;:11 L,

1<iy <+ <ig-1 Sk

k=2
+ Z fil,...,ik_z(m)(l - 1:)21:l I‘J -

1<i) <<k <k
+ (- Y @ -+ (_1)'«95.@)}’
1<i; <k

where

x
ger(z) = =(G,z) + (l—x)Zw(Goei,x)

i=1

+ (1 -1x)? Z m(Gee,®e,,T) + - (2.24)

1<iy <ig<k

+(1—:1:)'°'1 Z m(Gee o - 06|, T)

1<i1 < <ig_1<k

+(1-z)n(Geero---0e,1)

and the f’s (and clearly gg) are polynomials that depend on G and E' ={e,...,e},

but not on [y, ..., .

This can be proved by induction on k. Let us examine the cases k =1and k =2,
the latter being sufficiently descriptive of the general argument which is tedious but
no more difficult. Because of the degree of symbolism involved, it will be convenient,
for the remainder of this section only, to denote the chromatic polynomial 7(H, z) of
a graph H by the symbol H itself, and it will be clear from the context whether we
are actually referring to the graph or its chromatic polynomial.

For k = 1, we are subdividing a single edge, e, of G into a path of length {, say.

Tossing e into the graph G§, and contracting, we have
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G = (Gt +e)+(Gi+e)ee.

Now Gf + e creates a cycle of length [ + 1, intersecting G exactly on e, while

(G + ) o e produces a cycle of length I which intersects G e e on a single vertex.

Hence
e _ Ci41-G Ci-Gee
Gi = z(z — 1) + T
(= =o)L - ) -1)G N (-1 -z)((1—z) ' -1)Gee
B r(z — 1) T
= -(;Illl{(G+Goe)(1—x)l—(G+(1—J:)Goe)}, (2.25)

which establishes the result for k = 1.

Now for k = 2, we want an expression for the chromatic polynomial of Gf,'f, the
graph resulting from subdividing edges e and f of G into paths of length [ and s,
respectively. This we derive from the case k = 1 (more specifically, from (2.25)):

Gt = (@) = S (G + Gr e N1 - o) — (GF + (1~ 2)GT o N}

I

It is clear that G§ @ f = (G e f)i. Thus, from (2.25),

Gi+Gief = (——1)[-{(G+Goe+GOf+Gof-e)(l—z)’

T

—(G+Gef+(1-1)(Gee+Geofee)},

and

Gi+(1—-z)Gjef = g—-—]'—)i{(G+Goe+(1—x)(G0f+Goe))(1—z)'

I

~(G+(1-z)(Gee+Geof)+(1-z)’Gefoe)}.

Hence, we have
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_1)\s+l
Gf,f = (2 {(G+Goe+G0f+G0foe)(1—a:)’*‘

—(G+Gef+(1-z)(Gee+Ge fee))(l—z)
—(G+Goe+(1—:r)(Gof-i-Goe))(l—a:)'
+(G+(1-z)(Cee+Gof)+(1—1)’Gefee)}.

The ‘coefficient’ of (1 — z)*+ above is exactly G —e— f,as G+ Gee=G —e
and Ge f+Gefee=(Gef)—e andclearly (Go f) —e= (G —e)e f, giving

G+Gee+Gof+Geofoe = (G-e)+(G—e)of
(G-e)-f.

This establishes the case k = 2 from the previous case (k = 1). a

We will see that Theorem 2.2.5 has some deep consequences in terms of the location
of chromatic roots, especially when restricted to the natural subfamily of uniform

subdivisions.

2.2.3 Uniform Subdivisions and the Limits of their Chro-

matic Roots

When subdividing each edge of E’ the same number of times, Theorem 2.2.5 special-

izes to the following.

Theorem 2.2.6 Let E' = {e1,...e} C E, and GE' the graph obtained from G by
subdividing each edge of E' into a path of length . Then

(=¥ " Kl k1)l
r {W(G —E\z)(1-12)" = fim(z)(1 - I)( ) (2.26)

+foma(z)(1 — )N — o+ () fi(2) (1 - 2) + (-1 ge (o)}

(G 1) =
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where gg is given by (2.24), and the f’s (again) are polynomials that depend on G
(and E') but not on l.

The key point is that expansion (2.26) expresses 7(GE',z) as a recursive family,
and hence we can employ the power of the Beraha-Kahane-Weiss Theorem. In doing
so, we find all of the limit points of the uniform subdivisions {GEF' : 1 >1}of G
(without explicitly finding the chromatic roots of each of these graphs!).

We need yet one bit of technical notation; E’ will denote the edges of E’ that are
not bridges.

Theorem 2.2.7 If E' is a subset of E containing at least one edge that is not a

bridge of G, then the limits of the chromatic roots of the family {GE'} are ezactly
(i) the circle |2 —1] =1,

(ii) the roots of 7(G— E’,m) outside |z — 1} = 1, and

(iii) the roots ong,(:z:) inside |z — 1| = 1.

Proof Let us first examine the case where E’ contains no bridges, in which case
E=E. Clearly 7(G— E', z) is not identically zero. And neither is gg:(z), for suppose
ge(z) = 0. Then, from (2.26), we would have that (1 — z)' divides GE'. However, it
is well known (c.f. [60]) that the multiplicity of 1 as a chromatic root of a graph is
the number of blocks in the graph. Since E’ contains no bridges, for each ! the graph
GE' has the same number of blocks as G, so that the multiplicity of 1 as a chromatic
root of GE' cannot possibly go to infinity with {, a contradiction.

Now ignoring the factor 5—";121 in (2.26) and rewriting (—1)*ge:(z) as
(~1)*gg(z)1!, we can apply Corollary 2.2.4, and therefore (i) and (ii) of Theorem
2.2.3, to get the limits of the chromatic roots of {Gf'}.

Applying (i) of Theorem 2.2.3, we immediately get the circle |z — 1| = 1 as limits,
by setting all of the |\:(z)| equal, i.e.,

|1—z|'°=|1—z|"_1=-~=|1—z|=1.
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This is the only situation where (i) of Theorem 2.2.3 gives any limits, for setting
any fewer than all of the |\;(z)| equal here will, upon applying (i), amount to finding
values z such that |z — 1| = 1 and |z — 1| > 1, which is impossible.

Moving on to (ii) of Theorem 2.2.3, one application gives the roots z of 7(G —-FE' 1)
such that

l1—zff>|l -2 foralli=0,1,..., k-1,

that is, the roots z of m(G — E’,z) such that |1 — z| > 1.

Another application of (ii) gives the roots z of gg/ such that

1>|1—zf foralli=1,2....,k,

that is, the roots z of ggr such that |1 - z| < L.

Finally, applying (ii) to any j such that 0 < j < k would amount to finding roots
z of f; such that |1 — z| < 1 and |1 — 2| > 1, which is clearly impossible.

Now in the case where E' does contain some bridges, subdividing a bridge e € E’
is merely the replacement of a bridge by a path, from which it follows (quite easily,
using the complete cutset theorem) that 7(GE',z) = (z - 1)-'7(GE ¢, 1). Repeating
this argument recursively over all the bridges in E', we have that the limits of the
chromatic roots of {GE'} are exactly those of {G,E'}, from which the result follows

from the previous case. This completes the proof. )

When E' = E, it is clear that G— E' is a forest, therefore having no chromatic
roots outside |z — 1| = 1. Also, we write g (z) instead of gE(:r:).

Corollary 2.2.8 Let G; be the graph obtained from G by subdividing each edge into
a path of length exactly l. Then, if G is not a forest, the limits of the chromatic roots
of the family G, are ezactly:

(i) the circle |z -1| =1;

(ii) the roots of 9 (z) inside |z — 1| = 1.
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Based on direct calculation for various small graphs, it appears that (ii) of Corol-
lary 2.2.8 simply never happens, except of course for the point z = 1 which is clearly
a root of g (z). In fact, we conjecture that if z is a root of g (z), then |z — 1] is either
Oorl.

2.2.4 Application 1: Chromatic Roots with Negative Real
Part

Our first application of our investigation of subdivisions concerns chromatic roots
with negative real part.

Very little is known about the chromatic roots lying in the left-half plane. Earlier.
we pointed out that it was conjectured [33] in 1980 that in fact there are none at all,
and Read and Royle [50] showed recently by direct calculation with cubic graphs that
they do exist. In section 2.1.2, we proved the existence of infinitely many chromatic
roots with negative real part, and that there are graphs of arbitrarily high girth with
them. More precisely, we showed the graph ©, 4, has a chromatic root with negative
real part for each a > 8, and that the moduli of these roots get arbitrarily small. (The
existence of infinitely many chromatic roots with negative real part was demonstrated
independently in (52, 55| by entirely different methods.)

Of course, generalized theta graphs are very specific graphs. But it turns out they
are the key ingredient in characterizing the graphs in general which have a subdivision
having a chromatic root with negative real part. It is from Theorem 2.2.7 that we
are able to make this connection, and it is perhaps a bit surprising that most graphs
have a subdivision having a chromatic root with negative real part. We say that G

has a ©-subgraph if G has a subgraph isomorphic to some generalized theta graph.
Theorem 2.2.9 The following are equivalent.

(i) G has a subdivision having a chromatic root with negative real part;

(ii) G has a block of co-rank at least 2;
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(iii) G has a ©-subgraph.

Proof We prove the implications (i) = (ii) = (iii) = (i)-

(i) = (ii). It is easy to see that blocks of co-rank 0 are trees, and of co-rank 1 are
cycles. Thus, if no block of G has co-rank larger than 1, then the blocks of G are
simply bridges and cycles. Hence the blocks of any subdivision of G are Kj's and
cycles as well. And since neither K5 nor any cycle has a chromatic root with negative
real part, neither do the subdivisions of G.

(i) => (iii). Without loss of generality, assume that G is 2-connected and has co-rank
at least 2. Let e be an edge of G. Clearly e is not a bridge, and therefore lies on a
cycle, say C;, of G. Now G must have an edge, say €', other than those of C; (or
else G = C; and G has co-rank 1). Since G is 2-connected, e and €’ both belong to
a cycle Cao(# C) and e € C; N C,. Now, C; together with a component of C, & Cs
(the symmetric difference) is a f-subgraph of G, as required.

(ili) = (i). From the complete cutset theorem. it is enough to show the result holds
for 2-connected graphs. So we assume G is 2-connected. Start with a ©-subgraph
of G, and subdivide it into ©, ., for some fixed a > 8, obtaining a subdivision H of
G containing as a subgraph Hg = ©,,,. Now let E’ be the edges of that do not
lie on Hy. Then H — E' consists exactly of Ho and possibly some isolated vertices, a
graph which we know (cf. section 2.1.2) has a chromatic root with negative real part.
Thus if E' is empty, then we are done. And if not, then consider the family {HE'}.
Since E' has no bridges and H — E' has a chromatic root z with negative real part,
then by (ii) of Theorem 2.2.7, z will be a limit of the chromatic roots of {HE'}. The
HE"'s are indeed subdivisions of G, and it follows that for ! sufficiently large, H, E' has
a chromatic root with negative real part. a

From Theorem , we immediately deduce the following.
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Corollary 2.2.10 Every non-empty graph has a series—parallel eztension having a

chromatic root with negative real part.

We can sometimes make use of subdivisions to generate, from a single chromatic
root with negative real part, an infinite cluster of such chromatic roots. For suppose
e is an edge of G which is not a bridge, and that G — e has a chromatic root z with
negative real part. Then, from (ii) of Theorem 2.2.7, z is a limit of the chromatic
roots of the family {G¢}. If, in addition, z is not a chromatic root of Gee, then, from
(2.25), z will not be a chromatic root of any G¢, and so in fact must be a limit point
of the chromatic roots of the family {Gf}. Together with Theorem 2.2.2, we find a
sequence {2} in C\ {z} such that 7(Gf,z) =0and z — =.

Fix any a > 8, for instance, and let F' = Og.0.0tuv, where u and v are the terminals
of ©gqaq. Then F —uv = Ogq4, which we know (from Section 2.1.2) has a chromatic
root z with negative real part, while F euv is just three cycles intersecting on a single
vertex, a graph having no chromatic roots with negative real part whatsoever, as the
chromatic roots of cycles lie on the disk |z — 1| = 1. Thus {F**} is a family of graphs

producing infinitely many chromatic roots with negative real part.

2.2.5 Application 2: Bounding the Chromatic Roots of Large

Subdivisions

Our second application of our investigation of chromatic roots of subdivisions centers
on the location of the roots of large subdivisions of a graph. A few plots (see, e.g.,
Figure 2.1) of the chromatic roots of subdivisions of several small graphs will indicate
that subdividing edges tends to draw the chromatic roots closer to thedisk [z—1| < 1.
It was shown in [21] that co-rank is an upper bound for |[2—1| where z is any chromatic
root of the graph. The roots of any subdivision of G, therefore, are bounded by 1
plus the co-rank of G. However, more is true: in [20] it was proven that for any € > 0,
there is some subdivision of G having all its chromatic roots in |z — 1| <1+e€. This

belies the empirical evidence that all large subdivisions have their chromatic roots in
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the salient disc. Qur results here are indeed strong enough to prove this fact.

Theorem 2.2.11 For any € > 0, there is an L = L(G, €) such that, if we subdivide
each edge of G into a path of length at least L, then all chromatic roots of the resulting
graph G’ liein [z — 1| < 1 +¢.

Proof Let ¢ > 0 be given. Suppose E = {ey,...,en} are the edges of G, and
that we subdivide edge e; into a path of length [;, ¢ = 1,...,m. We obtain a
graph G;" ™, whose chromatic polynomial, by Theorem 225, is n(Gl"im ) =

S
-1 Ti=th
e ),m Fi,...1.(z), where

Fi.anlz) = n(G-E,x)(1- )ik
B Z fll ..... Lm_l(l')(]_ - g-)z;":"lll.,

1< < <im-1 Sk

-2
m-—a. [‘

+ Z frrimoa(T) (L =x)==r ™ —

1<iy < <im-25k

+ (=)™ Y f@( -+ (=1)"ge(@)

1<i<m
is the expression (in braces) in Theorem 2.2.5 (with k replaced by m).
bounded by the co-rank p of G. Let C = C(G,¢) > 0 be a bound for the maximum
modulus of the f’s and gz on 1 +¢& < |1 — 2| < p. Choose L > 0 large enough that
‘-"3%5)-!1 > 2™ — 1. Suppose that [, ..., [, are all larger than L, and, without loss of
generality, l; < lp < -+ <. Let z be such that 1 +¢ < |1 — 2| < p; we will show
that | Ay, 1. (2)] > 0.

To that end, note that 7(G — E,z) = z", whose modulus is at least . Set
y = |1 — 2|. Then, by the triangle inequality,

o m-1
..... m@ 2 YR = 3 @l

11 < <im—1Sm
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m—-27.
- Z |fi1,...,ik_2(2)lyzj=l l‘j -

1€i1 < <im-2<m

- Y faa@lte = Y @iyt - lge(2)]

1<i1 <ig<m 1<ii<m

> et yZ:';x Lo _ z C yz;';-ll l‘]

1€i1 < <im—1<m

D -7 T

1<i1 < <im—2<m 1<i <ia<m

- Y Ccyn -C

1<ii<m
On the right hand side of the above there are exactly 2™ — 1 terms in y (without

combining any terms of like degree). We rewrite the expression as

eﬂ
C- Y 3 SUPLL- SN L e | ,
(Cy y ) )

where p = 2" — 1 and n; > ng > --- > n,. In particular, ny = Sl and
ng =3 1,li. Then

| F.....0m (2)] > iym_ynz_..._y"»_l

C
= ynP (-Ean-ynl_"li - ynz_np —_—e e - ynP-l“"’P — 1) —_ 1

- yn!’(yn'ﬁ-l-'nP(%yﬂ‘l-"’?-l — y"ﬂ""v—l —_ .

e 1) - 1) - 1

= (Yt (Yt y T (y"""’(%y’“'"2 -1)
-1)---=1)-1)-1.

Nown; —np=1.; > Land y>1+¢e>1. Hence

|F,...tm (2)]

> C4efo1-1.-—1-1-1
C C < >

4 such
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which completes the proof. a

Direct calculations with generalized theta graphs suggests that this may be only
half of the story. More specifically, we conjecture that the region |z —1| < 1+¢ in
Theorem 2.2.11 can be replaced by {z€ C:1—-e<|z—1| <1+e}U{l}.

Returning to the proof of the theorem, all we really needed of G — E was the fact
that it has no roots on 1 < |z — 1| < p, for then we knew it is bounded away from
zeroon 1 +¢& < |z — 1| < p for any fixed ¢ > 0. So in fact any subset E' of E for
which every root of G — E" lies in |z — 1| < 1 will do. Conversely, if E' is a subset of
edges such that G — E' has a root on |z — 1| > 1, then by (ii) of Theorem 2.2.7 and
the remark immediately following the theorem, there will certainly be an ¢ > 0 and
an [ such that GF' has a root on |z — 1| > 1 +¢. Hence, in the statement of Theorem
92.9.11, we can replace G by E' if and only if the graph G — E’ has all its chromatic

roots in |z — 1| £ 1.



Chapter 3

Roots of Independence

Polynomials

For a graph G with independence number 3, let i denote the number of independent
sets of vertices of cardinality k£ in G (k = 0,1,...,8). Several papers exist (cf.
[2, 23, 34, 36, 41]) on the independence sequence (i1,12,...15) of a graph (or its

complement), exploring various such problems. The independence polynomial of G,

ic(z) = iik-’vk,
k=0
is the generating polynomial for the sequence. The path P, on 4 vertices, for example,
has one independent set of cardinality 0 (the empty set), four independent sets of
cardinality 1, and three independent sets of cardinality 2; its independence polynomial
is then ip (z) = 1 + 4z + 322,

As is the case with other graph polynomials, such as chromatic polynomials (cf.
[25, 51]), matching polynomials ([38, 39]), and others, it is natural to consider the
nature and location of the roots. Interesting in their own right, they can shed some
light on the underlying combinatorics as well. Newton (cf. [31]), for example, showed
that if a polynomial f(z) = Z‘Lo a,zF with positive coefficients has all real roots,

then the sequence aq,ay,...,as is log-concave (ie., a? < ag-10k4+1 for all k), and

43
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hence unimodal (for some k, a; < --- < ax 2 k41 2 -*- 2 a,). Unimodality
conjectures permeate combinatorics (see, e.g., [56]), and it was conjectured in (23]
that the independence vector (ig, %1, . . , i5) of any well covered graph (cf. Section 3.1.1
of this thesis for the definition) is unimodal, and some partial results in that regard
have been obtained via the roots of independence polynomials (cf. {23]). Further
results on independence polynomials and their roots can be found in [23, 35, 40, 42].

One line of research in chromatic roots has been determining the topological clo-
sures of both the real and complex roots of the set of all chromatic polynomials. It
was shown between the works of Jackson [45] and Thomassen {57] that the closure
of the set of real roots of chromatic polynomials is {0} U {1} U [32/27,00). Recent
work of Sokal (cf. [55]) shows that chromatic roots in general are dense in the entire
complex plane; even when restricted to planar graphs, the complex roots are dense in
C. except possibly in the disk |z — 1| < 1. Our first order of business in this chapter
will be to answer these same questions for roots of independence polynomials.

Much of our work stems from the following key result. For two graphs G and H,
let G[H] be the graph with vertex set V(G) x V(H) and such that vertex (a, z) is
adjacent to vertex (b,y) if and only if a is adjacent to b (in G) or @ = b and = is
adjacent to y (in H). The graph G[H] is the lezicographic product (or composition) of
G and H, and can be thought of as the graph arising from G and H by substituting
a copy of H for every vertex of G.

Theorem 3.0.12 Let G and H be graphs. Then the independence polynomial of
G[H] is
igi)(z) = ie(in(z) — 1). (3.1)

Proof By definition, the polynomial i¢(ix(z) — 1) is given by

Bc Bu k
Y i (Z if'x“') : (3.2)

k=0 j=1

where i€ is the number of independent sets of cardinality k in G (similarly for if).
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Now, an independent set in G[H] of cardinality [ arises by choosing an independent
set in G of cardinality k, for some k € {0,1,...(}, and then, within each associated
copy of H in G[H], choosing a nonempty independent set in H, in such a way that
the total number of vertices chosen is [. But the number of ways of actually doing

this is exactly the coefficient of z' in (3.2), which completes the proof. o

By applying (3.1) to the right families of graphs, we will be able to determine the
closures of real and complex independence roots. We will then move on to consider
the special case of higher compositions of a graph with itself, asking for where the
independence roots are approaching. Since the polynomials involved are essentially
higher compositions of ig(z) — 1 with itself, it may not be too surprising to learn that
the generic case is convergence to a fractal.

We shall have occasion to make use of an easy recursive formula for calculating

independence polynomials.
Proposition 3.0.13 ({23, 44]) For any vertez v of a graph G,
ic(z) = ig-y(T) + T - ig-[y(T).

where [v], the closed neighbourhood of v, consists of v, together with all vertices inci-

dent with v.

Proof For k > 1, an independent set of k vertices in G either contains v or does not.
There are if_-ll"l that do, and if“" that do not. Thus, for each k£ > 1, the coefficient
of * is the same in both sides of the above equation; and both sides clearly have

constant term 1. The two polynomials are therefore equal. a

Another useful tool is:

Proposition 3.0.14 For graphs G and H, the independence polynomial of their dis-

joint union GW H is

icur(z) = ic(T) - in(z).
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Proof For k > 0, an independent set of k vertices in G ¥ H arises by choosing an
independent set of j vertices in G (for some j € {0,1,...,k}) and then an independent
set of k — j vertices in H. The number of ways of doing this over all j = 0,1,...k
is exactly the coefficient of z* in ig(z) - ig(z). Hence, since both sides of the above

equation have the same coefficients, they are identical polynomials. a

3.1 Location of Independence Roots of some Fam-

ilies of Graphs

As advertised, we shall now find the topological closures of real and complex inde-
pendence roots. As the coefficients of any independence polynomial are positive all
the way down to the constant term, it is clear that no real independence root is

nonnegative. Nevertheless, we have:

Theorem 3.1.1 Complez roots of independence polynomials are dense in all of C,

while real independence roots are dense in (—o0,0].

We will prove the theorem by considering very specific families of graphs, taking
their lexicographic product, and examining the roots of the independence polynomials
which arise. The upshot will be the truth of the Theorem 3.1.1 even for some very
restricted families of graphs, namely well covered and comparability graphs.

3.1.1 Well Covered Graphs

A graph is well covered if every maximal set of independent vertices has the same
cardinality. The graph Cj, for instance, is well covered with independence number 2,
while Cs, a graph with independence number 3, is not well covered, since it contains
maximal independent subsets of cardinality 2. Well covered graphs have attracted
considerable attention; see [49] for an extensive survey.

Well covered graphs are closed under lexicographic product.
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Proposition 3.1.2 If G and H are well covered, then G(H] is also well covered.

Proof Any independent set in G[H] arises by choosing an independent set W' in
G, and for each vertex in W, an independent set of vertices X in H. Every maximal
independent set in G[H] will therefore have cardinality ScGx, and so G[H] is well

covered. a

Denote by [1, 4] the set {1,2,...,4}, and (as in [23]) LY (where k is a positive
integer) the graph with vertex set {1, 8]¥, in which two k-tuples are joined by an edge
if and only if they agree in a coordinate.

Proposition 3.1.3 For 8.k > 2, the graph LY is well covered unth independence

number (3.

Proof Let {vy,vs,...,v,} be an independent set of s < B vertices. Then, for each
i=1,2,... k there is a number £ € [1, 8] which is not equal to the i-th coordinate
of any v; (j = 1,2,...,s). Thus, the vertex v, = (xM, @, .. 2%} is not adjacent
toany v; (j =1,2,...,s), and so {v1,V,...Vs41} is DOt a maximal independent set.
Hence, any maximal independent set has cardinality at least (3.

On the other hand, let {vi,ve,...v,} be a set of s > B vertices. Then two of
them must agree in the first coordinate, by the Pigeonhole Principle. Therefore, no

independent set has cardinality greater than (3. This completes the proof. a
The graphs L’E were considered in [23], where the following was established.

Theorem 3.1.4 ([23]) If2*~! > 8 > 1 then the smallest zero yg‘) of irx(x) lies in
the interval
—B<yy <—-B(1-27).

By taking the lexicographic product of the L’f, with complete graphs, we find be-

low that among the independence roots which arise are real roots that are dense in
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(=00, 0]. Complete graphs are obviously well-covered (with independence number 1),
and ik, (z) = 1 +nz. Proposition 3.1.2 then implies that L§[Ky] is well-covered, and,

by equation (3.1), iL;;[K,.](I) =gk (nzx).

Theorem 3.1.5 The real independence roots of the family {L§[K,]} are dense in
(—00,0].

Proof Note that iL";[K..l(x) =ilk(l+nz-1) = iLg(n:z:). Let s € (—00,0] and
¢ > 0 be given. Begin by choosing a positive integer n large enough that the interval
n-(s—¢,s+¢€) = (ns — ne,ns + ne) contains some integer B < —2. Next, from
Theorem 3.1.4, we can choose a k such that 3 L'S(x) has a root r in that interval. Then

r/n€ (s—g,s+¢€), and

. r . T .
ingua () = ieg(ne —) =is(r) =0.
completing the proof. a

It turns out that complex independence roots of well covered graphs are dense in
all of C. To prove this, we will compose the graphs LY[Kn,] with empty graphs K,
The empty graph K, is obviously well covered (with independence number n), and
(from Proposition 3.0.14) iz=(z) = (1 + z)".

Theorem 3.1.6 The independence roots of the family L'g[Km][—I?,,g] are dense in C.

Proof Set R = {real roots of the family L§ &(Kn,][Kny]}; from Theorem 3.1.5 we
know that R = (—00,0]. Let z € C and & > 0. We will show that there exist positive
integers B, k,ny,np such that ¢ L;[Kn;lfl?uz](z) = 0 for some Z within an e-radius of z.

From Proposition 3.1, we have

L8 Ky J(Ring] (%) = E2500y 1 (1R (2) — 1) = iL§[Kn (1 + 2)™ - 1).

We may assume z # —1; thus |z + 1| > 0. Choose n, large enough that some
(2k+1)x N N N
ny-th root of —|z + 1|2, say w = |z + lle” "2 , is within an §-radius of z + 1.
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Choose § > 0 such that § < § and r = —(Jz + 1| + 6)"2 — 1 € R (by continuity, such
a § exists). Then the corresponding no-th root of 7 + 1 = —(|z + 1| + )", namely
- 2(2k+ 1w . . . .

W= (|z+ 1|+ 6)e” "2 ,is within an e-radius of z +1, as

@ - (z +1)|

(@ —w) + (w - (z+1))|
< [-wl+lw-(z+1)|

<5+£<£+£—e
2 ~ 272

Finally, since r € R, there are numbers 3, k,n such that i,‘s[KM](r) =0 Setz=
w — 1. Then

Z-zl=|(@-1) -2 =|o-(2+1)| <¢,

and
UL K J(Rngl(2) = ‘L"[K..‘]((l +z)"-1)
= lLk[Knl]( - 1)
= LL:‘,[K ((7' + 1) - l
= igkig,)(T)
= 0,
completing the proof. O

Theorems 3.1.5 and 3.1.6 imply that Theorem 3.1.1 is true even when restricted
to well covered graphs.

3.1.2 Comparability Graphs

A simple graph G is a comparability graph if it has a trensitive orientation, that is,
an orientation of its edges such that if £ — y and y — z then z — z. Comparability
graphs are also closed under graph composition.

Proposition 3.1.7 If G and H are comparability graphs, then G[H] is also a com-
parability graph.
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Proof Orient the graph G[H] by (a,z) < (b,y) ifand only ifa < b (in G) ora =
and z < y (in H). This is a transitive orientation of G[H]. For suppose (a,z) < (b,y)
and (b,y) < (c,2z). fa=b=c thenz<yandy<z andsoz <z by transitivity
of H, whence (a,z) < (c,2). Ifinsteada =b<cora<b=cora<b<g, then
a < ¢ by transitivity of G, and so (a,z) < (c,z). This completes the proof, as there

are no other possibilities. a

Contained in the collection of comparability graphs are paths, complete graphs,
and empty graphs.

Proposition 3.1.8 Paths, complete graphs, and empty graphs are all comparability
graphs.

Proof Going from left to right through P, the path on n vertices. orient the first
edge forward, the second backward, third forward, and so on. This gives a transitive
orientation (trivially), and therefore P, is a comparability graph.

To see that K, is a comparability graph, simply label its vertices 1,2,...,n, and
orient edge ij as ¢ — j if and only if ¢ < j. The transitivity of this orientation follows
that of < on R.

Finally, K, is trivially a comparability graph. O

Together with Proposition 3.1.7, this implies:
Corollary 3.1.9 The graphs Py, [Kn,] and P, [Kn,|[Kn,] are comparability graphs.

Analogous to what we did for well covered graphs, we will show that the family
{ Pa,[Kn,]} has real independence roots which are dense in (—oo, 0], while the complex
independence roots of the family {Pn, [Kn,][Kn;]} are dense in all of C.

We start with paths, themselves. The graph Ps, for example, has independence
polynomial i (z) = 1+ 5z +62% + z°. Its roots are shown in Figure 3.1; they are all

real. We can say much more:
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Figure 3.1: The independence roots of Ps.

Theorem 3.1.10 The independence roots of the family {P,} are real and dense in

(—00, —1].

Proof Since P, is the line graph of Pny1, M(Pat1, 1) = z"ip, (—1/z?), the former
being the matching polynomial of Pn;1, and matching polynomials are known (42] to
have only real roots. It follows that ip,(z) has only real roots as well. The reduction
in Proposition 3.0.13 for calculating independence polynomials gives

ip,(z) = in(2) + 2 iR, (@) (123), (33)

and so the family {ip,(z)} is recursive; the initial conditions are ip,(z) =1+ 2 and

ip(z) = 1 + 2. Solving, we find
ip,(z) = ar ()M ()" + aa(z)Ao(2)",

where

1+vV1+4zx

M), dafa) = ——5



and

VI 4z (1 +22)
a(z) eoz) = —— =

The non-degeneracy conditions of the Beraha-Kahane-Weiss theorem (Theorem

9.2.3) are therefore satisfied, and part (i) of that theorem implies that among the

limits of roots are those z for which

[M(2)] = 1A(2)],

which simplifies to

1+ V1+4z]=|1-V1+4z|,

implying that /T + 4z is purely imaginary. Thus 1+42 <0, ie., 2 < -1 /4, which is

what we wanted to show. O

By composing with complete graphs, we can fill up the rest of the negative real

axis.

Theorem 3.1.11 The independence roots of the family P, (Kn,] are real and dense

in (—o0,0].

Proof From the previous theorem, independence roots of the graphs Py, [K1] = P,
are real and dense in (—o00, —1/4]. Now let s € (—~1/4,0) and € > 0 be given. Then
there are positive integers n; and n, for which ip, k.,}(Z) = ip,, (noz) has a root in
(s —¢&,s +¢€). For choose n; large enough that nys < —1/4. Then, from the previous
theorem, we can choose a number n, such that ip, (z) has a root 7 € nz- (s—e,s+¢).
But then .- -7 € (s —¢€,5 +¢) and 1Py (Kngl (& ) = iRy (N2 - =) = iR, (1) =0,

n2

completing the proof. o
Compositions with empty graphs will then fill up the complex plane.

Theorem 3.1.12 The independence roots of the graphs Pn,[Kn,|[Kn,] are dense in
C.
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Proof The proof is essentially the same as that of Theorem 3.1.6: starting with
any collection of graphs whose independence roots are dense in (—oo, 0], compositions

with empty graphs yield independence roots which are dense in C. m]

Hence, Theorem 3.1.1 remains true when we restrict to comparability graphs.

3.1.3 On Further Classes of Graphs

It may be of interest to study the independence roots of yet further classes of graphs.

Some common ones include chordal, interval, claw-free, and line graphs:

e A simple graph G is a chordal graph if every cycle in G of length at least 4 has

a chord.

e Given a family of intervals, we can define a graph whose vertices are the inter-
vals, with vertices adjacent when the intervals intersect. A graph formed in this
way is an interval graph, and the family of intervals is an interval representation

of the graph.
e A simple graph G is claw-free if does not contain K\ 3 as an induced subgraph.

e The line graph of a graph H, is the graph G = L(H) whose vertices are the
edges of G, with ef € E(L(G)) when e and j share a vertex.

It can be shown (cf. [59]) that interval graphs are chordal, and line graphs are
claw-free. The reader can verify that the graphs Py, [Kp,) are chordal, interval, and
claw-free, while graphs Py, [Kn,)[Kns] (s > 2) are neither; paths P, are line graphs,

while graphs P, [K,,] are not. We summarize our results in the table below:
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Class Real Roots Complex Roots
Limits Generi.t_ing Family Limits Gen. Family
Well Covered | (—00,0] LX[K,] C L5 K| (K] |
Comparability | (—o0,0] P, [Ky,) C P, [ K] [Kng
Chordal (—00, 0] P,,[Ka,) *
Interval (—w0,0] P, [Ka,) *
Claw-Free (—00,0] P, [Ky,) *
Line (—o0, —3]* P, (—o0, —4J* P,

* further investigation necessary

3.2 The Independence Attractor of a Graph

Since lexicographic product is associative, we may speak of powers G* =G[G[G -]
N —

k
of a graph G without ambiguity (G' =G). For G = P; (a path on three vertices) the

independence roots of G’ are shown in Figure 3.2. It appears that the independence

roots of G* are approaching a fractal-like object as k — oo. We are lead to ask:

Question 3.2.1 For a graph G, what happens to the roots of the independence poly-

nomials igx(z) as k — oo ?

In section 3.2.2 we are able to describe precisely where the roots are approaching,
and in what sense they do so. We then ask the question of when these limiting
sets are connected. In section 3.2.3, we provide a complete answer for graphs with
independence number 2. We then answer the question for some infinite families of
graphs having arbitrarily high independence numbers, in section 3.2.4.

Some familiarity with iteration theory will precede any reasonable understanding
of this material. With that in mind, we collect in the next section the relevant nota-
tion, terminology and results from the field, along with some references. Incidentally,
while Theorem 3.2.10 will have most direct application for us, it cannot (as far as the

author is aware) be found explicitly in the literature.
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Figure 3.2: The independence roots of G7, where G = Ps.

3.2.1 Julia Sets and the Iteration of Rational Functions

Except where otherwise stated, any definition or assertion made in this section can
be found in Beardon’s book {7]. Much of the information can also be found among
the works of Blanchard [15] and Brolin {19].

In section 1.2.3, we introduced the space (Co, o) — the extended complex plane
Coo, with the spherical metric oo. A rational map on Cy is a function f(z) =
p(z)/q(z), where p(z) and g(z) are polynomials; its degree is max{deg p(z), deg q(2)}.
It is well known that each rational map is analytic throughout C, (neither oo nor
any poles of f are singularities).

Rational maps of the form

az+b

#(z) = =1d

ad —bc #0

are called Mébius maps; the condition ad — bc # 0 ensures that ¢ is one-to-one and

thus invertible. Two rational maps f and g are conjugate if there is some Mobius



56

map ¢ such that
g=¢ofog’™

where ¢°(-1 is the inverse of ¢. It is then easily verified that, for any k,
gok = (bofOk °¢o(—1)’

an important property of conjugacy. By f°f, where k > 1, we mean fo fo---o fif
N —  a—

k
k > 1. Also, define f°(@ to be the identity map.

Associated with each rational map is a set (most often, a fractal) known as its

Julia set.

Definition 3.2.2 A family F of maps of Coo into itself is equicontinuous at 2z if and
only if for every € there exists a positive § such that for all z € Co, and for all f in
F,

0(20,2) < 6 implies o(f(z0), f(2)) <e.

The family F is equicontinuous on a subset X of Co if it is equicontinuous at each

point z5 of X.

Roughly speaking, equicontinuity means preservation of proximity. Unless other-

wise stated, f is a rational map from C into itself.

Definition 3.2.3 The Fatou set F(f) is the mazimal open subset of Co on which

the family {f*}2,, is equicontinuous, and the Julia set J(f) is its complement in
Coo-

The Julia set of f(z) = 3z° + 922 + 7z is shown (in black) in Figure 3.3. A method
for computing such pictures is suggested by Theorem 3.2.7 below. The actual Maple
procedure used to generate the pictures of Julia sets found in this thesis is provided
in the Appendix.

It is not hard to prove the following.
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Figure 3.3: The Julia set, J(3z® + 9z% + 7z)

Theorem 3.2.4 If g is a rational map which is conjugate to f - say g = ¢of og°-1)
for some Mébius map ¢ - then F(g) = ¢(F(f)) and J(g) = &(J(f)). The sets
J(g) and J(f) are then said to be enalytically conjugate, as are F(g) and F(f).
Furthermore, F(f°) = F(f) and J(f°*) = J(f) for any positive integer k.

By definition, F(f) is open, while J(f) is compact. If deg(f) > 2, then J(f)
is infinite; in fact, J(f) is a perfect set (and hence uncountably infinite by Baire’s
Category Theorem), that is, J = Ac(J). The sets F and J are each completely
invariant under f, in that f(F)=F = foEY(F) and f(J)=J = feU).

Periodic points of rational maps play an important role in iteration theory. A
point zg is a periodic point of f if, for some positive integer k, f*(z0) = zo. The
smallest positive integer k for which f°*(20) = zo is the period of z5. The forward
orbit O*(20) = {f°*(z0)} of a periodic point 2 is called a periodic cycle. Periodic
points of period 1 are the fixed points of f
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For a periodic point 2y € C of period k, the number A = (f °")' (20) is the multiplier
of its periodic cycle, and is independent of the choice of zo from the cycle (a simple

exercise involving the Chain Rule). The cycle is
(i) attracting if 0 < |A| < 1 (and super-attracting if A = 0);
(ii) repelling if |\| > 1,
(iii) rationally indifferent if A is a root of unity; and
(iv) érrationally indifferent if |A| = 1, but X is not a root of unity.

Theorem 3.2.5 Repelling periodic cycles all lie on J(f), and in fact are dense on
J(f). Rationally indifferent cycles also lie on J(f). Attracting cycles, on the other
hand, lie in F(f). Meanwhile, an irrationally indifferent periodic cycle may lie in
F(f) or it may lie on J(f).

If zg is an irrationally indifferent periodic point of period k, lying in F(f), then
the component (i.e., maximal open connected subset) Fp of F (f) containing zq is
forward invariant under f°, and is called a Siegel disk. For any point z # zo in Fo,
the sequence {f°(z), f*®)(z),...} is dense on a curve - called an invariant circle -
lying inside Fp.

In fact, a complete classification of the possibilities for periodic components of a
rational map is known; and every component C of a Fatou set F(f ) is eventually
periodic under f, that is, for some j > k > 0, f%(C) = f°*(C). These very deep
and fascinating results were proved by Sullivan (cf. (7] for references and details). An

immediate consequence of his work is:

Theorem 3.2.6 If f is a polynomial, and 2y € F(f), then the forward orbit O*(z) =
{f°*(20)} either

(i) converges to a periodic cycle, or

(ii) settles into a ‘periodic cycle’ of Siegel disks, becoming dense on an invarient

circle in each.
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Now, the backward orbit of a point z € Cy is the set
07(2) = URof* M (2).

We are using the notation fo(=1) for the set-valued inverse of f (a function on subsets
of Coo), and fo8) = fo-D o fo(N0o...0 £V, If O~ () happens to be finite, then

z is called ezceptional. For exa.mplg, if f(x) = z", then both 0 and oo are exceptional
points of f. A rational map f has at most two exceptional points, and they necessarily
belong to F(f). The point co is an exceptional point for every polynomial p; thus,
oo € F(p) and, since J(p) is closed, J(p) will be bounded as a subset of (C,|-|),
where | - | is the Euclidean metric on C, discussed in section 1.2.3. Backward orbits

are closely linked to the Julia set:

Theorem 3.2.7 Let f be a rational map with deg(f) > 2.
e If = is not exceptional, then J(f) C Cl (0O~ (2)).

o If z € J(f), then J(f) = CL (O~ (2)).

Since the inverse images f°(~*)(zo) are finite, they are necessarily compact. Instead
of looking at the entire inverse orbit O~!(zo), we could ask whether the sets f o(=k)(2q)
will actually converge to J(f) under the Hausdorff metric s, on H(Cs) (cf. section
1.2.3). As it turns out, the generic case is convergence to J(f). While a result of this
nature cannot be found explicitly in the literature, however, there are enough tools
available to piece one together. Our efforts in this regard will pay off immensely in
the sections that follow. One tool we will need is:

Theorem 3.2.8 (cf. [7], p. 71) Let f be a rational map of degree at least two, and
E a compact subset of Coo such that for all z € F(f), the sequence { f°%(2)} does not
accumulate at any point of E. Then for any open set U containing J(f), f*(E) C
U for all sufficiently large k.

Another is:
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Theorem 3.2.9 (cf. [7], p. 149) Let f be a rational map of degree at least two, W
a domain that meets J, and K any compact set containing no exrceptional points of
f. Then for all sufficiently large k, f**(W) D K.

(A domain is an open connected set). Together with Theorem 3.2.6, these are strong

enough to prove:

Theorem 3.2.10 Let f be a polynomial, and zy @ point which does not lie in any
attracting cycle or Siegel disk of f. Then

lim £ (z0) = J(f).

k—oo

Proof* Let ¢ > 0 be given. Establishing the above limit is equivalent (cf. [6]. p. 35)
to proving that, for all sufficiently large &,

(i) [ M(20) CI(f) +<

and
(i) J(f)C () +e,

where A + & = {z : 0g(z,a) < ¢ for some a € A}, the “dilation of A by a ball of
radius €” ([6], p. 35).

To prove (i), note first that if zg € J(f), then f°(=¥)(z) C J(f) S J(f) + ¢ for
all k. If instead zg € F(f), then, since we are assuming that zq lies in neither an
attracting cycle nor a Siegel disk, Theorem 3.2.6 implies that no point 2 in F(f)
will have a forward orbit which accumulates at zy (recall from Theorem 3.2.5 and
the remarks immediately following the theorem imply that any non-attractive (and
thus irrationally indifferent) periodic cycle in F(f) necessarily lies in a Siegel disk).
Hence, the set E = {z} satisfies the hypothesis of Theorem 3.2.8, and therefore
fo*)(2) € J(f) + € for all sufficiently large k.

*The author is indebted to Professors John Milnor and Robert Devaney for sharing with him
their own thoughts on the possible correctness of this result, at a time when the author had not yet
completed his proof.
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To prove (ii), we begin by choosing a positive number § < /2, and covering
J(f) with finitely many open balls of radius § (such a covering exists since J (f) is
compact). The point z; is not exceptional, since exceptional points are necessarily
periodic points in F(f). For each ball W in the covering W, Theorem 3.2.9 implies
that, for all sufficiently large k, f(W) D {20}, and hence f°(=%)(20) "W # 0. Since
there are only finitely many such balls, we then have that, for all sufficiently large k,
FoR)(z0) MW # @ for each ball W. Finally, since € > 24, it follows that, for all such
k, foR)(z) +e D W D J(f). o

3.2.2 Independence Attractors of Graphs: a General Theory

We set out now to describe just where the independence roots of powers G* of a graph
G are ‘approaching’ as k — oc. The upshot will be an association of a fractal with a
graph. For each k > 1 the set, Roots (igx), of roots of ig« is a finite - and therefore,
compact - subset of (C, | - |). We ask whether the limit of the sequence {Roots (igx)}
with respect to the Hausdorff metric hy; on H(C) (cf. section 1.2.3) exists in general.

In fact, it does.
Definition 3.2.11 The independence attractor of a graph G is the set

I(G) = kli_{:; Roots (igx), (3.4)
where the limit is taken in (H(C), hyy).

That Z(G) actually exists for every graph G is part of Theorem 3.2.14 below, the
main result of this section. Let us begin with a simple but important characterization
of the right hand side of equation (3.4). For each k£ > 2, associativity of graph

composition allows us to write G¥ = G*~{G], and Proposition 3.1 then implies that
igr =igk-1 0 (ig — 1),
which in turn leads to the relation

Roots (ige) = (i¢ — 1)°1 (Roots (ige-1)) .
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Also,
Roots (ig) = (i¢ — 1)°CV(-1).

Hence,
Proposition 3.2.12 Setting fg(z) = ig(z) — 1, we have
Roots (ige) = fo™¥(-1)
for each k > 1. Therefore,
I(G) = Jim f&™"(-1). (3.5)

With this observation, we are almost in a position to apply the results of the
previous section to the problem of describing Z(G), but one point remains to be
addressed. We are attempting to take the limit (3.5) in (H(C), hy;), as opposed to
(H(C), he, ). However, note the following:

Lemma 3.2.13 The sequence {fot ) (—1)} is bounded in (C,| - |).

Proof The result will be obvious if we can prove the existence of a number R > 0
such that |z| > R implies |fg(z)] > R. To that end, for felz) = Z£=1 ixzk, let
2 C

= 1 - n-lf _— _ _—_ . . .
C= lsrlrclsagc_lzk, and set R = max il Toa] + 1). By the triangle inequality,

|zl >R = |fe(z)l = iglzlP — (ig—1]2lP™" +igolzlP 2+ +1412])

> iglelf = C (|2l + 2P + - +2])
B-1_1

= sl - O
p-1

Y T RS i

ol (el - B
B-1
18- _ |zl -1

> R(’Lng' C—_C/i,g

= R-ig

> R
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which is what we wanted to show. O

Applying Theorem 1.2.7, we may instead consider the limit (3.5) as being taken
in (H(Ceo), hoy), Which means that we can apply the techniques and results of the
previous section on iteration theory.

Theorem 3.2.14 answers completely our question in general, and is the foundation
for everything that follows. Empty graphs will not be of interest, for if G = K,, then
G* = Kx and ige(z) = (1 + )™, whence Z(G) = {-1}.

Theorem 3.2.14 Let G be a non-empty graph, and denote by n(G) the multiplicity

of —1 as a root of i¢. Set fo =ic — 1.
(i) If n(G) £ 1, then
I(G) = J(fc). the Julia set of fc.

(ii) If n(G) 2 1, then

Z(G) = Cl (Ugs: Roots (ige)) = Cl (ukZl fg“k’(-l)) .
In case (ii), igx is divisible by ('in-;)"(G) for each k > 2, and

kli_x& (Roots (igk) \ Roots (ige-1)) = ‘}eroxo Roots <—ZG—;"—(E)-> =J(fe)- (3.6)

lok-1

Further, for n(G) > 1, Z(G) is partitioned by the set, Ux>1 Roots (ige), and its accu-
mulation points, J(fg).

Proof If G has independence number 1, then G = K, for some n > 2, and
ic(z) = 1 + nz. It follows easily that for each k > 1, igx () = 1 + n*z, whose only
root is —1/n*, which tends to 0 as k tends to infinity. Thus, T (G) = {0} for graphs
G with independence number 1. As ig(z) = 1 + nz where n > 1, we have n(G) = 0;
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also, J(nz) = {0} as the forward orbit of any non-zero point will go off to infinity.
This proves the result for graphs with independence number 1.

Let G be a non-empty graph whose independence number is at least 2. For the
cases n(G) = 0 and 7(G) = 1, we will show that the hypothesis of Theorem 3.2.10 is
satisfied for f = fg and 29 = —1. To that end, note first that since fc has integer
coefficients, the forward orbit {f2F(—1)} of —1 lies entirely in Z, and therefore could
not possibly be dense on any invariant circle in a Siegel disk.

Consider first the case n(G) = 0: here, fo(—1) # —1as fe(—1)+1 = ig(-1) #0.
We will show that in fact —1 cannot be a periodic point of fg of any order. Together

with our observation above, this will show that the hypothesis of Theorem 3.2.10 is

satisfied here. We argue by contradiction. Suppose f&(~1) = —1 for some k > 2.

Then fg( é(k_l)(-l)) +1 =0, and so fg(k_l)(—l) is an integer root of fg + 1, a
A~

polynomial haev%ng positive integer coefficients and constant term 1. Applying the

Rational Root Theorem, it follows easily that fé(k-l)(—l) = —1. Repeating this

argument, we conclude that fo(—1) = —1, a contradiction. Therefore, —1 is not a

periodic point of fg, and the hypothesis of Theorem 3.2.10 is satisfied.

Next, consider the case n(G) = 1: here, fg(—1) = —1 and fg(-1) = (fe +
1)(~1) = iz(—1) # 0. Since fi has integer coefficients, this implies that | f5(—1)| >
1. If [f5(=1)| = 1, then fg(—1) is either +1 or —1, implying that —1 is a rationally
indifferent fixed point of fc. If instead |fg(—1)| > 1, then —1is a repelling fixed
point of J(fg). In either case, the point zg = —1 belongs to J(fc), and once again
the hypothesis of Theorem 3.2.10 is satisfied. In addition, as —1 € J(fe), it follows
from Theorem 3.2.7 that J(fg) = Cl (U1 faF(-1).

When n(G) > 1, fo(—1) = -1 and fg(-1) = (fo +1)(-1) = #(-1) = 0; thus,
zo = —1 is an attracting fixed point of fg, and so Theorem 3.2.10 does not apply. Let
£ > 0 be given. We need to show that

(8) F&(=1) € C1 (Uit fE9(-D)) + 5 and

(b) CI (uk21 f;""’(-n) C fP(-1) +¢
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for all sufficiently large k.

Part (a) is obvious, as fo (1) C Uks1 58 (~1) for all k. Part (b) is not
difficult either: Since f(—1) = —1, we have —1 € fo. "(—1). Applying £V to both
sides, we find that f°( 1)( 1) C f°( 2)( 1). By induction, then, f°( (k-m( 1) C
f°('k)( 1) for each k > 2. Consider the family of open sets {fg £29)(~1) + €}. From
what we have just shown, this forms an increasing open cover of the compact set
Cl (Uk>1 R (- 1)), and hence the latter will be contained in {fo*(~1) + ¢} for
all sufficiently large k, which is what we wanted to show.

Now we prove (3.6). Let G be a graph such that n(G) > 1. Then —1 is a root of
ic. Let R denote the set of roots of ic; note that R = f°( l)( 1). As G is non-empty,
ic(z) is not of the form (1 + z)#, and so R = R\ {-1} is non-empty. Consider any
element r of R. As fo(r) = =1, f&¥(r) € Z for all k > 1. Thus, r cannot be a periodic
point of fg, for if it were, then 7 € Z. However, since ig(z) has positive coefficients
and constant term 1, its only integer root, by the Rational Root Theorem, is —1.
And so r = —1, contradicting the fact that r €R. Now, as fe&(ryeZforalk>1,
the sequence {f&(r)} will not be dense on any curve, and so r can lie in no Siegel
disk either. Hence, the hypothesis of Theorem 3.2.10 is satisfied for each member r
of the finite set ;2, and so

lim f&7(R) = J(fa).

Write ig(z) = (1+z)"%y¢(z), where Yc(z) has roots R. Then i (z) = ic(fe(z)) =
(ic(z))"® ¥e(fe(z)). By induction, we find

igr() = (igr1 (@)@ v (£847(2)),

and therefore

ick () ( o(k-1) (a:))

(i@
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which has roots fa~ ==1)(R). Also,
Roots (igx) \ Roots (igx-1)
= fEERN SR
= (V2P R U -\ (UREP R U -1))
_ fz;(—(k-l))(R)-

The claim f°( ~(k= l))(R) Uf_é °(_’) R) U {—1} made in the second last equality is
seen by a simple inductive argument, noting that R = RU {-1} and fg( D(-1) =
Ru{-1}.

To see why the last equality (above) holds, suppose that 7, s 6;2 were such that
ft=M(ry () £ (s) # @ for some j < k — 1. Then r = f*170)(s) = -1,
contradicting the assumption that r 6;2. This completes the proof of (3.6).

Finally, since lim_. f°( k)(R) = J(fg), and J(f¢) is a perfect set (i.e., equal
to its accumulation points), the union Uk>ofg o= k)( R) will accumulate to no less than
J(fc). It can accumulate to no more than J (fc) either, since any accumulation point

necessarily lies in the limiting set. Hence,
J(fo) = Ac (UkzofE(R)) = Ac (Ueaofd ™ (=1).

And for n(G) > 1, J(f¢) is disjoint from Ukzofé(_k)(—l), as —1, being an attractive
fixed point of fg, does not belong to J(f¢). This concludes the proof of the theorem.
a

Early into the proof, we observed that the independence attractor of any graph
with independence number 1 is just {—1}. Things get more interesting as we consider
graphs with higher independence number, and we will sometimes find it convenient

to work with a polynomial g to which f¢ is conjugate.

Theorem 3.2.15 [f, for a graph G, a Mébius transformation ¢ and polynomial gg
are such that gc = ¢o fgo ¢°Y) | then
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(i) fc fizes —1 if and only if g fizes ¢(-1),

(ii) the multiplicity of —1 as a root of fg(z) + 1 equals the multiplicity of ¢(—1) as
a root of gg(z) — #(—1), and

(iii) Z(G) = J(fc) if and only if I(G) = """ (J(gc))-

In short, ¢(—1) is to gc what —1 is to fg.

Proof To see (i), observe that gg(6(—1)) = ¢(fa(¢°"(~1))) = #(fc(-1)), which
(since ¢ is injective) is equal to ¢(—1) if and only if fo(—1) = —1.

To see why (ii) holds, just note that ggc(z) = ¢(-1) & o(fo(e*=V(2))) =
o(-1) & fa(¢"V(2)) = ~1L.

Finally, property (iii) follows immediately from the conjugacy property of Julia
sets, mentioned in Theorem 3.2.4. Specifically, since g¢ = ¢ o fg o ¢°-1, J(gg) =
#(J(fc)). Applying ¢°") gives J(fg) = ¢°"V(J(gc)). m

As Julia sets are typically fractals, we are in essence associating a fractal Z(G)
with a graph G. The question arises as to the possible connections between the two
objects. How are graph-theoretic properties encoded in the fractals? What does I(G)
say about G itself? Figure 3.4 shows the independence attractor of G = 5K, the
disjoint union of five Ko’s. Since ig(z) = (1 +2z)°, Z(G) = J((1 +2z)° — 1). The
attractor appears disconnected, in contrast to Z(Ps) (cf. Figure 3.2). We ask here:

Question 3.2.16 For which graphs G is I(G) connected?

We can give a complete answer for graphs with independence number 2.

3.2.3 Graphs With Independence Number 2

Let G be a non-empty graph with independence number 2, having n vertices and m

non-edges (i.e., G has exactly m edges). (Recall that empty graphs have independence
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Figure 3.4: The independence attractor, Z(5K») = J ((1 +2z)° - 1).

attractor {—1}, and are therefore not of interest). Then
fo(z) = ig(z) — 1 =mz® +nz. (3.7)

As G is non-empty, ig(z) # (1 + z)? and so —1 will have multiplicity no greater
than 1 as a root of ig(z). Applying Theorem 3.2.14, we have:

Theorem 3.2.17 If G is a non-empty graph with independence number 2, then
I(G) = J(fe)-

The Mandelbrét set M is the set of all complex numbers ¢ for which the Julia
set of the polynomial z2 + ¢ is connected. For any other value of ¢, J (z2 + ¢) is not
only disconnected, but totally disconnected (cf. [32], p. 246). Julia sets of this type
are often called fractal dust. A plot of the Mandelbrdt set (a subset of the complex
c-plane) is shown in Figure 3.5. A well known fact (cf. [32]) is that M is contained
in the disk |¢| < 2, .
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Mo

-2
Figure 3.5: The Mandelbrét set.

Let us then work with a polynomial of the form z? + ¢ to which fg(z) is conjugate.
It is straightforward to check that

gc = o fgo ¢V,

where
_2e ()

9o(z) =2 + 3 (2) (3.8)

and
o(z) = mz + g- (3.9)
For future reference,
1 n
o(—1) —_— e —
>~ (z) —Z . (3.10)

Notice that the constant term ¢ = 5 — (%)2 in gg(z) is independent of m. This means
that the connectivity of Z(G) will depend only on how many vertices G has; the fact
that G is non-empty implies that n > 3. The location of Z(G), though, depends on
both the numbers of vertices and edges in G, as Theorems 3.2.19, 3.2.20, and 3.2.21
below imply the following:
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Theorem 3.2.18 If G is a non-empty graph with independence number 2 having n

vertices and m non-edges, and z € Z(G), then
(i) e <Re(z) L0, and
m —_— — ’

V3
2m’

(ii) Im(2) = 0, unless n = 3, in which case —E[n% <Im(z) <

Graphs for which3=2,n =3

There are exactly two graphs with independence number 2 on n = 3 vertices,
namely K, ¥ K>, the disjoint union of a point and an edge, and P;, the path on
three vertices. Their independence polynomials are ig,wi,(¥) = 212 + 3z + 1 and
ip(z) = 22 + 3z + 1; thus, I(K; & K3) = J(22° + 3z) and I(Fs) = J(z? + 31).

For either graph G, equation (3.8) says that f¢(z) is conjugate to the polynomial
gg(z) = 22 - %. For G = K, ¥ K>, equation (3.9) tells us that ¢(z) = 2r + -2- and
so ¢°C(z) = iz — 3, while for G = P, ¢(z) = z + 2 and ¢°"U(z) = 3z - 3
Since —3 lies in the Mandelbrét set, J (z2 — 3) is connected. By Theorem 3.2.15,
I(G) = ¢°-VJ(z? — 3), and since, for either graph G, ¢°-1 is a mere scaling and
shifting, Z(G) must also be connected.

With a little work, one can determine a box containing J (z2 —3). The author can
prove that for g(z) = 22 — 2 and z € C, if either [Re(2)| > § or [Im (2)| > 43 then
|g¥(2)| = oo as z — oo. Surely this is known, so we will not clutter this section with
the details. The box [-3, 3] x [—izé, «\2@] containing J(g(z)) is in fact best possible, as
the points +3 and :tizéi all lie in J(g(z)): the point z = $ is a repelling fixed point
of g, and g°2(:!:32§i) = g(—3) = 4 € J(g(z)). Applying #°CV to the box will give a
tight box containing Z(G). We have proved:
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Theorem 3.2.19 If G is a graph with independence number 2 on n = 3 wvertices,

then
I(G) = ¢°" (J (’”2 - %» ’

(i) G=K WK, and ¢°CN(z) =3z -3, or

2 47

where either

(ii) G = P; and ¢°C"Y(z) = 3z - %

The attractor, I(G), is connected, therefore, and

(i) I(G = K, W Kp) = J(222 + 3z) € [-3.0] x (-2, ¥3|, while

(i) Z(G = Py) = J(z? + 3z) € [-3,0] x [-Z, §].

Figure 3.6: The independence attractor, Z(K; ¥ K,).

Plots of Z(K, & K3) and I(P;) are shown in Figures 3.6 and 3.7, respectively.

That they appear to have the same ‘shape’ agrees with the fact that each is just a
shifting and scaling of J (z2 — 3).
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Figure 3.7: The independence attractor, Z(F3).

Graphs for which 3 =2 ,n=4

For a graph G with independence number 2 on n = 4 vertices (and m non-
edges), equations (3.8) and (3.9) tell us that fg(z) is conjugate to gg(z) = r? -2 via
#(z) = mz +2, that is, gg = ¢o fg 0 ¢°"V). Now J(z? —2) is well-known (cf. (32], p.
926) to be the interval [—2,2]; applying the map ¢°("")(z) = -z - 2 to this interval
gives
Theorem 3.2.20 If G is a graph with independence number 2 having n = 4 vertices
and m non-edges, then .

I(G) = [Tn-'o} .

The graph G = K, — e has independence number § = 2, n = 4 vertices, and
m = 1 non-edge. Then fg(z) = 72 + 4z and, from Theorem 3.2.20, Z(G) = [-4,0],
as shown in Figure 3.8.
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Figure 3.8: The independence attractor, Z(Ky — e) = [—4,0].

Graphs for which3=2,n2>5

If G is a graph with independence number 2 on n > 5 vertices, then ¢ = n/2 —
(n/2)? < —2, which lies outside the Mandelbrdt set. This implies that J (% +c¢), and
hence Z(G) = ¢°¢-1 (J(z? + c))), a mere scaling and shifting (by equation (3.10)) of
J(z? + ), is fractal dust. In fact, we have:

Theorem 3.2.21 If G is a graph with independence number 2 having n 2> 5 vertices
and m non-edges, then I(G) is a dusty subset of the interval [—2,0].

Proof It remains to show that Z(G) is real and contained in [—,—’;-,0]. We will do
this by proving that the independence roots of each power G* all belong to [-2,0].

First, we prove:
Lemma 3.2.22 The independence roots, Ri, of G* satisfy:

R, = __"_iQ_LL_\/m;

2m

LA —1—\/n2 +4mR;_, (k> 1).

2m  2m

Ri
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Proof of Lemma 3.2.22 The expression for R, follows directly from equation (3.7)
and the quadratic formula. For each k > 1, we know that we can find R; by solving

the equation

mz? + nz = Re_1,

for z, which produces the above expression for Rj. a
Next, we can show:
Theorem 3.2.23 For each k > 1, we have —= < R, <0.

Proof of Theorem 3.2.23 By induction on k. For k = 1, we note that the discrimi-

nant n2 —4m of (3.7) is > 0, by applying Turan’s theorem! to G. So R, is real. Using

Lemma 3.2.22 and the simple observation that 4m > 0, we have:

—2——2—11;\/n2—4m <R, -—n—+L\/n2—4m

IN

2m 2m  2m
n 1 n 1
—————Vn? < < —— —\/n2
2m 2m nt shis 2m+2m n
-2 <r< o
m

Now suppose the result is true up to before £ > 1. Then n24+4mRy_; > n?—4m-& =
n? — 4n = n(n — 4) > 0. Thus, from Lemma 3.2.22 we have that Rx is real and

1
——n— - -1— n? + 4mRk_1 < Rk < __TI._ + — n2 + 4mRk_1
2m  2m 2m  2m

n 1 n 1
_———/n? < & —n2
2m  2m nt s Res 2m+2m "

-= <R 0,
m
and so the result holds for k as well, completing the proof. a

Hence, as the roots at each step are all real and contained in [—2,0], the limiting
set, Z(G), will also be real and contained in [—%,0]. This completes the proof of
Theorem 3.2.21. o

2
'Turan’s theorem (cf. [59], p-33) states that for a graph having no triangles, m < ﬂT, where n

and m are its numbers of vertices and edges, respectively.
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The graph K, & K3 has independence number 8 = 2, n = 3 vertices, and m =
6 non-edges. Then fg(z) = 6x* + 5z and, by Theorem 3.2.21, Z(G) is a totally

disconnected subset of [—%, 0], as shown in Figure 3.9.

1

0.5

1 08 —06 04 02 |0

-1
Figure 3.9: The independence attractor, Z(K; & K3) = J (622 + 5z).

3.2.4 Beyond Independence Number 2

If G is a nonempty graph, and —1 is a root of ig(z) = fg(z) + 1 of multiplicity
7(G) > 1, then Theorem 3.2.14 implies that Z(G) is partitioned by Ux>1Roots (igx)
and its accumulation points, J(fg). While this implies that Z(G) is disconnected,
it is perhaps more interesting to know whether its collection of accumulation points,
J(fc), is connected.

Perhaps, then, we should reformulate our question. Equation (3.6) tells us that
the ‘new’ roots at each step will converge to J(fg), even for (G) = 1. In fact, the
equation is also valid when 7(G) = 0, since, in that case, Rootsigx N Rootsige-1 = 0.
To see this, suppose the intersection were non-empty. Then, for some z, f&(z) =

é(k_l)(z) = —1, that is, fc(fé(k—l)(z)) = G(k—l)(z) = —1, which says that fg(—1) =
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—1, contradicting the fact that n(G) = 0. We are led to make the following definition.

Definition 3.2.24 For a nonempty graph G, the independence fractal Z(G) of G is
the set

= . . . . 1ok
I(G) = klgl; (Roots (igx) \ Roots (igk-1)) = kll.rgo Roots (—%c—)) = J(fc),

lgk-1

where (as before) n(G) is the multiplicity of -1 as a root of ig, and fe =ic — 1.

Thus, Z(G) is always J(fg), whereas Z(G) consists of J(fg) and possibly more,
depending on whether 7(G) > 1. And we ask instead:

Question 3.2.25 When is Z(G) connected?

(The name, independence fractal, is not entirely accurate, since not every Julia set
is a fractal. Recall, for instance, that Z(Ky — e) = J(z2 + 4z) = [-1,0]. A fractal
(cf. [6]) is generally considered to be a compact subset of (Ces, o), whose Hausdorft

dimension (cf. [7]) strictly exceeds its topological dimension.)

If G is a graph with independence number 3 = 3, then
fo(z) = tz3 + mz® + naz, (3.11)

where n, m and t are the numbers of vertices, edges and triangles in G, respectively.

With a little effort, we can find a conjugate polynomial gg(z) with no r2- term:
ge(z) =2 +az+b=¢o fgo o(-1(g), (3.12)

where

m
and ¢(z) = Viz + Vi
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Since there are now two parameters a and b, the Mandelbrét set (those values of
a and b for which J(z® +az +b) is connected) is a subset of C x C, and is much more
complicated than the Mandelbrot set for quadratics. The first extensive study of this
set was carried out jointly by Branner and Hubbard in [16] and {17]. For quartics,
quintics and beyond, very little is known about the Mandelbrot sets.

The graph G = Cs has independence number 3, and fg(z) = 273 + 922 + 6z. Its
independence attractor is shown in Figure 3.10, and appears to be disconnected. On
the other hand, the graph H whose complement consists of three triangles intersecting
on a cut vertex, appears to have a connected indpendence fractal, shown in Figure
3.11.

Independence fractals of graphs of independence number 3 are likely sufficiently
intricate to occupy a thesis in their own right, and we shall not endeavour to investi-
gate them here. Instead, we end the chapter with an analysis of two infinite families
of graphs of arbitrarily high independence numbers.

The following result from iteration theory will be useful. Critical points of a

polynomial play a key role in the connectivity of its Julia set:

Theorem 3.2.26 (cf. [7]) Let f be a polynomial of degree at least two.

o Iis Julia set J(f) is connected if and only if the forward orbit of each of its
critical points is bounded in (C,|-|).

o Its Julia set J(f) is totally disconnected if (but not only if) the forward orbit of
each of its critical points is unbounded in (C,| - |).
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Figure 3.11: The independence attractor, Z(H) = Z(H) = J(3z® + 9% + 7z), where
H is the complement of three K3’s intersecting on a cut vertex.

The families aK; and Kaq,a,...,a
——

L]

Denote by aKj be the graph K, & K, & - - - & Kj, the disjoint union of b copies of

the complete graph K,. The independence attractors of 3K> and 4K are shown in

Figures 3.12 and 3.13, respectively.

We have already described the independence attractors of empty graphs and com-

plete graphs, and so we may assume that both a and b are greater than 1. Now
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Figure 3.12: The independence attractor, Z(3K>).

aKy = K,[Ks|, and since fz=(z) = (1 +z)* -1 and fk,(z) = bz, we have

far,(z) = fr7(bz) = (1 + bz)* = 1,
and
fak, (@) = ab(1 + bz)*~",
whose only critical point is z = —1/b. By Theorem 3.2.26, then, Z(G) will either
be connected or totally disconnected, depending on whether the forward orbit of
z = —1/b is bounded or unbounded, respectively, in (C,| - |).
Now, fag,(—1/0)=0*~-1=-1.
Case 1: b= 2, aeven. Then fux,(z) = fax,(z) = (1+2z)*—1. Now faka(—1/b) = —1,
fara(—1) = (1 = 2)° =1 =0, and fax,(0) = 0. Hence, the forward orbit of —1/b
converges to 0, and is therefore bounded in (C, | - ). Thus, Z(aK>) is connected.
Case2: b > 3, a even. Then fug,(—1/b) = —1, and fax, (1) = (1 - b)* -1 2
922 _1>1 And z > 1= fax,(2) > (1 +22)! =1 =2z > 2 + 1. Hence, the forward
orbit of —1/b is unbounded in (C,|-[), and Z(aK;) is totally disconnected.
Case 3: b> 2, a odd. Then Then fox,(—1/b) = —1, and far,(-1)=(1-0)*-1<
(1-2P8—-1=-2<-1. Andz<-1= f(2) <(1+2z)! —=1=2z=z+2z<z-1



80

-’r
My
Fan it
= L0.4
s
Iy
ole
EX
Eat TR o
: 0.2
T o F
-i":‘%—tfe;:"e-o.s -0.4'.—"3’:0.'25:;,“0
& Ky % A
--0.2
i
wFae
2
oo
‘M',“"\ r-0.4
i.

Figure 3.13: The independence attractor, Z(4K>).

Hence, the forward orbit of —1/b is unbounded in (C,| - |), and Z(aK,) is totally
disconnected.
In all cases, since b > 1, —1 is not a fixed point of fux,, and thus Z(G) = Z(G).

We have now proved:

Theorem 3.2.27 The independence attractor of aK, is connected if b= 2 and a is

even; totally disconnected otherunse.

As we did for graphs with independence number 2, we can find a region inside
which Z(aK,) lies. It lies in the disk

1 1
-l
z+b‘_b

First, we prove:
Lemma 3.2.28 For each k > 1, each independence root, Fy, of the graph (aKs)E

satisfies:

F[ = —?];', and

I 1
= ——+-w (k
Fy b + bw ( > 1),
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where w® = Fy_, for some independence root Fi._; of (aKp)*t.

Proof The expression for F; comes from the fact that iax,(z) = (1+ bx)*. For each

k > 1, we can find the points Fi by solving the equations
(1+bzx)* = 1= Fr
for z, thereby producing the above expression for Fi. a
From this, we can prove:

Theorem 3.2.29 For each k> 1, |Fx + 3| < 3.

Proof By induction on k. It is true for k = 1, since F, = —% implies |F1 + %l =
0< % Now suppose the result is true for 2 number & — 1 (k > 1). Then, by Lemma

3.2.28, we have:

' 1| _ 1 1/a
‘Fk-i-zl = le'i'Fk—ll
1 1 1 |Ye
=3 (Fk—l+3)+(1_g)

IN

Fo_y +

)l/a

1|‘1

(oo

b
1/1 1\ \ Y
< == -
= b(b+<1 b))

1

b’

and so the result holds for k as well, completing the proof. a

Finally, since roots at each step are at most a distance of % from —%, the same

must be true of the limiting set.

Theorem 3.2.30 The independence attractor of the graph aKi, lies in the disk

z+-1-
b

1
< -
~b
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Further, the bound is best possible. To see this, let z = i (w—1) be any root w
of unity shifted 1 unit to the left, and scaled by ;. Then |z+ | = |tw| = 3, and
faxn(z) = (1 +bz)* =1 = (w)*—1=1-1=0. And 0 € J(fg) for any nonempty
graph G, since fc(0) = 0, while fG(0) # 0, so that 0 is either a repulsive or rationally
indifferent fixed point of fg, thereby lying on J(fg). Thus, since fox,(2) =0€ J (fe),
we must have z € J(fg).

Our next family is complete multipartite graphs Kq,a,...,a = Kb[_K_a]. Then
v/

fKa,a,...,a.(“") = fK,,[T\’;](l') =b- fr{z) = b(l1 +z)* —b.
b

Again, we assume that both @ and b are greater than 1. Since then —1 is not a fixed
point of fy, %), we have T(Ko[KJ)) = T(Ko[Kd)) = J (b(1 + z)* = b).

The independence attractors of the graphs K33 = K,[K3) and K4 = KoK, are
shown in Figures 3.14 and 3.15, respectively. They appear to have the same ‘shape’
as the attractors of their counterparts, K3[K5| and K,[K,] (Figures 3.12 and 3.13),
respectively.

We can explain this phenomenon. Set ¢(z) = bz. Then ¢ is a M6bius map, and
fK,,[TC](¢($)) = be[m(bm)
= b(l+bzx)*—b
= b fK{K,,](l’)
= ¢(fK[Kb](z))‘

Thus, fx,[Ka] and fx,[Ko] are analytically conjugate (cf. Theorem 3.2.4), and

I(K[Kd) = J (fKo(ITa])
= ¢(7(framn)) » from Theorem 3.2.4

= b-J (f’:?:[K.,])
= b I (K[Kl).-
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Figure 3.14: The independence attractor, Z(K33).

This observation, together with our analysis of T (_K—,,[Kb]) above, enables us to con-

clude:

Theorem 3.2.31 The independence attractor of Ka,a,...,a connected if b = 2

b
and a is even; totally disconnected otherwise. The attractor lies in the disk lz+ 1| L1,

and this bounding disk is best possible.
The situation in general is this:
Theorem 3.2.32 For a graph G,

fraq(nT) =1 - fo(nz) = n - foix.i(Z)-

That 1s,
fraic1° @ = 90 faka)

where ¢ is the Mobius map = — nx. Hence,

T(K.[G)) = n - I(G[Ka))- a
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Figure 3.15: The independence attractor, Z(Kjy4)-
We can also deduce the following.

Theorem 3.2.33 Every nonempty graph G with independence number at least two
is an induced subgraph of a graph H with the same independence number, whose

independence fractal is disconnected.

Proof Since fc(z) has degree at least 2, an argument similar to that of Lemma 3.2.13
shows that there exists a real number R > 1 such that |z| > R = |fe(2)| > 2|2|,
which implies that the forward orbit of z is unbounded in (C, |- |).

Now, not every critical point of f is a root of fg. Indeed, for a root r of both fg
and fg, its multiplicity as a root of f¢ is one greater than its multiplicity as a root
of f5. But deg fc = deg fg +1, and so, if every critical point of fg were a root of fg,
then in fact fc must have only one critical point ¢, and fg(r) = a(z + c)?. But we
know that | fc(z), and so ¢ = 0 and fg(z) = az®. But this could only be the case if
B = 1, which it is not.

Let ¢ then be a critical point of f¢ for which fg(c) = w # 0, and choose a positive
integer n large enough that |n - w| > R. For the graph G[K,|, we have fgik.|(z) =
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fo(nz), a critical point of which is ¢/n. But then fgk.j(c/n) = fe(c) = w, and
| f&kg(w)l = | fek(nw)| — oo as k — co. Hence, by Theorem 3.2.26, the graph
G[K.), which has independence number 3, and of which G is an induced subgraph,

has a disconnected independence fractal. a

The argument we used, together with the fact (Theorem 3.2.32) that G[K,] and
K.[G] have analytically conjugate independence fractals, enables us to deduce the

following as well, with which we conclude the chapter.

Theorem 3.2.34 IfG is a nonempty graph with independence number at least 2, then
for all sufficiently large n, the join of n copies of G has e disconnected independence
fractal.

It would seem, then, that graph connectedness and independence fractal connect-

edness are unrelated.



Chapter 4

Open Problems and Future

Directions

There are many avenues that one could explore.

4.1 Chromatic Roots

Several conjectures and open problems came up in our work on roots of chromatic
polynomials in Chapter 2. While we were interested mainly in large subdivisions of a
graph, computational explorations with real roots of small subdivisions suggests the

following.

Conjecture 4.1.1 If each edge of G is subdivided at least once, then no real chro-

matic root of the resulting graph G’ is greater than 2.
Here is a partial result in this regard:

Theorem 4.1.2 If we subdivide each edge of G into a path of even length, then no

real chromatic root of the resulting graph is 2 or more.

Proof For convenience, we will denote the chromatic polynomial #(H,z) of a graph

H by the symbol H itself. We argue by induction on the number m of edges in

86
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a graph. For m = 1, the result is clear. Now let m 2> 2 and suppose the result
holds for all graphs of size at most m — 1. Let G be a graph with m edgese;,...,en.
Subdividing e; into a path of even length ; (i = 1,...,m), we obtain a graph G,l """ o

yeenidm

whose chromatic polynomial, by equation (2.25), is given by

Gel,...,em - ( ll,n-oem—l)cm

1yeeey ‘m-—l lm

-1 fm LI e
= ( ) (Glh wem-l G ..... m—1 oem)(l _I)lm

T Slyeedm—1 crdm—1

lydm=1

— (Gt 4 (L= 2) G een)

np—

el ..... Cm=1 ‘1"“""!—1
—em) —zG oc,
Gy tm m) bmay T

—1)im
_ (-1) ((Gfl ..... em-l —em) ((1 _ ;1;)["‘ — 1) + r(Gll,'.'.'..,f,,',"_-l ° em)) )

T

and for z > 2, this is indeed positive, as G i — em = (G — en);, ' and

lm—1

Gt = (Geen);'7im! are both positive, by assumption, and (l-x)m -1

.....

is p051t1ve since [, is even. a

The number 2 here is best possible, for consider the graph ©,,;. Among its even
subdivisions (in the sense of Theorem 4.1.2) are the graphs ©x 212 ({ > 1), whose
chromatic polynomials are given (cf. equation (2.16) by

m(Ouaua T) = —r)¥ 1 _3z-1)%+2-1).

With this expression, we can verify that, for any given £ > 0, the graph O 212

will have a real chromatic root between 2 — £ and 2 for ! sufficiently large.

4.1.1 Bounding Chromatic Roots in terms of Corank
As in [29], let p(G) = max{|z —1|: m(G,2) = 0}, and, for each positive integer ¥ > 1,

pr = max{p(G): graphs G of corank k} . (4.1)
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Certainly, po = p1 = 1. And pr41 > pr, for if G has corank k, then the disjoint
union of G and a cycle C, is a graph of corank k + 1, whose chromatic roots are
those of G and the cycle. Further, we may restrict our attention to 2-connected
graphs; indeed, if we separate G into its 2-connected components and then glue these
components back together along a common edge, the resulting graph G’ has the same
corank as G, and, by the complete intersection theorem mentioned in Chapter 2, has
the same (distinct) chromatic roots as G'.

Theorem 2.0.2 tells us that py < k for k > 1, while it follows from [29] that
Pk 2 pue+r2) = (1 + o(1)] k/ log k, where

pi+12) = max{|z — 1| : z is a chromatic root of Ok:2) }-

Whether pi grows linearly or sublinearly is simply not known.

The only 2-connected graphs of corank 2 are 3-ary theta graphs, and so it follows
from Theorem 2.1.5 that ps = p(2,2,2) = 1.5247. Could the same kind of result be
true for all k? Not quite; in fact, it fails for k = 3. Indeed, while p(2,2,2,2) = 1.9636
(cf. Table 2.1), we have p(K4) = 2, since z = 3 is a chromatic root of K. Nevertheless,

we have found no other counterexample, and so we pose the following.

Conjecture 4.1.3 For all k > 4, pr = p(k+1;2)-

Since p(k+1;2) Erows asymptotically as ﬁ (cf. [29]), the truth of this conjecture
would imply that indeed p; exhibits sublinear growth.

4.2 Independence Attractors

The relationships between a graph and its independence fractal remains a tantalizing
question. Even the restricted question of when an independence fractal is connected
seems elusive. Certainly, it does not depend on the connectivity of the graph. We
have seen, for instance, that 4K>, a disconnected graph, has a connected independence

fractal, while Theorem 3.2.34 guarantees the existence of many connected graphs with
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disconnected independence fractals. We were able to provide a complete answer for
graphs with independence number 2 in Section 3.2.3; it may be possible to complete
the § = 3 picture as well.

Just how much about a graph can its independence attractor tell us? Theorem
3.2.32 tells us that G[K,] and K,[G] have analytically conjugate independence frac-
tals. Further, since (cf. Section 3.2.1) for any polynomial f, its Julia set is equal
to that of f° for any k > 1, it follows that G¥ and G have identical independence

fractals. These obversations give a partial answer to the following

Question 4.2.1 When do two graphs G and H have analytically conjugate indepen-
dence fractals?

4.2.1 Independence Attractors of Complexes

The independent sets of vertices in a graph form a complez. An (abstract, simplicial)
complex on a set X is a collection C of subsets of X that is closed under containment,
ie,if A€ C and B C A, then B € C. The sets in C are the faces of the complex.
and faces of cardinality one (the elements of X) are the vertices of C. Denoting by f;
the number of faces in C of cardinality i, define the f-polynomial of C as

fe(z) =) fie
i>1
For a graph G, the collection C of independent sets of vertices in G is indeed a

complex on V(G), as any subset of an independent set is again an independent set;

and
fe(z) = fe(z) = ic(z) — 1.

For two complexes C and D on sets X and Y, respectively, we can define their com-
position C[D] as the complex on X x Y whose faces are all sets Cx D, whereCeC
and D € D. The argument we gave for Theorem 3.2 also proves the following:

fexp(z) = fe (fo(z))- (4.2)
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Thus, by leaving out the constant term fy = 1, the polynomials are closed under

composition. Define the attractor of a complex C as
Frac (C) = klim Roots (fex) .
—o0

This time, the attractor is the inverse orbit of 0, instead of —1. But O is a fixed point

of f, and is not a root of fi, which implies that 0 € J(f¢), and so
Frac (C) = J (f¢) = Cl (Ukz1 Roots (fex)),

illustrating a second advantage to leaving out the constant term: the attractor never
contains anything but the Julia set. This does come with a small price: in terms
of f- polynomials, Theorems 3.0.13 and 3.0.14 now have the slightly more awkward
form

fe(z) = fe-o(@) + 2 (fo-pu(z) +1)
and

feen(z) = (fe(z) +1) - (fo(z) + 1) = L,

where, for v a vertex of C, C — v consists of all faces in C that do not contain v, and
C — [v] those faces in C containing neither v nor any vertex which did not lie in a face
(in C) with v.

Probably the simplest example of a complex is an n-simplex, Ca, which consists
of an n element set, together with all of its subsets. Since, for each i, f; is then the
binomial coefficient C (n,%), the f-polynomial has the form fe(z) = (1 + )" - 1.
And then, for each k > 1, f2¥(z) = (1+ z)* — 1, whose roots are the kn—th roots of
unity, shifted to the left one unit. As k — oo, the roots become dense on the circle
|z + 1] =1, and hence

Theorem 4.2.2 For an n-simplez C,,,

Frac (C.) = {z : |z +1| =1}
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Now, if we take an n-simplex C, and remove one of its faces F* of cardinality
m < n (along with all faces in C, containing F), we obtain a complex k. say,
whose f-polynomial can be seen as follows. For each i, the number of faces in C, of

cardinality i which contain F is the binomial coefficient C (n —m, < — m). Hence,
fum(@) = (L+z)"—1- Y cn-mi-m)
i=1

(1+I)“—f:C(n—m,i—m)z‘—1

i=m

= (l+z)"—-c"(l+2)""™" -1

If, for instance, C, is the 4- simplex on {a,b,c,d}, and Ciz) the complex obtained by

removing face {a,b} (and those containing it), then C? is the following complex:
4
{a,c,d} {b,c.d}

M
{ac} {ad} {bc} {(bd} {cd}

{a}  {&} c d}

And fcﬁ"" (z) = (1+z)*—22(1 +z)2 -1 = 223 +52% +4z. Its attractor, Frac (Cﬁz)) .
is shown in Figure 4.1. In addition, plots of the attractors Frac (Cﬁa)) and Frac (C,(“))
are found in Figures 4.2 and 4.3, respectively.

Let us conclude with a proof of the following.
Theorem 4.2.3 The complezes C,, C,(f) and C,(?) all have connected attractors.

Proof Theorem 4.2.2 tells us that Frac (C,) is connected. Since ¢!V is nothing but
C._1, then its attractor is also connected. Now consider C,(,z), where n > 3. Then
fan(@ = Lz —2*(1+2) -1

= (1+z)" 22z +1) -1,
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Figure 4.1: The attractor, Frac (C?)).

and (by a simple calculation)

(f) @) =1 +2) - 2n — )z +n)

whose critical points are —1 and Tﬁﬁ If n =3, then

F=0.2

0.6

1

fc._‘,”("") =(1+z)* - r?(1+12)32% - 1=22% + 3g,

whose Julia set, as we saw in Section 3.2.3, is connected.
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We may assume, then, that n > 4. Now fc'(‘z)(—-l) = —1, and (the reader can

verify this)

SO
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Figure 4.2: The attractor, Frac (Cﬁs)).

And |z + 1| < & < § implies

|fc9,(z) + 1‘ = |lz+12 2z + 1
= lz+1* 2|2z +1) - 1]
< |lz+ 122z + 1| +1)
< 22+ 1),
which is < 2.2 < e2-2 <e-1-2 = je. Hence, the forward orbit of 5225 will

converge to —1, and is therefore bounded in (C,| - |). Thus, since all critical points

of fcf?’ have bounded forward orbits, its Julia set, Frac (C,(?)), is connected. a
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Figure 4.3: The attractor, Frac (cﬁ“’).

Figures 4.2 and 4.3 show that Cis) is connected, while cﬁ“’ is not. Perhaps it is
true in general that for some k (possibly dependeing on n), CY) is disconnected for

each j > k. Computational explorations do suggest that ¢ is always disconnected.



Appendix A

A Maple Procedure for

Independence Attractors

Below is the procedure the author used to construct his plots of independence at-
tractors. It takes as input a polynomial f € Z[z] (the f- polynomial of a graph or
complex), a starting point z (where z = —1 for graphs, and z =0 for complexes) and
a ‘mesh number’ N, to be defined momentarily. It then constructs (the beginnings
of) the backward orbit O~(z) as follows.

First, an imaginary grid is placed over the complex plane: its squares have side
1/N. Whenever an inverse image X is computed, the grid squares in which the points
of X reside are determined. Those points which land in a square previously visited
are then discarded, so that their inverse images are not taken.

This is a standard trick (cf. [48]) for computing Julia sets in practice. It allows one
to go deeper into the backward orbit, whose sets are actually growing exponentially
in size. The result is a more complete, more uniform plot.

The algorithm terminates when all points at given a given step are discarded.
That this happens is an immediate consequence of the fact (cf. Section 3.2.1) that
Julia sets of polynomials are bounded in (C, |- |).



Attract := proc(f,z,N)

local A,w,r,xx,yy,Olths,Neths,pts,i,j,n,symb:
n := degree(f):

A := table():

pts := NULL:

0ldRts := [op({fsolve(f,x,complex)} minus {z})]:
pts := pts, [Re(z),Im(2)],op(map([Re,Im],01dRts)):
while nops(0ldRts) > 0 do

NewRts := NULL:

for i from 1 to nops(0ldRts) do

w := [fsolve(f-0ldRts[i],x,complex)]:

for j from 1 to n do

r := w(jl:
xx := ceil(N*(Re(r))):
yy := ceil(N*(Im(r))):

if Alxx,yyl<>1 then
Alxx,yy]l := 1:

NewRts := NewRts,r:

pts := pts, [Re(r),Im(r)]:
fi:

od:

od:

OldRts := [NewRts]:

od:

pts := [pts]:

symb := cross:

for i from 1 to min(nops(pts),20) do
if pts{i][2] <> O then
symb := point:

96
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i := min(nops(pts),20):

fi:

od:

if symb=point then

print(‘Points calculated. Plotting...‘):

else

print(‘Attractor is Real. Plotting...‘):

fi:
plot(pts,style=point,symbol=symb,colour=b1ack,scaling=constrained);

end;

The latter part of the algorithm simply looks at the first 20 points in the list
obtained, to “determine’ whether the attractor is real. An appropriate plotting
symbol is then chosen.

The plot in figure 3.7, for instance, namely Z(P;) = J (x? + 3z) was obtained with

the command > Attract(x2+3#*x,-1,100);
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