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Abstract

Investigations on the elastic and plastic dynamic pulse buckling response of a slender
beam, with geometric imperfections, subject to an axial impulse is presented. The current
study is concerned with high order events that can be defined as an intense transient
loading condition (i.e. large amplitude, short time period), where considerations of the
stress wave front propagation are important. The dynamic buckling instability was
primarily viewed as a modal perturbation due to an unbounded growth of transverse
deflections due to exploitation of the geometric imperfections by the applied impulse.
Experimental investigations and numerical analyses, employing the finite difference and
finite element methods, were conducted.

For a slender beam subject to an axial impulse, the elastic studies substantiated the validity
and utility of the “preferred” wavelength theory. The peak buckle amplitude and
dominant waveform could be effectively defined in terms of a single “preferred” mode.
The most significant conclusion was that to accurately model the pulse buckling event,
random geometric imperfections were required to develop the hyperbolic growth of
transverse displacements for both the finite difference and finite element models. Other
modelling considerations were also required for the development of an accurate pulse
buckling numerical model with respect to theory and experimental observations. These
factors include adopting a finely discretised mesh with aspect ratios on the order of 1:1 and
employing plane strain elements. The superior performance of the quadratic plane strain
elements was related to inherent curvature restriction of the beam element formulation. For
plane strain element models, however, nonlinear geometric and material analysis was
required. A threshold elastic pulse buckling criterion was substantiated by the finite
difference study and further supported by finite element analyses. The influence of more
complex structures, boundary constraints or loading conditions on the accuracy of numerical
models investigating elastic pulse buckling events should be examined.

The experimental investigations and finite element analyses demonstrated that, for the
parameters investigated, the dynamic plastic pulse buckling events could also be defined
by a characteristic modal response. The peak buckle response was assessed in terms of a
normalised modal parameter as a function of the effective slendemess ratio. The modal
parameter accounted for the longitudinal position of the peak buckle crest with respect to
local stiffness terms and natural frequency characteristics defined with respect to the axial
and flexural response. The analyses demonstrated the need for further parametric
investigations to examine the influence of element formulation and imperfection type on
the pulse buckling response. The importance of slenderness ratio, element aspect ratio
and constitutive relationships (e.g. dynamic yield flow, rate-sensitive behaviour,
viscoplasticity) should also be considered. Furthermore, based on these
recommendations, future work should address the development of dynamic pulse
buckling threshold limits.
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1.0 Dynamic Buckling of Structures

1.1 Background

Static elastic stability has been thoroughly investigated over the past century and has
been of significant interest to both research and design engineers. As early as 1729 van
Musschenbroek conducted the first empirical studies and concluded that the static
buckling load was inversely proportional to the square of column length. Thirty years
later, Leonhard Euler substantiated the analysis through the development of a classical
solution for the critical load of a simply supported column. This expression is commonly

known as the Euler column formula.

Buckling has been traditionally studied, as a mode of failure, for slender or thin-walled
structures subject to static loading. Interest was developed from empirical and in situ
experience, as well as theoretical analysis, which demonstrated that collapse failure might
occur prior to the material stress state exceeding a governing yield criterion. This loss of
structural integrity can be related to a critical combination of geometry, boundary
condition and stress. There is a significant volume of literature on this subject and the

work of Timoshenko and Gere (1961) provides an excellent discussion.

Structures can also be subject to transient loads with magnitudes that exceed the static
critical Euler buckling load. Dynamic bucking, however, cannot be reduced to the static
counterpart where the static elastic stability is defined by a unique critical load for a
known mode shape. For dynamic buckling, the response frequencies and critical mode
shapes are a function of the load intensity, (i.e. load magnitude and duration), structure
geometry and material behavior. Systematic investigations on dynamic behavior of

materials and dynamic buckling of structures were initiated in the 1930’s.



1.2 Rationale for Research and Design

1.2.1 Engineering Problems in Dynamics

Engineers have been faced with an increasing number of challenges, in both the civilian
and military domains that must consider the dynamic response of structures subject to
impulsive loading events. The primary issues are related to structural integrity,
operational constraints, as well as socioeconomic and environmental risk. In addition,
the magnitude of shock levels imposed on personnel or critical components (e.g.

computer controls) must be considered.

For static structural analysis the displacement response is of primary importance and is
related to mechanical stiffness (i.e. potential energy) and load amplitude. Problems in
dynamics, on the other hand, must take into consideration load intensity (i.e. magnitude
and duration), inertial characteristics (i.e. resistance to acceleration, kinetic energy) and

damping properties (i.e. non-conservative energy term) of the system.

Dynamic analysis can be generally categorized into problems relating to structural

dynamics and wave propagation, which are a function of the load intensity.

Structural dynamics is a common engineering discipline that considers relatively lower
magnitude loading events, on the order of the Euler critical load, and longer duration with
loading periods greater than one-quarter of the natural period of the structure. The
analysis is primarily concemed with natural frequencies of vibration (e.g. resonance,
parametric or vibration buckling) or time-history response (e.g. transient loads,
earthquake motion). The importance in conventional structural analysis and design has
lead to extensive investigations in this field; see for example Bolotin (1964), and thus is
not considered in the present study. Structural stiffness, inertia and damping are

parameters to be considered.
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Wave propagation analysis can be further subdivided into high intensity and low

intensity events in terms of the loading magnitude and duration.

High intensity wave propagation events are associated with extremely short duration
loads on the order of 10 to 10%. Shock waves with steep pressure gradients can
develop under plane strain conditions associated with a concave stress—strain material
behavior and loss of transverse shear strength. Some examples include the detonation of
military ordnance (e.g. high explosives, kinetic energy rounds) and fuel—air explosions

(e.g. Piper Alpha disaster).

For the present thesis investigations, the dynamic buckling events of interest occur on the
order of milliseconds (107s to 10°s) and are defined as low intensity wave propagation
problems. The structural response can be characterized by the rapid growth of out of
plane deformations that may lead to structural collapse, which is generally associated
with pulse buckling. The material behavior can be wholly elastic or can exhibit a
nonlinear plastic or viscoplastic response. In general, the dominant structural response
occurs during the first cycle of motion and for intense buckling events the bulk of
deformational strain energy would be consumed through plastic flow. Consequently,
there is limited opportunity to invoke energy dissipation mechanisms and thus damping is

not considered.
1.2.2 Dynamic Pulse Buckling Analysis

Pulse buckling can be defined as the structural response to a transient impulsive forcing
function, which is a direct parameter multiplying the displacement field in the dynamic
equation of motion (Lindberg and Florence, 1987). The initial geometric imperfections,
spatial or temporal variations in the load distribution are “magnified” and exploited by
the applied impulse. This results in perturbations in the structural response and rapid

growth of transverse displacements. The deformed geometry is typically of a higher



4
order mode shape than the static Euler counterpart. Based on geometric and mechanical
properties of the structure, a “preferred” mode tends to dominate the buckling response

through modal competition with increasing time.

Dynamic pulse buckling analysis is critical for thin-walled members (e.g. beams, plates,
shells), which are advantageous in the structural design optimization process where space
and weight are critical parameters. For example, exploitation of higher order mode
shapes (wrinkles) of thin-walled structures as energy absorbing failure mechanism is an
integral component of crash-worthiness design investigations. Pressure vesseis and
nuclear reactors must be assessed with consideration to the effects of blast loading to
ensure structural integrity and mitigate environmental impact. Resistance to shock loads
from hostile weapons or operational conditions have been at the forefront in the design

synthesis of military and aerospace structures.

Figure 1-1 and Figure 1-2 present illustrative examples of dynamic pulse buckling events

from experimental crash-worthiness studies and numerical investigations, respectively.

(@ )

Figure 1-1. Automotive Industry Crashworthiness Study (a) Action Photo during
Impact, (b) Post-Test Damage. (IIHS, 1998).
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Figure 1-2. Numerical Simulation of Passenger Train Car Impacting a 50 ton Mass (a)
Crushing Behavior of Car, (b) Detail of Center Sill Collapse. (SRI, 1998).

1.3 Motivation for the Research Activities

Although there has been a continued research effort over the past 40 years, the complex
nature of the dynamic pulse buckling process has hindered the development of rigorous
or tractable, universal solutions. In general, idealizations have been incorporated to

facilitate theoretical, experimental and numerical analyses.

A comprehensive understanding of relatively simple events can provide considerable
insight to the dynamic pulse buckling process. The acquired knowledge can be applied to
complex problems that consider more detailed structural configurations, boundary

constraints or loading conditions.

The studies of Lindberg and Florence (1987) and Pegg (1992) provided the motivation
for the present research. The thesis investigations are focused on the elastic and plastic
dynamic buckling of slender, rectangular beams with geometric imperfections subjected

to an intense axial impulse. This provides a basis for conducting an assessment of the
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pulse buckling response for a relatively simple geometric form, boundary condition and

load character.

Slender beams are integral components of common structural systems such as buildings,
body frames for automobiles or train cars, and marine structures. Furthermore, these
elements are employed as a secondary stiffening component or bracing system (e.g.

cylindrical shells or hollow sections).

The dynamic buckling response of structures can be characterized by buckling
deformation (i.e. amplitude and growth rate), modal response (i.e. buckle wavelength)
and pulse buckling failure criterion (i.e. critical stress or strain limits). The first two
parameters, buckling deformation and modal response, are related to the dominant
structural or mechanical behavior to the applied impulsive load. These terms characterize

the pulse buckling response and are incorporated in the pulse buckling criterion.

In contrast with the static buckling counterpart, characterization of limit criteria for
dynamic instability is relatively arbitrary and open to interpretation. Few studies have
developed analytical expressions, empirical formulae or design curves to aid in the
determination of dynamic buckling strength and modal response due to impulsive

loading.

A dynamic buckling criterion is required to conduct an engineering assessment of
structures to impulsive loads. The threshold is typically defined in terms of the load
intensity (e.g. axial beam impact, radial shell impulse), functional constraints (e.g.
excessive deflection, structural integrity, acceptable damage level) or operational
considerations (e.g. dynamic loads imparted to passengers or physical sub-components).
Furthermore, a universal dynamic pulse buckling failure criterion does not exist and the
definition is partially subjective. For example, space re-entry vehicles (i.e. space shuttle)

are for the most part designed for an elastic response. In terms of crashworthiness for
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automobiles, the system is designed for zones of localized plastic deformation with low

shock load levels imparted to the passengers.

Issues related to buckling displacement, modal response and pulse buckling failure
criterion will be addressed in the present study for both elastic and plastic pulse buckling

events.

1.3.1 Elastic Pulse Buckling

Historically, elastic pulse buckling studies have been concemned with impulsive loading
events that could be characterized as problems in structural dynamics. The theoretical,
experimental and numerical analyses have focused on the fundamental mode response of

a slender beam subject to an axial impulse.

For intense loading events, with magnitudes significantly exceeding the static Euler load
of duration orders less than the fundamental flexural mode, the pulse buckling response
exhibits a higher order mode that tends to the development of a “preferred” wavelength.
Based on analysis of a differential equation of motion, mode perturbation methods have
been employed to characterize the pulse buckling response where inertia forces (e.g.
lateral resistance in flexure) play a significant role. The method, however, is limited to
simple geometric and boundary configurations, idealized material behavior and boundary

conditions, and small departures from the dominant solution.

The primary objective for the present thesis investigations is to advance procedures for
the development of numerical models that exhibit a buckling response consistent with the
mode perturbation theory. From this perspective, the specific requirements for
imperfection formulation, grid or mesh discretization, and general modeling procedures
will be addressed. On this basis, the development of more complex numerical models

can proceed on a rational basis.



1.3.2 Plastic Impact Buckling

The dynamic plastic response of impulsively loaded beams has been the subject of
continued research for over 60 years. Early studies focused on characterizing plastic
wave propagation and dynamic material behavior. The majority of experimental
investigations on the dynamic buckling response of a slender beam subject to axial
impact have focused on lower velocity (e.g. progressive buckling) and higher velocity

events (e.g. projectile impact).

For moderate impact velocities, where wave propagation effects are important,
experimental and numerical investigations on the dynamic pulse buckling response due to
axial impact are limited. In general terms, the studies have considered only a predefined
fundamental mode imperfection and pulse buckling response. Although complete
understanding of the complex dynamic buckling behavior of structures does not exist,
particularly for plastic response mechanisms, significant insight on the dominant factors
has been developed. Some of these parameters include impact energy, impact mass/beam
mass ratio, geometric imperfection, dynamic material behavior and interaction between

the propagating axial stress wave and structural modes.

A more complete understanding of the complex dynamic buckling phenomenon can be
achieved through an integrated framework. Experimental investigations provide the
essential data required for the development of empirical formulae, and validation of

mechanical models and numerical algorithms.

Consequently, the primary objectives of the present thesis investigations are to augment
and to extend the current experimental database, to provide an empirical basis to validate
numerical models, and to develop relationships that characterize the dynamic pulse

buckling response



1.4 Overview of Thesis Investigations

Technological advancements in the computer industry and the development of elegant yet
robust computational strategies, such as the finite element method, have provided a
rational basis for the analysis of complex nonlinear dynamic problems. A considerable
research effort, however, is still required for the comprehensive assessment of the

dynamic pulse buckling process.

The present thesis research will consider an integrated framework that incorporates
theoretical analysis, experimental investigations and numerical studies, via the finite
difference and finite element methods. The work scope presented herein may be

summarized as follows:

An overview of dynamic elastic stability will be presented in Chapter 2. A literature
review on analytical, experimental and numerical studies investigating the elastic pulse

buckling response of beams subject to an axial impact is also discussed.

In Chapter 3, the development of a finite difference model defining the dynamic elastic
buckling response of a slender beam, with prescribed initial geometric imperfections,
subject to an axial impulsive stress is detailed. The investigations focus on characterizing
the parameters required for the development of an accurate numerical procedure that can
model intense pulse buckling events associated with higher order mode shapes. Grid
discretization level, type of geometric imperfection and applied stress levels are the
primary variables. An assessment of the computed displacement, mode and stress state
response with respect to theoretical analysis and experimental studies is presented. In

addition, a dynamic buckling criterion is addressed.

Continuation of the elastic pulse bucking analysis by the finite element method is detailed
in Chapter 4. Several commercial finite element packages (ANSYS, ADINA and NISA)
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are employed. The investigations also consider element type and order, kinematic
formulation, as well as linear and nonlinear analysis that include the influence of
nonlinear geometric and material behavior. Comparison with analytical solutions,

experimental data and finite difference computations is presented.

An overview of the concepts of plasticity, plastic stress wave propagation and dynamic
plastic behavior is presented in Chapter S. Details on analytical, numerical and
experimental investigations on relevant dynamic plastic pulse buckling events are

discussed.

Chapter 6 details an experimental investigation on the dynamic plastic buckling of
slender rectangular beams subject to axial impact by a free-fall, dead weight hammer.
The laboratory apparatus, experimental procedure and data records are documented. The
primary objective was the development of empirical relationships defining the pulse

buckling response as a function of slenderness ratio and material properties.

The experimental studies provided a source for validating parallel numerical analyses,
based on the finite element method, on the plastic pulse buckling response of slender
beams, which are presented in Chapter 7. The parametric investigations will consider
mesh topology, element formulation, constitutive relationships, applied boundary conditions
and geometric imperfections. The primary objective is the development of an accurate

numerical model defining the plastic pulse buckling response.

Finally, a summary of the numerical and experimental investigations conducted as well
as a critical assessment of the major findings advanced through the course and

development of the thesis is discussed. Recommendations for future research are also

proposed.



2.0 Dynamic Elastic Buckling of Slender Beams

Historical research efforts on the elastic pulse buckling response of a slender beam
subject to an axial load are presented. The investigations include theoretical,

experimental and numerical studies. Pulse buckling threshold limits are also reviewed.

2.1 Dynamic Equation of Motion

To orient the discussion, the governing dynamic equation of motion and general solution
will be presented. Consider, the simply supported beam, illustrated in Figure 2-1, subject
to a dynamic impulsive axial force (P). The beam geometry and response is defined by the
lateral deflection (y) measured from the neutral axis of the initially undeformed bar as a
function of the axial coordinate (x). Euler-Bernoulli beam theory within the limits of small
displacements and rotations is assumed. The dynamic differential equation of motion can

be expressed as,

-
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where E is the Young’s elastic modulus, 7 is the moment of inertia, p is the material density,

A 1s the cross-sectional area and y, is the initial geometric perturbation. Introducing the

following parameters,
k2 = ﬁ., r2 =_1_’ cz = £ (22)
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where c is the speed of the longitudinal stress wave, Equation (2.1) can be rewritten,
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Figure 2-1. (a) Simply Supported Bar Subject to an Impulsive Axial Load and (b) Free
Body Diagram of a Bar Element (Lindberg and Florence, 1987).
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The essential or geometric boundary conditions for a simply supported beam are
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Assuming a product form of the solution for Equation (2.3) in terms of a Fourier senies,
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and similarly the initial geometric imperfections can be defined by,
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n=l1

where the coefficients, 4,, are determined by,
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Equations (2.5) and (2.6) can be substituted into (2.3) to give the following equation of

motion for the Fourier coefficient (B,),

3
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The characteristic nature of the solution is dependent on the sign of the Fourier

coefficient (B,) and can be classified as bounded or trigonometric ("% > 1) , static

("% = l) and unbounded or hyperbolic ("% < l). Lindberg and Florence (1987)

defined the exponential or hyperbolic sclution as the dynamic pulse buckling response.

2.2 Dynamic Elastic Buckling

Early investigations on elastic buckling, from the early 1930’s through to the late 1950’s,
focused on the fundamental mode response of a pin-ended bar subjected to an axial
impulse that exceeded the static Euler load. For intense pulse buckling events, however,
the importance of considering higher order modal dynamics will be demonstrated. Issues
relating to load intensity, form of geometric imperfections, axial inertia and dynamic

buckling criteria are also addressed.

2.2.1 Fundamental Mode Response

Historically, the majority of analytical, experimental and numerical investigations have
focused on the fundamental mode response for elastic dynamic pulse buckling events.
This was due to several factors such as a reduction in analytical complexity, a
conventional formulation for the prescribed geometric imperfections and a general trend
for assessment of dynamic buckling events that approached a quasi-static response. For
these studies, the primary focus was on the critical load magnitude and duration, which

could be sustained for the fundamental mode response.

The dynamic buckling of a slender beam subject to an axial impulse has been typically

defined by the linear differential dynamic equation of motion (Equation 2.1). Analysis
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has also accounted for nonlinear behaviour when the axial strain—displacement

relationship considered components due to bending,

P gu L(oyYy _(dy.] | (2.9)
AE ox 2\ x cx

where u is the axial beam displacement for the axial coordinate, x. The longitudinal

equilibrium can be defined as,

oP _ Aé’zu

opP Su 2.10
Ox Pas (2.10)
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In lieu of rigorous computational methods, simplifying assumptions were typically
considered in order to reduce the analytical complexity. In addition to adopting Euler-
Bernoulli beam theory (Equation 2.1), an infinite longitudinal stress wave velocity was
assumed. Thus, axial inertia terms (Equation 2.10) were ignored and the applied impulse
was instantaneous and constant with all normal modes of vibration excited
simultaneously. Furthermore, the effects of transverse shear and damping were generally

not considered.

The investigations can be further categorized based on characteristics of the applied axial
impulse such as constant velocity or displacement rate (e.g. test frame crosshead),
constant mass (e.g. impact hammer), and constant load (e.g. force—time impulse). A
review of the major studies conducted, since the 1930’s, on the fundamental mode,
dynamic pulse buckling response will be presented. The discussion will highlight the
essential findings and conclusions of these investigations and a summary is presented in

Table 2-1.
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Table 2-1. Summary of Research Investigations Focused on the Dynamic Fundamental
Mode Elastic Buckling Response.

Analvsis Impulse
Reference Ta y: Load General Comments
P Character
Taub (1933) Linear Load |® Ana lytical solution
Koning and Taub . . .
(1935) Linear Load ® Ana lytical solution
Meir (1945) Linear Load |5 Ana lytical solution
Powe r series
Pian and Siddall Linear Mass ® Ex perimental investigations
(1950) ® Ana lytical solution
Hoff (1951) Nonlinear Velocity : gle gl&ted.ax'al inertia
OWe T series
= Ne glected axial inertia
Davidson (1953) Nonlinear Mass ® Rung e-Kutta
s Ex perimental investigations
@ Ne glected axial inertia
Schmitt (1956) Nonlinear Velocity | ® Ste pwise integration
e Afte r Hoff (1951)
Erickson et al. Experimental | Velocity | ® Afte r Hoff (1951)
(1956)
. . . ® | ncluded axial inertia
Sevin (1960) Nonlinear Velocity = F inite difference
® | ncluded axial, transverse shear
Huffington (1963) Nonlinear Load and rotary inertia terms
® F inite difference
® Suc cessive approximations
Hayashi and Sano . neglecting axial inertia
(1972a) Nonlinear Mass |4 F inite difference including axial
inertia
Ari-Gur et al. (1982, . v : I t!cl.udzc.l ftz}xml and rotary inertia
1979 and 1978) Nonlinear ass F inite di erence .
® Pa rallel expenimental studies
Ari-Gur and ® | ncluded axial, shear and rotary
Elishakoff (1993, Nonlinear Load inertia
1990) ® F inite difference
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The detailed and comprehensive pioneering work of Taub (1933) and Koning and Taub
(1933) provided the framework for subsequent studies on the fundamental mode
response. The investigations examined various support boundary conditions and three
impulse load levels, namely, less than, equal to and greater than the critical static Euler
load. Stress functions were developed that normalized the impulse magnitude and
duration (i.e. impulse intensity) with respect to the static Euler load and fundamental
mode of vibration. For magnitudes less than the static Euler load, it was shown that the
maximum stress reaches an upper limit regardless of the duration. Conversely, for loads
greater than the Euler limit, deflection grew exponentially with shock period and the
maximum deflection is sustained during free vibration. For shorter impulse duration,

however, it was noted that the limit could be safely exceeded.

In a similar study, Meier (1945) further stated that lateral inertial resistance and
increasing beam stiffness at higher modes would cause the deflection to iag behind lower
modes. On this basis, it was reasoned how impulsive loads, significantly greater than the

critical Euler load, could be imparted without causing elastic instability.

Davidson (1953) extended the work of Koning and Taub (1933) but considered nonlinear
axial terms due bending (Equation 2.9). The main conclusion was that, for impulse loads
with a period less than the fundamental frequency of beam vibration, the axial stress wave
and transverse deflection could be considered uncoupled (i.e. constant axial load). The
analysis considered the allowable load ratio (applied dynamic load to static Euler load) as

a function of initial curvature and frequency ratio (column natural frequency to applied

load frequency).

Pian and Siddall (1950) conducted experiments on eccentric axial impact with load
magnitudes between 1.14 and 7.33 times the critical static Euler load (16.11bs), and

impulse durations between 0.017s and 0.092s. A series of gauges were placed at stations
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along the length of the bar to measure bending strains. A piecewise analytical solution to
the differential equation of motion was developed to calculate the mid-span bending
moment—time history. The time dependent impact load was subdivided into a series of
impulse events with constant amplitude. The initial conditions for subsequent
calculations of each impulse were defined by the previous time step. The analysis
compared favorably with the experimental investigations. The main conclusion was that
the Euler load could be safely exceeded if the period of loading was small relative to the
natural period of flexural vibration. This was consistent with historical observations and

substantiated by the work of Davidson (1953).

Hoff (1951) developed an analytical solution based on a power series and defined an
average, time dependent constant axial force. The results were presented as a
nondimensional buckling parameter, defined as a dynamic similarity number, which was
a function of the initial geometric imperfection, slenderness ratio, material wave speed
and impact velocity. Erickson et al. (1956) also found a good correlation between the

buckling parameter and experimental data.

Application of numerical methods to analyze the dynamic buckling events began to
flourish with the evolution of the mainframe computer. Schmitt (1956) developed an
approximate solution based on the stepwise integration method, assuming a constant and
uniform impulse, consistent with the solution of Hoff (1951). Sevin (1960) conducted a
similar study, based on the work of Koning and Taub (1933) and Hoff (1951), which
incorporated an explicit finite difference expression for the axial and lateral
displacements. The main conclusion was that effects of axial inertia could be neglected
with respect to the overall elastic behaviour for slenderness ratios less than 150 and
forcing velocities less than 0.01 percent of the elastic wave speed parameter. In addition,
Huffington (1963) concluded the effects of transverse shear and rotary inertia was

negligible, for the parameters investigated employing finite difference models. These
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investigations have considered elastic buckling events, which approach quasi-static

conditions with a low order response.

For more intense loads, however, Schmitt (1956) stated that the analysis conducted by
Koning and Taub (1933) and Meier (1945) proved inadequate for modelling impact
velocities greater than 6m/s. This was based on experimental investigations but
unfortunately, details or references concerning the apparatus, procedure or analysis were
not documented. Sevin (1960) developed the same conclusions in comparison with the
solution of Hoff (1951) for the case of a high loading rate (i.e. impact velocity) on the

order of 0.1 percent of the elastic wave parameter.

Hayashi and Sano (1972a) presented two numerical models based on successive
approximations and finite difference method. The finite difference model also considered
axial inertia as well as the interaction and separation of the mass from the impact face.
Comparative experimental studies of a mass pendulum impacting a simply supported,
slender beam were also conducted. Beams of constant cross-section (b = /0mm, d =
3mm) with slenderness ratios (L«/r = 99, 148, 197) and initial half-sine wave imperfection
amplitudes (y,/L = 0.020, 0.027, 0.041) were investigated. The analyses considered time
histories of the longitudinal distribution of axial displacement and force as well as the
midspan lateral deflection. Hayashi and Sano (1972a) concluded that the dynamic
buckling response could be adequately characterised by Euler-Bernoulli beam theory.
This was consistent with the analysis conducted by Sevin (1960) and Huffington (1963).
For the parameters investigated, axial inertia did not significantly influence the dynamic
buckling response with only slight effects on the distribution of axial load. Thus, the
nonlinear displacement terms (Equation 2.9) were associated with a weak coupling

between axial stress wave and lateral response.
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Extensive experimental investigations and finite difference analyses on the dynamic
impact bucking of bars was presented by Ari-Gur et al. (1982, 1979 and 1978). A series
of impact tests were conducted on bars of rectangular cross-section composed of 6061-T4
aluminum, AISI-01 carbon chrome alloy steel and fiberglass-epoxy composite. Columns,
with effective slenderness ratios (7/ < L.r <411), were subject to free-fall impact by a
cylindrical mass (0.05kg < m < 0.37kg) with critical striking velocities (6m/s <V, <
15m/s). The main objective was the development of a dynamic buckling criterion, which
was defined as the transition from a bounded to an unbounded response based on the
midspan displacement and strain record. Dynamic elastic stability was concluded to be
pnmarily a function of geometric imperfection amplitude, impulse duration and column
slendemess ratio. In addition, it was stated that material and mechanical properties; such
as flexural rigidity, axial wave propagation velocity and density, had secondary effects on

the dynamic elastic buckling response.

An-Gur and Elishakoff (1990) presented results from a finite difference study on the
influence of transverse shear and rotary inertia on the dynamic pulse buckling of a beam.
Beam length to depth ratios (L/d = 25, 50) with initial imperfections (y, = 0.01d, 0.375d)
was investigated. The impulse was defined by a half-sine wave, with the period of
loading on the order of the fundamental flexural mode of vibration. Simply supported
and clamped boundary conditions were considered. The computed response was
sensitive to the shear stiffness and pulse duration. Ari-Gur and Elishakoff (1993) also
studied the dynamic pulse buckling of a transversely isotropic column and found that
effects of transverse shear rigidity were important for a relatively soft modulus (G <

3E/8).

Historically, dynamic elastic buckling analysis has focused on relatively low intensity
impact events that approach quasi-static events and have generally only considered the

fundamental mode response. Although a range of boundary conditions (e.g. constant
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mass, velocity or load; simply supported or clamped) has been considered based on the
discussion presented several generalized statements can be made for relatively low

intensity, dynamic buckling events.

e The buckling response could be adequately defined by the dynamic Euler-
Bemoulli beam equation

e Dynamic loads greater than the static Euler load could be sustained provided the
period of loading was small relative to the natural period of flexural vibration

e Dynamic instability was primarily dependent on the geometric imperfection
amplitude, impulse duration and column slendemess ratio

e The axial load can be considered constant. The effects of axial inertia and
nonlinear terms of the axial strain—displacement relationship could be neglected.
Thus, axial stress wave propagation and lateral mode of deformation is uncoupled

2.2.2 Higher Order Modal Response Studies

Although focusing on the fundamental mode behaviour, the research community had
generally acknowledged the influence of a moving stress front on the development of
flexural waves and higher order modal response. This analysis is concemed with the
evolution of general mode shapes, resulting from the growth of transverse displacements
as a function of loading intensity. The main issue to be addressed is the critical buckling

length or dominant buckling mode.

Lavrenti'ev and Ishinskii (1949) conducted one of the earlier investigations that
considered higher order buckling modes. Initial imperfections were represented as a
series of free vibration modes. The study observed that the dynamic buckled response

tended toward a dominant mode for impulse loads much greater than the static Euler load.
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Lindberg (1965) states, however, that the behaviour may have been more indicative of

plastic flow.

Housner and Tso (1962) developed models based on the Euler-Bemoulli, Rayleigh and
Timoshenko beam theory. The objective was to determine the dominant modal response
for a simply supported strut, with an initial half-sine wave geometric imperfection,
subject to a decreasing triangular ramp, axial impulsive load. Propagation of the axial
stress wave front was not considered in the analysis but the nonlinear axial strain terms
were retained. The results were presented in terms of shock spectra for the fundamental
mode characterized by dynamic to static response ratios. The dynamic displacement
response, load magnitude and impulse duration were referenced to the initial deflection,
critical static Euler load and fundamental mode of flexural vibration, respectively. The
Euler-Bemoulli beam formulation proved adequate when compared to experimental
results. The analyses demonstrated that for peak applied loads less than half the static
Euler load, a bounded elastic vibrational response was exhibited for any impulse duration.
Pulse loads significantly greater than the Euler load could be sustained provided the
duration was short. Furthermore, the solution was bounded by applied load duration
greater than one-quarter the fundamental period of vibration, where the effects of axial

stress wave propagation could be assumed negligible.

Hayashi and Sano (1972b) conducted experimental studies and parallel finite difference
analyses on the dynamic buckling of a steel beam (8. 7mm x0.63m x193mm), with an initial
half-sine wave imperfection (0.76d). The slender beam was axially impacted by a
0.369kg mass with striking velocities of 2.45m/s, 6.3m/s and 10m/s. The investigations
concluded that the effects of rotary inertia, transverse shear and large displacement
behaviour on the buckled response were negligible. Thus, for the parameters investigated
Euler-Bernoulli beam theory was adequate to define the dynamic pulse buckling

response. The axial stress distribution and buckled wavelengths were considered
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dependent on the axial inertial term and impact velocity. Although the investigation was
primarily concemed with the fundamental mode response, higher order modes were
observed with smaller wavelengths associated with increasing impact velocity. The finite
difference model was in good agreement with the experimental data and demonstrated the
importance for considering grid spacing (aspect ratio of 1.6) on the computed dynamic

response.

In similar studies, Ani-Gur et al. (1982, 1979 and 1978) investigated the elastic pulse
buckling response by the finite difference method and impact testing. A single column
was successively impacted by a free-fall dead weight hammer with increasing drop height
until the transition from a bounded to unbounded response, based on a dynamic buckling
criterion, was exhibited. Although the initial geometric configuration was defined by a
fundamental mode imperfection, the final experimental buckled profiles were
characterized by higher order mode response. Unfortunately, the numerical analysis
focused on the fundamental mode response and did not consider the evolution of the
complete buckled profile. Furthermore, the investigations considered only the elastic
response and the final deformed profiles associated with plastic mechanisms were not
addressed. More recently, Kadandale and Ari-Gur (1997) have also observed higher
order mode response in finite difference investigations on the dynamic pulse buckling

response of viscoelastic columns.

Gerard and Becker (1952) conducted innovative experiments to assess dynamic buckling
events with respect to propagation of an axial stress wave. The authors considered
dynamic buckling as the propagation of an elastic discontinuity as a function of time. The
hypothesis was that a column of any length “...under certain conditions of impact loading
could momentarily support a compressive stress of any magnitude in excess of the static
Euler load...” (Gerard and Becker, 1952). Based on the described experimental
procedure, the dynamic buckling test is illustrated in Figure 2-2.
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Figure 2-2. Schematic Illustration of Dynamic Buckling Experiments Conducted by
Gerard and Becker (1952) and Lindberg (1965).

A rectangular slender beam (0.01"x0.5"x10"), with a precut notch at one end of the
sample, was placed in a rigid, test frame. The beam was loaded in uniaxial tension at a

constant displacement rate until failure. At time (¢ = 0), the magnitude of the tensile
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stress (+ ay) was dictated by the notch size and beam material properties. An equivalent

impact velocity could be estimated based on the expression,

o,
v, = —L @.11)
pc

where o, is the failure stress, p is the material density and c is the elastic stress wave

velocity in the material. For threshold pulse buckling, the tensile stress would be on the

order of the yield stress (0')_). An equal and opposite compressive wave (—0') would

propagate the beam length (L), for times (0 <t < L/c), toward the fixed support acting in
stress relief. Residual stress perturbations would exist predominantly due to local
geometric imperfections and load eccentricity. On reaching the lower fixed support, at
time (¢ = L/c), the stress wave would reflect from the boundary and impart a compressive
impulse to the beam. The load duration is a function of the beam length (L), where the
free end condition would impose a tensile stress wave. Meyers (1994) presents further

discussion on stress wave propagation in solids.

Gerard and Becker (1952), stated that the growth of buckled lateral displacements occurs

after the wave front has propagated a critical beam length (L.,) defined as,

L = 27T _ onrlE 2.12)

where r is the radius of gyration (+* = I/4), ¢ is the axial strain, c is the elastic material
wave speed constant and V is the impact velocity. Localised effects of notch plasticity
and stress concentrations were considered far field and thus neglected. Equation (2.12)

was based on simplified analysis that did not consider lateral inertia. The limited
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experimental data presented, on buckled wavelengths, was consistent with the analytical

expression.

2.2.3 Mode Perturbation Methods

Perturbation methods have also been employed to characterize the dynamic pulse
buckling response of beams, plates and shells for intense loading conditions where inertia
forces play a significant role. The influence of lateral inertia tends to produce a higher
order modal response; that is smaller wavelengths with a wrinkled displaced profile.
Perturbation methods consider the governing dynamic equation of motion and assume an
initial imperfection, which can be related to geometry, load eccentricity, and spatial
distribution of the applied impulse. The analysis would establish a “preferred” modal
response (i.c. perturbation to motion). The method is limited, however, to simple
geometric and load configurations, ideal boundary conditions and small departures from

the dominant solution.

Lindberg (1965) conducted an experimental study, similar to Gerard and Becker (1951),
and developed an analytical solution based on the perturbation method for the dynamic
buckling response of an Euler-Bemnoulli beam. Experimental and analytical
investigations concluded that the buckled response was dependent on the impulse
intensity and the effects of axial stress wave propagation could be ignored (i.e. uniform,
constant axial impulse). In addition, with respect to the modal response, the analysis
demonstrated that the exact nature of initial geometric imperfections was not required and
could be adequately defined as stationary white noise. The natural local geometric
imperfections were considered as a random variable. For a more detailed discussion on
the theory of random processes, refer to Wirsching et al. (1995) and Newland (1993).
The pulse buckling response exhibited an exponential or hyperbolic growth rate of

transverse deflections, which could be characterised by a “most amplified” or “preferred”
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mode. The theoretical analysis was consistent with experimental observations. Lindberg
and Florence (1987) have also presented a comprehensive discussion on the elastic and
plastic pulse buckling of bars, plates and shells. For the present investigations, elastic
and plastic pulse buckling analysis will incorporate the “preferred” wavelength theory and

thus, a detailed discussion is presented.

For intense pulse buckling events, the theoretical analysis continues from Equation (2.8) for
the unbounded or hyperbolic response where the impulse is defined by P >> (P )e. The
beam length (L) does not have any direct significance due to the higher order modal
response. Thus, a characteristic length can be defined by the static Euler wavelength

parameter, k° = % I Similarly, transverse deflections can be normalised with respect to

the radius of gyration (). Defining the nondimensional variables,

E=kx=3x w=2 =3¢ (2.13)
r r

st =gt P_ P, (2.14)

Substitution of the expressions (2.13) into Equation (2.1), assuming a general solution of

the form, y = Asin(k x)+ Bcos(k x) + C x + D, and multiplying through by /s* yields,

2 4 2 2
d'w 'w Fw Z°w, @.15)

‘)+ + bl
ot d&t aet o>

P
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where ¢ is the nondimensional axial coordinate, w is the nondimensional lateral
deflection of the bar, w, is the initial geometric imperfection and ris the nondimensional
time parameter. The essential or geometric boundary condition for a simply supported bar

is,

J*w
“’|5=0.( =O; a:l

=0 (2.16)

5=0,¢(

where ¢ = Sl/ . The solution for Equation (2.15) can be expressed by a Fourier series,

W) = 3e, @i 224 ) @.17)

and similarly the initial geometric imperfections can be defined by,

w,€) = Sa, sin(””é:J (2.18)

¢

where the Fourier coefficient,

a, = %:jw @)sin(” ’Z ‘5) de (2.19)

Equations (2.17) and (2.18) can be substituted into (2.15) to give the following equation of

motion for the Fourier coefficients g,(7),
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2
oG -1k, = 7, 2.20)

where the wave number 7 is defined as 7 = "”% . Lindberg and Florence (1987) have

derived the general solution for the lateral displacement,

W) = 3o [ms(p r)- }sm( fj, @.21)

“1-n°|cosh

where p, =n41-7n" is a stability parameter. The characteristic nature of the solution is

dependent on the sign of the Fourier coefficient (a,). For 1 > I then the response is
trigonometric and the amplitude is bounded, whereas for < I then the displacement is
hyperbolic. The transition point, 77 = I, represents the familiar static Euler buckling

wavelength.

The ratio between the Fourier coefficients, g,(7), for the buckled mode shape and, a,, for the
initial displacement of the unstressed bar defines the amplification function, G(’ n9,

G,G.7) = g;(’) = 1‘ [ms(p £)- ] 2.22)

cosh

The amplification function is illustrated in Figure 2-3 in terms of the wave number (7) for
several nondimensional times (7). The amplification function is defined by exponential
growth through the cosh term. For increasing time, the relative influence of the
amplification function is insignificant for large wave numbers, 7 > /.2, and the peak
amplitude is centered between 0.8 < 5 < 1.0. The hyperbolic growth rate of the

maximum amplification magnitude with time is illustrated in Figure 2-4.
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Figure 2-3. Amplification Function G,(7, 7) as a Function of the Wavenumber (7).
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Figure 2-4. Growth Rate of the Peak Magnitude for the Amplification Function G.(7, 7).
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A “‘preferred” mode within the narrow band of harmonics, illustrated in Figure 2-3, may
be determined by differentiating Equation (2.21) with respect to the square of the wave

number (rf ),

4G~ =20) oy, ) cleosh(p, ) -1], 2:23)
dn 2721 - ° (t-nJ

and setting to zero yields,

1 cosh(p, 7)-1
T m[ sinh(p, 7) } @29

For large time (7) where p,7 >> I, the wave number of the most amplified mode can be

determined through an approximation of Equation (2.24) expressed as,

(2.25)

The “preferred” wave number (73,) and wavelength (4,) is,

1
= A, =272, (2.26)

The dimensional form for the “preferred”” wavelength is,

x, = T4, = 2zzr\/§. (2.27)
s &
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Note the similarity of Equation (2.27) with Equation (2.12) developed by Gerard and
Becker (1951).

To initiate dynamic instability, perturbations to the initial geometric configuration
velocity field, applied loads or material properties must be considered. In addition, the
formulation must satisfy the geometric boundary conditions. Local geometric

imperfections can be incorporated as a random variable,
N
w,€) = D a,sin(¢£+6,), (2.28)
n=1

where N is an upper limit on the number of terms in the series such that 7 < 2 and 6, is a
phase angle uniformly distributed on the interval 0 < @, <2z The Fourier coefficients
(an) are assumed to be random normal (Gaussian) with a zero mean and unit standard
deviation. For practical applications, the imperfections defined by Equation (2.28) must
be bounded (N) and, for white noise to be applicable, the bandwidth must extend well
beyond the wavelengths of interest. These assumptions are consistent with respect to the
weak amplification for modes (77 > 1.2) as shown in Figure 2-3, and the most amplified,
“preferred” mode as defined by Equation (2.26). Furthermore, with increasing time (7),
the cutoff tends toward (7 = /), which is illustrated in Figure 2-3 and is expressed in

Equation (2.22) by the hyperbolic response (77 < /).

An analytical expression for the mean wavelength in terms of the amplification function,
Equation (2.22), can be derived assuming stationary buckled displacements. This
condition is satisfied when the observed wavelengths are small with respect to the total
beam length and influence of the boundary conditions can be neglected. Lindberg and
Florence (1987) developed an expression defining the mean wavelength response (A4,,)

between alternate zero crossings as,
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[6@.x)dn 8

[ 7 6*@,)dn

1,@) = 2x (2:29)

An approximate expression was also derived for the most amplified mode with respect to

the “preferred” response,

L6 = 75 (2.30)

Equation (2.29), which was evaluated numerically over the interval (0 < 77 < 2), and

Equation (2.30) are illustrated in Figure 2-5. For later solution times (7), the wavelength
response (4) tends toward the “preferred” mode (4,). Although Equation (2.29) more
accurately represents the statistics of a stationary process, the relative simplicity and

utility of the most amplified mode (7,) through Equation (2.30) was illustrated.

2.3.4 Elastic Buckling Criterion

Specification of pulse buckling threshold limits is required for preliminary and detailed
engineering assessment and design of structures subject to dynamic loads. Although
somewhat arbitrary, the characterization of limit criteria for elastic pulse buckling
instability is typically related to the applied load intensity. The limit is generally bounded
by design considerations and functional constraints. For example, an elastic buckling
criterion could be defined in terms of the structural behavior (i.e. transition from bounded
to unbounded response), critical deflection amplitude, stress or strain magnitude, or
elastic shock threshold (i.e. loads imparted to passengers or subcomponents). For the
dynamic elastic buckling of beams, subject to an intense axial impulse, there have been

few criteria addressed in the public domain.
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Figure 2-5. Mean Wavelength (4,,) and Most Amplified Wavelength (4,) Response as a
Function of Nondimensional Time (7).

Based on the work of Budiansky and Hutchinson (1966), Ari-Gur et al. (1982) defined a
critical state as a large change the in structural response for a small increase in the applied
load. This is illustrated in Figure 2-6 where the transverse deflection (w) and slope
(dw/ds;) are presented as a function of the compressive strain (&). The critical dynamic
axial strain ((&+)p) is defined by the rapid change in slope (dw/ds). The investigations,
conducted by Ari-Gur et al. (1982), considered a column axially loaded by successive
free-fall impacts from a dead weight hammer released at increasing drop heights. The
procedure was continued until the critical axial strain ((&,),) was established. Two foil
gauges, located at, measured the column response midspan, to determine the maximum

midspan compressive and bending strains developed for each impact event.
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Figure 2-6. Schematic [llustration of the Dynamic Buckling Criterion.

A dynamic buckling criterion, defined as the dynamic load amplification factor (DLF),

was expressed as,

DLF = =& (2.31)

where (&;)p is the measured critical dynamic buckling strain and (&.,)¢ is the theoretical

classical static Euler buckling strain. Ari-Gur et al. (1982) showed that the DLF could be
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represented as a function of the effective slenderness ratio through a power law
relationship (Figure 2-7). The study concluded that material and mechanical properties
(e.g. flexural rigidity, stress wave velocity and density) had only secondary effects on the
dynamic buckling criterion. Later investigations conducted by Ari-Gur and Elishakoff
(1993,1990) only considered the axial deformation and lateral displacement or curvature,
rather than strain, as a function of load intensity (stress or strain). Although the elastic
pulse buckling analysis focused on the fundamental mode response, the experimental
investigations illustrated that the transition from elastic to plastic behaviour exhibited

higher order modes.
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Figure 2-7. Relationship Between the Dynamic Load Factor (DLF) and Effective
Slenderness Ratio (L/r) for Aluminum and Steel Columns (Ari-Gur et al., 1982).
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Lindberg and Florence (1987) defined a dynamic buckling criterion in terms of the critical
impulse duration to section yield at the peak buckle crest. The analysis assumed a
“preferred” mode response with a single equivalent single imperfection related to the

dominant wavelength. The geometric imperfections was expressed as,

4,=pL, (2.32)

P

where g is the imperfection coefficient (0.000! < f < 0.001) and L, is the “preferred”
half-wavelength. Lindberg and Florence (1987) and Timoshenko and Gere (1962)

present a further discussion on the nondimensional imperfection coefficient (). Based

on Equation (2.27) and ;L% = SL% , a nondimensional imperfection can be defined,

o = Ph _ zB2 2.33)

Assuming elementary beam theory, the extreme fiber (+ 4 ) theoretical normal stress (Gy)

due to bending, for a beam with rectangular cross-section, can be defined as,

Mh Eh 3%y 2 0w
= = = 3FEs- 2.34
I 2 7x° J— g Ju? ( )

Substituting Equation (2.14), the appropriate differential expression from (2.21) and the
Fourier coefficient from (2.33) into (2.34) yields,

-0 6 To |
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where the normalized stress parameter (&) relates the applied axial impulse stress

magnitude to the yield stress. The expression (2.34) defines the critical impulse duration

(7r) as a function of the normalized stress parameter to initiate section yield, which

assumed g, -

0.5% to be a representative value for engineering metals. The critical impulse

intensity to initiate yield response of the peak buckle crest, based on the “preferred mode

analysis, is illustrated in Figure 2-8 as a function of the nondimensional imperfection

amplitude (f). Lindberg and Florence (1987) also demonstrated that local random

geometric imperfections were equivalent to a single imperfection on the order of 1% to 3%

of the beam depth of the “preferred”” mode.
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Figure 2-8. Analytical Curves Defining the Critical Impulse Intensity to Yield for the
Peak Buckle Crest Based on the “Preferred” Mode Analysis. Data Points are from

Experimental Studies presented by Lindberg and Florence (1987).
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Since the pioneering work of Taub (1933), a significant number of studies on the dynamic
buckling of axially loaded beams have been conducted. The focus, however, has been on
relatively low intensity pulse buckling events concentrating on the fundamental mode
response. Limited investigations have considered intense elastic pulse buckling problems
where higher order modal response has been observed. These events are defined by an
impulsive load of large amplitude and short duration relative to the yield stress or static

Euler load and fundamental period of vibration, respectively.

The perturbation analysis, conducted by Lindberg and Florence (1987) and Lindberg
(1965), has demonstrated the potential for initiating an unbounded exponential growth of
transverse displacements due to exploitation of initial local random geometric
imperfections. One of the primary objectives for the present thesis is the development of
accurate numerical models, by the finite difference and finite element methods,
simulating elastic threshold pulse buckling events for axially loaded beams. Establishing
the fundamental parameters required for simple models can then be extended to analysis

of more complex geometric configurations and boundary conditions.



3.0 Finite Difference Analysis of Elastic Pulse
Buckling Events

The development of a finite difference model to predict the elastic pulse buckling response
of a slender beam subject to an intense axial impact is presented. The research effort is
founded on the the analytical and experimental studies of Gerard and Becker (1952),
Lindberg (1965) and Lindberg and Florence (1987). The numerical analysis is focused on
modelling the high order mode response associated with intense elastic pulse buckling
events. To the author’s knowledge, a parametric numerical study on the dynamic pulse
buckling response of slender beams with respect to the “preferred” wavelength theory has
not yet been conducted. The importance of grid spacing, geometric imperfection
formulation and impulse intensity on the computed pulse buckling response is

demonstrated.

3.1 Finite Difference Formulation

Consider an isotropic, homogeneous elastic bar subject to a dynamic, axial compressive
impulse (Figure 2-1). The nondimensional linear differential equation of motion (Equation
2.15) is restated,

2 ~4 2
5‘:)+0‘:/+a,(w+wo) = 0, 3.1
o1 pE | A&

where w is the nondimensional lateral deflection of the bar, w, is the initial geometric
imperfection, £ is the nondimensional axial coordinate, and 7 is the nondimensional time
parameter. The equation of motion (3.1) can be approximated by second order, central

difference expressions with quadratic convergence,
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! (wf" — 2wt + Wt
A z_: i i i
A'{J (i, —awh, + 6w —dwh + Wt )+ (3.2)

Al§2 (W:-l - 2W: + Wikq )'*' %&(woi-l -2w, + woi+l) =0

where the subscript  refers to the discretized grid point over the spatial domain and k is the
time step increment. Rearranging Equation (3.2) in terms of an explicit time integration

solution, the nondimensional lateral displacement (w) at time (k+/) can be expressed as,

At?
ke k k-1 & k k k k
witho= 2wl —wT - 7 (w,._2 —4dw + 6w, —4w, +w,, )— 3.3)
Ag
AT’ [, £ . AT?
=3 (wi—l —2w; +w, )- (woi—l - 2w, + wom)

i i+l Aéz

The differential equation of motion is known as an initial value problem and the error term

is of order O(A&?). For a simply supported beam at time (7 = 0) the initial conditions are,

wg,r=0) = @(_éd’::_ig_)_ = i@ = 0. (3.4)

The essential (geometry, displacement) boundary conditions and natural (force, moment)

boundary conditions are,

=0; w,,, =0; =0 (3.5)
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For the grid points adjacent to the boundary nodes (i.e. i = 2,N-2), a central difference

expression for the moment boundary condition is invoked.
wh, o= —wh (3.6)

Inherent assumptions associated with elementary bending theory can be stated as small
displacements and rotations with the restriction of plane sections to the neutral axis remain
plane with deformation and sectional response defined by the moment—curvature
relationship. The effects of transverse shear deformation and axial shortening are neglected.
For structural dynamic considerations, rotational and axial inertia terms are ignored and

lumped mass terms are distributed at discrete grid points to account for flexural inertia.

3.2 Stability Analysis

In order to establish a reliable finite difference model, which is an approximation to the
differential quation of motion, a stability analysis must be conducted. The method is valid
for the solution of linear differential equations with constant coefficients. The analysis
defines conditions for stablilty based on the propagation of a single error term through the
solution. For the dynamic pulse buckling, influence of the axial and flexural wave
propagation response are important, which are characterized by the spatial domain (Ax) and

time increment (Ar) parameters.

Consider the longitudinal wave equation,

(3.7

which can be approximated by the finite difference expression,
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1 ) . c’
Atz (ulk I_zuik +uik l) = Axl (ul'k—l —zul‘ +uik+l (3’8)

The stability of Equation (3.8) can be determined on the basis of an initial line of grid

errors in terms of a Fourier series,

N
E, = Y 4,5, p=0l1..N (3.9)

n=0

where u = ph and f§, =17/ =" %, , - Consider a single term (¢’#) for the initial

condition (7 = gk = 0) and assume,

E, = eMe™ =ePrle™ =frher, (3.10)

where £ = ¢® and ais a complex constant. A stable solution requires that the modulus,

&.{<1. Substitution of Equation (3.10) into Equation (3.8) yields,
ippk 2
e.A p’ e;’_l ~ 22, +§;]+l) — Z_fg@ip(p-m _DeiPPh +eiﬂ(p+l)|) G.11)
t” x°

Dividing Equation (3.11) by Equation (3.10) and using the Euler identities,

E1 24 = C;A’; Rcos(Br)- 2] (3.12)
X

Solving for the modulus yields,
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At
LLLEY (3.13)

Ax

This has also been discussed by Courant et al. (1928) and Bathe (1996). The method can

also be applied to the flexural wave equation for the vibrations of a slender beam,

3%y EI &%y
e T T moar (3.14)

where the condition for stability can then be expressed as,

(3.15)

Further discussion on the flexural stability parameters is presented in Ames (1977) and Ari-
Gur et al. (1979).

In addition to solution stability, the appropriate grid spacing (Ax) and time step increment
(A4 for an accurate and convergent solution must be considered. As a general statement,
the accuracy of numerical techniques, such as finite difference or finite element methods,
increases as the mesh topology becomes finer and/or the solution time step decreases. In
addition to inherent errors; such as truncation and round-off, a balance between the
computational effort and solution accuracy must be weighed. Typically the Courant
number (C,) is evaluated,

C, = —, (3.16)
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which expresses the ratio between the solution time step (&) and the stability requirement
or critical time step (4z.,). Cook et al. (1989) recommends a maximum Courant number on

the order of 0.95-0.98.

For the dynamic response analysis of structural systems with lumped properties, the most
accurate solution, when employing explicit time integration procedures, is obtained by
integrating with a time step equal to the stability limit. The solution is less accurate when a
smaller time step is considered, particularly when a coarse spatial discretization has been
defined (Bathe, 1996). This phenomenon is due to spurious oscillations or high frequency
noise that the numerical model cannot resolve. Algorithmic or stiffness proportional
damping as well as implicit or mixed integration schemes are methods that can be employed

to dissipate high frequency numerical noise.

3.3 Elastic Pulse Buckling Analysis

The analysis is concerned with the development of numerical finite difference models
investigating the higher order modal response of slender beams subject to an intense axial
impact. Although dynamic buckling has received reasonable attention, the historical
research effort has generally focused on the fundamental mode response. Based on
experimental and analytical investigations of intense pulse loading events, Lindberg and
Florence (1987) has demonstrated that the buckling response can be characterized by an
unbounded, exponential transverse peak buckle growth and higher order modes associated
with a “preferred” wavelength. The main objective for the finite difference analysis is to
define the parameters required for accurate numerical modelling with respect to the
“preferred” mode response. The influence of grid spacing, geometric imperfection

formulation and load intensity will be considered.



3.3.1 Beam Model Parameters

For the finite difference models, the beam geometry was 762mmx12.7mmx0.3175mm,
which was adopted from the studies of Lindberg (1965) and Lindberg and Florence (1987).
The beam was considered homogeneous and isotropic with an elastic modulus, £ = 69GPa,
and density, p = 2700kg/m’. The beam was simply supported and was subjected to a
constant axial stress of 276MPa. A constant Courant number of 0.95 was selected based on
Cook et al. (1989). Table 3-1 summarizes the parameters required for a stable numerical
solution as a function of the discretized aspect ratio. Equation (3.13) and (3.15) define the
critical time step (A¢.,) for the axial and flexural stress wave response between successive

grid points, respectively.

Table 3-1. Critical Time Step (4¢.,) Required for a Stable Finite Difference Solution.

Axial Mode Flexural Mode
Number of Grid ) )
Aspect Ratio Equation (3.13) Equation (3.15)
Points
Ater (us) Ater (us)
100 24:1 1.51 62.66
300 8:1 0.50 6.96
600 4:1 0.25 1.74
1200 2:1 0.13 0.44
2400 1:1 0.06 0.11

3.3.2 Fundamental Mode Imperfection

Numerical methods investigating the dynamic buckling of structures have to account for

natural variations in the structural geometry (e.g. surface perturbations), loading conditions
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(e.g. eccentric or non-uniform load, velocity profile) or material properties (e.g. elastic
modulus) to initiate instability. Historically, investigations have generally only considered
the fundamental mode response of a simply supported beam. The imperfections were
defined as an initial geometric perturbation in the form of a discrete half-sine wave with the
peak amplitude a fraction of the beam depth. For the numerical models developed in this
study, the fundamental mode imperfection was superimposed on all grid points of the ideal

geometry by the following expression,

y.() = y()+ Aosin("’zx) (.17)

where y,(x) is the perturbed transverse geometry, x is the axial coordinate, j(x) is the
ideal transverse geometry (7(x) = 0), 4, is the constant amplitude coefficient, # is the mode

number (n = /) and L is the beam length.

Table 3-2 summarizes the parameters for the finite difference (D) models that incorporated
a discrete, fundamental mode geometric imperfection. A constant Courant number (C, =
0.95) was selected to ensure solution accuracy and stability. The selection of a constant
stability number would also facilitate comparative analysis on the effects of grid

discretisation with respect to the computed modal response.

Table 3-2. Finite Difference Models with Discrete Fundamental Mode Imperfection.

Model Number of Grid Points | Aspect Ratio At (us) %odmax
FD1 16 150:1 9.00 25
FD2 2400 1:1 0.06 10
FD3 2400 1:1 0.06 100

Notes: Aspect ratio is the longitudinal grid spacing to beam depth ratio, 4 is the integration time step, %6d,,, is
the maximum imperfection amplitude as a percentage of the beam depth.
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Previous investigations have considered coarsely meshed domains. Sevin (1960) and Ari-
Gur et al. (1982) considered the beam length to be divided by 16 grid points. For the later
study, this corresponded to aspect ratios over the range of 4:1 to 15:1. Hayashi and Sano
(1972b) considered a aspect ratios of 2.6:1, 3.8:1 and 7.7:1 and demonstrated the influence
of grid spacing on the computed buckled response, in particular with respect to the axial
displacement and force. Furthermore, the present study will also demonstrate the
requircment for employing aspect ratios on the order of 1:1 for accurate numerical

modelling consistent with the “preferred” wavelength theory.

Assuming the dominant wave number or “preferred” mode is, n,= /\/5 , Lindberg and

Florence (1987) have demonstrated that the transverse peak buckle amplitude can be
defined by,

wz) = we, @) = 2wo[coshGJ—1], (3.18)

where w, is the nondimensional equivalent initial imperfection for the Fourier coefficient
(Wo = yo/r), and g, is the amplification function. An alternative relationship was also

developed, which considers the initial imperfection (w,) plus the lateral deflection,
w(t) = woll + gp(r)J. (3.19)

These expressions (3.18, 3.19) were validated by experimental observations and

measurements on the growth of peak buckle amplitudes.

As shown in Figure 3-1, the computed pulse buckling response for the finite difference
model (FD2 and FD3) was not consistent with the perturbation analysis, which exhibits
exponential growth. An imperfection coefficient of w, = 0.35 (v, = 10%d = 0.03175mm)
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Figure 3-1. Nondimensional Peak Buckle Amplitude (Wm4) as a Function of Time (7) for
Finite Difference Models with Discrete Fundamental Mode Imperfection.

was used to plot Equations (3.18) and (3.19), which is greater than the equivalent single
mode imperfections, on the order of 1% to 3% of the beam depth, as discussed by Lindberg
and Florence (1987). The pulse buckling response of the finite difference models was not
consistent with the characteristic unbounded growth of transverse deflections. In addition,
as will be demonstrated later, the delayed response of the finite difference models for

solution times (7 <'2) was attributed to the fundamental mode imperfection.

3.3.3 Combined Geometric Imperfections

The finite difference models that incorporated combined (i.e. discrete and random)

geometric imperfections are presented in Table 3-3.
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Table 3-3. Finite Difference Models with Combined Geometric Imperfections.

Model | Number of Grid Points | Aspect Ratio | At (us) Cs %dmax
FD4 2400 1:1 0.06 0.95 106
FD5 2400 1:1 0.06 0.95 101

Notes: Aspect ratio is the longitudinal grid spacing to beam depth ratio, 4 is the integration time step, %, is
the maximum imperfection amplitude as a percentage of the beam depth.

Perturbations to the ideal geometry of the finite difference model were defined by the
superposition of a global, discrete half-sine wave (Equation 3.17) with local random

imperfections expressed as,

Y, (x) = f(x)+ HZ:a,, sin(nzx +6, ) , (3.20)

where N is the upper limit on the number of terms and 6, is a phase angle uniformly
distributed on the interval (0 < §, < 27). The maximum number of series terms () is

related to characteristics of the amplification growth function (Figure 2-3). The

nondimensional wave number can be bounded as 7 = "% = "”%L <2 and thus the

number of series terms is expressed as N = 2 s%r . The Fourier coefficient, a,, is defined

as a stationary normal (Gaussian) random number and expressed as a, = fSL,, where fis an

imperfection factor and L, is the “preferred” half-wave length. Lindberg and Florence
(1987) define the dominant mode as 4, = 272 where L, = A,r/2s. The imperfection
parameter (/) is defined within the range (0.000!/ < f < 0.001) and was selected as a
uniform random number. The parameter (/) was based on investigations by Salmon in

1921 and further discussion on the nondimensional imperfection coefficient (/) is presented
by Lindberg and Florence (1987) and Timoshenko and Gere (1962).
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For the finite difference models, FD4 and FD3J, the discrete fundamental mode imperfection
was equal to the beam depth (i.e. /.0d) and local random imperfections were superimposed
on the fundamental mode geometry perturbation. Mean random imperfection magnitudes
were on the order of 0.02d with a standard deviation of 0.0/5d. The random geometric
imperfections for Model FD5 were multiplied by a factor of 0.1 to assess the relative
importance of random perturbations on the computed response. Note that at a distance of
less than 0.05L from the support boundary condition, the imperfection amplitudes for the

discrete and random imperfections were of the same order.

The significant influence of local random imperfections on the pulse buckling response and
growth of transverse deflections is illustrated in Figure 3-2. An imperfection coefficient of
Wwo =0.21 (yo = 6%d = 0.02mm), which characterizes Model FD4, was used to plot the
buckle growth rate Equations (3.18) and (3.19). Although the discrete fundamental mode
amplitude was neglected in the imperfection amplitude (w,) term, the analytical expressions
and computed response for Model FD4 are in good agreement. Data for Model FD3, with
equal imperfection amplitude but defined only by the fundamental mode, is also shown for
comparison. Thus, the importance of local random imperfections on the pulse bucking
response of a slender beam subject to an intense axial impact has been demonstrated. In
addition, the response of Model FDS5, with local random imperfection magnitudes one order
of lower than Model FD4, provides further supporting data.

The exploitation of local random geometric imperfections by the axial impulse was critical
for initiating the enhanced growth rate of transverse displacement. The marked
improvement in the pulse buckling response was attributed to local load eccentricities
arising from random surface perturbations and the coupled influence of relative stiffness
and interaction effects between the beam and rigid support boundary condition, which
directly impacts modal competition.
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Figure 3-2. Nondimensional Peak Buckle Amplitude (Wmax) as a Function of Time (7) for
Finite Difference Models with Discrete and Combined Geometric Imperfections.

3.3.4 Random Geometric Imperfections

Based on these investigations, finite difference models that considered only local random
imperfections were developed to investigate the pulse buckling response of a slender beam
subject to an intense axial impulsive load. Details of the finite difference models are

summarised in Table 3-4.



53
Table 3-4. Finite Difference Models with Random Geometric Imperfections.

Number of Aspect
Model At (us) Ca Yodavg %odmax
Grid Points Ratio
FD6 100 24:1 1.40 0.93 2 7
FD7 300 8:1 048 0.95 3 9
FD8 600 4:1 0.24 0.95 3 9
FD9 1200 2:1 0.12 0.95 3 9
FDI0 2400 1:1 0.06 0.95 3 9

Notes: Aspect ratio is the longitudinal grid spacing to beam depth ratio, 4¢ is the integration time step, %d,
and %d, is the average and maximum imperfection amplitude as a percentage of the beam depth.

Incorporation of only random imperfections significantly influenced the pulse buckling
response as illustrated in Figure 3-3. The buckled profile for Model FD10 was plotted as a
function of the nondimensional axial coordinate («) for several solution times (7). The
finite difference solution and the representative analytical investigations conducted by

Lindberg and Florence (1987), presented in Figure 3-3(b) are in good agreement.

The characteristic exponential growth of transverse displacements, consistent with the
perturbation analysis, was exhibited (Figure 3-4). Marked improvement in the computed
response for finite difference models with only random imperfections over discrete and
combined imperfection models was also illustrated. An average imperfection coefficient of
w, = 0.087, equivalent to y, = 2.5%d = 0.008mm, was selected to plot Equations (3.18) and
(3.19). The finely discretised models (FD9, FDI0) best accounted for the unbounded
growth of peak buckle displacements throughout the solution.

The significant influence of random geometric imperfections on the buckled response was
demonstrated. The effect of discrete imperfections (Model FD4) and coarse aspect ratios
(Model FD6) was to delay the early growth of transverse displacements (7 <2) as illustrated
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Figure 3-3. Nondimensional Buckle Profile (w) as a Function of Nondimensional Axial
Coordinate (&) and Time (7) for (a) Finite Difference Model FD10, (b) Digitised Buckle
Profile Computed by Lindberg and Florence (1987).
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Figure 3-4. Nondimensional Peak Buckle Amplitude (W) as a Function of Time (7) for
Finite Difference Models with Random Geometric Imperfections.

in Figure 3-4. Relative importance of the aspect ratio, which ranged from 24:1 to 1:1, on
the displacement response was secondary. Reasonable agreement was exhibited by Model
FD6, in particular for early buckling times (7 < 6), however, further detailed analysis of the
complete modal response will highlight deficencies of coarsely meshed models.

Although the initial geometric perturbations were defined by a set of random harmonics, the
buckled profiles (Figure 3-3) exhibited a generally convergent waveform with increasing
solution time. Evolution of a dominant wavelength through modal competition is consistent
with the diminishing amplification function bandwidth with increasing time (Figure 2-6)
and significant unbounded growth rate (Figure 2-7).
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The computed displacement-time history response for the finite difference models was
analysed to compile statistics on the buckled profile. The number, location or axial
coordinate (#) and magnitude of local peak buckle crests (w) as a function of time (7) were
extracted from the data set. Two wavelength parameters were established, namely the

average wavelength and weighted mean wavelength.

The average wavelength (4,4.5) Was defined as the average response for the first three buckle
waveforms adjacent to the lower fixed support. This method is inherently biased due to the
preferential waveform selection, increased load duration as well as relative stiffness and

interaction effects with the support boundary.

The weighted mean buckle wavelength (4.n) was calculated by a zero crossing technique
with a moving window to determine local absolute peaks. The term, weighted mean, was

adopted to distinguish the numerical computations from the theoretical mean defined by
2 (1)
Equation (2.29). The computations were defined by, 4, = ¢ Z I where f; is the
frequency of observation for the i bin. This method accounts for the entire buckled profile
subject to the compressive stress front, which is a function of the solution time. In addition,
the program calculated statistics of the mode response for nondimensional wavelength bins
(4) at 0.254 intervals, where the mean, minimum and maximum transverse displacement
amplitude for each bin was determined. Statistics of the deformed geometry profile, as a

function of time (7), in terms of buckle amplitude and wavelength distribution were also

generated and analyzed.

Theoretical expressions for the mean wavelength, Equation (2.29), most amplified
wavelength, Equations (2.30), and the weighted mean wavelength (A.,), from the finite
difference analyses, were plotted as a function of nondimensional time (7). These

parameters are presented in Figure 3-5.
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Figure 3-5. Nondimensional Buckled Wavelength (1) as a Function of Time (?) for Finite
Difference Models with Random Geometric Imperfections.

The relative simplicity and utility of Equation (2.30) based on the most amplified mode is
illustrated by the rapid convergence (7 =~ 5) and represents a lower bound to the buckled
response. Further, in reference to Figure 3-4, the importance of employing aspect ratios on
the order of 2:1 for an accurate solution of the complete modal response, in particular for
early solution times (7 < 2), was observed. The limitations of finite difference models

defined by a coarse grid are further illustrated in Figure 3-6.

The weighted mean wavelength (4.,) was significantly overestimated, for Model FD6 in
Figure 3-5, due to the finite number of grid points representing the buckled response. For
intense pulse buckling events, a finely discretised domain is required to model the high

degree of curvature developed during the response. Assuming a dominant waveform of the

“preferred” mode (4, = 272 ~8.89, N. ~0.0] 7), the number of nodal pointsthat
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Figure 3-6. Nondimensional Deformed Geometry Profiles for Model FD6 and Model
FDI10 at 7= 10.6 (t = 48s5).

represents a single buckled wavelength would be 1.7 and 40.6 for the finite difference
models FD6 and FDI0, respectively. Thus, the coarsely meshed model exhibits a spurious,
lower ordered response due to the limited degrees of freedom as shown in Figure 3-6.

The analysis has only considered the buckled response in terms of discrete parameters (i.e.
peak amplitude, mean wavelength). Lindberg and Florence (1987) generated theoretical
and experimental histograms of the buckled wavelength response for solution time z=6.
The results are illustrated in Figure 3-7 where the mean theoretical wavelength response
was (4 = 7.4) with a standard deviation of (5 = 1.7).
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Figure 3-7. (a) Theoretical and (b) Experimental Nondimensional Buckle Wavelength (1)
Response (Lindberg and Florence, 1987).

The theoretical modal response was between the static Euler wavelength (1 = 27) and the
“preferred” wavelength (4, = 272 ). The observed experimental mean was higher
(4 =9.5) with a smaller standard deviation (o; = 1.0). This was attributed to eccentric
loading effects inherent with the experimental procedure, which tend to produce a fixed

wavelength, developed from the interaction of the applied impulse and transverse deflection
with the fixed support (Lindberg and Florence, 1987).
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The significant advantage of numerical methods over experimental investigations, with
respect to compilation of buckled profile data and statistical analysis, is illustrated in Figure
3-8. Nondimensional wavelength (1) frequency distributions, for Model FD/0, as for
several solution times (r = /.1, 3.2, 6.4 and /0.6) are shown. The weighted mean
wavelengths (A.m) of the finite difference are consistent with the experimental data

presented in Figure 3-7.

The early response (Figure 3-8a) can be characterised by high order flexural oscillations,
less than the Euler wavelength (Ag), with approximately equal distribution over the range /
< A < 4. Although the bandwidth increases with solution time, the peak relative frequency
distributions became more focused. The weighted mean wavelength response for Model
FDI10 was A., = 7.18, at ¢ = 6.4, and the results presented by Lindberg and Florence
(1987), A = 7.4 at T = 6, are in good agreement. Progression of the mean response toward

the “preferred” mode with increasing solution time was exhibited.

Transition of the computed numerical response towards lower ordered modal response is
consistent with the amplification function (Figure 2-6) and observed experimental buckled
profiles presented in Figure 3-9. Although, Lindberg and Florence (1987) have also
reported that high frequency bending vibrations superimposed on the global motion were

observed.

Time history analysis of the nondimensional peak lateral displacement (Wmax) as a function
of the nondimensional buckle wavelengths (1) was also investigated (Figure 3-10). The
response was similar in character to the wavelength histograms presented in Figure 3-8. For
early solution times (7 < 3.2) the growth of transverse displacements was exhibited over a

broad range of wavelengths and the amplification effects were, in general, evenly

distributed.
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Figure 3-8. Relative Frequency Distribution of Nondimensional Buckle Wavelengths (1)
for Model FDI0 at Solution Times (a) r=1.1,3.2and (b) 7=6.4, 11.
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Florence, 1987).
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The response at later solution times was more prominent for those modes centered about the
“preferred”” wavelength, which is consistent with the amplification function (Figure 2-3). A
summary of the peak buckle amplitude (Wmar) as well as the weighted mean buckle
amplitude (w...) and wavelength response (A.n) for the finite difference model FDI0 is

summarised in Table 3-5.

Table 3-5. Summary of Peak Buckle Amplitude (Wma:), Weighted Mean Buckle Amplitude
(wum) and Wavelength Response (A.m) for Model FD/0.

T Wmax Wim Awm Eqn (2.29)
1.1 0.08 0.06 2.7 42
3.2 0.30 0.22 4.7 6.2
6.4 1.13 1.04 7.2 7.6
11 8.45 8.28 8.1 84

Although the computed modal response could be characterized by a distribution of buckle
amplitudes and wavelengths, comparison of the tabulated data (Table 3-5) with the time
history response curves (Figure 3-4 and Figure 3-5) and modal response histograms (Figure
3-8, 3-10) illustrates the simplicity and utility for assuming a dominant, “preferred” mode.
The peak buckle amplitude is closely associated with the weighted mean wavelength
response, which tends to converge towards the “preferred” wavelength and consistent with

Equation (2-29), which asymptotically reaches the “preferred” mode at 7 =~ 30.

3.4 Elastic Pulse Buckling Threshold Limits

In addition to knowledge of the modal response, defining an elastic buckling threshold limit
is an important parameter to consider for preliminary design estimates. In contrast to

problems of elastic stability, for example critical loads based on geometry and boundary
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conditions, for dynamic pulse buckling an all-encompassing critical state cannot be
explicitly defined. As previously discussed this is related to inherent mechanisms of
dynamic buckling events and the fact that there are no universal criteria to define pulse
buckling threshold limits. The bounds may be defined by critical displacement, load levels
imparted to equipment or personnel, or yield response. Lindberg and Florence (1987) have
defined the dynamic buckling limit when the combined stress, due to axial compression (o)

and flexure (gy), exceeds the yield stress (g;) of the material.

Following the analysis of Lindberg and Florence (1987), theoretical curves defining the
critical thrust duration (z.,), for the “preferred” mode at two levels of imperfections (8 =

0.000!1 and p = 0.001), were calculated using the expression,

l1-0 6 To | _
75— = nﬂ‘/gl:cosh(T) l:l. (3.21)

The expression relates the critical time to first yield (7,) to initiate a pulse buckling
response as a function of the normalized stress ratio (5) defined as the applied thrust
magnitude (o;) with respect to the yield stress (5;). The critical load intensity is a function
of the imperfection amplitude (), yield strain (&) and load duration (7) and was discussed

in Section 2.3 .4.

A parametric study was conducted by increasing the normalized stress ratio (E) over the
range, 0.05<0c <1.0. The finite difference solution was analysed with respect to the
critical buckling time for the stress state within the cross-section (i.e. axial plus flexural) to
exceed yield was determined. According to elementary bending theory, the normal stress

due to flexure can be calculated by,
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where d is the distance from the neutral axis to the outer fiber and R is the radius of
curvature approximation for small deflections. The curvature was calculated using a second

order central difference approximation with an error of O(4x)’.
Prior to conducting the parametric analysis, a convergence study was initiated to investigate

the effects of grid point spacing on the computed bending stress. The bending stress can be
defined as,

o . M.k _ PLh (3.23)

For a simply supported beam of length (L), subject to a central point load (P) on the elastic

curve, lateral deflection (4,) can be calculated using the expression,

5, 48“ G -4x?) (3.24)

for 0 < x < L/2. Thus, for a known normal stress then the corresponding deflected
geometry profile can be generated. On this basis, influence of the grid point discretization
on the computed normal elastic stress (o) with reference to the theoretical stress (o) was
conducted. The results are shown in Figure 3-11, which illustrates the relationship between
the normalized stress ratio (ow/0y) as a function of the aspect ratio, which is defined as the

relationship between the grid point spacing (Ax) and beam depth (d).
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Figure 3-11. Influence of Aspect Ratio on the Computed Normalized Stress Ratio for
Finite Difference Models.

For aspect ratios on the order of 10 or less, there was good agreement between the
computed finite difference and theoretical normal stress. The discretization error for model
FD6 was approximately 5%. Thus, for the case of simple bending and moderate degree of
curvature, finite difference models with aspect ratios ranging from 24:1 to 1:1 should
adequately represent the stress state. Assuming a proportional limit at 0.2% axial strain, the
theoretical times for yield as a function of the normalized stress level, for buckling in the
“preferred” mode, are illustrated in Figure 3-12. The analytical expression (Equation 3.21)
was evaluated for the imperfection parameter § = 0.000/ and £ = 0.00]. For the finite

difference solutions, the time history displacement data was analysed over a range of
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Figure 3-12. Analytical and Numerical Analysis for Critical Impulse Intensity to Yield for
the Peak Buckle Crest Based on the “Preferred” Mode Analysis.

compressive stress impulse magnitudes (&) to determine the critical thrust duration (1) for

yielding through the section.

Although the coarsely meshed model, FD6, accurately predicted the peak lateral
displacement (Figure 3-4), limitations of the coarsely defined domain are illustrated by the
weighted mean buckle wavelength (A,,) response (Figure 3-5) and critical time (z.,) to first

yield (Figure 3-12).

The finite difference models with lower degrees of freedom (i.e. large aspect ratios) cannot

account for the required beam curvature to accurately model the pulse buckling response.
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For the critical thrust duration calculations this is further influenced by the second

derivative (52%52 ) for the finite difference solution of a differential equation, which is an

approximated function. In comparison with Model F D10, the more coarsely meshed Model
FD8 appears to exhibit an equivalent increase in the imperfection parameter () and
reduction in the critical impulse duration (z,). Furthermore, aspect ratios on the order of
1:1 (Model FD10) were required to characterize the sharp decrease in critical thrust duration
as the impulse magnitude approached the yield stress as shown in Figure 3-12.

3.5 Assessment of Finite Difference Models

The pulse buckling response of a slender beam subject to an intense axial impact has been
investigated by the finite difference method. Numerical modelling has substantiated the
relative simplicity and utility of the “preferred” mode analysis, for preliminary dynamic
buckling estimates. The finite difference models were consistent and accurate with
respect to the “preferred” wavelength theory, in terms of buckle amplitude growth (Figure
3-4), wavelength response (Figure 3-8, 3-10) and threshold limits (Figure 3-12), provided
a fine grid point discretization (aspect ratios on the order of 1:1) was employed. The main
disadvantage of perturbation analysis is the restriction to relatively simple structural

configurations, boundary conditions and loading events.

In comparison with the experimental observations there are several limitations of the
analytical and numerical solutions that need to be addressed. A constant uniform axial
thrust, linear elastic mechanical properties and unbounded growth of transverse buckle
displacements have been considered. For early solution times these are reasonable and
Jjustifiable assumptions but at later buckling times the solutions are not fully consistent with
experimental observations. This is demonstrated through a comparison of the peak buckle
response (Figure 3-4 and Figure 3-6) with the time frame photographs (Figure 3-9). For the
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solution time (7= 22.1, t = 100) the computed peak buckle amplitude was w = 1677 (y =
154mm), whereas, the experimental peak amplitudes were on the order of w = 22 (y =
2mm). Furthermore, the experimental profile was charcatized by a “single” large amplitude,
buckle near the support with smaller flexural oscillations prevalent throughout the
remaining beam length. Some potential mechanisms contributing to this discrepancy are a
variable and propagating axial stress wave, axial inertia or nonlinear terms such as large

deformation and local plasticity.

Incorporation of these parameters within a numerical modelling framework requires
specialized algorithms and iterative schemes. Consequently, the application of versatile and
robust computational procedures such as finite element methods is most promising.
Requirements for the development of accurate finite element models defining the elastic

pulse buckling response of a slender beam to an intense axial impact will be investigated.



4.0 Finite FElement Analysis of Elastic Pulse
Buckling Events

The dynamic pulse buckling response of a slender beam subject to an intense elastic axial
impulse is investigated by the finite element method. The main objective is to define the
characteristics required for the development of accurate finite element models with respect
to the “preferred” wavelength theory and experimental observations. The results of a
parametric study will be presented, which considered mesh topology, element formulation,
applied impulse magnitude and type of imperfection. The analysis will substantiate the
basis of the “preferred” wavelength theory and conclusions of the finite difference
investigations. Furthermore, the importance of accounting for nonlinear geometric and

material behaviour depending on the adopted element formulation will be demonstrated.
4.1 Modelling Considerations

4.1.1 Solution Strategies in Structural Dynamic Analysis

In comparison with the finite difference analysis, the finite element method encompasses
significantly distinct characteristics. The finite difference method considers a constant axial
stress state, lumped nodal properties, and neglects the effects of axial deformation and axial
inertia.  Conversely, the finite element analysis considers the spatial and temporal
characteristics of the applied impulse and ensuing axial stress wave propagation. This
represents a more accurate treatment of the experimental buckling study conducted by
Lindberg and Florence (1987). In addition, the stiffness and inertia terms are considered on
a consistent basis, and the consideration of axial deformation incorporates the coupled

nonlinear term due to bending (Equation 2.9).
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In general form, the governing differential equation of motion to be solved by a system of

finite elements can be expressed as,
[M)a}+ [CHi+ [KKu} = {R}. 4.1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {R} is
the load vector, and {ii}, {iz} and {u} are the acceleration, velocity and displacment vectors,
respectively. For the current study, the influence of material or structural damping was not

included in the analysis (i.e. [C] was a null matrix).

The solution to Equation (4.1) can be obtained by modal and direct integration methods.
Typically, time history dynamic response analysis for multi-degree of freedom systems is
computed via modal methods (e.g. mode displacement superposition). The main advantage
is that the equation of motion can be transformed through generalised coordinates to a
system of uncoupled equilibrium equations. The response can be obtained through
superposition of the modal contributions. The major limitation is the assumption of
linearity. Although modal methods exist for the solution of nonlinear dynamic problems, in
general direct integration methods are preferred. A number of sources provide a complete
discussion on the application of the finite element method in structural dynamics, and the
discussions presented by Bathe (1996) and Cook et al. (1989) are referenced.

There are two categories for direct integration methods, namely explicit and implicit. The
main differences of the integration schemes can be expressed in terms of the finite
difference characterisation of displacement, velocity or acceleration vectors, time frame for
equilibrium analysis and time step stability criteria. Explicit methods solve for the
incremental displacements (¢ + Ar) using the equilibrium conditions at time (¢), whereas

implicit methods use the equilibrium conditions at the time step (¢ + A).
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From the viewpoint of finite element modelling, the dynamic pulse buckling event can be
defined as a propagating axial stress wave that induces flexural oscillations through the
amplification of initial geometric imperfections. The subsequent growth of transverse
deflections and buckled waveforms occurs through modal competition. Wave propagation

problems can be characterised by a discontinuity in axial strain.

Typically, explicit integration methods with lumped formulations and low-order elements
are employed to analyze the dynamic structural response. The main advantage of an explicit
integration scheme lies in the compuational efficiency through vectorization where a
lumped mass matrix and velocity independent damping can be employed. Conversely, the
major restriction lies in conditional stability imposed by a critical time step, which is
dependent on the highest natural frequency of the system. For numerical methods, this can
have significant and potentially detrimental effects on both solution stability and accuracy.
The consequence could be a prohibitively small time step in order to account for variations
in element natural frequencies due to local discontinuities (e.g. high stiffness, low mass).
For nonlinear systems, where the modal response can evolve and influence the structural
response (e.g. strain-hardening, plastic flow, element distortion), a spurious solution may

not be transparent.

Implicit schemes are unconditionally stable and the required time step is based on accuracy
considerations. The main drawback emerges through the significant computational effort
and solution cost, particularly for nonlinear systems, due to reformulation or factorization of

the effective stiffness matrix.

In addition to the available solution methods (implicit or explicit), the selection of an
appropriate integration time step magnitude must be considered. The main issue is related
to achieving a balance of solution cost (i.e. CPU time) against solution stability and

accuracy. The main governing parameters are the time step and degree of mesh
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discretization. The selection of an appropriate time step for integration must account for
stress wave propagation between adjacent nodal points. For two-dimensional elements, this
implies considerations for both the axial and transverse components. A general
characteristic of wave propagation problems is the large number of response frequencies
excited during the event. This presents difficulties in selecting an appropriate cutoff
frequency (i.e. critical time step), particularly for higher-order continuum elements.
Consequently, solution strategies developed for explicit finite difference schemes are

employed, which provide a rational basis.

For two-dimensional linear plane elements, Bathe (1996) states that the critical time step is

govemned by,

A, = La J-v. 4.2)
c

where v is the Poisson’s ratio. For a two-node beam element,

L} | 4 L
At = =< f— = —d_ 4.3
i c {487 2cd 3

where the simplification is presented for a rectangular section. Cook et al. (1989) defined

a stability equation for plane strain elements as

L
A t - el (4.4)

V3c

For the finite element analysis conducted in the present investigations, a conservative time
step was selected based on the minimum of Equations (3.13), (3.15), (4.1), (4.2), (4.3) or
(4.49).
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4.1.2 Modelling Procedure for Pulse Buckling Analysis

The commercial finite element software packages ADINA (1996) version, ANSYS
(1996) version 5.3 and NISA (1997) version 7.0 were employed to investigate the
dynamic buckling response of a slender beam subject to an elastic axial impulse. For all
models, the beam had the dimensions (762mmx12.7mmx0.3175mm) and was composed of
Aluminium 6061-T6 with the mechanical properties (E = 69MPa, p = 2700kg/m’ and v =
0.33). These parameters were selected for comparison with the experimental studies

presented by Linberg (1965) and Lindberg and Florence (1987).

Two-dimensional (ANSYS) and three-dimensional (NISA) beam elements and two-
dimensional plane strain elements (ADINA, NISA) were used to discretize the domain. The
beam elements were based on Euler-Bemnoulli beam theory and included the capability for
modelling stress stiffening effects in thin structures. Details regarding element formulation
and finite element theory are presented in the respective user manuals. Specific issues
regarding the finite element model parameters (e.g. mesh density, element type, beam

geometry) are discussed in the next section.

To simulate the pulse buckling analysis and experimental investigations conducted by
Lindberg and Florence (1987), the finite element solution considered two separate phases (i)
an initial static analysis and (ii) subsequent dynamic response analysis. A schematic
illustration of the buckling event was presented in Figure 2-2. The boundary conditions, for

the finite element models, were pinned (X =0) and roller (X =1) supports, where
(Y =X L) is a normalized axial coordinate. The numerical procedures accounted for

nonlinear geometry and, as will be demonstrated later, for select cases required the

consideration of nonlinear material behaviour.
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For the initial static analysis, an axial stress was applied to the beam (Figure 2-2), which
represented the static tensile loading phase of the impact buckling experiments discussed by
Linberg (1965) and Lindberg and Florence (1987). A series of nonlinear static analyses
were conducted to establish the required number of load steps for an accurate solution. The
convergence study demonstrated that 50 load steps were adequate. The Newton-Raphson
method, with line search during equilibrium iterations, was employed. The complex nature
of stress concentrations and notch plasticity effects, required to initiate failure, was

ignored since this was considered far field with respect to the pulse buckling response.

The resultant displacement field, from the nonlinear static analysis, was then imposed as the
initial condition for dynamic analysis. This step represents the moment at notch failure
during the static tensile test, which results in the impositition of a dynamic compressive
axial stress wave impulse. Although an explicit time integration scheme was successful,
difficulties were encountered with solution convergence, particularly for plane strain
clement models. Consequently, the implicit Newmark method was selected to directly
integrate the dynamic equation of motion. This method was the only available option for
analysis with NISA (1997). The selected Newmark values of, B = 0.3025 and y = 0.6,
provided an unconditionally stable solution with slight numerical damping. The artificial
damping is advantageous in the dissipation of spurious, high frequency modal
components introduced by the discrete nature of the finite element method. This aspect is
particularly important for higher order elements, which generally exhibit greater
numerical “noise” than lower ordered elements. The kinematic formulation was large
displacement and small strain. The full-Newton routine, with line search, was used to

obtain convergence with default energy and displacement tolerance criteria of 0.001.
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4.2 Preliminary Investigations

Based on this procedure, a parametric study was conducted by the finite element method, on
the dynamic pulse buckling of slender beams with respect to the “preferred” wavelength
theory. The primary objective was to assess the finite element computations, in terms of
the peak buckle displacement and modal response with respect to the “preferred”
wavelength theory. The parameters considered included imperfection type, mesh aspect
ratio and element formulation. Parallel with the finite difference investigations, the initial
geometric imperfections were defined as a (i) discrete half-sine wave model, (ii)
combined model (discrete plus random) and (iii) random model. The discrete and
random imperfections were defined by Equations (3.17) and (3.20). The range of
parameters considered for the finite element investigations are summarized in Table 4-1.

Specific details of preliminary finite element analyses are presented in Appendix A.

Table 4-1. Summary of Parameters for Preliminary Finite Element Investigations

) Number of Range
Geometric .
Element Type . Finite Element )
Imperfection Aspect Ratio %od max
Models
150:1, 10:1, 10, 25, 50, 100,
Discrete 12
2:1,1:1 200, 500
15, 100, 200,
Beam Combined 6 10:1, 2:1, 1:1
500
Random 5 2:1,1:1 10
16:1, 8:1, 4:1,
Plane Strain Random 12 9l 111 6-11

Notes: Aspect ratio defines the ratio of longitudinal to transverse element dimension, %d,,, is the peak
imperfection amplitude as a percentage of the beam depth.
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The finite element investigations, presented in Appendix A, demonstrated that the
fundamental mode analyses, discussed in Section 2.2.1, were not valid for the higher
order mode response associated with intense pulse buckling events. In addition, the
utility of the “preferred” wavelength theory (Lindberg, 1965; Lindberg and Florence,
1987) and validity of the finite difference analyses were substantiated. For a slender beam
subject to an elastic axial impulse, the peak buckle amplitude and dominant waveform
could be effectively defined in terms of a single “preferred” mode. For early buckling
times, the assumption of a constant, uniform axial impulse was confirmed. Thus, the
assumption of ignoring the longitudinal position of the stress front, with respect to the
evolved buckled response, was also considered a valid assumption. Furthermore, the

finite element computations support the finite difference analysis.

A number of important conclusions were derived from the preliminary investigations
(Appendix A), for the development of an accurate numerical model consistent with the
“preferred” wavelength theory and experimental observations presented by Lindberg and
Florence (1987). Similar to the finite difference investigations, the finite element models
required a finely discretised domain with an element aspect ratio on the order of 1:1 and the
incorporation of local random geometric imperfections. The analysis highlighted the
importance of including nonlinear (geometric and material) transient analysis with respect
to the element type (i.e. beam, plane strain). In addition, it was established that element
formulation also influenced the pulse buckling response characteristics, which was directly

related to the axial inertia terms, axial strain—displacement and moment—curvature

relationships.

Consequently, a detailed discussion focused on the finite element investigations, for the
beam element and plane strain element models, that incorporated random geometric

imperfections will be presented.
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4.3 Pulse Buckling Analysis — Beam Elements

4.3.1 Introduction

Based on the preliminary analyses presented in Appendix A, the important observations and
conclusions developed from these investigations are addressed. The relevant parameters

for the beam element models are summarized in Table 4-2.

Table 4-2. Beam Element Models for Pulse Buckling Analysis.

Model Mesh AR At (us) Cn %odmax Amax/L Comment
ANB7 | 1200x1 2:1 0.10 0.80 500 0.002 Discrete
NB6 | 1200x1 2:1 0.10 0.80 207 0.00086 | Combined

ANBI2 | 1200x1 2:1 0.10 0.80 9 0.000037 | Random

Notes: Mesh is the number of longitudinal x transverse elements, AR is the aspect ratio of the longitudinal to
transverse element dimension, 4¢ is the integration time step, C, is the Courant number, %d,,. is the peak
imperfection amplitude as a percentage of the beam depth and A,,./L is the nondimensional imperfection
parameter.

4.3.2 Buckled Displacement Response

Consistent with the finite difference investigations, exploitation of local random
geometric imperfections by the applied axial impulse was critical for initiating the
characteristic exponential growth of transverse deflections. This was established through
analysis of the computed pulse buckling response of finite element models with respect to
the “preferred” wavelength theory. Figure 4-1 illustrates the computed peak buckle
amplitude—time history for several numerical models and the corresponding analytical

expressions that define the response.
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Figure 4-1. Nondimensional Peak Buckle Amplitude (Wma) as a Function of Time (7) for
Finite Difference and Finite Element Models with Discrete, Combined and Random
Geometric Imperfections.

The finite element models with a fundamental mode imperfection (4NB7, Table 4-2, and
Table A-1) and the combined imperfection model (NB6, Table 4-2, Table A-3) were
presented. An average non-dimensional imperfection coefficient of w, = 4.4, equivalent
to 1.27d, was selected to plot the theoretical peak buckle amplitude response, defined by
Equation (3.18) and Equation (3.19), for the combined imperfection model. The finite
difference model (FDI0, Table 3-4) and the finite element model (ANB/2, Table 4-2,
Table A-4) incorporated only local random geometric imperfections. An average non-
dimensional imperfection coefficient of w, = 0./, equivalent to 0.03d, was considered for
models with random imperfections. The hyperbolic growth rate of transverse deflection

was only developed for numerical models that incorporated local random geometric
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imperfections. The finite element model (ANB/2) was consistent with the analytical
expression and finite difference model (FD10), which could be characterised by the

Fourier coefficient amplitude (w, = 0./) for local random imperfections.

Although combined imperfection models exhibited an exponential growth rate, the pulse
buckling response was due to local random imperfections and not the fundamental mode
imperfection. This was established by comparison of the finite element computations
with the theoretical growth rates, when the maximum imperfection coefficients (w,) were
considered, as shown in Figure 4-1. In general, the fundamental mode imperfection was
one to two orders of magnitude greater than the Fourier coefficient for local random
geometric imperfections. For the parameters presented in Figure 4-1, the influence of a
fundamental mode imperfection on the pulse buckling response was insignificant for even
large amplitudes, w, = /7 equivalent to 5.0d, as defined by model ANB7. These

observations are further detailed in Appendix A.

The finite difference model (FD10) exhibited an unbounded growth of peak buckle
displacements consistent with the “preferred” wavelength theory. In contrast, a limiting
plateau response of the transverse deflection was developed by the finite element models
for solution times greater than approximately z = /0. Further analysis (discussed later
and also presented in Appendix A) demonstrated that the bounded growth was related to a
reduction in the axial impulse and coupled nonlinear terms due to bending defined by the
axial strain—displacement relationship. This is illustrated by comparison of the finite
difference (FD10) and finite element (ANB12) solutions with the theoretical “preferred”
mode response. For early buckling times (7 < 5) the finite element model exhibited a
slightly delayed response, related to the beam element formulation, whereas the finite

difference models exhibited an unbounded response.



82
4.3.3 Modal Response Analysis

Historical research efforts have mainly focused on the fundamental mode, where few
studies (Sugiura et al., 1985; Hayashi and Sano, 1972a) have considered the higher order
modal response. To the author’s knowledge, comprehensive numerical investigations, on
the dynamic buckling of slender beams subject to an axial impulse, have not yet been
conducted with respect to the *“‘preferred” wavelength theory. From this perspective, only
the pioneering work of Lindberg (1965) and the monograph of Lindberg and Florence
(1987) address this issue. For both of these studies, however, experimental and

theoretical statistics of the buckled profile were presented for only one time step (7 = 6).

Modal response analysis of the finite element models was conducted on the basis of an
average wavelength (44.) and weighted mean wavelength (4,,,), as discussed in Section
3.3.4, is presented in Figure 4-2. The solid symbols represent average wavelengths (A,.g)
and the open markers are weighted mean wavelengths (4.n). Although Equation (2.29)
more accurately represents the statistics of a stationary random process, the relative
simplicity and utility of Equation (2.30) based on the most amplified mode is illustrated.

This is also demonstrated by the rapid convergence of the two theoretical expressions (7 ~

5).

The influence of imperfection type on the modal response of the finite element models
was relatively insignificant. For early solution times (7 <3.5), the average wavelength
response (A,g) was in general agreement with the theoretical and finite difference
solutions. For nondimensional times (r> /2), the average wavelength (A4.¢) exceeded
the analytical expressions. Analysis presented in Appendix A, showed the deviation was
concurrent with a transition from a linear to nonlinear axial displacement response. This
was associated with the limiting displacement plateau and departure from the unbounded

analytical solution as illustrated in Figure 4-1. For the beam element models, the
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Figure 4-2. Nondimensional Buckled Wavelength (1) as a Function of Time (?) for
Finite Difference and Beam Element Models with Combined and Random Geometric
Imperfections (@ Aayg , O Awm)-

weighted mean wavelength (A..) generally under predicted the “preferred” mode

response.

A major assumption of the “preferred” wavelength theory was the propagating axial
impulse could be idealized as a constant, uniform thrust. This premise was validated by
theoretical arguments presented by Lindberg and Florence (1987). The finite element
models further supported this assumption and can be demonstrated through comparison
of the axial stress distribution—time history with the computed pulse buckling response

(Figure 4-1 and Figure 4-2).
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The longitudinal distribution of normalized axial stress ratic (&), which relates the
computed axial stress (o) to yield stress (o;), is shown in Figure 4-3. For the
nondimensional solution time =355 (1 <25us), variation of the stress wave front
magnitude (X < 0.10) was on the order of 6%. Based on numerical computations and

experimental observations, the peak transverse deflection was on the order of 0.05mm,
which is within an elastic response, and the stress wave front propagated approximately
10 times the “preferred” buckled wavelength. Consequently, prior to the development of
a significant pulse buckling response (i.e. transverse deflection), the axial impulse can be
considered uniform and constant. Perturbations to the longitudinal stress state
distribution arise, at later solution times, due to the evolution of large buckle amplitudes
and curvature response. The stress—time history analysis (Figure 4-3) also demonstrates
for later solution times the reduction in the axial impulse with increasing buckle

amplitude growth.
4.4 Pulse Buckling Analysis — Plane Strain Elements

4.4.1 Introduction

Finite element analysis employing beam elements has demonstrated that exploitation of
local random imperfections, by the axial impulse, was critical in developing the
exponential growth of buckled displacements. This was consistent with the experimental
observations, theoretical analysis and finite difference modelling previously discussed. In
addition to the modelled geometric imperfection type, the present analysis will
demonstrate that element formulation also has a significant role on the computed pulse

buckling response.
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Figure 4-3. Normalized Longitudinal Distribution (.Y ) of the Normalized Stress (&) for
Beam Element Model ANB]2 with Random Imperfections.

Investigations employing quadratic, plane strain elements, were conducted to comparatively
study the influence of the element formulation. Elastoplastic constitutive relationships were
utilised and the material properties for 6061-T6 Aluminium were defined as £ = 69GPa, oy
= 285MPa, v=0.33, p= 2700 kg/m3 and Er = 900MPa. A von Mises yield criterion with
linear strain hardening was adopted. Although the analysis considered an elastic pulse
buckling problem, the requirements for including plasticity are detailed in Appendix A.
Table 4-3 summarizes parameters for the plane strain finite element models discussed in

this section.
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Table 4-3. Plane Strain Element Models with Random Geometric Imperfections.

Model Mesh AR At (us) Cn Yodave %dmx | Comments
AP2 300x1 8:1 0.10 0.69 2 8 EP
APS8 2400x1 1:1 0.01 0.55 2 8 EP

Notes: Mesh is the number of longitudinal x transverse elements, 4R is the aspect ratio of the longitudinal to
transverse element dimension, 4 is the integration time step, C, is the Courant number, %d ;g m,. is the average
and maximum peak imperfection amplitude as a percentage of the beam depth, EP indicates elastoplastic
constitutive relationship was employed.

Initially, both the finite element software packages NISA and ADINA were utilized in the
study, but due to the significant computational effort required by NISA4, subsequent
investigations were only conducted using ADINA. Solution times for a coarsely meshed
model, Model AP4 with an aspect ratio of 4:1 (Table A-6), was 32 hours for VIS4 (installed
on a PentiumPro 200MHz PC) and only 6.3 hours for ADINA (installed on a VAX DEC
Alpha). A more finely discretised model, Model 4P8 with an aspect ratio of 1:1 (Table 4-3,

Table A-6) required considerable computational resources with 132 hours of CPU time

using ADINA.

4.4.2 Buckled Displacement Response

Detailed analysis of the buckled profile and axial stress state, presented in Appendix A,
established that finite element models, employing plane strain elements, had to account
for both geometric and material nonlinear behaviour. Although, the analysis has
considered an elastic pulse buckling event, the requirement for including material
plasticity was due to the developed curvature response. This is illustrated in Figure 4-4
where the displaced buckled profile, at solution time 7 = 22 (¢ = 100us), for the beam
element model (ANB14, Table 4-2) and plane strain element model (4P8, Table 4-3) are

presented.
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Figure 4-4. Normalized Longitudinal Distribution (./\_’ ) of the Displaced Buckled Profile

for Beam Element Model (4NB/+) and Plane Strain Element Model (4P8) with Random
Geometric Imperfections at Solution Time (7= 22).

The influence of element formulation on the computed pulse buckling response was one
of the more important conclusions developed from the finite element analyses conducted
in the present thesis. Models that incorporated plane strain elements were more
consistent with experimental observations (Figure 3-11; Lindberg and Florence, 1987), in
comparison with the beam element models. Only the pulse buckling response of the
plane strain element models exhibited the characteristic peak amplitude, single waveform

adjacent to the fixed support.

The relative discrepancy in the computed pulse buckling response can be related to the

inherent characteristics that define the element formulation. The behaviour of an Euler-
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Bernoulli beam element is expressed through the moment—curvature relationship, which
requires plane sections to remain plane and normal to the neutral axis. In addition, for the
beam element models, the nonlinear terms of the axial strain—displacement relationship
are explicitly defined. Plane strain elements, however, implicitly account for the flexural

response through the quadratic displacement field.

The influence of numerical procedure and element formulation on the characteristic
exponential growth of transverse peak displacement is illustrated in Figure 4-5. The peak
buckle displacement response for the finite difference and finite element models with
combined and random geometric imperfections are presented. An average imperfection
coefficient of w, = 0.06, equivalent to 0.0/7d, was selected to plot Equations (3.18) and
(3.19).

Provided random geometric imperfections were incorporated, for relatively early solution
times (zr < /0) the finite element models exhibited unbounded growth of transverse
deflections consistent with theoretical analysis and finite difference solutions. The pulse
buckling response, however, deviated from an unbounded growth toward a limiting
plateau at later solution times. The behaviour was attributed to the coupled nonlinear
terms of the axial-strain displacement response and longitudinal variation in the axial
stress state (Figure 4-3). In addition, the ‘simplified’ theoretical analysis considers only
one dominant mode (i.e. the “preferred” wavelength, 4,) and defines a single equivalent
geometric imperfection (w,), which does not account for the randomly distributed
properties of the finite element model. The existence of a limiting plateau was consistent
with experimental evidence from time-frame photographs (Figure 3-11) and observations
by Lindberg (1965) and Lindberg and Florence (1987). The finite difference solution
remains unbounded since the solution assumed a constant and uniform axial impulse with

elastic behaviour and neglected the influence of axial inertia and coupled nonlinear terms.
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Figure 4-5. Nondimensional Peak Buckle Amplitude (W) as a Function of Time (7) for
Finite Difference and Finite Element Models (Beam, Plane Strain) with Combined and
Random Geometric Imperfections.

The influence of element formulation on the peak buckle displacement response was also
observed. In comparison with the beam element models, the finite difference model
(FD10) and plane strain model (4P8) were more accurate with respect to the analytical
expressions. The discrepancy was related to inherent characteristics of the beam element
formulation, which include the assumption of plane sections remaining normal to the
neutral axis with deformation, moment-curvature and nonlinear axial strain—displacement
relationships. This was supported by the high degree of curvature developed adjacent to
the lower fixed support (Figure 4-4) by the plane strain element models, which was in
agreement with experimental observations (Figure 3-11). Due to localized plastic

deformation at the peak buckle crest, the plane strain element analysis required a fully
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nonlinear (material and geometric) solution. Lindberg and Florence (1987) also reported

the development of plastic zones at the peak crest through experimental observation.

4.4.3 Modal Response Analysis

A Discrete Fourier Transform (DFT) analysis of the deformed geometry was initially
conducted to characterize the modal response of the plane strain element models. The
actual or real magnitude of the Fourier coefficients of the buckled displacements,
however, could not be determined accurately. This was attributed to an averaging effect,
where the sparse number of large amplitude crests near the support was effectively
masked due to the more abundant and smaller amplitudes prevailing throughout the
length of the beam. These characteristics are illustrated in Figure 4-4, Figure A-11 and
Figure A-12. The analysis presented in Appendix A demonstrated that the Fourier
coefficient magnitudes were 10-20 times less than the peak buckle amplitudes.
Consequently, modal analysis was conducted using the same algorithms developed for the

beam element models (Section 4.3.3).

Figure 4-6 shows the average (Aag) and weighted mean (4.») wavelength response
calculations for finite difference and finite element models with local random geometric
imperfections. The average wavelength (4,,) analysis was more consistent with the
theoretical expressions (Equation 2.29, Equation 2.30) than the weighted mean (A.m)
response. The average wavelength (4,,) was inherently ‘biased’ for buckle waveforms
developed near the lower fixed support. Consequently, impulse duration, boundary effects
(e.g. relative stiffness and eccentricity) and element response (e.g. curvature) are
important factors.  Conversely, the weighted mean (A.m) response consistently
underpredicts the “‘preferred” mode shape. The weighted mean response considers the full
beam length subject to the axial compressive impulse, hence, the number of sampling points

increases proportionally with mesh refinement and solution time (i.e. 4x =c¥).
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Figure 4-6. Nondimensional Buckled Wavelength (1) as a Function of Time (7) for
Finite Difference and Finite Element Models (Beam, Plane Strain) with Random
Geometric Imperfections (m Aavg » O Awm)-

The analysis presented in Figure 4-6 also demonstrated that the computed modal response

was influenced by the aspect ratio, particularly for early solution times (7 < /0). The plane

strain models AP2 and 4AP8 were discretized with element aspect ratios of 8:1 and 1:1,

respectively. The coarse mesh (Model 4P2) over predicted the modal response with

respect to the theoretical “preferred” wavelength (4, = 272 ). This was related to the

lower number of available energy modes to model the higher frequency response early in

the solution due to the limited number of elements and thus degrees of freedom.

Consequently, the model cannot account for the higher order flexural vibrations, which

was also demonstrated by the relative peak buckle amplitude growth shown in Figure 4-5.
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Parallel with the buckle amplitude growth, element formulation also played a role on the
modal response. This is illustrated in Figure 4-6, for the beam element models, by the
discrepancy between the computed nondimensional buckle wavelengths based on the
selected numerical procedure (i.e. Aayg Or A.m). The response is consistent with recent
analysis on elastic beam dynamics. Matsunaga (1996) investigated the free-vibration and
stability of a simply supported, thin elastic beam, using a power series expansion method,
as a function of aspect ratio, in comparison with classical and higher order beam theory.
The analysis concluded that for aspect ratios on the order of unity (4R = /:1), the critical
buckling load was associated with a higher order modal response. The higher order
displacement modes were more influenced by the axial force than the lower order modal
response. In addition, the Euler-Bernoulli beam formulation is associated with a slightly
overstiff response. These factors may explain the computed higher frequencies of

vibration (i.e. lower wavelengths) response.

The plane strain element model AP8, with an aspect ratio of 1:1 and random imperfections,
exhibited the best performance with respect to the “preferred”” wavelength analysis. Modal
analysis of the plane strain element computations, using either the average wavelength
(Aavg) or weighted mean wavelength (4,) algorithm did not exhibit a variation in the modal
response characteristics. Thus, the frequency response for the beam length subject to the

axial impulse was relatively uniform.

Relative frequency distribution histograms for Model APS, computed by the absolute peak
method, are presented in Figure 4-7. Evolution of the pulse buckling response through
modal competition are illustrated. For the time frame, 5.5 < 7 <]/, transverse perturbations
were dominated by wavelengths within the range 5 <A <8. The weighted mean
wavelength was A,»,=6.7 at a solution time of 7= 5.5. This was in agreement with the
theoretical and experimental histograms of the buckled wavelengths for 7 =6, which were

presented in Figure 3-7. The mean theoretical wavelength response was 4 = 7.4, with a
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Figure 4-7. Relative Frequency Distributions of Nondimensional Buckle Wavelengths

(4) for Plane Strain Element Model 4P8 at (a) Solution Times 7= 5.5 and 11 and (b)

Solution Times 7= 22 and 33.
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standard deviation of o; = /.7, and experimental mean of 1 =9.5 with a standard
deviation of o; = 1.0. For later solution times, 22 <7<33, a broad range of buckle
waveforms were excited (4 < 20) with relatively even frequency distribution as shown in
Figure 4-7(b). A shift in the dominant mode to longer wavelengths, greater than the
“preferred” mode (4,= 2702 = 8.9), was also observed where the weighted mean

increased from A, #9 to A,.m» =~13. The continued growth of lower order mode shapes
from an initial high frequency response is consistent with investigations on the pulse
buckling of thin cylindrical shells — see for example Lindberg and Florence (1987) and
Pegg (1992).

Figure 4-8, illustrates the nondimensional buckle amplitude (w) as a function of wavelength
(4) and time (7). The transverse deflection magnitudes for (7 =5.5) has been scaled by a
factor of 10. In general, the buckle amplitudes (w) increased with time (7) and were
associated with longer wavelengths (). For the solution time, 22< r <33, two dominant
wavelengths evolved with the peak buckle amplitude response bounded by the Euler and
“preferred” wavelengths. The peak buckle response was characterised by a mode transition

from 2 =48 at 7= 5510 A =9.0 at r = 33. The convergence toward the the “preferred”

wavelength (4, =272 = 8.9) was consistent with Equation (2.29), which does not

asymptotically reach the “preferred” mode until 7 ~30.

For all solution times, the wavelength associated with the peak buckle amplitude, adjacent
to the lower fixed support, was less than the weighted mean. This is presented in Table 4-4
where the weighted mean wavelength (A.m), peak buckle amplitude (Wpmar) and wavelength
associated with the peak buckle amplitude (A[Wma:]) are summarised. The maximum
amplitude (Wmax) corresponds to the single dominant sine waveform adjacent to the lower
fixed support. The evolution of a single dominant peak buckle crest is due to the high
degree of curvature developed for the wavelength adjacent to the fixed support (Figure 3-9,
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Figure 4-8. Nondimensional Buckle Amplitude (w) as a Function of Nondimensional
Buckle Wavelengths (4) for Plane Strain Element Model 4P8 at (a) Solution Times 7=
5.5 and 11 and (b) Solution Times =22 and 33.
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Table 4-4. Modal Response Characteristics for Model APS.

Time Weighted Mean Peak Buckle Peak Buckle
Wavelength Wavelength Amplitude
i Awm AlWmax] Wmax
5.5 6.9 4.7 55
11 7.4 5.8 6.0
22 9.9 7.2 17.8
33 13.1 8.9 26.4

Figure 4-4) and the reduction in axial thrust (Figure 4-3, Figure A-15) throughout the beam
length. Although the observed modal response was characterized by a distribution of
wavelengths, the utility of the ‘simplified’ theoretical analysis (Equation 2.30) has been
demonstrated. For a slender beam subject to an elastic axial impulse the buckling event, in
terms of the peak response, could be effectively defined in terms of a single dominant

“preferred” mode.
4.5 Elastic Pulse Buckling Criterion

The pulse buckling threshold limit defined by Equation (3.21) and considered by the
finite difference investigations is further addressed for selected finite element models.
Assuming a proportional limit at 0.2% axial strain, the theoretical times for yield as a
function of the normalized stress level, for buckling in the “preferred” mode, are

illustrated in Figure 4-9. The analytical expression (Equation 3.21) was evaluated for the
imperfection parameter = 0.000] and S = 0.001.

The displacement-time history data, of the finite difference solutions, was assessed in

terms of the aspect ratio (4R) and normalized compressive stress ratio (& ) to determine
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Figure 4-9. Critical Threshold Pulse Duration (z,) for Section Yield Response as a
Function of Normalized Compressive Stress Impulse Ratio (E )

the critical duration (z.,) for section yield. Select results from the finite difference study
(Models FD6, FD8 and FDI10) are also illustrated. As discussed in Section 3.4, the
importance of a finely discretized domain to accurately predict the peak buckle amplitude
growth, modal response and pulse buckling threshold limit was demonstrated by the
parametric finite difference investigations. For the finite element analyses (Models AP6
and AP8) the applied impulse magnitude was held constant, & =0.97. The significant
computational effort required to conduct a parametric analysis, of the same level as the
finite difference investigations, precludes a similar detailed study. The few data points,

however, are consistent with the finite difference and theoretical analysis.
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4.6 Conclusions of the Finite Element Analysis

The utility and simplicity of the “preferred” wavelength theory to analyze the elastic pulse
buckling of a slender beam subject to an intense axial impulse has been illustrated. A
series of investigations have defined the basis for the development of finite element
models to accurately predict the pulse buckling response consistent with the “preferred”
wavelength theory and the experimental observations presented by Lindberg and Florence

(1987).

Historically, dynamic buckling analysis has generally considered only a discrete
sinusoidal imperfection and fundamental mode response. Consequently, one of the more
significant conclusions developed was the requirement of incorporating local random
geometric imperfections.  The interaction and exploitation of local geometric
perturbations by the applied axial impulse was critical for developing the hyperbolic

growth of transverse displacements.

For the parameters investigated, there are a number of factors that must be considered in
order to accurately model the complete pulse buckling response, of a slender beam
subject to an intense axial impulse, by the finite element method. In summary, the
investigations should consider a finely discretised domain with aspect ratios on the order of
1:1, local random geometric imperfections and plane strain elements. Beam element
models were adequate but the pulse buckling response was limited, due to inherent
characteristics of the element formulation, in terms of curvature and modal behaviour.
These factors may also be influenced by the boundary conditions considered due to the

effects of load duration, relative stiffness and eccentricity.

Although modal perturbation techniques can provide considerable insight on the pulse

buckling buckling process, the analysis has inherent limitations. The analysis is constrained
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to problems defined by relatively ideal parameters (e.g. axial beam impact, radial impulse
loading of shells). For structures with more complex configurations, the modal response
has to be addressed on a rational basis through engineering tools such as the finite element
method. Some examples include distributed boundary conditions, spatial or temporal
variation in the applied load impulse, distributed boundary conditions, or varied mechanical
properties. Consideration of relatively simple pulse buckling events is critical for the
development and assessment of finite element models that accurately define the complete
modal response. The acquired knowledge can be used as the foundation for advancement
of more complex numerical models having developed confidence in the adopted

numerical procedures.



5.0 Dynamic Plastic Analysis

The fundamental characteristics of classical plasticity theory are reviewed. In reference to
dynamic plastic buckling, the issues addressed include elastoplastic wave propagation,
dynamic plastic flow, and material strain rate behavior. Details of analytical, numerical

and experimental investigations on dynamic plastic pulse buckling are discussed.

S.1 Classical Plasticity Theory

A brief treatment on classical plasticity theory is presented and the works of Hill (1971),
Mendelson (1968) and Prager (1959) are referenced for a more detailed discussion.
Plasticity can be generally defined as a time independent, path dependent, material
response to an applied stress state or strain field exceeding the elastic limit, which
exhibits irrecoverable deformation. Three fundamental parameters required for the
evolution of a plasticity law are (i) a yield criterion, (ii) a flow rule and (iii) a strain
hardening rule. The yield criterion defines the limit of purely elastic behavior for any

applied stress state and can be generally expressed as,
SV, 05) = K(h) .1

where J;, J2, J;, are the first, second and third stress invariants respectively, K is an
empirical material constant which is a function of the hardening parameter, 4. In
reference to empirical investigations, the two common yield criteria applied for the
behavior of isotropic materials are the Tresca (maximum shear stress) and von Mises
(maximum distortional energy). For most metals, the von Mises yield condition best

represents material behavior,
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N %a;ja;, = K@) (5.2)

where J; is the second deviatoric stress invariant. The von Mises yield criterion is

independent of the hydrostatic stress and states that yielding occurs when the recoverable
or elastic distortional energy reaches a critical value. The yield surface is schematically

illustrated in Figure 5-1.

0'2—0'3A

von Mises Yield Surface

"

G141 — O3

Figure 5-1. Two-Dimensional Representation of the von Mises Yield Surface.

The relatively simple, continuous function is readily adapted and commonly applied in
numerical methods (Owen and Hinton, 1980; Hunsaker et al., 1976). This is also evident
by the incorporation of the von Mises yield function in most commercially available finite

element packages.
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Once yielding has been initiated, additive decomposition of the total strain response into

elastic and plastic components is required,

de/, = def, +de! (5.3)
where dg,.rj, de;;, del; are the total, elastic and plastic incremental strain components

respectively. The elastic strain is defined by,

s, = C, do, (5:4)

tJ

where C.

:jx; 1S the elastic stress-strain constitutive relationship (i.e. stiffness matrix) and

do,, is the stress increment. The plastic strain increment is defined by the flow rule,

de?, = dA o0 (5.5)

oo, j

where dA is a proportionality constant (plasticity multiplier) and Q is the plastic potential.

For the finite element analysis conducted in the present thesis investigations, the
theoretical basts for dA is detailed in the NISA User's manual (NISA, 1997). For metals,
the flow rule is also known as the normality condition where the plastic strain increment
is a vector directed normal to the plastic potential function (Hunsaker et al., 1976; NISA,
1997). The normality condition implies incompressible behavior. For the current study,
only associated plasticity is considered such that the plastic potential is defined by the
yield function; i.e. Q = f (J;, J>, J3). This model is appropriate for metals where the

primary mechanism of plastic flow is through dislocation movement and there are no
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abrupt changes in the strain rate at a point. For incremental plasticity theory, the rate

form of the flow rule allows history dependent response to be modeled.

Evolution of the yield surface with increasing stress state or imposed strain fields is
accounted through the hardening rule, which also defines the material strain-hardening
characteristics. There are numerous hardening models available with varying degrees of
complexity and range of applications; for example, fatigue (cyclic loading), rate sensitive
processes (metal forming, high-temperature creep). There are three fundamental
hardening models, (i) perfectly plastic, (ii) isotropic hardening and (iii) kinematic

hardening, which are illustrated in Figure 5-2 for a two-dimensional stress state.

Perfectly plastic is the simplest model that does not consider any change in the shape,
size, orientation or position of the yield surface for any plastic deformation increment.
Numerical procedures must address potential convergence issues sine the plastic strain
increment is not uniquely defined by the stress state, since Equation (5.5) is satisfied by

any arbitrary constant.

Isotropic hardening assumes only a uniform expausion of the yield surface about the
origin in stress space. The yield surface increases in size as a function of the hardening
parameter, typically based on plastic work done, with a constant shape. In considering
the von Mises yield criterion, the rate of strain hardening can be determined from a
simple, uniaxial tensile test. The model is well suited to problems where the stress state
significantly exceeds the yield (e.g. monotonic loads, impact) and does not experience
rate reversal of plastic strains (e.g. cyclic loads) synonymous with the Bauschinger effect
(Rice, 1975). Consequently, the isotropic hardening rule is commonly applied in

engineering analysis and numerical modeling procedures.
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Figure 5-2. Graphical Representation of Strain Hardening Rules (a) Perfectly Plastic, (b)
Isotropic Hardening and (c) Kinematic Hardening.
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The kinematic hardening model accounts for rigid-body translation of the yield surface in
stress space, with constant size, shape and orientation, in a direction vector connecting the
yield surface locus with the stress point. The formulation is generally based on the work
of generally based on Prager (1959) and Ziegler (1959). The kinematic hardening rule

can account for the effects of load reversal and an ideal Bauschinger response.

Further details of the theoretical basis and discussions on plasticity hardening models are
presented in NISA (1997), Al-Bermani and Zhu (1995), Jiang (1994) and Thomas et al.
(1983). For mathematical simplicity and computational efficiency, typically only the
expansion and translation of the yield surface is considered. In consideration of the
dynamic plastic pulse buckling events considered in the present investigations, classical
metal plasticity models that consider perfectly plastic or isotropic formulations are
appropriate.  Engineering applications can include crash worthiness studies, metal

forming processes and general collapse analysis.
5.2 Propagation of Elastoplastic Stress Waves

The mechanics of plastic stress wave propagation in slender rods due to axial impulsive
loads has been the subject of extensive investigations; see for example Meyers (1994),
Bell (1988, 1968). The classical theory of uniaxial stress wave propagation has been
attributed to von Karman and Duwez (1950). The axial plastic wave velocity (¥,) can be

expressed as,

&
vy - q\9¢) (5.6)

yo
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which is similar to the elastic stress wave solution where the elastic modulus (E) is

replaced by the tangent modulus o . Since the tangent modulus is less than the
de

elastic stiffness, the corresponding axial stress wave must propagate at a lower velocity.
The net effect is for the wave front to be dispersed as shown in Figure 5-3, where E, is

the initial elastic modulus and E7; and E7> are the successive tangent moduli.

The elastic wave propagation can be considered constant with a square profile whereas
the effects of plasticity and work hardening disperse the wave front with time (i.e. axial
distance, x) and stress level (o). Consequently, the displacement field is also affected by
the stress front variation as a function of time, since a finite time is required for the wave
front to propagate a unit distance. Increased duration of the load event causes the wave
front to become more dispersed due to variation in the wave speeds (i.e. v, >v; >v;) as a
function of the stress state. For dynamic pulse buckling events with coupled axial and
flexural modal response, the analysis can be compounded by strain rate and path
dependent deformation, as well as elastoplastic stress wave boundary reflection and

pattern interference.
5.3 Strain Rate Effects due to Dynamic Loading

5.3.1 Introduction

The influence of strain-rate dependent mechanisms, exhibited by most metals and alloys,
on the mechanical response has been well established. Stronge and Yu (1993), Jones
(1989), Harding (1987), Wilkins (1984), Clifton (1983), Campbell (1970) and Bodner
(1968) present detailed discussions and analyses. To enhance general understanding of
the issues related to analyzing and modeling dynamic pulse buckling events, the

fundamental characteristics are reviewed.
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Figure 5-3. Wave Front Dispersion as a Function of Time and Stress Level.

The focus is on impact events where the load intensity, structural geometric
imperfections, dynamic material response and wave propagation can be coupled
parameters in the transient response. For low velocity impacts, typical of structural

crashworthiness studies and general impact loads, the strain rates are on the order of 1 /s —
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100 /s. Lower energy events such as quasi-static buckling or higher energy modes such as
hypervelocity or shock loading events are not considered. A general discussion of strain
rate effects on ductile materials will be presented. The behavior of mild steel and
aluminum (6061-T6) will be highlighted in context of the experimental investigations,

presented in Chapter 6, and subsequent finite element analyses, discussed in Chapter 7.

To illustrate the effects of strain rate dependent or independent behavior, general
examples of idealized stress-strain relationships are illustrated in Figure 5-4. The first
case is an elastic, perfectly plastic response at the corresponding yield stress (o).
Although the model cannot account for work hardening, Jones (1989) demonstrates that
theoretical models with perfectly plastic material response are in agreement with

experimental observations, for specific materials and structural configurations.

An elastic, linear strain hardening response is illustrated in Figure 5-4(b), which is a
relatively simple but commonly utilized model. Variants also incorporate piecewise
linear and nonlinear, power law (e.g. Ramberg-Osgood) formulations. The main limiting
factor is an assumption of a constant elastic response and thus does not accurately model

the Bauschinger effect.

A number of methods have been proposed to account for the influence of strain rate on
the stress—strain response as illustrated in Figure 5-4(c); for example Malvern (1984),
Duffy (1982, 1979) and Lindohlm and Besseny (1969). A constitutive relationship that is
typically employed is an overstress power law relationship known as the Cowper-

Symonds equation (Symonds, 1967),

£? = D(E—IJ, (5.7)
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Figure 5-4. Idealizated Stress-Strain Response for a Ductile Material (a) Elastic-
Perfectly Plastic, (b) Bilinear Elastoplastic, (c) Rate-Dependent Elastoplastic, and (d)
Rate Dependent, Path-Dependent Elastoplastic.
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where £”is the uniaxial equivalent plastic strain rate, & is the dynamic flow stress for
nonzero plastic strain rate, o; is the static yield stress that can be a function of
temperature, plastic strain or other field variables, D and ¢ are empirical material
constants. Bodner (1968) presents further discussion on the reference static yield stress.
In general, it is assumed that the work hardening rate remains constant for different strain
rates and flow stress levels. The overstress function is dependent on the instantaneous
plastic strain rate and load history independent. Based on plasticity theory, the
formulation is readily incorporated in numerical methods and can be adapted to various

hardening rules under general stress states.

Some materials exhibit path dependence, where the flow stress could exhibit a different
path and strain rate response due to a change in the work-hardening parameter as shown

in Figure 5-4(d).

For mathematical simplicity, most commercial finite element packages, such as NISA
(1997), only account for work hardening through an idealized elastic, perfectly plastic
stress—strain relationship. Robust computational algorithms that consider rate-dependent
response (e.g. viscoplasticity, strain-rate sensitive yield flow behavior) are incorporated

by advanced finite element packages.

5.3.2 Evaluating Dynamic Mechanical Properties

A significant volume of literature has been dedicated to investigating the mechanical
response of slender bars subject to intense axial impulse loads or high strain rates. The
emphasis has been on the detailed characterization of stress—strain relationships at high
loading/strain rates. The corresponding influence of stress wave interference effects and
measurement techniques on the empirical mechanical response was also assessed. Some

of the historical investigations include the referenced works of Jones (1989), Malvern



111
(1984), Nicholas (1982), Duffy (1982, 1979), Lindohlm and Besseny (1969), Symonds
(1967), Davies (1948) and Hopkinson (1914). In addition, a number of studies have
evaluated the influence of experimental apparatus and procedure on the dynamic
mechanical response of materials at high strain rates, such as Albertini et al. (1978),

Clifton (1983) and Hauser (1966).

The experimental investigations typically employed a variant of the split-Hopkinson
pressure bar. The apparatus was valid for strain rates in the range of 10" /s to 10* /s,
where a small specimen would be placed collinear between two identical long, slender
rods. The specimen size was selected to produce a uniform strain distribution over a
finite time interval. An elastic axial or torsional impulse would be applied to one of the
slender rods, as an input device or transmitter and the other rod would serve as the output
or receiver. The rod slenderness ratio was selected to ensure that the pulse wavelength
was greater than the diameter so that one-dimensional wave propagation theory could be
considered. The apparatus also eliminated inertia effects of a crosshead and load cell
associated with a conventional test frame. Strain gauges on the input and output rods
measured the axial stress wave propagation and the mechanical response of the specimen

was inferred from the data records.
5.3.3 Characteristics of Aluminum 6061-T6 and Mild Steel

Experimental investigations on the strain-rate sensitivity of Aluminum 6061-T6 have
exhibited some discrepancy. For strain rates up to 10 /s, Maiden and Green (1966) and
Lindholm and Yeakley (1968) did not observe strain rate dependence. Jones (1989),
Bodner (1968) and Gerard and Papimo (1957) made similar observations. Ng et al.
(1979) and Hoge (1966) concluded that the material response exhibited dependence on
strain rates greater than 10/s. For work hardened specimens, Hauser (1966) demonstrated

that dependence on strain rate was observed particularly for rates greater than 10° /s. The
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influence on aluminum behavior, however, was significantly less pronounced than the
response of mild steel. Langseth et al. (1994) conducted axial impact tests on thin-walled
aluminum (6061-T4, 6061-T6) extrusions and showed that the peak dynamic loads were

1.2 to 2 times the peak static loads.

In contrast, the literature is quite conclusive on the strain rate sensitivity of mild steel.
For strain rates on the order of 10° /s, the flow stress exhibits an increase by a factor of
approximately three. This issue has been thoroughly reviewed and discussed by Jones
(1989), Chang et al. (1989), Bodner (1968), and Marsh and Campbell (1963).
Furthermore, Harding (1987) states that an increase in the quasi-static strength raises the
threshold strain rate required for rate dependent behavior. For moderate strain rates,
associated with impulsive events of interest for the current investigation, the importance
of considering rate effects on the stress-strain response of mild steel has been recognized.
The importance of rate sensitivity on the plastic pulse buckling response will be further
addressed through the experimental investigations (Chapter 6) and the finite element

modeling (Chapter 7).

5.4 Dynamic Plastic Buckling

The plastic response of beams to transient loading events has received considerable
interest over the past four decades and has encompassed a broad subject area. An
extensive number of studies have been conducted on parametric buckling arising from
pulsating loads; for example Bazant and Cedolin (1991) and Bolotin (1964). In addition,
a significant research effort has investigated the plastic buckling response of beam subject
to transverse loads (Jones, 1989) and dynamic progressive buckling of axially loaded
thin-walled sections (Belingardi and Vadori, 1993; Abramowicz and Jones, 1984). For

the present study, these issues are not considered. The dynamic buckling response of
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slender beams, subject to intense axial impulsive loads where inertia effects and plastic

flow influence the modal response, is examined.

The elastic pulse buckling analysis addressed in Chapter 2 through Chapter 4, considered
an impulsive stress less than the proportional limit. The observed plastic flow response,
from experimental (Gerard and Becker, 1952; Lindberg and Florence, 1987) and
numerical (Chapter 4) investigations, occurred only after buckling was well developed
and was localized to the single peak buckle crest. Plastic pulse buckling, however, can be
characterized by large permanent strain where the stress state exceeds the elastic limit
prior to significant growth of lateral displacements. The dynamic plastic pulse buckling
of structures is a complex subject area of continued research. Past investigations have
focused on a variety of interests including (i) empirical studies characterizing the buckled
wavelength, (ii) theoretical analysis defining stability based on limit bound plasticity
theory, (iii) investigations on fundamental, higher order or “preferred” mode response by
theoretical or idealized mechanical models or (iv) numerical investigations on dynamic

buckling.

Based on these studies, a preliminary framework has been developed to assess the
dynamic plastic buckling response of axially loaded beams. Karaziagova and Jones
(1996), Jones (1989) and Ari-Gur et al. (1987) have all stressed the importance for
continued research in this field. In order to reduce the analytical complexity, the
performance of available engineering tools is constrained by limiting assumptions (e.g.
equation of motion, constitutive relationship) and simplifications (e.g. structural
geometry, boundary conditions). Although the analysis can provide considerable insight
on the buckling process, for complex dynamic buckling events numerical methods are
required and provide a rational basis for detailed investigations. A review on dynamic
plastic buckling of structures, with particular reference to axially loaded slender beams,

will be presented.
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5.4.1 Experimental Studies

Since the 1940’s, experimental investigations on the behavior of bars subject to intense
loads were generally concerned in defining elastoplastic constitutive relationships or
characterization of the stress wave front (Meyers, 1994; Abramson et al., 1958). For
dynamic pulse buckling, Bell (1988) proposed a semi-empirical expression for the critical

buckled wavelength based on the quasi-static buckling response of struts,

L, = ——m, (5.8)

where a is an experimentally measured material constant (N'm’) and Oa: is the
maximum uniaxial stress (N/m?). Figure 5-5 illustrates typical deformed geometry

profiles, for a 12.3mm diameter aluminum bar subject to an impact velocity of 40.6m/s.

Vanation in the buckled profile geometry between the projectile and impacted sample
was due to inertia of the steel sabot, which fixed the impacted specimen in place. The
analysis considered a constant stress state and particle velocity with finite strain field
behind the propagating plastic wave front. The effects of axial inertia and strain rate
sensitivity are ignored. Analysis conducted by Karagiozova and Jones (1996)
demonstrated that for dynamic plastic buckling response, the quasi-static analysis could
not predict the final deformed buckled shape unless the impact energies were small.
Thus, the analysis of Bell (1988) was limited to lower bound estimates for the initiation

of dynamic instability.

Although primarily concemed with an elastic buckling response, the experimental data

presented by Ari-Gur et al. (1982, 1979, 1978) was of tangible interest. A series of
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Figure 5-5. Post-Test Buckled Mode Shapes for 12.3mm Diameter Aluminum Rods (a)
Projectile, (b) Impacted Bar (Bell, 1988).
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impact tests were conducted on bars of rectangular cross-section composed of 6061-T4
aluminum, AISI-01 carbon chrome alloy steel and fiberglass-epoxy composite. Columns,
with effective slenderness ratios (71 < L/r < 411), were subjected to free-fall impact by a
cylindrical mass, ranging from 0.05kg to 0.37kg, with critical striking velocities between
6m/s and 15m/s. The significance for plastic flow buckling is illustrated in Figure 5-6,
where the final deformed profiles exhibited a higher order response than the initial
imposed half-sine wave imperfection magnitude, which was on the order of /./d. This

observed modal response will be further addressed in Chapter 6 and Chapter 7.

Abrahamson and Goodier (1966) conducted a series of experiments where round
aluminum bars were fired as free-flight projectiles against a heavy steel slab with
increasing impact velocities. Figure 5-7 illustrates the buckled profiles for 6061-T6
aluminum rods (0.454" diameter and 18" length) impacting a rigid steel target at
velocities of up to 650ft/s (~198m/s). The ratio (V/V,)’ relates the impact kinetic energy
to the static elastic strain energy of the rod. The top bar is the reference condition or
unstressed state. In addition to the more prevalent axial shortening and transverse
deformation, local effects of plasticity through diametral expansion are evident near the

impacted end particularly for the higher velocities. Assuming a “preferred” mode

(A, =272 n= V), for plastic buckling response the dominant half-wavelength can

be defined as (Abrahamson and Goodier, 1966),

A
L, = A r 2E,
2s o

.9

A typical axial strain response is illustrated in Figure 5-8, where the peak strain was
measured at one diameter from the contact interface and considered twice the diametrical
strain. For the particular bar geometry, the time (243us) was on the order of the return

period for the propagating elastic unloading wave.
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Figure 5-6. Digitised Profiles of Experimental Buckled Mode Shapes of Aluminum Bars
Subject to Axial Impact by a Free Fall Hammer (Ari-Gur et al., 1982).
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Figure 5-7. Dynamic Plastic Buckling of a Rod by Longitudinal Impact (Lindberg and
Florence, 1987).
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Figure 5-8. Axial Strain as a Function of Distance from the Impacted End (Abrahamson
and Goodier, 1966).

An empirical expression was also developed relating the work done in axial shortening to
the kinetic energy in excess of the elastic strain energy. For a beam of length (L), elastic

modulus (£) and yield stress (g;), the axial shortening (J) is defined by,

o.L(y?
5 = 2_(?""-1) (5.10)
E

where Ve is the kinetic energy velocity term in excess of the elastic strain energy

velocity, V.
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The linear relationship, illustrated in Figure 5-9, was consistent with experimental data
(Abrahamson and Goodier, 1966). Equation (5.10) was evaluated with a yield stress, (o;
= 300MPa) and an elastic modulus (E = 69GPa). Although deviation from linearity at
higher energy ratios was exhibited, the basic assumption of a uniform axial thrust appears
valid. The measured wavelength response data compiled by Abrahamson and Goodier
(1966) was assessed as a function of the axial strain, which is illustrated in Figure 5-10.
For the 0.454", 0.209" diameter rods and the 0.454" diameter tube, the theoretical
dominant half-wavelengths are 1.01", 0.46" and 1.70", respectively. Significant
experimental scatter is evident and linear trend lines, fitted by a least squares analysis, are

shown for illustrative purposes.

The buckled response for the impacted rods exhibits a general decreasing “preferred”
half-wavelength with increasing axial strain (i.e. kinetic energy). The variation is
probably related to a number of factors including dynamic yield stress material behavior,
as well as axial and flexural mechanical and modal characteristics (e.g. stiffness, natural
vibration frequencies). For the impacted tube, data for the increasing wavelength
response with axial strain may be related to the shell-like nature of the cross-section.
Pegg (1992) demonstrated effects of curvature, strain-rate reversal and elastic unloading

influenced the modal response of impulsively loaded cylinders.

The empirical expressions have provided a basis for estimating dominant mode response
for specific pulse buckling events. Extrapolation of the modal relationships outside the
domain of the investigated parameters; for example variation in material properties or
structural configurations, may not be valid. Experimental data, however, is invaluable for
the development and validation of analytical or numerical models characterizing the pulse

buckling response.
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5.4.2 Simplified Analytical Methods

For the past three decades, a significant volume of literature has been developed on the
dynamic plastic buckling of structures. Jones (1989) provides a comprehensive treatment
on the dynamic plastic response of beams, plates, shells as well as the challenges of
model similitude. In general, the simplified methods of analysis presented are bounded
by the defined assumptions, which can include infinitesimal displacements, linear
material constitutive relationships (e.g. rigid plastic, linear strain hardening) and

structural response (e.g. the Euler-Bernoulli beam theory).

Limit bound rigid plasticity theorems have been applied but the methods are restricted in
terms of peak deflection and response time. Although not a viable procedure for the
analysis of large deflection dynamic pulse buckling events, which is of current interest,
the method could be employed as a preliminary assessment tool. Approximate kinematic
methods have been applied to account for finite deformation (Jones, 1971). The
literature, however, has concentrated on the transverse loading of beams and plates

(Jones, 1989).

For the dynamic response of beams, a number of investigations have considered oblique
and transverse pulse loads. Although not directly applicable, there are related issues that
may contribute to the understanding and model development of axial pulse buckling
events. For example, Yu et al. (1997) and Zhang et al. (1995) have provided insight on
plastic hinge response as well as the interaction of elastic and plastic stress waves
assuming perfectly plastic material behaviour. Yu and Jones (1997) have demonstrated
the importance of stress wave effects, material strain rate sensitivity and inertia terms for

low velocity impact on the order of 10m/s.
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In terms of axial pulse buckling, Perrone (1965) and more recently Symonds and Frye
(1988) investigated the effects of rigid plastic and elastoplastic material behaviour, on the
dynamic response of a single degree of freedom model. Rigid plastic analysis was
adequate for impact energies on the order of three times the elastic strain energy and pulse
duration less than the natural period of vibration. For rate sensitive materials,
incorporation of a rigid, perfectly plastic material model that could account for a dynamic
yield stress was adequate since the bulk of energy dissipation occurred prior to variation
in the strain rate response. The analysis characterized upper displacement bounds and
lower pulse duration bounds for a dynamic response that can be defined by a simple,

single degree of freedom oscillator.

Lee (1981) applied quasi-bifurcation theory for the dynamic buckling analysis of an
axially loaded, simply supported column. The dynamic Euler-Bernoulli equation of
motion was considered, which neglected axial inertia and assumed a bilinear elastoplastic
stress—strain response. The perturbed flexural motion was determined as the sum of
uncoupled eigenmodes, defined by a quadratic functional, for the column motion.
Initiation of an eigenmode and the critical time for quasi-bifurcation compared favorably
with numerical analysis. For lower impact velocities, the first mode of vibration
dominated; however, with increasing velocity higher order modes were evident. The
theoretical work could not account for modal response during post-bifurcation. Lee
(1981) and Jones (1989) stated that further investigations are required before a suitable

design procedure can be developed.

Mode approximation methods have also been developed for the analysis of structures
(Symonds et al., 1984; Symonds, 1980). The procedure is based on decomposition of the
structural response into distinct phases. The initial and final phase is governed by theory
of elastic structural dynamics. Rigid plastic material behaviour and a prescribed modal

form define simplifications for the intermediate response. The procedure has been
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applied to the transverse loading of clamped beams and portal frames where the mode
shape and plastic hinge locations are known a priori. Analysis of axial impact buckling
events associated with wave propagation was not considered. Mode approximation
methods have been applied to both small and large deflection regimes for a specific
structural geometry. Jones (1989) states that further studies are required in order to
examine the accuracy and efficiency of this method for a broader class of structural

configurations.

5.4.3 Idealized Mechanical Models

Simplified mechanical models addressing the dynamic buckling response of axially
loaded beams have generally considered lower order degree of freedom systems. The

investigations focused on an assessment of the governing parameters.

Hartz and Clough (1957) studied the inelastic behaviour of columns subjected to an
arbitrary dynamic load. Modal superposition was employed for the elastic response and a
single degree of freedom (SDOF) rigid hinge represented the plastic behaviour. Similar
to the studies on elastic buckling, discussed in Chapter 2, only the fundamental mode
response was considered. Higher modes could be included, with increased computational

effort, provided a single plastic hinge was analyzed.

Calladine and English (1984) conducted a series of investigations on the dynamic
behavior of energy absorbing structures through experimental impact studies on
aluminum HP-30 and mild steel. The focus was on the dynamic response of cylindrical
tubes and slender beams subject to radial and axial impact, respectively. The simple
structures were classified on the observed load—deflection behaviour. The beam model
was designated Type II response, which exhibited an early peak stress with an ensuing

rapid load decrease caused by dynamic instability. This is schematically illustrated in



124
Figure 5-11. The initial configuration was slightly bowed at the midspan to introduce an

initial geometric imperfection and initiate a predefined buckled response.

Zhang and Yu (1989) modeled the buckling event of Calladine and English (1984) as a
four-hinge deformation mechanism with a rigid viscoplastic material behavior. The
analysis concluded that the dynamic response was dependent on the ratio of impact
hammer mass to beam mass and magnitude of the initial geometric imperfection. The
velocity sensitivity, observed by Calladine and English (1984) for constant input energy,
was accounted through material strain rate effects and dynamic yield response. A later
investigation by Tam and Calladine (1991), concluded the dissipation of kinetic energy
could be attributed to two mechanisms, an initial compressive response (i.e. axial inertia)
followed by flexural motion about the midspan plastic hinge. The analysis considered
rigid plastic behaviour and an empirical expression was developed relating the ratio of
initial kinetic energy to the compressive strain energy. The importance of impact mass to

beam mass ratio on the dynamic response was also reported.

Based on the analysis of Type II structures, Su et al. (1995a, 1995b) developed a
simplified mechanical model that accounted for large deformation, axial inertia,
elastoplastic behaviour and material strain rate effects. The analysis considered a
symmetric deformational response, Figure 5-11(a), with the axial force members
interconnected at four elastoplastic hinges. The hinge mechanism accounted for the
flexural mode response and lumped mass properties were assigned to these nodes. The
investigations were in general agreement with the dual phase response described by
Calladine and Tam (1991) but considered inertia effects as significant throughout the
solution. Defining an elastic response allowed the determination of peak load estimates
(Su et al., 1995a). The significance of viscoplastic material behaviour on the increased
proportion of elastic strain energy, due to the dynamic yield stress dependence on rate

sensitivity, was demonstrated (Su et al., 1995b).
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Figure 5-11. Investigations of Calladine and English (1984), (a) Schematic illustration of
Type II Structure Loading Event and (b) Load-Deformation Response.
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Karagiozova and Jones (1995a) conducted further parallel investigations with the Tam
and Caladine (1991) study, as part of research program aimed at defining the fundamental
parameters that govern the dynamic plastic buckling of structures. Similar to the analysis
of Su et al. (1995a), a relatively simple mechanical model was developed, which is
illustrated in Figure 5-12. A slender beam was characterised by two weightless rigid
links of length (L) with an initial geometric imperfection (J,) and central lumped mass
(m;). The beam was impacted by a mass (M) with an initial velocity (v,) and the transfer
link was considered rigid with zero mass (m; = 0). The axial (K,;) and flexural (X))
response was defined by nonlinear, elastoplastic spring elements with strain rate effects
defined by the Cowper-Symonds relationship. For a particular beam geometry, the model
retains an equivalent static Euler buckling load and first natural frequency of elastic
vibration such that the mass m; = 4m/7°, where m is the mass of the actual structure. An
important point to consider is that the derived relationships were limited to small

deflections where 8,/L = sin 8 = 6.

The investigation of Karagiozova and Jones (1995a) was consistent with the analyses of
Tam and Calladine (1991) and Su et al. (1995a, 1995b) in terms of energy dissipation
mechanisms (i.e. axial inertia, flexural response). The importance of considering elastic,
viscoplastic material behaviour on the energy distribution (i.e. proportion of elastic and
plastic compression or flexure) for rate dependent material was demonstrated. The
numerical models were more accurate with respect to the experimental data for rate
independent aluminum. The analysis showed the dynamic yield behaviour was a strong
function of the impact velocity and mass ratio. The influence of increased geometric
imperfections on decreasing the critical buckling energy was also demonstrated. Finally,
the development of larger degree of freedom models required for investigating wave
propagation effects and higher order modal response associated with higher impact

velocities was recognized.
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Figure §-12. Idealised Mechanical Model (Karagiozova and Jones, 1995).
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In a similar study, Karagiozova and Jones (1995b) considered a parametric variation of
mass ratio, impact velocity, and rate independent, elastoplastic material properties. The
effects of a dynamic yield stress were not considered. For mass ratios (M/m; < 25), the
analysis illustrated that the critical buckling energy required to initiate dynamic instability
was significantly influenced by the strain hardening parameter (4). The term (A1) was
defined as the ratio of the plastic to elastic spring constant stiffness. The structural
response was dominated by compression and the critical velocity required was greater
than that for an elastic material, as shown in Figure 5-13(a). The discontinuity for the
strain hardening parameter (4 = /.0), which represents the fully elastic case, is
characterised by instability of the nonlinear terms associated with the Mathieu solution.
Conversely, for the higher mass ratios (M/m; > 50), the structural response was
predominantly flexural and the critical buckling energy for elastoplastic behaviour was

lower due to the softening effect of the tangent modulus. The critical impact velocity was
significantly influenced by a coupled increased geometric imperfection (5— ) and

decreased mass ratio (M/m;) as shown in Figure 5-13(b). The term (& /h) represents the

geometric imperfection as a fraction of the beam depth (4). Furthermore, the elastoplastic

response was more sensitive to initial imperfections (5_ ) than the elastic models.

In view of the quasi-bifurcation studies of Lee (1981), Karagiozova and Jones (1996)
developed a multi-degree of freedom mechanical model. A lower bound analysis was
conducted that considered the critical buckling energy as a function of impact mass and
velocity. The investigations demonstrated that the proportion of compression energy
absorbed significantly increased with decreasing magnitude of the geometric
imperfection. For low kinetic energy events, quasi-static analysis could predict the onset
of buckling but not the final deformed mode shape. The importance of considering
higher degree of freedom systems in consideration of wave propagation effects on
dynamic pulse buckling and determining the range of validity for quasi-static methods

was also recognized.
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Figure 5-13. (a) Critical Impact Velocity (¥,) as a Function of the Mass Ratio (M/m,) and
Strain Hardening Parameter (1), (b) Critical Impact Velocity as a Function of Geometric

Imperfection (é? ) and Mass Ratio (Karagiozova and Jones, 1995b).
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Karagiozova and Jones (1997) have also investigated the importance of considering
dynamic yield surface and strain rate effects on the elastoplastic, buckling of a simple
mechanical model (Figure 5-12). The dynamic peak force magnitude was dependent on
the impact velocity and sensitive to large mass ratios at lower velocities. The analysis
demonstrated that for the parameters investigated, the approximation of Perrone (1965)
was adequate to define the dynamic elastic, viscoplastic response. The strain-rate
sensitive models predicted higher critical impact velocities, which was primarily related
to the dynamic yield surface. The model was best suited to low velocity impact events
associated with a lower ordered modal response due to the limited degrees of freedom
defined by the relatively simple mechanical model. From this perspective, note that a
higher order modal response has been observed during dynamic buckling events with
impact velocities on the order of 6m/s, as shown in Figure 5-6. This issue will be further
addressed through experimental investigations (Chapter 6) and by finite element analysis

(Chapter 7) conducted for the current thesis.

5.4.4 Modal Perturbation Analysis

For dynamic plastic buckling, perturbation analysis is effectively based on the same
fundamental assumptions of the elastic “preferred” wavelength solution (Lindberg and
Florence, 1987) as discussed in Chapter 2. Modal perturbation techniques are restricted
to analysis of ideal structures, characterized by linear material constitutive relationships
and relatively simple boundary and loading conditions. Beams subject to axial impact
(Lindberg, 1965) or radial impulsive loading of shells (Pegg, 1992) are representative

examples.

Consider the beam, illustrated in Figure 2-4, subject to an axial impulse that exceeds the
material yield stress. Neglecting transverse shear and rotary inertia terms, the dynamic

equation of motion is,
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4 2
Ej 19 p 2
ox ox-

(y+yo)+pAZ;’r = 0. (5.11)

The expression is of the same form as stated in Equation (2.8) except that the elastic
modulus (£) has been replaced by the tangent or strain hardening modulus (£7). The

axial force (P) is assumed uniform throughout the beam length.

The theory is based on defining a linear, constant tangent modulus with minimal effects
of strain hardening. The dynamic buckling event is considered a perturbation of motion
associated with the propagation of an axial stress wave. The beam is subject to a state of
plastic flow with continuously increasing compressive strain. A transverse flexural
response develops due to initial imperfections (e.g. geometry, stress pulse variation,

velocity distribution).

Strain hardening is fundamental for flexural mode perturbations due to a stress
differential across the beam depth. The assumption of a constant tangent modulus is
required to define a linear moment-curvature relationship. Thus, for low strain hardening
ratios (E1/E), the axial load (P) can be considered constant across a defined cross-section.
The compressive strain rate is assumed to dominate the flexural strain rate until buckling
has been well developed and thus the effects of strain-rate reversal are neglected.
Sustained axial flow is arrested on the return of the unloading elastic axial stress wave.
Similar to elastic buckling analysis, position of the wave front was neglected, as
supported by experimental observations of the buckled profile, and a state of uniform

axial strain was assumed. Redefining the following nondimensional terms,

si=—and 1,=—2"_ (5.12)
E; r(E, P)*
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Considering the axial thrust as P = o A4, then Equation (5.11) can be rewritten,

2 4 2
a‘,”+a‘f+a,(w+w¢,) = 0 (5.13)
or; 0¢& 0&-

Similar to the elastic analysis (Figure 2-6), hyperbolic magnification functions are
illustrated in Figure 5-14 for initial velocity and displacement perturbations. The

“preferred” wave number, 77, = l/ V2, is shown for reference.

As shown by Lindberg and Florence (1987), the amplification function for unbounded

growth (77 < I) of the buckle solution terms for initial velocity perturbations is,

G,@.r;) = —Z-sinh(p,z,), (5.14)

n®T

and for initial displacement perturbations,

G,@nz,) = 1_1”2 kosh(p,z,)-1] (5.15)

The amplification function represents the ratio of the buckled bar or perturbed motion
coefficients (velocity or displacement) to the initial Fourier coefficients. For 7 > I, the
solution would be defined by the circular or trigonometric form and 77 = / represents the

critical Euler wave number (i.e. Az = 272). The solution of interest is the hyperbolic form

represented by 77 < /.

Perturbation analysis is a relatively simple method that can provide preliminary estimates

on buckling threshold limits for axially loaded beams. As shown in Figure 5-14, the
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pulse buckling response is associated with a dominant mode that converges to a
“preferred” mode with increasing nondimensional time. Analysis of pulse buckling events
that consider complex structural configurations (e.g. geometry, boundary conditions), or
impulse events with spatial and/or temporal variations (e.g. applied loads, velocity field)

requires numerical solutions.

5.4.5 Numerical Modeling

Over the past three decades, the application of numerical methods to simulate the
response of structures to impulsive loading events has flourished and the scope has
covered a wide range of interest. A significant volume of literature has matured within
the field of high-energy events that considers such factors as shock waves, thermal
effects, kinetic energy or penetrating weapons. Analysis of these intense impulsive loads
has been conducted on nuclear, aerospace, military and civilian structures. The works of
Bulson (1994), Brebbia and Sinchez-Gdlvez (1994) and Ammann et al. (1988) are
referenced for further information. Numerical investigations have also been conducted
for lower intensity events such as progressive buckling (Langseth et al., 1994; Belingardi
and Vadori, 1993) and transverse loading (Yu and Jones, 1997; Nurick et al., 1994; Jones,
1989) events.

The present investigations are focused on pulse buckling events where factors such as
plasticity, inertia, stress wave propagation, and higher order modal response are important
parameters on the pulse buckling response of axially loaded beams. Two numerical
procedures often employed for modelling the dynamic response of structures, which
exhibit large deformations and strains, are the finite difference and finite element
methods. Relatively few studies have considered the characteristic higher order, modal
response (e.g. Lindberg and Florence, 1987; Gary, 1983; Karagiozova and Jones, 1996).

These investigations, however, encompassed analytical, experimental and ‘simplified’
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mechanical modelling procedures. A limited number of studies have employed the finite
difference method to model the pulse buckling response and the specific details will be

discussed.

Discussed in Chapter 2, Ari-Gur et al. (1982, 1979, 1978) investigated the pulse buckling
response of axially loaded beams by the finite difference method. The analysis was
primarily concemed with the elastic response and defining an envelope for buckling
initiation. Details of the stress—strain or modal response—time history (e.g. buckled
profile development) were not presented. In addition, the analysis focused on the
fundamental mode response despite the observed higher order buckled waveform (Figure
5-6). Hayashi and Sano (1972a, 1972b) also observed a higher order mode, elastic pulse
buckling response and demonstrated excellent agreement between the finite difference

models and experimental studies.

Sugiura et al. (1985) developed a finite difference model, which accounted for the effects
of plasticity, strain-rate and observed higher order buckled profile. The dynamic
instability of axially impacted columns, with simply supported boundary conditions, was
investigated as a function of slenderness ratio. The Euler-Bemoulli beam theory and
consideration of axial inertia effects was employed. The constitutive relationships were
defined by linear elastic, perfectly plastic model and a viscoplastic theory presented by
Perzyna (1963). The beam geometry was defined by a fundamental mode imperfection
where one end was impacted by a mass with an initial velocity. Amplification of the half-
sine wave imperfection was a significant feature of the global response, however, the
growth of higher modes dominated the buckling response for later times. A dynamic
instability criterion was defined, with respect to energy loss of the striker, and was
dependent on the normalized striker mass, initial impact velocity and slenderness ratio.
The modal response was dependent on the impact velocity and the ratio of the lateral to

axial mode of vibration. The dynamic instability analysis, however, was limited to small
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transverse deflections defining the axial-displacement and curvature-displacement
relationships. For the parameters investigated, the analysis was in good agreement with

the analytical and experimental works of Hayashi and Sano (1972a, 1972b).

Dynamic, plastic flow buckling is a complex interaction that presents a considerable
challenge in developing comprehensive models. A number of factors must be considered,
which can include the structural configuration (e.g. geometry, essential boundary
conditions), constitutive relations (e.g. elastoplastic, dynamic yield, strain rate effects),
impulse event (e.g. load intensity, spatial and/or temporal variation), and general response
characteristics (e.g. modal response, stress wave propagation). The discussion presented
in the current section highlights the paucity of numerical models developed to investigate

plastic buckling response of beams subject to an axial impulse.

To the author’s knowledge, a detailed parametric finite element investigation
characterizing the complete modal response of axially loaded beams has not yet been
conducted. The finite element method provides a rational basis for the model
development and validation of a relatively simple model is critical for future analysis of
more complex pulse buckling events. The investigations will consider an integrated
approach that considers analytical methods and experimental studies. The elastic pulse
buckling analysis presented in Chapter 3 and Chapter 4 has illustrated the importance of a
coupled approach. For the dynamic plastic bucking response of a slender beam subject to
an axial impulse, the study objectives to be addressed in the following chapters can be
summarized as (i) to develop a comprehensive finite element model that accounts for the
experimentally observed modal response, (ii) to assess the computed response in terms of
analytical solutions (e.g. mode perturbation theory), (iii) to identify the dominant
parameters that influences the pulse buckling response and (iv) to develop an appropriate

dynamic pulse buckling criterion.



6.0 Experimental Program

The dynamic plastic response of impulsively loaded beams has been the subject of
continued research for over 60 years. Early studies focused on characterizing plastic
wave propagation and dynamic material behaviour. The majority of experimental
investigations on the dynamic buckling response of a slender beam subject to axial impact
have focused on lower velocity (e.g. progressive buckling) and higher velocity events
(e.g. projectile impact). For moderate impact velocities, where wave propagation effects
are important, experimental data on dynamic buckling response due to axial impact is

limited.

For axial impact events with moderate velocities on the order of Sm/s to 10m/s, the
experimental record is based on the studies conducted by Calladine and English (1984),
and Tam and Calladine (1991). These investigations considered the dynamic response of
a beam, with a predefined fundamental mode imperfection and buckling response, subject
to axial impact. As discussed in Chapter 5, however, several analytical and experimental
studies have shown that for intense impulsive loads the dynamic behaviour can be

characterised by a higher mode response.

An experimental investigation on the dynamic plastic buckling of slender beams subject
to axial impact is presented. Details on the experimental apparatus, procedure, study
parameters and experimental data are discussed. The primary focus was the development
of empirical relationships characterizing the dynamic plastic buckling response of a
slender beam, subject to axial impact, with respect to a variation in the effective
slenderness ratio and material properties. The experimental investigations would also

provide the basis for validating parallel numerical analyses by the finite element method.
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6.1 Experimental Investigations

6.1.1 Experimental Apparatus and Procedure

A summary description of the experimental apparatus and procedure will be presented. A
more comprehensive discussion detailing the experimental investigations, including the

apparatus, procedure and data, is presented in Appendix B.

The main support frame and test apparatus is illustrated in Figure 6-1 with a schematic
illustration shown in Figure 6-2. The axial load was delivered by a 10kg, free-fall impact
hammer. An aluminum tube housed the impact hammer and two interior aluminum
alignment discs guided the hammer during free-fall (Figure 6-2). The drop tower tube
was bolted to the upper crosshead of a static test frame (200 metric tonne capacity) and

suspended vertically (Figure 6-1).

The boundary condition for all tests was a fixed restraint (x = 0) and slide bearing support
(x = L,) at the impact interface. The lower fixed boundary condition (x = 0) was
developed through a stiffened vice-grip platen connected to a steel base plate, which was
bolted into the static test frame. The test beam was in direct contact with the steel base
plate and held rigidly in place, by applying a constant torque of 50N-m, through a support
depth of 7Smm. The upper support was designed as a lightweight, “frictionless” slide
bearing and was 25mm in depth, which was fabricated from polyvinyl chloride (PVC).
The bearing surface prevented transverse out of plane displacements and rotations but
allowed axial translation. Prior to each test, the bearing surface of the PVC discs and the
bar length held within the fixed support was sprayed with a commercial Teflon lubricant
to reduce the axial frictional resistance. Transverse horizontal rods braced the drop tower
against the static test frame in order to stabilize the upper support during free-fall and to

resist the generation of any lateral forces during impact (Figure 6-1).
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Figure 6-1. Test Frame for Dynamic Impact Experiments.
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Figure 6-2. Upper Slide-Bearing Restraint and Impact Mass Assembly.

For all tests, the longitudinal axis of the hammer and the test sample was aligned to be
collinear. The initial global, geometric imperfection was measured at 25mm stations
along the longitudinal axis of the beam by a mechanical, spring-loaded dial gauge as

shown in Figure 6-1.
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A wire pulley system was used to raise the impact hammer through the drop tower. The
nominal impact velocity was 6.2m/s, which was measured by three capacitive proximity
switches (Omron Model E2K-FIOMC1). As the lower alignment disc passed the lead
proximity switch, the output signal served as a trigger pulse for the data acquisition
system. The data acquisition board was a BE490™ Series Advanced Transient Recorder
Plug-in (ATP) card by Bakker Electronics Dongen bv. The board was installed on a 486-

33MHz personal computer and the sampling rate was 100kHz per channel.

After the impact test was completed, the mass was secured in a neutral position. The
post-test buckled geometry was also profiled at 25mm stations with the locations of
minima or maxima noted. Data records for all impact tests conducted during the
experimental program are presented in Appendix C. The samples were tested in “as is”
condition with the only constraint that the mill stamp faced the same direction for all

impact events.

Epoxy bonded, foil strain gauges were also employed, to measure axial and flexural
deformations. The gauges were attached in symmetric pairs, on opposite beam faces, at
several stations along the beam length. The objective was to measure the axial and
flexural strain response on or near the peak buckle crest to compare with the midspan
response. The data would allow one to assess the dynamic buckling criterion proposed by
Ari-Gur et al. (1982). Significant difficulties were encountered during the test program,
however, to maintain working foil gauges. Due to the intense lateral stress wave and
buckling motion, the strain gauges would fail at the solder joint of the coupled positive
and neutral leads and/or on the epoxy-bar interface. This issue is further discussed in

Appendix B.
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For elastic pulse buckling events, Lindberg and Florence (1987) stated the lateral velocity
for the peak buckle crest was on the order of 23m/s. Finite element analysis, presented in

Chapter 7, computed a peak transverse velocity on the order of 37m/s.

6.1.2 Experimental Study Parameters

The 10kg free fall impact hammer applied an axial impulsive load to aluminum (6061-
T6) and cold rolled steel beams (CR1018) with a fixed—slide bearing boundary condition.
Two rectangular cross-sections (50.8mmx3.175mm and 50.8mmx4.7625mm) with
effective slenderness ratios ranging from 75 to 300 were investigated. The experimental

study parameters are summarized in Tables 6-1 through 6-3.

The beam depth (d), impact mass (m), unsupported beam length (L,), effective
slendemess ratio (L./r), mean impact velocity (¥;), mean nondimensional imperfection
amplitude () and number of tests conducted are tabulated. A range of slendemness ratios,
75 < LJ/r <300, were investigated with a total of 115 impact tests were conducted. The
average peak initial imperfection for all test series was bounded by the interval 0.00/7 <
B <0.0029. The nondimensional imperfection amplitude (# = A4,/L,) is defined by the
ratio of the imperfection amplitude (4,) and unsupported column length (Z,). The initial
imperfections were slightly higher than typical engineering magnitudes, 0.000] < g <
0.001, (Lindberg and Florence, 1987) but less than those considered by Ari-Gur et al.
(1982), 0.005 < <0.02.
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Table 6-1. Test Parameters for Series AI - 6061-T6 Aluminum (d = 3.175mm).

Series | L, (mm) L/t Mean V| (m/s) B=A/Ly Number of Tests
Ala 137 75 6.20 0.0029 6
Alb 183 100 6.20 0.0023 5
Alc 275 150 6.19 0.0020 10
Ald 367 200 6.14 0.0019 5
Ale 458 250 6.18 0.0021 5
Alf 550 300 6.28 0.0024 10

Table 6-2. Test Parameters for Series AIl - 6061-T6 Aluminum (d = 4.7625mm).

Series | L, (mm) Le/r Mean V| (m/s) B=A/L, Number of Tests
Alla 206 75 6.28 0.0019 3

Allb 275 100 6.19 0.0019 10

Allc 412 150 6.20 0.0019

Alld 550 200 6.24 0.0020

Alle 687 250 6.14 0.0020 4

Table 6-3. Test Parameters for Series SI - Cold Rolled /018 Steel (d = 3.175mm).

Series | L, (mm) Le/r Mean V; (m/s) B=A/L, Number of Tests
Sla 137 75 6.22 0.0027 5
STb 183 100 6.22 0.0017 6
Slc 275 150 6.20 0.0020 9
Sid 367 200 6.14 0.0021 6
Sle 458 250 6.31 0.0023 5
SIf 550 300 6.22 0.0025 12
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6.2 Analysis of Experimental Data

6.2.1 Importance of the Applied Boundary Condition

As described in Appendix B, considerable effort was expended during the preliminary
stages of the experimental program to achieve consistent and repeatable buckled mode
profiles. Although the majority of the impact tests were considered successful (94 out of
115), some results were discarded, which was primarily due to problems encountered
with the upper slide-bearing restraint. This issue can be further addressed through direct

example from experimental observations.

Figure 6-3 illustrates the measured initial and final geometry profiles for two separate
impact tests (4/d/ and AI/d4). For comparison, the buckled profiles for tests A/d/ through
Ald5 are also illustrated in Figure 6-4. Although the same test procedure, impact event
and global imperfection magnitude (B ~ 0.0002) was considered, the relative post-test
buckled profiles were markedly different. The typical pulse buckling response
(represented by test 4/d4) was characterized by the development of a peak transverse
buckle near the lower fixed support. The development of a peak buckle at the upper
support (x = L,), for test Aldl, was associated with a loss of integrity in the upper
restraint. For impacts events with buckled response similar to test A/d/, this was
attributed to the observed partial ejection of the bearing disc (Figure 6-2) from the
support collar. Consequently, the upper support was not representative of the intended

boundary condition and thus the data was not analyzed.

In addition, for the higher slendemess ratios, acceptable impact events were difficult to
achieve where data for Series Alle and Allf were rejected. A complete data record, of the

measured buckled profiles for all impact tests, is presented in Appendix C.
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Figure 6-3. (a) Initial and (b) Deformed Buckled Geometry Profiles for Impact Tests

AldI and Ald4.
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Figure 6-4. Deformed Buckled Profiles for Tests Ald+4 through A/d5.

Ari-Gur et al. (1982,1978) also observed a similar mode transition toward the impact
interface but the contributing mechanism was not addressed. Finite element analysis,
presented in Chapter 7, further demonstrates the importance of modeling the actual,
applied boundary condition (i.e. the full 7Smm depth of the fixed lower support at x = 0)

in order to accurately predict the buckled response.
6.2.2 General Response Characteristics
Representative buckled profiles for the test series 4/, A/] and S/ are illustrated in Figures

6-5 through 6-7, respectively. Rotation of the impacted beams about the 75mm lower

fixed restraint (x = 0) is evident. The characteristic response was the development of a
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Figure 6-5. Representative Buckled Profiles for Series A7 — 6061-T6 Aluminum.

Figure 6-6. Representative Buckled Profiles for Series 4// — 6061-T6 Aluminum.
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Figure 6-7. Representative Buckled Profiles for Series S/ - CR 1018 Steel.

peak buckle crest adjacent to the fixed restraint. In general, the peak buckle location
tended to shift away from the fixed restraint (x = 0) with increasing effective slenderness
ratio (L/r). A summary of the mean response characteristics for the deformed buckled
geometry of the analyzed experimental data record is listed in Table 6-4. Note that the
number of tests and mean impact velocity differ from the raw data (Table 6-1, 6-2 and 6-
3), since several impact events were rejected due to problems associated with the upper

restraint boundary condition.
6.2.3 Normalized Response Parameter
The conceptual basis for analyzing the experimental data is illustrated schematically in

Figure 6-8. On impact of the free-fall hammer with the beam, an elastic stress wave

propagates from the upper restraint (x = L,) toward the fixed boundary (x = 0). For
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Table 6-4. Summary of Mean Characteristics for Analyzed Experimental Impact Events.

Mean Mean
. Number Mean Impact Longl fudmal TransYerse
Test Series of Tests Velocity (m/s) Position of Deflection of
Peak Buckle Peak Buckle

(mm) (mm)

Ala 6 6.20 513 14.1
Alb 5 6.20 57.8 19.4
Alc 7 6.24 €0.0 21.3
Ald 4 6.14 59.5 18.3
Ale 4 6.19 68.8 22.0
Alf 7 6.22 71.9 20.8
Sla 5 6.22 542 10.8
SIb 6 6.22 52.5 12.7
Sic 7 6.24 63.7 8.0
Sld 5 6.14 130.0 7.3
Sle 5 6.31 92.6 5.4
SIf 8 6.18 125.6 5.0
Alla 3 6.28 75.0 17.6
Allb 9 6.21 80.4 18.0
Allc 3 6.21 84.0 17.6
Alld 8 6.23 97.5 17.0
Alle 2 6.15 102.5 11.6

modeling purposes, the beam is considered to be in a state of uniaxial stress. On

successive interaction with the fixed support, the elastic stress wave is reflected and the

axial stress state exceeds yield, whereby a plastic axial stress wave is generated that

travels from the fixed support toward the upper slide bearing. The elastic and plastic

stress waves interact with the fixed boundary and geometric imperfections through the

development of perturbations in the transverse motion.

The buckling event is

“terminated” through dissipation of kinetic energy through plastic work and flexural

stiffening due to the elastic unloading stress wave, where the tangent modulus is typically

two orders of magnitude less than the elastic modulus.
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Figure 6-8. Conceptual basis for analysis of the experimental data.

The experimental data was analyzed to develop an empirical relationship that could
characterize the main parameters influencing the dynamic buckling response. For the
single defined impact event (10kg mass at a nominal contact velocity of 6m/s) these
parameters included slenderness ratio (related to impact mass/beam mass ratio), inertia,

mechanical rigidity, natural frequency and material behavior.

Sugiura et al. (1985) concluded that the mode of lateral displacement was strongly
dependent on the relationship between the natural period of vibration for the lateral and
axial modes. A higher order buckled response would develop when the natural period of
the first-order lateral mode was longer than the first-order axial mode (i.e. lower natural
frequency). On this basis, the present experimental data was assessed. A summary of the

inertia, modal and mechanical rigidity properties are presented in Table 6-5.
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The flexural mode parameter was three orders of magnitude lower than the axial response
mode parameter. As will be shown in the present investigations, the measured buckling
response is consistent with the conclusions stated by Sugiura et al. (1985). Normalized
magnitudes, relative to test Series Al, are also presented in Table 6-5, where the terms

were constant throughout the range of slenderness ratios (L./r) investigated.

Table 6-5. Comparative Assessment of Relative Inertia, Modal and Rigidity Parameters
for the Test Series A7, AIl and SI.

Series Relative to Al
Parameter | Expression | Units
Al All SI All SI
Inertia PA kg/m 0.44 0.65 1.16 1.50 2.67
Axial c, 1500 - 1200 - | 1500 -
Hz 0.67 1.04
Mode 2nL, 5900 3900 6100
Flexural re, 2.44 - 2.34 - 2.54 -
. Hz 0.67 1.04
Mode 27 L, 39.3 26.1 41.0
Axial
L EA MN 11.1 16.7 323 1.50 2.90
Rigidity
Flexural .
o EI Nm 9.35 31.6 27.1 3.38 2.90
Rigidity

A normalized response parameter (]V ) was defined as,

Y7,
= | Ze | 7% 6.1
[CP] fz (Lu _fy ( )
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where

EA ¢, EI rc,
wa = — = wf = — =——2
mL, L, mL, L,

o - Er4 _ 3E.IL
T TR

(6.2)

represents the global axial (@) and flexural (ay) frequency response parameters, and the
local axial (k;) and local flexural (k) stiffness characteristics, L, is the unsupported beam
length, X is the axial coordinate of the peak buckle crest measured from the lower fixed
support (x = 0), E is the elastic modulus and E7 is the tangent modulus. The flexural
stiffness is based on assuming a fixed-fixed beam restraint in consideration of the lower
fixed boundary support (x = 0) and the relative magnitude of the tangent modulus to the

elastic modulus (Figure 6-8).

The primary assumptions for the normalized response parameter (Equation 6.1) are that
the propagating elastic axial stress wave dominates the axial frequency response and the
effects of plasticity govern the local mechanical response (i.e. peak buckle growth) and

flexural mode behaviour.
6.2.4 Peak Buckle Displacement Response Analysis

The peak buckle response was analyzed in terms of the axial coordinate (f) and
transverse deflection (7). The data is presented as a function of the effective slenderness

ratio (L./r) in Figures 6-9 and 6-10 for the axial and transverse response, respectively.

A least squares analysis was conducted on the mean response for each slendemness ratio

investigated. For the limited data set, quantitative statistics of the least squares analysis is



153

Series Sl

(@)

O Series Al
O Series All
< Series Sl

40 1 a Series Al
20 A
O R L) v L) v L) v L) v T v L J L L]
0 50 100 150 200 250 300 350

LJr

Figure 6-9. Axial Coordinate (f) of the Peak Buckle Crest as a Function of the
Effective Slenderness Ratio (L./r).
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Effective Slenderness Ratio (L./r).
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relatively unimportant, and the curve fit highlights general observed trends. The
longitudinal position of the peak buckle tended to shift away from the lower fixed support
with increasing slendemness ratio (Lo/7). This would be consistent with the conceptual
basis presented in Section 6.2.3. The transverse peak buckle amplitude response was
relatively more complex. The post-test midspan deflection was on the same order of
magnitude as the initial profile, whereas the peak buckle amplitude was 20-40 times the

initial imperfection, depending on the slenderness ratio and test series considered.

For the longitudinal position of the peak buckle crest, the mean normalized axial response
(ﬁ X ) is illustrated in Figure 6-11. The axial response exhibited a proportional increase
with the effective slenderness ratio and the analysis suggests that in addition to the
normalized parameter (17 ) inertia effects are important, which is consistent with the
conclusions presented by Su et al. (1995a,b) and Karagiozova and Jones (1995a). The
functional dependence of the axial response with increasing slenderness ratio was also
indirectly supported by the investigations of Ari-Gur et al. (1982), which defined an

elastic dynamic buckling criterion on the basis of axial strain.

The mean normalized transverse response of the peak buckle crest (JV f) 1s presented in
Figure 6-12. The importance of local stiffness characteristics and natural frequency
response parameters is exhibited. Convergence of the normalized transverse response at
lower slenderness ratios, for all test series, further illustrates this relationship and
indicates the relative influence of the imposed boundary conditions. The influence of
flexural rigidity and dynamic yield behaviour on the buckling response was also
observed, particularly for higher slenderness ratios. Although, the absolute magnitudes
are presented, for the normalized response data, shown in Figure 6-11 and Figure 6-12,

the relative comparison of the response parameters (IV N ?) between the respective

datasets (47, AIl and SI), is the significant characteristic to be recognized.
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Figure 6-11. Normalized Mean Axial Response ( N ¥ ) of the Peak Buckle Crest as a

Function of the Effective Slenderness Ratio (L./r).
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Figure 6-12. Normalized Mean Transverse Response ( N ¥ ) of the Peak Buckle Crest as

a Function of the Effective Slenderness Ratio (Lr).
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As discussed in Chapter 5, for strain rates on the order of 10’ /s, the flow stress of mild
steel exhibits an increase by a factor of approximately three over the static values. Jones
(1989) and Chang et al. (1989) have discussed the importance of considering rate effects
on the dynamic stress-strain response of mild steel. In contrast, the literature is not as
conclusive on the strain rate sensitivity for 6061-T6 aluminum. For example, Maiden and
Green (1966), and Lindholm and Yeakley (1968) did not observe strain rate dependence
at strain rates up to 10’ /s. Conversely, Ng et al. (1979) and Hoge (1966) concluded that
the material response exhibited dependence on strain rates greater than 10 /s. Hauser
(1966) demonstrated that for work hardened specimens, a dependence on strain rate was
observed particularly for strain rates greater than 10° /s but significantly less than mild
steel. For the present investigations, the local strain rates for the peak buckle were on the

order of 10? /s.

Dynamic mechanical properties can influence the initial buckling response (e.g. flow
stress, stress-strain characteristics to yield), the development of the peak buckle crest
through plastic deformation (e.g. tangent modulus, strain-rate sensitivity) and the
subsequent elastic unloading process. During the impact event, sustained axial
compression and transverse buckle growth would continue until unloading by the elastic
stress wave has occurred. The elastic unloading corresponds to a change in the “effective
stiffness”, since for most metals the tangent modulus is approximately two orders of
magnitude lower than the elastic modulus. As illustrated in Figure 6-12, this effect was
exhibited by the limited transverse response of test series SI (mild steel) in comparison
with series AIl (6061-T6 aluminum), which had a greater flexural rigidity (Table 6-5)

with comparable static yield strength and tangent modulus.

Karagiozova and Jones (1997, 1995b), and Su et al. (1995a,b) demonstrated that rate-
sensitive behaviour increases the peak load and stored elastic compression energy, and

decreases buckle amplitudes. The peak dynamic impact load for rate sensitive behaviour
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was influenced by the impact velocity and large impact mass to beam mass ratios.
Although, the compression phase was primarily equated to inertia and the flexural
response to rate-sensitive behaviour, Su et al. (1995b) states that inertia was a dominant
factor throughout the deformation process. In addition, “... the combined effects of
strain-rate and inertia make the peak load much higher and the final displacement much
smaller” (Su et al., 1995b). These factors are consistent with the experimental
observations on the normalized transverse response, for the cold rolled steel test series SI,

as shown in Figure 6-12.

6.2.5 Wavelength Analysis

In addition to characterization of the peak buckle response, wavelength analyses were
also conducted. Illustrative examples of the half-wavelength response are presented in
Figure 6-13 for impact tests Ala4, Alld] and Sle!/. The parameter X defines the peak
buckle half-wavelength measured from the lower fixed support (x = 0) to the crest, L, is
the half-wavelength for the trailing edge from the peak buckle crest, L; is the half-
wavelength for any observed intermediate modes and L; is the half-wavelength adjacent
to the upper slide bearing support (x = L,). For the impact test A/a4, the limited beam

length precludes measurement of wavelengths L and L3.

Simplified theoretical expressions were employed to predict the peak buckle wavelength
in comparison with the observed buckled response. The approach was based on three
strategies that included the quasi-static analysis of Bell (1988), perturbation theory of

Abrahamson and Goodier (1966) and bound limit analysis based on stress wave

propagation (Figure 6-8).
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Figure 6-13. Representative Examples of Half-Wavelength Response Analysis.

Bell (1988) derived an expression for the critical buckled wavelength (L.,) based on the
Euler-Engesser expression for the quasi-static nonlinear buckling of struts. For a

rectangular cross-section the critical buckled wavelength can be defined as,

nrtr ET nxr Cp o) (63)

The analysis assumed a state of constant stress behind the plastic wave front, a buckling

response on a quasi-static basis, strain hardening was negligible (i.e. “constant” axial
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stress) and the elastic/plastic wave front generates a discontinuity in the material stiffness

and effective boundary condition.

Reid et al. (1981) developed a similar upper bound expression, L, = 0.414L,6 based

on a traveling hinge mechanism. The formula was compared with experimental data on
the response of long rods (length to diameter ratio of 24:1) impacting a rigid target at

velocities of 70m/s — 350m/s.

Abrahamson and Goodier (1966) defined the half-wavelength (1) as,

i = zr sz (6.9)

for projectile impact of aluminum rods and tubes on a rigid target with initial impact

velocity that ranged from 36m/s to 200m/s.

The final approach was formulated on the conceptual basis for the impact event discussed
in Section 6.2.3 and illustrated in Figure 6-8. Bound limits on the peak buckle half-
wavelength were assessed through consideration of the elastic and plastic stress wave

propagation and interaction by the expression,

2

_ 2L (6.5)
cp

This method only considers axial stress wave propagation and does not account for

|
Il

flexural properties or influence of boundary conditions on the modal response.

Furthermore, Equation (6.5) neglects the dynamic response due to elastic wave
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propagation until a plastic wave front has developed. In terms of a bound limit, the data

analysis will illustrate that these assumptions are reasonable.

Based on the material properties presented in Table 6-6, the half-wavelengths were
assessed using the expressions presented in Equations (6.3, 6.4 and 6.5) assuming elastic
and elastic, perfectly plastic material behaviour. A summary of the predicted buckle half-

wavelengths 1s also presented in Table 6-6.

Table 6-6. Experimentally Measured Peak Buckle Half-Wavelength (f ) and Predicted
Half-Wavelength Response Assuming Elastic and Elastic, Perfectly Plastic Material

Behaviour.

Parameter Al All SI
Elastic Modulus E 69GPa 69GPa 200GPa
Tangent Modulus Er 900MPa 900MPa 1.75GPa
Yield Stress o; 285MPa 285MPa 300MPa
Density yo 2700kg/m3 2700kg/m3 7200kg/m3
Experimental x Slmm - 72mm | 75mm — 103mm | 53mm — 78mm
Equation (6.3)
Elastic; n =1 05L, 45mm 67mm 74mm
Equation (6.3)
Plastic;n=1 05te >mm Jmm 7mm
Equation (6.4) — Elastic A 63mm 95mm 105mm
Equation (6.4) — Plastic A 7mm 13mm 10mm
Equation (6.5) - n=1 x 6Ilmm-168mm | 79mm-203mm | 49mm-134mm
Equation (6.5) —-n=2 x 3Imm-84mm | 39mm-10lmm | 24mm-67mm
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Assuming elastic material parameters, equations (6.3) and (6.4) provide a reasonable
estimate of the half-wavelength response, for the lower slendemess ratios, in comparison
with the experimental data. A number of factors may account for the discrepancy when
assuming plastic material behavior, which may iriclude impact mechanics and dynamic
material behavior. The investigations of both Bell (1988), and Abrahamson and Goodier
(1966) considered “free-flight” projectile events with significantly greater impact
velocities ranging from 40m/s to 350m/s. The load intensity for these events would be
sufficient to develop an immediate plastic wave front. In addition, Abrahamson and
Goodier (1966), reported that the measured wavelengths were 1.2 to 2 times the
theoretical wavelengths where this discrepancy was related to the magnitude of axial

strain and corresponding variation in the tangent modulus.

The experimentally measured half-wavelength response as a function of effective
slendemness ratio is illustrated in Figures 6-14, 6-15 and 6-16, for impact test series A/,
AII and S, respectively. The total beam length (L7) is the sum of the unsupported beam
length (L,) and the 100mm boundary condition.

Although based on a simplified analysis of elastic—plastic stress wave interaction,
Equation (6.5) provides a reasonable estimate of the buckled half-wavelengths over the
range of slendemess and material parameters investigated. The empirical expression is
consistent with the present experimental observations, which show that for the lower
slenderness ratios (Le/r < 125) the dominant response can be effectively characterized by
the fundamental mode. For higher slendemess ratios, more complex mode interaction
mechanisms develop and for the cold rolled steel series a rate-dependent material
response was inferred. These characteristics are illustrated by the digitized buckled
profiles (Figure 6-13) and convergence of Equation (6.5), assuming the “second mode”

response (n = 2) at higher slenderness ratios (Figure 6-14, 6-15 and 6-16).
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Figure 6-16. Mean Half-Wavelength Response for Series S/.

Numerical analysis conducted by Karagiozova and Jones (1996), employing an
elastoplastic multi-degree of freedom mechanical model, concluded the quasi-static
analysis of Bell (1988) could predict only the final deformed buckled mode provided the

impact energy was relatively small.

The pulse buckling response of the peak crest has been characterized by a normalized
modal parameter as a function of the effective slenderness ratio. The modal parameter
accounted for the local stiffness and natural frequency response. In addition, the
influence of dynamic material behavior on the transverse amplitude of the peak buckle
response was inferred from experimental observation. Simplified theoretical expressions
defining the critical buckle wavelength were in reasonable agreement with the
experimental data. The experimental investigations will provide a rational basis for the

development and validation of finite element models simulating the impact event.



7.0 Finite Element Analysis of Plastic Pulse
Buckling Events

The development of a finite element model examining the experimentally observed
plastic pulse buckling response of a slender beam subject to axial impact is presented. A
parametric investigation is conducted, which considers factors such as element aspect ratio
and formulation, constitutive relationships, boundary conditions and geometric imperfection
models. The objective is the development of a finite element model to predict the
dynamic plastic pulse buckling response consistent with the observed behaviour during
the present experimental studies. The fundamental goal is a reliable modelling procedure
that can be applied to more complex structural configurations, material response and/or

impulse characteristics.

7.1 Introduction

Historically, the majority of analytical research and numerical modelling efforts on the
elastic and plastic pulse buckling response have focused on the fundamental mode. As
discussed in Chapters S and 6, relatively few experimental studies have addressed the
dynamic plastic buckling response of slender beams subject to an intense axial impact.
Several analytical and experimental studies, including the present investigations, have
shown that for intense impulsive loads the dynamic instability may be characterized by a
higher order modal response. Some of these investigations include Bell (1988),
Abrahamson and Goodier (1965), Hayashi and Sano (1972a, 1972b), Suguira et al.
(1985), Gary (1983) and Kenny et al. (2000). The present study is primarily concerned
with the development of a finite element model, to predict the dynamic plastic pulse
buckling of a beam subject to axial impact. The experimental investigations conducted

during the current thesis research, presented in Chapter 6, provide a basis for validating
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the finite element computations. Details of the finite element model and results of the
parametric analysis are presented. Characteristic relationships of the peak buckle and
mode behaviour of the pulse buckling response are developed and compared with

experimental data. Finally, a dynamic pulse buckling criterion is addressed.

7.2 Model Parameters and Formulation

The parameters considered for the finite element investigations are summarized in Table
7-1. Comparison of the computed response with the experimentally observed behaviour
was based on modelling only the slenderness ratios of 75, /50 and 250. A single, axial
impact scenario, consistent with that imposed during the experimental studies, was
defined as a 10kg mass impacting the beam with a nominal contact velocity of 6.2m/s.

The structural configuration considered for the numerical investigations is illustrated in

Figure 7-1.

The finite element package NISA was employed to model the pulse buckling event. The
beam response was modelled by 2D Plane Strain (NKTP=2) elements with quadractic
shape functions or 3D General Beam (NKTP=39) based on the Kirchoff hypothesis. The
physical impact of the free fall hammer with the beam was accounted through added mass
element(s), which neglected rotary inertia, with the prescribed initial nominal contact
velocity. For models employing plane strain elements, the added mass was distributed on
a consistent basis. The constitutve relationships for the 6061-T6 aluminum beams were
defined by two material response functions, which employed the von Mises yield criterion.
An idealized elastic, perfectly plastic material behaviour and bilinear elastoplastic material
behaviour with linear, isotropic strain hardening were considered. The pulse buckling
response of the cold rolled 1018 steel beams were only investigated using idealized elastic,

perfectly plastic material behaviour.
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Table 7-1. Parameters for Finite Element Analysis of Dynamic Plastic Pulse Buckling.

Beam Characteristics

Beam Lengths L, (mm) 137, 275, 458 206, 412, 687
Beam Depths d (mm) 3.175 4.7625
Slendemess Ratio | Lo/r 75, 150, 250
E = 69GPa; Er = 900MPa; oy = 285MPa;
6061-T6Aluminum 3
v =0.33; p =2700 kg/m
Material
E = 69GPa; oy = 300MPa;
1018 Steel 3
v =0.33; p = 7200kg/m
Impact Characteristics
Impact Mass m 10kg
Impact Velocity Vi 6.2m/s
Finite Element Characteristics
2-D Plane Strain NKTP =2, quadratic shape function
2-D Mass NKTP =25 (degrees of freedom: Uy, U,)
Element Type
3-D Beam NKTP = 39, Kirchoff hypothesis
3-D Mass NKTP =26 (degrees of freedom: Uy, Uy, Uy,)
Element length to
Aspect Ratio 1:1

depth ratio
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Figure 7-1. Schematic Illustration of the Modelled Boundary Conditions.

The implicit Newmark method was selected to directly integrate the dynamic equation of
motion. The selected integration values of, # = 0.3025 and y = 0.6, provided an
unconditionally stable solution with artificial numerical damping. The kinematic
formulation was large displacement and finite strain. The full-Newton routine, with line
search, was used to obtain convergence with default energy and displacement tolerance
criteria of 0.001. The stability equations, presented in Chapter 3 and Chapter 4, were
employed to determine the required integration time step for the selected element

formulation and selected aspect ratio.

7.3 Finite Element Model Sensitivity Analyses

A series of preliminary investigations were conducted to assess the influence of several

parameters on the computed dynamic buckling response with respect to the measured
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experimental modal response. The sensitivity analysis considered element aspect ratios,
element formulations, constitutive relations, boundary conditions and geometric
imperfection models and contact mechnics. A matrix of the model parameters is
summarized in Table 7-2, for models defined by bilinear elastoplastic material behaviour,
and Table 7-3, for models with elastic, perfectly plastic material behaviour. The
imperfection models were incorporated through the same procedures adopted for the

elastic pulse buckling analysis and was defined by Equation (3.17) and Equation (3.20).

The results from 76 finite element models were examined in the sensitivity analysis.
Further details of these investigations are presented in Appendix D, which analyzed the
computed buckling response with respect to measured experimental data in terms of the
buckled profile. For the defined impact scenario and sensitivity parameters considered,
the modeled boundary condition and element formulation had the most significant
influence on the computed pulse buckling response. In relative terms, the element aspect
ratio, which considered ratios of 4:1, 2:1 and 1:1, imperfection model and contact
mechanics was of secondary importance on the computed modal behavior. Based on the
experimentally observed and computed buckling response, it was speculated that dynamic
material properties should be considered when modeling the pulse buckling behavior of
the cold rolled (CR1018) steel beams. On this issue, a definitive conclusion could not be
developed due to software limitations, where dynamic, rate dependent material properties

could not be modeled.

Although a “simple” axial impact event has been considered, numerical modelling of the
dynamic, plastic pulse buckling response is a complex and demanding task. The
investigations, presented in Appendix D, determined that spurious mode shapes, in
comparison with the observed experimental buckling response, occasionally developed in
the numerical solution. The sensitivity analysis suggested that additional parameters,

which may be coupled to the complex nonlinear buckling process, should also be
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Table 7-2. Parameter Matrix for Finite Element Models with Bilinear Elastoplastic,
Linear Strain Hardening Material Behaviour.

Series Element Type Aspect Ratio Imperfection
Ala | Beam, Plane Strain 4:1,2:1,1:1 | Random
Alc | Beam, Plane Strain 4:1,2:1,1:1 Random
Ale | Beam, Plane Strain 4:1,1:1 Random
Alla | Beam, Plane Strain 4:1,2:1,1:1 | Random
Allc | Beam, Plane Strain 4:1,2:1,1:1 | Random
Alle | Beam, Plane Strain 41, 1:1 Random

Table 7-3. Parameter Matrix for Finite Element Models with Elastic, Perfectly Plastic

Material Behaviour.

Series Element Type Aspect Ratio Imperfection
Ala | Beam, Plane Strain 1:1 Discrete, Random
4:1, 2:1
Alc Beam, Plane Strain Random
1:1 Discrete, Random, Combined
Ale Beam, Plane Strain 41 Random
1:1 Discrete, Random
Alla | Beam, Plane Strain 1:1 Random
Allc | Beam, Plane Strain 4:1 Random
1:1 Discrete, Random
Alle | Beam, Plane Strain 4:1 Random
1:1 Discrete, Random
Sla Beam, Plane Strain 1:1 Random
Slc Beam, Plane Strain 1:1 Random
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considered. These potentially interdependent factors include the strain field discontinuity,
element frequency characteristics, local stiffness effects (e.g. material and structural), as
well as stress wave propagation and boundary interaction effects. The importance of any
correlation with the modal response, however, was not resolved in the present study and

further investigations are warranted.

7.3.1 Influence of Boundary Conditions

During the course of the experimental investigations, considerable effort was expended to
develop competent structural boundary conditions that would ensure a consistent pulse
buckling response. The numerical sensitivity analysis considered two scenarios to
investigate the influence of the modelled boundary condition on the computations. The
baseline case, described in Section 7.2 and illustrated in Figure 7-1, was consistent with
the applied boundary condition for the current experimental studies. The variant scenario
was based on an idealized boundary condition, which did not account for the fixed

(75mm) or slide bearing (25mm) support depths.

Numerical pulse buckling analyses has typically only considered the later, idealized
boundary conditions, which neglect the support depth to define the imposed structural
restraint. The numerical investigations of Ari-Gur and Elishakoff (1993), Ari-Gur and
Elishakoff (1990), Ari-Gur et al. (1982) and Sugiura, et al. (1985) are representative
examples. Some of these studies have also included parallel empirical investigations but
details on the applied experimental boundary conditions were only qualitatively
discussed. Although the experimental boundary condition was not realistically modelled
in these numerical investigations, statements regarding the corresponding influence on the

computed pulse buckling response would be speculative.
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For the parameters considered in the present sensitivity analysis, however, the
investigations presented in Appendix D has demonstrated that the actual imposed
experimental boundary conditions must be modelled for accurate pulse buckling
predictions. The influence of the adopted imperfection model and element formulation, if

any, was considered secondary.

As previously discussed in Chapter 6, the evolution of a mode shape inconsistent with the
predominant observed buckled response was developed for spurious impact events. The
buckled response was associated with two mechanisms, a loss of competent structural
integrity for the upper slide bearing support and a "dead" impact where little or no recoil

of the impact hammer occurred. These events are further discussed in Appendix C.

For the parameters investigated, the finite element computations supported this
hypothesis, which was based on experimental observations. A representative example is
illustrated in Figure 7-2, for the pulse buckling response of the beam element model Alc

presented in Table 7-3.

The experimental buckled profiles for an impact event with competent boundary
conditions (4/c7) and an impact test with a loss of the upper slide bearing support (4/c2)
are shown for comparison. The computed buckling response for the finite element model
(Beam - Actual) employing boundary conditions consistent with the experimental test
(Alc7) was in good agreement with the measured response. The finite element analysis
that considered an idealized boundary condition (Beam — Idealized) exhibited a shift in
location of the peak buckle crest toward the impact interface and upper slide bearing
support. The computed response was generally consistent with the spurious impact event

(Alc2) observed during the experimental investigations.
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Figure 7-2. Comparison of the Computed Finite Element Response for the Actual and
Idealized Boundary Conditions with Respect to the Characteristic (Test A/c7) and
Spurious (Test A/c2) Experimental Buckling Events.

This issue should also be considered with respect to the experimental investigations
conducted by Ari-Gur et al. (1982) and discussed in Chapter 5. A similar modal shift,
from the lower fixed restraint to the upper slide bearing support, was also observed with
increasing slenderness ratio. Unfortunately, an underlying mechanism was not assessed.
Finally, the experimental and numerical studies of Sugiura et al. (1985) and Hayashi and
Sano (1972a,b) have shown that, for an axially loaded simply supported beam, the peak

buckle response was initiated at the impact interface.
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7.3.2 Influence of Imperfection Models

The elastic pulse buckling investigations presented in Chapter 3 through Chapter 5 has
demonstrated the importance of considering the geometric imperfection model on the
computed response. As shown in Figure 5-13(b), Karagiozova and Jones (1995b) have
demonstrated the importance of considering the imperfection magnitude on the critical

impact velocity for plastic buckling events.

The present sensitivity analysis considered discrete and random geometric imperfection
models. The discrete, fundamental mode imperfection was incorporated through
Equation (3.17) with the peak amplitude defined by the measured mean imperfection (4,)
presented in Table 6-1, 6-2 or 6-3 for the appropriate experimental impact test being
modelled. Local random imperfections were expressed by Equation (3.20). The
geometry was discretized by two-dimensional plane strain elements and three-

dimensional beam elements.

Based on the analysis presented in Appendix D, influence of the defined imperfection
model on the computed pulse buckling response was not significant. This is an important
observation, since the maximum amplitude of the local random geometric imperfections
is one to two orders of magnitude lower than the maximum global discrete imperfection
amplitude. In view of the study conducted by Karagiozova and Jones (1995b), further
investigations are warranted to establish the influence of imperfection model type and
magnitude on the pulse buckling response over a range of parameters including impulse

intensity.
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7.3.3 Influence of Element Formulation

Similar to the elastic pulse buckling analysis, conducted in Chapter 4, the computed
modal response was dependent on the element formulation. Specifically, the element
formulation influenced the peak buckle amplitude and axial position. In general terms,
the plane strain element models exhibited improved response over the beam element

models with respect to the measured experimental buckled profiles.

There are several factors to consider in assessing the influence of element formulation on
the predicted modal behaviour. The beam element was defined by the moment—curvature
assumption and nonlinear terms of the axial-strain displacement relationship. For the
elastic pulse buckling analysis, in comparison with perturbation theory and plane strain
clement models, the peak buckle response for the beam elements was associated lower
crest amplitudes (Figure 4-5) and smaller weighted mean wavelengths (Figure 4-6). This
is consistent with the general response of the Euler-Bernoulli beam formulation, which is
associated with a moderately stiff response, as the aspect ratio tends to unity, and thus
results in higher natural frequencies of vibration. Matsunaga (1996) stated that for aspect
ratios on the order of 1:1, the critical buckling was associated with a higher order modal
response, which was more influenced by the axial force than lower order, modal response.
These factors could play a role in the frequency response characteristics of the beam
element models. In addition, the modal dynamics for both element formulations may be
coupled with the axial strain field discontinuity, local stiffness effects (e.g. material and

structural), as well as stress wave propagation and boundary interaction effects.

Finally, the sensitivity analysis, detailed in Appendix D, indicated that the effect of
element formulation on the numerical computations was weakly coupled with the element
aspect ratio and imperfection model. This was associated with the number of nodal

points defining the geometric imperfections and higher degrees of freedom. The
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quadratic, plane strain element has a greater number of nodes (8) and higher nodal degree
of freedom per element (16 DOF) than the beam element formulation (2 nodes and 12
DOF). In terms of the computed pulse buckling response, these factors would be related
to numerical modelling performance of the characteristic hyperbolic growth function and

the associated amplification or magnification of initial geometric imperfections.
7.3.4 Influence of Constitutive Relationships

For the pulse buckling response of aluminum 6061-T6 beams (Test Series A/ and A/l),
the finite element analysis considered two material models, which included elastic,
perfectly plastic and bilinear, elastoplastic behaviour. Mode analyses of selected
numerical models are presented in Appendix D. The analysis demonstrated that for either
element formulation (plane strain or beam element), the computed buckling response was
not significantly influenced by the constitutive relationships employed. Although a
definitive functional relationship in terms of material behaviour and element formulation
was not evident, as a general statement, models employing bilinear, elastoplastic
behaviour exhibited slightly improved performance in relation to the measured

experimental data.

The finite element analysis also investigated the plastic buckling response of cold rolled
1018 steel beams but only considered elastic, perfectly plastic material behaviour. Based
on comparison of the predicted and experimentally observed response, the influence of
dynamic yield flow and/or rate-sensitive behaviour for the mild steel beams was
considered important. Analysis of the transverse modal response provided indirect
support that dynamic material properties (e.g. dynamic yield flow stress, strain-rate
effects) may be a significant consideration for the development of accurate models. This

was consistent with the investigations of Su et al. (1995) and Karagiozova and Jones
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(1997), which have demonstrated rate-sensitive behaviour is an important parameter that

influences energy response mechanisms during plastic pulse buckling events.
7.3.5 Influence of Contact Mechanics

An overview of the contact mechanics associated with the experimental study will be
presented and will be followed by a discussion of the numerical modelling techniques

employed during the present investigations.

For the impact tests, the initial potential energy of the mass assembly was primarily
transferred into kinetic energy during free-fall. On impact with the beam, at the upper
slide-bearing support, a resistive impulsive load was developed and an axial stress wave
propagated through the length of the beam toward the lower fixed restraint. Assuming
rigid body kinematics and a constant beam cross-sectional area, the impact velocity (¥;)

of the free fall hammer mass (M) would decrease according to the expression,

l 4
ve) = V,—ﬁafpd: (7.1)

Vertical separation of the impact mass from the beam occurs due to a sign change in
acceleration arising from a combination of the return tensile stress wave to the
beam—mass interface and elastic rebound. Although during the experimental program, a
second impact was observed, the corresponding influence on the buckled response was
considered negligible. This was supported by analysis of the proximity switch trigger
pulse records, available strain gauge data and experimental observations. Similar studies
conducted by Ari-Gur et al. (1982) concluded that the second impact was not significant
since the event occurred after the maximum deflection was obtained. The second impact

event was associated with elastic vibration. The significant plastic deformation
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associated with the development of a peak buckle crest, adjacent to the lower fixed

support, consumed the bulk of the initial, finite impact energy.

Due to software limitations in the finite element program NISA, the numerical analysis
does not account for the mass separation after impact since the event is defined by an
added nodal mass with a prescribed initial velocity condition. Consequently, influence of
the adopted modelling procedure on the computed pulse buckling response was assessed
through examination of the computed displacement—time, velocity—time and stress—-time
history data. The analysis considered the parameters listed in Table 7-1 for the finite
element models summarized in Table 7-3 with only local random geometric

imperfections and an aspect ratio of 1:1.

Representative examples of the axial force-time history for beam and plane strain
element models are illustrated in Figure 7-3. The corresponding variation in the
velocity—time history for the impact hammer is shown in Figure 7-4. The influence of
contact mechanics on the buckled profile development was also examined through an
assessment of the displacement—time history data. The buckled response for plane strain
element models with discrete and random geometric imperfections for test series Alc is
illustrated in Figure 7-5. Data for beam and plane strain element models with
fundamental mode imperfection for test series Ale is illustrated in Figure 7-6.

Experimental buckled profiles are also shown for comparison.
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Figure 7-3. Impulse Load-Time History for Beam and Plane Strain Element Models
with Random Geometric Imperfections for Test Series Ala and Alc.
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Figure 7-4. Impact Velocity of the Free Fall Hammer for Beam and Plane Strain
Element Models with Random Geometric Imperfections for Test Series A/a and Alc.
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The buckled profiles were examined with respect to parameters such as hammer velocity,
slenderness ratio, element formulation and imperfection type. The sensitivity analysis
demonstrated that modelling the dynamic plastic pulse buckling response was a complex
task. For the parameters investigated, a single dominant parametric relationship with
contact mechanics could not be established. In comparison with the applied boundary
conditions and element formulation, modelling the contact mechanics by a fixed, added
mass element was considered to be of secondary importance on influencing the computed

modal response.

Based on the sensitivity analyses conducted, the contact mechanics, in addition to the
pulse buckling response, is coupled to a number of parameters. These include
slenderness ratio, geometric imperfection type and magnitude, element formulation and
frequency characteristics, proportion of axial and flexural strain energy, wave propagation
and interaction effects, material response and imposed boundary conditions. Some of
these issues were also addressed for relatively simpler mechanical models, which were
discussed in Chapter 5. For example Su et al. (1995a, 1995b) and Karagiozova and Jones
(1995a, 1995b), demonstrated the importance of considering imperfection amplitude,
impact mass and velocity, strain hardening parameter, dynamic material properties on

influencing the dynamic plastic buckling response.

For the present analysis, the pulse buckling computations were most consistent with
respect to the measured experimental data for the lower slenderness ratio (Lo/r = 75). For
the higher slendemess ratios, modelling the continuous mass contact at the impact
interface tended to bias a local response through the development of a buckle crest

adjacent to the upper slide bearing support. This was illustrated in Figure 7-6.

The slendemess ratio has a direct influence on the buckled response through the relative

changes in global mechanical rigidity (i.e. axial and flexural terms), relative local
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stiffness (i.e. interaction with fixed support) and modal response. Analysis and
assessment of the modal response computations is complicated by the interrelated
parameters with the slenderness ratio such as wave propagation and interference effects,
localized strain gradients and associated material, mechanical and modal behaviour. In
terms of the contact mechanics, the dominant factors influencing the pulse buckling
computations, with decreasing relative significance, are considered to be the slendemess
ratio, element formulation and imperfection model. These characteristics were illustrated

in Figure 7-5 and Figure 7-6.

Finally, although probably a relatively minor issue, the finite element analysis also cannot
account for any "restoring force" due to elastic curvature recovery of the unsupported

beam length after the mass recoiled from the impact interface during the experimental

tests.

A number of alternative methods were considered for modelling the impact event,
however the efforts were unproductive due to software limitations for application in
nonlinear static or linear direct transient analysis. These procedures included defining a
time—amplitude curve defining the impulsive force, application of contact elements,
defining initial stress—strain field and mode vector (i.e. initial displacement, velocity,

acceleration terms).

Although the adopted procedure for modelling the contact mechanics was considered of
secondary importance on influencing the plastic pulse buckling response computations,
further investigations that can account for the impact mass separation are warranted to

more fully explore this issue.
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7.3.6 Influence of Element Aspect Ratio

The sensitivity analysis also examined the influence of element aspect ratio on the pulse
buckling response computations in parallel with the other parameters considered. For
element aspect ratios of 4:1, 2:1 and 1:1, the effect was not significant and was

considered weakly coupled to the element formulation and imperfection model.

7.4 Peak Buckle Response Analysis

The computed pulse buckling response was also evaluated in terms of the normalized
parameter (ﬁ ), which was discussed and developed in Section 6.2.3. Validity of the
finite element models was based on direct comparison with the experimental data.
Furthermore, the finite element computations were assessed in terms of the issues
addressed in the sensitivity analysis, and examination of the displacement—time,

velocity—time and stress—time history computations.

The normalized axial response parameter (1\—/ x ) is presented in Figure 7-7. The open data
points represent all finite element analyses with an element aspect ratio of 1:1. Results of
the numerical computations are differentiated in terms of the element formulation (i.e.
beam and plane strain element models). As previously discussed, the sensitivity analysis
demonstrated that the modeled boundary conditions and element formulation were the
significant parameters to be considered. The lines represent least squares regression
curves through measured experimental data for all impact tests, which were presented in

Figure 6-11 and Figure 6-12. On this same basis, the normalized transverse response

parameter (ﬁ i) of the peak buckle crest is illustrated in Figure 7-8.
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In general terms, the plane strain element models exhibited somewhat improved

performance with respect to the experimental data for the normalized axial (1\—/ f) and

transverse (J_V_ i) response parameters. As discussed in Section 7.3.3, this may be
attributed to the inherent characteristics of the element formulation; for example moment-
curvature relationship, and the higher frequency response and greater influence of the
axial force on modal behavior for Euler-Bernoulli beams as the aspect ratio tends to unity.
The general convergence of the normalized response parameter, for both element
formulations, with decreasing slenderness ratio (Figure 7-7 and Figure 7-8) indicates the

peak buckle response is coupled with other mechanisms.

Numerical modeling of the dynamic pulse buckling behavior is a complex task that must
account for a number of issues including, strain field discontinuity, changes in element
behavior (i.e. coupled mechanical and modal characteristics), and stress wave propagation
and boundary effects. The modal response is also related to the relative beam stiffness as
a function of the slendemess ratio and structural boundary conditions, as well as the
interaction between the applied impulsive load and elastic unloading wave characteristics.
Furthermore, the stiffness and modal characteristics of the finite element model is a
function of the numerical noise, high frequency response components, and energy

dissipation mechanisms.

For the lower slendemess ratios, the pulse buckling response approaches the behavior of
the relatively simple mechanical model of the “Type II” structure illustrated in Figure 5-
11. The analyses presented by Karagiozova and Jones (1995a, 1995b) and Su et al.
(1995a, 1995b) stated that impact mass/beam ratio, impact velocity, imperfection
amplitude, strain-hardening parameter and rate-sensitivity were important factors that
influenced the dynamic buckling response. Thus, the experimental and finite element
investigations of the present study indicate that with increasing slendemness ratio, the

pulse buckling response becomes increasingly complex and coupled phenomenon.
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The potential significance of dynamic material behavior (e.g. flow stress, rate-sensitivity)
on the pulse buckling response was recognized by the experimental investigations, in
particular for the steel beams was illustrated in Chapter 6 (Figure 6-10). This was further
supported through analysis of the numerical computations, which indicated that the finite
element models over predicted the transverse deflection with increasing slenderness ratio.
The analysis conducted by Su et al. (1995) concluded that the compressive response was
primarily equated with axial inertia while the flexural response was strongly influenced
by rate-sensitive behavior. Furthermore, a dynamic yield response is associated with an
increased flow stress and stored elastic compression energy and a corresponding decrease
in the peak buckle amplitude. These factors are consistent with the experimental

investigations and assessment of the limited finite element computations.

In consideration of the software limitations for the finite element analysis (e.g. contact
mechanics, rate-dependent material behavior, element formulation and integration
schemes), the complexity of the numerical computations and the relative simplicity of the
normalized response parameter (Section 6.2.3), the general agreement between the
numerical analyses (Figure 7-7 and Figure 7-8), analytical expressions, and experimental
data (Figure 6-12 and Figure 6-13) show promise. On this basis, it can be stated that the
dynamic pulse buckling response can be characterized by the normalized modal

parameter as a function of the effective slenderness ratio.

Further confidence in the finite element computations can be realized through an
assessment of the peak buckle half-wavelength response. A summary of the half-
wavelengths based on Equation (6.5), experimental data and finite element models is
presented in Table 7-4. The peak buckle half-wavelength response is also illustrated in
Figure 7-9, for the finite element analyses of Series Al and Series AIl with models

employing beam and plane strain elements with an aspect ratio of 1:1.
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Table 7-4. Analytical, Experimental and Finite Element Investigations on the Peak
Buckle Half-Wavelength (x ) Response.

Parameter Al All SI

Equation (6.5) —n=1 X 61lmm-168mm | 79mm-203mm | 49mm-134mm
Equation (6.5) —n=2 x 31mm-84mm 39mm-01mm 24mm-67mm
Experimental x SImm - 72mm | 75mm - 103mm | 53mm - 78mm

§ Plane Strain £ |34mm-150mm | 60mm-142mm | 29mm

2

:‘é Beam x 24mm-149mm | 77mm-176mm | 25mm - 42mm

=

7.5 Assessment of the Pulse Buckling Analysis

Although the finite element solution was generally consistent with the experimental pulse

buckling response, there were several unresolved issues and questions that warrant further

investigation.

Future parametric analysis should consider the influence of a variation in impact mass

and velocity, initial imperfection formulation and magnitude and materials with

significantly different elastic wave speed constants. For example, the discrete

fundamental mode should have a greater influence on the buckled response for a
combination of increased mass, decreased impact velocity and/or greater imperfection
amplitude. Karagiozova and Jones (1995b, 1996) demonstrated this behavior for a

simple mechanical model (Figure 5-12) with the nondimensional relationships illustrated

in Figure 5-13(b).
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The studies should be conducted in parallel with investigations that can examine the
limitations of the present analysis. The critical issues were related to modelling
considerations such as element formulation, constitutive relationships and contact
mechanics. Some of these issues are addressed in the following sections on a theoretical
basis in terms of finite element procedures within the context of the present experimental

and numerical investigations conducted.

7.5.1 Direct Integration Procedures

Typically, dynamic pulse buckling events that have been considered in the present
investigations, which are concermned with wave propagation events, are examined using
explicit integration schemes (e.g. central difference operator). For NISA, only the

implicit procedure was available.

Explicit schemes are favored for a number of reasons. The main advantage of the explicit
integration procedure is the computational efficiency for each solution increment since
the nodal displacement and velocity is computed at the current time step. Implicit
schemes require matrix factorization (i.e. formation and inversion of the effective
stiffness matrix), larger core storage and a greater number of operations per time step.
The bulk of the computational effort for explicit time integration algorithms is in the
formation of the internal force vector. The major disadvantage is the conditional stability
of explicit schemes. For analysis of rapid, transient events with high frequency
components (¢.g. wave propagation, impact, shock loads), however, the critical time step
is on the same order as that required by the Courant stability parameter. Furthermore, for
discontinuous events or processes, for example stress wave front or significant strain
gradients; explicit integration schemes are generally be more efficient than implicit

integration due to the modelling of lumped properties.
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Consequently, future investigations should examine the influence of explicit integration

procedure on the computed pulse buckling response.

7.5.2 Element Formulation

The beam element formulation in NISA is based on the Kirchoff hypothesis with a cubic
shape function and the mass distributed on a consistent basis. As previously discussed,
the main assumptions include plane section remain plane with deformation, with the
behaviour defined by the moment—curvature and axial strain—displacement relationships.
For the dynamic buckling events considered in the present investigations, incorporating
explicit integration schemes coupled with low order finite elements is generally the most
effective modelling procedure. Thus, employing lumped mass, linear beam element
formulations (e.g. Timoshenko beam theory) may be beneficial in modelling the

longitudinal distribution of the strain gradient associated with the peak buckle crest.

For the plane strain element models, the pulse buckling computations may have been
influenced by element characteristics. The higher-order continuum element would
introduce greater numerical noise and energy modes to the system response. Low-order
plane strain elements would be beneficial in modelling localized plasticity due to the
solution gradient or discontinuity along the element edge. Influence of the plane strain
element formulation on the pulse buckling response is also coupled with material
parameters. For von Mises and Hill plasticity formulations, the material behaviour is
fully incompressible and the effects tend to dominate the rate of total deformation with
increasing plasticity. The plastic response assumes approximately incompressible
behaviour as implied by the normality condition of the flow rule of Equation (5.5).
Zienkiewicz and Cheung (1967) state that for plane strain elements, numerical difficulties
are encountered due to the nearly incompressible material response where the tangent

stiffness matrix becomes indeterminate.
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For fully integrated quadratic elements, such as the NKTP = 2 formulation in NISA,
volumetric element locking can potentially occur. This is related to the development of a
spurious pressure stress at the Gauss points that results in an over stiff response for
deformations that should not result in a volume change. Future investigations should
consider employing lower-order plane strain elements with full or reduced integration.
From a general modelling perspective, the main drawback of reduced integration is a
kinematic, zero energy mode that can result in mesh instability or a spurious singular

mode referred to as "hourglassing".

Although not offered in NISA for nonlinear dynamic analysis, other formulations include
hybrid and incompatible mode elements. The hybrid elements define the singularity as an
independent variable related to the displacement solution, governing constitutive model
and the compatibility condition. Incompatible modes incorporate shape functions (e.g.
bubble functions) to represent intermnal degrees of freedom to reduce the parasitic shear;
an example would be a bilinear quadrilateral with a central mode to negate shear locking
when modelling pure flexure. Crisfield (1997) states that numerical difficulties (i.e.
eigenmodes and hourglass) can be encountered with the incompatible mode or enhanced

strain formulation for problems that involve large compressive strains.

7.5.3 Constitutive Relationship

For the dynamic pulse buckling computations, an important consideration is the
numerical procedures employed by the finite element program for defining the material
response. Theoretical issues relating to the constitutive relationships in terms of the pulse

buckling response are addressed.

As previously discussed, the finite element computations, in comparison with the

experimental data, suggest that dynamic flow stress and rate-sensitivity were not
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significant factors influencing the pulse buckling response of the aluminum 6061-T6
beams. This is consistent with the studies of Perrone (1965) and Symonds and Frye
(1988) for simplified mechanical models. The investigations concluded that a rigid-
plastic analysis was adequate for impact energies on the order of three times the elastic

strain energy and pulse duration smaller than the natural period of vibration.

In nonlinear analysis, the finite element method must integrate the stress—strain response
(i.e. material state), typically evaluated independently at each spatial integration point,
over a specified load/time step increment. For a displacement-based solution, the
incremental deformation gradient (i.e. strains, rotations) is passed to the specified
constitutive relationship algorithm to define the mechanical response through state
variables. In terms of the plasticity models considered for the present study, the rate
equations that must be integrated include the strain rate decomposition (Equation 5.3),
flow rule (Equation 5.5) and the evolutionary hardening parameter. For NISA, integration
of the stress-strain laws is conducted by an explicit Euler forward technique with sub-

increments and/or an implicit generalized trapezoidal scheme.

The generalized form of the material tangent stiffness matrix [K, ]can be defined as,

[x.] = [8] [c.][Blav (7.2)

where [B] is the characteristic strain—displacement matrix defined as [B] = [8])[N] where
[N ] is the shape or interpolation function matrix and [C, ]= 6%8 is the tangent modular

matrix. For one-dimensional, elastoplastic problem it can be shown that the tangent

modulus can be evaluated as,
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lc] = E|1- 5 (7.3)
de
b p -
where (‘;—a—) is the strain hardening parameter or slope of the plastic response for the
£
P

bilinear stress-strain relationship.

For elastic, perfectly plastic material behaviour, the significance is related to the tangent

stiffness or Jacobian matrix (a %g), where the stress state for a large number of

elements exceed yield and a fully, plastic zone has developed. This can lead to an ill-
conditioned or singular matrix. The tangent stiffness is required to equate incremental
nodal displacement vector with the incremental nodal load vector. Employing the
generalized trapezoidal scheme, Gauss point iterations are not required with the von
Mises yield criterion where the yield function (Equation 5.1) defines the limit surface and
the constitutive model does not evolve during deformation. For the bilinear elastoplastic
material mode truncations errors are carried forward through integration of the rate
equations (i.e. incremental stress) independent of satisfying equilibrium at the end of each
increment. Crisfield (1991) has stated that although this error should be minimal, as it is
proportional to the square of the stress increment for the Euler method, the volumetric

locking for the plane strain element may compound the errors.

Since the implicit Newmark (dynamic time integration) and the Newton methods
(nonlinear equilibrium equations) have been employed, the plasticity algorithm must also

account for material stiffness variation through the Jacobian matrix. Furthermore, for rate
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dependent models (i.e. incremental plasticity theory), the analysis is coupled with the

Jacobian and the plasticity integration procedure employed.

As discussed in Section 5.3.3, for strain rates on the order of 10%/s, which are of interest
for the current impact events, the flow stress for mild steel typically exhibits an increase
by a factor of approximately three. In addition, Harding (1987) states that an increase in
the quasi-static strength raises the threshold strain rate required for rate dependent
behaviour. The constitutive relationships defined in NISA could not account for a
dynamic material behaviour. Consequently, further investigations on the importance of
dynamic yield flow stress and strain rate sensitivity on the pulse buckling computations

should be conducted.

From this perspective, the analyses conducted by Karagiozova and Jones (1997, 1996,
1995) and Su et al. (1995a, 1995b), employing relatively simple mechanical models, have
provided significant insight. Rate sensitive behaviour increases the peak load (i.e. flow
stress) and stored, elastic compression energy, due to the dynamic yield response, and
decreases the buckle displacements. The dynamic impact loads for strain rate sensitive,
material behaviour was influenced by the impact velocity and large mass ratios.
Although, the compression phase was primarily equated with inertia and the flexural
response with rate-sensitive behaviour, Su et al. (1995b) states that inertia was a
dominant factor throughout the deformation process. As discussed in section 6.2.3 and
section 7.4, these issues are consistent with the experimental observations and finite
element computations on the dynamic plastic pulse buckling response of beams

investigated during the current study.
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7.6 Dynamic Plastic Pulse Buckling Criteria

A complete engineering assessment of the dynamic structural response requires the
development of a pulse buckling criterion, which defines lower or upper bounds for pulse
buckling threshold limits. In contrast with the static counterpart, characterization of
limiting criteria for dynamic buckling instability is relatively arbitrary and subject to wide
interpretation. The envelope could be defined by excessive growth of a flexural
displacement response with respect to the initial geometry configuration. Alternative
formulations could be based on critical impulse velocity or load intensity. The parametric
relationships defining the pulse buckling criterion could be expressed in terms of the
structural geometry (e.g. slenderness ratio, diameter to wall thickness ratio) or mechanical
properties (e.g. yield stress, factored plastic strain). In addition to the inherent nature of
pulse buckling events, the criterion must also address objective engineering constraints.
For example, in terms of crashworthiness the structural support frames of an automobile
must be designed for efficient energy absorption and low shock levels imparted to the
passengers. The primary considerations for space re-entry vehicles would be structural

integrity in terms of geometry, weight and elastic pulse buckling threshold limits.

Few studies have addressed defining dynamic pulse buckling criterion for axially loaded
beams. Budiansky and Hutchinson (1966) defined dynamic buckling, with respect to the
static counterpart, as an incremental change in load intensity that causes a transition from
a bounded to unbounded response. Based on this study, Ari-Gur et al. (1982) defined a
critical state, as the dynamic axial strain ((&)p) associated with a rapid change in slope
(dw/dg). This was illustrated in Figure 2-9 where the transverse deflection (w) and slope
(dw/dg.) are presented as a function of the compressive strain (&). The dynamic buckling
criterion was presented in terms of a dynamic load amplification factor as a function of the
effective slenderness ratio. Ari-Gur et al. (1982) concluded that the main governing

parameters were the initial geometric imperfection, impulse duration and slenderness ratio.
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The analysis, however, considered only the elastic, midspan deflection and did not

investigate the dynamic response of the peak buckle crest.

Ari-Gur and Elishakoff (1993) considered a variant on the dynamic buckling criterion in
terms of the peak axial displacement and midspan lateral deflection in terms of the
applied load intensity (i.e. load per unit beam width). The pulse duration considered,
however, was of the same order as the natural frequency response or approached quasi-

static conditions.

Lindberg and Florence (1987) defined an elastic buckling criterion in terms of a
nondimensional critical impulse duration to first yield stress as a function of the
normalized stress ratio, applied stress to yield stress. The analysis assumed that the
buckling motion could be defined based on a “preferred” mode response with a single
equivalent single imperfection related to the dominant wavelength. This buckling

criterion was illustrated in Figure 2-12 and Figure 2-13.

For the current study, the buckling criterion was based on the transverse deflection—time
history of the peak buckle crest and defined by the transition from a bounded to
unbounded response. The corresponding solution time was compared with the theoretical
buckling time estimate developed by Lindberg and Florence (1987) for plastic buckling
events, which was based on the dynamic amplification function and nondimensional time

parameter.

The theoretical buckling time was estimated by the expression, 7, = gt _ , which
ryE; P

was previously defined by Equation (5.12). The nondimensional time parameter, 7 = &8

was selected based on the amplification function for geometric imperfections as
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illustrated in Figure 5-14(b). The applied load (P) was determined from the finite

element computations.

Buckling times for the finite element models based on the midspan and peak buckle
transverse displacement response are summarized in Table 7-5 with the corresponding
theoretical buckling times (Equation 7.4) presented for comparison. There is general
agreement between the numerical and theoretical buckling time estimates. Although not
a comprehensive assessment, the analysis demonstrates the importance of considering the
peak buckle response. Further parametric investigations are required to more fully
address the dynamic pulse buckling criterion in detail. Factors such as slendemess ratio,
load intensity, dynamic material behavior, element formulation and contact mechanics

should be examined.

Table 7-5. Computed and Theoretical Critical Buckling Times.

. FE Analysis (us) )
Series Theoretical (us)
Peak Buckle Midspan

Ala 240 250

Alc 350 425 350

Ale 425 550

Alla 300 350
527

Allc 450 475




8.0 Summary and Conclusions

A synopsis of the main findings and conclusions developed during the course of the
research investigation is presented. Recommended future research areas are also

identified and summarized.

8.1 Scope of Analysis

Focus of the current investigations was on the elastic and plastic dynamic pulse buckling
response of a slender beam, with geometric imperfections, subject to an intense, axial
impulse. Dynamic pulse buckling can be defined as the structural response to a transient
forcing function. Dynamic instability is particularly critical for lightweight, thin walled
members, which is advantageous in structural design optimization, subject to impulsive
loads (e.g. impact, transient). For example, beam elements are an integral component of
structural systems for main structural support (e.g. columns, transverse beams) or as
stiffening members (e.g. cylindrical shells, box beams). The importance of dynamic
pulse buckling is founded in the fields of transportation (e.g. crash worthiness studies),

civil structures (e.g. pressure vessels, nuclear reactors), aerospace and military structures.

Numerical analyses, employing the finite difference and finite element methods, as well
as experimental investigations were conducted. Quasi-static and shock wave loading
events were not considered. The present study was concermned with high order events
defined by intense transient loading conditions (i.e. large amplitude, short time period),
which exceeded the critical static buckling Euler limit. The pulse buckling event was
associated with stress wave propagation, where dynamic instability arises due to the
presence of structural geometric imperfections, eccentric loading conditions or nonuniform

boundary conditions. Exploitation of these parameters by impulsive loads can lead to
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motion perturbations characterised by an unbounded growth of transverse displacements,

which can ultimately compromise structural integrity.

8.2 Elastic Pulse Buckling

Historically, research efforts have focused on the fundamental mode response of a simply
supported beam defined by a half-sine wave geometric imperfection; for example, Sevin
(1960). In general, the load intensity was greater than the static Euler limit by a factor of
3—5 times lower than the yield stress. The relatively low order buckling events could
neglect axial inertia and were comparable to uniaxial tests in universial test loading frames.
Later efforts considered more intense impact events but were limited to the discrete

imperfection mode; for example, Sugiura et al. (1985) and Ari-Gur and Elishakoff (1993).

For the present study, dynamic elastic pulse buckling was defined as the excessive growth
of transverse displacements due to an intense transient load, on the order of the
proportional limit, which significantly exceeded the critical static Euler load. The
buckling response of a slender beam, with initial geometric imperfections, subjected to an
elastic axial impulse was considered. The main objective was the advancement of
numerical models, via the finite difference and finite element methods, consistent with
the “preferred” wavelength theory. Details of the numerical models were presented and
the analyses were discussed in terms of the peak buckle displacement amplitude,

transverse displacement-time history and modal response.

Historically, only the discrete fundamental mode, imperfection formulation has been
considered. Consequently, one of the most important findings of the numerical
investigations was that the characteristic unbounded growth of transverse displacements
was only initiated when random geometric imperfections were incorporated. The

numerical investigations substantiated the validity and utility of the ‘simplified’ elastic
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pulse buckling analysis presented by Lindberg (1965) and Lindberg and Florence (1987).
For a slender beam subject to an elastic axial impulse, the peak buckle amplitude and

dominant waveform could be effectively defined in terms of a single “preferred” mode.

For early solution times, the assumption of a constant, uniform axial impulse was
confimmed. Thus, the longitudinal position of the stress front with respect to the evolved
buckled response could be ignored. The analysis was accurate, with respect to the
complete pulse buckling response (i.e. peak buckle amplitude growth, modal response
and stress state), only for aspect ratios on the order of 1:1. Deviation of the finite element
response from the unbounded growth of transverse displacements to a ‘limiting’ plateau
was observed. This was related to a variation in the axial stress state, impulse reduction
and axial inertia effects. The superior performance of quadratic, plane strain elements to
accurately model the complete pulse buckling response was demonstrated. The limitation
for beam element models was related to the inherent element formulation characteristics
such as the assumptions of Euler-Bernoulli beam theory, moment—curvature and axial
strain—displacement relationships. The plane strain element models, however, required
significant computational resources and consideration of nonlinear material behaviour.
Finally, a pulse buckling threshold criterion, defined by a nondimensional load duration

and normalized stress ratio with respect to the yield stress, was successfully modelled.

In summary, the development of accurate finite element models to represent the elastic
pulse buckling of slender beams in reference to the “preferred” wavelength theory
requires (i) incorporation of random geometric imperfections, (ii) defining a finely
discretised domain with aspect ratios on the order of 1:1, and (iii) consideration of
nonlinear geometric analysis coupled with nonlinear material behaviour for plane strain

element models
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8.3 Experimental Investigations

Extensive investigations have been conducted to define constitutive relationships on the
impact behaviour of bars at high strain rates (Meyers 1994). Relatively few studies have
addressed the dynamic plastic buckling response of bars subject to an intense axial
impact. Historically, majority of the analytical and experimental research efforts has
focused on the fundamental mode response and concemed with elastic buckling threshold
limits; for example Ari-Gur et al., (1982, 1979, 1978). Numerous studies, however, have
shown that for intense impulsive load events the elastic and plastic dynamic buckling
instability was characterised by evolution of a higher order modal response; for example,

Bell (1988) and Abrahamson and Goodier (1966).

Details of an experimental investigation on the dynamic plastic buckling of slender beams
subjected to axial impact were presented. A 10kg free fall impact hammer with a
nominal impact velocity of 6.2m/s defined the impact event. Two rectangular cross-

sections, for 6061-T6 aluminum and CR1020 steel beams, over a range of slenderness

ratios with a clamped-slide bearing boundary condition were investigated.

The initial global geometric imperfections and final buckled profiles were measured
along the longitudinal axis of the beam. The peak buckle response was characterized by a
normalized modal parameter (JV ), which accounted for local stiffness and natural
frequency response characteristics, as a function of the effective slenderness ratio. The
modal parameter was employed to assess the peak buckle response in terms of the axial
position and transverse amplitude. In addition, the influence of dynamic material
behaviour on the peak buckle response for the cold rolled steel beams was inferred.
Simplified theoretical expressions defining the critical buckle wavelength were in

reasonable agreement with the experimental data.
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8.4 Plastic Pulse Buckling

Development and analyses of finite element models examining the experimentally
observed plastic pulse buckling response, of a slender beam subject to axial impact, was
conducted. The parametric study considered the influence of element formulation, element
aspect ratio, geometric imperfection model, constitutive relationships, applied boundary
condition and contact mechanics. Three main objectives defined the scope of the
investigations; (i) to develop accurate numerical models consistent with the
experimentally observed pulse buckling response, (ii) to develop relationships that
characterize the dynamic peak buckle response and mode behavior, and (iii) to conduct a

preliminary assessment on a dynamic pulse buckling criterion

Consequently, the primary objectives of the present thesis investigations are to augment
and to extend the current experimental database, to provide an empirical basis to validate
numerical models, and to develop relationships that characterize the dynamic pulse

buckling response

The finite element analysis substantiated the validity for characterizing the pulse buckling
response of a slender beam subject to axial impact by a normalized modal parameter (ﬁ )
as a function of the effective slendermess ratio. For the parameters considered, a
sensitivity analysis demonstrated that the modelled boundary condition and element
formulation had the most significant influence on the computed pulse buckling response.
The relative influence of element aspect ratio, imperfection model and contact mechanics

was of secondary importance on the computed modal behaviour.

Although a “simple” axial impact event has been considered, numerical modelling of the
dynamic, plastic pulse buckling response is a complex and demanding task. The

investigations also suggested that additional parameters might be coupled to the nonlinear
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dynamic buckling process. These factors include the strain field discontinuity, element
frequency characteristics, local stiffness effects (e.g. material and structural), as well as
stress wave propagation and boundary interaction effects. The importance of any
correlation with the modal response, however, was not resolved in the present study and

further investigations are warranted.

Based on comparison of the experimental and computed buckling response, it was
inferred that dynamic material properties should be considered. A definitive conclusion
could not be developed due to software limitations, where dynamic, rate dependent

matenal properties could not be modelled.

8.5 Recommendations for Future Research

Based on the investigations conducted and conclusions developed during the course of

the study, recommendations for areas of future research are forwarded.

8.5.1 Dynamic Elastic Pulse Buckling

The validity and utility of the simplified “preferred” wavelength theory and elastic pulse
buckling threshold limit has been demonstrated. The expressed requirements for the
development of accurate and realistic phenomenological models defining the complete
modal response must be considered. These parameters include the geometric imperfection
model, discretised aspect ratio, element formulation and the coupled nonlinear
computational routine (i.e. materia, geometric effects). Future research should investigate
structures with more complex geometry, loading events, varied boundary conditions or
mechanical properties. For these studies, the coupled response and modal competition has
to be addressed on a rational basis through computational tools such as the finite element
method.



8.5.2 Experimental Investigations

One of the primary objectives for the experimental study was to assess the peak buckle
and midspan response in terms of defining a lower bound elastoplastic threshold limit or
dynamic pulse buckling cniterion. Historically, the response has been based on only the
midspan deflection (Ari-Gur et al., 1982; Ari-Gur and Elishakoff, 1993). Unfortunately,
the establishment of engineering relationships, based on a comprehensive strain record,
was not successful during the experimental investigations due to the loss of strain gauge
leads. Acquisition of high-speed imaging techniques and alternative measurement
systems for future experimental investigations is recommended. In terms of developing a
pulse buckling criterion, parametric investigations should also consider a variation in the
applied boundary condition and impulse load intensity. In addition, materials should be
selected to examine the wave speed parameter, which is a function of the modulus and
density, and dynamic material properties, including strain rate independent and strain rate

sensitive behaviour.
8.5.3 Dynamic Plastic Pulse Buckling

Although the finite element analysis was consistent with the measured experimental

buckled response data, a number of issues require a further comprehensive study:

e To consider the influence of element formulation on modelling the pulse buckling
response and significant strain field discontinuity associated with the stress
wavefront and peak buckle crest. Lower order elements with full and reduced
integration and/or incompatible mode elements should be examined

e To investigate the influence of modelling procedures for the contact mechanics
and boundary conditions on the pulse buckling response

e To incorporate explicit integration schemes
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To examine the influence of dynamic material properties and rate dependent
behaviour on the pulse buckling response computations

To conduct parametric investigations, in parallel with empirical studies, that also
examines the imperfection model, load intensity and load character (i.e.
mass—velocity, force—time)

To assess the parametric studies for the development of dynamic pulse buckling
threshold limits and a dynamic buckling criterion.
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Appendix A Preliminary Elastic Pulse
Buckling Analysis

A.1 Introduction

Analysis of finite element models investigating the elastic pulse buckling response of a
slender beam subject to an axial impulse is presented. The issues addressed include mesh
topology, applied impulse magnitude, imperfection type, element formulation and
requirements for nonlinear analysis.

A.2 Beam Element Models

A.2.1 Fundamental Mode Imperfection

A.2.1.1 Introduction

Historically, analytical and numerical investigations on the dynamic pulse buckling
response of beams have generally only considered the fundamental mode response. Finite
element analysis on the elastic pulse buckling response of a slender beam with a discrete
half-sine wave imperfection is presented. The analysis will demonstrate that the dynamic
response of models defined by a discrete mode imperfection was not consistent with the
“preferred” wavelength theory for the intense pulse buckling events considered.

The finite element packages ANSYS (1996) version 5.3 and NISA (1997) version 7.0 were
used for the analysis employing beam elements. Model parameters such as element
formulation, mesh topology, integration time step and imperfection model form are
discussed later. The two-dimensional BEAM3 element of ANSYS (1996) and 3D General
Beam (NKTP=39) element of NISA (1997) were employed for the finite element pulse
buckling analysis. The usual assumptions associated with Euler-Bernoulli beam
behaviour were considered and the effects of transverse shear deformation and rotary
inertia were ignored.

Table A-1 summarizes the minimum time step required, as a function of the mesh aspect
ratio (4R), for numerical stability during integration of the dynamic equation of motion.
For stability considerations, the lower bound listed in Table A-1 was selected as the
critical time step.

Table A-2 summarizes the finiie element model parameters considered for the pulse
buckling investigations of beam element models that incorporated a fundamental mode
imperfection. The half-sine waveform geometric imperfection was defined by Equation
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(3.17). The Courant number (C,) was determined using Equation (3.16) based on the
critical time step listed in Table A-1.

For all models, except ANBI, the beam geometry was 762mmxI2.7mmx0.3175mm.
Model ANBI was developed to compare with analysis conducted by Sevin (1960) and had
the dimensions 525mmx10mmx3.5mm. The elastic properties for Aluminium 6061-T6
were defined as £ = 69MPa, p = 2700kg/m® and v = 0.33. The essential boundary

conditions were pinned (/? = O) and roller support (X = l). The parameters were selected

for comparison with experimental studies presented in Lindberg (1965) and Lindberg and
Florence (1987).

A.2.1.2 Linear Transient Baseline Analysis

The finite difference study conducted by Sevin (1960), which included the effects of axial
inertia, was used as a comparative benchmark for the initial finite element analysis. Sevin
(1960) concluded that axial inertial effects could be neglected for bars with slenderness
ratios (Lo/r < 150) subjected to constant nondimensional axial velocities within the range
0.00023-0.001. These forcing velocities were equivalent to axial impulses of /6-69MPa.
Model ANB! had an effective slenderness ratio of (L/r = 150) and was subjected to an axial
impulse of 69MPa. The modelling considerations and adopted procedure for the current
investigations are discussed in Chapter 4.

The computed displacement field for the 1%, 5%, 10" and 20" axial stress wave traverse, for
Model ANBI, as a function of the normalized axial coordinate (:\’_ ) is illustrated in Figure

A-1. The dominance of the midspan response and computed displacement—time history
record was consistent with Sevin (1960) and the finite difference analysis (Figure 3-1)
conducted in the present investigations. The longitudinal distribution of the normalized
axial stress, defined as the ratio of computed normal stress (%) to initial applied impulse
(0%), is shown in Figure A-2. The axial stress response was directly related to the axial
position of the propagating stress wave. Thus, the finite element analysis substantiates the
study conducted by Sevin (1960) with respect to the assumption of a constant, uniform axial
thrust and neglect of axial inertia.

For the pulse buckling events considered in the current investigations, a linear transient
analysis was initially conducted. This was based on the comparative analysis with the
investigation of Sevin (1960) and the assumption, that for early buckling times the
deflections and rotations could be considered small, whereby second order terms due to
bending could be neglected.

Analysis of the computed response, for the models presented in Table A-2, demonstrated
that the linear transient finite element solution was not representative of either the
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theoretical analysis or experimental observations of Lindberg (1965). Comparison of the
ANSYS and NISA solutions, which examined the evolution of peak buckle displacement and
buckle wavelength, revealed an effectively identical response. The finite element models
exhibited a low ordered, bounded response that was dominated by axial displacement.
Furthermore, the time histories for axial displacement and stress response were consistent
with the classical linear, elastic wave propagation solution. Although a range of mesh
aspect ratio and imperfection magnitudes were considered (Table A-2), the finite element
models did not exhibit an exponential growth of transverse displacements consistent with
the “preferred’” wavelength theory.

Based on these investigations, it was concluded that for intense impulsive loading
conditions, of primary consideration for the present study, the importance of coupled
nonlinear displacement terms was significant. Consequently, all subsequent analysis, for
the finite element models listed in Table A-2, considered a nonlinear geometric
formulation.

A.2.1.3 Nonlinear Geometric Analysis

Examination of the nonlinear transient solution for Model ANB/ was consistent with the
linear solution (Figure A-1) and further validates the conclusions stated by Sevin (1960).
This was not the case, however, for the other models listed in Table A-1 that were
subjected to a greater impulse magnitude (o = 276MPa).

Figure A-3 illustrates the axial displacement response for several longitudinal stations of
Model ANB6, which was computed by nonlinear transient analysis. During the time
frame (0 < 7 < 66; 0 <t < 300us), the axial response was consistent with the linear
theoretical solution and exhibited a characteristic sawtooth waveform. For the time
frame, 0 < 7 <33 (0 <t <300us), the propagating compressive stress wave acts only to
relieve the initial static tensile stress and thus only linear behaviour was observed.

Deviation from the linear response occurs with the development of significant perturbations
to the transverse motion. For the quarter-point node (/7 = 0.25), of Model ANB6 shown in

Figure A-3, this occurs after 7~70 (t #320us) as supported by the nondimensional
transverse displacement—time history illustrated in Figure A-4.

A similar computed response was also exhibited for the nonlinear transient solutions of
the Models ANB3 through ANB7 and Models NB/ through NB5 summarized in Table A-
2. In contrast, linear behaviour was observed for Model ANB2 throughout the entire
solution (up to the 12™ wave traverse). This was attributed to the coarsely meshed
domain and the limited degrees of freedom available to develop the higher order modal
response.
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Buckling can only be initiated after the compressive stress wave has propagated a critical
wavelength from the lower support (Y = O). For clarity, the time scale was shifted to
accommodate the required time period for the longitudinal stress wave to travel the length
of the beam. Thus, the nondimensional time (7= 0) would now represent the instant
when the stress front is reflected from the lower pinned support. To demonstrate by
example, this is illustrated in Figure A-5, which presents an adjusted time scale plot for
Model ANBG6 from Figure A-4.

For the beam element models defined only by discrete fundamental mode imperfections,
the growth of transverse displacements was not consistent with either the theoretical
analysis or experimental observations discussed by Lindberg (1965) or Lindberg and
Florence (1987). This is illustrated in Figure A-6 where the peak buckle amplitude (Wpax)
is plotted as a function of time (7). Data for the finite difference models (FD2 and FD3)
from Figure 3-6, was plotted for comparison. A peak nondimensional imperfection
amplitude, w, = 16.628 (A, = 1.524mm) for Models ANB6 and ANB7, was used to plot
the theoretical Equations (3.18) and (3.19). Detailed analysis revealed that growth of
transverse deflections was initiated around 7220 (t #90us). Comparison with the
experimental studies (Figure 3-11), where growth was observed at t ~ 18s, the buckling
response was significantly delayed by a factor of approximately 5.

Although the initial imperfection was defined by a half-sine waveform, a dominant higher
order modal response was prevalent. The computed wavelengths (4.), for Models ANB6
and MBS, increased with time and the mean response was on the order of A,, = 20. This
corresponds to almost three times the “preferred” mode (4, = 2772 ). An increase in the

mesh density (Model ANB7) did not significantly influence the computed peak amplitudes
or observed waveforms.

The investigations demonstrated that the finite element models, which incorporated only
a fundamental mode imperfection, were not consistent with the “preferred” wavelength
theory. The peak buckle response was not representative of the characteristic unbounded
growth of transverse displacements. Furthermore, the modal response significantly over
predicted the mean buckle wavelengths. The importance of the coupled nonlinear terms
associated with the axial strain—displacement relationship, however, was recognized.

A.2.2 Combined Geometric Imperfections

A.2.2.1 Introduction

The significant influence of random imperfections on the pulse buckling response was
demonstrated by the finite difference investigations. Consequently, finite element models
that incorporated combined imperfections (i.e. discrete and random), through linear
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superposition of Equations (3.17) and (3.20), were developed. Table A-3 summarizes the
parameters for the beam element models with combined imperfections.

A.2.2.2 Buckled Displacement Response

The presence of local random imperfections initiated higher order flexural oscillations
that dominated the buckling response throughout the solution. This is demonstrated
through comparison of the buckled profile for Model ANB9 (Table A-3) as shown in
Figure A-7, with the response of Model ANBG illustrated in Figure A-5. Although the
half-sine waveform imperfection amplitude, for Model ANB9, was approximately 50
times greater than local random imperfections, the pulse buckling response was
dominated by higher order modes. The buckled waveform was “biased” towards the
lower support due to the finite time required for the axial impulse to propagate a critical
length and initiate flexural oscillations. Furthermore, impulse duration, relative stiffness
and eccentricity effects also influence the modal competition near the support boundary.
The transverse buckle amplitudes were on the order of 3-5 times the maximum discrete,
fundamental mode imperfection amplitude. Similar pulse buckling response was
observed for the other models listed in Table A-3.

Exploitation of random geometric imperfections by the axial impulse was critical for
initiating the enhanced growth rate of transverse displacements. This is illustrated by
comparison of the combined imperfection models (Figure A-8) with models defined only
by the discrete fundamental mode imperfection (Figure A-6). The maximum and
minimum Fourier coefficients (4,), for the models listed in Table A-3, were selected to
plot Equation (3.18). The nondimensional buckle amplitudes for both the peak buckle
(open symbols), located near the lower fixed support (Figure A-7), and midspan response
(solid symbols) are presented.

For early solution times (z< 6), the numerical models underpredict the threoretical
growth as defined by Equation (3.18). Although the midspan deflections increased with
time, the peak buckle amplitude dominated the solution. The limiting plateau observed in
Figure A-8, for solution times greater than 7 =~ /5, was related to a reduction in the axial
impulse and coupled nonlinear terms defined by the axial strain—displacement
relationship. Further discussion is presented in Chapter 4. The behaviour was also
consistent with experimental evidence (Lindberg and Florence, 1987) from time-frame
photographs as shown in Figure 3-11. The finite difference solution, which assumes a
assumed a constant, uniform axial thrust, exhibited an unbounded growth rate in
accordance with the “preferred” wavelength theory.

The comparative buckling response for 3-D beam elements (NISA) and 2-D beam elements
(ANSYS) is illustrated in Figure A-9. The finite element models with an aspect ratio of 2:1
and 1:1 (Table A-3) were analysed. The maximum initial imperfection coefficient
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(A, =0.56) was selected to plot Equations (3.18) and (3.19). The results are in excellent
agreement.

A.2.2.3 Modal Response Analysis

Modal response analysis of the buckled profile was also conducted. The nondimensional
buckle wavelength (4 = 2s I/ ) response as a function of the dimensionless time

parameter (7) is presented in Figure A-10. The finite difference Model FD10 is also
shown in Figure A-10(b) for comparison. The solid data points represent the average
wavelength (4,) and the open data points represent the weighted mean response (Awm)-
Details of the numerical algorithm employed to determine the wavelength parameters are
presented in Chapter 4.

The buckle wavelength response was not significantly influenced by an increase in the
imperfection amplitude. This was illustrated through comparison of the modal response of
Model ANB8 with Model ANB9 and Model ANBI0, where the fundamental mode
imperfection amplitudes was 7 and 34 times that of Model ANBS, respectively.

The importance of considering mesh discretization, however, was observed. For early
solution times (7 < /2), behaviour of the coarsely meshed models (4VB8 and ANBY), with
an aspect ratio of 10:1, was erratic. In addition the average (4a.g) and weighted mean (A4.m)
wavelength response was similar in character, which implied that the modal response was
uniformly distributed along the beam length. Finite element models with a more finely
discretised domain (ANB/0 and ANBI1), however, demonstrated that the smaller amplitude
pulse buckling response away from the fixed support (Figure A-7) was characterised by
higher frequency components than the dominant, large buckle amplitudes defined by the
average wavelength (4,,). Furthermore, the average wavelength response (4,.5) exhibited
general agreement with the theoretical expressions and converged toward the “preferred”
mode at 7 ~ /2. The modal response characteristics for the beam element models were
consistent with recent analysis on elastic beam dynamics by Matsunaga (1996), which
investigated the free-vibration and stability of a simply supported, thin elastic beam, using
a power series expansion method.

A.2.3 Random Geometric Imperfections

The parameters for beam element models incorporating only local random imperfection is
presented in Table A-4. A fixed boundary condition for Model ANBI3 (Table A-3),
which was more representative of the experiments conducted by Lindberg (1965), was
developed to compare with the pinned support of Model ANBI2. The finite element
models considered a pinned support to compare directly with the “preferred” wavelength
theory. Analysis of the pulse buckling response demonstrated that influence of the
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modelled boundary conditions was insignificant. A detailed discussion on the peak
buckle displacement and mode response analysis is presented in Chapter 4.

A.3 Pulse Buckling Analysis — Plane Strain Elements

Investigations, employing quadratic, plane strain elements, were also conducted to study the
influence of the element formulation on the computed pulse buckling response. Table A-5
summarizes the critical time step required as a function of aspect ratio for plane strain
element models.

A.3.1 Buckled Displacement Response

The influence of element formulation on the computed pulse buckling response can be
appreciated through visual comparison of the buckled profiles for the plane strain element
model (4P2, Figure A-11), beam element model (ANB9, Figure A-7) and experimental
investigations (Figure 3-11). Although the plane strain element model was discretized by a
relatively coarse mesh (aspect ratio 8:1), there was good agreement with experimentally
observations. The influence of aspect ratio is illustrated in Figure A-12 for Model APS,
which is more representative of the observed experimental observations. A sharp buckle
ampltude decay was exhibited and the response was dominated by a “single sine wave” near

the lower fixed support (X =0).

The beam element model response was limited due to inherent characteristics of the element
formulation such as plane sections, moment—curvature assumptions and the explicit
nonlinear terms of the axial strain—displacement relationship. The quadratic plane strain
element can more accurately model the high degree of curvature developed near the fixed
support, which was probably influenced by the relative stiffness disparity (between the
beam and support), axial impulse duration and local eccentric effects arising from random
geometric imperfections.

For the plane strain element models, during the initial propagation of the compressive relief
wave, the computed displacement field was consistent with linear, wave propagation theory.
This is illustrated in Figure A-13 for several nodal points of Model AP8. Deviation from
linear behaviour was concurrent with the significant growth of transverse displacements and
the behaviour was consistent with analysis of the beam element models. For the nodal point
located at X = 0.05 this event occurs around 7=10 (¢t ~45) and the buckle amplitude
was on the order of /.5d. According to elastic theory (Lindberg and Florence, 1987),
buckling should occur after the stress front has traversed a distance equal to the
characteristic “preferred” wavelength. For Model APS8, the “preferred” half-wavelength was
(L, = 12.88mm) and stress wave speed (¢ = 5055m/s). The time required for the wave front

to reach the nodal point (f = 0.05) is 7= 1.7 (t = 7.5u5) and propagate the “preferred”
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wavelength is 7 ~0.6 (t ~2.5us). Thus, a lead time (7~ 7.7; t ~35us) would be required for
the growth of transverse deflections before nonlinear effects dominate the pulse buckling
response. The stress front would have travelled a distance of approximately 14 times the
“preferred” half-wavelength. Consequently, the plane strain element models further
substatiates, one of the key assumptions for the “preferred” wavelength theory, that the
position of the stress front can be ignored with respect to the growth of lateral buckle
displacements.

A.3.2 Requirement for Nonlinear Plastic Analysis

The requirements for a fully nonlinear dynamic analysis with elastoplastic constitutive
relationships, when employing plane strain elements can be demonstrated through an
investigation of the computed axial stress state. In addition, Lindberg and Florence (1987)
reported the development of local plastic wrinkles or hinges that occasionally formed at the
peak crests near the fixed support during experimental elastic pulse buckling investigations.
Figure A-14 illustrates the axial stress time history for the elastic analysis for Model AP7.

The data was extracted at Gauss points and normalized with respect to the yield stress for
selected longitudinal stations X <0.20. The axial stress state exceeded the material yield

stress for solution times greater than 7=~5. For later solution times (7> /0) unrealistic
stress magnitudes, on the order of 4 times the yield stress, were observed for a wholly
elastic analysis. The diamond-shaped data points (0) in Figure A-14, represent the
computed elastic stress for the first crest waveform adjacent to the support. The normal
stress was determined using classical linear, elastic Euler-Bernoulli beam theory. An
algorithm was developed to calculate the modal response including the magnitude and
location of peak buckles. The program determined the radius of curvature from nodal
displacement data and calculated the corresponding elastic flexural stress. For a
rectangular cross-section, the flexural stress is defined as,

Mc Ed 8%y (A1)

where the curvature relation (a%x2 ) was calculated by a second order quadratic finite

difference expression. As an example, for Model AP7, at r=22 (t = [00us), the
characteristics of the first buckle were, w = 4.66 (y = 0.519mm), A = 14.27 (L = 22.1mm)

2
and © %xl =0.0486 /mm. Assuming an elastic modulus (E = 69MPa) and beam

depth (d = 0.3175mm), the flexural stress due to bending was 533MPa. Combined with
the axial stress, 276MPa, yields a total normal stress of 6. = 809MPa.
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The computed theoretical elastic stress data points (0) were consistent with the linear
transient finite element analysis illustrated in Figure A-14. The slight discrepancy was
due to the assumptions of the simplified analysis. The significant inelastic stress state
was attributed to the high degree of curvature developed and local element distortion. In
contrast with the beam element formulation, the quadratic plane strain elements are not
limited by the assumptions of plane sections and uniform curvature. Although the
maximum axial stress significantly exceeded the yield stress, analysis of buckled
amplitude growth was in reasonable agreement with the “preferred” wavelength theory.

The analysis demonstrated that the nonlinear geometric and material behaviour must be
considered for finite element models employing plane strain elements. Consequently, the
plane strain element models were defined by an elastoplastic constitutive relationship
with a von Mises yield criterion and linear, strain hardening rule. This model is widely
adopted in engineering practice to describe the stress-strain behaviour of common
engineering materials such as metals. The kinematic formulation selected was large
displacement and small strain. Supplementary investigations demonstrated negligible
differences between small and large strain formulations. As shown in Figure A-15, the
fully nonlinear analysis resolved the numerical difficulties encountered with the
computed stress state. The diamond-shaped data points (0) represented the computed
elastic stress state based on beam curvature. Stability of the stress state for solution times
7 < 5, further demonstrates validity for the assumption of an uniform axial impulse.
During the time frame, the wave front has traversed almost one-fifth of the bar length,
which is on the order of 10 times the “preferred” wavelength (4,). Although an
elastoplastic material relationship was adopted for the analysis, the buckling event is still
considered elastic because the applied impulse was less than the material yield stress.

A.3.3 Discrete Fourier Transform Analysis

Discrete Fourier transforms (DFT) were initially employed to analyse the deformed
geometry profiles of the plane strain element models. The “real” magnitude of the
Fourier coefficients, however, could not be determined accurately. This was due to an
averaging effect where the Fourier coefficient was masked or scaled down. The sparse
number of large amplitude crests near the support (Figure A-12) was dominated by the
more abundant but smaller amplitude wavelengths prevailing throughout the beam length.
Analysis demonstrated that the Fourier magnitudes were 10-20 times less than the peak
buckle amplitudes. A typical DFT analysis is illustrated in Figure A-16, where the
dimensionless Fourier coefficient (a,) is presented as a function of wavenumber (3) and

wavelength (A4).

For the beam geometry investigated, the “preferred” wavelength is (L, = /2.88mm) and

2z

the corresponding wave number (y = T = 0.488). The nondimensional wavelength
P
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(4) is defined as A =2S% . For the DFT analysis, the bar length considered was a

function of the wave front position (i.e. solution time). For example, at time 7 = 22
(t = 100us), the wave front would have propagated approximately L =~ 505mm
(,Y = 0.66). As shown in Figure A-16, the coefficient amplitudes were one order less

than the peak buckle amplitudes, near the fixed support (.«? = 0), which is also illustrated

by the deformed buckled profiles shown in Figure A-12. Consequently, modal analysis
was conducted using the same algorithms developed for the beam element models as

discussed in Chapter 4.
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Table A-1. Critical Integration Time Step as a Function of Aspect Ratio for Beam

Elements.
. A A A
Elements Aspect Ratio Eq:l“ (gpf :); ) Eqrt:r (g“f 2 ) E(;;' 853))
16 150:1 9.42 2448 706
240 10:1 0.628 10.9 3.14
480 5:1 0.314 2.72 0.785
1200 2:1 0.126 0.435 0.126
2400 1:1 0.0628 0.109 0.0314

Table A-2. Parameters for Beam Element Models with Discrete Fundamental Mode

Imperfection.
ANSYS Finite Element Models
Model Mesh AR At (us) C. %dmax Ama/L
ANBI 16x1 150:1 5.0 0.53 25 0.0058
ANB?2 16x1 150:1 5.0 0.53 25 0.0001
ANB3 240x1 10:1 0.5 0.80 25 0.0001
ANB4 240x1 10:1 0.5 0.80 100 0.0004
ANBS 240x1 10:1 0.5 0.80 200 0.0008
ANB6 240x1 10:1 0.5 0.80 500 0.002
ANB7 1200x1 2:1 0.1 0.80 500 0.002
NISA Finite Element Models
Model Mesh AR At (us) Ca %o max Am/L
NB1 16x1 150:1 5.0 0.53 10 0.0001
NB2 240x1 10:1 0.5 0.80 50 0.0002
NB3 240x1 10:1 0.5 0.80 100 0.0004
NB4 240x1 10:1 0.5 0.80 200 0.0008
NBS5 240x1 10:1 0.5 0.80 500 0.002

Notes: Mesh specifies the number of longitudinal x transverse elements, AR is the aspect ratio of the
longitudinal to transverse element length, Ar is the integration time step, C, is the Courant number, %d,.. is the
peak imperfection amplitude as a percentage of the beam depth and 4,,,/L is the nondimensional imperfection

parameter.
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Table A-3. Parameters for Beam Element Models with Combined Geometric

Imperfections.
ANSYS Finite Element Models

Model Mesh AR At (us) Cn Yodmax Amax/L
ANBS8 240x1 10:1 0.500 0.80 15 0.00006
ANB9 240x1 10:1 0.500 0.80 104 0.0004

ANBI10 1200x1 2:1 0.100 0.80 504 0.002
ANBI1 2400x1 1:1 0.025 0.80 205 0.00085

NISA Finite Element Models

Model Mesh AR At (us) Cn %dmax Amax/L
NB6 1200x1 2:1 0.100 0.80 207 0.00086
NB7 2400x1 1:1 0.025 0.80 208 0.00087

Notes: Mesh specifies the number of longitudinal x transverse elements, AR is the aspect ratio of the
longitudinal to transverse element length, A is the integration time step, C, is the Courant number, %d. is the
peak imperfection amplitude as a percentage of the beam depth and 4,,,/L is the nondimensional imperfection
parameter.

Table A-4. Parameters for Beam Element Models with Random Geometric Imperfections.

ANSYS Finite Element Models
Model Mesh AR At (us) Cn Yodmax Ama/L Comments
ANBI2 1200x1 2:1 0.10 0.80 9 0.000037 | Pinned BC
ANBI3 1200x1 2:1 0.10 0.80 9 0.000037 | Fixed BC
ANBI4 | 2400x1 1:1 0.01 0.55 9 0.000037 | Pinned BC
NISA Finite Element Models
Model Mesh AR At (us) Cn %%odmax Ama/L Comments
NBS 1200x1 2:1 0.10 0.80 9 0.000038 | Pinned BC
NB9 2400x1 1:1 0.01 0.55 8 0.000038 | Pinned BC

Notes: Mesh specifies the number of longitudinal x transverse elements, AR is the aspect ratio of the
longitudinal to transverse element length, 4 is the integration time step, C, is the Courant number, %d,.,, is the
peak imperfection amplitude as a percentage of the beam depth and A4,,./L is the nondimensional imperfection
parameter.
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Table A-S. Critical Integration Time Step as a Function of Aspect Ratio for Plane Strain

Element Models.

Eqn (3.13) | Eqn (3.15) | Eqn (4.9) | Eqn (4.10) | Eqn (4.23)
Mesh AR () () (us) () ()
150x1 16:1 0.502 6.96 0.411 8.04 0.290
300x1 8:1 0.251 1.74 0.206 2.01 0.145
600x1 4:1 0.126 0.435 0.103 0.502 0.073
1200x1 2:1 0.063 0.109 0.051 0.126 0.036
2400x1 1:1 0.031 0.027 0.026 0.031 0.018

Table A-6. Parameters for Plane Strain Element Models with Random Geometric

Imperfections.
NISA Finite Element Models

Model Mesh AR At (us) Cn %davg | %dmax | Comments
NP1 600x1 4:1 0.01 0.14 3 6 E
NP2 600x1 4:1 0.01 0.14 2 7 E
NP3 600x1 4:1 0.01 0.14 3 6 E, Le

ADINA Finite Element Models

Model Mesh AR At (us) Cn %davg | %dmax | Comments
AP1 300x1 8:1 0.05 0.34 2 8 EP
AP2 300x1 8:1 0.10 0.69 2 8 EP
AP3 300x2 16:1 0.10 0.34 2 8 EP
AP4 600x1 4:1 0.05 0.69 2 9 EP
APS 600x2 4:1 0.05 0.69 2 11 EP
AP6 1200x 1 2:1 0.01 0.28 2 9 EP
AP7 1200x1 2:1 0.01 0.28 2 9 E
AP8 2400x1 1:1 0.01 0.55 2 8 EP
AP9 1200x1 2:1 0.01 0.28 2 9 EP, Le

Notes: Mesh specifies the number of longitudinal x transverse elements, AR is the aspect ratio the longitudinal
to transverse element length, A is the integration time step, C, is the Courant number, %d .z m. is the average
and maximum peak imperfection amplitude as a percentage of the beam depth, E,EP denotes elastic,
elastoplastic constitutive relationship respectively, and Le indicates large strain analysis.
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Figure A-1. Deformed Buckled Profiles for Beam Element Model ANB/ as a Function
of Normalized Axial Coordinate (Y ) for Solution Times (7).
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Figure A-2. Normalized Axial Stress Distribution for Beam Element Model ANBI/ as a
Function of Normalized Axial Coordinate (X’- ) and Time (7).
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Figure A-4. Nondimensional Transverse Displacement for Beam Element Model ANB6.



Figure A-5. Adjusted Time Scale Plot of Nondimensional Transverse Displacement for
Beam Element Model ANB6 Illustrated in Figure A-4.
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Figure A-6. Nondimensional Peak Buckle Amplitude (Wma) as a Function of Time (7) for
Beam Element Models with Discrete Fundamental Mode Imperfection.
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Figure A-7. Nondimensional Buckled Profiles as a Function of Normalized Axial
Coordinate (X ) for Beam Element Model ANBY.
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Figure A-8. Nondimensional Peak Buckle (Wma) and Midspan Amplitude as a Function
of Time (7) for Beam Element Models with Combined Geometric Imperfections.
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Figure A-9. Nondimensional Peak Buckle Amplitude (Wmax) as a Function of Time (?)
for Beam Element Models with Combined Geometric Imperfections.
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Figure A-10. Nondimensional Buckled Wavelength (1) as a Function of Time (7) for
Beam Element Models with Combined Geometric Imperfections (8 Agvg » O Aum).
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Figure A-12. Nondimensional Buckled Profiles as a Function of Normalized Axial
Coordinate (X) for Plane Strain Element Model 4P8.
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Figure A-13. Axial Displacement Time History for Nodal Points Near the Fixed Support
for Plane Strain Element Model APS.
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Figure A-14. Normalized Axial Stress State as a Function of Time (7) for Plane Strain
Element Model AP7.
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Figure A-15. Normalized Axial Stress State as a Function of Time (7) for Plane Strain
Element Model APS.
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Figure A-16. Discrete Fourier Transform Analysis for Plane Strain Element Model AP8
as a Function of (a) Wave Number, (b) Nondimensional Wavelength.



Appendix B  Notes on Experimental
Investigations

Details on the experience gained and observations developed from preliminary
investigations are presented. Additional information that complements the discussion in
Chapter 6, on the test apparatus, data acquisition system, measurement devices, and
experimental procedure is also addressed. Furthermore, difficulties encountered during

the test program are highlighted.

B.1 Preliminary Impact Investigations

During the preliminary stages of the experimental program, significant effort was
expended modifying the initial design of the test apparatus through iterative trials. The
primary issue was related to the structural configuration of the upper boundary condition,
where the axial impulse was applied to the beam. The primary objective for the
preliminary investigations was to achieve consistent and repeatable observed buckled
mode response for a given slendemess ratio. The preliminary investigations considered a
free upper support and a pinned upper support. The lower boundary condition was
always set as fixed.

For the fixed-free boundary condition, during the impact event there was considerable
lateral displacement of the beam at the point of contact and significant rotation about the
lower fixed support. Consistent buckled response with repeated impact tests was
extremely difficult to achieve due to the changes in contact dynamic (i.e. angle of impact,
eccentricity, beam-mass rotation) with the relatively simple fixed-free boundary
condition. Consequently, the applied impulse was not axial and these preliminary
investigations were rejected.

Subsequently, a series of rollers were machined and a support fixture was bolted to the
underside of the test frame to impose a pinned restraint. This boundary condition allowed
axial translation, at the point of impact, and rotation about the roller supports while
restraining lateral displacement. Unfortunately, a consistent pulse buckling response with
successive impact events was not achieved. This is illustrated in Figure B-1, which
shows the deformed profiles for 606/-T6 Aluminum beams (500mm x 25.4mm x
4.76mm) impacted by a /0kg mass at a nominal velocity of 6.0m/s. The lower support (x
= 0) was fixed and the boundary condition at the beam-mass interface (x = L) was
pinned. Although the boundary condition and test procedure was nominally equivalent
for the four impact events, the resultant buckled mode response exhibited significant
discrepancy. The response was attributed to the imposition of an inconsistent pinned
boundary condition for successive impact tests. A variation in the degree of lateral
restraint (i.e. stiffness) and frictional resistance of the roller pins, as well as the influence
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of eccentric impact was considered the main factors. This was supported by examination
of the impact interface, which generally exhibited a bias through the development of
significant local plastic deformation and rotation about the roller support. Approximately
50 impact tests, with several modifications of the pinned support were investigated;
however, the observed buckled mode shape was not consistent over the range of
slendemness ratios investigated during the preliminary trials.

As discussed in Chapter 6, a mode transition toward the impact interface was
predominantly related to the structural integrity of the imposed upper boundary condition.
A similar mode transition was also observed by Ari-Gur et al. (1982,1978), although the
contributing mechanism was not discussed. Finite element analysis, presented in Chapter
7, also demonstrated the importance of considering the imposed boundary condition on
the computed pulse buckling response.

Consequently, the development of an alternative system was developed and was defined
as a fixed lower support and upper slide-bearing restraint. The final apparatus design and
experimental procedure was discussed in section 6.1.1.

B.2 Experimental Data Measurement

During the experimental investigations real-time (e.g. impact velocity, acceleration, and
strain) and static (i.e. initial configuration, post-test buckled profile) data acquisition
procedures were employed. A description of the data measurement systems, recorded
data sets and difficulties encountered during the experimental investigations will be
discussed.

B.2.1 Data Acquisition System

The data acquisition system was a BE490™ Series Advanced Transient Recorder Plug-in
(ATP) card by Bakker Electronics Dongen bv. The main features include a /2-bir
resolution, internal storage capacity of /28kSamples, peak sampling rate of /MH:- for one
channel and /00kH: for eight analog input channels per card with simultaneous sampling.
For the current experimental test program, the sampling rate was held constant at /00kH:.
The board was installed on a 486-33MH:?z personal computer. The companion application
software TEAM490™ Version 5.204 defined the parameters for data acquisition and
controlled the ATP card. The personal computer and data acquisition system is illustrated
in Figure B-2. The system provided signal conditioning, span adjustment and conversion
of analog signals to digital record for data storage for the measurement devices sampling
displacement, strain, velocity and acceleration.
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B.2.2 Impact Velocity

Three capacitive proximity switches (Omron Model E2K-FIOMC1) determined the
impact velocity of the striking mass. The sensors were positioned at a nominal 70mm
center-to-center spacing where the general location is shown in Figure 6-1 by the three
wires leading from the drop tower assembly. The devices provided a trigger for the data
acquisition card and determined the impact velocity, which was on the order of 6.2m/s. A
typical record, measured in voltage as a function of time, is presented in Figure B-3 for
Test SIc4. As the lower alignment disc passed the lead proximity switch, the output
signal from the lead proximity switch also served as a trigger pulse for the acquisition
card. This is shown in Figure B-3 by the initial, square wave signal. The transient
response was a result of the capacitor discharging after the alignment disc had passed the
proximity switch. The velocity of the hammer prior to impact can be calculated based on
the center-to-center spacing of proximity switch pairs and recorded time intervals to pass
the proximity switches.

B.2.3 Accelerometer and Displacement Transducer Sensors

Initially, accelerometers were attached to the beam to directly measure the buckling
response. In comparison with conventional strain gauge methods, this would have the
potential for considerable savings in both preparation time and cost. Due to the intense
lateral stress wave and buckling motion, however, the accelerometers would only remain
attached to the beam through a stud-mounted, threaded connection. Various
configurations using the standard wax ‘bond adhesive’ were unable to withstand the
effects of the applied impulse. Although, the stud mounted accelerometers proved
successful in capturing the impact event, one accelerometer sensor was destroyed when
the buckled crest of the beam bent the signal output stem. A dynamic displacement
transducer was also employed but the trials were unsuccessful due to the low transducer
core inertia and significant momentum transfer during the impact event. Lindberg and
Florence (1987) state that the lateral velocity, of the peak buckle crest, during the clastic
buckling studies was on the order of 23m/s. Furthermore, based on finite element
analysis presented in Chapter 7, the maximum velocity of the peak buckle crest was on
the order of 37m/s. The primary objective for direct measurement was to obtain real-time
data, of the peak buckle crest and midspan locations, in order to conduct a comparative
assessment of the pulse buckling response. The data would be required for validation of
finite element models and also the development of dynamic buckling criteria.
Consequently, strain gauges were opted as the preferred direct instrumentation method
but as discussed in the next section this method also encountered significant difficulties.
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B.2.4 Foil Strain Gauges

Epoxy bonded, foil strain gauges were also employed, to measure axial and flexural
deformations at several longitudinal positions along the length of the beam. Stations
were marked on the beam and the surface was prepared, according to the manufacturer’s
guidelines, to attach the foil strain gauges. For all tests, at least two gauges were surface
mounted on the beam at the midspan, which were attached in pairs and symmetrically
distributed on opposite faces of the beam. Additional strain gauge locations, for a given
slendemess ratio, were defined by the nominal position of the observed peak buckle from
previous impact tests. Specific details on the longitudinal strain gauge distribution are
presented in Figure B-4, Figure B-5S and Figure B-6. The objective was to measure the
strain response on or near the peak buckle crest to compare with the midspan response
and to assess the dynamic buckling criterion proposed by Ari-Gur et al. (1982), which
was based only on the midspan deflection.

The foil gauges were Measurements Group EP-series with a 120Q resistance and a
capability of measuring *20% strain and EA4-06-250BG-120 with a #5% strain range.
The specific gauge locations will be discussed later. As shown in Figure B-2, a bridge
completion module (Omega BCM-1) and strain gauge, bridge signal conditioner (Omega
OM2-165) completed the circuit. The amplifier output for each channel was separately
patched into an ‘in-house’ designed and manufactured span adjustment unit so that the
residual strain, due to curing of the epoxy, could be offset. The modified signal was then
input to the data acquisition card for analog to digital conversion and storage on the hard
disk for post-processing.

Figure B-7 and Figure B-8 illustrates the initial configuration and post-test buckled
profile for impact test A/ld9, which was instrumented with foil strain gauges. A more
complete strain data record (Test AIf¥) is presented in Figure B-9. For clarity, the strain
magnitude was arbitrarily offset by 10,000us. As detailed in Figure B-4, the gauges were
75mm (Gauges #1 and #2), 110mm (Gauges #3 and #4) and 275mm (Gauges #5 and #6)
from the fixed lower support (x = 0). The latter pair was located at midspan, whereas the
former two sets were positioned to capture characteristics of the peak transverse
displacement. The data records illustrate the significant plastic deformation associated
with the peak buckle response, Figure B-9(a), in comparison with the off-peak, Figure B-
9(b), and midspan, Figure B-9(c).

Although some tests were successful, significant difficulties were encountered during the
experimental investigations to maintain working foil gauges. This was attributed to the
intense stress wave and transverse velocity associated with the pulse buckling events.
There problems encountered with the instrumented foil gauges could be categorized as:
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e the solder weld connecting the coupled negative and ground leads to the foil
gauge occasionally failed.

e the bonded strain gauge located on the tension side of the peak buckle lifted off
the beam surface

e the foil on the compressive side of the peak buckle was damaged through local
buckling of the gauge.

The main cause for these events was attributed to the intense lateral stress wave, in
particular for the peak buckle location. In addition to the strain gauge epoxy, fast curing
resins, adhesives (Automotive GOOP™, tape) and silicone gel (SILPRUF™ SC6-2000)
were also applied during the course of the experimental investigations, in an attempt to
prevent failure of the foil gauge sensors. Table B-1 summarizes various test difficulties
encountered where 32 of 73 strain gauges failed. Consequently, the establishment of
engineering relationships, based on a comprehensive experimental strain record, across
the range parameters investigated was not successful due to the loss of strain gauge
instrumentation.

B.2.5 Applied Boundary Condition

Although a majority of the impact experiments conducted were successful, 94 out of 115
tests, invariably some results were discarded. This was demonstrated by the measured
initial and final deformed profiles for tests A/d! and AId4 (Figure 6-3) and also illustrated
by the buckled profiles of series Alc presented in Figure B-10. The response was
attributed to problems encountered with the upper support boundary condition and related
to either a loss of structural integrity or a “dead” impact. Table B-2 summarizes the
problems encountered during the current experimental investigations for specific impact
tests.

Evolution of the peak buckle crest was typically developed near the lower fixed support
(x = 0), as illustrated in Figure B-10 for impact tests Alc/, Alc3 and Alc4. Establishing
the basis for defining a representative buckled response, for a given slendemess ratio, was
founded on experience gained from the preliminary investigations, observations of the
predominant buckled mode response and parallel finite element analysis. For the impact
tests Alc2 and Alc5 a shift in the peak buckle location away from the lower fixed
boundary toward the upper support (x = L) was observed. A shift in location of the peak
buckle crest was characteristic of impact events where the slide bearing disc was partially
or fully driven out of the support collar. The structural integrity of the upper support (x =
L) was compromised and unrestrained. This is illustrated by the beam rotation about the
upper boundary condition (x = L) as shown in Figure B-10 for impact tests A/c2 and
Alc5. Consequently, for these impact events, the recorded data was not analyzed.
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The importance of these observations should be placed in context with the experimental
investigations of Ari-Gur et al. (1982, 1978). A similar response was observed where the
peak buckle location shifted toward the upper support (i.e. impact interface) for effective
slendemess ratios (L./r) on the order of 200, which was illustrated in Figure 5-6. For the
experimental investigations of Ari-Gur et al. (1982,1978), a single column was
successively impacted by the same mass with increasing drop heights until buckling
occurred, where the final deformed profile exhibited plastic mode response. Although
recognized, the contributing mechanism was not discussed by Ari-Gur et al. (1982, 1979).
Finite element analysis, presented in Chapter 7, supported the experimental observations
of a shift in the peak buckle location toward the upper restraint associated with the
imposed structural boundary condition.

For the higher slendemess ratios (Lo/r > 250), acceptable impact test results were difficult
to achieve and data for the longer column lengths of Series Alle and AIlf were discarded
completely.

A "dead" impact was also encountered where the hammer would exhibit little or no
recoil. These events are listed in Table B-2 as N°. This event was probably due to a
slight rotation of the impact hammer assembly about the longitudinal axis of the drop
tower during free fall, which subsequently caused the mass assembly and/or the slide-
bearing disc to become slightly "jammed".

B.3 Detailed Experimental Procedure

For a given slenderness ratio, the crosshead for the static test frame was lowered into
position, such that the lower edge of the bearing disc within the drop tower was aligned
with a marking on the beam sample. A nominal distance of 35mm (~1.25") from the top
of the beam was scribed on the surface with an indelible marker. The bearing disc
thickness was approximately 25mm. This would ensure that the pre-test configuration
was consistent for all impact events. Experimental observations suggested that axial
deformations were on the order of Smm.

For all tests, the bearing surface on the PVC disc was sprayed with Teflon coating to
reduce axial friction. The test specimen was pushed through the slotted P¥'C disc and the
beam was placed in the lower vice grip support. The upper slide bearing was then raised
in position within the collar support of the drop tube assembly. Markings etched on the
vice grip platens, ensured that the beam was centered on the longitudinal axis of the drop
tower. The only constraint was that beam mill stamp was facing the same direction in the
test frame for all impact events. A torque wrench, set to 5ON-m, was used to secure the
beam within the lower fixed support. The threaded, transverse support rod and a dial
gauge mounted to a support frame, illustrated in Figure 6-1, were used to align the upper
boundary support with the fixed lower restraint within #0.0508mm (£2/10007. The
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threaded rods would then be locked in place using hex nuts and lock washers to act as a
bracing system to stabilize the drop tower during the free-fall decent of the impact
hammer and to resist the reaction loads developed at the upper support boundary.

The initial global geometric imperfections of the beam sample, in the test frame, were
measured and prior to each impact test the dial gauge was removed. The initial beam
profiles were measured with respect to the same reference point. The zero datum, for
both axial and transverse measurements, was defined by the position of the beam end
within the fixed lower support of the vice grip (Figure B-11). The initial geometric
profile was measured at 25mm stations along the beam length by a mechanical, spring-
loaded dial gauge with an accuracy of #0.0254mm (£ 0.001").

The main support frame of the measurement assembly was fabricated from aluminum C-
channel section. This was welded to an aluminum beam and bolted to the steel base plate
attached to the static test frame. A machinist level table ensured that the imperfection
measurement apparatus was at right angles to the base support. A slot was cut into the C-
channel to accommodate a sliding block to support the dial gauge and was secured by a
centrally located wing nut.

For test samples instrumented with strain gauges, a conductivity check was also
conducted, which ensured that proper electrical connections were developed prior to the
impact event. The span adjustment unit zeroed the voltage signal output of the strain
gauges in order to accommodate the # 5V range of the data acquisition card.

A wire-pulley system was used to raise the hammer, through the tube to the desired drop
height, in order to initiate the free-fall and subsequent impact event. Once the striking
mass was raised to the desired drop height, via the pulley system, the data acquisition
trigger was armed and the mass was released. As the hammer passed the first proximity
switch, the data acquisition system was tripped and the buckling event was recorded
(Figure B-3). Occasionally a second impact was observed but was considered negligible
in terms of the effect on the buckled response, which was based on analysis of the data
records for the recorded trigger pulse and strain response. The conclusion was also
consistent with the findings of Ari-Gur et al. (1982, 1978).

After the impact event was completed, the mass was secured in a neutral position. The
buckled mode shape (i.e. transverse deflection) was profiled at 25mm stations along the
length of the impacted beam. In addition to the specified measurements, the location of a
local minima or maxima was also recorded.
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Table B-1. Notes for the Impact Tests Instrumented with Foil Strain Gauges.

Series A/ Series All Series S/

Test Notes Test Notes Test Notes
Ala4 N? (2/2) Alla3 N2 (1/2) Sla5 N?(1/2)
Ala6 NZ (2/2) AIIbS N? (4/4) Slc4 N2 (1/4)
Alc5 N? (4/4) Allb10 N? Slc9 N? (2/5)
Alcl0 N? (2/5) Alld3 NZ (3/6) SI5 N? (1/6)
Alf4 N, N2 (1/6) AIld9 N2 (4/6) Slfe N? (0/6)
Alf10 N'!, N2 (1/6), N> Sif12 N2 (3/7), N°

Notes: N' - slide bearing not fully restrained by support collar, N> — solder connection or epoxy bond of
foil gauges failed and (0/N) represents the number of Strain Gauges that failed with reference to the total
number of strain gauges, N° — data acquisition trigger failed.

Table B-2. Notes for Individual Impact Tests of the Experimental Investigations with

Questionable Buckling Response.

Series Al Series All Series SI
Test Notes Test Notes Test Notes
Alcl N' N2 AlIbS N'/N3 Slcs N?
Alc2 N!, N? Alle2 N’ SId3 N!
Alc8 N’ Allc5 N? SIf1 N!
Aldl N' Alld9 N’ SIf12 N'
Alel N' Alle2 N'/N?
Al N! Alle3 N?
Alf4 N'
AIf10 N',N?

Notes: N'- slide bearing not fully restrained by support collar, N* - rotation about lower support, N° —
inconsistent buckled response associated with the bearing support and a "dead" impact with little or no
recoil of the free fall hammer.
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Figure B-8. Deformed Buckled Profile for Test A/Id9 Instrumented with Strain Gauges.
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Figure B-9. Strain Record for Test Alf4, (a) Gauges #1 and #2 (Peak), (b) Gauges #3 and

#4 (Off-Peak), and (c) Gauges #5 and #6 (Midspan).
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Figure B-11. Datum Level for Measurement of Initial Geometric Imperfections and
Final Buckled Profile.



Appendix C Experimental Data

This appendix documents the measured physical test data compiled during the
experimental impact investigations. Profiles of the initial bar geometry and final buckled
mode shape are presented. The geometric data was consistently measured with respect to
the same reference point. The zero datum, for both axial and transverse measurements,
was defined by the position of the bar end within the fixed lower support of the vice grip.
This is illustrated in Figure C-1. Lateral deflections (y) were measured by a spring-loaded
dial gauge (£0.001") and referenced to the initial baseline reading. The bar geometry
data was sampled at 25mm intervals along the longitudinal axis (x). Furthermore,
location and amplitude of the peak buckle crests were also recorded. For impact tests,
which included foil gauge instrumentation, the complete strain data record is illustrated.

The total number of tests for each series and respective slenderness ratios are listed in
Table C-1. A total of 115 impact tests were conducted. Notes detailing problems
encountered during the test program, which question the observed buckling response, are
listed in Table C-2. Typically this would be a result of the PVC slide bearing not being
fully restrained by the support. Consequently, the integrity of the upper boundary
condition was compromised. In general the resultant buckling motion could be
characterized by a higher order response with a shift in the peak buckle location toward
the upper restraint. This errant boundary condition, however, occurred for only 12 of the
115 impact tests conducted with a greater proportion occurring at the higher slenderness
ratios. Finally, specific notes on impact tests instrumented with strain gauges are
presented in Table C-3.
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Figure C-1. Datum Level for Measurement of Initial Geometric Imperfections and Final
Buckled Profile.

Table C-1. Total Number of Impact Tests for the Experimental Investigations.

Test Le/T Series Al Series ATl Series SI
a 75 6 3 5
100 5 10 6
c 150 10 5 9
d 200 5 9 6
e 250 5 4 )
f 300 10 - 12

" - difficulty in obtaining consistent buckled response with the increased bar length (925mm) and was
associated with a ‘magnified’ error over this length and interplay with the fixed end boundary conditions.
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Table C-2. Notes for Individual Impact Tests of the Experimental Investigations with

Questionable Buckling Response.

Senes Al Series AIl Series SI
Test Notes Test Notes Test Notes
Alcl N!, N? AIIbS N'/N? Slc5 N’
Ale2 N!, N? Alle2 N’ Sld3 N
Alc8 N’ Allcs N’ SIf1 N'
Aldl N' Alld9 N’ SIf12 N'
Alel N! Alle2 N'/N?
AlR2 N' Alle3 N’
Alf4 N'
AIf10 NI N?

Notes: N'- slide bearing not fully restrained by support collar, N - rotation about lower support, N° —
inconsistent buckled response associated with the bearing support and a "dead” impact with little or no
recoil of the free fall hammer.

Table C-3. Notes for the Impact Tests Instrumented with Strain Gauges.

Series Al Series AIl Series SI

Test Notes Test Notes Test Notes
Ala4 N2 (2/2) Alla3 N? (1/2) Slas N2 (1/2)
Ala6 N?(2/2) AIlbS N? (4/4) Slc4 N2 (1/4)
Alcs N? (4/4) Allb10 N? SIc9 N? (2/5)
Alcl0 N2 (2/5) Alld3 N2 (3/6) SIf5 N (1/6)
Alf4 N', N? (1/6) Alld9 N? (4/6) SIf6 N? (0/6)
AIf10 N!, N? (1/6), N° SIf12 N’ (3/7), N®

Notes: N' - slide bearing not fully restrained by support collar, N> — solder connection or epoxy bond of
foil gauges failed and (n/N) represents the number of Strain Gauges that failed with reference to the total
number of strain gauges, N* — data acquisition trigger failed.
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C.1 Series AI - 6061-T6 Aluminum Bars

Figure C-2. General Deformed Buckled Profiles for Series A/ (Tests Ala to Alf)
Impacted by a 10kg Free Fall Impact Hammer at a Nominal Velocity of 6m/s.
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C.2 Series AIl — 6061-T6 Aluminum Bars

Figure C-14. General Deformed Buckled Profiles for Series AIl (Tests Alla to Alld)
Impacted by a 10kg Free Fall Impact Hammer at a Nominal Velocity of 6m/s.
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Deformed Buckled Profiles.
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Figure C-23. Series Alle, Tests: 1 to 4, (a) Initial Global Imperfections and (b)
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C.3 Series SI — Cold Rolled 1018 Steel

Figure C-24. General Deformed Buckled Profiles for Series Al (Tests Sla to SIf)
Impacted by a 10kg Free Fall Impact Hammer at a Nominal Velocity of 6m/s.
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Figure C-25. Series S/a, Tests: 1 to 5, (a) Initial Global Imperfections and (b) Deformed
Buckled Profiles.
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Figure C-29. Series Sic, Tests: 6 to 9, (a) Initial Global Imperfections and (b) Deformed
Buckled Profiles.
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Figure C-30. Strain Record for Test S/c4, (a) Strain Gauges #1 and #2 and (b) Strain

Gauges #3 and #4.
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Figure C-32. Strain Record for Test Sic9, (a) Strain Gauges #1 and #2 and

(b) Strain Gauges #3, #4 and #5.
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Figure C-31. Series S/d, Tests: 1 to 6, (a) Initial Global Imperfections and (b) Deformed

Buckled Profiles.
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Appendix D  Sensitivity Analysis of Plastic
Pulse Buckling

A series of preliminary investigations was conducted to assess the influence of several
parameters on the computed dynamic plastic pulse buckling response with respect to the
observed experimental modal behaviour. These factors include structural boundary
conditions, imperfection magnitude and type, discretised element aspect ratio, material
properties and element formulation. The sensitivity of these issues are further detailed in
Appendix E.

D.1 Analysis of Boundary Conditions

A series of finite element models were developed to investigate the influence of the
applied structural boundary condition on the computed pulse buckling response for the
slendemess ratios (Lo/r = 75, 150, 250) of series Al. Details of the model parameters and
applied structural boundary conditions are discussed in Section 7.1 and Section 7.2.
Influence of the imposed boundary condition on the computed displaced mode shapes for
the intermediate series Alc (L/r = 150, L, = 275mm), is illustrated in Figure D-1 for
models with a discrete imperfection (Equation 3.17). Models that incorporated random
imperfections (Equation 3.20) are shown in Figure D-2. The buckled profile data for Test
Alc7 is also illustrated as a representative experimental modal response for comparison
with the numerical analyses. The 75m fixed restraint and 25mm slide bearing support can
be seen in Figure D-1(a) and Figure D-2(a). The models with random geometric
imperfections did not exhibit the same sensitivity to the idealized boundary condition in
comparison with models defined by a global fundamental mode imperfection.
Examination of the numerical computations for series A/a, however, demonstrated that
the beam element models were more influenced by changes in the displacement boundary
conditions than the plane strain element models when random geometric imperfections
were considered. The essential point to be recognized is that, for the parameters
investigated, the actual imposed structural boundary condition must be considered for the
numerical computations in order to develop an accurate pulse buckling response.

D.2 Analysis of Imperfection Models

For the sensitivity analysis, beam and plane strain element models with an aspect ratio of
AR = I:1 were developed. Only elastic, perfectly plastic material behaviour was
considered. Discrete, combined and random geometric imperfections were incorporated
through Equation 3.17 (discrete) and Equation 3.20 (random).
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Pulse buckling computations investigating the lower slenderess ratio (L/r = 75) for test
series Ala (L, = 137m, d = 3.175mm) are presented in Figure D-3, for beam element and
plane strain element models with discrete and random imperfections. The experimental
test series data (4/a3) is also shown for comparison as a representative measured buckled
displacement profile. Similarly, the computed buckled response for the intermediate
slendemess ratio (L./r = 150) of test series Allc (L, =412m, d = 4.7625mm) is illustrated
in Figure D-4. Experimental data from impact test Allc4 is also plotted for reference.

As shown in Figure D-1(a), D-2(a), D-3 and D-4, the computed displaced profiles were
consistent in character for both the beam and plane strain element models with either
discrete or random geometric imperfections. Analysis of the finite element computations
for other models, represented by the parameter matrix of Table 7-2 and Table 7-3,
exhibited similar response characteristics. Thus, based on the parameters investigated,
the influence of imperfection model (i.e. discrete, random) on the computed pulse
buckling response was of secondary importance.

D.3 Analysis of Element Formulation

The peak crest amplitudes, however, between the beam and plane strain element models
were different. In terms of the peak buckle amplitude, the plane strain element models,
defined by either discrete or random geometric imperfections, generally exhibited
improved response with respect to the representative, experimentally measured displaced
profile. This is shown in Figure D-3 and Figure D-4(b). Comparison with Figure D-1(a)
and Figure D-2(a) further illustrates the influence of element formulation and
imperfection type on the computed buckled response. The computed displaced mode for
the plane strain element model of series Allc in Figure D-4(a) illustrates the complex
interaction of beam geometry, element type, imperfection formulation and stress wave

response.

D.4 Analysis of Constitutive Relationships

The coupled influence of material parameters, aspect ratio and imperfection model on the
computed pulse buckling response was also investigated. This is illustrated in Figure D-5
and Figure D-6 for beam and plane strain element models. For the parameters
investigated, the analysis demonstrated that for either element formulation (plane strain or
beam element), the computed buckling response was not significantly influenced by the
constitutive relationships employed. The importance of dynamic material behaviour,
however, should be investigated in future studies.
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Figure D-5. Influence of Material Behaviour on the Computed Buckled Response for
Series Allc (a) Bilinear Elastoplastic (b) Elastic, Perfectly Plastic Material Response with
Aspect Ratio (AR = 4:1).
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Figure D-6. Influence of Bilinear Elastoplastic Material Behaviour on the Computed
Buckled Response for (a) Series Alc (b) Series Allc with Aspect Ratio (4R = 1:1).





