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Abstract

Oceanographic observations are typically too sparse to provide a continuous picture of
the evolving ocean state. However, the ability to accurately estimate the past, present,
and future state of the ocean has many important applications including climate
change research, fisheries management, weather forecasting, and marine pollution
management. Data assimilation methods utilise knowledge of the ocean’s governing
physical processes to estimate the complete time-dependent ocean state.

The goals of the thesis are to provide effective new approaches for assimilating
Lagrangian measurements and to examine sub-optimal assimilation schemes based
on a low-dimensional representation of the model state and dynamics. Four related
studies address these goals: (1) Several issues pertaining to the assimilation of ocean
drifter data are examined, including the effects of the velocity component unresolved
by ocean models and the nonlinearity of the advection equation. For illustration, ex-
periments are performed with a simplified ocean model developed to capture the basic
nonlinear response to a tidal current over isolated coastal topography. (2) A method
for extracting surface currents from sequential satellite images of an advected quan-
tity (such as ice or sea surface temperature) is presented. The problem is formulated
in a data assimilation context and successfully applied to both artificial data and a
pair of real sea ice images from a region over the Labrador shelf. (3) An approach
is developed for incorporating a low-dimensional representation of the forecast error
statistics in a sequential assimilation system such that several of the typically imposed
assumptions can be relaxed. Within the context of an operational numerical weather
prediction system, the approach is shown to effectively resolve dynamical influences
on the stationary error statistics. Certain aspects of this study may also be applica-
ble to the newer field of operational ocean prediction. (4) A low-dimensional linear
approximation of a nonlinear ocean model is obtained to formulate a sub-optimal as-
similation scheme. The method avoids the manual coding of the linearised model and
its adjoint by treating the model as a “black box”. The effectiveness of the method
is demonstrated with an identical twin experiment using an idealised configuration of
a nonlinear primitive equation model.

Taken together, the approaches examined in the thesis allow realistic ocean models
to be effectively combined with remotely sensed Lagrangian data. This may represent
a path for the future development of operational ocean prediction systems.
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Chapter 1
Introduction

Observations of the ocean are typically too sparse in space and time to provide a
continuous picture of the evolving ocean state (consisting of the pressure, velocity,
temperature, and salinity fields). Taking into account the different characteristic time
and length scales, Ghil and Malanotte-Rizzoli (1991) estimated that there are effec-
tively 10* times fewer observations of the ocean as compared to the atmosphere. Also,
the observations are highly concentrated near the ocean surface, in the northern hemi-
sphere, and close to the continents. This is due to the logistics involved with using
traditional, ship-based, methods of data collection. Satellite-borne instruments are
a promising source of oceanographic data, providing extensive horizontal coverage.
However, because the ocean is essentially opaque to electro-magnetic waves, these
sensors are restricted to observing only the ocean surface. Currently, extensive obser-
vations from space of the sea-surface temperature and height in addition to surface
winds over the ocean are routinely acquired (Jkeda and Dobson, 1995). In the future,
acoustic tomography arrays and other advanced systems will increase the number
of observations of the interior somewhat (Munk et al., 1995). A global network of
autonomous drifters that periodically measure the ocean’s vertical structure is also
planned (Argo Science Team, 1999). However, the global ocean will probably remain
highly under-sampled for the foreseeable future.

Conversely, the atmosphere is reasonably well sampled, especially in the northern



hemisphere over the continents. A global network of temperature, wind, humidity,
and surface pressure measurements has been in place for many years in support of
weather forecasting. Traditional sources of data include radiosondes, land and ship-
based surface stations, aircraft, and drifting or moored buoys. Remotely sensed obser-
vations include cloud-drift from geostationary satellites, marine surface winds from
scatterometers, and information on vertical temperature and water vapour profiles
from radiometers.

The ability to accurately estimate the past, present, and future oceanic or at-
mospheric state has many important applications. These include climate change
research, fisheries management, weather forecasting, and marine and air pollution
management. Accurate estimates of the present state (nowcasting) are necessary to
successfully use forecast models to predict the future behaviour of the ocean or atmo-
sphere. For the atmosphere, most of the effort is focussed on improving the accuracy
of weather forecasts. Oceanographic research has tended to focus on the study of
the ocean’s past behaviour, known as hindcasting, to advance our knowledge of im-
portant oceanographic phenomena and enable the estimation of uncertain physical
parameters. Data assimilation methods address the problem of optimally estimating
the past or present state of the ocean or atmosphere when the observations are limited
in both space and time.

To extract the maximum amount of information out of limited observations, ad-
vanced data assimilation methods attempt to utilise knowledge of geophysical fluid
dynamics. Numerical models of the ocean and atmosphere contain much information
on the expected relationships between geophysical variables at different locations and
times, and between the different types of variables. Data assimilation involves com-
bining a numerical model with the observations and estimates of the uncertainties to
obtain a dynamically consistent estimate of the true state of the ocean or atmosphere.
Statistical information on the errors in both the observations and the model dynam-
ics can also be utilised. By complementing direct observations with dynamical and

statistical information, a better estimate of the true state can be obtained than by



using the observations alone. This thesis focuses on several important issues related
to the assimilation of oceanographic and atmospheric data.

The development and application of assimilation methods to geophysical fluids be-
gan in meteorology, motivated by the need to improve short-range weather forecasts.
A group of “objective analysis” methods succeeded the earlier approach of manually
interpolating observed values. These empirical methods rely on limited statistical
information and approximate solution methods to nowcast the three-dimensional at-
mospheric state. The particular method of statistical interpolation (Lorenc, 1981),
also known as Optimal Interpolation (OI), came into common use at several numeri-
cal weather prediction (NWP) centres. The OI scheme attempts to provide the best
linear unbiased estimate of the present state based on observations and a short-term
forecast produced by a numerical model. The solution method, however, involves
certain approximations required to make the algorithm computationally feasible. Es-
sentially, the observations are used to periodically correct the state predicted by a
dynamical model. Recently, sophisticated assimilation schemes that rely more on the
model dynamics have progressed from the research stage (Talagrand and Courtier,
1987) to operational implementation (Rabier et al., 1999) for NWP. These schemes
make better use of the observations and provide solutions that are consistent with
the model dynamics. However, they also require substantially more computer power.

It is only during the last decade that models have been more frequently combined
with data in oceanographic research. This delayed development is due to both the
lack of routinely acquired observations and also the absence of an immediate societal
demand for ocean prediction. Even with recent increases in the quantity of remotely
sensed oceanographic data, assimilation schemes are still required to use models as
dynamic interpolators and extrapolators to a greater extent than in meteorology.
This is due to the need to propagate information from observations concentrated at
the surface and near the coast into the ocean interior. Partly for this reason, research
in oceanography has quickly moved to schemes more advanced than, for instance, Ol

that was used in operational NWP for many years. Also, specialised approaches have



been developed in an attempt to deal with the problem of propagating information
from the surface into the interior (Oschlies and Willebrand, 1996). Recently some
effort has been directed towards establishing operational forecast systems for the
coastal ocean for applications such as storm surge prediction and oil spill forecasting
(Heemink and Metzelear, 1995; Griffin and Thompson, 1996; Aikman et al., 1996;
Malanotte-Rizzoli and Young, 1997).

Our ability to accurately hindcast, nowcast, and forecast the oceanic or atmo-

spheric state, depends on the following three factors:
1. the availability of sufficient data;

2. the ability of numerical models to accurately represent real geophysical pro-

cesses; and
3. the application of effective methods for combining the data with a model.

The major contributions of this research are to item 3. The goals of the thesis are
to: (1) provide effective new approaches for assimilating Lagrangian data, and (2)
examine sub-optimal assimilation schemes based on a low-dimensional representation
of the state and dynamics of a sophisticated numerical model. The two goals are
closely related since the successful utilisation of more sophisticated models depends
on having sufficient data to constrain all of the model’s degrees of freedom.

The next two sections provide brief introductions to the theory of maximum likeli-
hood estimation and data assimilation using generalised linear regression as the frame-
work. In Section 1.3, a brief description of several standard assimilation methods for
time-dependent models is presented. The use of a low-dimensional representation of
the model state and dynamics, which is a common theme throughout the thesis, is

introduced in Section 1.4. The final section gives an overview of the thesis.
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1.1 Maximum Likelihood Estimation

The theory of maximum likelihood estimation (MLE) is quite general and is appli-
cable to many statistical estimation problems. For example, this method can be
applied to problems involving nonlinear models and non-Gaussian errors. It also pro-
vides a general framework that helps make explicit all simplifying assumptions when
formulating an estimation problem. The goal of the method is to determine the most
likely set of model parameters of a stochastic model given one observed realization.
This provides a useful context in which to consider many approaches for assimilating
geophysical data.

To illustrate the method, consider the estimation of a single model parameter
from a single observed quantity. Following Priestley (1981), the probability density
function (pdf) for the observed quantity, denoted by X, is specified as a function of
the unknown model parameter, denoted by a. The pdf, fx(z,a), is defined as

T+d
+fx(z:,t:z)d:z' =p(z < X <z + ), (1.1)

where p() is the probability of the event in the parentheses. Therefore, given the
correct value of the model parameter, fx(z,a) provides a measure of how “likely”
the random variable X will be close to z. The distribution of a set of realizations
from the stochastic model will be consistent with this pdf. The estimation problem
is addressed by considering this function for a fixed value of the observed variable,
X = z, as the model parameter is varied. This gives the relative likelihood that the
random variable X is “close” to the specific value z as a function of a. The maximum
likelihood estimator is the value of a that maximises the likelihood that X is close
to the observed value, denoted z°. That is, we seek the value of a that maximises
fx(z°,a). Lorenc (1986) used MLE and a Bayesian approach to examine several

assimilation approaches for NWP.



1.2 Linear Regression as a Framework for Data

Assimilation

While MLE is very general and can be applied to many types of estimation problems,
it is more practical to discuss various issues related to data assimilation within the
simpler context of generalised linear regression. Linear regression is a special case
of MLE that is applicable to linear models with Gaussian errors. Thacker (1988a)
highlighted the connections between standard regression theory and some advanced
data assimilation methods.

To illustrate some important issues related to linear regression that apply to both
oceanographic and atmospheric data assimilation, consider the following system of

linear equations:
y=Xa+e°
=[x 1][ . ] (1.2)

€°
In the notation used here, and throughout the thesis, bold lower-case variables rep-
resent vectors, bold upper-case variables represent matrices, and variables in regular
type are scalars. The vector y is the set of N, observations and €° are the associated
unknown observation errors. The vector a is the set of N, unknown model param-
eters, or controls. The N, x N, matrix X is the linear model, assumed to be error
free, that maps the controls into the model counterparts of the observations. This is
referred to as the forward model.

Many important problems in oceanographic and atmospheric data assimilation
can, in theory, be expressed in the form given in (1.2). As an example, assume we wish
to estimate the ocean state from time ¢, to t; given observations at times ¢,, for n =
1,2,3. Also, assume that a perfect linear model that describes the evolution of the

ocean state from one time-step to the next is given as

sp = Ds,,, (1.3)
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where the subscripts denote the time index. The vector s, is the ocean state vector
containing all of the prognostic model variables at all locations on the model grid.
The matrix D is the discretized form of the linear model dynamics. The observations

are related to the ocean state according to
yn = Hs, + €5. (1.4)

The vector y, contains the observations at time-step n. The matrix H is the linear
observation operator that maps the state vector into the model counterparts of the
observations. Here, we have assumed the observation operator is time-independent,
corresponding to a fixed observing array. However, the extension to a time-varying
observing array, with H being a function of time, is straightforward. Since the model
is assumed perfect, the ocean state at any time can be written in terms of the initial
state, so, which is taken as the set of unknowns. Therefore, this problem can be

concisely written in the form

A £ H 0 0 D €9
y2{=|0 H 0 D*|so+ | € |- (1.5)
Ys 0 0 H D3 (3]

This is of the same form as (1.2) with the forward model X equal to the product of
the two matrices in the first term on the right side of (1.5) and the control vector a
equal to the initial state sq.

Assuming that the observation errors are distributed normally as
€® ~ N(0,X°),
then using (1.2) leads to the following normal distribution for the pdf of y:
y ~ N(Xa,X°). (1.6)

Under the assumptions of a linear model and Gaussian errors the problem of esti-
mating the most likely values for @ reduces to generalised linear regression (see e.g.

Draper and Smith, 1981). The maximum likelihood estimate of a maximises the pdf



for y when evaluated at the actual observed values. This is equivalent to minimising

the following cost function:
J= %e°72°“e° = %(A’a —y) = (Xa-y), (1.7

obtained by taking the — log() of the likelihood function. The superscript T represents
matrix transposition. By setting the gradient of J with respect to a to zero, the

optimal estimate is obtained:
a=(XTze1x) " xTsety, (1.8)

This estimator is unbiased and, because the likelihood function is Gaussian, it also
minimises the estimation error variance. The covariance matrix of the error in & is
obtained by taking the outer product of (1.8) with itself after removing the mean and

taking expectations, as follows:

(&@-a)(@—a)f =(J.)" = (XTz1x)", (1.9)

where a is the true value for the controls and the matrix J,, is the Hessian of J with
respect to a.

If the product XTE°~1X in (1.8) is singular, additional information is required
to obtain a unique solution. This occurs when Ny < N,, but can otherwise occur
whenever the data are insufficient to uniquely estimate all of the model parameters.
Since the matrix product XTX°! X is equal to the Hessian of J, its singularity means
that the cost function is flat (that is, has zero curvature) in one or more directions in
model parameter space. Consequently, adjusting the model parameters along these
directions has no effect on J and therefore an infinite number of solutions minimise
J. These directions are said to be “unobservable” (Bennett, 1992). Even when the
matrix product XTE°! X is not strictly singular, it may be poorly conditioned. The
result is that one or more linear combinations of the model parameters are only weakly
determined by the data. The least squares estimate can yield unrealistic values along

such directions. To obtain a unique or simply more realistic solution, one option is



to introduce prior information on a. If a prior estimate for a is given as ag with
the errors in this estimate having the covariance matrix ¥, then the cost function

becomes

1

T =5 (a- a0 = @ - a0) + %(A’a gy e (Ra—y).  (L10)

This result can be obtained using a Bayesian approach, as described by Lorenc (1986),
or by treating ay as if it were a set of direct observations of the controls with errors
that are uncorrelated with the actual observation errors. The new term penalises
departures of the model parameters from their prior estimates. Therefore, model
parameters that are completely undetermined by the data take on the value given in

ag. Now, the maximum likelihood estimate for a is
&= (XTElx + 22°1) 7 (AT ly + 27 ay). (1.11)

Note that the introduction of this prior information causes the matrix to be inverted
to have full rank, if £* is assumed to be full rank. The approach from the field of
statistical estimation known as Ridge regression (see e.g. Draper and Smith, 1981) can
be related to (1.11). It is equivalent to assuming £= = R~'I and ag = 0, where R is
the ridge parameter. In the limit as the ridge parameter goes to zero, the estimator is
equivalent to using the generalised inverse such that the solution is set to zero along
those directions that are unspecified by the data.

When the observations are not sufficient to provide a unique estimate of a, addi-
tional information can also be supplied in the form of a smoothness constraint such
that differences between elements of ar that represent spatially adjacent quantities are
penalised ( Thacker, 1988b). Terms that penalise the total kinetic energy or enstrophy
may also be introduced to the cost function. These types of additional constraints are
generally referred to as regularization terms. A scalar weighting parameter associated
with each regularization term must be provided to specify their importance relative
to the other sources of information. These weighting factors are often determined by
ad hoc methods or by using a cross-validation study in which the factor is adjusted

to optimise the fit to withheld observations.
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In summary, the approach of generalised linear regression provides a convenient
framework for introducing the main concepts of data assimilation. The basic approach
of minimising a cost function, J, that depends on the data, a set of unknowns, and any
a priort information on the unknowns is at the heart of most assimilation methods.
The main differences in the assimilation methods reviewed in the next subsection
are in the assumptions made in specifying the estimation problem to be solved, and
the solution method. When applied to real geophysical problems, some important
practical issues include the effect of nonlinear model dynamics and the estimation of

error covariances for e priori information.

1.3 Assimilation Methods for Time-Dependent

Problems

An example was given in the previous section of formulating a simple time-dependent
problem so that it could be solved using linear regression. However, for most realistic
applications the size of the matrices would be so large that performing the required
matrix inversions in (1.8) or (1.11) is impractical. Also, the numerical model or
observation operator may be nonlinear or it may be necessary to allow for error
terms, €™, in the model equations to account for inadequacies in the numerical model.
To facilitate the discussion, the time-dependent model is expressed in the following

general form:
Sn = D (sn-1) + Gf, + €5. (1.12)

The state vector dimension, denoted by N,, is typically O(10°) or greater. The
operator D() is a set of N, nonlinear functions of the state vector. The vector f,
contains the forcing variables which can include the surface wind stress and boundary
conditions and are assumed to be linearly related and additive to the state vector.
The matrix G provides the necessary linear transformation of the forcing variables

to give the effect on the state vector. The observations are related to the model state
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according to the nonlinear form of (1.4)
Yo = H(sn) + €. (1.13)

The covariance matrix of the observation error is denoted by X° and of the model
error is denoted by £™. The observation and model errors are often assumed to be
Gaussian, uncorrelated in time, and have zero mean.

The goal of the methods described in this section is to estimate the time-dependent
state vector, s, using the observations, ¥, and the model dynamics (1.12) along with
estimates of the error statistics. The books of Bennett (1992) and Wunsch (1996)
give descriptions and comparison of these and other approaches. In contrast with
standard linear regression, the methods are designed for use with time-dependent
models. Some of these methods are, however, not computationally feasible for realistic
ocean or atmospheric models. A benefit of these methods is that the optimal solution
can often be found regardless of the source or type of available data as long as the
model state can be related to the observed quantity through (1.13). As a result, data
from several sources with varied spatial and temporal resolutions, such as satellite
images, ocean drifters, moored current meters and sea level gauges, can be used

simultaneously to obtain the optimal state estimate.

1.3.1 Kalman Filter and Smoother

One of the better known methods for combining data with time-dependent models is
the Kalman filter (Kalman, 1960). The Kalman filter (KF) algorithm (see Appendix
A) sweeps through the data once, forward in time (see Figure 1.1). The estimated
state at any given time is statistically optimal with respect to past and present data,
for the case that the models for the dynamics and the observations are linear and the
errors are normally distributed and serially uncorrelated. Consequently, this method
is most appropriate for nowcasting and forecasting applications. The algorithm is
sequential in that the model and observations are used in separate steps: the forecast

and analysis steps, respectively. The optimal estimate for the state vector at each
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analysis time is computed by minimising a cost function, similar to (1.10), that is
the sum of the squared statistical distance from the current observations and from
the prior estimate of the state. This prior estimate is a model forecast obtained by
integrating the model (1.12) forward from the optimal state estimated at the previous
analysis time with €™ set to zero. When the KF is first begun, a prior estimate for
the state at the first time must be supplied for the initial analysis along with its
associated error covariance matrix. The remaining steps of the KF algorithm are
simply necessary to update the error covariance matrices associated with both the
model forecast and the optimal state estimate.

Since the covariances of the errors in the estimated state vector at each time are
calculated as a part of the KF algorithm, the uncertainties of all the estimates are
available. However, the need to propagate the error covariances through time usually
renders the KF algorithm computationally infeasible for practical oceanographic and
atmospheric applications. Several attempts have been made to simplify this part of
the KF algorithm (e.g. Fukumori and Malanotte-Rizzolli, 1995; Cane et al., 1996;
Dowd and Thompson, 1997; Fisher, 1998).

For observation and model errors that are Gaussian with zero mean, the opti-
mal estimates will be unbiased and have Gaussian error. In the case of nonlinear
model dynamics the extended Kalman filter (EKF) can be used (Jazwinski, 1970).
Nonlinearity, however, can lead to error statistics for the resulting forecast that are
significantly non-Gaussian even when the observation and model errors are Gaussian.
In this case, the optimal estimates may become biased and the covariance matrix
is not sufficient to describe the distribution of the errors; higher order moments are
required. Miller et al. (1994) demonstrated the need to include higher order moments
in an EKF applied to the Lorenz model.

The Kalman smoother is an extension of the filter that produces an improvement
to the KF state estimates (Gelb, 1974). After applying the KF algorithm, an addi-
tional sweep is made through the data, backwards in time. This sweep allows the

KF estimates to be modified by incorporating information from future observations.
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Figure 1.1: Schematic diagram of (a) a filtering (sequential) algorithm, such as OI or
the KF, and (b) a strong constraint smoothing algorithm, such as the four-dimensional
variational approach. In both panels the dashed line represents a model solution and
the solid line is the evolution of the true state. The ellipses represent the uncertainty
on the observations and prior estimates (forecasts). In the filtering algorithm the
optimal estimate at each time is calculated using only the observations and forecast
at a single time along with their uncertainties (denoted by the small braces). For
the smoothing approach, all of the data within the assimilation window and a prior
estimate of the initial conditions are used simultaneously to estimate the optimal
states over the entire period (denoted by the large brace). This figure shows the strong
constraint smoother, but perturbations (with specified statistics) can be introduced
along the estimated state trajectory to allow some divergence from a perfect model
solution (weak constraint).
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The result is a set of state estimates that is optimal with respect to all of the data.
Therefore, this approach is suitable also for hindcasting applications. The optimal

smoother estimates minimise the cost function

=— (so —s53)7 B! (so — sB) +

ZN: [ Hsn - Yn Eo-l (Hsn - Yn)] + (1.14)

=1

N | -

3

N
Z[(sn Dsn_i — Gf.) " =™ (s, — Ds,,_l—Gf,,)].

Mlb—-

The first two terms in (1.14) are analogous to the cost function (1.10), except that
the time dependence is explicitly stated and a slightly different notation is used. The
state vector sB is the prior estimate for the initial state (sometimes referred to as
the background state) and X* is the covariance matrix for the error in this estimate.
However, the smoother suffers from the same computational limitations as the filter

due to the need to explicitly propagate the error covariances.

1.3.2 Variational Method of Data Assimilation

The variational method of data assimilation (also referred to as the adjoint method)
can be used to address the same problem as the Kalman smoother, that is, to minimise
the cost function (1.14). However, the approach is quite different. Thacker and Long
(1988) give a good overview of the method along with one of the first applications to
an oceanographic problem. The method enables the gradient of J with respect to all
of the unknown variables to be efficiently calculated (as described in Appendix B).
The optimal set of controls can then be found by minimising J through an iterative
process using a gradient descent optimisation algorithm. In general, the model er-
rors could be included in the set of unknowns to be estimated. However, since the
number of iterations required for the minimisation to converge is proportional to the
number of unknowns (Gill et al., 1981), the adjoint method is used most often in

conjunction with the assumption that the model error terms are negligible (that is,



™ = ). Now, the state at any time can be expressed as a function of the initial con-
ditions, and open boundary conditions for limited area models. This assumption can
often be justified on the grounds that the level of uncertainty in the initial and open
boundary conditions is much greater than that in the model dynamics. Therefore,
the initial and boundary conditions are taken as the controls. In addition, any uncer-
tain model parameters or forcing variables can also be included in the set of controls.
The method can be used with nonlinear models and does not require the burden of
propagating large error covariance matrices using the model dynamics. However, for
nonlinear models J may contain multiple extrema and therefore convergence to the
global minimum is not guaranteed. In practice, the number of iterations required
for convergence is typically much less than the control space dimension since most of
the reduction in the cost function can be obtained by modifying only the large scales
(Tanguay et al., 1995).

Applications of this approach in oceanography include those described by Thacker
and Long (1988), Griffin and Thompson (1996), and Weaver and Vialard (1999).
Within the field of operational meteorology, this approach has become known as 4D-
Var ( Talagrand and Courtier, 1987). Examples of recent NWP applications are those
of Laroche and Gauthier (1998), Thépaut et al. (1999), Zupanski et al. (1999), and
Rabier et al. (1999). Once the adjoint model is obtained, it can be used for other
applications such as sensitivity analysis with respect to uncertain model parameters
or initial conditions (e.g. Thompson and Sykes, 1990; Errico and Vukicevic, 1992)
or the calculation of initial perturbations that result in optimal growth ( Ehrendorfer
and Tribbia, 1997).

A common assimilation method used in NWP is the so-called 3D-Var scheme ( Par-
rish and Derber, 1992; Courtier et al., 1998; Gauthier et al., 1999). This approach
is similar to the Kalman filter and OI in that it is sequential and therefore the cost
function only includes data for a specific time over the three spatial dimensions. This
is in contrast to the 4D-Var approach that simultaneously incorporates data through

space and time for the estimation. To make the algorithm feasible for realistic NWP
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applications, the error statistics are not propagated in time, but assumed to be sta-
tionary (or, at least, slowly evolving in a way that is independent of the flow). Also,
unlike OI and the KF, an iterative minimisation procedure employing the cost func-
tion gradient is used to obtain the optimal solution. Thus, the approach is identical
to Ol except for differences in the solution method. With OI, the estimation problem
is simplified by limiting the number of observations that influence the optimal state
estimate at a given location. This approach is known as “data selection” (Lorenc,
1981). Conversely, the iterative solution method of 3D-Var allows all observations to
be included in calculating the state estimate at each location. Unlike OI, the 3D-Var
approach also allows the use of observation types that are only indirectly related to

the model variables, such as measurements of atmospheric radiance.

1.4 Low-Dimensional Representation of the Model

State and Dynamics

Assimilation methods applied to time-dependent problems can be computationally
expensive, often to the extent of being infeasible for large, sophisticated oceanic and
atmospheric models. However, due to sparse observations and limited knowledge
of the required statistical information, the use of simpler sub-optimal assimilation
schemes is often justified. A common theme of many sub-optimal assimilation schemes
is the use of a reduced dimension subspace for representing the state vector and the
model dynamics. Throughout the thesis a low-dimensional representation of the state
vector and/or model dynamics is employed to achieve practical means for estimating
the state of the ocean or atmosphere from limited and diverse types of data.

As an example, consider the KF algorithm described above. The most computa-
tionally expensive part of the KF is the propagation through the model dynamics of
the error covariance matrix associated with the forecast. Since the covariance struc-
tures of the errors may be quite smooth relative to the computational grid of the

model, most of the variance will be concentrated within a relatively low-dimensional



subspace. Therefore, by somehow representing and propagating the error covari-
ance matrix within a suitably chosen subspace the KF may be made feasible, even
for large models. Also, applications of the so-called incremental approach to varia-
tional assimilation problems (described in detail in Chapters 5 and 6) often employ
a low-dimensional representation to speed up the convergence to the cost function

minimum.

1.5 Outline of Thesis

The thesis is comprised of several distinct subprojects that can be loosely divided
according to two themes. The first theme is the optimal use of Lagrangian data,
addressed in Chapters 3 and 4. The second theme, which runs throughout the thesis,
is the use of a low-dimensional representation of the model state or dynamics to
provide practical sub-optimal assimilation schemes.

A detailed outline of the thesis follows:

e In Chapter 2, a low-dimensional idealised model of the barotropic response
to a tidal current flowing over isolated topography is presented. The model
captures the basic nonlinear dynamics of a forced topographic Rossby wave and
a rectified mean current. These include the effects of the mean current on the
resonant frequency of the system. Simulated drifter trajectories and pseudo
sea surface temperature (SST) images are generated using the model. These
artificial observations are used in the subsequent two chapters along with the
simplified ocean model to demonstrate how such data can be used to extract

information on the ocean current field.

e In Chapter 3, several issues pertaining to the assimilation of ocean drifter data
are addressed. These include the effect of the small scale velocities that are
unresolved by ocean models. The combination of this error and the nonlinearity
of the advection equation can lead to difficulties when applying linear estimation

theory. Practical approaches to overcome these problems are proposed and
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evaluated. For illustration, experiments are performed with the simplified ocean

model presented in the previous chapter.

o In Chapter 4, a method for assimilating sequential satellite images of a quantity
that is advected by the surface currents (such as ice or sea surface temperature)
is presented. Existing methods for automatically extracting velocity fields from
sequential images are first described. Then, the general estimation problem is
formulated for this problem in a data assimilation context. The method is first
tested using the pseudo-SST images obtained in Chapter 2. It is then applied
to the recovery of surface ocean currents using a pair of real ice images from a

region over the Labrador Shelf.

¢ In Chapter 5, an approach is developed for incorporating a low-dimensional rep-
resentation of the forecast error statistics in a sequential assimilation system.
The approach allows several of the simplifying (but often unrealistic) assump-
tions typically imposed when formulating these statistics to be relaxed. The
importance of the forecast error statistics in sequential assimilation schemes is
first illustrated. The effectiveness of the proposed approach to resolve dynamical
influences on the error structures is then evaluated within the context of an op-
erational NWP system. A possible extension of this approach for incorporating

temporally evolving error statistics is also suggested.

o In Chapter 6, a low-dimensional linear approximation of a numerical ocean
model is developed for the purpose of data assimilation. The model is used
in formulating a sub-optimal four-dimensional variational assimilation scheme.
The method avoids the need to formulate the adjoint model manually by treat-
ing the ocean model as a “black box”. The effectiveness of the method is
demonstrated with an identical twin experiment using an idealised configura-
tion of the CANDIE ocean model (Sheng et al., 1998).

The thesis chapters are interrelated in several ways. The method for assimilat-

ing sequential satellite images is a direct extension of the method for assimilating
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Lagrangian trajectories. Each image pixel is treated as a drifter whose most likely
trajectory is determined from a sequence of images. Also, the use of Lagrangian tra-
jectories and satellite images represents a large increase in the amount of available
oceanographic data. This increase in the quantity of data potentially means that
more complex ocean models may be used. This provides the motivation for the use
of sub-optimal assimilation methods such as those described in Chapters 5 and 6.
Chapters 5 and 6 both use a similar method to calculate a reduced dimension sub-
space to represent the model state within an assimilation system. Though mostly
focused on the NWP problem, some aspects of Chapter 5 may also be applicable to
the newer field of operational ocean prediction. Taken together, the oceanographic-
related chapters allow realistic ocean models to be efficiently combined with a large
amount of remotely sensed data. This represents a possible path for the future de-
velopment of operational ocean prediction systems. The thesis ends by summarising
the overall conclusions of the research and discussing the implications for the future

of operational ocean prediction.



Chapter 2
A Low-Dimensional Ocean Model

A model of periodically forced barotropic flow over an isolated topographic feature
is presented in this chapter. The model is a simplified version of the nonlinear finite-
difference model of Yingshuo and Thompson (1997). The flow consists of a periodic
tidal current, a single topographic Rossby wave mode propagating around the bank,
and an along-isobath current with a nearly constant steady-state velocity generated by
the process of tidal rectification. The model captures the complex nonlinear behaviour
resulting from the interaction of the tide, Rossby wave, and along-isobath current
including a relationship between the amplitude of the along-isobath current and the
resonant frequency of the Rossby wave.

In the next section the oceanographic theory related to the mechanisms of tidal
rectification and resonance shifting captured by the simplified model are reviewed.
The derivation of the prognostic equations and the specific model configuration are
presented in Section 2.2. The rectification mechanism captured by the model is de-
scribed in Section 2.3. Section 2.4 discusses the effect of the along-isobath current
amplitude on the resonant frequency of the system. The effect of the system’s res-
onance on the vorticity field is shown in Section 2.5. In Section 2.6, the model is
used to simulate a series of drifter trajectories and also to produce a pair of pseudo-
SST fields that are advected by the model flow field. These sources of data are used

in the subsequent two chapters to illustrate how information on the ocean current

20
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field can be extracted from these types of observations. The final section gives some

conclusions.

2.1 Dynamical Theory

The early studies of Huthnance (1973) and Loder (1980) provide the theory and
observational evidence for the generation of a steady along-isobath current caused
by the rectification of a tidal current over a ridge or bank. Following Pingree and
Maddock (1985), the steady current around a bank can be related to the advection

of relative vorticity by considering the nonlinear vorticity equation

%%+V-(u()+fv-u+/\é'=01 (2.1)

where u is the horizontal velocity vector, f is the Coriolis parameter (assumed con-
stant), and ) is a linear friction coefficient. In deriving (2.1), the simplifying assump-
tion has been made that the friction coefficient is independent of water depth. If the
terms in the above equation are integrated through time and the system is assumed to
be in a periodic steady state, the first term is eliminated. Integrating the terms hori-
zontally over a disc centred on the bank and bounded by a depth contour eliminates

the third term, assuming a rigid lid. The remaining terms give the relationship

(v) = —% (u¢), (2.2)

where u and v are now the across and along-isobath velocities, respectively. The
braces represent averages through time and around the boundary of the disc (along
a depth contour). Therefore, the along-isobath component will have non-zero mean
whenever the mean flux of relative vorticity across a depth contour is non-zero.

A persistent relative vorticity flux across a depth contour can be sustained by
the combined effect of the Earth’s rotation and friction, as described by Huthnance
(1973). To illustrate, consider the conceptual model of a column of water advected up

and down a linear slope while conserving potential vorticity (¢ + f)/h(x). Therefore,
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anywhere along its path the relative vorticity of the column is a linear function of the

across-isobath position and equal to

_ f d
(= h—(b—)a;.l‘, (2.3)

where the relative vorticity is assumed to be zero at the mean position, z = 0, for
convenience.

A plot of the relative vorticity as a function of position is shown in Figure 2.1a
(assuming dh/dz is positive). At any point along the path of the water column,
the net flux of relative vorticity across a depth contour is zero. Next, consider a
column that is allowed to dissipate relative vorticity due to bottom friction and, for
the sake of this conceptual model, the dissipation occurs only at the end points of
the path. The resulting evolution of relative vorticity as a function of across-bank
position (assuming {(0) <« f) is shown in Figure 2.1b, once a periodic steady-state is
reached. The corresponding plot of { as a function of u, assuming u is constant along
the on-bank and off-bank trajectories, is shown in 2.1c. Now, the net flux of relative
vorticity by this column at any position along the path is positive. For example, at

the mean position the net flux is

;Q: - pquzna: +u (—u) (;Cma:) = UUCmaz, (2.4)

where (mqr is the magnitude of the maximum relative vorticity attained at both end-
points and g is the fraction of this relative vorticity that is dissipated. Therefore,
at any point along the path, the water column is responsible for a net positive flux
of relative vorticity down the slope (or negative flux up the slope). Consequently, in
accordance with (2.2) a mean along-isobath flow is generated, oriented with shallow
water to the right of the direction of motion. For a more realistic model, the rela-
tionship between ¢ and u would be modified in detail, but with similar orientation as
the polygon in Figure 2.1c, and would therefore generate a mean current in the same
direction.

A net across-isobath flux of relative vorticity also occurs when a topographic

Rossby wave is excited by tidal currents over a bank. If the wave is very energetic,
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Figure 2.1: Conceptual model for tidal rectification over a linear slope. (a) Case with
no friction leading to no net across-isobath flux of relative vorticity. (b) Case with
friction included causing a net positive vorticity flux down the slope at each location
along the path. (c) Plot of vorticity as a function of the across-isobath velocity. Note:
thick arrows denote dissipation and water depth increases in the positive x-direction.

the dominant forcing of the along-isobath current is the advection by the tide of the
relative vorticity associated with the topographic Rossby wave. When the frequency
of the forcing equals the frequency of the wave propagating around the bank, the
system becomes resonant resulting in a strong clockwise mean flow around the bank.
This mechanism will be further discussed later in the context of the simplified model.

In addition to the nonlinear interaction of the topographic Rossby wave and the
tide in producing a mean current, the mean current can also affect the wave. Hart
(1990) presented a theory of how such nonlinear effects can modify the resonant
frequency of a topographic Rossby wave away from the linear solution. Empirical
evidence for this effect was shown by Pratte and Hart (1991) from laboratory exper-
iments. Yingshuo and Thompson (1997) discuss two possible mechanisms for this
effect of the mean flow on the wave frequency. Since the mean flow and the phase
speed of the wave are both clockwise around the bank, the frequency of the wave is
increased by a Doppler shift. Conversely, because negative relative vorticity over the

top of the bank is associated with the mean flow, this also has the effect of reducing
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the total background vorticity in which the wave is propagating, thus decreasing its
frequency. They argue that this latter effect dominates, thus explaining the decrease
in the system'’s resonant frequency with increasing along-isobath flow, as observed in

their modelling study.

2.2 Scaling Analysis and Model Description

The simplified model introduced below is an attempt to capture the dominant baro-
tropic response to an oscillating tidal flow over a topographic feature, such as the
banks found on the Eastern Canadian continental shelf. The approach, suggested
by Yingshuo and Thompson (1997), is to use a simplified low-dimensional model.
Output from their nonlinear finite-difference model shows that the flow is primarily
composed of a topographic Rossby wave with azimuthal wave number one and a nearly
steady clockwise along-isobath current superimposed on the large scale tidal current.
Therefore the main assumption of the simplified model derived in this chapter is that
the solution can be parameterised in terms of only these flow components: the largest
scale topographic Rossby wave mode, an along-isobath current, and the tide. By
prescribing the fixed spatial structure of the flow components, only a few prognostic
variables remain. The goal of seeking a model solution of this form is to capture the
basic nonlinear interactions of the wave, along-isobath current and tide components.

The validity of the simplified model is assessed below using scaling analysis. The
dynamics are governed by five nondimensional parameters. The Rossby number de-
fined with respect to the tidal velocity away from the bank (U, ) and the horizontal
scale of the bank (L) is € = Ux/(fLs). The ratios of the tidal frequency and linear
damping coefficient to the Coriolis parameter are defined as ' = w/f and X' = A\/f,
respectively. The vertical scale of the bank is represented by the ratio of the height of
the bank to the water depth away from the bank, denoted by Ah’ = Ah/hy. Finally,
the ratio of the external Rossby radius to the horizontal scale of the bank is denoted
as L' = \/ghe/(fLs). The scales used for deriving the model are given in Table 2.1.



Table 2.1: Scales used to derived the simplified model based on f = 10~* sl Us =
1072 m s}, heo = 10° m, Ak =102 m and Ly = 10° m.

Variable | Scale
€ 10~
W' 10!
N 10~
AR’ 107!
L 10°

The external forcing of the vorticity dynamics consists of planetary vorticity tube
stretching by the tide impinging on the bank, f(V - u,). If this forcing is normalised
by f? it is O(cAk'). Using a polar coordinate system (r,¢) with the origin at the
centre of the bank, the water depth is taken to depend only on r. As a consequence,
the azimuthal dependence of the external forcing varies as cos(y) and only the to-
pographic Rossby mode with azimuthal wave number one is excited directly. Modes
with higher azimuthal wave numbers can only be excited through nonlinear inter-
actions. Similarly, the along-isobath current (with no azimuthal variation) is only
forced by the nonlinear interaction of the directly forced topographic Rossby mode
with the tide.

Since ¢ « 1 according to the present scaling, one would expect the dynamics
to remain nearly linear. However, if the periodic tidal forcing equals the free-wave
frequency of the topographic Rossby wave, the wave component can grow until limited
by friction due to resonance. Depending on the strength of the friction, the amplitude
of the wave could be amplified at resonance such that nonlinearity becomes important.
Away from resonance the amplitude of the wave scales as the forcing term divided by
the tidal frequency.

The three flow components (including only the directly forced topographic Rossby
mode) are substituted into the vorticity equation (2.1). The resulting terms have ei-

ther no azimuthal dependence or a wave number one or two azimuthal dependence.
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All non-zero terms in the vorticity equation are listed in Table 2.2, where the sub-
scripts w, a, and t denote the Rossby wave, along-isobath current, and tide compo-
nents, respectively. The scaling for each term with respect to the nondimensional
parameters in Table 2.1 is determined for both resonant and non-resonant forcing.
The £? dependence of the along-isobath current (quadratic in the tidal amplitude)
is consistent with the theory of Huthnance (1973). According to the relative ampli-
tudes (also shown in Table 2.2), when the system is away from resonance all of the
nonlinear terms are at least an order of magnitude smaller than the external forcing
term, f(V-u,). Therefore, the forcing for the harmonic Rossby mode (azimuthal wave
number 2) is negligible. However, because the forcing of the along-isobath current has
a non-zero temporal mean, the growth of this component is only limited by friction
and attains a similar amplitude as the directly forced Rossby mode. Conversely, at
resonance several of the nonlinear terms are of at least the same order of magnitude
as the external forcing. According to this scaling the harmonics become sufficiently
large that they should be included for the simplified model to be valid at resonance.
However, since the purpose of developing the model is for idealised assimilation exper-
iments with passively advected drifters or tracers, the resulting displacements from
these flow components should be considered. The along-isobath current is expected
to be nearly steady and therefore the displacements from this component in isola-
tion are bounded by the horizontal scale of the bank, L, ~ 10* m. The temporal
and spatial variation of the harmonic Rossby modes causes displacements from these
components alone that are bounded by Uy/(wek) ~ 10%/k m, where k is the az-
imuthal wave number. Therefore, the importance of the Rossby harmonics on drifter
displacement decreases with increasing azimuthal wave number. The nonlinear terms
involving the relative vorticity of the tide, (;, can be safely neglected since they are
all smaller than the external forcing when the system is at resonance.

By assuming a rigid lid (since L, >> 1), the flow field is represented by the pa-

rameterised transport streamfunction

¥ = Yoo(r, 0, t) + [C(t) cos(ip) + S(t) sin()] 1(r) + Z(¢)o(r), (2.5)
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Table 2.2: Scales of the non-zero terms in the nonlinear vorticity equation after
decomposition of the velocity into a topographic Rossby wave, along-isobath current
and tide compopent. Only the Rossby mode with azimuthal wave number one is
included. The scales are given when the system is at and away from resonance.
The scales and numerical values are normalised relative to the external forcing term,

f(V -u).

Term Scale Scale

(at resonance) (off resonance)
No azimuthal dependence:
V() /X 10° |efw 10!
V- (uel) |€AR /N 107! | AR Ju 102
Ao e/N 10° | e/’ 10!
Azimuthal wave number 1:
a¢./at w 107! | same
dCw /0t W [N 100 |1 10°
AG )y 10~2 | same
Mo 1 100 | A/ 10~!
V- (uls) | €2/A? 10° | e?/(N'w) 10-!
V- (ug) | €2AR' /A% 107t | 2AR'/(NW') 1072
V- (upla) | AR /A3 100 | 2AR'/(NW?) 107!
V- (uqlu) | 2AR' /A3 100 | 2AR'/(NW?) 107
f(V-u) |1 10° | same
f(V-u,) [1/X 102 |1/ 10
Azimuthal wave number 2:
V-(ut) |e 10~% | same
V. (uulu) | AR /A? 100 | AR Jw? 10~!
V- (ulo) | /X 10° | e/’ 10!
V() | €AR/X 107! | AR Jw 102
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Table 2.3: Units for the prognostic variables and horizontal structure functions in the
simplified ocean model of barotropic flow over an isolated topographic feature.

Variable | Units
C,S m> s~}
VA m?® s~}
b0 m™?
1 1

where 1o is the tidal component, and ¢o(r) and ¢, (r) are the radial shapes of the
along-isobath current and topographic Rossby wave components, respectively. The
only time-dependent prognostic variables are C(t) and S(t) that together determine
the amplitude and phase of the topographic Rossby wave, and Z(t), the amplitude
of the along-isobath component. The units for these variables are given in Table
2.3. The streamfunction for the tidal current, assumed to be aligned in the east-west

direction, is prescribed to have the following form:

Yoo = Usohoor sin() sin(wit)
(2.6)
= Usohooy sin(wit).

To derive the simplified model, the streamfunction (2.5) is substituted into the vor-
ticity equation (2.1) and only those nonlinear terms with no azimuthal dependence
or only a sine or cosine dependence on ¢ are retained. Based on the scaling analysis
above, terms involving the relative vorticity of the tide are also neglected. All of
the remaining terms are then grouped according to their dependence on ¢ into three

equations corresponding to the prognostic variables C, S, and Z.
The fixed radial shape for the wave component, ¢,, is obtained by neglecting the
nonlinear and friction terms in the vorticity equation and assuming the free wave

solution

C(t) = cos(wit), S(t) = sin(wit). (2.7)
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The result, given in Appendix C, is an eigenvalue problem with a frequency (eigen-
value) corresponding to each possible radial shape of the wave (eigenfunction). The
solution with the highest frequency, w;, corresponds to the radial shape with no zero
crossings. Because the external forcing projects well onto this mode (it also has no
zero crossings) and the numerical solutions of Yingshuo and Thompson (1997) suggest
it is the dominant mode, this radial shape is chosen for ¢,. The radial dependence in
the wave equations is then eliminated by projecting the radial structures of each term
onto the radial structure of the wave using the orthogonality relationship defined by
the eigenvalue problem. This choice of ¢, is only strictly valid if the nonlinear terms
are negligible, which occurs when the forcing frequency is not close to the resonant
frequency.

From the scaling analysis above, the dominant balance for the terms with no
azimuthal variation is between the friction term and the advection of the relative
vorticity of the Rossby wave by the tide. The radial shape of the along-isobath
current, ¢, is chosen such that the radial shapes in the dominant balance are equal
(that is, the forcing projects completely onto the response; see Appendix C). This is
consistent with assuming that the vorticity balance is satisfied locally in the radial
direction.

As a result of these assumptions and manipulations, the following set of nonlinear

coupled ODEs for the prognostic variables C,S, and Z is obtained:

dC/dt = =AC — w1 + (a1+a2)Z] S — wilachoo sin(wet) [a3Z + a4] (2.8)
dS/dt = —AS + w1 + (a;1+a2)Z] C (2.9)
dZ/dt = =\Z - Uschoof sin(w,t)C. (2.10)

The coefficients ax, (k=1,... ,4), derived in Appendix C, are functions of the bottom
topography and the radial shapes of the along-isobath current and Rossby wave. The
radial shape functions and model coefficients are calculated using topography defined
by h = 1000 — 750 exp[—(r/Ls)?] where L, is 10 km. Table 2.4 gives the values for

the remaining specified and derived parameters.
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Table 2.4: Specified and derived parameters for the simplified ocean model.

Parameter Value

U 5%10~° m s~}

f 1074 7!

A 0.02 f

wy —0.345 f

a, —1.8801 x 10~13 s m~3
as 1.0438 x 10~'3 s m~3
as —6.4110 x 10™% s m™4
a4 6.5349 x 10 m

In summary, the assumptions that allow the model to be simplified down to only
three ODEs are only valid under certain conditions. The radial shapes of the to-
pographic Rossby wave and along-isobath current and the neglect of modes with
azimuthal wave number greater than one are strictly valid only away from resonance
when the nonlinear terms in the wave equation are negligible. However, as the sys-
tem approaches resonance the simplified model should exhibit the correct qualitative
nonlinear behaviour with respect to the interactions of the retained components of

the solution.

2.3 Rectification Mechanism

As seen from (2.10), the along-isobath current is forced by the nonlinear interaction
of the tide and the wave. To illustrate this mechanism, the nonlinear terms in the
wave equations, (2.8) and (2.9), are neglected and the notation of the forcing term

simplified, resulting in

dC/dt = — AC —wS + T sin(wit) (2.11)
dS/dt = — AS + wC, (2.12)
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where 7T is the amplitude of the tidal forcing term (for 7 > 0, the maximum westward
tide occurs at t = m/2w,). The wave’s dipole structure is oriented such that (C,S)=
(1,0) corresponds with negative vorticity on the eastern side of the bank and (C, S)=
(0,1) corresponds with negative vorticity on the northern side. Assuming a periodic
response at the forcing frequency, the transfer function between the tidal forcing and

the C component of the wave is given by

202 0 2 i (A2 4 w2 — w2
C= [/\(/\ + wf +wi) +iwp (A + wf w,)] T, (2.13)

(A2 + w2 — w?)? + 4w?N?

where C is the complex amplitude of the periodic wave response.
By neglecting friction and assuming the forcing frequency is not close to the res-

onant frequency, (2.13) reduces to

C=[ el ,] T. (2.14)

Wi —

Therefore, for sub-resonant forcing (w? > w?) the phase of the response leads the tidal
forcing by 7 /2, that is, the negative lobe of the Rossby wave is on the southern side of
the bank at the time of maximum westward tidal current. For super-resonant forcing,
the response lags the forcing by 7/2. From (2.10), the forcing of the mean flow is
proportional to the product of C with the tide. Therefore, since without friction C and
T are in quadrature, the wave is aligned with the tidal current such that there is no
net flux of relative vorticity generated by the wave across depth contours. Conversely,
with A non-zero the real part of (2.13) is also non-zero and therefore C and T are
no longer in quadrature. Consequently, with friction included, the wave and tide are
partially in phase leading to a net negative flux of relative vorticity onto the bank.
Near resonance, the transfer function is dominated by its real part (assuming A < w;)
causing the tide and wave response to be nearly in phase. When in phase, the tidal
flow acts to optimally advect the negative vorticity of the wave onto the bank and the
positive vorticity off the bank. The result is a large net across-isobath flux of relative

vorticity and a strong clockwise mean flow around the bank.
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2.4 Resonance Shifting
Inspection of (2.8) and (2.9) shows that the resonant frequency for the system is
Wres = wi [L + (artaz) 2], (2.15)

where the frequency for the linear Rossby wave, wy, is modified by the amplitude of the
along-isobath flow, Z. The coefficients a; and a, correspond to two mechanisms by
which the along-isobath current affects the frequency of the Rossby wave ( Yingshuo
and Thompson, 1997). Since the magnitude of a, is larger than a,, in the present
application, and positive Z corresponds to a clockwise mean current, the net effect is
a decrease in the resonant frequency of the system.

Figure 2.2 shows the dependence of wy., (scaled by f) and the typical size of the
three prognostic variables on Uy, after the simplified model is spun-up from rest for
20 tidal cycles. The plotted quantities are the root-mean-squared (rms) values of the
prognostic variables averaged over four points of the tidal cycle (0, 7/2, 7, 37/2) and
over the last four tidal periods. The Rossby wave and along-isobath current coeffi-
cients were scaled to remove the effect of increasing tidal amplitude in the absence
of resonance. Consideration of the dominant balances in the prognostic equations
(2.8-2.10) suggest scaling the Rossby wave and along-isobath current by (UsheoLs)
and (UZh2% Ly/A), respectively. As expected, the resonant frequency decreases with
increasing tidal current amplitude. As the resonant frequency approaches the forcing
frequency, the scaled amplitudes of the rms Rossby wave and along-isobath current
of the flow exhibit a rapid increase. After the resonant frequency drops below the
forcing frequency (super-resonant forcing), the scaled rms values of the prognostic

variables decrease to a level similar to those at sub-resonant forcing.

2.5 Snapshots of Vorticity

Figure 2.3 shows the relative vorticity field (scaled by Us/ Ls) at the time of maximum

westward tidal current for increasing values of Uy, corresponding to sub-resonant,
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Figure 2.2: Dependence on Uy, of (a) the resonant frequency, wr.,, as given in (2.15),
and the scaled rms value of (b) C(t), (c) S(t), and (d) Z(t) averaged over four tidal
periods. The largest amplitudes are seen where Uy = 3.35 x 1072 m s~! at which

point the resonant frequency, wye, (solid curve in (a)), equals the forcing frequency,
w; (dotted line in (a)).
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resonant, and super-resonant forcing. This figure agrees reasonably well with the
patterns in Figure 2 of Yingshuo and Thompson (1997) and with the discussion in
Section 2.3. At sub-resonant forcing, the vorticity field is predominately positive on
the northern flank of the bank and negative on the southern flank. The situation is
reversed at super-resonant frequencies. At resonance, the vorticity dipole is oriented
with negative vorticity to the east where the tide is incident. Also, with increasing
Us and the corresponding increase in the strength of the clockwise mean current,
which is contributing negative vorticity over the entire bank, the positive lobe of the

Rossby wave appears to be increasingly displaced from the centre of the bank.

2.6 Typical Drifter Trajectories and Pseudo-SST

Images

Figure 2.4 shows drifter trajectories over two tidal periods deployed at several loca-
tions around the bank at the time of maximum westward tidal current. Over the
centre of the bank the initial direction of motion is generally to the east for sub-
resonant forcing and to the west for super-resonant forcing, corresponding to the
reverse in the pattern of relative vorticity shown in Figure 2.3. The overall displace-
ment is clearly greater for trajectories that begin near the top of the bank, where
conservation of volume leads to increased velocities.

Starting from a position near the centre of the bank (400 m east, 100 m north of
centre) a trajectory was computed over four tidal cycles for a range of values of Uy.
The resulting positions after two and four tidal cycles are shown in Figure 2.5. The
dependence on Uy is highly nonlinear as the system passes through resonant forcing.
The nonlinear behaviour away from resonance that is apparent after four tidal cycles
will be discussed in the next chapter. Because of the interesting relationship between
the trajectories and the tidal amplitude, this parameter will be used for examples
in the next two chapters as the sole model control parameter to be estimated from

simulated observations.
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Figure 2.3: The relative vorticity fields (scaled by Uy/Ls) at the time of
maximum westward tidal flow for values of U, corresponding to (a) sub-
resonant (2x10~3 m s~!), (b) resonant (3.35x1073 m s~!) and (c) super-resonant
(7.5%x1072 m s7!) forcing. Negative values have dashed contours and the contour
interval is 10. Bathymetry contours are also shown at intervals of 100 m. Note how
the wave is always aligned with negative vorticity somewhat to the east when the tide
is at maximum strength to the west. At resonance the tide and wave are in phase

such that the negative vorticity of the wave is optimally advected onto the bank over
the entire tidal cycle.
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Figure 2.4: Trajectories over two tidal cycles from various initial locations correspond-
ing to the same values of Uy as in the previous figure and beginning at the time of
maximum westward tidal current. Note the reverse in initial direction over the top of
the bank as the system passes through resonance. (+ = starting locations, * = final
locations).
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Figure 2.5: Drifter position after (a) two and (b) four tidal cycles as a function of Uy
starting from an initial location near the centre of the bank. Note the nonlinearity of
the relationship, especially near resonance (when U, = 3.35 x 1072 m s~!). Panels
(c) and (d) show the same positions corresponding to sub-resonant (o), resonant (x),
and super-resonant (+) forcing superimposed on the bathymetry.
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The net Lagrangian displacements over one tidal cycle were calculated over the
bank for Uy = 5.0 x 1073 m s~!. The drifters were released at the time of maximum
westward tidal current. The results, shown in Figure 2.6, suggest that over most
of the bank net drifter displacement follows isobaths in the clockwise direction. In
one region, however, to the south-west of the bank centre, more intensive stirring is
occurring. When the drifters are released at the time of maximum eastward tidal
current this intense stirring region is instead located to the north-east of the bank
centre. Figure 2.7 shows the result of advecting a pseudo-SST field over the same
period starting from an idealised field with a linear gradient in temperature between

the north-west and the south-east corner of the image.

2.7 Conclusions

This chapter describes a low-dimensional ocean model that captures most of the
interesting nonlinear behaviour of the more sophisticated model of Yingshuo and
Thompson (1997). By parameterising the solution in terms of only a few flow com-
ponents with fixed spatial structures, a model is obtained with only three prognostic
variables. This simple model, however, can produce complex flow fields and maps of
net Lagrangian displacement that depend on the specified tidal amplitude in a highly
nonlinear way. These features make this model an ideal tool for idealised assimilation
experiments.

Drifter trajectories and sequential tracer images, such as those shown above, are
two types of Lagrangian data that could be used to provide information on the ocean
current field. Chapter 3 addresses the use of data from drifters. Several key issues are
illustrated by numerical examples that use the simplified model presented above. In
Chapter 4, a method for extracting velocity information from a sequence of satellite
images is presented. The method is first tested using the pair of pseudo-SST images
in Figure 2.7 and the simplified ocean model before application to real images.
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Figure 2.6: Net Lagrangian displacement over one tidal cycle scaled by 0.25. The
drifters are released at the time of maximum westward tidal current for U, = 5.0 x
1073 m s~'. Note that because the actual displacements are four times larger than
the plotted vectors, the drifters do not converge near 2.5 km west and 2.5 km south of
the centre of the bank, as it appears in this figure, but are actually displaced passed
that point and nearly exchange places with particles initially on the opposite side of
the point.
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Figure 2.7: Pseudo-SST images over the model domain. The original field (a) has a
linear variation in SST between the north-west and south-east corners of the domain.
The second image (b) is produced by advecting the pixels in the first image for one
tidal cycle with U, = 5.0 x 10~3 m s~!. The image resolution is 500 m, except in the
region of intense stirring where it is 125 m.



Chapter 3

Assimilation of Ocean Drifter

Trajectories

3.1 Introduction

Lagrangian trajectory data are widely used in the study of ocean currents. These data
are collected by, for example, drogued drifters that track a water mass at a specified
depth, sub-surface floats that follow water parcels along constant pressure or density
surfaces, or beacons fixed to sea ice floes that track their position over time. With
all types of instrument, a time series of locations is transmitted by satellite or stored
for subsequent recovery providing information about the Lagrangian character of the
flow over a wide range of scales. For example, a major program to establish a global
network of approximately 3000 profiling drifters is planned for the near future ( Argo
Science Team, 1999). This will provide oceanographers with a vastly enhanced source
of Lagrangian measurements in addition to temperature and salinity profiles.

Ocean models are generally formulated in the Eulerian framework. Possibly for
this reason, Lagrangian trajectories have not been widely assimilated into ocean mod-
els. In this chapter the assimilation of this type of data into an ocean model is ex-
amined. The ultimate goal is to extract the maximum amount of information on the

evolving large scale flow field. The framework is, however, also suited to the study of

41
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the statistical properties of the small scale flows. In this context, the actual drifter
positions are not of direct interest as they might be, for example, when tracking
icebergs.

The following section provides a general discussion of ocean drifters, including
a survey of previous studies. A stochastic model for simulating the trajectory and
its inherent errors is presented in Section 3.3. Section 3.4 provides a framework for
assimilating data into this model. In Section 3.5, the low-dimensional ocean model
presented in the previous chapter is used to illustrate several issues that arise when
assimilating drifter trajectories in practice. These focus on the nonlinearity of the
advection equation and its effect on the estimation problem. Section 3.6 concludes
with a discussion of some limitations, practical implications and extensions of the

results.

3.2 Ocean Drifter Data

Some ocean drifters are neutrally buoyant and can therefore follow flows along con-
stant density surfaces; others are designed to follow the flow at a predetermined depth,
possibly using a drogue suspended from a surface buoy. Depending on the size of the
drifter or drogue, the smallest scale of motion affecting the drifter motion may vary
from O(1m) to O(10m). Ideally, the trajectory of the drifter is the path integral
along a constant depth or density surface of the velocity field at all spatial scales
down to about the size of the drifter or drogue. In practice, however, the inability of
many drifter designs to follow vertical water motion can lead to a generalised Stokes
drift (Davis, 1991). The direct effect of the wind on a near-surface drifter can also
contribute to the motion (Niiler et al., 1987; O’Donnell et al., 1997).

Previous studies utilising drifter trajectory data generally fall into two categories.
The first focuses on estimating average statistical properties of the flow. The second
includes attempts to optimally extract the large scale component of the flow. In both

categories, most studies convert the time series of observed positions into equivalent
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“observed” velocities, usually through first-differencing.

Studies in the first category have applied purely statistical methods to estimate
quantities such as Eulerian or Lagrangian time and length scales (e.g. Middleton and
Garrett, 1986; Sanderson, 1995), and dispersion coefficients (e.g. Thomson et al.,
1990; Sanderson and Booth, 1991) from drifter data. A requirement for most of
these calculations is that the mean component of the flow (defined with respect to
an appropriate time/length scale) is somehow first estimated and removed. Thomson
et al. (1990) estimated eddy diffusivity using trajectories from drogued drifters in the
Northeast Pacific. They first calculated daily drifter velocities from first-differenced
drifter positions in their study of sub-inertial variability. The Lagrangian mean ve-
locity for each trajectory was then removed before calculating the eddy diffusivity.
The authors point out that it would be more appropriate to account for a spatially
varying mean flow. Sanderson (1995) fit a simple linear kinematic eddy model to
first-differenced drifter trajectories from the Scotian Shelf after the dominant tidal
periods were removed. Although the errors in the regression were assumed to be
uncorrelated, analysis of the residual motion showed them to be correlated at large
distances in the direction parallel to the velocity vector. This prevented the estima-
tion of the eddy diffusivity. One possible reason for these long correlation lengths
is the presence of a slowly evolving component of the flow not resolved by the sim-
ple kinematic model. In summary, approaches used to calculate flow statistics from
drifter data are strongly dependent on the removal of the large scale, slowly evolving
component of the flow.

Plots of filtered drifter trajectories have been used in studies to provide informa-
tion on regional ocean circulation (e.g. Poulain and Wam-Varnas, 1996). Alterna-
tively, some recent attempts to obtain quantitative estimates of the large scale flow
have involved the use of a numerical ocean model. The data are assimilated into a
model that only resolves the large scales. The resulting “fitted” velocity field is taken
to be the estimated large scale flow. For example, Griffin and Thompson (1996) con-
verted drifter position data from the Scotian Shelf into velocities by first-differencing.



These velocities were then assimilated along with other sources of data assuming the
errors were serially uncorrelated. A similar approach was used by Morrow and DeMey
(1995) in a study of the Azores Current, except they first filtered the drifter data to re-
move inertial oscillations. Kamacht and O’Brien (1995) assimilated drifter data into
an equatorial Pacific model. They started a model-simulated drifter each day from
the position of each observed drifter. Then the squared distances between the model
simulated and true drifters were calculated once, 24 hours later. The sum of these
squared distances was then minimised using an unconventional method incorporating
an adjoint model and simple error statistics. The work of Carter (1989) describes
the use of a Kalman filter to assimilate velocity measurements from drifting neutrally
buoyant buoys. That study focuses on a practical approach that enables the Kalman
filter to be implemented in a feasible manner. By using this assimilation method, the
small scale flow is treated as a part of the serially uncorrelated forecast error that
is estimated at each time-step and for which a simple spatial covariance structure
is specified. In each of the above studies, only relatively simple error statistics have
been used in previous studies when assimilating drifter data.

In this chapter, a framework is presented for assimilating drifter data into an ocean
model while accounting for the errors due to the unresolved scales of motion. This
approach will be useful in the study of large scale flow or to remove this component
for the purpose of estimating the statistical properties of the unresolved scales of

motion.

3.3 Model for Drifter Observations

A model for simulating the observed positions of a drifter is presented in this section.
This model is used in a later section to assimilate drifter observations. It is composed
of a drifter model and a model of the observation process. An important component of
the model is the consideration of the unavoidable errors involved in simulating drifter

motion. A major source of error is the component of the flow field at scales that
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are large enough to influence the drifter motion, but too small to be resolved by the
ocean model. An additional source of error originates in the observation process due
to imperfect measurement instruments. Incorporating both types of error results in
a stochastic model for the observed drifter trajectory. The deterministic component
(from the ocean model) and two random components (due to model and observation
errors) are discussed in the following three sub-sections. The complete stochastic

model is presented in the final sub-section.

3.3.1 Trajectory Models

The true drifter trajectory is the result of integrating the (unknown) ocean velocity
field, denoted by u®, beginning from the location and time of drifter deployment
(given by xo and ¢t = 0, respectively). For the sake of clarity, it is assumed that
the drifter is perfectly advected by u* and therefore does not experience any relative

motion through the water. Thus, the true trajectory, x, is the solution of

dx‘ t . t —_
- = ut(t,xt) ; x0) = xo. (3.1)

In general, this is a nonlinear model due to the dependence of ut on x*, that is, the
spatial variability in the velocity field.

A simple forward difference integration is used to approximate (3.1):
Xn = Xhoy + Uno1(Xho1)At 5 x§ = xo, (3.2)

where t = nAt. Similarly, we can define a model trajectory, x™, derived from the

velocity field produced by the ocean model using
xT =xT-1 + uh- (x7-1, a)At. (3.3)

To integrate this model, the initial drifter position and the model flow field, u™, are
required. It is assumed that the model flow field and possibly x, depend on a set of
unknown controls, denoted by the vector a.
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3.3.2 Error in the Model Trajectory

Ocean models cannot perfectly model the true currents that advect a drifter. This
is because such models are designed, out of necessity, to capture only the large scale
variability of ocean currents. The grid spacing of such models is generally greater
than 10 km with the sub-grid-scale processes being parameterised, often using a
constant eddy viscosity. This relatively coarse resolution is often adequate to model
the evolution of the large scale velocity field. In this chapter it is assumed that, given
the correct initial and boundary conditions, the ocean model can perfectly reproduce
the larger scales of Eulerian motion. As illustrated below, however, the effect of the
unresolved small scale motions on drifter position can accumulate and be amplified
over long trajectories.

The true velocity at time-step n and position X is represented as the sum of the

large and small scale components,
u(x) = uh(x) + ud(x). (3.4)

The ocean model is assumed to be capable of reproducing the large scale flow field

given the correct value for the controls
u™(a) =u. (3.5)

Therefore, u(x) accounts for the velocity errors due to the scales of motion unresolved
by the ocean model. Since the velocity error is assumed to be unknown and random,
its effect can be appropriately accounted for only if we can reasonably estimate its joint
probability density function (pdf) through space and time. In reality, the statistics
of u® should depend on the large scale flow and additional factors such as the surface
wind stress and the vertical and horizontal density structure. In this chapter, however,
the distribution of u® is assumed to be Gaussian with zero mean and covariance matrix

at time-step n and position X defined by

U (x) = us(x) [us(x))”. (3.6)
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The overbar denotes expectation over realisations. The covariance between u® at two

times along a trajectory is defined as

BU . = ud(xt) [us (xt)] (3.7)

The process will often be correlated in time and space along a true trajectory. To

simplify the following development, however, the following is assumed:
X%m=0 forn#m. (3.8)

This assumption of uncorrelated velocity errors is not a necessary part of the formu-
lation, but it simplifies the analysis and is often convenient since accurate estimates
of XY ,, are difficult to obtain.

Given the true values for the controls, the error in the modelled drifter trajectory

at time-step n is defined as (see Figure 3.1)
€x = x;, — xT(a). (3.9)

The major assumption is now made that this positional error is sufficiently small that
between the true and modelled positions the spatial derivatives of the model velocity
field can be considered constant. The validity of this assumption partly depends on
the length of the trajectory. In Section 3.3.4 and the discussion approaches are given
for limiting the growth of €*. Using (3.9) we then obtain the following expression for
the difference in the velocities used in (3.2) and (3.3):

um\”

u () — uBem) = (G2 ) e+ ubiah), (3.10)
where the derivative is evaluated at x7 (see Appendix B for definitions of vector
derivatives). The first term on the right side of (3.10) is the velocity error due to
evaluating u™ at the wrong location (see Figure 3.1). The second term is the velocity
error, u®, due to the unresolved scales of motion. The following equation for the
evolution of the error between the model and true trajectory is then obtained by
subtracting (3.3) from (3.2) and using (3.9) and (3.10):

€n = Yn-16n-1 + Un14t, (3.11)
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Figure 3.1: Schematic showing relationships between observed and modelled trajec-
tories assuming the initial position in the model trajectory is error free. Symbol
definitions: x® is the true trajectory; x™ is the model trajectory produced by advect-
ing the drifter with the large scale velocity field (u' = u™); € is the error in the
model trajectory, with covariance matrix X*, caused by the ocean model not resolv-
ing u®; x° is the observed drifter position; €° is the error in the observed position,
with covariance matrix X°.

where v, is defined as

m\T
v =1+ (a;x") At. (3.12)

Therefore, 4y accounts for the linearised effect of the large scale velocity field on the
evolution of errors in the modelled trajectory. The initial condition for €* in (3.11)
is determined by the uncertainty in the location of drifter deployment.

The model for €* is forced at each time-step by u®*. This forcing term is assumed
to represent the net effect of the small scale velocities on the drifter position over
the time-step. In the case that the small scale velocities are uncorrelated along
the trajectory, the resulting errors in drifter position exhibit the first order Markov
property: the error at time-step n depends only on the error at n — 1 and the random
perturbation u$.,. For AR(p) correlated velocity errors (see Appendix D for p = 1),
(3.11) becomes a (p + 1) order Markov process.

The response of €* to an impulsively applied u® depends on <. For a uniform large
scale velocity field (that is, 4 = I) the impulse response is simply a step function.
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Therefore, the errors in position are the sum of all previous errors in velocity (that
is, a random walk). In general, over more than one time-step the errors will either be
amplified or attenuated in the directions of the eigenvectors of 4 with eigenvalues that
are greater or less than one in magnitude, respectively. Consequently, the evolution
of the positional errors depends on the spatial gradients of the large scale component
of the flow field: the region of uncertainty surrounding the model drifter position can
become stretched, squashed, or rotated at later time-steps by the linear variation in
the large scale velocity field. Compared to previous studies (e.g. Sanderson, 1995;
Griffin and Thompson, 1996), inclusion of the effect of the linearised velocity field
on the evolution of errors in drifter position represents a first step in modelling the
interaction between the resolved and unresolved scales of motion.

Assuming u® is Gaussian with zero mean, €* will also be Gaussian with zero
mean. Therefore, the evolving distribution of €* is fully determined by its covariance
matrix, denoted by ¥*. Assuming u® is serially uncorrelated along the trajectory, the

covariance matrix of €* evolves according to
X =, _ S5y, + ATY . (3.13)

This equation is similar to the step in the Kalman filter algorithm that propagates
the analysis error covariance matrix from the previous observation time according
to the linear model dynamics to produce the forecast error covariance matrix at the
current observation time. The covariance of €* at time-steps n and n —p for p > 0 is

given by

Binp = Yn-1-Tn-pt1Tn-pEn-p- (3.14)

Together, (3.13) and (3.14) can be used to specify the entire joint distribution of all
of the €* along a trajectory.

The major assumption made in deriving (3.11), that u™ is linear between the
true and model trajectories, is fundamental to the analysis in the remainder of this
chapter. If the model velocity field can not be linearised because the model error is

too large, the errors in drifter position will be nonlinear in u®*. Consequently, the
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statistics for €* may be non-Gaussian and have non-zero mean. The implications of

this are discussed in Section 3.6.

3.3.3 Error in the Observations

The observation process introduces a distinct source of error that should be consid-
ered when combining drifter data with models. This source of error originates from
imperfections in the instruments used to measure, store and transmit the drifter po-
sitions. Since the source of this error is often quite well understood, specifying the
error statistics is usually more straightforward than for u®. The observation error for

an observed drifter position at the nth time-step, denoted by x%, is defined as
€ = x% —xt. (3.15)

The observation errors are assumed to be have zero mean with covariance matrix X°.

These errors can usually be assumed to be Gaussian and uncorrelated through time.

3.3.4 Model for the Observed Trajectory

Combining (3.9) and (3.15) we obtain the following stochastic model for the observed

drifter position:
w(a) = xT(a) + €; + €5. (3.16)

The modelled trajectory is a deterministic function of a and the error terms are
treated as random variables with zero mean. A capital letter is used for the stochastic
model of the observed positions to distinguish it from the actual observations, denoted
x°, which represent a single realisation.

To obtain a single general expression for X°, the two-dimensional position and
error vectors for all time-steps along the trajectory are stacked to obtain a single
vector for each, denoted by the vector arrow. Using the stacked notation, the model

is written as

X°(a) = ¥™(a) + ['(a)d® + &, (3.17)
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where multiplication by the matrix I'(a) is equivalent to using (3.11) to obtain €*.
For example, assuming the first position is known without error, and therefore is not
included in X°, the appropriate form of T for a trajectory with five observed positions

1s

[ 1 0 0]
I 00
r=| ™ At, (3.18)
Y2N v, 1 0
| Y3721 Y3Y2 Ys 1

where the observations are assumed to occur at each time-step. From (3.17) and
(3.18), it is clear that while the dependence of the observed position on the errors
has been linearised, the dependence on the controls may be nonlinear. Since the
observation and velocity errors are assumed Gaussian with zero mean, the linear

dependence on the errors allows the distribution of X° to be written as
Xo~ N (i'", rs'rT + i) : (3.19)

The covariance matrices & and &~ correspond with the stacked vectors @* and €°,
respectively. From (3.17), it is also clear that the errors due to u* are correlated
between observation times (due to the off-diagonal elements of I'), whereas the ob-
servation errors are not.

The model in (3.16) can be used to help understand the effect of first-differencing
the observed drifter positions. For simplicity, it is assumed that only a single model
time-step is required between observation times. Then by first-differencing (3.16),

one obtains
1 — X% = xR — X7+ erp — €8 + €94y — €9, (3.20)

where x™ is the full model trajectory. Using (3.3), (3.11) and (3.12) this can be
rewritten as
1 — X%

At

m\T o _ .0
6“") Sntl —€n (3.21)

=u'::(x':.')+(ax € +un + A7



This expression shows that the model counterpart to the first-differenced trajectory
is the model velocity evaluated along the modelled trajectory. The second term
appears because of the possible difference in u™ when evaluated along the true and
modelled trajectories. Also, the observation error is now correlated between adjacent
first-differenced positions which also include either €%, or €%4,.

The same result is obtained by multiplying (3.17) by

1 0 o0 o]
- 0
r= ;" I (1) . (at)™ (3.22)
=Y.
| 0 0 "‘“73 I-

and rearranging terms. It can be shown that the estimator for a obtained using (3.17)
is unaffected by any such nonsingular transformation. Therefore, it is equivalent to
assimilate the observations as a full trajectory or as velocities after first-differencing.

In the special case that the observation error is sufficiently small relative to u®
that it can be neglected (i.e. |€®| < |€*|), the model velocity in (3.21) can instead
be evaluated at the observed position. This is equivalent to resetting the model

trajectory to each observed (true) position, that is,
X7+ = X% + uR(x%)At. (3.23)

As a consequence, €} is zero in (3.21) leading to

1 — X5

A7 = uqR(x%) + us. (3.24)

It is clear that, under the assumption of serially uncorrelated u®, the error is now
uncorrelated between these “observed” velocities. In the case of correlated u®* only
the covariance matrix " and the serial correlation, which are independent of a,
are required to assimilate the first-differenced trajectory. Also (3.24) shows that a
model trajectory is no longer required since the model counterpart is simply the model

velocity at the observed (true) drifter positions.
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If the large scale flow field varies linearly through space, the velocities are correctly
modelled whether or not the modelled trajectory is reset to the observed positions.
This can be seen by substituting the model velocity at the true position into (3.21)
using the first order Taylor series expansion

m\ T
u™(x*) = u™(x°) = u™(x™) + (%) €, (3.25)

where the observation error is still assumed to be negligible and therefore €* is known
at the observation times. Due to nonlinear spatial variation in the model velocity
field, however, the approaches will generally not use equivalent velocities when €*
becomes sufficiently large such that (3.25) no longer holds.

If the observation error can not be neglected, the error covariance matrix ¥* is
not reset to zero when the model trajectory is reset to an observed position. In-
stead, £* is set to the observation error covariance because this now represents the
uncertainty in the initial position of the trajectory. Also, the observation error con-
tributes not only to the diagonal of the total covariance matrix (i.e. corresponding
to €° + epsilonbfznb), but also to a band of off-diagonal blocks. This can be seen
by considering the form of (3.16) appropriate for a model trajectory reset to the nth

observation:
X% 1 = X% + uR(x%)AL + uh At — v,.€5% + €41,y (3.26)

where the positions X% and X%.,; would both contain €9, and therefore be correlated.
The diagonal and off-diagonal blocks of the covariance matrix of the total error,

denoted X, are
B = YT + Do + T4 (AL)? (3.27)
B, = -0oL 529

The results given above for the case of a single time-step between the observations
generalises to cases when multiple time-steps are required. The model trajectory is

reset to each observed position, producing a set of model sub-trajectories. Between
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observation times, the trajectory and error covariance are simply propagated accord-
ing to (3.3) and (3.13), respectively. The accumulated errors in position due to u® are
still uncorrelated between observation times, for serially uncorrelated u®, and the ob-
servation error causes the modelled random variable X° at adjacent observation times
to be correlated. This is again contrary to the case of modelling the entire trajectory,
for which the contribution to X° from observation error at adjacent observation times

is uncorrelated, but the errors due to u® are correlated.

3.4 Estimating the Model Parameters

This section describes how maximum likelihood estimation (MLE, introduced in chap-
ter 1) can be used to obtain an estimate of a from an observed trajectory, x°, along
with specified statistics for the random errors €® and u*. The most direct method
of addressing this problem, as implemented by Griffin and Thompson (1996), is to
calculate “observed” velocities by first-differencing the observed drifter positions that
are adjacent in time. However, a more general approach can be taken using the
stochastic model (3.17).

3.4.1 Estimation Problem

To illustrate how MLE is applied to the assimilation of drifter trajectories, consider
the general case of estimating the controls using observed positions and the stochastic
model (3.17). Given the full covariance matrices of the errors 4* and € and a first
guess for a, the joint distribution of the stacked vector X° can be obtained as given
by (3.19). This pdf, evaluated at the observed drifter positions, X°, is the required
likelihood function, defined as

fzo (X%, a). (3.29)



Since the pdf is assumed to be Gaussian, the problem can be simplified by minimising

the following cost function:

Jia) = 3 [%° - #(@)] [2(e)] ™ [&° - 2(a)]
2 (3.30)
+1log [2m)" [£%(a)[?]

where N is the number of observed drifter positions and X'* is the covariance matrix
of the total error I'(a)u® + €°. The second term in (3.30) appears due to the depen-
dence of X** on a. The subscript d indicates that this cost function is for drifter
data. The a that minimises this function is the maximum likelihood estimator for
the controls, denoted &. In practice, information from other observation types will
usually be available and will contribute additional terms to the total cost function
(e.g. Morrow and DeMey, 1995).

As described in Chapter 1, some independent information may be supplied in the
form of an a priori estimate for the value of a, denoted ay. If the errors in ay are
Gaussian, with covariance matrix X, then this prior estimate can be incorporated

into the assimilation problem by adding the following term to Jy:

Jo(a) = %(a —a,) () (a-a,). (3.31)

3.4.2 Calculating the Optimal Estimate

The adjoint method outlined in the first chapter can be used to efficiently find the
controls that minimise the cost function. To apply this method, the adjoint of the
ocean model must be obtained to provide the sensitivity (that is, the derivatives) of
the model velocities with respect to the controls. The adjoint of the drifter model
is also required to provide the sensitivity of the model drifter positions with respect
to each of the model velocities used for the advection. These two adjoint models
together, through the chain rule, provide the sensitivity of the model drifter positions
with respect to the controls. This information allows the gradient of the cost function
to be calculated and consequently the value of & to be efficiently found through the



use of an iterative optimisation algorithm. Since the model is likely nonlinear, the
derivatives and also X' must be recalculated at each iteration of the minimisation.

Alternatively, if the model consists of a small number of controls, the Gauss-
Newton method (see e.g. Shumway, 1988) can be employed to minimise the cost
function. This procedure involves solving a series of linearised estimation problems
until the solution converges to the nonlinear solution. The ocean/drifter model is

linearised with respect to the optimal controls at the jth iteration
Xo(@jp1) = R™(&;) + A; (ajsn — &;) + &%, (3.32)

where A; is the linearised model. If the number of controls is sufficiently small,
the linearisation may be obtained numerically by performing a series of ocean/drifter
model integrations, each with a different control variable perturbed from the reference
value. The linearised estimation problem at iteration (j+1) is solved using generalised

regression (see Chapter 1)
&y = a; + B;[X° — X" (&;)], (3.33)
where
B = [AT (20)7" 4] AT (2 (3.34)

Since the covariance matrix of the total error depends on the controls, £ is also cal-
culated using &;. Because the problem is non-linear, the linearisation and regression
must be repeated with respect to the previous optimal solution (j is incremented by
one) until convergence.

As in linear regression, a linear relationship between the controls and the model
counterparts to the observations results in a cost function that is quadratic with re-
spect to the controls. This guarantees convergence to the globally optimal solution,
independent of the first-guess for the controls. Conversely, if the relationship is non-
linear the cost function may be non-quadratic, possibly with multiple minima and
maxima. In this case, for either assimilation scheme to converge to the global mini-

mum, the initial guess for the controls must be sufficiently close to the global solution
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such that the cost function gradient is directed towards this solution and not towards

a secondary minimum.

3.4.3 Uncertainty in the Estimate

It is often desirable to quantify the uncertainty in the estimated controls by calcu-
lating the covariance matrix of their errors. In cases where the estimation procedure
converges, linear theory can be applied to analytically calculate the error covari-
ance matrix of the estimated controls, even when the a priori error statistics are
mis-specified. The following expression gives the true error covariance matrix of the
estimated controls, even when the prior error statistics used for the estimation are

not equal to the true statistics
£¢ =B, T BT, (3.35)

The matrix B, is obtained using the linearised model and a priori error covariance
matrix evaluated using (3.34) at the converged estimate &o,. The true (unknown)
error covariance matrix is denoted by ‘. When the covariance matrix and the
linearised model used for the estimation correspond to the true ones, (3.35) simplifies

to
= AT (2 4] (3.36)

In real applications, £* is unknown. In idealised experiments, however, such as
those presented later in this chapter, (3.35) can be used to predict the increase in the

estimation error due to mis-specification of the a priori error statistics.

3.5 Practical Issues for Assimilating Trajectories

In this section some important issues are examined that arise when assimilating drifter
trajectory data with the models and approaches presented earlier. These issues are

illustrated through idealised experiments using the low-dimensional model of tidally



driven barotropic flow over a bank presented in the previous chapter. First, the impact
of nonlinearity in the relationship between the model controls and the trajectory
positions is discussed. Then, in an attempt to reduce the effects of this nonlinearity,
the trajectory is modelled as a set of sub-trajectories. Finally, the impact of mis-
specifying the a priori error statistics is discussed and a method for diagnosing mis-

specified statistics proposed.

3.5.1 Experimental Setup

In all the following numerical examples the true value for the control, Uy, is equal to
5.0 x 1073 ms~!. A single trajectory, four tidal periods in length, and originating
near the top of the bank at the time of maximum westward tidal current is used.
The data consists of eight observed positions that are equally separated in time,
including the initial location (open circles in Figure 3.2). In much of the following
discussion the observations are assumed to be error free (as in Figure 3.2). For the
discussion of mis-specified error statistics (Sections 3.5.4 to 3.5.6), however, a non-
negligible observation error is introduced. This observation error has a standard

deviation 0° = 500 m and the covariance matrix is of the form

2
o = [" 0 ] . (3.37)

0 o°

It is assumed, however, that the initial position of the drifter is known without error,
since this may be the location of drifter deployment.

The covariance matrix for the velocity error, u®, is assumed to be of the form

su = [”u 0 ] . (3.38)

0 o*

The standard deviation for the components of u® is 0.05 m s~! with the time-step equal
to 450 s. With no velocity gradients (that is, ¥ = I this corresponds to an error in the
modelled drifter position with standard deviation of 360 m at the time of the second

observation. The velocity errors are assumed to be uncorrelated along the trajectory.
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Figure 3.2: Plots of true and modelled trajectories as (a) full model trajectory and (b)
model sub-trajectories that are reset to the observations. The observations (o) and
corresponding locations along the modelled trajectory (+) are also shown. The obser-
vations are error free and the unresolved scales of motion account for the divergence
between the two trajectories.
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Figure 3.2a shows the true and modelled trajectories, both starting from the same
location and employing the same large scale flow field. The difference between the
two trajectories is due solely to the effect of a randomly generated realisation of
u® that is included when simulating the true trajectory. Figure 3.2b shows the set
of sub-trajectories obtained by resetting the trajectory to each perfectly observed
position.

Figure 3.3 shows the observed drifter positions produced from a large number of
randomly generated realisations of the small scale velocity component. Note how the

actual distribution of locations becomes spread approximately along depth contours.

3.5.2 Nonlinearity of Ocean/Drifter Model

When assimilating drifter trajectories, nonlinearity in the ocean/drifter model can
have important consequences. One source of nonlinearity is the relationship between
the controls and the model velocity field due to nonlinearity in the ocean model.
Another important source is the spatial variation of the partial derivatives du™/dx
and Ju™/da. To illustrate the latter, consider the derivative of x®,; with respect

to a using (3.3)

dx _ dx% (1L R0 4 R,
da da Jx Jda
o ; (3.39)
_ T u'n
“da "7 Ba At.

If any term in (3.39) depends on a, then the model trajectory position may be a
nonlinear function of a. Nonlinearity from the ocean model would cause the partial
derivative Juy/Jda to depend on a at a given location. However, the partial deriva-
tives in (3.39) are evaluated along the model trajectory which may, in turn, depend on
a. Therefore, spatial variation of the partial derivatives du/da and du™/dx causes
these terms to vary when evaluated along the model trajectories for different values
of . In general, a given pair of model trajectories will become increasingly separated

as their length increases and, as a consequence, the partial derivatives become more
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Figure 3.3: Distributions of drifter location at the eight observation times. Each of
the 500 points in the eight frames was calculated by advecting a drifter through a
flow field composed of the true large scale field derived from the simplified model and
a randomly generated realisation of the small scale field at each time-step.
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sensitive to changes in a. Therefore, over a given range of values for the controls this
source of nonlinearity will tend to be more important for longer trajectories.

To illustrate, Figure 2.5 shows the dependence of the final trajectory position on
Uy for two trajectory lengths. Note that the longer trajectory is more nonlinear for
high values of Uy. This is consistent with nonlinearity originating from spatial varia-
tion in the derivativesin (3.39). As discussed in the previous chapter, the nonlinearity
for low values of Uy is due to the nonlinearity of the ocean model (associated with
a dependence of du/da on a) that occurs at near-resonant forcing. This source of
nonlinearity is unrelated to the trajectory length.

Nonlinearity between the model trajectory and the controls results in a non-
quadratic cost function. As discussed earlier, this can lead to difficulties in obtaining
the optimal estimate.

Another important consequence for the estimation problem occurs when the sep-
aration between the true and optimal model trajectories is sufficiently large that the
spatial variation in u™ is nonlinear between them. In this case, the linearisation of
u™ that lead to (3.13) is not valid. Therefore £* is not correctly calculated and,
as a consequence, the value of the cost function is incorrect. These errors in the
calculation of ¥* will accumulate along the trajectory.

Figure 3.4 shows a set of ellipses representing the covariance matrix of €* calcu-
lated using (3.13) along both the true trajectory and the model trajectory evaluated
using the true values for the control. The ellipses in Figure 3.4 are shown at the
times of the observations. The observations (circles) and model counterparts (plus
signs) are indicated along the trajectories. Note how the error covariances along the
true and model trajectories eventually diverge and become quite dissimilar as the tra-
jectories become increasingly separated. The ellipses at the final two times undergo
a completely opposite transformation: along the true trajectory the ellipse appears
to rotate clockwise, whereas along the model trajectory the rotation is counterclock-
wise. This represents a mis-specification of the error statistics that occurs because

the assumption that the errors remain small compared to the spatial variation in the
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Figure 3.4: (a) True drifter trajectory (solid) and the model trajectory (dotted) cor-
responding to the true value for the control, Uy = 5.0 x 103 m s~!. Observations
(circle) and model counterparts (plus sign) are shown. Note how the trajectories
diverge solely due to neglecting the small scale component of the velocity field when
calculating the model trajectory (which also explains why the model trajectory ap-
pears smoother than the true trajectory). (b) Gaussian error ellipses corresponding
to the covariance matrix ¥* calculated along both trajectories using (3.13). Note
that they eventually become very different due to differences in the matrix 4 along
the two trajectories.

mode] flow field has been violated. Consequently, the actual distribution of the error
in the drifter position is no longer Gaussian and, therefore, simply using covariances
is not sufficient to model the errors. This can be seen in Figure 3.3 where only the
distribution at the second observation time appears truly Gaussian. By the fifth
observation time, it appears that approximation by a Gaussian distribution can no

longer represent the true distribution.

3.5.3 Assimilation of Sub-trajectories

The problems of multiple minima in the cost function and the departure from a

Gaussian error distribution result in part from using a model-derived counterpart for
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Figure 3.5: Same as Figure 3.4, except model trajectory is reset to each observed
position. Note how trajectories remain closer together and the evolution of the error
in the model trajectory is very similar along the two trajectories.

the entire trajectory. In an attempt to reduce these problems, the approach of using

sub-trajectories, as described in Section 3.3.4, is examined.

Effect on error pdf

A set of ellipses similar to those in Figure 3.4, representing the evolution of the
error covariance matrix of €*, was calculated using a set of model sub-trajectories
(Figure 3.5). Since the observation error is assumed negligible, the error in the model
trajectory is reset to zero at the time of each observation. Consequently, the error
does not grow to the same magnitude as when using the full model trajectory. It is
also apparent that the evolution of the ellipses is much more similar along the true
and model trajectories. This implies that the statistics are nearly Gaussian, making
the use of a simple quadratic cost function valid. These results would equally apply
if the u® were correlated along the trajectory.

To illustrate the effect of using sub-trajectories on the evolution of the error covari-

ance matrix ¥*, a measure of the variation in the spatial derivatives of the velocity
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Figure 3.6: Measure of the difference in the spatial derivatives of the model velocity
field (horizontal divergence) between the true and estimated model trajectories (trace
of the difference in 4 normalised by the trace of 4y along the true trajectory) corre-
sponding to (a) the full model trajectory from Figure 3.4 and, (b) the model trajectory
that is periodically reset to each observed position from Figure 3.5 (sub-trajectories).
Observation times are indicated in (b) by vertical dashed lines.

field was computed. The trace of the difference between the 4 matrices correspond-
ing to the true and model trajectories normalised by the trace of 4 along the true
trajectory is shown in Figure 3.6. This was calculated using both the full model
trajectory (Figure 3.6a) and the model trajectory reset to the perfectly observed po-
sitions (Figure 3.6b). The figure shows that the 4 matrices are consistently more
similar when using sub-trajectories. The peaks in both graphs correspond to times
when trajectories are over the top of the bank.

The horizontal divergence of the velocity field is a measure of overall growth
(positive divergence) or decay (negative divergence) of the error along the model tra-
jectory. Since the flow field is parameterised in terms of a transport streamfunction,

horizontal divergence can only occur as a result of variation in the water depth along
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Figure 3.7: The (a) horizontal divergence and (b) water depth along the length of
the true trajectory shown in Figure 3.5. Note how the magnitude of the divergence

is greatest when on top of the bank, corresponding to the times of greatest growth in
the difference of 4 in Figure 3.6.

a streamline, given by

u-Vki

Viua= - P

(3.40)

Figure 3.7 shows the divergence and water depth along the true trajectory. The
largest magnitudes of divergence correspond to the shallow areas on top of the bank,
consistent with the inverse dependence on water depth in (3.40). Therefore these are
the locations where errors are greatly amplified as the drifter is advected onto the

bank. Conversely, errors are attenuated as the drifter moves into deeper water.

Effect on cost function

Still assuming negligible observation error, the cost function (3.30) was calculated for
a single perfectly observed trajectory as a function of Uy using both the full model
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trajectory and sub-trajectories (Figures 3.8a and b, respectively). Both cost functions
exhibit a maximum near the value of U, that corresponds to resonant forcing. This
departure from a quadratic shape can be explained by the strong nonlinearity of
the ocean model at resonance and is consistent with the nonlinear dependence of the
prognostic model variables shown in Figure 2.2. For higher values of Uy, however, the
cost function computed using the full model trajectory exhibits a second maximum,
whereas when the model trajectory is reset to the observations, the shape is closer to
a quadratic function. This maximum is due to the nonlinearity in the drifter model
that is enhanced as the trajectory length is increased. As discussed above, the use of
sub-trajectories reduces this nonlinearity by reducing the displacement in the model
trajectory resulting from a given change in U,. Hence, the cost function calculated
using sub-trajectories has a more quadratic shape in this region. The global minimum
for Figure 3.8a is located at Uy, = 4.75 x 1073 m s~! and for Figure 3.8b is located

at U = 5.1 x 1073 ms~!.

Effect on estimator

Using (3.35), the standard error for the estimates of U, were obtained. The true
error covariance matrix, £‘*, is calculated by propagating the errors along the true
trajectory. The results (Table 3.1) are only an indication of the actual error in the
estimator since the errors along the full trajectory are non-Gaussian. They show that
resetting the model trajectory to the observations reduces the standard deviation of
the estimation error by a factor of almost three. This is mostly due to the fact that
the error covariance matrices calculated along the model and true trajectories are
more similar when sub-trajectories are used. This is seen by comparing Figures 3.4
with 3.5.

If the true trajectory were known prior to the estimation for the purpose of lin-
earising the model and propagating the a priori error covariance matrix X* (that is,
T2 = %), the standard error would be as shown in the second column of Table

3.1. Using the true trajectory in this way is artificially equivalent to the case where
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Figure 3.8: The cost function for a single perfectly observed drifter trajectory com-
puted using: (a) the full model trajectory or (b) model sub-trajectories. Note how
the local maximum around Uy, = 8 x 10~ m s™! is removed by using sub-trajectories.
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Table 3.1: Standard error of the estimated value of U, when the full model trajectory
(first row) and model sub-trajectories (second row) are used. In the second column
are the results obtained using the true trajectory for propagating the errors and
linearising the model, that is, when £ = E**.

Trajectory used to calculate £.2' :
Model trajectory | True trajectory
Full model trajectory 4.30 x 10~4 1.38 x 10~*
Model sub-trajectories 1.62 x 1074 1.38 x 104

JuR/0x (and <) is spatially invariant. Therefore, the equivalence of the estimation
standard error when full and sub-trajectories are used is consistent with the equiva-
lence of the two approaches when u™ varies linearly through space, discussed earlier.
This value represents the theoretical minimum for the standard error that would be
obtained with perfectly specified error statistics. From these results, it appears that
most of the increase in estimation error due to mis-specification of the error statistics
can be eliminated by using sub-trajectories.

In summary, the use of sub-trajectories reduces the problems associated with
the nonlinearity of the drifter model by reducing the separation between the true
and modelled trajectories. This conclusion is valid only when the observation error is
small relative to the error in the modelled trajectory accumulated between subsequent

observations. Other cases are considered in Section 3.6.

3.5.4 Mis-specification of Observation Error Statistics

In the cases discussed above, it was assumed that the observation error could be ne-
glected. Under this assumption, it was shown that using the full model trajectory
could lead to a mis-specification of the error statistics due to nonlinear spatial varia-
tion of u™, even if the statistics of the velocity errors were correctly specified. In this
and the following sections, the effect of deliberately mis-specifying the observation or

velocity error statistics, when neither is actually negligible, is evaluated. The true



variance for the small scale velocity field and the observation error are as described
in Section 3.5.1. The observation error must now be taken into account when the
model trajectory is reset to the observations. This causes the total errors at adjacent
observation times to be correlated when assimilating sub-trajectories, as described in
Section 3.3.4.

Figure 3.9 shows the standard error of the estimated U, as ¢° is varied, calculated
using (3.35). The dependence is shown for the case using the full model trajectory
(Figure 3.9a) and sub-trajectories (Figure 3.9b). The error standard deviations were
also calculated assuming the true trajectory and model statistics were known for the
estimation (dashed line). The results for the full model trajectory again only give an
indication of the actual distribution of estimation error since higher order moments are
required for the error in the modelled trajectory (due to its non-Gaussian distribution
shown in Figure 3.3).

In both cases the minimum variance does not correspond exactly with the true
observation error standard deviation. Within the entire range of the assumed observa-
tion error standard deviation, however, use of sub-trajectories gives a lower standard
error than when using the full model trajectory. The lower estimation error obtained
by assimilating sub-trajectories is due to the reduced separation between the true
and modelled trajectories when using sub-trajectories. This occurs even though the
observations do not lie perfectly on the true trajectory because the error in the full

model trajectory quickly becomes greater than the observation error.

3.5.5 Mis-specification of Model Error Statistics

The effect of mis-specifying the statistics of the small scale velocity field, o%, was
also evaluated (Figure 3.10). Similar to the case of mis-specified observation error
statistics, the minimum standard error for Uy is not located at the true value for
o¥. Also, it appears that neglecting model error completely when it is present has a
large impact on errors of the estimated model parameter: when using a full model

trajectory, the standard error is 18.0x10™* m s™~! and with the model trajectory reset
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Figure 3.9: Standard error of the estimated value of Uy as a function of the a prior:
assumed observation error standard deviation (solid). Error standard deviation also
shown when true value of o° is used (500 m) and the error * is evaluated along
true trajectory (dashed). Results shown for (a) the full model trajectory and (b) the
model sub-trajectories.
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Figure 3.10: Similar to Figure 3.9, but for dependence on standard deviation of the
unresolved small scale velocities, o*. True value of o* is 0.05 m s~!.

to the observations, the standard error is 30.0x10~% m s~!.

As already noted, for the case of assimilating the full model trajectory, the accu-
mulated error in position due to u® is correlated between observation times, whereas
the observation error is uncorrelated. Conversely, for sub-trajectories the observation
error is correlated between observation times according to (3.28) and the model error
is uncorrelated (assuming u® is serially uncorrelated). With this in mind, comparison
of Figures 3.9 and 3.10 shows that the standard error of U, is more sensitive to mis-
specification of the uncorrelated errors (that is, it is more sensitive to mis-specifying
observation error for full trajectories and model error for sub-trajectories). However,
the use of sub-trajectories still gives a lower standard error over almost the the entire
range of o and o° for which it was calculated.
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3.5.6 Diagnosing Mis-specified Error Statistics

In the field of statistical estimation, it is common to analyse the residuals between the
observations and the estimated model counterparts to determine the validity of the
a priori statistics used in the estimation (Talegrand, 1998; Menard et al., 1999). In
the approach presented here for assimilating observations of drifter trajectories into
an ocean model, the a priori specified parameters that determine the error statistics
are o* and 0°. A method for checking the consistency of these specified standard
deviations with the residuals would be of significant value.

One approach for checking the consistency of the a priori error statistics is to
calculate the squared statistical distance between the observations and the estimated
trajectory (Menard et al., 1999)

(&° — &™) ()~ (R° — &™), (3.41)

which is similar to the cost function, J;. Assuming Gaussian errors and X' is
correctly specified, the squared statistical distance has a chi-square probability dis-
tribution with N, — N, degrees of freedom, where NV, is the number of independent
observations and N, is the number of independent controls. Therefore, a simple test
can be made to determine if the calculated quantity is consistent with this distri-
bution. However, the value of (3.41) is sensitive to an arbitrary scaling of the total
error covariance matrix. Because such a scaling is equivalent to applying a constant
scaling and offset to Jy4, the estimated values and their error variance are unaffected.
Therefore, this diagnostic can not be used to determine when either o* or ¢° are
mis-specified.

Alternatively, the squared statistical distance between the observed and the pre-
dicted positions can be calculated at each observation time using the corresponding
diagonal block of the a priori error covariance model as the norm. The squared

distance at the time of the nth observation is

& = (x% — xB)T (i) " (x9, — xB), (3.42)



where X} is the nth 2x2 diagonal block of the total error covariance matrix. The
variables d? are also approximately chi-square random variables with two degrees cf
freedom, but are not independent due to the off-diagonal blocks of the total covariance
matrix.

Plots of d2 using both the full and sub-trajectories may be useful tools in di-
agnosing the mis-specification of the error statistics. Ignoring the influence of the
spatial gradients of the model velocity field (that is, 44 = I), the standard error of the
modelled trajectory grows as vto“. Therefore, for trajectories that are sufficiently
long, the error due to the unresolved velocity field eventually dominates the diagonal
blocks of the total error covariance matrix. Consequently, any obvious growth or
attenuation of d? calculated from the full model trajectory should give an indication
that o is mis-specified. This is similar to the findings of Menard et al. (1999) for
the case of assimilating atmospheric tracer constituents with a Kalman Filter. Con-
versely, use of sub-trajectories prevents the error along the model trajectory from
accumulating, thus preventing it from dominating the diagonal blocks of the total co-
variance matrix. Instead, depending on the temporal separation of the observations,
the observation error may dominate the diagonal blocks along the entire length of the
trajectory. Consequently, mis-specification of observation error statistics should be
apparent from plots of d2 calculated using sub-trajectories.

Figure 3.11 shows d2 along the full model trajectory (left panels) and the model
trajectory that has been reset to the observations (right panels) where the observed
positions were obtained using a random realisation of both the observation and ve-
locity errors. For both cases they are plotted using the diagonal blocks of the true
covariance matrix (where both observation and velocity error statistics are included;
top panels) and also using a covariance model that neglects observation error (middle
panels) and one that neglects velocity error (bottom panels). Using the true covari-
ance matrix, the values of d% mostly remain below 5.991, the probability of which is
95% according to the chi-square distribution, for both the full and sub-trajectories
(Figure 3.11a,d). This suggests that the residuals are consistent with this e priori
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covariance matrix. When the observation error is ignored, the values of d2 exceed the
95% level by a large amount, most noticeably in the case of using sub-trajectories
(Figure 3.11e), as expected. The neglect of model error manifests itself as a growth in
the d? along the full model trajectory that eventually exceeds the 95% level (Figure
3.11c). Therefore, it appears that the use of d?, as defined in (3.42), simultaneously
applied to both the full and sub-trajectories may be useful as a diagnostic tool for
determining when o* or ¢° have been incorrectly specified.

When a large amount of trajectory data is available, but the error statistics are
unknown, an iterative approach may prove useful. First, some initial estimates for
the error standard deviations are used to produce a set of “optimal” controls. Then,
the approach just outlined for diagnosing the mis-specification of the error statistics
is applied to the residuals to improve the error standard deviations. The process is
iterated until the residuals become consistent with the a prioristatistics. By applying
this approach, statistical information on the small scale motions is obtained. Unlike
previous approaches (as outlined in the introduction to this chapter), these motions
are defined as deviations from a spatially and temporally varying “mean” flow given

by the solution of an oceanographic model.

3.6 Discussion and Conclusions

In summary, a framework for assimilating drifter trajectories was examined in the
context of MLE. It was found that the nonlinearity of dx/dt = u(x) leads to two
distinct problems. The first is that multiple minima appear in the cost function, thus
making the estimation problem more difficult to solve. Also, the statistics of the
errors in the modelled trajectory may be non-Gaussian, leading to mis-specified error
statistics when only the first two statistical moments are calculated. The use of sub-
trajectories (that is, model trajectories whose positions are continually reset to the
observed positions) can reduce this problem by reducing the separation between the

true and modelled trajectories. The standard error of the estimator was also shown
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Figure 3.11: The squared statistical distance d?, as defined by (3.42), between the
observed and estimated full model trajectory (a)-(c) and sub-trajectories (d)-(f) using
the diagonal blocks of various covariance matrices as the norm (shown in upper-left
corner of each plot). The true covariance matrix for the total error is used in (a)
and (d); the observation error component is neglected in the covariance matrix used
for (b) and (e); and the velocity error component is neglected for (c) and (f). The
probability is 95% that a chi-square variable is less than the value shown by the
dotted line.
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to increase when the a priori error statistics are deliberately mis-specified. Finally,
a simple method for analysing the residuals calculated using both the full trajectory
and sub-trajectories appears to give a good indication of when the statistics of either
error source have been mis-specified.

An important assumption made in this chapter is that errors in the modelled
trajectory remain sufficiently small to allow the use of the linearised model velocity
field for propagating the error statistics. Violation of this assumption can lead to
non-Gaussian errors. In that case, if the distribution could be parameterised in some
feasible way to enable it to be propagated by the actual (nonlinear through space)
model velocity field, then the need for sub-trajectories would presumably no longer
exist. A quadratic cost function would, however, no longer be appropriate. Miller
et al. (1994) found it necessary to propagate higher order moments when using an EKF
applied to the Lorenz model. Propagation of the full distribution of the errors along
the trajectory and the need to use the more general form of MLE would substantially
increase the complexity and computational expense of assimilating drifter trajectories.
Such a general approach is presented by Miller et al. (1999) for assimilating data with
several idealised, but highly nonlinear models formulated as stochastic differential
equations. Alternatively, a Monte Carlo approach, similar to that used to obtain the
distributions in Figure 3.3, could be used to estimate the distribution at each iteration
of the estimation procedure. The use of sub-trajectories, however, appears to be
sufficient for the case examined in this chapter to maintain a Gaussian distribution
for the errors. In general, the effectiveness of using sub-trajectories will depend on
the degree of spatial nonlinearity of the model flow field relative to the error in the
model trajectory accumulated between observation times.

A major assumption in the formulation of the stochastic trajectory model (3.17)
is that the errors in the ocean model are at the small spatial scales and do not affect
the evolution of the large scale flow field. If the errors are only at small scales,
it is easier to justify that they are uncorrelated along the trajectory. Frequently,

however, this assumption will not be valid. Even when the errors are mostly due to



the unresolved small scale motions, many of the less sophisticated parameterisation
schemes are incapable of accurately accounting for their effect on the resolved scales.
Sources of ocean model error that directly affect the large scale motions may result
from model bathymetry errors, surface flux errors, inaccurate parameterisation of
mixing and bottom friction, or the neglect of nonlinear or baroclinic effects. These
can cause velocity errors that are time-correlated, large scale, non-homogeneous and
anisotropic, thus making them difficult to model statistically. The significance of
these errors may depend on the length of the assimilation window relative to the
temporal growth rate of the resulting error in the resolved velocity field. When the
growth rate is high, it may be necessary to increase the size of the control vector by
adding correction terms to the prognostic equations of the ocean model that account
for the error and thus reduce the error growth in the model velocity field. The benefit
of using such correction terms would rely on having both the sufficient data required
to estimate the increased degrees of freedom in the control vector and a suitably
specified spatial (and possibly temporal) covariance matrix for the corrections.

Sub-trajectories were suggested as a way of assimilating drifter data to reduce the
separation between the true and simulated trajectories, thus improving the specifi-
cation of the error statistics. Alternatively, the sub-trajectories could be calculated
backward in time by advecting an observed position to the time of the previous
observed position. Error growth along the forward trajectory (due to horizontally
divergent flow) will decay in the backward direction and vice-versa. Therefore, using
the backward trajectory reduces the separation between the trajectories in horizon-
tally divergent flow. Conversely, the forward trajectory produces less separation in
horizontally convergent flow. In general, when it is not known a priori if the flow
field in a given region is convergent or divergent it seems reasonable to speculate that
the best approach is to advect adjacent observed positions to the time half-way be-
tween. This approach should reduce large separations between the true and modelled
trajectories caused by divergent flow.

The approach and examples in this chapter focused on the assimilation of a single



trajectory. Frequently, data from multiple drifters will be simultaneously available
along with data from other sources. In this case the error correlation between nearby
pairs of drifters or between a drifter and another observation type due to spatial
correlation of the velocity errors may need to be considered. If the errors in a pair of
modelled trajectories are correlated at some time, they will continue to be correlated
along the remainder of the trajectories, regardless of their subsequent separation
distance. Daley (1996b) performed an idealised study of the propagation of such
covariances using idealised, non-divergent flow fields in an Eulerian framework. In
those experiments, the initial covariance matrix was specified and the velocity error
set to zero. It was found that application of different discretisation schemes to the
advection equation affected the propagation of the error covariances.

Within any realistic data assimilation application, a pragmatic approach should
be applied to the assimilation of drifter trajectory data. By considering the relative
magnitudes of observation error and the error in the modelled trajectory due to the
unresolved scales of motion, it may often be justifiable to adopt a simplified approach.
For example, in cases where the trajectory observations are widely spaced in time, it
may be found that between consecutive observation times, the error variance in the
modelled trajectory grows to a level much larger than the observation error variance.
In such cases, it may be appropriate to neglect observation error and assimilate the
observations as sub-trajectories or as velocities after first-differencing, as in Griffin
and Thompson (1996). Figure 3.9 showed that neglecting observation error and as-
similating with sub-trajectories gave a lower estimation error, in that particular case,
than using the correct error statistics with the full model trajectory.

In other cases, the observations may be closely spaced in time such that the
error in the modelled trajectory remains small relative to the observation error. In
that case it would be desirable to assimilate with a full model trajectory or long
sub-trajectories that span several observation times. If the first observed position
also contains observation error (contrary to the assumption made throughout the

chapter) then the initial position of the modelled drifter can be included as part of
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the control vector, &. The appropriate cost function is the same as (3.19), except
an added term penalises the difference between the observed and estimated initial
drifter position (weighted by the inverse of the observation error covariances) and the
model trajectory is now computed using the initial position from the control vector.
The advantage of controlling the initial position of the modelled trajectory is that
the separation between the model and true trajectories should be reduced over a long
model trajectory. This approach would likely be successful in cases where the velocity
changed slowly between the observed positions such that several of the subsequent
observed positions could provide useful information on both the initial position and
the velocity field. In other words, there must still be fewer degrees of freedom in the
control vector after addition of the initial drifter position than in the observations
along the full trajectory or long sub-trajectory.

Another possible simplification may be made when the error in the modelled
trajectory is too large to be neglected, but small relative to the scale of variation in
the large scale flow field. In this case the model and true trajectory would experience
the same velocities from the large scale flow field. Consequently, Ju/dx can be
assumed to be zero for the purpose of propagating the error in the model trajectory
(that is, 4 = I in (3.13)). This removes the dependence of £'* on a and therefore
! only needs to be calculated once during the minimisation. This corresponds to
advection with simple diffusion, that is, an isotropic, Gaussian pdf with standard
deviation growing as vt o

Finally, the approach presented in this chapter can be extended to assimilate
sequential images of a concentration-like quantity that is advected with the fluid. Such
types of data from both the ocean and atmosphere are usually remotely sensed by
satellite-based instruments. They include measurements of sea-ice concentration, sea
surface temperature, ocean colour, cloud imagery, and concentration of atmospheric
chemical constituents, such as ozone. Because of the close relationship between the
assimilation of drifter and image data, many of the issues examined in this chapter

apply to the assimilation of images. Additional issues related to the assimilation
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of sequential images have also been discussed by Daley (1996a) and Kelly (1989).
The next chapter is a study of the surface currents over a region of the Labrador

Shelf using a pair of real sea-ice images and an estimation procedure related to the

developments in this chapter.



Chapter 4

Assimilation of Sequential Satellite

Images

4.1 Introduction

Satellite images of sea ice distribution and sea surface temperature (SST) spanning
large areas (~1000 km x 1000 km) of the ocean with spatial resolution from tens
of metres to a kilometre are routinely acquired. The period between passes over the
same portion of the ocean is on the order of a day. These spatial and temporal scales
are often suitable for resolving the velocity field responsible for advecting features
in the images. In this chapter a new method is presented for estimating velocity
information from sequential images of, for example, sea ice or SST. The method is
applied to the estimation of surface currents from images of sea ice over the Labrador
shelf. As in the previous chapter, the goal of the method is the estimation of the
large scale flow field and not the actual distribution of the observed quantity.
Several satellites with advanced very high-resolution radiometers (AVHRR) orbit
the Earth in a way that provides excellent spatial coverage of the polar and mid-
latitude regions. The AVHRR sensor passively measures the infrared or visible portion
of the spectrum and therefore cannot be used to view ice or thermal features on

the ocean surface in the presence of cloud cover. Synthetic aperture radar (SAR)
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images have been used extemsively in ice research. This is an active sensor that
can produce high resolution images of sea ice distribution independent of weather
conditions (Carsey and Holt, 1987). SAR images are now routinely acquired by the
new Canadian satellite, RADARSAT. The relative advantages of AVHRR, SAR, and
other satellites used for ice imaging are discussed by Emery et al. (1995).

Several methods have been developed for automatically estimating velocity fields
from a sequence of satellite images. Some of these are used for operationally tracking
sea ice, for example at the Alaska SAR facility (Kwok et al., 1990). Similar types of
data are used to recover atmospheric wind fields. For example, wind vectors inferred
from cloud imagery are used routinely for NWP (e.g. Tomassini et al., 1999). Daley
(1996a) used an extended Kalman filter and a simple wind model in an idealised
setting to recover the two-dimensional wind field from observations of an atmospheric
chemical tracer constituent. The purpose of this chapter is to introduce a practical
method that allows the addition of sequential satellite images as a new source of data
in an oceanographic data assimilative scheme. A variational approach is used to fit
an ocean/advection model to the data.

An outline is given in section 4.2 of the methods previously developed for auto-
matically obtaining velocity information from sequential satellite images. In section
4.3 the proposed method for estimating the velocity field from satellite images is in-
troduced. This method is first tested in section 4.4 using the pair of pseudo-SST
images shown at the end of Chapter 2. An application suited for tracking ice motion
in the marginal ice zone using a pair of real satellite images is then presented in sec-
tion 4.5. Section 4.6 is a discussion of the proposed method, including a comparison

with existing methods and the final section presents some conclusions.

4.2 Existing Methods

The methods described in this section range from the purely statistical to those that

include complex model dynamics. Area correlation and feature matching methods are
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two statistical methods which have been used widely and successfully in operational
ice tracking. Several applications of these techniques have also been carried out
using SST images. The methods, however, commonly produce some clearly incorrect
vectors, or “fliers”, that are a consequence of spurious correlation maxima. This is
partly because the methods make no use of physical models to constrain the solutions.
Another drawback of these methods is that other types of data related to ocean
currents, ice floe trajectories, water density, or surface wind stress can not be readily
incorporated.

Data insertion is a simple method of combining satellite images with model dy-
namics. Inverse methods are based on estimating the optimal values of some model
parameters, treated as unknown. One such method uses a simple advection model to
track a single ice floe. Another method uses a one-step Eulerian advection equation
to estimate the surface current field using SST images. The advantage of these meth-
ods is that the estimated velocity fields satisfy the assumed model equations while

optimally fitting the observations.

4.2.1 Area Correlation Methods

The most common method for using sequential images is based on correlations be-
tween sub-areas of a pair of images (Ninnis et al., 1986; Tokmakian et al., 1990). The
first image is divided into equal sub-areas with the size of the sub-areas determined
by the size of the image features. For each sub-atea the linear translation is then
found that maximises the correlation between the translated square from the first
image and the corresponding area in the second image. The method is often referred
to as the Maximum Cross-Correlation, or MCC, method. The result is a field of dis-
placement vectors which are converted into velocity vectors by dividing by the time
period between the images.

These methods assume a linear displacement of common features between images.
It has been shown that the correlation peak broadens and eventually becomes sta-

tistically insignificant as rotation of the image features increases (Kwok et al., 1990).
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Therefore it is not possible to detect small-scale translational motion that involves a
strong rotation ( Vesecky et al., 1988). This is particularly limiting in the marginal
ice zone, where piece-wise rotation and translation of the ice floes are often observed.
Emery et al. (1992) also encountered difficulties in extracting velocities from SST
images of Gulf Stream rings. However, this method may be modified to include a
rotation parameter for each sub-area. This extension of the method often results in

a parameter space that is prohibitively large to search.

4.2.2 Feature Matching Methods

Feature matching methods are fundamentally different from area correlation methods.
These methods involve a feature identification procedure followed by the application
of a feature matching algorithm.

The U5 method (Kwok et al., 1990; McConnell et al., 1991) is useful for tracking
ice floes that undergo a strong rotation, but do not significantly deform. First, a set
of individual features are characterised in both images using the so-called ¥-S curve
(see McConnell et al., 1991, section II). This method of characterising features allows
rotation to be easily detected. The correlation is calculated between pairs of these
curves, one from each image. Pairs that are highly correlated are considered a match.
The operational system used at the Alaska SAR Facility for tracking in the marginal
ice zone involves first using a feature matching method to obtain displacements and
rotations for a finite number of distinctive features in the images (Kwok et al., 1990).
These displacements are then used as initial estimates in an area correlation algorithm
with both translation and rotation parameters, resulting in a vastly reduced search
space. A similar method has been developed that is useful when deformation is
significant, but rotation is not (McConnell et al., 1991). The studies of Holland
and Yan (1992) and Kuo aend Yan (1994) present similar feature tracking methods

developed for application to SST images.
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4.2.3 Data Insertion

The U.S. Navy operational ice forecasting systems use satellite imagery and a complex
ice-ocean model. The ice model includes the processes of ice advection, deformation,
formation, and melting. The oceanic forcing is derived from a coupled ice-ocean
model (Hibler and Bryan, 1987). The complete model is run daily to provide five
day ice forecasts with the 24 hour forecast from the run of the previous day used for
initialisation. Forecast fields include the ice motion, thickness, and concentration.

A simple method is used for assimilating observations of ice concentration into this
model (Preller and Posey, 1989; Preller, 1992). An ice analysis is produced weekly
by blending many data sets (including several types of remotely sensed images).
The analysis is then used to completely replace the previous day’s model-derived ice
concentration field. Other fields, including ice thickness and mixed layer temperature,
are then adjusted to make them consistent with the inserted concentration field. The
effect of this is to abruptly adjust, once per week, the model state for the ice to
agree with the observations. With this approach, however, their is no direct effect on
the velocity field in the ocean model due to the ice observations, only the secondary

effects due to changes in the other model variables.

4.2.4 Inverse Methods

Larouche and Dubois (1990) assimilated a pair of SAR ice images into a simple ice
advection model driven by the surface wind and ocean current. The initial and final
positions of an individual ice floe were manually derived from the two SAR images.
Starting from the initial observed floe position, the model was used to predict the final
positions. The control parameters were the speed and direction of the uniform and
steady surface current. These parameters were adjusted to minimise the difference
between the final position predicted by the model and the position observed in the
second image.

Kelly (1989) used a direct inverse method to derive flow fields from consecutive

SST images. This study demonstrates the utility of assimilating satellite images into



a simple model to obtain a globally fitted velocity field. The approach is based on
the following simple Eulerian advection equation:

ar oI oI -~
= + ua + va—y = Sources — Sinks, (4.1)

where I(t,z,y) is the image pixel intensity, in this case representing surface tempera-
ture. The spatial and temporal derivatives of I were estimated directly from the pair
of images. This approach enables one to estimate the advective velocities, (u,v), and
the right hand side of (4.1) under certain conditions. However, any velocity compo-
nent normal to the gradient of pixel intensity in the images lies in the null space of
the solution. To determine a realistic solution with flow components both parallel
and normal to the spatial gradient of the tracer field, Kelly (1989) augmented the
problem with additional constraints to produce an over-determined problem. The so-
lution was then obtained by minimising the weighted sum of the mean squared misfit
of the advection equation (4.1) and three regularization terms related to the velocity
field: mean squared divergence, mean squared vorticity, and total kinetic energy.
The fact that velocities normal to the gradient of pixel intensity (that is, parallel
to contours of pixel intensity) can not be resolved by the images is an important
issue for all methods, including the proposed method presented below. To illustrate,
consider typical SST images of the Gulf Stream: temperature contours tend to be
aligned parallel with the flow. Therefore, a sequence of these images would provide
little direct information on the surface velocity in the Gulf Stream. Such images
would, however, provide excellent information on the position and meandering of the

current (motion parallel to the SST gradient).

4.3 The Proposed Method

This section outlines the proposed method for estimating the ocean’s surface velocity
field from a sequence of satellite images. It is closely related to the approach for
assimilating drifter trajectories presented in the previous chapter. An observed im-

age, denoted I°(x), is assumed to have pixel intensities related to a quantity that is
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advected by the surface velocity field, such as SST or ice. As in the previous chapter,
an ocean model that depends on a set of unknown controls is assumed to accurately
represent the large scale dynamics. To estimate the surface velocities using the se-
quence of images and ocean model, the maximum likelihood estimate for the controls
is obtained. These controls are used with the ocean model to give the estimated
velocity fields.

To calculate the maximum likelihood estimate for the controls, a separate stochas-
tic model for the true image at a given time is calculated from adjacent observed
images. The optimal controls maximise the likelihood that the modelled images are
equal. For example, modelled images can be produced at the time of the second of
an image pair. In this case, the first image is advected to the time of the second and
the controls are sought that maximise the likelihood that the advected image equals
the second observed image.

In general, the information from the satellite images can be combined with a
priori estimates for the controls and other sources of data. The use of an ocean
model also introduces valuable information concerning the ocean dynamics. These
factors make this approach more general and potentially more powerful than the

existing approaches described in the previous section.

4.3.1 Stochastic Advection Model

The advection model accounts for the underlying physical processes that cause the ob-
served quantity in the satellite images, either sea ice concentration or SST, to change
between images. It must also stochastically model the errors due to inadequacies
in the ocean model and in the observing instrument. In general, the controls may
include the initial and boundary conditions for a numerical ocean model used to drive
the advection and additional parameters governing any sources or sinks included in
the model.

In the case of sea ice, many processes other than passive advection may be impor-

tant. In most instances, the motion of the ice through the water due to the direct effect
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of the surface wind must be included. Additionally, a complex model, such as that
of Hibler and Bryan (1987), may be required to account for melting or growth of the
ice and also the effects of internal ice pressure. Over short time scales and in regions
with low ice concentration, however, a simple model is often adequate ( Thorndike
and Colony, 1982). To be able to assimilate a sequence of thermal images, a model
for the evolving SST field is required. Kelly (1989) used a simple model in which the
local time rate of change of temperature included a term that varied linearly in space
in addition to advection. This was used to represent a source term to account for the
combined effect of surface heat flux and vertical entrainment. Horizontal diffusion is
another process often included in such models (e.g. Qiu and Kelly, 1993).
Assuming the observed quantity is perfectly advected with the flow, but possibly
subject to a source/sink term, denoted by S(x,t), leads to
art
ot
where I*® is the true image (that is, the image that would be observed by a perfect

+ut- VIt = §5(x,t), (4.2)

instrument) and u® is the true velocity field including all scales of motion. The
source/sink term can include the effects of many of the factors mentioned above.
Consequently, images evolve through time according to the discrete-time model
n
I (xh) =I5 (xb) + 3 _ Si(x})At, (43)
=1
for any time-step n > 0 where At is the separation between time-steps. The pixel

intensity at a given location is observed subject to error, according to
I8 (x%) = I? (x% +€3) + €, (4.4)
where € is the error in observed pixel intensity and €° is the error in the position
assigned to the image pixel (navigational error).
By combining (4.3) and (4.4), a stochastic model for the true pixel intensity at

time-step n at a given location can be expressed in terms of the observed image at

time-step 0

L (xR183) = I3 [xB (xh, @) + €5 + €3] + &, (4.3)
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where the tilde indicates an advected image and the source/sink term has been elim-
inated for clarity. The model position x§(x}, a) is obtained by advecting the given
position x} to time-step 0 using the large scale velocity field from the ocean model.
The error €f is due to the accumulation of error during the advection from the small
scale velocities not resolved by the model (see Chapter 3). Assuming the naviga-
tional error and errors due to the unresolved velocities are small relative to the scale

of variation in the observed images, the following linear approximation is made:
Tt (Lt O of m(_t alg x o i
IE (xA[19) =~ IS [xTB(xh, a)] + g (€F + €3) + €. (4.6)

For AVHRR images with ~ 1 km pixel size that are separated by ~ 10 h, €° is less that
1 km and assuming o* ~10 cm s~! gives €* ~ 1 km. According to (4.6), an observed
image that is advected according to the velocities resolved by the ocean model differs
from the true image by three sources of error. The error term €* serves the same
role, but in a statistical way, as the diffusion term in the more typical advection-
diffusion models used for evolving tracer fields. The use of a diffusion term is, in
fact, equivalent to computing the mean advected image given by (4.6) after averaging
over realisations of €* and also including the quadratic in €* term (Bennett, 1996).
The advantage of this statistical approach is, however, that the model in (4.6) can
be integrated forward or backward through time, whereas a deterministic advection-

diffusion equation cannot.

4.3.2 Cost Function

The general approach for computing the cost function for a sequence of images, de-
noted by Ji, involves advecting the images to a common time using the advection
model (4.6). Assuming the linearisation in this equation is valid and the errors are
Gaussian with zero mean, the error between the two modelled images is also Gaus-
sian with zero mean. Consequently, a standard cost function can be formulated by
taking the —log() of the likelihood function. For the sake of clarity, the method for
evaluating J; is only described in detail for the case of two images. Also, all errors are
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assumed to be negligible, except for the error in measured pixel intensity, ¢!, which
is assumed to be uncorrelated and have equal variance across the images. Therefore,
the velocities from the ocean model are equal to the true velocities and the resulting
displacement equal to the true displacement. This assumption may not be valid when
using a coarse resolution model to assimilate SST images in areas with sharp gradi-
ents in surface temperature such as the Gulf Stream. The time between the images
is discretized as nAt withn =0,... ,N.

The time half-way between the images, where n = N/2, is used as the common
time. This choice should result in the least deformation of the images. A regularly
spaced grid is defined at the middle time with a resolution equal to that of the
images. Then, the kth position in this grid, denoted as va/z, is advected backwards
for N/2 time-steps by numerically integrating the velocity field (see Figure 4.1). Use
of the superscript k identifies the resulting trajectory x that passes through the kth
position on the grid at n = N/2. The pixel intensity in the first image at the advected
position x¥ is calculated using a Gaussian weighted interpolation scheme. Also, the
pixel intensity may be modified by the integral of the source/sink term, S,(x), along
the trajectory, however, this term is again neglected for clarity. This intensity is
assigned to the kth grid position at n = N/2. When the pixel intensity is defined in
this way for each element in the grid, the result is an image advected to the mid-point
using the advection model and starting from the first image. This image is denoted
by

Inga (X§j2l o) = Lo (x5) + €6, (4.7)

where the spatial interpolation is assumed in evaluating the pixel intensity of the
observed image I (the superscripts are dropped for clarity).

A similar treatment is applied to the second image. The positions in the grid at
n = N/2 are advected forwards for N/2 time-steps to obtain x%. The pixel intensities
in the second image are interpolated to the resulting positions. This second advected

image at n = N/2 is obtained using the advection model and starting from the second
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Figure 4.1: This schematic diagram shows how pixel intensities from two images, I
and [, (unfilled circles), are advected to a common time and location (filled circle).
The procedure is repeated for each location on the grid at the common time.

observed image. It is denoted by

Ingz (xijal In) = In (x§) + €. (4.8)

The cost function is calculated as the sum of the squared differences in pixel

intensity between the two advected images at time index N/2

J;(a)

- 2
4(0. 2 Z {INN (x¥/2l To) — Iny2 (xRl IN)} : (4.9)

where ¢' is the standard deviation of €. The dependence of J; on a is through the
model] velocity field used to obtain the two advected images. The summation in (4.9)
is over all k for which both n/2 (x5l Lo) and Inya (x5l I ) are defined. This form
of the cost function is based on the assumption that errors in the advected images
are Gaussian, spatially homogeneous, and uncorrelated between pixels. (As discussed
in Chapter 3, the framework of maximum likelihood estimation could also allow for
non-Gaussian errors.)

The advection model is numerically integrated between the times of the images
using a sufficient number of time-steps to approximate the solution to the continuous
model, dx/dt =u(x,t). This differs in several ways from the methods of Kelly (1989)
and area correlation. Firstly, by advecting each pixel in the images according to

the advection model this method makes use of features down to the scale of a pixel.
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The use of many time-steps in the integration allows the trajectories of each pixel to
have curvature, thus supporting the rotation of features of any size. Also, temporal
variation in the velocity field and processes which affect the pixel intensity during
advection can be incorporated in the model.

The assimilation problem reduces to finding the values for the controls that min-
imise J;. When incorporated into the advection model, these values for the controls
optimally account for the motion between the two observed satellite images. The cost
function is minimised using its gradient. Development of the adjoint model required
to calculate the gradient of J; is presented in Appendix E. The Gaussian-weighted
interpolation scheme is necessary to guarantee that the pixel intensity at each of the
advected locations is a continuous function of location. This ensures that the cost
function is a continuous function of the controls, assuming the velocities depend on
the controls in a continuous manner. Simple interpolation schemes, such as nearest-
neighbour or bi-linear interpolation, produce a cost function with a step-like shape

making it very difficult to find the minimum using a standard optimisation algorithm.

4.4 Application to Simulated SST Images

In this section, the method for assimilating sequential images described above is tested
using the pair of pseudo-SST images shown at the end of Chapter 2. The first image
is an idealised SST field that varies linearly between the north-west and south-east
corners. The second image is produced by advecting the pixel locations from the
first image according to flow fields from the low-dimensional model of flow over an
isolated topographic feature described in Chapter 2. The first image corresponds
with the time of maximum westward tidal velocity and the second image is from one
tidal cycle later. As discussed in Chapter 2, the net Lagrangian velocity over a tidal
cycle is small over most of the domain except for the region to the south-west of the
bank centre. To illustrate how these images may be used to obtain information on

the velocity field, the cost function (4.9) is evaluated over a range of values for the
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Figure 4.2: Cost function for the pair of pseudo-SST images shown in Figure 2.7. No
model or observation errors were introduced. Only a subset of 64 pixels were advected
to calculate J. The maximum near Uy = 3.3 x 10~3 m s~! is due to the non-linearity
of the low-dimensional ocean model when the resonant frequency of the wave equals
the tidal frequency.

tidal amplitude, U, assuming both the observations and the model are error free.
The “observed” images were produced using Us = 5 x 10~3m s~!.

To reduce the computational expense, only a subset of the image pixels was ad-
vected to calculate J: a square region subsampled at 1 km intervals beginning at the
centre of the bank and extending 7 km to the south and west (a total of 64 pixels).
The resulting cost function is shown in Figure 4.2. Since no model or observation
error was introduced, the correct value of U, produces almost a perfect match to
the observed images (except for errors due to interpolating between the grids of the
advected and observed images).

Note the similarity between the shape of this cost function and the cost function
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in Figure 3.8b obtained when assimilating a series of drifter sub-trajectories. The

maximum near Uy = 3.3 x 1073 m s~!

is again due to the non-linearity of the low-
dimensional ocean model when the resonant frequency of the topographic Rossby wave
equals the tidal frequency. If the images were separated by a longer period, the pixel
intensities in the second image would become more mixed and, as in the case of long
drifter trajectories, the cost function would likely exhibit more extrema. If errors in
the ocean model or the observed images were non-negligible, then the minimum value
for J; would be larger and the optimal value for U, would not exactly equal the true
value. Also, incorporating these errors would significantly increase the computational

expense of obtaining the estimate.

4.5 Application to AVHRR Ice Images

The method described in section 4.3 was applied to a pair of thermal AVHRR satellite
images (the first from NOAA-12, the second from NOAA-11) from March 7, 1994 with
a separation time of approximately 7.5 hours (Figure 4.3). A cloud free area of 100 by
100 pixels was extracted from both images corresponding to an area in the marginal
ice zone off the coast of southern Labrador over Hawke Saddle and the northern half
of Belle Isle Bank (Figure 4.4). The spatial resolution of the images is 1300 m in the
zonal direction and 1100 m in the meridional direction. The extracted area covers
approximately 130 km by 110 km.

The images were processed to reduce the large scale spatial variability in pixel
intensity caused by differential illumination across the image plane. A simple “lev-
elling” procedure was used (Russ, 1995). Then, the images were normalised using
histogram equalisation (Robinson, 1985) to reduce the effects on pixel intensity of
temporal variations in surface temperature and calibration differences between satel-

lites. The resulting pixel intensities were normalised to have a range of 0 to 10 (Figure
4.5).
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Figure 4.3: One of the complete 512 by 512 pixel AVHRR images showing the pack
ice along the coast of southern Labrador and the northern tip of Newfoundland (left),
the marginal ice zone (centre), and the cloud covered open water off of the shelf
(top-right). The values along the axes are in degrees of latitude and longitude.
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Figure 4.4: The pair of extracted 100 by 100 pixel subimages. The image in (a) is
from 11:57, March 7, 1994 and (b) is from approximately 7.5 hours later at 19:33,
March 7, 1994.
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Figure 4.5: The same images as shown in Figure 4.4 after processing. The images
were ‘levelled’ to reduce spatial variability in pixel intensity due to spatially varying
illumination. Histogram equalisation was used to maximise contrast.
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4.5.1 Ice Advection Model

First, a physical model for the advection of the ice is formulated. Following the anal-
ysis of ice motion by Thorndike and Colony (1982) it is assumed that the wind stress
is in balance with the water stress on the lower surface of the ice. This assumption
should be accurate for moderate to high wind speeds and variations in the forcings
of several hours or longer. This leads to the following simple model ( Thorndike and

Colony, 1982) for ice motion:
u=u" +ul. (4.10)

The vectors u™ and u® are the wind-driven and ocean-driven components of the ice
motion, respectively. Internal ice stress is ignored and floes are allowed to freely de-
form. However, the resulting deformation should be reasonable even without internal
ice stress because both the wind and the surface current fields are expected to have
low divergence and shear on the scale of ice floes in the marginal ice zone. This
model may be appropriate for such regions where ice drifts almost freely and the
wind and ocean currents have a major effect on ice displacement ( Wadhams, 1986).
However, internal ice stress greatly constrains the movement of pack ice thus making
this assumption invalid for such regions. However, as discussed in section 4.6, this
assumption is not a necessary part of the general approach.

The wind-driven component of the ice velocity, u¥, is defined as the wind speed
multiplied by a constant, A, with the direction of the motion at a fixed angle, 6,
to the right of the wind velocity. The two parameters, A and 0, are related to
the drag coefficients between the upper surface of the ice and the overlying air and
between the lower surface of the ice and the ocean. Values for these drag coefficients
vary significantly with many factors including floe size and roughness, stability of
the atmospheric boundary layer, turbulence in the oceanic surface boundary layer,
and wave action (Guest and Davidson, 1987). The great uncertainty in these drag
coefficients leads to the choice of treating A and § as controls.

Six hourly wind fields on a 1° grid from the Canadian Meteorological Centre were
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used to drive the ice advection model. These data were interpolated both in time,
using four-point Lagrange interpolation, and in space, using bi-linear interpolation.
The mean and standard deviation were calculated over the 48 hour period preceding
the second image. The standard deviation of the wind speed is less than 25% of the
mean speed (12.1 m s™!). This implies relatively steady conditions and is consistent
with the simplifying assumptions used in deriving the ice motion model.

The effect of the surface ocean current, u®, on the ice motion is assumed to be
additive. The current field is taken to be horizontally non-divergent with a stream-
function, 1. Therefore, the horizontal velocity field is defined as

a t’ ’ a 1 1 T
wo(t, z,y) = (_ w(ayr y) ¢(taxr y)) _

(A better choice may be to use a transport streamfunction, consistent with a non-

(4.11)

divergent depth-averaged transport, but using (4.11) allows the use of bathymetry as
an independent check for the solution in section 4.5.3.) The streamfunction is defined
using a linear combination of generalised structure functions, denoted by ¢;(z,y).
These structure functions form the set of basis functions for the streamfunction which

is expanded as follows:
w(taa"»y) = Zai(t)¢i(3y y)- (412)

Polynomials in z and y up to degree seven are used to define these structure functions
(e.g. ¢i = z"y™). Additionally, the current field is assumed to be constant between
the images. The coefficients, denoted by the vector a, are the controls which define
the streamfunction of the unknown current field.

The appropriate adjoint model was then formulated following the procedure pre-
sented in Appendix E to obtain the cost function gradient with respect to A, 8, and

Q.
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4.5.2 Results

The cost function was first evaluated with all controls set to zero, representing the
case of no ice motion. This value is proportional to the variance of the difference
between the observed images.

Optimal values for the wind-driven model parameters were first found independent
of the current field. The current field was set to zero everywhere (a@ = 0) and a quasi-
Newton minimisation routine was used to find the values of A and § that minimise
the cost function. Figure 4.6 shows a contour plot of the cost function surface as a
function of these controls. The optimal values for the parameters are A = 0.0285 and
6 = 36.5°. As a result of advection by only the wind-driven component J; is reduced
to 43% of its original value. From visual inspection of Figure 4.6 this is clearly the
global minimum within the range of parameter values considered. These values are
consistent with the slightly lower values (A = 0.0205 and 8 = 25°) found from ice
beacon data during a 60 day period in 1992, but closer to shore in pack ice where a
higher ice concentration and proximity to the coast restrict the ice motion (Carrieres
et al., 1996). The predicted wind-driven ice velocity has an average speed of 34 cm s™!
directed 64° south of east. The parameters A and § were fixed to these values for all
subsequent analyses, but this is not necessary as discussed in section 4.5.4.

The image pair, with the wind effect removed, was then analysed both manually
and using an area correlation algorithm to obtain a rough approximation of the ocean
current field. The velocity field from the area correlation algorithm was similar to
the manually tracked vectors except that the area correlation method gave several
“fliers”. Therefore only the manually tracked velocity vectors, shown in Figure 4.7,
were used in this application. The manually tracked vectors are only determined
where ice features are clearly identifiable in both images and are therefore irregularly
spaced. Other researchers have used such manually tracked vectors to study surface
circulation. For example, Ikeda and Tang (1992) used the vectors to fit a stream-
function for an area in the marginal ice zone over the Labrador and Newfoundland

shelves.
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Figure 4.6: Contour plot of the cost function with a set to zero. The only controls
are A and 6. Note the global minimum located at the intersection of the two dashed
lines defined by 4 = 0.0285 and # = 36.5°. J; has been normalised by its original
value with no ice motion. Contour values are separated by 0.05.
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Figure 4.7: Comparison of the optimal ocean current field from the assimilation
method and velocities from manual tracking. The optimal velocity field is represented
by the narrow arrows distributed on a regular grid. The wide arrows are those derived
from manual tracking.
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Initial assimilation experiments without regularization gave unrealistic velocity
vectors in areas with inadequate information. Therefore, a term which penalises
enstrophy was included in the cost function to smooth out strong shears in the velocity

field. The modified cost function is

J=Ji+ W, Y [V3y(tz,y))", (4.13)

t,x,y

where J; is the cost function (4.9). Employing an appropriate value for W, the
method gave a velocity field which appears more realistic. The methods used for
determining the maximum polynomial degree for the streamfunction and the best
value of W, are outlined in section 4.5.4. The optimal value of J; is 21.9% of its
initial value. Therefore the optimal ice velocity field is able to account for 78.1% of
the variance between the original image pair. Figure 4.8 shows the resulting optimal
streamfunction superimposed on the pair of images after the wind effect was removed.
The relationship between the manually tracked velocities and the corresponding ve-
locities from the optimal velocity field is shown in Figure 4.9. The optimal flow field
and the manually tracked velocities, presented as vector plots in Figure 4.7, compare
well over the region.

The computational time to reach the optimal solution for a pair of images using
the adjoint model is about 30 minutes (running on a SPARC station 10, model 70).
In general, the overall computational demand is proportional to the effort required
to run the ice-ocean model for the period between the images and also the number
of iterations required to find the optimal controls. The first factor depends on the
complexity of the model and the size of the images. The latter depends both on the
number of controls and the degree to which the optimisation problem is well-posed.

Figure 4.10 shows the frequency distribution of pixel intensity for the difference
between the images. The frequency distribution of the difference between two random,
uncorrelated images with the same distribution of pixel intensities as the ice images
is shown in Figure 4.10(c). The quartiles of these distributions are identified in the
figures by the vertical dashed lines. The distribution corresponding to the original



104

Latitude (°N)
Latitude (°N)

g (,I“‘
g

54 53.5 53.5 53
Longitude (°W) Longitude (°W)

Figure 4.8: Contour plot of the optimal ocean current streamfunction superimposed
on the two images (a) and (b) after removal of the wind effect. Note that the direction
of flow is clockwise in the gyre to the east.

images (Figure 4.10(a)) closely matches that corresponding to the random images
with the same nearly triangular form and the tails stretching out to the extremes of
the range. However, the distribution corresponding to the optimally advected images
(Figure 4.10(b)) has a much reduced spread with a corresponding high peak centred
at zero. The interquartile range corresponding to the advected images is almost three

times less than that of the original images.

4.5.3 Interpretation of Estimated Current Field

It is generally accepted that circulation on the Labrador shelf is largely governed by
bathymetry (De Young et al., 1995). Figure4.11(b) is a contour plot of the bathymetry
for the region. The shallow eastern portion of the region is the western half of Belle Isle
Bank; the deep northern portion of the region is a feature called Hawke Saddle; and
the southern area, which is also relatively deep, is the northern tip of St. Anthony

Basin. One of the main features of the optimal current field is a relatively strong
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Figure 4.10: Histograms of the pixel intensity corresponding to the differenced images.
(a) is the histogram corresponding to the difference between the original two images.
(b) corresponds to the difference between the two images after advection by the
optimal ice advection model. (c) shows the histogram corresponding to the difference
between two uncorrelated random images with the same pixel intensity distribution
(uniform) as the original images. The vertical dashed lines identify the quartiles.
Therefore 50% of the data falls in between the two outer dashed lines.
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Figure 4.11: Comparison of the optimal streamfunction and the bathymetry of the
region. (a) shows the streamfunction and (b) shows the bathymetry with contour
increments of 50 m. Note the close correspondence of streamlines with the bathymetry
contours.

current (up to 40 cm s~!) which flows southward along the western boundary of
the region, turns eastward, and flows north-eastward out of the north-east corner
of the region. This path closely corresponds to the southern boundary of Hawke
Saddle, a region with a strong gradient in water depth. Between St. Anthony Basin
and Hawke Saddle is a well defined saddle point in bathymetry (52.5° N, 53.7° W)
which corresponds well with the saddle point in the streamfunction. Comparing the
bathymetry with the streamfunction shows that the streamfunction closely follows
lines of constant depth.

The optimal flow field also agrees qualitatively with observations of the mean cir-
culation in the region. Tang et al. (1996) observed from ice beacon data between
1985 and 1989, after removal of the wind effect, that the mean flow is eastward along
the northern flank of Belle Isle Bank. Greenberg and Petrie (1988), who summarise

current meter observations from Belle Isle Bank, observed north-eastward flow over
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the northern portion of the bank and southward flow over the eastern side. Peter-
son (1987) observed an eastward flow over southern Hawke Saddle using sequential

satellite ice images after removal of the wind effect.

4.5.4 Sensitivity Studies

Even though the values of the wind-driven parameters obtained from the satellite
images are reasonable, there is still a possible problem of co-linearity of the wind-
driven motion and the ocean current. That is, the component of the ocean current
which is spatially correlated with the wind-driven ice motion will contribute to the
wind-driven parameter values in the procedure that was followed. The minimisation
was therefore repeated with the wind-driven parameters and the streamfunction pa-
rameters allowed to vary simultaneously. The result was a flow field very similar to
the original field, but with the centre of the gyre on Belle Isle Bank slightly offset to
the east.

Due to the nearly uniform wind field, both temporally and spatially, any errors in
the wind data would affect the optimal values of A and 4, but not the resulting u*.
Large scale errors in image navigation may also result in errors in these parameters
causing a uniform error in u¥ of about 6 cm s~!. Relative navigational errors over
the model domain are negligible.

The choice of basis functions used for the streamfunction model was also explored.
The simple polynomial terms used to specify the streamfunction are not orthogonal
which may cause some inefficiency in the minimisation procedure. A truncated Fourier
series expansion was also attempted. The computational cost, however, of evaluating
trigonometric functions increased the time of evaluating the cost function by about
a factor of four. The optimal streamfunction for the case of 24 Fourier components
was very similar to the one obtained using simple polynomials. Experiments with
Legendre polynomials also provided similar results.

The degree of the polynomial was determined by examining the fit of the poly-

nomials to the manually tracked velocities using linear regression. Through this
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approach, it was found that a polynomial of degree seven (consisting of 35 terms)
was sufficient to model the manually tracked velocities. However, in general such
additional analyses will not be possible, especially if the method is fully automated.
Therefore one may take an approach analogous to statistical model building. In this
case, a simple model is fit first. Then, after an analysis of the residuals, it is decided
whether or not to increase the complexity of the model, and the process is iterated.
At some point the question arises: “How far should one proceed in adding complexity
to the model?” Additional complexity increases the computation time and may only
result in a small decrease in the value of the cost function. Some statistical measures,
such as Akaike’s information criteria (AIC), are available for such uses (Priestley,
1981). Initial experiments with polynomials of degree 4 and 5 reduced J; to 28% and
23% of its original value, respectively. In general, this approach can be used to test
which modelling assumptions are most consistent with the images by observing which
model gives the best fit taking into account model complexity. This appears to be
a more promising way to use sequential images to study ice-ocean physical processes
compared with analysing displacement fields derived from purely statistical tracking
methods that already have certain constraints on the displacement field.

The form and relative weighting of the regularization terms also requires careful
consideration. Experiments were conducted where only mean kinetic energy was
penalised. The resulting flow fields did not sufficiently damp out unrealistic flows
without affecting the overall field significantly. In this application, an ad hoc approach
was taken to determine the weighting factor, W;, in (4.13). Several weighting factors
were attempted and the one which gave the velocity field with the highest correlation
to the manually tracked velocities was chosen. However, in the absence of a manually
derived analysis the approach of cross validation can be adopted (e.g. Griffin and
Thompson, 1996). Following this approach, a portion of the grid at n = N/2 is
initially withheld in the calculation of the cost function. Then several values of W,
are used and the one resulting in the velocity field that minimises the misfit of the
withheld portion is chosen. This value of W, is then used in the final assimilation
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with all of the grid.

4.6 Discussion and Conclusions

The proposed method for using sequential images represents a significant improvement

over existing methods in the following ways:

1. The proposed method enables the utilisation of all available data in determining

the velocity field;

2. By making prior assumptions about the form of the solution, the set of feasible

solutions is constrained;
3. The method may be extended to include model dynamics; and

4. The model can be subsequently used to forecast ice movement or SST evolution

using the estimated flow field as the initial conditions for the ocean model.

Unlike existing methods of ice tracking, it is possible to include other sources
of data with the proposed method by simply adding terms to the cost function. For
example, if additional data are available in the form of an ice beacon trajectory, given

as the time series X%, then the additional term in the cost function would take the

form
Jy = % (& — %) (=) (®° - &), (4.14)

where the arrow denotes the stacked vector containing all two-dimensional observed
beacon positions. The model counterpart to the beacon positions, denoted X', is
obtained by integrating the modelled velocity field for ice motion starting from the
time and location of beacon deployment. The covariance matrix of the total error
between these vectors, ', is calculated as described in the previous chapter for
drifter trajectories.

The proposed method inherently constrains the set of feasible solutions to those

velocity fields that are consistent with the ocean model. Area correlation and feature
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matching methods often result in erratic vectors. Several approaches have been de-
veloped which attempt to reduce the number of these “fliers”. For example, Emery
et al. (1991) imposed some spatial coherence by filtering the resulting vector field.
Another approach is to automatically identify those individual vectors that are incor-
rect using statistical measures derived from the cross-correlation surface and replace
them by interpolating between the neighbouring vectors ( Vesecky et al., 1988). In the
simple application presented in the previous section, the use of a truncated polyno-
mial expansion as well as the regularization term ensures that the ice motion field will
vary spatially in a reasonably smooth way. The truncated expansion of the velocity
field also greatly reduces the number of control parameters and therefore reduces the
computation time. This is arguably superior to the approach of filtering the resulting
high resolution velocity field, which actually increases the computation time of the
overall procedure.

The proposed method can be extended to include model dynamics. The simple
ocean model used in this application does not include any constraints other than
horizontal non-divergence and spatial smoothness. In general, the streamfunction
may be allowed to vary in time in a manner consistent with expected ocean dynamics.
By employing a numerical circulation model, the controls can be the initial conditions,
time-varving open boundary conditions, or system noise of the model. A benefit of
using a circulation model is that the scale of variation in the flow field is determined by
the model and therefore does not need to be estimated, as in the application presented.
Model dynamics can also be incorporated into the ice model. The assumption of no
interaction between ice floes makes the application presented here particularly suitable
to tracking ice in the marginal ice zone. However, if a model accounting for internal ice
stress and/or thermodynamic processes was available, it would be relatively straight
forward to include it in a modified ice advection model making the application of
the method more general. Naturally, the incorporation of more complex dynamics
may result in an increased number of controls, thus requiring more data (additional

images or other sources) to determine the optimal solution.
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To extend the proposed method for forecasting ice motion, the ice advection model
could be used. For the application described in section 4.5, the wind-driven compo-
nent of the ice motion accounted for about three-quarters of the total variance that the
ice advection model was able to explain. Therefore, by solely using the wind-driven
model parameters determined by the inverse method and forecast winds, a signif-
icant amount of future ice motion should be accurately forecasted. If the method
is extended to include ocean dynamics, these dynamics can be incorporated when
forecasting ice motion. The ocean model would be integrated forward in time using
the optimal flow field derived from the images as the initial conditions. The resulting
flow field, along with predicted wind data and optimal wind-driven model parame-
ters, would drive the ice advection model to predict the ice motion beyond the final
satellite image.

In conclusion, the applications presented in this chapter were successful using a
very simple model for the advection of the observed quantity. A more sophisticated
approach may be necessary for images that are more widely separated in time. In
that case the error in the trajectories due to the unresolved velocities may become
significant. Consequently, the statistics of this error, denoted by €* in (4.6), would
need to be calculated (following the approach described in the previous chapter) at
the common time chosen for comparing the images. As mentioned earlier, this term
serves the same role as the diffusion term in the more typical advection-diffusion
models used for evolving tracer fields.

Further development and application of the approach presented in this chap-
ter could potentially improve current ice tracking and forecasting capabilities. The
method provides a framework in which an appropriate dynamical model is used to
assimilate all possible data collected at different times by different types of sensors.
This is quite different from the techniques typically applied to the tracking of sea ice.
More generally, application of this method provides oceanographers a valuable new
source of data on surface currents by applying the method to ice, SST or ocean colour

imagery where appropriate.



Chapter 5

Estimation of 3D-Var Background
Error Covariances using Empirical

Orthogonal Functions

5.1 Introduction

In the field of numerical weather prediction (NWP), the main role of data assimilation
is to produce an optimal estimate of the present state of the atmosphere for initialising
a forecast model. This is typically done by using the information from a set of
observations to correct a short-term forecast, referred to as the background state.
Since atmospheric data consists primarily of a sparse network of point measurements,
the data assimilation scheme must spatially interpolate the information from the
observations and also spread the information from the observed geophysical variables
to the other variables when producing the corrections. These spatial and between
variable relationships are governed by the covariances of the errors in the background
state used in the assimilation scheme.

Advanced four-dimensional variational assimilation schemes, such as 4D-Var or

the various approaches based on the Kalman filter (KF), to some extent use the
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forecast model to propagate the background error covariances. The model is used
to evolve the background statistics through time, thereby causing the statistics to
be non-stationary and depend on the specific meteorological situation. For example,
situations such as rapid cyclogenesis can have a strong influence on the background
error statistics, and therefore dramatically change the way the observations are used
in producing the estimated atmospheric fields (Rabier and coauthors, 1997). Several
NWP centres have recently implemented 4D-Var in either pre-operational ( Thépeut
et al., 1999; Zupanski et al., 1999) or operational (Rabier et al., 1999) mode.

Three-dimensional assimilation schemes, such as OI or 3D-Var, do not account
for the temporal evolution of the background statistics. The statistics are instead
assumed to be stationary and representative of the climatological background error.
This simplification substantially reduces the computational expense of the data assim-
ilation step in NWP. Additional constraints also typically applied to the background
error statistics include assuming the correlations are homogeneous and isotropic in
the horizontal and that they can be described by a simple functional form, such as a
Gaussian function. While these assumptions are often necessary due to the limited
information from which the statistics are computed, they often result in the infor-
mation from the observations being interpolated in a less than realistic manner. For
instance, due to the assumption of homogeneous and isotropic horizontal correla-
tions made in most 3D-Var and OI schemes, the full influence of the atmosphere’s
dynamical response to baroclinic or orographic forcing can not be captured.

The goal of this chapter is to explore a new approach for representing the back-
ground error covariances within a typical 3D-Var system. The approach is based on
using a truncated set of empirical orthogonal functions (EQFs) that span the most
important subspace of background error. The EOFs are calculated from a set of sam-
ples representative of background error without imposing the typical constraints on
the form of the covariances. However, without these constraints the limited number
of error samples causes the covariance matrix to be highly rank-deficient and signif-

icantly affected by estimation error. Several approaches are examined to overcome
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these problems. The first approach is to constrain the horizontal correlation functions
to have limited horizontal extent. Another approach is to increase the rank of the
estimated covariance matrix by blending a small number of EOFs with the conven-
tional full-rank covariance matrix estimated by assuming homogeneous and isotropic
correlations. In a specific application, an EOF-based covariance matrix is used to
evaluate the impact of relaxing the assumptions of homogeneity and isotropy of the
background error correlations within the Canadian 3D-Var.

The following section gives a brief overview of the 3D-Var algorithm, the specific
approach used to represent the background error statistics in a typical system, and the
possible sources of information on background error. In Section 5.3, an approach for
formulating a more general background covariance matrix using EOF's is presented.
Preliminary results, given in Section 5.4, demonstrate the impact of the various ap-
proaches on the analysis increment. Section 5.5 concludes with a discussion of the

limitations and possibly valuable applications of the proposed approach.

5.2 Overview of 3D-Var

Several operational NWP centres currently employ, or have employed in the recent
past, a 3D-Var system (Parrish and Derber, 1992; Courtier et al., 1998; Gauthier
et al., 1999). Like the KF, the analysis and forecast steps of 3D-Var occur sequentially
through time. This is unlike other assimilation methods discussed in this thesis that
simultaneously fit an entire time-dependent model solution to data. Within a typical
NWP system, the role of 3D-Var, like Ol, is to combine the current set of atmospheric
observations, y, with a short-term forecast valid for the same time, referred to as
the background state and denoted by s®, to produce an estimate of the complete
atmospheric state. The optimal estimate is the state vector, s, that minimises the

cost function

J=5[s-"B 5= 4+ 5 [(s) - YT MGs) -y, ()
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where X° is the observation error covariance matrix, B is the background error co-
variance matrix (where B is used in place of X* to simplify notation) and #() is the
possibly nonlinear observation operator that maps the state vector into the model
counterpart to the observations.

Except for a difference in notation and the possibility of a nonlinear forward
model, (5.1) is identical to the cost functions (1.10) used to introduce generalised
linear regression and (A.3) used to describe the KF algorithm. However unlike the
KF, the background error covariances are assumed to be stationary in the 3D-Var
algorithm. This avoids the costly propagation of this matrix with the linearised
model dynamics that makes the original KF algorithm infeasible for realistic NWP
applications. Also, as opposed to the explicit inversion used in the KF algorithm
(which requires inverting large matrices), the optimal solution for 3D-Var is found by
minimising the cost function with an iterative optimisation algorithm employing the

gradient of the cost function (as with the approaches in the previous two chapters).

5.2.1 Incremental Formulation

Unlike linear regression and the standard KF algorithm, some of the observed data
types in (5.1) may be nonlinearly related to the state vector. To maintain the linearity

of the estimation problem, the observation operator is linearised leading to
1
J= %ASTB—IAS +3 (HAs -y 5o~ (HAs - y)), (5.2)

where H is the observation operator linearised with respect to the background state

and the increment, or correction, to the background state is defined as
As =s —s>. (5.3)

The initial misfit between the observations and the background state projected into

observation space is defined as

y =y - #H(P). (5.4)



Typically, the increment is assumed to be sufficiently small that the solution of this
linearised estimation problem equals the nonlinear solution. In general, however, #()
could be re-linearised with respect to the updated estimate, the new solution found,
and these steps iterated until the solution converges to the nonlinear solution.

The estimated As, referred to as the analysis increment, is essentially an estimate
for the error in the background state. The first term of (5.2) constrains the spatial
structure of the increment according to the background error covariances that are
typically spatially smooth. Consequently, the analysis increment will be spatially
smooth. This justifies the use of a lower resolution to represent As, B, and H to
decrease the computational cost of minimising (5.2). The highest resolution, how-
ever, is maintained for calculating y’, since this calculation is performed only once.
Therefore, the information from the corrections is subjected to certain approxima-
tions (lower resolution and linearised observation operator), whereas the information
from the background state (in which the model dynamics may have generated small
scale information) is treated at full resolution. This approach of simplifying the rep-
resentation of As and its relationship to the observation space while maintaining the
highest accuracy for calculations involving s® is known as the incremental approach
(Courtier et al., 1994). Recent oceanographic applications of this approach include
the studies by Weaver and Vialard (1999) and Thompson et al. (1998).

5.2.2 Dynamical Importance of the Background Error Co-

variances

The analysis increment generated by a single observation, the so-called structure
function, is a useful diagnostic for evaluating how the assimilation system spreads
information from individual observations both spatially and between variables. For

illustration, consider the exact solution for the analysis increment (see (A.6) and (A.7)
in Appendix A):

As® = BHT (2° + HBHT) 'y’ (5.5)
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For a single observation, the linearised observation operator H is a row vector and,
therefore, the quantity in brackets is a scalar. Furthermore, if the observation is
of the same type as a variable in the analysis increment and is located at a grid-
point, then the resulting analysis increment is proportional to the corresponding
column of B. Since the covariance matrix B is taken to be stationary in 3D-Var,
the way in which information from the observations is spread through space and to
the other variables is fixed. In estimating the background error covariance matrix,
constraining assumptions are often placed on its structure, such as assuming the
correlations to be homogeneous and isotropic. However, the atmosphere’s dynamic
response to, for instance, spatially varying orography or baroclinic forcing can be
significantly anisotropic, nonhomogeneous and non-stationary. The magnitude and
spatial structure of the real background error will be significantly influenced by such
dynamic responses, as described below.

Baroclinic instabilities in the atmosphere play a key role in daily weather events
and also in the global poleward heat transport (Gill, 1982). They occur frequently
below the sub-polar jet stream in areas with strong horizontal temperature gradients.
For example, in winter along the eastern edge of the continents cold air from the land
meets air that has been warmed by the ocean’s western boundary currents creating
strong horizontal temperature gradients. When the vertical shear in the zonal wind
associated with the meridional temperature gradient becomes sufficiently large, wave-
like disturbances can grow spontaneously. These unstable waves grow by converting
the available potential energy from the horizontal temperature gradient into kinetic
energy. The resulting decrease in available potential energy is associated with a net
poleward heat flux that tends to decrease the meridional temperature gradient. This
continues until a new equilibrium is reached consisting of a finite amplitude wave
and a modified zonal flow. Disturbances with spatial scales similar to the baroclinic
Rossby radius, which in the atmosphere is O(1000 km), tend to be most unstable.
Furthermore, linear stability analysis shows that the pressure and wind fields of the
unstable waves (modes) tilt in the vertical against the zonal shear (Holton, 1992).



119

Within an assimilation system, any error in the initial conditions that project onto
these unstable waves would grow rapidly. Therefore, the errors in the background
state near the sub-polar jet stream would likely exhibit a westward vertical tilt in
their spatial covariance structure when conditions are favourable for rapid growth of
disturbances. Several studies with four-dimensional assimilation systems have con-
firmed that, in regions with baroclinic activity, structure functions tend to have a
tilted structure (Rabier and coauthors, 1997; Houtekamer and Mitchell, 1998). In
regions where such disturbances play a dominant role in the atmospheric dynamics,
the stationary background statistics would also be expected to have tilted vertical
covariance structures.

Isolated orography located in the path of a mean zonal wind can have significant
effects on the low-level temperature and wind fields. Ringler and Cook (1999) discuss
the seasonality of orographically forced stationary waves. Using a quasi-geostrophic
model, they determined that the nonlinear interaction of mechanical and thermal
forcing due to orography can produce a stationary response unlike the superposition
of the individual linear responses. Over the Rockies, low-level diabatic heating occurs
during the summer (on the order of 3 K/day) and cooling during winter (1-2 K/day),
causing seasonal variation in the response. Both model results and observations show
that in winter the average low-level streamfunction, after removing the zonal mean
flow, has a positive maximum over the Rockies. In the summer, a small minimum
is located over the Rockies with positive maxima to the west and east. Within an
assimilation system, errors in the zonal wind initial conditions would either enhance or
weaken this response to orography in the forecast. Therefore a correlation between the
zonal wind and the orographic response should be present in the seasonally averaged

background error statistics.

5.2.3 Sources of Information on Background Error

Estimating the statistical properties of background error in NWP systems is a diffi-

cult task since the true state of the atmosphere is, of course, not available for direct
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comparison against the background state. An approach, described by Hollingsworth
and Lénnberg (1986), of comparing forecasts against accurate observations has been
widely used. The approach attempts to separate observation from background er-
ror by making the assumption that observation error is uncorrelated between closely
situated measurements. The effectiveness of this method, however, is limited by the
sparsity of observations, especially over the oceans and the southern hemisphere. As
a consequence, only the horizontal correlation length scale (assuming isotropic corre-
lations), vertical correlations, and variances of the stationary background error can be
reasonably well estimated. These statistics must also be assumed to be horizontally
homogeneous over large regions of the globe. Gauthier et al. (1999) used horizontal
length scales and variances estimated by separately averaging over the northern ex-
tratropics and the tropics. They then used the summer (winter) statistics from the
north for the southern extratropical summer (winter) statistics.

Another approach, suggested by Parrish and Derber (1992) and referred to as the
NMC method, uses only a set of forecasts from an existing assimilation system to
estimate the stationary background error statistics. The differences are calculated
between forecasts with two distinct lead times, but valid for the same time (usually
24 h and 48 h forecasts). These forecast differences are taken to be representative
of background error and their statistics are estimated from a two to three month
ensemble. Some NWP centres have found a noticeable improvement in their forecasts
after switching to a background error covariance matrix estimated using this method
(Parrish and Derber, 1992; Derber and Bouttier, 1999). The method is also very con-
venient since the ensemble of forecast differences provide information for all variables
over the entire globe on the same grid as the forecast model.

Assuming 24 h and 48 h forecasts valid for the same time are used, the basis of
the NMC method can be understood by considering how the two forecasts differ at
the initial time of the 24 h forecast. At that time, the initial state of the 24 h forecast
has been influenced by all of the assimilated observations over the previous 24 hours,

(that is, the initial time of the 48 h forecast) and therefore should be closer to the



121

truth than the 48 h forecast. Therefore, the difference at this time should resemble
the forecast error. This initial perturbation is then propagated through the model
dynamics for 24 hours, allowing additional growth in areas of unstable dynamics and
decay in areas of stable dynamics. This additional propagation time ensures that
the imposed multi-variate and spatial structure from the assimilation system used
to produce these forecasts does not strongly influence the new background statistics
being estimated.

The NMC approach, however, has several drawbacks. For instance, in areas with
few observations the initial perturbation may be small and the resulting error vari-
ance consequently underestimated (see Figure 5.1). Close to the surface some fields
may be dominated by the external forcing. If the same external forcing is used for
both forecasts, this can also result in the underestimation of the error variances for
certain variables. Furthermore, use of 24 h and 48 h forecasts appears to allow too
much growth in unstable regions to be representative of the error in the background
state (typically a 6 h forecast). This leads to the overestimation of the error vari-
ance, for example, in the northern sub-polar jet region (M. Fisher, ECMWF, 1999,
personal communication). Some of these problems can be mitigated, for example, by
using zonally averaged variances and scaling these variances according to information
derived from direct comparison of forecasts with observations following the approach

mentioned above.

5.2.4 Background Error Covariances with Homogeneous and

Isotropic Correlations

The background error statistics in the Canadian 3D-Var system have recently been
reformulated, as described in detail by Gauthier et al. (1998), following the approach
of the European Centre for Medium-range Weather Forecasting (ECMWF) (Derber
and Bouttier, 1999). The background error statistics are estimated from a set of error
samples obtained using the NMC method (described in the previous section). Since

only a small number (~ 100) of error samples are used, a set of assumptions must be
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Figure 5.1: Streamfunction variance near 500 hPa obtained directly from a set of
91 lagged forecast differences (48 h minus 24 h forecasts). The contour interval is
5 x 10° m? s~!. Note the low values over the tropics and the North Atlantic where
lack of observations would suggest relatively high background error should occur.

imposed on the form of B, which has a rank of O(10), to improve its estimation. This
section gives an overview of the aspects of the formulation relevant to the subsequent
description of using EOF's to represent the background error covariances.

The full covariance matrix is not explicitly calculated within the 3D-Var, since it
would be inefficient to store and manipulate this matrix. Instead, the control vector

used for the minimisation, denoted by a, is defined according to
As = B} ’a, (5.6)

T
where By; = B,)/? (Bhl./ 2) and the subscript hi refers to the fact that the horizontal

correlations are assumed to be homogeneous and isotropic. Using this definition
allows the cost function (5.2) to be rewritten in terms of a as
1 1 T
J=3ala+s (0B, a-y) = (HB*a-y). (5.7)
This definition of the control vector therefore results in pre-conditioning the minimi-

sation with respect to the background term. As a consequence, the minimisation of
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(3.7) can be performed with significantly fewer iterations compared with using As
directly as the control vector. Also, assuming the starting point in the minimisation
is the background state (that is, & = 0 initially), the inverse of Bj; is not required.
The square-root of By, is defined in terms of the following sequence of operators that
are applied to a whenever the value of As is required to calculate the observation

part of the cost function (or its gradient):
As = MWS™'Ca, (5.8)

The remainder of this section provides a brief description of the operators in (5.8).
The operator, M, in (5.8) accounts for the statistical relationships between the
different geophysical variables in As. At each grid point, the variables used for the

increment and the background error covariance matrix are
As = (A%, Ax, AT, Ap,, Ala(g)]” (5.9)

where the wind field is represented by Aty and Ay, the streamfunction and velocity
potential. respectively; the mass field by AT and Ap,, the temperature and surface
pressure, respectively; and the moisture field is represented by the natural logarithm of
specific humidity, Aln(g). Due to the importance of the geostrophic balance between
the wind and mass variables in the extratropics, the forecast errors between these fields
will also be in approximate geostrophic balance. In the extratropics near the surface,
the effect of bottom friction causes a coupling between the rotational and divergent
components of the wind field, and also between their forecast errors, due to the
Ekman balance (Polavarapu, 1995). These multi-variate relationships are modelled
using balance operators and result in covariances between the background error of
the mass and wind fields.

The relationship between the mass and wind increments due to geostrophy is
defined by

[AT (5.10)

AT
= VLA ,
Ap.] v 'H[ ]

Ap,
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where primes denote the “unbalanced” component of the variable. The linear oper-
ator L is the geostrophic balance operator that transforms each horizontal field of
streamfunction into a field of the balanced mass variable. The balanced mass variable
is defined as

R (Z TiAlnpy +T,1np.> ,
!

where the summation is from the surface to the vertical level of interest, R is the
gas constant of dry air, T, is a reference temperature and Alnp is the difference
in the natural logarithm of pressure at adjacent vertical levels. The local balance
operator, where A% is simply multiplied by the local value of the Coriolis parameter,
is used for reasons discussed in Gauthier et al. (1999). The linear operator V is an
empirical inverse hydrostatic operator that transforms vertical profiles of the balanced
mass variable into temperature profiles. This operator is estimated using a regression
analysis over the ensemble of error samples between temperature profiles and profiles
of LA, in grid-point space. This approach is used to avoid problems of increased
noise in the vertical structure and the null space associated with using a theoretically
based inverse hydrostatic operator. Since not all vertical modes of the wind field are
expected to be coupled with the mass field, this operator can also act to filter out
these modes.

The divergent wind component is modelled as the sum of a balanced and unbal-

anced part according to
Ax = —tan(9)Ay + Ax/, (5.11)

where 9 is the turning angle between the streamlines and the wind vectors that is
allowed to vary with latitude and vertical level. This differs from the homogeneous
balance operator relating balanced mass to divergence in spectral space used by Derber
and Bouttier (1999). The turning angle is determined using a regression analysis

between the error samples of x and .



The balance operators are first used to transform the error samples into the un-

balanced variables
As, = [A, AX', AT, Ap,, Aln(q)]", (5.12)

by removing the balanced components. The remaining correlations between these
variables were found to be small, thus supporting the assumption that the two bal-
ance operators described above are sufficient to account for the between-variable rela-
tionships. Therefore, to simplify the formulation of By, the correlations between the
different variables in As, are set to zero. Application of the operator M is equivalent
to applying (5.10) and (5.11) such that

As = MAs,. (5.13)

The background error covariance matrix in terms of the variables in As, is denoted

by B, and is related to B; according to
B = MB,MT. (5.14)

Figure 5.2 shows the ratio of the unbalanced temperature variance to the total
temperature variance obtained from a set of error samples. The low values in the ex-
tratropics demonstrate the importance of the geostrophic balance. Values larger than
one are likely due to the assumption of homogeneity for the empirical inverse hydro-
static operator. Similarly, Figure 5.3 shows the ratio of the variances of unbalanced
velocity potential to total velocity potential near the surface. In the extratropics, the
balance operator is able to account for nearly half of the total variance at the surface.

The estimation of the covariance matrix B, requires estimating the correlation
matrix and the variances for each variable in As,. The assumption is made that the
horizontal correlations for each variable are horizontally homogeneous and isotropic.
The vertical correlations are assumed to be homogeneous in the horizontal. As a
consequence of these assumptions, the spectral representation of the correlations take

on a block diagonal form, where the diagonal blocks depend only on total wavenumber,
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Figure 5.2: Ratio of the variance of unbalanced temperature to the total temperature
variance as a function of pressure and latitude. Note that in the tropics the geostro-
phic balance is not able to explain any of the temperature variance and therefore the
unbalanced component equals the total temperature. In the extratropics, however,
the temperature variance is explained mostly by its balanced component above the
planetary boundary layer.
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Figure 5.3: Ratio of the variance of unbalanced velocity potential to the total velocity
potential variance near the surface as a function of pressure and latitude. Note that
in the extratropics, the variance explained by unbalanced component is reduced to
almost one half of the total variance at the surface.



as shown by Gauthier et al. (1998). This results in an efficient and convenient way
of representing the correlation matrices. The variances of B, are represented in grid-
point space and assumed to depend only on vertical level and latitude. Therefore,
the background error covariance matrix for the unbalanced variables can be written

as
B. = WS 'CSWT, (5.15)

where C is the spectral representation of the correlation matrix, W is the diagonal
matrix of standard deviations in grid-point space and S is the horizontal spectral
transform.

Ultimately, the full covariance matrix
Bhi = MWS ' CSWIMT (5.16)

has nonhomogeneous and anisotropic covariances, even though the horizontal correla-
tions are homogeneous and isotropic. This is due to both the modulation as a function
of latitude by the standard deviations, in W, and the nonhomogeneous character of
the balance operators, in M. Because of the assumptions used to formulate B;, this
matrix will likely be full-rank and reasonably well estimated even if only a relatively
small number of error samples are used. As discussed previously, however, the sim-
plifying assumptions made in the formulation of By;, especially that of homogeneous
and isotropic correlations, often can not be justified when the influence of the real

atmosphere on the background error is considered.

5.3 Representing the Background Error Covari-

ances with EOF's

In this section, a method of using EOFs to represent the background error covari-

ance matrix is presented. A covariance matrix represented by the leading N, EOF's
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calculated directly from a set of N, error samples is given by
B. = EAZE?, (5.17)

where the columns of E are the EOFs and the elements of the diagonal matrix A? are
the corresponding eigenvalues. The rank of B, equals the number of retained EOF's,
the maximum being (N, —1). As a result, the analysis increment obtained using such
a covariance matrix would only span the N.-dimensional subspace spanned by the
EOFs.

Alternatively, an EOF-based covariance matrix can be calculated in conjunction
with some of the assumptions used to estimate the conventional covariance matrix,
Byi. For example, if the error samples are obtained by the NMC method, it may be
preferable to retain the use of balance operators to model the multi-variate relation-
ships and also use the spatially averaged variances to overcome some of the limita-
tions of the error samples, as described earlier. Therefore, only the assumptions of
homogeneity and isotropy of the correlations are relaxed. This is accomplished by
calculating the EOF's from error samples that have been transformed into the unbal-
anced variables and normalised by the three-dimensional standard deviations of the

samples. Then, the resulting covariance matrix is given by
B. = MW (EAZET) WTMT. (5.18)

An approach for obtaining the EOFs and eigenvalues from a small set of error sam-
ples is presented in Appendix F. Two proposed approaches are described below for

increasing the rank and improving the estimation of an EOF-based covariance matrix.

5.3.1 Blending EOFs with By

One method of increasing the rank of B. beyond the number of retained EOFs, is
to use the full-rank covariance matrix Bs; projected into the subspace orthogonal
to the EOF's, that is, the null space of B.. To blend the EOFs with By, it is first

assumed that the retained EOFs are accurate estimates of the leading eigenvectors of
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the true background error covariance matrix, B,. Then, the eigenspace of this matrix
is partitioned into two subspaces: one spanned by the EOF's, E,, and the remaining

subspace spanned by E,,

A2 0 ET i
B, = [E, Eg][ 0‘ A§] [E:T ] (5.19)

The eigenvectors and eigenvalues of the orthogonal subspace, E; and A2, respectively,
are unknown. To use the covariance matrix By; to describe the errors in this subspace,

A3 is first replaced by
A? =ETB,E,, (5.20)

obtained by pre- and post-multiplying (5.19) by E7 and E,, respectively. This is the
projection of the true covariance matrix into the subspace orthogonal to the EOFs.
The true (and unknown) covariance matrix in (5.20) is then replaced with the full-

rank covariance matrix, By;. Also, by using the relationship
E.ET =1-E,E7, (5.21)

due to the orthogonality of the two subspaces, the following covariance matrix is

obtained:

A? 0 ET
B, = [E, (I-E,ET ! ! 5.
L0 A | PN T

where B, denotes the result of blending the EOFs with By,;.
The full covariance matrix B, is not calculated explicitly, but the optimisation
problem is again pre-conditioned according to B,. First, the square root of the

covariance matrix is defined as

A, 0
B,/? = [E, (I—EIEIT)][ 0‘ B"’]’ (5.23)

hs
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T
such that B, = Bbl/ 2 (Bbl/ 2) . Then, the relationship between the control vector

and the increment, As, is defined in a similar way as in Section 5.2.4 as

at ] : (5.24)

a

As=B,/?

As a consequence, the increment is made up of two components:
As = ElAa, + (IFEET) B *a, (5.25)

The first component controls the increment in the space spanned by the EOFs. The
second component controls the increment in the subspace that is orthogonal to the

EOFs (the null space of B, ) and has a covariance structure supplied by By;.

5.3.2 Horizontal Localisation

Preliminary results using various EOF truncations calculated from a set of O(100)
error samples indicate that while the vertical covariances of B, are well estimated,
the horizontal covariances contain large spurious values between widely separated
locations. Similarly, Houtekamer and Mitchell (1998) found significant covariances
at large separation distances within a low-resolution ensemble Kalman filter (EnKF).
As a consequence observations over, for example, Australia would have a significant
impact on the analysis increment over Canada. Such a long-range influence of an
observation is unrealistic and is caused by sampling error due to the relatively small
sample size (~100) used to estimate the covariance matrix, B, with rank of O(10°).
To reduce this problem, the assumption is imposed that the horizontal covariances
beyond a specified separation distance should become very small. This assumption
is used in place of the more constraining assumptions that the correlations should
fit a specified functional form and be horizontally homogeneous and isotropic. The
assumption that the horizontal correlations are local constrains the form of B, thus
decreasing the total number of degrees of freedom to be estimated. This results in

increasing the maximum rank of the covariance matrix that can be estimated from
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a given set of error samples. In the following sections, two methods of limiting the
horizontal extent of the background error covariances are examined (an additional

method is described in Appendix G).

Localisation of the Global EOFs with a Localising Correlation Function

The first method of damping covariances at large separation distances is similar to a
localisation example presented in Section 4d of Gaspari and Cohn (1999). They state
that the product of the estimated horizontal covariance function with another covari-
ance function is a valid (that is, positive semi-definite) covariance function. Therefore,
the desired localisation can be obtained by multiplying the estimated horizontal co-
variances by a space-limited correlation function. An ideal correlation function for
localisation would preserve the local structure of the original covariances while com-
pletely suppressing the covariances at distances beyond which the original estimates
are believed to be significantly differenct from zero. A top-hat function would be
ideal, except that it is not positive semi-definite.

For illustration, this approach is applied to the case of localising the covariance

matrix of a one-dimensional function with the truncated EOF expansion
B. = EA’E”. (5.26)

For convenience, the EQFs, after scaling by the square root of their corresponding

eigenvalues, are rewritten as
F = EA.. (5.27)

Then, if the ith column of F is denoted by f;, (5.26) can be rewritten as

Ne
B.=FF' =) ff]. (5.28)

=1
The EOF representation of the covariance matrix can therefore be expressed as a sum
of matrices, each the outer product of the scaled EOF with itself. As described in
Appendix G, this localisation approach could equally be applied to the full covariance
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matrix estimated directly from the error samples instead of using a truncated EOF

expansion.

Assuming the correlation matrix used for localisation is homogeneous and isotrop-

ic, it is denoted as

where [, =

r

L I I3 ...
L I, I
Is I [

following definition of the diag() operator is introduced:

F 0 0
0 F; 0

diag (f;) = ) g’ o
3;

(5.29)

1 and all off-diagonal elements are less than one. For convenience, the

(5.30)

where Fj; is the element from the ith row and jth column of F. The localised

background error covariance matrix can then be defined as

Ne
B, = z diag (f,) L diag (f.)

=1

- [diag(f,)L*/2 diag(f,)L"/? ]

which when expanded gives the desired result

Ne

Bi=)_

i=1

L .

WFE;  LFuwFy LFGFs
lng,‘Fl,‘ IIF% I2F2iF3i
3F5iF LFsiFy LWFE

L7/%diag(f,)
L7/ %diag(f,) | ,

[ 1,By, LBy, 3By

13331 12832 11333

L :

[2Byy 1By 13Bys ...

(5.31)

25.32)
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where B;; is the element from the ith row and jth column of the covariance matrix
B.. Therefore, the definition of B, in (5.31) results in a covariance matrix where
each column of the original covariance matrix has been multiplied element-wise by
the localising correlation function centred on the diagonal. Since the maximum of
the correlation function is aligned with the diagonal, the variance of the original
covariance matrix is unaffected. Conversely, the local horizontal length scale (defined

-1/2

as (—c) where c is the curvature of the correlation function evaluated at the origin)

of the localised covariance matrix, L, is reduced according to

L= Ll (5.33)
(L2 + L)'/?

where L. is the length scale for the EOF-based covariance matrix and L. is the length
scale of the localising correlation matrix. Because the EQF-based covariances are
anisotropic, L. and L; depend on the direction in which the curvature is calculated.

The square root of B; can then be used to define the relationship between the

control vector and the increment as before

a, ay
As = B'/? = | diag(f,)LY/? diag(f,)L!/? ...
s=8" [ diag()L? diag(f,) ] ol s

such that B; = B,l/ 2 (B,l/ 2)T. Now the vector of controls, a;, determines the spa-
tially varying amplitude of the ith EOF, f;. Each vector a; has dimension equal to
the horizontal grid and controls the ith EOF. Therefore, the total dimension of the
control vector is equal to the number of EOFs times the dimension of the horizontal
grid. The EOF's, however, do not need to be explicitly localised and then stored,
which would likely be infeasible (for example, in the configuration described in Sec-
tion 3.4, 47520 localised EOFs would need to be stored at full resolution). Instead,
only the non-localised EOFs and the square root of the localising correlation matrix
need to be stored and then applied to the control vector according to (5.34) during

the minimisation to construct the increment.



A modification of this approach that employs an iterative eigendecomposition

algorithm is described in Appendix G.

Localisation of Error Samples with a Discrete set of Masks

Another approach for damping the covariances at large horizontal separation distances
is based on defining a set of discrete localised regions over the globe between which
the covariance should be zero. These regions are separated by transition zones in
which the background error is correlated, to some extent, with the errors in the
neighbouring regions. To impose zero correlation between the regions, the individual
error samples are each multiplied by several two-dimensional over-lapping localisation
masks that correspond to each of the localised regions. The result is that several
localised error samples, each with nonzero values only in a single region and its
neighbouring transition zones, are produced from each original sample. This, in effect,
expands the size of the ensemble and therefore also increases the maximum number
of EOF's that may be calculated from a given set of error samples. Any problems
of negative eigenvalues that may arise when modifying a covariance matrix directly
are also avoided, regardless of the shape of the masks. The localisation masks are
chosen to have limited horizontal extent and such that the original sample variance
is unaffected.

To illustrate, assume a one-dimensional random function of space, g(z), has a
spatial covariance function from which a set of random samples is denoted g;(z),7 =
1,..., Ny. Each sample is individually multiplied by each of the localisation masks
li(z),j = 1,..., N}, to produce N, x N; “localised” samples from the original set of NV

samples. To conserve variance, the variance of the localised function, o;(z)?, given by

Ny N; N

2 1 z)?
e = o L O b@lata) = 77 2N (63

=1 j=1

must equal the original sample variance, o(z)2. Therefore, any set of masks that
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satisfies

Y L) =N (5.36)

—1

for all values of = will not affect the sample variance.

A set of masks, that each vary from a region of constant value to a region of zero
through a transition zone as the square root of position, were applied in an idealised
example. Figure 5.4 shows that the horizontal extent of the localised covariance
function is limited by the extent of the non-zero region of the masks. Also, within

the region of constant mask value the covariance is unchanged.
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Figure 5.4: Example of the effect of localising masks (dash-dotted lines) on estimating
spatial covariances. The localised covariance (dashed) is equal to the original (dotted)
within the region of constant mask value (0.4-0.6) and goes to zero through transition
zone. The true covariance function used to generate the 500 realizations used for the
calculation is also shown (solid). The localised covariance function is clearly more
similar to the truth than the original sample covariance function which has large
spurious values in the tails.
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5.4 Results Using EOFs for Stationary Correla-

tions

A set of numerical experiments was performed with a version of the Canadian 3D-
Var that is still under development. As an initial attempt, EOF's of the stationary
correlation matrix were calculated from the same set of error samples as used for
calculating Bp;. The only difference between the EOF-based covariance matrix and
B, is that the horizontal correlations were not constrained to be homogeneous and
isotropic. The structure functions obtained using the EOFs and Bj; are presented
to evaluate the effect of relaxing the assumption of homogeneous and isotropic back-
ground error correlations and instead localising the horizontal correlations and/or

using correlations that are homogeneous and isotropic only in the null-space of the
EQFs.

5.4.1 Details of Implementation

First, 120 forecast differences from December 1998 and January 1999 were calculated
from the operational global assimilation cycle at the Canadian Meteorological Centre
using the GEM forecast model (Cété et al., 1998). These error samples were horizon-
tally interpolated from the 400 by 200 point grid of the forecast model to a 120 by
60 point Gaussian grid and the sample mean removed for all variables. Then, some

of the same steps used for calculating the covariance matrix Bj; were followed:

e the balanced components of the original error samples were removed to obtain

the unbalanced variables (x’,T",p}); and

e the unbalanced variables were normalised by the three-dimensional sample stan-

dard deviations.

The Euclidean norm was chosen for calculating the EOF's of the correlation matrix

for the unbalanced variables. Some problems with using this norm are discussed
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below. Since the unbalanced variables are assumed to be uncorrelated, the EOF's
could be calculated separately for each variable.

The full set of 119 EOFs were calculated from the normalised ensemble using
singular value decomposition, as described in Appendix F. To examine the effective-
ness of localising these EQFs, a correlation matrix with homogeneous and isotropic
Gaussian correlations was calculated in spectral space at the spectral truncation T31
(about half the resolution of the EOFs). The length scale of these Gaussian corre-
lation functions was set to 2000 km for the streamfunction and unbalanced velocity
potential, 1000 km for the unbalanced temperature and humidity, and 1500 km for
the unbalanced surface pressure. These length scales were chosen to be significantly
larger than those given by Gauthier et al. (1998) for the isotropic correlations of
the same variables. Consequently, the local shape of the correlations should not be
significantly affected.

To evaluate the use of discrete localisation masks, the normalised error samples
were each multiplied by three masks producing a set of 360 localised samples. One
mask each is active over the northern and southern extratropics with constant regions
poleward of 45° latitude. The third mask has a constant region equator-ward of about
15°. The regions in between vary as the square-root of position and act as transition
zones (see Figure 5.4). The effect of these masks is to eliminate covariances between
the extratropics (poleward of 45°) and the tropics (equator-ward of 15°). The first
150 EOF's from these localised error samples were calculated.

5.4.2 The Structure Functions

Several single observation experiments were performed to evaluate the impact on the
structure functions of varying the EOF truncation, applying the localisation meth-
ods, and blending the EOFs with Bp;. The resulting structure functions were also
compared with those obtained using only Bj; with respect to their ability to capture
the effects of baroclinicity and orography.
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Effect of EOF truncation

As expected, truncation of the EOF expansion generally results in structure functions
that are spatially smoother and give less weight to the observation, due to a decrease
in the background error variance. This overall reduction in the background error
variance could be compensated for by scaling the variances. However, truncation also
appears to reduce the variance of the wind field significantly more than the mass field.
This leads to an imbalance between the weight given to wind and height observations,
when compared with the full covariance matrix, that cannot be eliminated by a simple
scaling factor. For this reason most of the results shown below were obtained using
the full set of (N, — 1) EOFs.

The imbalance between the weight given to wind and height observations can be
explained by considering the relationship between the mass and wind increments. In
the extratropics, the analysis increment of streamfunction contributes substantially
to both the wind and the mass fields (through the balance operators). Since the
Euclidean norm was chosen for calculating the EQF's of the correlation matrix for the
unbalanced variables (which includes the streamfunction), they optimally account for
the correlation structure of the errors in streamfunction. Because the balanced mass
field is proportional to the streamfunction ( fi, where f is the Coriolis parameter) the
error correlation of mass in the extratropics is also well represented. The wind field
increment, however, is primarily composed of the spatial derivatives of the stream-
function and thus has relatively larger contributions from the high wave numbers
of streamfunction, as compared with the mass field. The leading EOFs, therefore,
will not optimally capture the correlation structure of the wind field errors. As a
consequence, when the EOF expansion is truncated (N. < (N, — 1)) the resulting
error variance for the wind field is underestimated relative to that for the balanced
mass field and simple scaling of the streamfunction eigenvalues can not correct this
problem.

The signal captured by a truncated set of EOFs depends on the norm used for
their calculation. Because the EOFs could be calculated separately for each variable
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type (due to the use of balance operators for the between-variable relationships) it was
originally thought that the Euclidean norm would be sufficient. However, consider the
the energy norm, which treats each variable in terms of the common unit of energy.
Using this norm, the inner product of the terms involving the three-dimensional

streamfunction field is given by

(s(¥), (%)) = /s { Rp—?(p.)i + /0 " [vw-vw Ve Vo + %Tf] dp} s,

(5.37)

where T, and p, are a constant reference temperature and pressure, respectively; ¢,
and R are the specific heat at constant pressure and gas constant of dry air, re-
spectively; and S is the horizontal domain. The variables x,, T,, and (p,), are the
balanced components derived from % using the balance operators from Section 5.2.4.
If this inner product was used to define the norm for calculating the EOFs, then
the EOF's would optimally capture this weighted sum of the rotational and balanced
divergent wind components and the balanced temperature and surface pressure error
correlations. By placing more weight on the higher wave numbers of ¢ (through the
terms involving Vi), use of the energy norm would likely correct, to some extent,
the underestimation of the background error variance for wind that occurs when the
Euclidean norm for only streamfunction is used. However, since the spectrum for
streamfunction (and therefore also balanced mass) is more red than the wind spec-
trum, any truncation of the EOF expansion would likely still decrease the background
error variance for wind more than for balanced mass. Also, note that the energy norm
involves the integral over pressure. Therefore, the samples are weighted according to

the mass contained between adjacent vertical levels.

Impact of applying localisation

Structure functions were obtained after applying each of the methods described in
Section 5.3.2 for localising the horizontal covariances. Figure 5.5 shows the structure

function of geopotential height of the 850 hPa pressure level resulting from a height
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Figure 5.5: Horizontal structure function of geopotential height at 850 hPa resulting
from a height observations at the same level and located at 45°N, 60°W. This figure
shows the result of using the background error covariance matrix Bj;, based on ho-
mogeneous and isotropic correlations. Plotted results in this and subsequent figures

were normalised to give a maximum value of one with the contour interval equal to
0.1.

observation at the same level in the northern extratropics using By;. In Figure 5.6,
results are shown using the original EOFs and the EOFs after localising with the
large scale Gaussian correlation matrix. The results from the original EOFs show
significant height increments over the entire globe, especially over the southern oceauns.
The localised EQF's effectively damp these horizontal covariances while preserving the
structure in the vicinity of the observation.

Similarly, Figure 5.7 shows the effect of using a set of discrete localisation masks
applied directly to the error samples. The masks effectively dampen the analysis
increment in the tropics and the southern hemisphere, which was the goal of choosing
masks located over the tropical and extratropical regions. As already stated, the
maximum number of EOFs are tripled by using three localisation masks. Due to

the overlapping transition zones (as shown in Figure 5.4), the resulting covariance
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Figure 5.6: Same as Figure 5.5, but using EOF-based background error covariance
matrices. Top: covariance matrix obtained using full set of EOF's for the correlation
matrix. Bottom: same as top panel, but with Gaussian localisation masks.
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matrix still possesses off-diagonal blocks that link neighbouring masked regions. As
a consequence, the EOFs themselves are not partitioned according to the localised
regions, but generally still span the entire globe. Consequently, the number of EOF's
required to explain a given percentage of the total variance will be approximately
three times greater than for the EOF's of the unmasked error samples. This explains
why 150 EOF's from the masked error samples still give broader horizontal covariance

structure within the northern extratropics than 60 EOF's from the unmasked samples.

Effect of blending EOFs with By;

Figure 5.8 shows the effect of blending the EOFs with the projection of By; in the
orthogonal subspace, as described in Section 5.3.1. A zonal-vertical cross-section is
shown for the structure function of geopotential height resulting from a geopotential
height observation at 500 hPa. The vertical coordinate is roughly logarithmic in
pressure (actually logarithmic in the eta value that defines the vertical levels of the
analysis grid). The structure function obtained using only Bj; exhibits a perfectly
isotropic shape in the horizontal, as expected, whereas the EOF-based covariance
matrix produces a significantly anisotropic shape. Blending of these two covariance
matrices produces a structure function that appears to be slightly less noisy than

using the EQFs alone while still retaining some of the anisotropy from the EOF's.

Baroclinic effects

Figure 5.9 shows the zonal-vertical cross-section of the structure functions for wind
resulting from a wind observation at 850 hPa. The observation is located off the east
coast of Canada in a region of frequent baroclinic activity. The structure function ob-
tained using Bj; again has a horizontally isotropic shape, whereas the result obtained
using the EOF-based covariance function has a significantly tilted shape. A similar
tilted shape is shown in Figure 5.10 for the structure function of geopotential height
resulting from a height observation at 850 hPa. When using the EOF's, the structure
functions, especially for wind, extend much higher into the atmosphere. These results
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Figure 5.7: Horizontal structure functions of geopotential height at 500 hPa for a
height observations at the same pressure level and located at 50°N, 60°W. Top: result
using 60 EOFs for the auto-correlation matrix. Bottom: result using 150 EOFs
after applying three discrete localisation masks to the error samples (localising the
extratropics from the tropics).
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Figure 5.8: West to east vertical cross-section of the structure function of geopoten-
tial height corresponding to a height observation at the 500 hPa and located at 50°N,
60°W. The cross-sections span 40° longitude. Left: background error covariance ma-
trix based on homogeneous and isotropic correlations. Centre: EOF-based covariance
matrix. Right: Covariance matrix resulting from blending EOFs with homogeneous
and isotropic correlations.

are consistent with those obtained using four-dimensional assimilation systems and
predicted from the theory of baroclinically unstable modes discussed earlier.

The consequence of such tilted structure functions is that observations at a single
level will result in analysis increments that will either enhance, attenuate, or simply
shift the phase of the unstable component in the background state. On the contrary,
with isotropic increments the changes to the background state due to single level
observations would not project well onto the unstable modes and therefore would not

be as effective in producing appropriate corrections in baroclinically active situations.

Orographic effects

Figure 5.11 shows the effects of orography on the structure function of wind and
geopotential height fields near the surface resulting from a zonal wind observation
at 500 hPa over the Rockies. Use of the conventional covariance matrix results in

a horizontal structure with symmetric positive and negative maxima in geopotential
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Figure 5.9: Zonal-vertical cross-sections of the zonal wind for a wind observations at
850 hPa near the east coast of Canada (50°N, 60°W). (a) Result using By;, (b) result
using EOF-based covariance matrix showing anisotropic effect of baroclinic forcing.
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Figure 5.10: Same as Figure 5.9, except showing the structure function of geopotential
height corresponding to a height observation.
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Figure 5.11: Structure function of the 850 hPa wind and geopotential height (con-
tours) fields resulting from a zonal wind observation at 500 hPa over the Rockies
(125° W 55° N). (a) Result using Bg;, (b) result using EOF-based covariance matrix
showing the effect of orography.

height and streamfunction increments to the south and north of the wind observation,
respectively. The use of the EQF-based covariance matrix leads to a similar result,
however, it appears that a ridge of high pressure aligned with the mountain range is
superimposed on the positive and negative geopotential height maxima. This is con-
sistent with the winter results of Ringler and Cook (1999) discussed earlier. Because
of this ridge, the wind field increment along the same latitude as the observation
has a northward component on the windward slope and a southward component on
the leeward slope. The results in Figure 5.11b also show apparently spurious wind
increments away from the observation (especially to the north and west), whereas by
assuming homogeneous and isotropic correlations the pattern in Figure 5.11a dimin-

ishes in a predictable manner away from the observation.
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5.5 Discussion and Conclusions

5.5.1 Limitations

The use of EOF's to modify the representation of the background error covariance
matrix presented in the previous section suffers from some limitations.

The most obvious limitation is the source of forecast error information used to
estimate the EOFs. The size of the ensemble may be too small to accurately esti-
mate the correlation functions, especially for wind, or the NMC method may not be
capable of providing accurate information on the nonhomogeneous and anisotropic
correlations. Specifically, the temporal mismatch of assuming 48 h minus 24 h fore-
cast differences are representative of the errors in the 6 h forecasts may limit the
use of the correlation information. An alternative approach, recently implemented at
ECMWF (M. Fisher, ECMWF, 1999, personal communication), may provide more
appropriate information on the correlations. This approach uses an ensemble of as-
similation cycles that each use independently perturbed values for the observations
and uncertain model parameters, similar to the EnKF. The conventional stationary
background error covariance matrix is used to perform the analysis step for each en-
semble member. The new background error statistics are then estimated from the
spread in the 6 h forecasts over a period of several weeks.

The method of localising with a large scale correlation function also suffers from
some limitations. Since Gaussian correlations were used to damp the correlations at
large separation distances, the correlations will not be forced completely to zero. It
may be possible to use a more effective damping correlation function, such as those
used by Gaspari and Cohn (1999). Also, because this localisation method does not
produce an orthogonal set of basis functions, the blending approach can not easily
be applied. Using the alternative approach of Zupanski (1999), but with a positive-
definite localisation function as described in Appendix G, would allow an orthogonal
basis to be calculated. Then, by blending the truncated EOF expansion with the

covariance matrix By;, it would be possible, for example, to rely more on the isotropic
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and homogeneous correlations for the small scales, while using the EOFs primarily
to represent the large-scale correlation structure. This may improve the covariance

matrix, especially with respect to the wind structure functions.

5.5.2 EOFs in the Ensemble KF and Integration with 4D-Var

An alternative to assuming completely stationary background error statistics is to
incorporate the 3D-Var algorithm within an EnKF scheme. The EnKF, introduced by
Evensen (1994), produces information on forecast error using a Monte Carlo approach.
The algorithm is based on running an ensemble of assimilation cycles in parallel, each
using observations that have been independently and randomly perturbed from their
observed values (Burgers et al., 1998). These perturbations are generated such that
they are consistent with the observation error statistics. Other uncertain parameters
within the model can be perturbed according to their associated uncertainties. It is
also possible to include the effect of model error, however, this requires an estimate
of the model error statistics. Mitchell and Houtekamer (1999) describe an adaptive
approach for incorporating model error in an EnKF. The background error covariance
matrix is then estimated at each analysis time from the spread in the ensemble of
short-term forecasts. The same covariance matrix is used to perform the assimilation
for each ensemble member. This results in non-stationary background error statistics
that depend on the recent history of the flow field. A limitation of this approach,
and the reason it has not yet been implemented operationally, is the computational
cost of running enough parallel assimilation cycles to sufficiently span the background
error space. The minimum number of ensemble members required for a realistic NWP
system has yet to be determined.

The advantage of using the 3D-Var and an EOQF-based covariance matrix within
the EnKF is that the methods for horizontal localisation and blending with a full-rank
covariance matrix presented earlier could also be used, if necessary. The blending
could be performed with a slowly evolving, yet full-rank covariance matrix, By;.

Instead of using the NMC method, this covariance matrix could be estimated from,
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say. the spread of all the 6 h forecasts over the previous two weeks. The blended
covariance matrix would be flow-dependent, nonhomogeneous, and anisotropic in the
subspace spanned by the ensemble members and slowly evolving, homogeneous, and
isotropic in the orthogonal subspace.

The standard implementation of 4D-Var relies on the error covariance matrix
associated with the background state at the beginning of the assimilation window.
Because of the relatively short assimilation window typically used for 4D-Var, the
structure functions at the end of the window can be significantly influenced by the
covariance matrix used at the beginning of the window. However, the flow-dependent
covariance matrix of the errors in the background state can not be easily calculated
explicitly as part of the 4D-Var algorithm. Fisher (1998) found that use of a sim-
plified KF to provide a low-dimensional, flow-dependent estimate for the background
error statistics within a 4D-Var system provided a small, yet statistically significant
improvement to the subsequent forecasts over using the conventional stationary co-
variance matrix. In a similar fashion, the EOF-based covariance matrix calculated as
part of an EnKF system could be used to provide flow-dependent error statistics for
the initial conditions in a 4D-Var system. If the EnKF is used primarily for this pur-
pose, it may be sufficient to implement the forecast model and analysis at a degraded
horizontal resolution for the ensemble members to increase efficiency. Therefore, the
approaches presented in this chapter for using EOFs to model nonhomogeneous and
anisotropic background covariances could be used to improve the background error

statistics used in a 4D-Var system.



Chapter 6

A Sub-Optimal Assimilation

Scheme for Nonlinear Models

6.1 Introduction

Variational approaches to data assimilation rely on the adjoint of the linearised for-
ward model for calculating the gradient of the cost function, J, with respect to the
controls. This allows J to be efficiently minimised using a standard optimisation al-
gorithm. The full adjoint model is the transpose of the tangent linear model (TLM)
of the nonlinear model equations (see Appendix B). Typically, the required deriva-
tives are derived analytically from the discrete form of the model equations. For
sequential assimilation systems, such as 3D-Var described in the previous chapter,
the relationship between the controls and the model counterpart to the observations
may be quite simple. For an interior pressure observation, for example, this may in-
clude only a spatial interpolation operator and possibly integration of the hydrostatic
operator to transform the temperature and surface pressure included in the control
vector into pressure. For such systems, formulation of the adjoint model is relatively
straight forward. In four-dimensional assimilation schemes, however, formulation of

the adjoint model for large nonlinear time-dependent models is time consuming and

153
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subject to errors ( Thacker, 1992). This is due to the large number of state vari-
ables and corresponding nonlinear equations. Iterative solvers employed as part of
the temporal model integration can cause particular difficulties since the values of the
variables at each iteration need to be stored to calculate the adjoint. Also, without
careful consideration, the linearisation of highly nonlinear processes, such as cloud and
precipitation parameterisations in atmospheric models, can cause unrealistic results
(Janiskova et al., 1999). As numerical models become more complex these sources of
difficulty will become increasingly important.

The quadratically nonlinear terms that dominate the equations of motion (ne-
glecting the often highly nonlinear parameterisation schemes) have to be linearised
with respect to each of the variables and therefore produce twice the number of terms
in the TLM and adjoint model. Consequently, the linearised models can be about
twice as computationally expensive to run as the nonlinear version. For large models
the expense of evaluating the cost function gradient may limit the period over which
data can be assimilated or reduce the number of allowable iterations used to reach the
cost function minimum. Also, especially with models used in research applications,
the numerical schemes or parameterisations may be subject to frequent modifica-
tions. Such changes would require corresponding, and often non-trivial, changes to
the adjoint code.

To avoid the effort required in formulating the adjoint model, some effort has
gone into developing automatic adjoint generators (e.g. Giering and Keminski, 1996).
These are essentially symbolic program manipulators. They accept the original ocean
model coded in a programming language (such as Fortran) and process it to produce
the code of the corresponding adjoint model. However, they have not been widely
used and their success still largely depends on how the original numerical model is
coded.

For the above reasons, a method for obtaining a sub-optimal adjoint model which
is efficient to run and avoids the manual process of deriving the full adjoint model

code would be desirable. The approximate adjoint model would be useful in other
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applications where adjoint models are used, such as model tuning, sensitivity analysis,
and determination of singular vectors (see e.g. Moore and Farrell, 1993; Buizza et al.,
1993; Errico and Vukicevic, 1992). The goal of this chapter is to develop and apply
an approach for quickly obtaining a sub-optimal adjoint-based assimilation scheme.
The adjoint model is calculated within a reduced dimension subspace spanned by a
truncated set of empirical orthogonal functions (EOFs). The next section gives an
overview of existing studies related to reduced dimension models and sub-optimal as-
similation schemes. In Section 6.3 the proposed scheme for obtaining an approximate
adjoint model is presented. The results from an identical twin experiment are pre-
sented in Section 6.4 to demonstrate the application and effectiveness of the method.
The final section concludes with a discussion of some of the limitations and possible

extensions to the method.

6.2 Sub-Optimal Assimilation Schemes

With the incremental approach to variational data assimilation, introduced in the
previous chapter, a simpler numerical model is used for calculating the correction to
a nonlinear model solution that is obtained from an a priori estimate of the controls
(Courtier et al., 1994). Typically this involves using a linearised version of the original
numerical model at a degraded resolution and possibly with simplified parameterisa-
tions. The result is an increase in computational efficiency and a decrease in the effort
required to formulate the adjoint model. The increment to the controls is obtained
by using the linear model to project the correction into observation space during
minimisation of the cost function, but the initial model-data misfits are calculated
with respect to the nonlinear model solution. This inner loop may be followed by an
iteration of the outer loop in which the increment is used to calculate an updated
nonlinear model solution. The process is repeated, usually with several iterations of

the outer loop, until convergence. For example, Thompson et al. (1998) used a linear
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tidal model to estimate the open boundary conditions for a more sophisticated non-
linear model for the Gulf of St. Lawrence. The results were significantly improved
over those obtained using the linear model alone, but the effort and expense of using
the adjoint model of the nonlinear model was avoided. Many sub-optimal assimi-
lation schemes follow this basic approach of using a simpler model for estimating a
correction to a nonlinear model solution.

Statistical approaches have also been applied for obtaining simplified dynamical
models, often for climate prediction applications. Selten (1997) used a statistical
approach in experiments with a barotropic atmospheric model. Using output from
long model runs, he determined the optimal coefficients for the linear and quadratic
terms of a low-dimensional statistical model. The model variables were the ampli-
tudes of a truncated set of EOFs. Alternatively, DaCosta and Vautard (1997) used
an approach based on estimating the mean of the individual terms in the potential
vorticity equation using a low-dimensional representation of the state vector. The
state vector was based on a truncated set of principal components calculated from a
large data set of meteorological analyses. To estimate the dependence of each vor-
ticity tendency term on the low-dimensional state, the meteorological analyses were
binned according to discrete regions in the low-dimensional state space and the aver-
age of each term in the potential vorticity equation calculated for each region. The
model was then integrated using the average of the tendency terms corresponding
to the binned low-dimensional states close to the present model state. Unlike other
statistical approaches this approach can capture the basic dynamics of a system that
may alternate between multiple quasi-stationary flow regimes.

Assimilating data into large, nonlinear models with the standard Kalman filter is
often computationally infeasible. Therefore several studies have focused on develop-
ing approximate methods. Fisher (1998), Fukumori and Malanotte-Rizzolli (1995),
Cane et al. (1996), Dowd and Thompson (1997), and Verron et al. (1999) each at-
tempted to make the Kalman filter feasible by reducing the dimension of the state
vector. They did so by choosing a reduced dimension subspace in which to represent



the state vector. The forecast error statistics are propagated only within this sub-
space. The ensemble Kalman filter described in the previous chapter uses a Monte
Carlo approach to maintain a low-dimensional representation of the error statistics.
However, nonlinearities in the model equations still pose difficulties for some of the
assimilation schemes based on a reduced dimension Kalman filter.

In a study of the large scale Pacific ocean circulation, Stammer and Wunsch (1996)
used a set of localised and geostrophically balanced vortices as the basis functions for a
reduced dimension model. The linear dynamics of perturbations from the mean state
in this reduced dimension subspace was determined using “model Green’s functions”.
These are calculated from short model runs using initial conditions that are perturbed
according to each of the basis functions that defines the subspace. The linear model
is used in assimilation experiments with both model-simulated and real data.

A common theme of many of the sub-optimal assimilation schemes mentioned
above is the use of a reduced dimension subspace for representing the state vector.
Some of the approaches simply use a degraded spatial resolution for the state vector.
A frequent choice is EOFs which are an optimal representation in that they capture
the maximum variance of a multivariate time series (usually long model runs or
data sets are used), according to some prescribed norm. Typically the subspace
spanned by the EOFs is considered fixed in time. The singular vectors used to
formulate a simplified Kalman filter (KF) by Fisher (1998) are similar to EOFs,
but they are evolved through time according to the model dynamics and optimally
capture the variance of the state at some future time. This appears to be a good
choice for the KF algorithm since after each analysis the reduced subspace can be
chosen to optimally resolve the forecast error covariance matrix at the time of the
subsequent analysis or beyond. This approach is, however, computationally expensive
and actually requires the TLM and adjoint of the forecast model to calculate the
singular vectors. For a linear KF application, Dowd and Thompson (1997) used
normal modes of the dynamical model. These have the advantage that their temporal

evolution is completely decoupled from each other. Consequently, a model based on a
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truncated set of normal modes perfectly models the evolution of the retained modes.

In the context of data assimilation, controllability and observability are important
criteria in the selection of a reduced dimension bases. Dowd and Thompson (1997)
used these criteria when selecting normal modes for a simplified KF. If a basis vector
is not controllable, the controls are unable to change the component of the state vector
that projects onto this basis vector. When no observations provide information on the
component of the state vector projected onto a given basis vector, then that vector is
said to be unobservable. Basis vectors that are either uncontrollable or unobservable
do not play a role when assimilating data and therefore can be safely neglected.

In this chapter, a method is presented for quickly obtaining an approximate adjoint
model. The adjoint model is projected into a reduced dimension subspace. The
best choice of subspace for an assimilation scheme based on an adjoint model is not
obvious because the observations and controls may be arbitrarily spread throughout
the assimilation period and the application may be for hindcasting or forecasting.
In this chapter a truncated set of EOFs are used to span the reduced dimension
subspace. The method treats the ocean model as a “black box”, similar to the
approach of Stammer and Wunsch (1996). The result is a sub-optimal assimilation

scheme obtained using only output from the nonlinear ocean model.

6.3 Approximate Adjoint Model

In this chapter, a method is presented for quickly obtaining an approximate adjoint
model. It is closely related to the approach used by Stammer and Wunsch (1996).

The method treats the ocean model (repeated here from Appendix B for convenience),
sp = D(sp-1) + Gf,, (6.1)

as a “black box”. The state vector s has dimension N, and D() represents the discrete
time-stepping form of the nonlinear model dynamics. The vector f represents any
external forcing and G transforms the forcing into their effect on the state vector.

The method presented below avoids the need to analytically derive all of the N?
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partial derivatives of the model equations required for the TLM and adjoint models
at each time-step. Therefore, it is a relatively easy task to establish a system for

assimilating data using a new model and also to accommodate changes in the model.

6.3.1 Numerical Linearisation of the Ocean Model

As an alternative to calculating the linearised model coefficients by analytically de-
riving all of the partial derivatives of the model equations, they can be approximated
by the finite difference form

dDj(s) _ Dj(s + A') — Dj(s)
6s; = A '

(6.2)

This is the partial derivative of the jth model equation with respect to the ith state
variable, evaluated at the state s. The N,-dimensional vector A' has the ith element
equal to the small perturbation A and the remaining elements set to zero. To evaluate
(6.2), the ocean model (6.1) is simply initialised with the state s and integrated
for one time-step with the forcing set to zero. The resulting state vector, D(s), is
stored. Next, the model is initialised with the perturbed state (s + A;) and the same
procedure performed with the result being D(s + A;). The jth component of the
partial derivative with respect to s; is calculated by taking the difference between the
jth element of these vectors and dividing by the magnitude of the perturbation, A.
This basic approach allows the model to be linearised in a way that is independent
of the specific model, D(). However, for a nonlinear model these derivatives are
functions of the model state and therefore, strictly speaking, must be recalculated at
each time-step. Since it requires O(XV,) time-steps of model integration to evaluate the
linearised model coefficients at a single time-step, this approach is infeasible unless
the following two approximations can be made while still retaining enough useful
information on the gradient of J. Firstly, the frequency of recalculating the coefficients
must somehow be decreased. Secondly, the dimension of the adjoint model must be
decreased to reduce the number of required partial derivatives. The method can be

made feasible if the number of time-steps between recalculating the coefficients is of
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the same order as the reduced dimension of the adjoint model.

For a nonlinear atmospheric model, Errico and Vukicevic (1992) showed that it
was sufficient in a particular case to update the TLM coefficients every 3 hours.
For the case of an ocean model, the rate of change of the coefficients has not yet
been determined. Consequently, tests were employed as part of the identical twin
experiments to determine an appropriate update frequency. The frequency depends
on the rate of change of the model state and also the relative importance of the
nonlinear terms in the model. It is expected that due to the slower evolution of the
ocean as compared to the atmosphere, the coefficients will possibly only need to be

recalculated every few days.

6.3.2 Reduced Dimension Subspace

Realistic ocean models can often have state vectors with dimension, N,, that is O(10°)
or greater. However, due to constraining dynamical relationships (such as geostrophy)
and the limited variation in the external forcing, the output from such models does
not realise all of the possible degrees of freedom. Therefore, it should be possible to
significantly reduce the model dimension when formulating the adjoint model while
preserving most of the dynamical information.

A truncated set of EOF's are used to define the subspace. These modes are con-
venient since they are easy to calculate from a long run of the numerical model, and
their orthogonality simplifies the formulation of the adjoint model. The modes span
the subspace that optimally accounts for the variance in the state vector. They may
not, however, be the best choice for optimally resolving the relationship between the
controls and the observations. The dimension of the subspace is denoted as N,. The
basis vectors are the columns of E,. The basis vectors of the remaining (N, — N.)-
dimensional subspace, which is neglected, is denoted by the matrix E,. The parameter
N, is chosen so that the subspace E; contains most of the information on both the
mean and time varying components of the model state vector.

To generate the EOF's, the model is integrated using the best available set of a
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priori estimates for the controls. After the model state reaches a statistical steady
state, if one exists, output from a long model run is used to calculate the EOFs. The
N, x N, matrix, C, which is similar to the covariance matrix, except that the mean

has not been removed from the samples, is calculated as
C=N (s,, sg) N. (6.3)

The overbar denotes an average over time. The matrix C contains all of the contem-
poraneous sample covariances of the model state with itself plus a contribution from
the mean. The diagonal scaling matrix, N, normalises each type of variable (e.g.
velocity, pressure, and density) by the square root of its spatially averaged variance.
As in the previous chapter this norm is chosen mostly out of convenience. A more
appropriate norm may be total energy. In the case here, the basis vectors are used
to represent the full model state. However, if the subspace is used to represent a cor-
rection with respect to a background state, as in the incremental approach described
previously, it may be more appropriate to first multiply the samples by an estimate
of the standard deviation of the background error divided by the sample standard
deviation. This would give improved representation of the correction in areas with
high background error where these corrections should be relatively large.

The eigenvectors of this matrix are the multi-variate EOFs which are patterns in
all of the state variables that have temporally uncorrelated amplitudes. The mean
state, because it is uncorrelated with the time varying patterns, is mostly isolated
in one mode. This may not be an optimal representation if the state vector tends
to alternate between multiple quasi-stationary states. The corresponding eigenvalues
are the mean squared amplitude of each mode. The modes are partitioned so that E;
contains the first N, leading eigenvectors. The projection of the state vector onto the
subspaces E; and E; are proportional to the principal components and are denoted

a}, and a?, respectively. These are related to the original state vector by

sn = N7! (E,a}, + E;a},). (6.4)



6.3.3 Reduced Dimension Adjoint Model

To formulate the reduced dimension adjoint model, the subspace E; is simply ne-
glected. The assumption is made that if enough EOFs can be retained, the effect
on the evolution of the retained modes from the remaining subspace is negligible.

Therefore, the approximate substitution
s, = N"'E,a}, (6.3)

is made into the nonlinear model equation (6.1). The following equation results after

pre-multiplying by ETN to project each term into the reduced dimension subspace:
al, = EIND (N"'E,al,) + ETNGT,. (6.6)

The corresponding adjoint model is then obtained in the normal way (see Appendix

B) treating a}, as the model state

oD aJ
AL = —NE A}y, - dal’

da},
The reduced dimension adjoint model is used to obtain an estimate of the gradient

(6.7)

of J with respect to a}. This can be related to the gradient with respect to the full
state, S, using the chain rule

9]  dal aJ aJ
35, = Os, 9al = Eigal- (6.8)

Any additional relationships between the controls and s,, are then used to obtain the

gradient with respect to the controls (in the experiments described below, only the
initial state, sg, is used as the controls). This gradient information is used together
with the nonlinear model to iteratively minimise the cost function.

The coefficient matrix in this modified adjoint model is now only N, x V.. This
matrix is the transpose of the TLM for the forward model projected onto the EOF
subspace, E;. Therefore, (6.7) propagates information on the gradient of J with
respect to the state vector projected onto the subspace E,, only. Consequently, the

value —A} is the gradient of J with respect to the initial state projected onto E;.
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The reduced dimension adjoint model coefficients can be evaluated numerically
in a2 manner analogous to that described above for the full adjoint model. This is
similar to the method used by Stammer and Wunsch (1996). The elements of the

first matrix in the product in (6.7) are approximated by

[av(s)] _Dj(s + N'E,AY) - Dy(s)

Bal A (6.9)

The vector A’ is now a perturbation with the ith element equal to A and the re-
maining N, — 1 elements zero. Again, to evaluate this expression requires only the
results of one-step model integrations with the forcing set to zero. All the required
coefficients for the reduced dimension adjoint model can be calculated from (N, + 1)
one step model integrations. Then the resulting N, x N, matrix is post-multiplied by
NE, to obtain the N, x N, reduced dimension adjoint model coefficients.

A result of the above formulation is an adjoint model with no interaction between
the retained subspace, E,, and the neglected subspace, E;. However, unlike the case
for a linear model (see e.g. Dowd and Thompson, 1997), it is impossible to choose
a subspace for a nonlinear model that is dynamically uncoupled from the remaining
state space. This can be illustrated by considering the full adjoint model after the
bases are rotated to be aligned with the full set of EOFs using the transformation
A = NE;A! + NE;A2. The full adjoint model is

AL | | EIN'D'NE, E[N"'D'NE, | [ Ak, dJ/dal,
AZ EIN-'DTNE, EIN"'DINE, | | A2,, dJ/da2
where DT = 9D/3Js is evaluated at s,. In general, no bases [Ey E;] can make the

upper-right block of this coefficient matrix zero for all times. Therefore, the backwards

] . (6.10)

evolution of the reduced dimension adjoint vector A}, in E,, depends on the adjoint
vector A%, in E,. Consequently, errors in the approximate adjoint model, which
simply neglects this dependence, may accumulate over a long assimilation period.
These errors result from the failure to account for the effect of adjusting the state in E;
on the state in E, at later time-steps and the subsequent effect of this on J. However,

by choosing E; to span the subspace with highest variance, E, contains little energy.
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Therefore, it is assumed that little energy will also be transferred from E; to E; as
a result of adjustments in E; during the minimisation of J. This is a fundamental

assumption of the approach that will be further explored in the discussion.

6.4 Identical Twin Experiment

An identical twin experiment was performed using an idealised ocean model to demon-
strate the method described above. This type of experiment is a simulation of a
real data assimilation exercise. The values of the controls are specified and pseudo-
observations are derived from the solution of the model. This set of controls and
the associated model solution represent the “true” ocean. Then, an independent set
of controls is taken as the initial estimate. The assimilation scheme is applied in
an attempt to recover the true controls using only a limited set of observations of
the “true” ocean. The degree to which these controls are recovered provides a mea-
sure of the information content of the observations used and the effectiveness of the

assimilation method.

6.4.1 Description of the Experiment

The model used for the identical twin experiment is an idealised version of the CAN-
DIE model (Sheng et al., 1998). This is a nonlinear primitive equation model with
a rigid lid. The domain of the model is a 1600 km by 1600 km box with a flat bot-
tom and vertical walls. The resolution in the horizontal is 40 km. The model has
four levels in the vertical. The total dimension of the state vector, including hori-
zontal velocity, density, and surface pressure, is 5360. Since the model is hydrostatic
and incompressible, the remaining variables of vertical velocity and pressure below
the surface are diagnosed from the state vector. Because the domain is an enclosed
box, no open boundary conditions need to be specified. Wind forcing is steady and
mimics the average wind stress pattern over the North Atlantic. Not surprisingly,

the resulting mean circulation pattern consists of two large gyres concentrated at the
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Figure 6.1: Mean surface velocity and pressure fields from 1000 day integration of
the model used in the identical twin experiment. The four dots represent locations
where velocity, density, and pressure profiles are observed. The two crosses represent
locations where surface pressure is observed. The domain is 1600 km by 1600 km
with a horizontal resolution of 40 km and 4 levels in the vertical.

western boundary with a strong jet separating them (Figure 6.1). Because of weak
initial stratification and the lack of surface buoyancy fluxes, the resulting circulation
pattern is strongly barotropic. The model supports instabilities in the jet and the
generation of eddies. Because of the steady forcing, all of the variability in the model
state after spin-up results from these internal sources.

The experiment itself consists of three phases as shown in Figure 6.2. The first
is the spin-up phase where the model is integrated from a state of rest for 1000 days
to allow the statistics of the model state to stabilise. The second phase is the next
1000 days of model integration where the output of the model is used to generate the
EQFs. Also, the mean model state is calculated from this 1000 day period (shown
in Figure 6.1) and is referred to as the ocean climate. The third phase consists
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EOFs Assimilation
Climatology (days 2010-2026)

| | u
0 1000 2000 days

Spin-up

Figure 6.2: Schematic diagram showing the three phases of the assimilation experi-
ment: the spin-up phase, the period from which the EOFs and the model climatology

are calculated, and the assimilation period from which the pseudo-observations are
taken.

of days 2010 to 2026 of the model integration which are taken as the assimilation
period. The pseudo-observations are derived from the model state during this period.
The initial conditions (model state on day 2010) projected on the reduced dimension
subspace are the controls. The initial estimate for these controls are taken as the
model climatology projected on the subspace. A background term is also included
in the cost function with a low weighting factor that penalises departures from the
model climatology. This term improves the conditioning of the problem. The close
temporal proximity between the assimilation period and the period used to estimate
the EOFs helps ensure that the retained EOFs will effectively span the true model
state within the assimilation period.

The pseudo-observations were chosen to mimic realistic oceanic data. At four lo-
cations (solid circles in Figure 6.1) near the western boundary the horizontal velocity,

density, and pressure were observed at all depths once per day. These are meant to
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mimic a fixed observing array near the coast. Surface pressure was observed daily
at two locations (crosses in Figure 6.1) on the western boundary to mimic a pair
of coastal sea level gauges. Finally, a single snapshot of surface pressure over the
entire domain in the middle of the assimilation period (day 2018) was also observed
to mimic data supplied by satellite altimetry. The observation errors were assumed
to be uncorrelated and have variance approximately related to the total variance for
each variable type in the long model run (days 1000 to 2000).

The EOFs were generated following the method described in section 6.3.2 from
1000 days of model output sampled twice daily. The resulting modes with large
eigenvalues are coherent patterns of gyres and currents. The modes also satisfy the
model’s boundary conditions. The pressure, density, and velocity fields appear to
be balanced, in that flows within each mode are nearly geostrophic. The first EOF
is shown in the top panel of Figure 6.3. From the pattern of this mode and the
evolution of its corresponding amplitude (principal component) during the 1000 day
period (also shown in Figure 6.3) this mode is clearly an approximation to the mean
ocean state. The subsequent modes in order of decreasing eigenvalues correspond to
large scale variations in the circulation patterns (Figures 6.3 and 6.4). The modes
with lower variance show progressively smaller scale patterns of variation (Figure 6.5).

Modes 2 and 3 appear to be associated with regular periodic fluctuations in the
location of the jet. Figure 6.6 shows the power spectra for the amplitudes of these
modes. The coherence and phase spectra are also shown. The two time series are
highly coherent at the frequency where almost all of the energy is concentrated,
around 0.01 cycles/day. At this frequency the amplitude of mode 3 leads mode 2
by 90°, which is about 25 days. Therefore, the amplitudes of these modes are in
quadrature and correspond with the downstream propagation of a large meander in
the jet with a period of about 100 days. Mode 4 is concentrated where the western
boundary currents separate from the coast. This mode appears to be associated with
meridional fluctuations in the location of this separation.

The first 200 EQF's were sufficient to account for over 99% of the variance of the
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Figure 6.3: Plots show the surface velocity and pressure fields of the first two EOFs.
calculated is also shown.
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Figure 6.4: Same as Figure 6.3, but for modes 3 and 4.
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Figure 6.5: Same as Figure 6.3, but for modes 10 and 20.
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Figure 6.6: Upper plots show the power spectra for the amplitudes of the second and
third EOFs. Both spectra have a peak at about 0.01 cycles/day. At this frequency,
the coherence (bottom left panel) is 0.97 and the phase (bottom right panel) is —90°.
Therefore, the amplitudes are in quadrature with mode 3 leading mode 2. This
corresponds to a periodic downstream propagation of the dominant meander in the
jet with a period of about 100 days.



mode] state during the 1000 day period from which they were calculated. Since the
initial amplitudes of the EOF's are taken as the controls, the issue of controllability
does not need to be considered. Due to the weak baroclinic forcing in the model,
the modes are mostly barotropic. Therefore, all of the modes will also be observed
since the observations include a complete snapshot of the surface pressure. These
200 modes were used as the basis for the reduced dimension adjoint model in the
assimilation.

A series of trials showed that the adjoint model coefficients could be evaluated ev-
ery four days (equal to 400 time-steps) without a significant loss of accuracy. There-
fore, the reduced dimension adjoint model (6.7) was calculated using 200 EQOF's with
the coefficients evaluated every four days. Consequently, it is computationally less
expensive to calculate the coefficients of the reduced dimension adjoint model than

to simply integrate the nonlinear ocean model over the assimilation period.

6.4.2 Results

Using the reduced dimension adjoint model and starting with the model climatology
as the first guess for the initial conditions, the cost function was minimised. The quasi-
Newton minimisation algorithm known as BFGS was used to minimise J by adjusting
the initial conditions. The value of J along with its components corresponding to each
type of observation are shown in Figure 6.7 as a function of iteration number. The
value of J corresponding to the first guess of the initial conditions was reduced by
85% by assimilating the limited set of observations.

The left three panels in Figure 6.8 show the surface velocity and pressure fields
of the “true” ocean during the assimilation period. The right three panels show
the corresponding fields that resulted after the initial conditions were found that
minimised J. The overall pattern in the fields are in good agreement. Figure 6.9
shows the result of subtracting the fields at the end of the assimilation period from
the initial fields for both the “true” ocean and the assimilation results. The good

agreement between these plots illustrates that the movement of the jet and the gyres
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iteration

Figure 6.7: The value of J as a function of iteration number in the minimisation.
The contributions to J from the pressure, velocity, and density observations are also
shown.

are well reproduced in the assimilation results.

As expected, the “true” ocean state was not reproduced exactly. However, without
the full adjoint model, it cannot be easily determined how much this is a function of
the approximations in the assimilation scheme or a result of the limited number of

observations.

6.5 Discussion and Conclusions

The results of the identical twin experiment are encouraging and confirm the results
from several other studies that schemes based on reduced dimension models can
provide useful results. For the model used in the experiment, the assimilation scheme
could be made computationally feasible. The approximate adjoint model was able to
propagate information backwards within the reduced dimension subspace to the initial
time and supply useful information on the sensitivity of J to the initial conditions.

In this study 200 modes were retained for the adjoint model. A sensitivity study
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Figure 6.8: Three snapshots of the surface velocity and pressure fields during the
assimilation period for (a) the “true” ocean and (b) the recovered ocean states from

the assimilation.
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(b)
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Figure 6.9: The difference in surface velocity and pressure fields between the beginning
and end of the assimilation period for (a) the “true” ocean and (b) the recovered ocean

states from the assimilation.
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could be carried out to determine the effect of using a greater or lesser number of
modes. Even though the major features of the flow field can be represented by very
few modes, it is likely that the correct dynamical evolution of the these features would
rely on some of the less energetic modes. The low-dimensional adjoint model would
fail to give useful gradient information with respect to controlling the main features
when such dynamically important modes are neglected.

A possible drawback of the method is the inconsistency between the full nonlin-
ear model used for the forward run and the reduced dimension adjoint model used
to calculate the cost function gradient. This inconsistency may cause convergence
problems with the minimisation algorithm, however, no such problems were found in
the identical twin experiment. As an alternative, the reduced dimension TLM model
could be used, thus making the forward and adjoint models perfectly consistent. In
that case the incremental approach, described earlier, would be used and the controls
would be defined as a correction to the previous solution of the nonlinear model. By
simply restarting the minimisation algorithm after each iteration, the approach used
in this chapter can be considered as a special case of the incremental approach where
only one iteration is allowed for the minimisation of each linearised problem.

One of the weaknesses of the method is the way the reduced dimension subspace
is calculated. The choice of this subspace is of major importance for the success
of the method. The EOFs depend on the a priori estimates of the controls, since
these controls determine the model solution used to generate the EOFs. In general,
one may not have much prior information on the controls. If the control estimates
result in a model solution that is not representative of the true ocean state, then
the low-dimensional subspace will be inefficient in representing the true state. In the
context of an operational ocean forecasting system, however, experience gained over
time from comparing the low-dimensional model state with observations should result
in a better estimate of the possible range of values of the controls that could then be
used to improve the EOF's.

The approach outlined in this chapter uses a fixed set of basis functions. This may



be appropriate when the system is expected to remain within a single flow regime
with a well defined mean state. In cases where the system may undergo a transition
to a distinct quasi-stationary regime, however, it may be more effective to use a set
of basis vectors that either evolves according to the model dynamics or is periodically
recalculated. The simplified KF schemes described by Verron et al. (1999) employs
time-evolving basis vectors. These basis functions are propagated continually through
the model dynamics starting from a set of EOFs calculated from a long model run.
As for the method presented in this chapter, there is a risk that the subspace may fail
to capture significant modes that have evolved from perturbations that are initially
small and outside the low-dimensional subspace. However, since the basis functions
themselves satisfy the model dynamics, this should reduce the coupling through the
dynamics between the resolved and unresolved subspaces.

As ocean models become increasingly large and complex, the implementation of
conventional four-dimensional data assimilation schemes will become an even more
daunting task than today. However, the relative success of the method applied in
this chapter and other recently published oceanographic studies demonstrate that
sub-optimal approaches may hold much promise for the future of oceanographic data

assimilation.



Chapter 7
Concluding Remarks

This chapter provides a summary of the results from each of the preceding chapters
that dealt with a diverse range of issues related to the assimilation of data in oceanog-
raphy and meteorology. Two important themes, however, were repeatedly touched
upon throughout: (1) the requirement of a prioristatistical information for the error
in a prior estimate of the controls or in the model dynamics; and (2) the use of a sim-
plified representation of the model dynamics, state vector or error statistics to obtain
a sub-optimal scheme. These are two areas where subjective judgement must be used
when designing the assimilation scheme appropriate for a specific oceanographic or
meteorological application. Sections 7.2 and 7.3 provide a discussion of these themes.
The final section is a brief discussion contrasting the utility of idealised studies, such
as those employed in this thesis, and the development of a comprehensive operational

ocean forecasting system.

7.1 Summary of Results

Chapter 2: Analysis of a low-dimensional ocean model for tidal flow over a bank.

e the topographic Rossby wave mode with azimuthal wave number one is directly

forced by tidal advection of planetary vorticity across isobaths

178
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e a steady along-isobath current is forced by the tidal advection of the relative

vorticity associated with the Rossby wave

e the resonant frequency of the Rossby wave decreases with increasing along-
isobath current and the system becomes highly nonlinear when the tidal fre-

quency approaches the resonant frequency

e the simple model produces realistic simulated drifter and image data that are

used in idealised assimilation studies in Chapters 3 and 4

Chapter 3: Examination of a framework for assimilating drifter data that focuses

on the effects of nonlinearity of the advection equation.

e the nonlinearity of the advection equation causes non-Gaussian error in the
modelled trajectory and also results in a non-quadratic cost function (both of

these effects increase with the trajectory length)

e using sub-trajectories reduces these problems and allows standard estimation

techniques to be applied

e mis-specified error statistics can be diagnosed from normalised residuals to the
full and sub-trajectories allowing statistical information on the unresolved ve-

locities to be inferred from drifter data

Chapter 4: Evaluation of a new approach for extracting velocity information from

sequential images, such as ice or SST.

¢ by allowing dynamical and statistical constraints in addition to other types of
observations to be used, the proposed approach is more general than the purely

statistical techniques usually applied to these data

e assimilation of simulated SST images results in a similar cost function as when

using trajectories
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o the method was applied successfully to a pair of ice images from the Labrador
shelf (7.5 h separation) using a simple non-dynamical model and a regularization

term

e most of the variation between the images (57%) is due to wind drift and com-
parison with bathymetry shows that the estimated stationary surface stream-
function (which explains an additional 21% of the between-image variance) is

consistent with along-isobath flow

Chapter 3: Improved representation of the forecast error statistics within an NWP

application (3D-Var).

o the leading EOFs of the stationary forecast error covariances capture dynami-
cally important features unresolved by standard covariance models (baroclinic

tilt and orographic forcing)

e new localisation techniques were developed to suppress noisy correlations at

large horizontal separation distances

e a practical approach was developed for blending EOF's with a standard full-rank

estimate to enable the optimal correction to the forecast to span more than just
the EOF subspace

Chapter 6: Development of an effective and efficient scheme for assimilation with

a nonlinear ocean model that avoids the need to obtain the full adjoint model.

e using an idealised double gyre model, the leading EOF's calculated from a long
model run capture most of the variance of the state vector: 200 modes account

for over 99% of the variance (full state dimension is 5360)

o the two most energetic time-varying modes capture a 100 day period meander

in the position of the jet

e useful information on the cost function gradient given by the linearised model
in the EOF subspace calculated by treating model as a “black box”
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e in an identical twin experiment, the evolution of the state is well recovered from

limited observations

7.2 Error Statistics

An important part of many assimilation schemes is the calculation of the error statis-
tics for a background state, usually resulting from a short-term forecast. When these
statistics are poorly specified, the effectiveness of the scheme can be limited. For
example, if the background error statistics have a null space, this possibly can lead
to uncontrolled error growth. The KF provides an approach for calculating the back-
ground error covariances for the case of linear model dynamics. The extended KF can
be applied to nonlinear dynamics, but it may fail in cases where the nonlinearity is
sufficiently strong (Miller et al., 1994). However, application of the KF or extended
KF is often not possible due to the large dimension of the state vector, thus mak-
ing the propagation of the error statistics through the model dynamics infeasible.
Consequently, approximate methods are usually required. For example, in Chap-
ter 5 several approaches were described for obtaining an estimate of the stationary
background error statistics within the context of an operational numerical weather
prediction (NWP) system. Alternatively, the Monte Carlo approach of the ensemble
KF can be used to estimate the background error statistics ( Evensen, 1994). Similar
approaches may be appropriate for an operational ocean prediction system.

Model error can result from unresolved physical processes, errors in the model
geometry or from inadequate ﬁa.ra.meterisations of the sub-grid scale processes. Es-
timation of this source of error is usually difficult. In Chapter 3, an approach was
suggested for tuning the standard deviation of the velocity errors using information
from the residuals to the fitted trajectories. This approach would, however, not be
effective for estimating more detailed statistical information of the errors. In Chapter
5, the error in the short-term forecast used as the background state contains both

model error and error from the imperfect initial state used to make the forecast. An
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ad hoc method was used to estimate the stationary statistics for the net effect of both
these sources of error. Daley (1992) proposed an approach for separating these two
sources of error to estimate the homogeneous component of the model error statistics.

Estimation of the model or background error statistics would be most effective
within the context of an operational ocean forecast system. This would allow an
updated estimate of the statistics to be made from past results of the system using
approaches such as those described in Chapters 3 and 5. The statistics used for
the assimilation can also be continually checked for consistency against the misfits

between the resulting forecasts and the observations.

7.3 Sub-optimal Schemes

As an alternative approach to specifying the error statistics for the background state,
the controls can be defined as the correction to the background state parameterised
in terms of a smaller number of specified basis functions. This approach simplifies
the estimation problem by reducing the dimension of the control vector. The use of
spatially smooth basis functions serves a similar role as specifying background error
statistics with smooth horizontal correlations. It may, however, be more convenient to
use a reduced set of basis functions in certain applications. For example, in Chapter
4 the flow field was parameterised in terms of a truncated polynomial expansion to
eliminate spurious small scale variations. Similarly, in Chapter 6 the ocean state
vector and model dynamics were projected into a low-dimensional sub-space spanned
by a truncated set of EOFs. Such low-dimensional approximations can be justified
when either insufficient observations or statistical information for the background
error are available to effectively estimate the model state at full resolution.

As mentioned above it is often difficult to estimate the true error statistics for a
large dimension system. To make this possible, assumptions such as homogeneity and
stationarity often must be imposed on the error covariances, as described in Chapter

5. For highly nonlinear systems, the actual statistics may have higher order moments
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above the first two that are even more difficult to estimate. In general, assimila-
tion schemes neglect statistical moments beyond covariances since the storage and
manipulation of this statistical information can become computationally infeasible
for large dimension systems. In fact, proper treatment of the error covariances for
NWP and many realistic oceanographic applications is even beyond todays technical
limits. Therefore, the use of sub-optimal approaches employing either a simplified
representation of the error statistics or a Monte Carlo approach is often necessary

due to computational limitations or a lack of statistical information.

7.4 Operational Ocean Prediction

Many of the results in this thesis were only possible to obtain because assimilation
approaches were studied within an idealised context. By working with artificial data
produced by the model and errors generated from a known distribution, the effect
of any simplifying assumptions can be precisely known. These types of experiments
can also be used to evaluate the effect of introducing measurements that do not yet
exist in reality as long as the expected observation error statistics are known. The
studies of assimilating Lagrangian measurements (Chapters 3 and 4) used the very
simple, yet dynamically interesting ocean model developed in Chapter 2. Studies
with such low-dimensional nonlinear models allow the effects of the nonlinearity on
the estimation problem to be examined in detail. It is hoped that such studies can
provide guidance when applying similar assimilation schemes to realistic nonlinear
ocean models.

In combination with such idealised studies that attempt to isolate certain aspects
of a data assimilation problem, the establishment of an operational forecast system
can also benefit research on practical assimilation approaches. The forecasts from
such a system are evaluated on a routine basis through a broad range of situations.
Then, any new assimilation approaches or data types are tested in a parallel system

that is otherwise identical to the operational system and their effectiveness evaluated
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relative to the operational system. A new approach or type of data is introduced
to the operational system only after it is shown to consistently improve the forecast
skill over a sufficient range of cases. This is the development approach used at most
centres responsible for NWP. In oceanographic applications, it is common for various
assimilation approaches to be applied to such a variety of situations with varying
spatial and temporal scales, geographic domains, and types of data that direct com-
parison of the results is often difficult. The performance of an operational forecast
system for a given region can be used as the benchmark against which alternative
approaches are compared.

After an operational forecast system is shown to have significant forecast skill, the
output can be made available on a routine basis for a variety of applications including
climate prediction, marine search and rescue, ice forecasting, and oil spill modelling.
It is hoped that the approaches for incorporating Lagrangian measurements and ap-
plyving sub-optimal assimilation schemes presented in this thesis can contribute to the

development of such operational systems.



Appendix A

Kalman Filter Algorithm

The Kalman filter (KF) is a sequential assimilation method that produces state esti-
mates after a single sweep through the data, forward in time. The estimated state,
referred to as the “analysis” or “analysed state”, at a given time is only influenced
by the data up to that time. For linear problems, and depending on the extent to
which the error covariance matrices are correctly specified, the resulting estimated
states are statistically optimal with respect to past and present data. It is typically
assumed that the observation and model errors are Gaussian with zero mean and
serially uncorrelated through time. In the case of nonlinear dynamics, the extended
Kalman filter (EKF') can be applied. The only difference between the KF and EKF is
that the linearised form of the nonlinear D() and #() operators must be used for the
EKF. However, as discussed in the introduction, nonlinearity can lead to statistical
suboptimality unless the algorithm is extended to include the higher order moments.

There are four steps in the KF algorithm that are performed whenever observations

are available (assumed to be each time-step here):

1. Forecast the model state at the current time-step, denoted by sB, using the
model and the optimal estimate from the previous analysis, with the model

error terms set to zero:

s® = D, + Gf, (A.1)
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2. Calculate the covariance matrix, denoted by X%, of the error in this forecast
by propagating the error covariances of the previous analysis (X%_,) through
time using the linear model dynamics and adding the covariances of model error

(X™):
s =D _ DT+ Em (A.2)

3. Blend the information from the forecast and the observations (taking into ac-
count their respective error covariances) to obtain the current analysed state,

denoted by $,. The optimal estimate is the state, s,,, that minimises the cost

function
J= L n = )T B (5= o8) + & (How -y 507 (Hen—ya). (A

4. Compute the covariance of this estimate, given by
=t = (HTZ'H+ 354) 7. (A.4)

Note that step three is the same as the regression approach used in (1.10)-(1.11) when
prior estimates for the model parameters (in this case the forecast from the previous
analysis) are given. The other steps in the KF algorithm are simply necessary to
update the covariance matrix associated with the errors in the model forecast (X7)
and the errors in the resulting optimal state vector estimate (X5%).

The optimal state that minimises (A.3) can be written explicitly in a form similar
to (1.11) as

§n = (HTS°'H+ 251) 7 (HTS° ly + £57'sh). (A.3)
More frequently, the explicit solution is written in the equivalent form
$n = st + K, (yn — Hs}), (A.6)
where the so-called Kalman gain matrix is given by

K, = Z3HT (Z° + HE:HT) . (A.7)



Appendix B

Adjoint Method

The adjoint method is essentially an efficient way to calculate the gradient of J with
respect to a set of controls. To illustrate, assume a perfect nonlinear ocean model

(™ =0) is given as
Sn =D (sp-1) + Gf,. (B.1)

If the controls are specified (usually including the initial and any open boundary
conditions), the model (B.1) can be integrated forward in time to produce an estimate
for the ocean state at all times. Therefore, one can think of the time-dependent state
vector as being a function of the controls. Given a prior estimate for the controls,

denoted by ay, the goal is to find the a that minimises the following cost function:

N
1 1
=5 (- ao)T T2 (a - ag) + 5 Y (Hsp —ya)" 7! (Hsn - ya), (B2)

n=0
subject to the strong constraint (B.1).
To calculate the gradient of (B.2) with respect to a, the constrained optimisation
problem given by (B.1)-(B.2) is transformed into an unconstrained problem using

Lagrange multipliers to form the Lagrange function

N
L=J+) Allsa —D(sn_1) — Gfa). (B.3)

n=1
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The vector of Lagrange multipliers, A,, has the same dimension as the state vector
and is referred to as the adjoint vector. The Lagrange function is differentiated with
respect to the state vector and the results equated to zero. The Lagrange multipliers,
in effect, account for the dependencies of the state vector through time. Therefore,
L can be differentiated with respect to s, as if it were independent of future states.

The result is the following adjoint model:

oD aJ
An = -6T"An+1 - 'a?"', (B.4)

for n = N,...,0 and with Ay4; = 0. This is a time-stepping model with time
running backwards. The model is linear with the matrix of coefficients being equal
to the transpose of (that is, adjoint to) the tangent linear dynamics evaluated with
respect to the solution of (B.1). In this notation the derivative 3D/0s, is the N, x N,
Jacobian matrix of D() and dJ/0s, is the gradient of J with respect to the state
vector. These are defined as follows where i and ;7 are row and column indices:
[60] oD; [3]] aJ
ij i

—a-s—' = -5-; N E = 5’;. (B.s)

The gradient of J with respect to the controls is then determined by taking the
gradient of (B.3). For example, the gradient of J with respect to the initial state, sq,

1S

dJ aD aJ
d—so = —ES—O'AI + a—so = __A09 (B'G)

where the partial derivative with respect to sq represents the sensitivity of changes in
the initial conditions only to the part of the cost function corresponding to the initial
time. The full derivative of J with respect to s¢ is used to denote the dependency on
the initial state, through the linearised dynamics, of the parts of J that depend on

the model state at all times.



Appendix C

Low-Dimensional Model

Parameters

By neglecting the nonlinear and friction terms in the vorticity equation (2.1) and
assuming the periodic harmonic solution (2.7), the following generalised eigenvalue

problem is obtained:

a|l_ 1/(f
r[‘pl—m] =" (h)r¢1, (C.1)
where the subscript r denotes 3/0r and ®; is defined as
_ 10 (rd¢
v=15 (55). ©2

for i = 0,1. The eigenvalues of (C.1) correspond with (1/w;), the inverse of the
frequency of the linear Rossby wave, and the eigenfunctions correspond with the
radial structure of the wave, ¢;. The remaining term on the right side of (C.1),
(—=f/h), is a weighting function that defines the orthogonality relationship of the
eigenfunctions.

Following the derivation outlined in chapter 2, the equations corresponding with

a sine and cosine dependence on the azimuthal angle are given by:

(5), 0s0r9-can{z|() + (3), 3]+ (£).} =0 9
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() s 1[(3) (). 22+ 0))-
e s) . ()

The final form of these equations given in the chapter are obtained by projecting

each term onto the linear topographic Rossby wave mode corresponding with no zero
crossings in the radial direction. This projection is performed using the weighting

function given above. This results in the following definitions for the four parameters

fqﬁf (%) dr

in the simplified model:

a, = i (%) - (C.5)

A (), -

- sa(f) |
ron (), #

a3 = P (g)rdr (C.7)
Jre (g)'dr (C.8)

where the integrals are over (0,00). The values for the parameters were evaluated
numerically using discrete approximations to the above integrals and derivatives.

Grouping the terms without a dependence on the azimuthal angle gives

Do (Z2:+12) = -U2°:Z:° [(%) %] C sin(wyt). (C.9)

r
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The radial dependence of this equation is eliminated by simply equating the radial
dependence of the mean current response (left side of (C.9)) with the radial depen-
dence of the forcing (right side of (C.9)). This maximises the response by assuming it
projects completely onto the forcing and leads to the following relationship between

the radial shapes of the Rossby wave and the mean current:

O

from which ¢g is calculated.



Appendix D

AR(1) Correlated u®

The general case with serially correlated velocity errors is mathematically complex.

Here we only consider velocity errors governed by the discrete-time AR(1) process
u; = Buj_; + u';, (D.1)

where the model errors u}, are understood to be along the model trajectory, that
is, located at xW. The matrix, B, has eigenvalues less than one and the Gaussian

evolution process, u®", is serially uncorrelated with covariance matrix
T
T = us(u%)’. (D.2)

Some algebraic manipulation of (3.11) and (D.1) at time-steps n and n — 1 leads

to the following expression for € in terms of u*":

€3 = (Vo1 +B) €1 = BYn_16-2 + Atu'y,. (D.3)

This form is similar to an AR(2) stochastic model except that the coefficients may
vary through time along the trajectory. The stochastic model similar to (3.17), but

for AR(1) correlated velocity error is

X°(a) = R™(a) + [y(a)d™ + &°, (D.4)
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where multiplication by the matrix I'; is equivalent to applying the model (D.3) to

obtain the €*. The total error covariance matrix can therefore be written as

T () = y(a)S*Ty(a)T + X°. (D.5)



Appendix E

Adjoint Model for Image

Advection

In this appendix, the adjoint model is developed corresponding to the cost function
(4.9) and the advection model (4.6) presented in chapter 4. For simplicity the velocity
field is considered to be a known analytic function of the controls.

To obtain the trajectories required to calculate Jy, a simple finite difference ap-
proximation is used. To advect the position at n = N/2 backwards in time, the

following time-stepping model is used:
Xh = xﬁ+l - u,.+1(xf,+l)At, (E.1)

forn = N/2—1,...,0. Similarly, the position at time index N/2 is advected forwards

with the time-stepping model:
X5 = Xn_y + Uno1 (X )AL, (E.2)

forn=N/2+1,...,N.
In this simple case, with no dynamical ocean model, the advection equation is the

only set of constraints in the problem. Therefore, the Lagrange function (obtained

194



following the approach outlined in Appendix A) is

N/2-1
L=Jr+ E A"] [xk — xE,) + unr (x5, Al

n=0

+ Z [a\" [xE —xE_| —unoi(xh_))A0],

n=N/2+1

where A¥ is the so-called adjoint vector at time-step n corresponding to the trajectory
xk. The resulting adjoint model propagates information towards the intermediate
time along both trajectory segments, that is, from n = 0 to N/2 and from n = N to
N/2. This is the opposite direction as the integration of the advection model used

to calculate J;. The adjoint model corresponding to the advection equation between
n=0and N/2is

3!1,. 6.]1
) L (1— Sk At)A" ~ (E.4)

forn=0,...,(N/2)—-1with 4\51 set to zero. Similarly, the adjoint for the advection
equation between n = N and N/2 is:

all,, 0J1 -
A = (1+ 2. At) Moo = gk (E.5)
for n = N,...,(N/2) + 1 with A, set to zero. The vector derivatives (notation

defined in Appendix B) are evaluated at x*, obtained by integrating (E.1) and (E.2).
This is the same form of the adjoint model that would be obtained for the problem
of assimilating trajectory data presented in Chapter 3.

The forcing terms of (E.4) and (E.5) are the partial derivatives of J; with respect
to x* with all other positions along the trajectory held constant. However, due to
the advection model, a change in xX will change all of the subsequent positions along
the trajectory. The adjoint model accounts for these relationships. The resulting
values of AX are the derivatives of J; (multiplied by —1) with respect to x5 with all
temporal dependencies from the advection model included. Therefore, integration of

the adjoint model is equivalent to applying the chain rule along the trajectory. For
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example, with N = 6 the derivative (gradient) of J; with respect to x, obtained from
(E.3) 1s

dJ[ _ aJI + Bxsa.}; + 8x56x6 3J1
dx; Ox4 Ox40xs OxyIxsIxe

= _A‘h

where the superscript is dropped for clarity and derivatives of the form 9x,/0%n-1
are obtained from (E.2). Note that this is not strictly a full derivative since J; also
depends on the positions prior to x4 and may also depend on the velocities or the
source/sink term directly. However, the full derivative notation is used here to denote
that all dependencies due to the advection equation are included.

The forcing terms for the adjoint model at n = 0 and NV depend on the spatial
gradients of the observed images. They are obtained by differentiating the cost func-
tion after substituting in the observed images using (4.6). The forcing termat n =0

1s

aJ oI,

5;‘% = o [Ile (el o) = Inp2 (XN/zIIN)] (E.6)
At the final time the forcing term is

aJ olp [: . _

ﬁ = 6 2 [IN/2 (xN/zi IO) Ing2 (xﬁr/z”N)]- (E.7)

These are each a product of two terms: the difference in pixel intensity after advection
to the intermediate time; and the gradient in the image at the advected position. The
image gradients are clearly important for determining how much the value of J; will
change as a result of varying the value of a control parameter. Since a change in the
controls will change the two endpoints of the trajectory, the value of the cost function
will only change if the pixel intensity is different at the new positions. The value of
J; will be unchanged for small changes in the two endpoints in the direction normal
to the local gradient of pixel intensity. For n # 0, N/2, N the only contribution to
the forcing terms comes from the dependency of the source term on x%

aJ as - =
gx—é = ﬁAt [IN/z (xf\r/zl L) — Ing (fo/zl IN)] : (E.8)



To evaluate the gradient of the cost function with respect to the controls, the
gradient of the Lagrange function with respect to a is evaluated. Assuming the

source/sink terms do not depend directly on «, the result is

m=

This is equivalent to simply using the chain rule. This can be seen, for example,
by substituting (A%, = —dJ;/dx¥,,) and, from (E.2), (AtI = 8x¥,,/du,) into the

second sum. Again, the full derivative notation is used to indicate that all depen-

N/2 N/2 k
Qun(Xn) 3k Ay — Y Qunxalye atl.  (E9)

n=1 n=N-1 aa

aun(x

dencies from the advection equation are included. Because the contribution to the
gradient of J; from each grid element at n = N/2 is additive, each trajectory can be

computed separately and the contributions to both J; and its gradient accumulated.



Appendix F

Calculating EOFs by Singular

Value Decomposition

The EOF's are the leading eigenvectors of the sample covariance matrix

1 4T
B—Nb_IZz.z,-, (F.1)

where z; is the ith error sample after removal of the sample mean and A, is the number
of background error samples. It is usually necessary to define a norm to be used in
calculating the EOFs. If the error samples simultaneously span several geophysical
variables, then it is necessary to use a norm, such as total energy, to transform the
variables into appropriate common units. Alternatively, the error samples may be
normalised by their sample standard deviations if the EOF's are used to only represent
the correlations. In the following formulation, however, it is assumed that the norm
is the identity or that the error samples have already been appropriately normalised.

Since N, is generally much smaller than the dimension of the analysis increment,
denoted N,, B is highly rank-deficient and therefore it is practical to use singular value
decomposition (SVD) to obtain the eigenvectors and corresponding eigenvalues. If all

the error samples are combined to form a single N, by N, matrix, Z, then applying
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SVD to Z gives (Gollub and VanLoan, 1983)
A

Z=U
0

where U and V are both orthogonal square matrices of dimension N, and Nj, respec-
tively. The (Vy — 1) x (N ~ 1) diagonal matrix A contains the singular values. The
EQOFs sought are the first (V; — 1) columns of U, and the corresponding eigenvalues
are the diagonal elements of A? after division by (N, — 1). This can be seen by

vT, (F.2)

post-multiplying (F.2) by the transpose of itself and comparing with (F.1)

T ol T Az 0 T
22" =) 72l =U o o uT. (F.3)

i=1
At most, (N, — 1) EOFs can be calculated (assuming N, < N,) since one degree of
freedom is removed from the samples by subtracting the mean. Some of these modes
may, however, mostly be composed of sampling noise. Therefore, one may expect
there to exist an optimal number of EQF's to retain, denoted N,, for representing B.

To obtain U and A? the eigenvectors and eigenvalues of the following smaller

eigenvalue problem of dimension (N, — 1) are first calculated:
Z7Z = VA*VT, (F.4)

From these results, the EOF's can be obtained by solving the SVD equation (F.2) for

the columns of U corresponding to the N, largest eigenvalues

(F.5)

where u; and v; are the ith columns of U and V, respectively, and A; is the cor-
responding singular value. The matrices E and A. are used to denote the first N,
retained columns of U and the diagonal matrix with the corresponding singular values

divided by /(N — 1), respectively. Therefore, the covariance matrix formed from a
truncated set of EOFs can be efficiently represented as

B. = EA’ET. (F.6)
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It should be noted that the vector v; is a time series that is proportional to the
projection of the ith EOF on each of the error samples. By examining these time
series, it is possible to evaluate if a given mode is associated with a stationarity

component of the error or with sporadic events.



Appendix G

Localisation Using an Iterative

Eigendecomposition Algorithm

Several iterative algorithms exist for computing a limited number of eigenvectors and
eigenvalues of a large matrix. Most of these, such as the Lanczos algorithm, do
not explicitly require the full covariance matrix in memory, but instead only require
that the product of the covariance matrix with a series of supplied vectors be calcu-
lated. As pointed out by Zupanski (1999), localisation of the horizontal covariances
estimated from a set of error samples can be incorporated in the calculation of the
eigenvectors and eigenvalues when using such an iterative algorithm. In that study,
the horizontal covariances were localised by applying a cut-off radius beyond which
the covariances were set to zero. This is equivalent to multiplying the original covari-
ance functions by top-hat functions centred on the diagonal. Referring to Gaspari
and Cohn (1999), because the top-hat is not a valid covariance function, the resulting
localised covariance functions are not guaranteed to be positive definite. To deal with
this situation, Zupansk: (1999) simply removed eigenvectors from the truncation for
which the eigenvalues were negative (over 20% of the computed leading modes).
Alternatively, a valid localising correlation function could be used, as in the previ-
ous method, within an iterative eigendecomposition algorithm. Due to the similarity

of (5.28) and (F.1), the error samples can replace the scaled EOF's in the expression
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for the localised covariance matrix given by (5.31). Consequently, the product of this

localised matrix with an arbitrary vector w is

Ny
Biw= Zdiag (z;) Ldiag(z:) w. (G.1)
=1

N, —1¢4

The resulting EQF's from this approach will be somewhat different from those
calcuiated using the first approach described in Section 5.3.2. Here, the leading
eigenvectors of a localised covariance matrix are obtained, forming an orthogonal
basis. In the previous approach, the EOFs calculated from the original covariance
matrix were localised, forming a non-orthogonal basis with many modes originating
from each of the original EOFs. With this approach, therefore, many times more
EOFs must be calculated (and stored) to account for a given percentage of the total
variance as compared with the approach from the chapter. Also, if the EOF expansion
is truncated, the covariances at large separation distances may not be as damped as
one would expect. If the full set of EOF's are retained, then the two approaches would
give equivalent results, though the first method still would not produce an orthogonal

basis.
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