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Abstract

Somatotopic maps are a fundamental feature in the organization of somatic
sensory systems in the mammalian central nervous system. A striking example of these
maps is present in the rodent cortex. Periphery-related patterns are evident in histological
sections of layer IV of the primary somatosensory (SI) cortex in what is known as
“barrels”. The objective of the studies presented in this dissertation was to identify
molecular and cellular mechanisms that underlie pattern formation in the cerebral cortex
using the barrel field.

Barrelless (brl) mutant mice fail to develop neuronal arrangements of barrels in
their SI cortex. High resolution linkage and physical maps and candidate gene analysis
strategies were followed to isolate and identify the brl gene. We identified adenylyl
cyclase type I gene (Adcy!) as the gene disrupted in br! mutants. These resulits provide the
first evidence for the involvement of cyclic nucleotide signaling pathways in pattern
formation of the SI cortex and additionally argues that neuronal activity plays a role in the
formation of periphery-related patterns in the SI cortex.

In order to investigate whether cAMP-dependent protein kinase (PKA) acts in the
same developmental pathway as Adcyl, we examined the SI cortex of five PKA null
mutant mice (Prkarlb, Prkar2a, Prkar2b, Pkaca, and Pkach). Our results reveal the
presence of normal barrels in the SI cortex of all knockout mice, except for one that
displayed poorly-formed barrels. These results suggest that Adcyl acts in the
thalamocortical afferents, whereas PKA acts on layer IV cortical neurons.

Since neurotrophins have recently been implicated in synaptic plasticity during
development, we investigated their role in the development of barrels in the SI cortex.
Our results indicate that intracortical injections of exogenous brain-derived neurotrophic
factor and neurotrophin-3 can produce a barrelless phenocopy, and that absence of
neurotrophin-4/5 in knockout mice results in poorly-formed barrels. Collectively, these

results indicate a new role for neurotrophins in pattern formation of the cerebral cortex.
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Chapter 1

Introduction



1.1 Functional Localization in the Cerebral Cortex

The adult mammalian cerebral cortex is divided into numerous regions, each of
which is functionally distinct and has its own cytoarchitecture and connectivity.
Brodmann (1909) divided the human cerebral cortex into 52 areas based on size, shape,
density and connections of neurons in each of these areas. Similarly, the cerebral cortex is
divided into functional areas such as sensory, motor, and association cortices.

Despite the fact that some differences exist between areas in the neocortex, some
basic features and characteristics are shared among them. For instance, the neocortex is
organized into six layers with neurons in layers V and VI projecting to subcortical regions
and neurons in layer IV receiving inputs from the thalamus. On the basis of these
similarities in structure and function it was proposed that different areas of the neocortex
share a common principle of organization (Lorente de N6, 1938; 1949; Mountcastle,
1978; Powell, 1981). If this is true, then the question is: when and how does the structural

and functional specification of cortical areas happen?

1.2 Development of the Central Nervous System

The development of the vertebrate central nervous system (CNS) starts at the
gastrula stage of embryogenesis. The dorsal mesoderm of the gastrula induces the
overlying ectoderm to form a sheet of neuroectodermal cells, the neural plate. The neural
plate folds to give rise to the neural tube and the neural crest. The anterior part of the
neural tube undergoes a series of swellings and flexures that form different regions of the

brain, while the caudal part retains its simple tubular structure to form the spinal cord.



Neural crest cells migrate away from the neural tube to form the peripheral nervous
system.

During development cells undergo numerous cell divisions that will increase cell
numbers, a process called proliferation, followed by the generation of cellular diversity, a
process called differentiation. Differentiated cells are then organized into tissues and
organs that are formed in an orderly fashion, a process called morphogenesis. The
regulation of these processes is under the control of intrinsic, predetermined “genetic”

factors in addition to extrinsic influences from the environment.

1.2.1 Cortical Development

Neocortical cells are generated in the pseudostratified telencephalic
neuroepithelium that lines the ventricular zone (Sauer, 1935; Fujita, 1963; Rakic, 1974;
Bayer and Altman, 1991). These cells, known as germinal, progenitor, or precursor cells,
give rise to all the neurons and glia in the brain. As symmetrical division continues,
progenitor cells migrate away from the ventricular zone to form the subventricular zone
and take over the production of committed cells. Corticogenesis starts with the first
asymmetric division to produce neurons that migrate towards the pial surface along the
processes of radial glia (Rakic, 1972; 1978; 1981) to form the preplate or the primordial
plexiform zone (Marin-Padilla, 1971). The preplate is then divided into two layers: the
superficial marginal zone (future layer I) and deep subplate (Luskin and Shatz, 1985a;
1985b). The cortical plate lying between the marginal zone and the subplate thickens as

new waves of migrating cells move through the subplate and take their position forming



deeper layers first (Berry and Rogers, 1965; Lund and Mustari, 1977, Bayer and Altman,

1991).

1.2.2 Pattern Formation

Differentiated cells are not randomly distributed. They are spatially arranged in an
orderly manner to form specific patterns that can be generated by mechanisms that
involve cell-to-cell interaction. Three different general mechanisms have been proposed
to explain how patterns are formed: induction, positional information, and prepattern.

Induction is a mechanism by which a signal from one cell type or tissue influences
the proliferation, differentiation and morphogenesis of neighboring cells. Spemann and
Mangold (1924) were the first to draw attention to the presence of a specific region
(dorsal lip of the blastomere) that is important for the formation of the whole embryo.
Using differently pigmented embryos from two species of newt they were able to identify
the origin of tissues in the embryo. Transplanted gastrula tissue developed according to
its new environment with the exception of the dorsal lip. It continued to be a blastopore
lip and induced gastrulation and embryogenesis in the surrounding tissue. In another set
of experiments, Spemann (1938) transplanted ectoderm of a frog gastrula into the mouth
region of a salamander gastrula. He found that the mesoderm was able to induce a piece
of ectoderm of another species; however, tissue developed according to genetic
information present in the ectoderm. This was the first set of experiments that revealed
the importance of extrinsic influences on the development of an embryo and on

patterning. In vertebrates, induction plays a greater role than in invertebrates, where in the



latter, development depends mainly on lineage rather than on an interaction with a
neighboring cell.

In the hypothesis known as “positional information”, Wolpert (1969) proposed
that each cell has intrinsic information about its position and can interpret its position
with reference to other cells in the system. The best studied example of positional
information is the morphogenesis of the vertebrate limb (Weiss, 1939; Wolpert, 1977).
Basically, there are two regions that determine the formation of a limb, the zone of
polarizing activity (ZPA) and the progress zone. Depending on the position of a cell in
the ZPA it will either form a thumb or index finger (anteroposterior axes) and depending
on the time that the cell spends in the progress zone it will form either a radius or a digit
(proximodistal axis). It is believed that positional information is achieved by a gradient of
morphogens (molecules that induce morphogenesis) and cells will respond differently
depending on their position in the gradient.

The “prepattern™ hypothesis was first described by Stern in 1968. He proposed
that a certain gene, a pattern gene, controls the onset of differentiation and hence
patterning. In order to explain how a pattern gene can affect patterning, he hypothesized
that during development there are spatial differences between differentiated cells, a
prepattern, that precedes the final morphological pattern. Moreover, intrinsic and
extrinsic factors can enhance differences between prepatterns or even create new ones.

Accordingly, different genotypes will respond differently to a prepattern or can have

different prepatterns.



1.2.3 Development of Regional Specialization

At early stages during development, the immature cortex seems to be uniform and
the area-specific features observed in the mature cortex are not present. So when and how
does regional specialization occur? Two hypotheses were proposed to answer this
question. In one extreme, cortical areas are entirely prespecified in the neuroepithelium of
the ventricle zone. In other words, there is a fate-mosaic or “protomap” in the progenitor
cells of the ventricular zone and the characteristics of each area are genetically
determined (Rakic, 1988). This protomap is translated via radial glial scaffolding in the
form of ontogenetic columns. In the other extreme, the cortical plate is a homogenous
“protocortex” and area specific features are imposed on it by outside influences (O’Leary,
1989). Accordingly, characteristics of an area result from an interaction between the
immature cortex and the extrinsic signals, most probably thalamocortical afferents. Of
course, neither of these extremes is probably completely true. Both authors recognize the
contribution of both genetic and extrinsic factors in the development of regional
specialization in the neocortex with the protomap concept giving more weight to genetic
factors and the protocortex concept giving more weight to extrinsic signals as a major
event in the formation of area-specification in the cortex.

Several lines of evidence support the protomap, or radial unit, hypothesis.
Immunostaining experiments revealed that precursor cells produce segregated pools of
cells, either neurons or glia, when an antibody marker against radial glial cells was used
(Levitt and Rakic, 1980; Levitt et al., 1981; Levitt et al., 1983). Retrovirus gene transfer

experiments, which utilize the infection of a single progenitor cell with a retrovirus that



carries a specific marker that enables the visualization of these cells by histochemistry,
revealed the presence of clones of different sizes that contained only neurons or glia
(Luskin et al., 1988; Price and Thurlow, 1988; Walsh and Cepko, 1988, Parnavelas,
1990). Consistent with the protomap hypothesis, McConnell (1988a; 1988b) has provided
evidence for laminar commitment at an early stage during development. In these
experiments, she manipulated the environment through which the cortical neurons
migrate in order to determine the role of extrinsic signals. For instance, neurons that
would normally migrate to layers V and VI were transplanted into an environment in
which neurons migrate to superficial layers. Neurons in this case migrated to layers V and
VI, suggesting that postmitotic neurons are committed to a specific lamina and extrinsic
cues do not change their fate. In subsequent studies, McConnell and Kaznowski (1991)
determined the time at which these neurons become committed; this decision is made
during the mid S-phase of the final cell division. More recently, two studies have reported
that distinct patterns in the cerebral ventricle and in the cortical plate are present in a
region-specific and lamina-specific pattern as observed from the expression of molecules
that are intrinsic to the cortex such as ephrins and cell-adhesion surface molecules
(Miyashita-Lin et al., 1999; Donoghue and Rakic, 1999).

Although the bulk of evidence supports the protomap hypothesis, some studies
disagree with this model and instead provide evidence favoring the protocortex model.
Retrovirus-labeling indicated that the same progenitor cell can produce clones that are
widely distributed in the neocortex and are scattered over many areas (Walsh and Cepko,

1992). These results are consistent with the results of O’Rourke (1992) who reported that



only 80% of labeled newborn neurons migrated radially and the rest migrated tangentially
from one functional region into another. Perhaps the most compelling evidence was
provided by heterotopic transplantation. Schlaggar and O’Leary (1991) have
demonstrated that the specific features of the immature cortex are not set at birth and that
certain areas of the cortex can develop architectural features that are normally associated
with other cortical regions. In the first set of experiments, they transplanted a piece of
late-embryonic occipital cortex to the sensorimotor cortex of a newborn rat and
retrogradely double labeled layer V projection neurons using two different dyes injected
into the pyramidal decussation and the superior colliculus (Stanfield et al., 1982;
Stanfield and O’Leary, 1985; O’Leary and Stanfield, 1989). Results revealed that in
mature animals, layer V pyramidal neurons of the transplanted visual cortex maintained
the corticospinal projections which are usually lost during development. In another set of
studies, they evaluated the plasticity of area-specific features. Heterotopical transplants
were again used, but this time they looked at the anatomical organization of the transplant
(Schlaggar and O’Leary, 1991). The results of these experiments revealed that the
transplant developed cytoarchitectonic features that were similar to their new location and
not to the donor. These results, along with results from the first set of experiments,
indicate that area-specific features are not determined at birth in the developing
neocortex, and that extrinsic signals play an important role in cortical regionalization.

In the last few years a new hypothesis for cortical specification has emerged.
Levitt and colleagues (1993) has proposed the “progressive acquisition of phenotype”

concept. It states that the cerebral wall has fated uncommitted precursor cells and that



their initial position is controlled genetically. Later on extrinsic signals will guide the
choices of differentiated neurons by progressively limiting the choices that these cells can
make. Such a hypothesis was deduced from their results of cortical transplantation along
with the identification of a molecular marker for the limbic system, limbic system-
associated membrane protein (LAMP) (Levitt, 1984; Levitt et al., 1986, Zacco et al.,
1990). LAMP is only expressed in developing limbic cortical areas but not in the
developing neocortex (Horton and Levitt, 1988). Transplanting perirhinal cortex or
sensorimotor cortex from E12 rat fetuses, which contains only precursor cells, followed
by immunostaining for LAMP revealed that cells differentiated according to their new
location and not according to their origin (Barbe and Levitt, 1991; 1992). On the other
hand, if the same experiments were repeated with a transplant from E15 or older rat
fetuses, it was found that cells differentiated according to their origin. Taken together,
these results indicate that developmental time is very important in controlling the cell’s

fate to a particular phenotype.

1.2.4 Generation of Neural Connections

The function of the central nervous system depends on the precise pattern of
connections that neurons make among themselves and with their targets. Once a cell has
differentiated into a neuron rather than a glial cell, it is faced with more decisions. It has
first to extend an axon, select its pathway, select its correct target and lastly refine the
connections with its target “address selection” (for review see Goodman and Shatz,
1993). Genetics establish the initial pattern of neuronal connections which is then

modified by neuronal activity, a process that continues throughout life (Purves et al.,
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1986; Bailey and Chen, 1989). Generation of precise neuronal connections during
development can be explained by two mechanisms: activity-dependent and activity-
independent mechanisms. The first two processes, pathway selection and target selection,
do not depend on neuronal activity while address selection is activity-dependent.

1.2.4.A Pathway Selection

Pathway selection is the process wherein axons travel along a route to a particular
region in the embryo. A good example of pathway selection is found in the
neuromuscular junction system. Motor axons can find their appropriate muscle target
even when activity is blocked (Twitty and Johnson, 1934; Twitty, 1937) or when
functional neurotransmitter receptors are ablated (Westerfield et al., 1990). Several
mechanisms have been proposed for the specificity of axonal growth including contact
guidance, gradient of adhesivity, axon-specific migratory cues, specific growth cone
repulsion, and multiple guidance cues.

1.2.4.B Target Selection

After axons reach the correct area, they have to recognize a specific target in that
area to form specific connections. The best studied example of target selection is retinal
axons in frogs and fish in which retinal axons from each eye project to the opposite side
of the optic tectum. Sperry (1951) has demonstrated that retinal axons send a pioneering
axon to a specific site within the tectum which precedes other axons and acts as a guide
for them. Later on, he proposed that axons and their matching targets have a chemical
identification tag that can connect them in a selective manner (Sperry, 1965). Recently, it

has been demonstrated that retinal axons express receptors for fibroblast growth factors
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where they are rapidly diminished upon arrival to the tectum, hence slowing their growth
and allowing them to find their targets (McFarlane et al., 1995). It has been proposed that
retinal axons can find their targets based on gradients of adhesivity (Marchase et al.,
1976; Gottlieb et al., 1976; Walter et al., 1987; Cox et al., 1990; Baier and Bonhoeffer,
1992).

1.2.4.C Address Selection

The initial patterns that are formed between neurons and their targets are then
refined and remodeled, a process called “address selection”. As described above,
motoneurons and muscles do not require activity for the development of connections;
however, activity-dependent mechanisms are required in the refinement of motor
projections. Initially, motoneurons form several synapses with a muscle fiber, an activity-
independent mechanism, but during development branches of motor axons retract such
that one muscle fiber is innervated by one motor axon. This refinement of connections is
an activity-dependent process (Redfern, 1970; Brown et al., 1976; Purves and Lichtman,
1980).

Most of our knowledge about activity-dependent mechanisms during development
comes from studying the visual system. In the visual system of vertebrates, retinal axons
send projections to the tectum (in lower vertebrates) or to the thalamus (in mammals).
Retinal axons initially project to their targets in an activity-independent manner to form a
coarse topographic map using molecular and cellular cues such as cell adhesion
molecules, extra cellular molecules and diffusible factors. Once retinal axons reach their

target, they form arbors that extend over a wide area followed by retraction and
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remodeling to restrict their axonal arborization which will refine the topographic map,
events that require activity (for review see Constatine-Paton et al., 1990; Shatz, 1990).
Blockade of retinal neural activity during the period of refinement by tetrodotoxin (TTX,
a poison that blocks action potentials by blocking voltage-sensitive sodium channels) in
fish, frog, chick, and rodents prevents the fine refinement of retinotectal projections,
although coarse topographic maps are still retained (Harris, 1980; Meyer, 1982; 1983;
Schmidt and Edwards, 1983; Harris, 1984; Fawcett and O’Leary, 1985; Kobayashi et al.,
1990).

The best studied example of activity-dependent mechanisms in cortical development
come from studies of the visual cortex of higher mammals. In the adult visual cortex,
inputs from the lateral geniculate nucleus (LGN) from each eye are segregated in layer IV
onto cortical cells that are driven by one eye or the other. These eye-specific domains are
the anatomical basis of ocular dominance columns (ODC). Electrophysiological recording
confirmed that the majority of cortical neurons in layer IV will respond exclusively to
stimulation of one eye only (Hubel and Wiesel, 1963; Hubel et al., 1977; Shatz and
Stryker, 1978). The pattern of ODC in layer IV is not evident at birth as LGN afferents
are overlapped, and appears during development during a period of LGN axonal
remodeling and retraction to form the adult pattern of eye-specific domains (Rakic, 1977;
LeVay et al., 1978; 1980). Activity-dependent mechanisms play a role in segregation of
LGN axons and formation of ODC in the visual cortex where blocking activity from both

eyes by intraocular injections of TTX prevents the segregation of retinogeniculate
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afferents of the thalamus (Shatz and Stryker, 1988) and the formation of ODC in cortical
layer IV (Stryker and Harris, 1986).

The above findings implicate neural activity in the formation of ODC, but do not
explain how activity permits the segregation of LGN axons in layer I[V. The answer to
this question was provided by the pioneering studies of Hubel and Wiesel (1970; 1977) in
which they determined that the spatial and temporal pattern of neuronal activity between
both eyes plays a major role in the formation of ODC. Changing the pattern of activity
during the critical period by monocular deprivation, closure of one eye by eyelid suture at
birth, results in a dramatic physiological and anatomical shift in ODC in the visual cortex
in favor of the open eye (Hubel and Wiesel, 1970; Hubel et al., 1977; Shatz and Stryker,
1978); however, binocular deprivation does not result in the same dramatic effects on
ODC in the cortex (Wiesel and Hubel, 1965). Stryker and Strickland (1984) provided
direct evidence for the importance of patterned activity and competition between LGN
axons from both eyes in the formation of ODC. In these experiments, they blocked retinal
activity in both eyes by TTX and then electrically stimulated the optic nerve. Their results
revealed that when both optic nerves were synchronously stimulated ODC did not form,
but when they were stimulated asynchronously ODC were formed. At the cellular level it
has been proposed that N-methyl-D-aspartate (NMDA) receptors play an important role
in mediating activity-dependent refinement of topographic maps in the retinotectal
pathway (Meyer, 1983; Schmidt and Edwards; 1983; Cline et al., 1987; Schmidt, 1990;
Simon et al., 1992) and in the mammalian visual cortex (Tsumoto et al., 1987; Fox et al.,

1989; Miller et al., 1989; Fox and Daw, 1993).



14

1.3 The Somatic Sensory System

The somatic sensory system processes information such as touch, vibration,
pressure, pain and temperature derived from different parts of the body (Kaas and Pons,
1988; Kaas, 1990), thus allowing animals to respond to external and internal stimuli
exerted on the body. The somatosensory system has two components: the spinal
somatosensory pathway, which transmits sensory information from the upper and lower
parts of the body; and the trigeminal somatic sensory system which deals with sensory
information arising from the face. In humans, sensory information arriving into the cortex
is processed in four distinct regions corresponding to Brodmann’s areas 3a, 3b, 1 and 2.
Area 3b is generally termed the primary somatosensory cortex (SI) and responds
primarily to cutaneous stimuli. Electrophysiological mapping studies in humans and
primates revealed that the somatosensory cortex contains an orderly representation of
peripheral receptors, known as somatotopic maps (Kaas, 1983; Corsi, 1991). In humans,
inputs from the periphery are represented in specific locations in the neocortex, hence the
term homunculus or “the little man”, moreover, segregated inputs are represented in
proportion to the degree of innervation. Thus, in humans, heavily innervated areas such as
the face, tongue and thumb have the largest representation in the somatosensory cortex.
Similar distortion has been observed across species. For example, the rodent brain
devotes a substantial area of the somatosensory cortex to the representation of the large
mystacial vibrissae on the snout area, while raccoons over-represent their paws.

Somatic sensory information is processed first in the primary somatosensory

cortex (SI) and is then distributed to other cortical regions including the secondary
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somatosensory cortex (SII), the motor cortex, and subcortical regions such as the
thalamus. The SII cortex receives divergent information from the SI cortex and sends

projections in turn to the limbic system.

1.4 The Primary Somatosensory Cortex in Rodents

A striking example of somatotopic maps is present in the SI region of the parietal
cortex of rodents (area 3 in the mouse [Caviness, 1975]). Sections parallel to the pial
surface through layer IV of the SI cortex reveal cytoarchitectonic features termed
“barrels” (Woolsey and Van der Loos, 1970). Barrels are the somatotopic representation
of the sinus hairs and mystacial vibrissae on the face and other parts of the body. This
region of layer IV is called the “barrel field” and the cortical region that contains the
barrel field is called “barrel cortex”. The total area of the barrel field in the mouse ranges
between 2.1 and 2.8 mm’ and consists of the anterolateral (ALBSF), posteromedial

(PMBSF), lower jaw, forepaw and trunk barrel subfields (Figure 1.1).

1.4.1 General Appearance of Barrels

Barrels in the ALBSF are the cortical representations of the sinus hairs on the
contralateral side of the muzzle area, while barrels in the PMBSF represent the
contralateral large mystacial vibrissae (whiskers). Barrels in the ALBSF region are
circular in shape, small and are randomly packed, whereas barrels in the PMBSF are
elliptical, larger and organized in an orderly fashion (Woolsey and Van der Loos, 1970).
This dissertation will be focusing only on barrels present in the PMBSF which represent

the contralateral mystacial vibrissae.
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Figure 1.1 A schematic drawing showing the area of the primary somatosensory cortex
(SI; gray area) in the mouse brain (top) and the barrel field in a flattened section of layer
IV of the SI cortex (bottom). The barrel field consists of several subfields that represent
the sinus hairs on the face and different parts of the body. Barrels in the PMBSF are the
largest and are arranged in oval rings, while barrels in the ALBSF are circular and are
randomly distributed. Abbreviations: HP, hindpaw; FP, forepaw; LJ, lowerjaw; PMBSF,
posteromedial barrel subfield; ALBSF, anterolateral subfield. Arrows indicate section

orientation; A, anterior; M, medial.
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Figure 1.1
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In cresyl violet (Nissl) sections cut parallel to the pial surface overlying the SI
cortex barrels have the appearance of oval-shaped rings (Figure 1.2A). Neurons in a
barrel are arranged in a cell-dense ring surrounding a cell-sparse center “hollow”, and are
separated from each other by hypocellular “septa” (Woolsey and Van der Loos, 1970).
The density of neurons in the hollow is reduced by about 50% relative to the sides,
whereas the density of synapses is higher by 40% (White, 1976). The 34-40 barrels
present in the PMBSF are the largest in the barrel field (150 - 380 um) and occupy 40%
of the total barrel field area. In coronal sections, barrels have a columnar appearance with
the barrel walls tapering at the most superficial and deepest regions of layer IV (Figure

1.2B). It is due to this anatomical shape that barrels derived their name.

1.4.2 Types of Barrels

Among all species examined to date, barrels were found to be present only in
rodents, lagomorphs and some suborders of marsupials (Weller, 1972; Woolsey et al.,
1975b; Rice and Van der Loos, 1977; Rice, 1985; Rice et al., 1985; Waite et al., 1991,
Weller, 1993; Waite et al., 1998). Other species such as carnivores and primates lack
barrels in their SI cortex (Feldman and Peters, 1974; Rice 1985b; Sur et al., 1980; Rice et
al., 1993). Three types of cytoarchitectonic barrels have been identified in various
species: hollow, solid and indistinct. Hollow barrels are present in the mouse where
neurons in the barrel wall surround an area of lesser cell density (Woolsey and Van der
Loos, 1970). Solid barrels are present in the rat SI cortex where the center of the barrel

contains cell dense clusters (Welker and Woolsey, 1974; Weller, 1972). Finally,
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Figure 1.2 Nissl-stained sections cut parallel to the pial surface through layer IV of the
mouse SI cortex (A) and in the coronal plane through the PMBSF (B). A. 50um-thick
sections cut tangential to the pial surface overlying the SI using vibratome and stained
with cresyl violet (Nissl) stain. Barrels in the PMBSF are arranged in cylindrical rings
“sides” surrounding a cell-sparse center “hollow” and separated from each other by
hypocellular “septa” (arrow heads). Scale bar = 400 um. B. In coronal sections, barrels
have the appearance of columnar organization that spans the whole thickness of layer IV.
Barrels derive their name from their appearance in this orientation where the septa appear
to be wider at the upper and lower aspects of layer [V (arrow heads). Abbreviations:
PMBSF, posteromedial barrel subfield; ALBSF, anterolateral barrel subfield. Barrel rows

are lettered A-E. Scale bar = 200 um.
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indistinct barrels were identified in some species such as the gray squirrel, flying squirrel
and rabbit (Woolsey et al., 1975b; Rice et al., 1985). In these species barrels were hard to
discern and septa were always absent. Their presence was identified by superimposing
adjacent sections, and by correlating the anatomical results with the electrophysiological

recording results from this area (Woolsey, 1958).

1.4.3 Organization of the Mouse PMBSF

There is an isomorphic relationship between the distribution of the mystacial
vibrissae in the whisker pad and cortical barrels. Barrels are arranged in five rows (A-E)
(Woolsey and Van der Loos, 1970) with the larger elements of each row lying caudally
and the smaller ones rostrally (Figure 1.3). Caudally, the rows are bordered by a set of
four large, straddling barrels denoted a, B, ¥, 8. In most mice, rows A and B have four
units each, row C has 6 units, row D has 7 units, and row E has 8 units (Woolsey and Van
der Loos, 1970). Barrels in the C row are the largest and are composed of about 2000
neurons (Pasternak and Woolsey, 1975; Curcio and Coleman, 1982) with myelinated and

unmyelinated axons concentrated in the barrel sides and septa (White, 1976).

1.4.4 Neuronal Components of the Barrel Field

The majority of neurons in the barrel field are stellate cells. These cells are
divided into two classes on the basis of their dendritic morphology: Class I (spiny) stellate
cells and Class II (smooth) stellate cells (Lorente de N6, 1922; Woolsey et al., 1975a;
Simons and Woolsey, 1978; Harris and Woolsey, 1981; Simons and Woolsey, 1984).

Class I stellate cells have small somata and spiny dendrites, while Class II cells
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Figure 1.3 A schematic drawing representing the mouse whisker pad on the snout (left)
and corresponding barrels in the PMBSF of the contralateral SI cortex (right). Barrels are
arranged into rows and arcs (white arrows) that replicate the distribution of whiskers in
the periphery, and each barrel is stimulated by its whisker. Barrels are arranged in five
rows (A-E) and straddled posteriorly by four large elements (a, B, v, 8). Rows A and B
contain 4 units (A1-A4), row C contains 6 units (C1-C6), row D contains 7 units (D1-D7)
and row E contains 8 units (E1-E8). Barrels in row E lie more medially (black area) and

the straddlers (hatched area) lie more posteriorly.
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have larger somata, and smoother and longer dendrites. Both types of cells are present in
the barrel hollow as well as in barrel sides. These two classes are further subdivided (a, b,
c, d) on the basis of the orientation of their dendrites and the location of their somata with
respect to the parent barrel (Woolsey et al., 1975a).

Class II stellate cell axons are long, thick, highly branched and are directed
towards the pial surface as compared to Class I neuronal axons that are thin and directed
towards the white matter (Harris and Woolsey, 1983). As for dendritic morphology,
neurons that are present in the barrel hollow have radial dendritic fields while neurons
present in the barrel side have an eccentric dendritic tree directed toward the barrel
hollow (Wocolsey et al., 1975a; Harris and Woolsey, 1983; Greenough and Chang, 1988).
Both axons and dendrites of the two types of stellate cells terminate into barrel
boundaries (Harris and Woolsey, 1983; Simons and Woolsey, 1984). Only 15% of
neurons have dendrites extending to neighboring barrels (Woolsey et al., 1975a; Simons
and Woolsey, 1984). In cells where dendrites extended to adjacent barrels, it was found
that their axons also extended to adjacent barrels (Harris and Woolsey, 1983). The above
organization of processes suggests that the majority of neurons in a barrel respond to
stimulation of one whisker while the minority of neurons respond to stimulation of
neighboring whiskers. These anatomical results have confirmed the one-to-one functional
relationship between the whisker and its barrel and suggest a closer functional
relationship among barrels in the same row than barrels of different rows (Welker, 1971;

Simons, 1978; Simons and Woolsey, 1979).
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1.4.5 Inputs to the Barrel Field
The barrel field receives massive input from cortical and subcortical structures.
Some of these afferents are related to processing somatosensory information from the

whiskers while others are thought to modulate the activity and, hence, response of

neurons in the barrel field .

1.4.5.A Thalamocortical Inputs

Vibrissal information is conveyed to the barrel field via thalamocortical afferents
arising in the ventrobasal (VB) complex (or ventral posterior nucleus) and posterior
medial (POm) nucleus of the thalamus. Thalamocortical afferents (TCAs) arising from
VB (Killackey, 1973; Killackey and Leshin, 1975; Wise and Jones, 1978; Jensen and
Killackey, 1987a) terminate into layer IV of the SI cortex forming periphery-related
clusters (Lorente de N6, 1922; Killackey, 1973; Killackey and Leshin, 1975). Labeling of
individual VB afferents revealed that they terminate mainly in two layers of the barrel
cortex: in the barrel hollow of layer IV (Figure 1.4) extending into layer III and into the
border of layers V and VI (Wise and Jones, 1978; Keller et al., 1985; Bernardo and
Woolsey, 1987; Jensen and Killackey, 1987a; Agmon et al., 1993).

TCAs to the barrel field form asymmetrical synapses in the barrel hollow (White,
1976; White, 1978; Keller et al., 1985; Keller and White, 1987; Lu and Lin, 1993; White
et al., 1997) that are found on dendritic spines and shafts of spiny and smooth stellate
cells (White, 1976; Hersch and White, 1981; Benshalom and White, 1986; White et al.,
1997). They exert an excitatory influence, through glutamate (Tsumoto, 1990; Agmon

and O’Dowd, 1992), on their postsynaptic cortical cell targets (Carvell and Simons, 1988;
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Figure 1.4 A schematic drawing representing the termination of the thalamocortical
afferents (TCAs) from the ventrobasal complex and serotonergic (5-HT) inputs from
dorsal raphe nucleus into layer IV of the SI cortex. TCAs (solid lines) terminate into the
hollow of the barrel forming dense clusters of terminal arborizations that are confined
within the barrel domains. They synapse on neurons present in the barrel hollow, which
have radially dendritic orientation, and on neurons in the barrel sides, which have
eccentric dendritic orientation. Similarly, serotonergic inputs (dotted lines) to layer IV of
the SI cortex during the first two weeks of postnatal life form dense clusters of

arborizations that matches the pattern of the TCAs termination.
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Agmon and Connors, 1992). These excitatory synapses are functional at birth (Kim et al.,
1995) and activity can be evoked in the SI cortex by peripheral stimulation in neonatal
rats (McCandlish et al., 1993; Landers and Sullivan, 1999).

Projections from the POm nucleus to the barrel field terminate in the septa
between barrels in a complementary pattern to that of VB afferents (Koralek et al., 1988;
Chmielowska et al., 1988; 1989; Lu and Lin, 1993). Projections of the POm nucleus to
the barrel field are topographically organized; that is, there is an orderly relationship
between projection neurons in the POm nucleus and their cortical target (Nothias et al.,
1988; Fabri and Burton, 1991).

1.4.5.B Serotonergic Input

Serotonergic afferents innervate the cortex starting at embryonic day (E) 16
(Lidov and Molliver, 1982; Lauder, 1990) and continue through early postnatal life
(Fujimiya et al., 1986; D’ Amato et al., 1987; Hohmann et al., 1988; Rhoades et al., 1990).
The barrel field receives transient serotonergic hyperinnervation during the first two
weeks of perinatal life (Fujimiya et al., 1986; D’ Amato et al., 1987; Aitken and Tork,
1988; Rhoades et al., 1990; Blue et al., 1991; Erzurumlu and Jhaveri, 1992). By postnatal
day (P) 1 whisker row patterns start to emerge and by P2 whisker-related patterns are
identified. Serotonergic innervation arises mainly from the dorsal raphe nucleus in the
brainstem (Bennett-Clarke et al., 1991) and serotonin (5-HT) immunoreactivity matches
the pattern of the thalamocortical afferents (Fujimiya et al., 1986; D’ Amato et al., 1987,

Rhoades et al., 1990).
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There is a temporal and spatial relationship between the TCAs and serotonergic
terminals (Figure 4); TCAs transiently express 5-HT;g receptor (Leslie et al., 1992;
Bennett-Clarke et al.,, 1993; Mansour-Robaey et al., 1998), serotonin transporter
(Bennett-Clarke, 1996; Lebrand et al., 1996; Bruning and Liangos, 1997) and genes
encoding serotonin transporter and vesicular monoamine transporter (Lebrand et al.,
1996; 1998). Furthermore, the distribution of 5-HT,g receptor during development closely
matches serotonin immunoreactivity (Leslie et al., 1992).

In the SI cortex 5-HT plays a critical role in the formation of cytoarchitectonic
barrels. Increased 5-HT levels, by either genetic manipulation or pharmacological
treatment, in the first week of postnatal life results in the absence of barrels from the SI
cortex of mice (Cases et al., 1995; 1996; Vitalis et al., 1998), whereas destruction of
serotonergic  afferents by the neurotoxins p-chloramphetamine or §,7-
dihydroxytryptamine in neonatal rats delays barrel formation and reduces barrel size
(Blue et al., 1991; Bennett-Clarke, 1994; Osterheld-Haas et al., 1994; Osterheld-Haas and
Hornung, 1996, Rhoades et al., 1998). Changes in barrel size were attributed to 5-HT
effect on the growth of the thalamocortical afferents via the 5-HT,g receptor (Bennett-

Clarke, 1994; 1995; Cases et al., 1996; Rhoades et al., 1998; Lotto et al., 1999; Lieske et

al., 1999).

1.4.5.C Other Inputs

In addition to the thalamocortical and serotonergic afferents, the barrel field
receives extrinsic inputs from the basal forebrain and locus coeruleus. Cholinergic

afferents from the basal forebrain neurons terminate into the septa between barrels
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(Lysakowski et al., 1989), while noradrenergic afferents from locus coeruleus terminate
within barrel hollows (Lidov et al., 1978). Both of these inputs modulate the activity of
neurons in the barrel field. Cholinergic inputs enhance cortical response to sensory input
and play an important role in plasticity of the barrel field (Sachdev et al., 1998; Zhu and
Waite, 1998). Noradrenergic inputs, on the other hand, modulate the plasticity and
morphology of barrel neurons (Levin et al., 1988).

The barrel field also receives intrinsic inputs from other layers in the barrel cortex.
For instance, corticothalamic efferents, arising from neurons in the infragranular (V/VI)
and supragranular (I/II) layers, send axon collaterals that terminate in barrel hollows
(Wise and Jones, 1977; Hersch and White, 1981; White and Hersch, 1982; White and
Keller, 1987; Chmielowska, 1988; 1989). Ipsilateral corticocortical projections arising
from cells in layers III and V project to the SII cortex, motor cortex and adjacent areas in
layer IV (Wise and Jones, 1976; Akers and Killackey, 1978; Chapin et al., 1987;
Olavarria et al., 1984; Fabri and Burton, 1991; Kim and Ebner, 1999). The barrel field
also receives projections from the contralateral barrel field, SII cortex and motor cortex
through the callosal pathway that terminate in the septa between barrels (White and

DeAmicis, 1977; Akers and Killackey, 1978; Olavarria et al., 1984; Welker et al., 1988).

1.5 Anatomy and Development of the Whisker-to-Barrel Pathway

The whisker-to-barrel trigeminal pathway starts with the hair follicle of the
mystacial vibrissae on the muzzle area. The spatial distribution of the mystacial vibrissae
at the periphery is replicated through the pathway by the topographic organization of the

afferents and neuronal somata to give rise to whisker-related patterns. Whisker-related
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patterns emerge in sequence during development appearing first in the brainstem
trigeminal nuclei, then in the thalamus and lastly in the SI cortex. In the trigeminal (V)
brainstem complex whisker-related patterns are referred to as “barrelettes” (Belford and
Killackey, 1979a; Ma, 1991). In the thalamus, they are referred to as “barreloids” (Van
der Loos, 1976) and in the cortex they are called “barrels” (Woolsey and Van der Loos,
1970). They appear in a peripheral-to-central order where they are evident in the
brainstem trigeminal complex nuclei at birth (Chiaia et al., 1992b) and at two days of
postnatal life (P2) in the thalamus (Belford and Killackey, 1979b) and lastly they appear
in the cortex at P3 in mice and rats (Rice and Van der Loos, 1977; Rice et al., 1985; Senft

and Woolsey, 1991).

1.5.1 Mystacial Vibrissae

The mystacial vibrissae are motile, highly sensitive and are a means by which the
rodent explores the surrounding environment (Vincent, 1912; Welker, 1964; Carvell and
Simons, 1990). Each hair follicle of the mystacial vibrissae is innervated by a bundle of
100 - 200 myelinated sensory fibers (Lee and Woolsey, 1975; Renehan and Munger,
1986; Rice et al., 1986; Rice, 1993; Rice et al., 1993) and each of these peripheral fibers
innervates a low-threshold mechanoreceptor and responds to stimulation of a single
whisker (Zucker and Welker, 1969; Jacquin et al., 1986). These follicular nerves form the
infraorbital nerve, a branch of the maxillary subdivision of the trigeminal nerve. Primary
afferents transmit information regarding velocity, amplitude, duration, frequency and
direction of hair deflection (Zucker and Welker, 1969; Gottschaldt et al., 1973; Gibson

and Welker, 1983; Lichtenstein et al., 1990).
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1.5.2 Trigeminal Ganglion

The cell bodies of the peripheral afferents lie in the Gasserian trigeminal ganglion
(Dorfl, 1985). V ganglion cells appear between E10.5 and E13.5 in the rat (Forbes and
Welt, 1981; Rhoades et al., 1991) and between E9 and E12 in the mouse (for review see
Davies, 1988a; 1988b). V ganglion peripheral and central projections are topographically
organized when they start to grow toward their targets, the whisker pad and the brainstem
V nuclei (Erzurumlu and Jhaveri, 1992). Peripheral axons arrive at the whisker pad by
Ell in the mouse and by E13 in the rat (Van Exan and Hardy, 1980; Erzurumlu and
Killackey, 1983; Scarisbrick and Jones, 1993). By E14, whisker row patterns can be
distinguished in the rat snout (Erzurumlu and Jhaveri, 1992). Similarly, central processes
of V ganglion cells reach the brainstem at E13 and by E14 whisker row patterns are
distinguished in the spinal V nucleus (Erzurumlu and Jhaveri, 1992).

Natural cell death (~ 55%) in the V ganglion neurons occurs between E14 and
birth (Davies and Lumsden, 1984) and plays an important role in formation of whisker-
related patterns in the brainstem. A 36% increase in the number of surviving V ganglion
cells following injections of nerve growth factor (NGF) into rat fetuses at E15 and Ei8,
results in the loss of whisker-related patterns in the brainstem at birth, whereas a 53%
decrease in V ganglion cells at birth following fetal injections of antibodies to NGF or its

receptor, did not have any effect on these patterns (Henderson et al., 1992).

1.5.3 Brainstem
The central processes of the V ganglion neurons terminate on second order

neurons in the ipsilateral trigeminal sensory complex in the brainstem (Belford and
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Killackey, 1979a; 1979b; Erzurumlu et al., 1980; Hayashi, 1980; Erzurumlu and
Killackey, 1983; Bates and Killackey, 1985). Second order neurons in the brainstem
appear between E12 and E15 (Miller and Muller, 1989), and then migrate to their
appropriate position in the brainstem between E12 and E21 (Al-Ghoul and Miller, 1989).

Vibrissal representations in the brainstem trigeminal complex of rodents
“barrelettes” are present in the nucleus principalis, and in the interpolaris and caudalis
subdivisions of the spinal nucleus but not in the oralis subdivision of the spinal nucleus
(Belford and Killackey, 1979a; Durham and Woolsey, 1984; Ma and Woolsey, 1984; Ma,
1991). Barrelettes become obvious by E20 in the interpolaris V nucleus and at birth in the
principalis V brainstem nucleus (Chiaia et al., 1992c). At all times the pattern is more
distinct in the interpolaris V brainstem nucleus than in the principalis nucleus due to the
wide septa between the stained patches.

In transverse sections, barrelettes appear as clusters of neurons, the “sides”,
surrounding relatively cell-free “hollows” when stained with cresyl violet (Nissl), and as
patches of intense staining when stained using histochemical techniques (Belford and
Killackey, 1979a; 1979b; Ma and Woolsey, 1984; Ma, 1991; 1993). The majority of
neurons that form the barrelette sides have dendrites that are predominantly directed
toward the barrelette hollow (Ma, 1991). A small fraction of neurons that form the
barrelette sides in the interpolaris and caudalis subdivisions of the spinal nucleus give rise

to dendritic arbors that extend into adjacent barrelettes (Ma, 1991).
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1.5.4 Thalamus

Second order neurons in the trigeminal nuclei send projections to the contralateral
VB of the thalamus (Smith, 1973). Thalamic neurons appear between E14 and E16 in the
mouse (Angevine, 1970) and axonal outgrowth starts at E16 (Catalano et al., 1991). VB
receives projections mainly from the principalis nucleus of the trigeminal complex
(Erzurumlu and Killackey, 1980; Erzurumlu et al., 1980; Feldman and Kruger, 1980;
Peschanski, 1984; Chiaia et al., 1991; Williams et al., 1993) and to a lesser degree from
the spinal trigeminal nucleus (Chiaia et al., 1991a; Williams et al., 1994). Projections
from the trigeminal complex are topographically organized in the VB nucleus and form
discrete structural and functional units called “barreloids” (Van der Loos, 1976, Belford
and Killackey, 1979a; Land and Simons, 1985). Barreloids are best seen in transverse
oblique sections using either Nissl stain or histochemical techniques (Van der Loos,
1976; Belford and Killackey, 1979a). Diffuse staining in VB is evident at PO, and row-
related patterns emerge at P1 and lastly whisker-related patterns are obvious at P2 as
revealed by succinic dehydrogenase histochemistry (Belford and Killackey, 1979b).

The trigeminal projection to the POm nucleus has been described recently (Chiaia
et al., 1991a; Williams et al., 1994). Projections from the spinal trigeminal nucleus
terminate in the POm nucleus of the thalamus, while projections from nucleus principalis
are less intense. The spinal nucleus also projects to the superior colliculus (Feldman and
Kruger, 1980; Killackey and Erzurumlu, 1981; Cadusseau and Roger, 1985; Rhoades et

al., 1988) which in turn projects to the POm nucleus (Roger and Casdusseau, 1984).
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Single-whisker somatotopy is lost in the POm nucleus as a result of divergence of

multiple inputs from the trigeminal complex (Chiaia et al., 1991a; 1991b).

1.5.5 SI Cortex

Third order neurons in the VB nucleus send projections to the ipsilateral
somatosensory cortex (Wise and Jones, 1978) to terminate in a somatotopic pattern that
mirrors the whiskers arrangement. Cortical neurons appear between E15 and E17 (Miller,
1988) and differentiation starts before birth and continues during the first few days of
postnatal life (Rice and Van der Loos, 1977; Senft and Woolsey, 1991; Catalano et al.,
1991). Barrels appear at P4 postnatally and the septa between barrels appears two days
later (Rice and Van der Loos, 1977; Senft and Woolsey, 1991). The POm nucleus
projects to the septa between barrels in layer IV, and to the supragranular (II/IIf) and
infragranular (V/VI) layers (Lin et al., 1987; Koralek et al., 1988, Chmielowska, 1989).

As noted above, there is a highly ordered relationship between the distribution of
whiskers in the periphery and their corresponding whisker-related patterns in the
trigeminal somatosensory pathway. This morphological and physiological one-to-one
relationship between the whisker and its barrel has offered scientists a great system to
understand mechanisms that underlie pattern formation in the central nervous system, and
provides a rich source for studying development and plasticity in newborns and adults. In
doing so, the whisker-barrel model becomes a valuable model to provide scientists with
answers to general questions such as how the brain obtains its anatomical and functional

regionalization.
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1.6 What Makes a Barrel?

An important, yet, unresolved question is how barrels in the SI cortex are formed.
Is barrel formation dependent on intrinsic factors that are specified in the cortex, i.e.
genetic factors, or is it dependent on extrinsic factors that are imposed on the developing
cortex from the periphery. Numerous studies revealed that clustering of TCAs and intact

innervation from the periphery are necessary for barrel formation.

1.6.1 Thalamocortical Afferents

The somatosensory cortex is exposed to thalamocortical inputs early in
development and barrel formation is dependent on their growth in layer IV. TCAs are
topographically organized from the time that they exit the thalamus at E16 and during
their radial growth through cortical layers (Catalano et al., 1996). At birth, they are
present in layers VI and V and at P2 they are in the deeper aspects of the trilaminar
cortical plate, the site of future layer IV, and lastly they form dense clusters of terminal
arborization in layer IV at P3 (Lorente de N6, 1922; Killackey, 1973; Killackey and
Leshin, 1975; Waite, 1977; White and DeAmicis, 1977; Hersch and White, 1982; Keller
et al., 1985; Bernardo and Woolsey, 1987; Jensen and Killackey, 1987a). TCAs terminate
in a precise order without an initial overgrowth of axonal terminals (Rice and Van der
Loos, 1977; Wise and Jones, 1978; Dawson and Killackey, 1985; Erzurumlu and Jhaveri,
1990; Catalano et al., 1991; Agmon et al., 1993, Agmon et al., 1995; Catalano et al.,
1996). Dense clusters of TCAs terminating in the barrel hollow have been visualized

using different histochemical stains including cytochrome oxidase histochemistry (Wong-
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Riley, 1980; Land and Simons, 1985; Figure 1.5) and succinic dehydrogenase
histochemistry (Belford and Killackey, 1979a).

A role for thalamocortical afferents in barrel formation has been established by
several studies. Elimination of the thalamic axons before they invade layer IV resulted in
the absence of barrels without any effect on the laminar organization of the cortex in rats
(Wise and Jones, 1978). On the other hand, normal cortical barrels form after
transplantation of late-embryonic visual cortex to the position of the SI cortex in neonatal
rats (Schlaggar and O’Leary 1991). More recently, Schlaggar and O’Leary (1994)
provided compelling evidence that in the SI cortex of rats TCAs are arranged in a
periphery-related pattern at birth. Using acetylcholinesterase (AChE) histochemistry as an
early transient marker for the thalamocortical afferents (Kristt, 1979; Robertson, 1987),
the authors revealed that at birth row-related patterns are evident in the presumptive SI
cortex and by 24 hours postnatally clusters of AChE-reactive fibers in the barrel hollow
are in place.

Although the above studies provide evidence for the importance of the TCAs in
initiating barrel formation, none of them was successful in demonstrating how TCAs are
segregated into periphery-related patterns, or why the somatotopic organization of the
TCA:s, although present in other species (Waite et al., 1991; 1996), does not resuit in the

formation of cytoarchitectonic barrels in their cortices.

1.6.2 Innervation from the periphery
Differentiation of cytoarchitectonic barrels depends on the growth and proper

clustering of TCAs which in turn depends on an intact pathway from the periphery.
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Figure 1.5 A section through layer IV of an adult mouse that was processed for
cytochrome oxidase (CO) histochemistry. CO staining reveals the presence of CO-dense
clusters that are confined to the barrel hollow and are coincident with the thalamocortical
afferents’ termination in layer IV of the SI cortex. Abbreviations are the same as in Figure

1.2 legend. Scale bar = 400um.
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Numerous studies in the past two decades have demonstrated the importance of an intact
anatomical pathway from the periphery in the emergence of whisker-related patterns in
subcortical and cortical regions. Since periphery-related patterns develop in a peripheral-
to-central order, there is a defined critical period at each of these synaptic relays during
which these patterns are most susceptible to change. The critical period for barrel
formation ends by P5; manipulation of the pathway after this period does not produce a
change in the structure of barrels (Woolsey and Wann, 1976; Jeanmonod et al., 1981).

Van der Loos and Woolsey (1973) were the first to provide evidence for the
importance of periphery innervation and intact trigeminal pathway in barrel formation. In
their study, they cauterized either the whisker follicles in row C, or all rows except for
row C, at birth. Examination of the barrel field in adolescent mice revealed that in every
case cauterization of a follicle caused absence or shrinkage of cortical barrels
corresponding to the damaged body surface with an expansion of adjacent rows. The
morphological changes in row C barrels were attributed to reorientation of dendrites of its
neurons towards adjacent active rows (Harris and Woolsey, 1981).

Subsequent studies in mice and rats confirmed the above findings. Neonatal
lesions of the vibrissae follicle or transection of the infraorbital nerve result in the loss of
segregation of trigeminal afferents and loss of whisker-related patterns corresponding to
the lesioned peripheral receptors (Woolsey and Wann, 1976; Killackey et al., 1976;
Killackey and Belford, 1979; Woolsey et al., 1979; Killackey and Belford, 1980; Steffen
and Van der Loos, 1980; Jeanmonod et al., 1981; Waite and Cragg, 1982; Durham and

Woolsey, 1984; Jensen and Killackey, 1987b; Chiaia et al., 1992a; 1992b; 1992c;
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Killackey et al., 1994; Watanabe et al., 1995; Chiaia et al., 1996; 1997; Higashi et al.,
1999). Whisker trimming (Verley and Axelrad, 1977) or plucking (Weller and Johnson,
1975), without causing damage to the follicle, does not produce any changes in the
appearance of barrels. However, it has been reported that neuronal activity is reduced in
the deprived barrels (Durham and Woolsey, 1978; Wong-Riley and Welt, 1980; Land and

Simons, 1985).

1.6.3 Intrinsic Cortical Factors

As noted above, numerous studies have indicated the dependence of barrel
formation on thalamocortical afferent clustering which in turn is dependent on an intact
innervation from the periphery. The question remains of whether the manifestation of
cortical barrels is completely under the control of extrinsic factors such as TCAs, or
whether molecular cues that are specified in the developing SI cortex, i.e. intrinsic
factors, play a role in the arrangement of TCAs and in barrel formation. For several
years, this issue has been the subject of debate between scientific groups.

Cooper and Steindler (1986) reported the existence of a lectin marker for
glycoconjugate molecules which are expressed by glial cells in the cortex and delineate
barrel boundaries prior to the differentiation of cortical barrels. Delineation of boundaries
was transient, appearing as early as late P2 and disappearing by the end of the second
postnatal week. Accordingly, the authors proposed that molecular cues that are intrinsic
to the cortex influence patterning of the TCAs and differentiation of barrels. Subsequent
studies have provided evidence for the role of intrinsic factors in formation of whisker-

related patterns in the cortex. Using immunocytochemistry, extracellular matrix
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molecules such as tenascin, tenascin-binding protein and neurocan or adhesion molecules
such as N-cadherin were reported to delineate barrel boundaries between 24 and 48 hours,
before cytoarchitectural barrels are visible in the cortex by Nissl stain (Crossin et al.,
1989; Steindler et al., 1989; Steindler et al., 1990; Jhaveri et al., 1991; Mitrovic et al.,
1994; Watanabe et al., 1995; Huntley and Benson, 1999).

With the advent of sensitive techniques for axonal tracing, subsequent studies
revealed that TCAs are arranged in periphery-related pattern at birth, two days before the
delineation of barrel boundaries by these glycoconjugates (Erzurumiu and Jhaveri, 1990;
Jhaveri et al., 1991; Schlaggar and O’Leary, 1994), hence suggesting that extrinsic factors
guide the differentiation of barrels and patterning in the SI cortex. However, it is still
conceivable that glial and cortical cell molecules might play a role in barrel formation
where they act as barriers between barrels by their action as inhibitors of neurite

outgrowth (Silver et al., 1987; Oakley and Tosney, 1988; Snow et al., 1990).

1.6.4 Activity-Dependent Mechanisms

While several studies have established the importance of an intact pathway from
the vibrissae in barrel formation, there is still some controversy regarding the role of
neuronal activity-dependent mechanisms in establishing cortical barrels. Purves and his
colleagues (1994) proposed that barrels arise from induction and intercellular recognition
as opposed to ocular dominance columns that arise as a result of activity-dependent
mechanisms. They hypothesized that induction mechanisms occur at each level of the
trigeminal pathway which will establish positional information through intercellular and

trophic interaction with targets. According to this model activity does not play a role in
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establishing cortical barrels in the SI cortex but it does play a role in influencing the size
of barrels during development (Riddle at al., 1992; 1993). In support of this hypothesis,
blocking neuronal activity in the infraorbital nerve of newborn rats by TTX did not have
an effect on whisker-related patterns in the brainstem, thalamus and cortex (Henderson et
al., 1992). Similarly, silencing neuronal activity in the cortex for the first two weeks of
postnatal life by either TTX or N-methyl-D-aspartate (NMDA) antagonists did not
prevent the appearance of whisker-related patterns in the cortex and subcortical structures
(Chiaia et al.,, 1992d). Moreover, blockade of activity did not affect the cortical
reorganization that usually occurs after vibrissae follicle damage or infraorbital
transection at birth (Chiaia et al., 1994).

The aforementioned studies clearly suggest that activity in the trigeminal pathway
is not necessary for formation of whisker-related patterns. However, in the past few years
a new line of evidence started to emerge implicating activity and NMDA receptors in
barrel formation. Schlaggar and his colleagues (1993) provided evidence for the role of
postsynaptic activity in structural plasticity in the SI cortex; pharmacological blockade of
NMDA and non-NMDA receptors by 2-amino-5-phosphonovaleric acid (APV) with
concomitant lesioning of row C follicles blocks cortical changes that normally occur after
denervation. Recently, it has been reported that blocking postsynaptic activity, by
application of APV, during the critical period of barrel formation disrupts the one-to-one
relation between vibrissae and its barrel and the columnar organization of projections to
supragranular layers in a barrel column (Fox et al., 1996). The requirement for a

functional NMDA receptor in the formation of whisker-related patterns in the trigeminal



brainstem complex has been reported (Li et al., 1994; Kutsuwada et al., 1996). Both
studies reported that in mice lacking the R1 or R2 regulatory subunits of the NMDA
receptor, barrelettes fail to develop. Unfortunately, these mutants die shortly after birth
which prevents the assessment of barrels in their cortices; however it is unlikely that
barrels will develop if whisker-related patterns were absent in lower parts of the pathway.

In support of activity-dependent mechanisms at the thalamocortical synapses in
the developing SI cortex, Malenka and colleagues (Crair and Malenka, 1995; Feldman et
al., 1998) reported that long-term potentiation and long-term depression can be induced in
the barrel cortex of rats only during the first postnatal week, a developmental period that
correlates with the synaptogenesis of thalamocortical afferents. Moreover, activation of
NMDA glutamate receptors was very important for generating long-term potentiation
(LTP). Loss of LTP by the end of the first week of postnatal life was accompanied by a
decrease in NMDA synaptic currents and a change in NMDA receptor properties. More
recently, it has been reported that developing thalamocortical synapses express
postsynaptic kainate and AMPA (o-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate)
receptors, and that activity-dependent mechanisms regulate the expression of kainate
receptors (Kidd and Isaac, 1999).

In parallel with the above studies, it has been reported that serotonergic activity
during the critical period plays an important role in barrel formation. A nine-fold increase
in 5-HT during the critical period of barrel formation resulted in the absence of barrels
from the SI cortex of mice deficient in monoamine oxidase A (the enzyme that degrades

5-HT) (Cases et al., 1995; 1996). This was replicated by the use of a drug that inhibits
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monoamine oxidase A activity. On the other hand, depletion of 5-HT from the cortex by
systemic application of neurotoxin delays barrel formation and reduces the size of

thalamocortical afferents zones (Bennett-Clarke et al., 1994).

1.7 Barrelless Mice (brl)

A spontaneous mutation in a mouse line bred at Université de Lausanne
(Switzerland) for normal mystacial vibrissae has generated mice that lack
cytoarchitectonic barrels in layer IV of their SI cortex as revealed by cresyl violet (Nissl)
staining (Welker et al., 1996; Figure 1.6). Other than the absence of barrels, barrelless
(brl) mutants did not show cytoarchitectonic abnormalities in their SI cortex at any
postnatal stage, nor did they suffer from any obvious neurological or behavioral disorder.
Additionally, whisker-related patterns in the thalamus “barreloids” were poorly formed
while barrelettes in the brainstem were normal as revealed by cytochrome oxidase
histochemistry (Welker et al., 1996).

Despite the absence of barrels from layer IV, somatotopy in the SI cortex was still
preserved as seen in 2-deoxyglucose mapping and in physiological recordings. However,
axonal tracing of individual TCAs following injections of dextran into VB revealed an
overgrowth of TCA arbors in layer IV of brl mutant mice in contrast to wild-type animals
in which TCA arbors terminate in barrel domains (Welker et al., 1996).

In the laboratories of Drs. Neumann and Guernsey, efforts were made to map and
isolate the gene responsible for the bri phenotype. The brl phenotype is an autosomal

recessive trait and the brl locus was mapped to the proximal region of chromosome 11
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Figure 1.6 Nissl-stained tangential section (50um) through layer IV of the SI cortex of
the barrelless (brl) mutant mouse. The pattern of cell dense specialization present in wild-
type mice (Figure 1.2) is not present in the brl cortex, instead layer IV neurons are

uniformly distributed. Scale bar = 400 um .



Figure 1.6
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tightly linked with the microsatellite marker DIIMir226 (Welker et al., 1996). Three
strategies were used to isolate the brl gene by positional cloning: fine resolution genetic
linkage mapping, physical mapping and candidate gene analysis. Construction of a high
resolution genetic linkage map around the br! locus was initiated by my colleague D. S.
Smallman who mapped the brl locus to an interval of 2.2 centiMorgan (cM; Figure 1.7).
Evaluation of candidate genes was initiated by Dr. W. Ourednik who ruled out Ca**
calmodulin-dependent protein kinase [Ib (Camk2b) as a candidate for brl by sequencing

the coding region of the gene. Together these strategies offer powerful tools in isolating

the brl locus.

1.8 Objectives and Overview of Research Plans

The objective of studies presented in this dissertation is to isolate and characterize
the gene responsible for the brl phenotype, and to attempt to determine how this mutation
gives rise to the barrelless phenotype. This was achieved by construction of high
resolution linkage and physical maps in the region of interest and evaluation of candidate
genes. In order to isolate the brl locus a high resolution genetic map was constructed
around the brl region (chapter 2). The second step of positional cloning was initiated by
the use of br! flanking markers to screen genomic libraries to pull out genomic DNA
fragments that contains the region of interest (chapter 3). A physical map was constructed
in the brl region and candidate genes for brl were identified (chapter 3). Adenylyl cyclase
type I gene, a gene that was mapped to the brl critical region, was evaluated as a
candidate gene for brl (chapter 4). The initial goals were to characterize the brl gene and

its product(s) and to determine the pathogenesis of the barrelless phenotype from the
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Figure 1.7 A genetic linkage map in the region of the barrelless (brl) locus in proximal
mouse chromosome 11. The numbers on the left represent map distances in centiMorgan
(cM), and the numbers on the right represent the Whitehead institute microsatellite
markers. The brl (bold) locus is tightly linked with the microsatellite marker D11Mit226

(bold). The brl locus is mapped to a 2.2 cM interval. The centromere is represented by a
black circle.
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barrelless mutation. Once adenylyl cyclase type I gene was identified, the next set of
short-term goals were more sophisticated than they would have been if brl was an
unknown gene with no sequence homology to a known gene. At that point we were more
interested in determining the pathogenesis of the br! phenotype, and to construct a
pathway for molecules that play an important role in barrel formation. Thus, the roles of
cAMP-dependent protein kinase (chapter 5) and neurotrophins (chapter 6) were
investigated. In doing so, some of the molecular and cellular mechanisms that underlie
patterning in the cerebral cortex can be revealed. Understanding how patterns are formed
is of great importance since the function of the central nervous system depends on the
arrangement and the connections that neurons form among themselves and with their
targets. In addition, abnormalities in patterning in humans usually lead to mental

retardation and neurological disorders.



Chapter 2

Evaluation of Ca?*/Calmodulin-Dependent

Protein Kinase II1 b

Results presented in the next three chapters have been published in Nature Genetics

(1998) 19: 289-291, and are presented here with permission.
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2.1 Introduction

Ca’ /Calmodulin-dependent protein kinase II (CaM kinase II) is an oligomeric
multifunctional isozyme that is involved in the regulation of diverse physiological
conditions in response to an increase in intracellular Ca™. Itis present in most tissues but
most abundant in the brain, constituting approximately 0.3% of total brain protein
(Bennett et al., 1983). In the telencephalon it comprises ~ 2% of the total hippocampal
protein compared to 0.1% in the pons/medulla region (Erondu and Kennedy, 1985). The
holoenzyme is composed of 8-12 subunits. Five distinct, but closely related, subunit
isoforms have been cloned termed o, B, B, ¥, and 8. Each is encoded by a separate gene
except for the B’ which is a splice variant of the f mRNA.

CaM kinase II purified from brain contains o, B, and B’ subunit isoforms which
vary widely in composition during development and in different regions of the brain
(Sugiura and Yamauchi, 1992; Burgin et al., 1990; Kelly et al., 1987; Erondu and
Kennedy, 1985). The ratio of o and P subunits, for example, in the adult rat forebrain is
3-4:1 compared to 1:4 in the cerebellum (McGuinness et al., 1985; Miller and Kennedy,
1985). At birth, the B subunit is the predominant isozyme which declines after the second
week of postnatal life (Sahyoun et al., 1985; Weinberger 1986). The change in isozyme
composition during development is due to the increase in the o subunit expression.
Moreover, CaM kinase subcellular localization changes during development from being
predominantly cytosolic to particulate (Kelly and Vernon, 1985; Sahyoun et al., 1985;
Weinberger and Rostas, 1986). The enzyme is activated by binding of Ca* and

calmodulin (Ca®/CaM) and subsequent autophosphorylation which allows the kinase to
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be active even after Ca** levels decrease. Protein phosphorylation mediated by CaM
kinase II has been implicated to play an important role in signaling (McGuinness et al.,
1984). CaM kinase also plays an important role in synaptic plasticity such as long-term
potentiation (LTP) (Malinow et al., 1988) and in learning and memory.

The CaM kinase II a isoform is neurospecific and is present both pre- and
postsynaptically (Burgin et al.,, 1990; Erondu and Kennedy, 1985). The major
postsynaptic density protein was demonstrated to be identical to this subunit (Kennedy et
al., 1983; Goldenring et al., 1984). Expression of the « subunit varies during
development from barely detectable at 4 days of postnatal life to an increase of 10-fold by
day 16 in the frontal cortex (Burgin et al., 1990). CaM kinase II o was indicated in the
induction of LTP in the hippocampus (Malenka et al., 1989; Malinow et al., 1989).
Mutant mice that are deficient in the o subunit of CaM kinase II (Camk2a) were
generated (Silva et al., 1992a; 1992b). These mice were deficient in their ability to
produce LTP and exhibited spatial learning impairments which confirmed previous
studies of the involvemnent of CaM kinase II & isoform in synaptic plasticity and memory.
While plasticity is impaired in these mutants, barrels form normally and their receptive
fields properties are similar to wild-type animals which suggests the involvement of CaM
kinase II a isoform in subsequent events of neocortex development (Glazewski et al.,
1996).

Brain-specific Ca®*/Calmodulin protein kinase Il b gene (Camk2b) was evaluated
as a candidate gene for the br/ locus. Camk2b gene encodes the P subunit of the enzyme

and is located on proximal chromosome 11 (Karls et al., 1992; Copeland et al., 1993). In
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their study, Karls and his colleagues mapped Camk2b locus to chromosome 11 using
interspecific backcross analysis. Their results show no recombination between Camk2b
and Leukemia inhibitory factor (Lif) genes suggesting that the two loci are tightly linked.
Camk2b gene was evaluated as a candidate gene for brl for the following reasons: 1)
Camk2b gene was mapped to the proximal region of chromosome 11, 2) Camk2b is
highly expressed in the brain, particularly the hippocampus, cortex, amygdala, striatum,
lateral septum and cerebellar cortex (Erondu and Kennedy, 1985; Fukunaga et al., 1988;
Ouimet et al., 1984; Bennett and Kennedy, 1987; Tobimatsu et al., 1988; Tobimatsu and
Fujisawa, 1989; Burgin et al., 1990), 3) Camk2b is localized on both sides of the synapse
where it is involved in neuronal signaling. Synapsin I, a well known substrate for CaM
kinase II, is highly concentrated in the outer surface of presynaptic vesicles and is
believed to be involved in the regulation of neurotransmitter release (DeCamilli et al.,
1983; Huttner et al., 1983). In addition, CaM kinase Il has been suggested to play an
important role in long-term potentiation, a cellular model for learning and memory (Bliss
and Collingridge, 1993), providing evidence for its role in synaptic activity (Soderling
1993; Lisman 1994; Suzuki 1994), 4) the B subunit is the dominant isozyme at birth and
during the first two weeks of postnatal life (Sahyoun et al., 1985; Weinberger and Rostas,
1986; Kelly et al., 1987; Burgin et al., 1990) coinciding with barrel formation (Rice et al.,
1985). In their study, Burgin and colleagues reported that the B-mRNA is the major
mRNA species in 4-day-old rat forebrains whereas the a-mRNA is barely detectable.
During the next two weeks of postnatal life the level of B-mRNA decreases by half while

the level of a-mRNA increases by 10-fold. Likewise, barrels are evident in the mouse
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somatosensory cortex at 4 days of postnatal life, 5) Camk2b is regulated by Ca** and
calmodulin which converts the enzyme from a Ca?*-dependent into a Ca**-independent
state. Autophosphorylation allows the enzyme to maintain its activated state beyond the
duration of the Ca®* signal causing a prolonged effect in the cell, and finally, 6) results
from the Camk2a mutant provided evidence for the involvement of CaM kinase II in
cortical activity as well as excluding the involvement of the o subunit in barrel formation.

Camk2b cDNAs were cloned and sequenced in our laboratory by Dr. W. Ourednik
from both CS7BL/6J and brl/brl mice. Sequencing results of the coding region revealed
no significant difference in the nucleotide sequence between C57BL/6J inbred mice and
bri/brl mutant mice partially ruling out Camk2b as the brl gene. Since expression
differences were not ruled out, the 3’ untranslated region (3’ UTR) was sequenced to find

a polymorphism that could be used to map the Camk2b locus relative to bri.
2.2 Reagents and Solutions

All reagents were autoclaved prior to use for 20 minutes on liquid cycle at 15
Ibs/sq. in. unless otherwise stated. All reagents were of molecular grade and purity.
Radiolabeled isotopes were purchased from Amersham Life Sciences (USB Cleveland,

Ohio; U.S.A). Preparation of reagents and buffers are summarized in appendix A-1.

2.3 Methods

2.3.1 Subjects
Adult C57BL/6J (B6) inbred mice and barrelless (CD-1(ICR)BR, brl) mutant

mice were used for genotyping animals. The original stock of B6 animals were purchased
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from the Jackson Laboratories (Bar Harbor, ME, U.S.A.) while brl mutant mice were
obtained from Université de Lausanne (Switzerland ). Before the arrival of br! mutants to
Halifax, Nova Scotia they were shipped to Charles River Laboratories (Wilmington, MA;
U.S.A)) to eliminate any pathogenic organisms in the colony. Animals were then housed
in the Carlton Animal Care Facility at Sir Charles Tupper Building at Dalhousie
University. Animals were maintained on a regular laboratory diet and water. Protocols for

animal use have been approved by the Dalhousie committee on animal care and usage.

2.3.2. Extraction of DNA from Cerebellum

Mice were killed with an overdose of ether and then decapitated. Brains were
immediately removed and placed in 3.7% formaldehyde solution (BDH, Toronto, ON;
Canada). The right cerebellar hemisphere was excised and transferred to a tube which
was immersed quickly in liquid nitrogen. For DNA preparation, a portion of the
cerebellum was divided into small pieces with a sterile razor followed by the addition of
0.5 ml of freshly prepared extraction buffer. Tubes were incubated overnight, in a
horizontal position, with moderate shaking in a 55°C shaker (G24 Environmental
Incubator Shaker, New Brunswick Scientific Co. Inc. Edison, NJ; U.S.A). The tubes were
then centrifuged in a microcentrifuge (BHG Hermle Z230 M, Mandel Scientific Co.
LTEE/LTD) for 10 minutes. The supematant was transferred to another tube containing
450 pl of ice-cold isopropyl alcohol (BDH). At this point threads of DNA were visible
where they were transferred with a sterile micropipette tip to another set of tubes each
containing 300 ul of deionized distilled water. Tubes were incubated overnight, in a

vertical position, in a 60°C shaker. DNA concentration was estimated using Beckman,
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DU-64 Spectrophotometer (Beckman Instruments, Inc. Harbor Blvd. Fullerton, CA;

U.S.A). Samples were prepared at a final concentration of 50 ng/pl of DNA.

2.3.3 Polymerase Chain Reaction (PCR)

All PCR reactions were performed in a total volume of 10 pl unless otherwise
stated. The PCR reactions contained 4.5 pl of autoclaved deionized distilled water, 1.0 pl
of 10x PCR buffer (100 mM Tris-HCl, 500 mM KClI, 15 mM MgCl,, and .01% gelatin),
040 ul of 5 mM dANTP (Pharmacia, Biotech), 0.50 pl of 10 uM of each forward and
reverse primer (Beckman Oligo 1000 DNA Synthesizer), 0.10 pl of Taq and a final
concentration of 150 ng of genomic DNA. PCRs were performed using an automated
thermal cycler (PTC-100 Programmable Thermal Controller, MJ Research Inc.), for 35
cycles of 94°C denaturation (1 minute), calculated annealing temperature (1 minute),
72°C extension (2 minute), and 72°C final extension (15 minutes) with an initial

denaturation step at 94°C for 2 minutes.

2.3.4 Primer Preparation, Cleavage and Deprotection

Table 2.1 summarizes primer pair sequences used in PCR reactions based on
Camk2b complementary DNA (cDNA) sequence (Genebank accession number: U63615).
Primers were synthesized on a Beckman Oligo 1000 DNA synthesizer and were used in
reactions after cleavage and deprotection using Beckman’s Ultra Fast Cleavage and
Deprotection Kit. Primers were cleaved and deprotected from their synthesized columns

according to manufacturer’s instructions.

2.3.5 Agarose Gel Electrophoresis

Agarose gels (FMC Bioproducts, Rokland, ME; U.S.A.) were prepared at
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Primer Sequence Anneal. Size

temp. (b.p.)

Fl1 GAC AGA GTT GGT GTT TGG AG 60 984
R1 GTG TTT GTC CACTCA GCT TG

F2 ACA AAA TTT TGG CAT CGG ATG AACT 63 807
R2 GTG TTT GTC CACTCA GCT TG

F3 AAG GAA AAA GCT GTA AAAATCTAGC 60 749
R3 GTG TTT GTC CACTCA GCT TG

F4 GTG TTT GTC CACTCA GCT TG 60 260
R4 AGC CTG CCT TCT CTC TAA GC

F5 AAG GCC AAA ATT GGT TAG GG 58 270
RS CCT AGCCTG ACTTTGTAACA

F6 TGT GGG TGG CCC TGGCCCTT 64 280
R6 AGG TGG ACA GTCCCCTTGGA

F7 CTA CAA ATC AAG CCA AGG GA 58 290
R7 TTG TGG AGA TAA CAA GGT GG

F8 TTG CCA TGG ACA GTG TGA GG 58 360
R8 GCA GTT TCC CGA GAC AGA AC

Table 2.1 List of primer pairs used in genomic DNA amplification of the 3’ untranslated
region of the Camk2b gene as predicted from the published cDNA sequence (Genebank
accession number: U63615). Abbreviations: Anneal. temp., annealing temperature; b.p.,
base pair; F1-F8, forward primers; R1-R8, reverse primers.
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concentrations ranging from 1.0 - 2.5 % depending on amplicon size. Ethidium bromide
was used (Molecular Sigma Biology, Sigma Chemical Co. St. Louis, MO; U.S.A) at a
final concentration of 0.5 pg/ml. DNA samples were mixed with the desired amount of
gel-loading buffer, at a final concentration of 1x, and were loaded into the gel slots. Gels
were run until a complete separation of DNA was achieved. At the end of the run,
electrical current was turned off and the gel was visualized after staining with ethidium

bromide and then photographed (Polaroid Land Camera, model MP-4).

2.3.6 Purification of DNA Fragments Using Gene Clean Kit

Purification of DNA fragments from agarose was performed according to
manufacturer’s instructions (Gene Clean Kit, BIO 101 Inc., Mississauga, ON; Canada).
DNA fragments were separated using the appropriate percentage agarose gel. The desired
DNA fragment was excised using a sterile razor blade and divided into small pieces after
which it was transferred to a pre-weighed 1.5 ml microcentrifuge tube. The tube with the
DNA slice was weighed and the weight of the slice was determined. Purification of DNA
was performed according to manufacturer’s instructions. The DNA pellet was dissolved
in a total volume of 10 pl of deionized distilled water. The final yield of DNA was
estimated by using 2 pl of the sample to run it against a standard using agarose gel

electrophoresis.

2.3.7 Restriction Digestion of DNA
PCR products were subjected to restriction digestion with one of the following
enzymes: Pvull (Gibco BRL), HindIll (Gibco BRL), Bfal (New England Biolabs,

Beverly, MA; U.S.A.) and Alul (Pharmacia Biotech) in a total volume of 40 wl. The
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reaction mixture contained 10 pl of the PCR product, 4 pl of the appropriate 10x buffer,
10 units of the restriction enzyme (1-2 ul) and deionized distilled water to a final volume
of 40 pl. The mixture was incubated at 37°C overnight. Finally, the reaction was stopped
by the addition of 8 pl of 6x loading buffer. Samples were separated using agarose gel

electrophoresis and visualized using ethidium bromide under UV light.

2.3.8 TA Cloning of PCR Products

DNA amplification was performed in a total volume of 50 pl. Samples were
fractionated using 1% agarose gel electrophoresis. The desired bands were excised and
purified using a Gene Clean Kit. Samples were reconstituted with deionized distilled
water to a total volume of 20 pl of which 2 ul was run on an agarose minigels against a
known standard to estimate DNA concentration. Amplicons were cloned in PCR II vector
using the TA Cloning Kit (Invitrogen San Diego, CA; U.S.A.) according to
manufacturer’s instructions. Briefly, the ligation reaction contained 1 ul of 10x ligation
buffer, 1 pl of PCR II vector (25 ng), 1 ul of T4 DNA ligase, the calculated amount of
PCR product. The final volume was adjusted to 10 pul with deionized distilled water and
the ligation reaction was incubated at 15°C in a thermocycler overnight.

Vector transformation of bacteria was performed according to manufacturer’s
instructions with a few modifications. 200 pl of DHS o competent cells were thawed and
100 pul were transferred into glass tubes incubated on ice. Tubes containing ligation
mixture were centrifuged for 10 seconds and then incubated on ice. 5 ul of ligation
mixture was transferred into each tube of competent cells. Tubes were then incubated on

ice for 15-30 minutes. The bacteria were heat shocked at 42°C for exactly 90 seconds and
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then incubated on ice for another 2 minutes. 500 i of prewarmed LB medium was added
to each tube followed by incubation at 37°C for exactly one hour at 225 rpm in a rotary
shaking incubator. Meanwhile, 40 pl of 25 mg/ml X-Gal and 25 pl of 25 mg/mi of
ampicillin were spread using an L-shaped spreader on top of the prepared LB agar plates
and were incubated at 37°C for approximately one hour. Finally, 200 pl of the
transformation reaction was spread on the top of the agar plates, inverted and then were
incubated in a 37°C incubator overnight to allow white/blue color selection of insert
positive clones. A white colony was inoculated using sterile eppindorf tip into a tube
containing 5 ml LB medium and was incubated at 37°C. The DHS5a. clones were checked
for the presence of the insert by PCR amplification. Amplification was performed using

the same program conditions used for genomic DNA amplification. PCR reactions were

performed as discussed previously in section 3.2.

2.3.9 Plasmid DNA Preparation

Preparation of plasmid DNA was performed on fresh bacterial cultures that were
grown overnight for all positive clones. Preparation was carried on using DNA EasyPrep
Plasmid (Pharmacia Biotech) according to manufacturer’s instructions. DNA samples
were dissolved in a total volume of 50 pl deionized distilled water. Samples were

electrophorised in a 1% agarose gels along with a known standard to estimate DNA

concentration.
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2.3.10 Sequencing Plasmid DNA
2.3.10.A Preparation of Plasmid DNA for Sequencing

Sequencing of plasmid DNA isolated from miniprep cultures was performed using
Sequenase Version 2.0 (Amersham USB). Alkaline denaturation, neutralization and
precipitation of double stranded DNA was performed before sequencing. Briefly, 20 pl of
IM sodium hydroxide was added to 30 pl of plasmid DNA followed by incubation for 10
minutes at room temperature. The mixture was then neutralized with 15 pl of 3M sodium
acetate, pH 5.0 and the total volume was adjusted to 100 pl with deionized distilled
water. DNA precipitation was carried out by the addition of 300 pl of absolute ethanol
(BDH) followed by incubation on ice for 30 minutes. Tubes were then centrifuged at
room temperature for 15 minutes and the supernatant was discarded. The pellets were
washed twice with 70% ethanol followed by centrifugation each time for 5 minutes in a
microcentrifuge at room temperature. The supernatant was decanted and the samples were
dried in vacuum (Savant Instruments Inc., Farmingdale, NY; U.S.A.) and subsequently
reconstituted in 7 pl of deionized distilled water.
2.3.10.B Sequencing Reaction

Sequencing reactions (Sequenase Vervion 2.0, Amersham USB) were performed
according to the manufacturer’s instructions. The annealing mixture containing 7 pl of
denatured DNA, 2 pl of sequencing buffer, 1 ul of 10 uM primer was incubated at 37°C
for 30 minutes followed by incubation at room temperature for 10 minutes after which the
mixture was kept on ice. Ice-cold Template-Primer mixture (10 ul) was added to labeling

reaction containing 1 pl of .01M Dithiothreitol (DTT), 2 ul of Diluted Labeling Mix
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(diluted S folds), 0.50 Wl of [0-*°S] dATP (Amersham USB), and 2 pl of diluted
sequenase enzyme (diluted 8 folds). Tubes were mixed thoroughly and then incubated at
room temperature for 5 minutes. 3.5 pl of each labeling reaction was transferred into each
of the prewarmed termination tubes (2.5 pl), mixed thoroughly and were returned to a
37°C water bath for five more minutes. The reaction was stopped by the addition of 4 pl
of Stop Solution. Before loading, the samples were heated to 85°C for 3 minutes and an

aliquot of 3 pl was used in each lane.

2.3.11 Direct Dideoxy Sequence analysis of PCR Products

Direct sequencing was performed on amplicons of 200-300 b.p. DNA
amplification was performed as described previously in a total volume of 50 ul. Samples
were run on 1.5% agarose gels and the desired band was excised and purified using Gene
Clean Kit. Samples were reconstituted with deionized distilled water in a total volume of
10 pl followed by concentration in the Speedvac® for 30 minutes and then reconstituted
in 14 pl of deionized distilled water. Sequencing analysis was performed using Sequenase
Kit Version 2.0 (Amersham USB) according to manufacturer’s instructions with a few
modifications. Briefly, the annealing mixture containing 5 pl of PCR product, 2 pl of 5x
annealing buffer supplied with the T7 kit, 2 ul of 10 uM primer and 1 pl of DMSO was
incubated at 95°C for 5 minutes after which it was immediately immersed in liquid
nitrogen and then was thawed to room temperature. While this mixture was cooling, four
tubes were labeled and filled with 2.5 pl of each termination mixture (dGTP, dATP,
dTTP and dCTP). Thawed Template-Primer mixture (10 pl) was added to the labeling

reaction containing 2 pl of diluted labeling mix (diluted 5 folds), 1.0 ul of [o-*°S] dATP,
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and 2 pl of diluted sequenase enzyme (diluted 8 folds) and 0.5 pl of autoclaved deionized
distilled water. Tubes were mixed thoroughly and then were incubated at room
temperature for 5 minutes. 3.5 pl of each labeling reaction was transferred into each of
the prewarmed termination tubes, mixed thoroughly and were returned to a 37°C water
bath for five more minutes. The reaction was stopped by the addition of 4 pl of stop
solution. Before loading, samples were heated to 85°C for 3 minutes and an aliquot of 3

ul was used in each lane in the gel.

2.3.12 Nondenaturing Polyacrylamide Gel Electrophoresis (PAGE)

15% polyacrylamide gels were prepared for a Mini-Protean Cell II electrophoresis
system (BioRad). DNA amplification was carried out as previously detailed followed by
the addition of 5 ul of 6x loading dye to the PCR product of which 4 pl was loaded into
each well along with the molecular-standard marker. Gels were run at 80 volts until the
first dye front reached the end of the gel (2-3 hours). Gels were first fixed for 20 minutes
in 10% acetic acid followed by three rinses in deionized distilled water for 2 minutes each
time. The DNA was visualized by incubating the gels for 30 minutes in 500 ml of silver
stain solution after which they were rinsed with deionized distilled water for less than 20
seconds and then were transferred to a tray containing 500 ml of the developing solution
where they were removed as soon as the bands appear. Finaily, gels were fixed for 5
minutes in 10% acetic acid. Gels were stored after they were soaked for 90 minutes in a
solution of 3% glycerol, 40% methanol, 10% acetic acid and them dried at 60°C for one

hour and 15 minutes.
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2.3.13 Genetic Linkage Map

2.3.13.A DNA panel from Backcrosses and Intercrosses

The genetic linkage map was constructed using intercross and backcross
populations of brl mutant mice and C57BL/6J (B6) inbred mice. Male brl mice were
crossed to female B6 mice (br! females were sterile) to produce B6brIF1 hybrids which
were then intercrossed to produce B6briF2 hybrids. At the same time, F1 hybrid females
were backcrossed to brl males to produce a population of B2 animals of which their
females were then backcrossed to brl males. Their offspring were again backcrossed to
brl males for one more generation. Camk2b gene was mapped using this population of
animals.
2.3.13.B Linkage Analysis

As described previously, the brl locus was mapped to proximal chromosome 11
tightly linked with the microsatellite D/ IMit226 (Welker et al., 1996). A high resolution
genetic map was constructed around the brl locus. This was achieved by increasing the
sample number and the addition of new marker loci published by other laboratories. New
loci were tested for their linkage and their position relative to other known loci was
determined using haplotype analysis method. By comparing the data obtained from the
new locus, one can place it relative to known loci based on its haplotype. The genetic
distance can be determined by calculating the number of animals that have
recombinations between both haplotypes and dividing that over the total number of
recombinant animals between two anchor loci. The product will then be multiplied by the

distance in cM between the two anchor loci.
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2.3.13.C Combined Genetic Map

Independent linkage maps for the intercross and backcross population were
constructed and then combined by calculating a weighted average. Weighted averages
were calculated from the recombination frequencies in the intercross and backcross
population using Fisher's theory of statistical information (Green 1981):-

Weighted mean = (wilxl + w2x2) + (wl + w2)
where x1 = recombination frequency; wl = nlil; il = 4-5¢-8¢ + 2c(1-c)(2+¢); nl = total
sample size and ¢ = x1(1-x1). The weighted mean was calculated for the proximal and

distal regions separately for each of the intercrosse and backcross population.

2.4 Results

Based on the published cDNA sequence (Karls et al., 1992; Genebank: X63615),
a total of eight primer pairs were prepared from the 3’ UTR of the Camk2b gene. Using
primer pair F1/R1 (Table 2.1), the 984 b.p. was amplified in order to confirm a restriction
fragment polymorphism (RFLP) reported by a colleague in our laboratory. Amplicons
from both alleles were subjected to restriction digestion using HindIII and Pvull enzymes.
Pvull digestion gave rise to 150 and 834 b.p. fragments in the B6 allele compared to 150,
234 and 600 b.p. in the bri/bri allele. On the other hand, digestion with HindlIII resulted
in two fragments of 610 and 374 b.p. in the bri/brl allele as compared to 984 b.p. in the
B6 allele. Several attempts were not able to confirm this polymorphism (data not shown).
Hence, Genomic DNA amplification, cloning and sequencing of the 3’ UTR from both
B6 and bri/brl alleles was initiated to map the gene in relation to the brl locus. For this

purpose, the above primer pair was used to amplify the first 984 b.p. of the 3° UTR from
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both alleles, which were then cloned and sequenced. Sequencing results revealed no
differences between the B6 derived-aliele and the published cDNA sequence (Karls et al.,
1992). Two polymorphisms were detected in the first 250 b.p. of the 3° UTR at b.p. 1874
(G—A) and b.p. 1931 (A-T) of the published cDNA sequence in B6 and br! derived
alleles, respectively. Both polymorphisms did not change a restriction site that could be
easily used in mapping the gene. The potential restriction site was amplified in a fragment
generated by primer pairs F2/R3 and F3/R3 (Table 2.1). Restriction digestion of the
amplicons failed to reveal any differences between the B6 and bri-derived alleles.
Therefore, more primers were prepared. Because of the high GC content of the first 1 kb
of the 3° UTR five additional primers were prepared from the second | kb of the 3° UTR.
Both alleles were amplified using primer pair F4/R4 and the amplicons were sequenced.
Again, no differences were detected between the published cDNA sequence and the B6-
derived allele while two changes were detected in the brl derived allele at b.p. 2763
(G—A) and b.p. 2766 (A —T). When Genomic DNA was amplified from both alleles
using the last four primer pairs, an amplicon length polymorphism (DI1Dall) was
detected using primer pair F7/R7 corresponding to nucleotides 3203-3499 in the
published cDNA sequence. Direct sequencing revealed that the B6-derived allele was 14
bases longer due to a substitution of 19 base pair (CCCATGGACACAGGGTAAA) for 5
base pair (GGCTC) present in the bri/brl allele. This polymorphism was used to map
DI11Dall using recombinant animals between DIIMit74 and DI1IMit226. Figure 2.1

summarizes the genotyping results of recombinant animals in this region. Calculation of
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Figure 2.1 Haplotype analysis of intercross and backcross data. Marker loci are shown
on the left hand side and recombinant haplotypes are shown at the bottom. Black boxes

represent homozygous genotypes while white boxes represent heterozygous genotypes.
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recombination frequency using intercross offspring placed the locus at 1.42 cM proximal
to brl, thus eliminating Camk2b as a candidate gene for brl, but also shortening the
interval containing the brl gene (Figure 2.2A). On the other hand, calculation of
recombination frequency using backcross offspring mapped DIIDall at 049 cM
proximal to the brl locus (Figure 2.2B). The two maps were then combined by calculating
the weighted average mean (Figure 2.3) in which the br/ locus was mapped in an interval

of 1 ¢cM, 0.75 proximal to the brl locus.

2.5 Discussion

The Camk2b gene encodes the B subunit of the CaM kinase II enzyme. It is highly
expressed in the forebrain (Erondu and Kennedy, 1985; Bennet et al., 1983). The
expression of CaM kinase II subunits is under extensive developmental control (Burgin et
al., 1990). The high expression of CaM kinase II in the postsynaptic densities and the
autophosphorylation properties makes it a good candidate for involvement in synaptic
plasticity, learning and memory. The possible role of this gene in synaptic plasticity led
us to evaluate it as a candidate for brl since barrel formation involves the appropriate
formation of synapses at the right time during development.

Camk2b gene is composed of at least 17 exons of varying lengths, with the longest
exon at the 3’ end that comprising the whole 3’ untranslated region (Karls et al. 1992).
Chromosomal localization of the gene to proximal chromosome 11 tightly linked with Lif
was reported in the above study. Camk2b was evaluated as a candidate gene for the bri
locus. Sequencing of the coding region by Dr. Ourednik revealed no detectable difference

in the nucleotide sequence between B6-derived allele and the bri/brl allele.
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Figure 2.2 A high resolution genetic linkage map in the proximal region of chromosome
11 using intercross (A) and backcross (B) population. A polymorphism (D1/Dall) in the
3’UTR region of the Camk2b gene was mapped proximal to the bri locus (bold). The
distances in cM are shown on the left side of the chromosome with the relative order of

marker loci on the right side.
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Figure 2.3 A high resolution genetic linkage map of proximal chromosome 11. The
weighted averages were calculated from the recombination frequencies in the intercross
and backcross maps using Fisher’s theory of statistical information. The brl locus maps in
a 1 cM interval between the markers D11Dall (bold) and D11Mit226 (bold).
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Although this result decreases the potential of the gene as a candidate for brl, it was
necessary to find a polymorphism in order to map the gene in relation to the brl locus and
to exclude expression differences between both alleles.

Primer pairs were prepared from the 3’ UTR of the published cDNA sequence.
Amplicon sizes were the same as calculated from the published cDNA sequence.
Moreover, sequencing results revealed no nucleotide differences between B6-derived
allele and the published cDNA sequence. Few differences were detected between the B6
and the brl/brl-derived alleles, which did not change a restriction digestion site.
Polymorphisms were detected in the B6-derived allele at b.p. 1874 of the published
cDNA sequence while the brl polymorphism was detected at b.p. 1931, 2763 and 2766 of
the published cDNA sequence.

Amplification of genomic DNA using primer pair F7/R7 detected an amplicon
length polymorphism (DIIDall) between B6-derived allele and bribrl allele.
Genotyping recombinant animals in the region of interest placed the gene at 0.75 cM
proximal to the brl locus (Figure 2.3) excluding Camk2b gene as a candidate for brl,
however shortening the brl interval to 1 cM. This polymorphism was due to a substitution
of 14 base pair in the B6-derived allele.

A high resolution genetic linkage map was constructed around the brl locus using
a total of 1067 animals. The br! locus is in an interval of 1 cM between the markers
D11Dall and D11Mit226. The first step in positional cloning was achieved and we were

ready to move to the next step in positional cloning, which was physical mapping.
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Physical mapping starts by constructing a contiguous overlap of genomic DNA clones
from the region of interest. For this purpose, the flanking markers were used by Dr. L.
Schalkwyk (Max-Planck-Institut fuer Molekulare Genetik, abteilung Lehrach, Berlin-
Dahlem, Germany) to screen Yeast Artificial Chromosome (YAC) libraries in order to
extract genomic DNA fragments that could be aligned in a contig of overlapped clones

that completely span the region between the flanking markers.
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Physical Mapping and Identification
of a Candidate Gene for brl
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3.1 Introduction

Positional cloning strategy was used to isolate the brl gene. A high-resolution
genetic map was constructed around the brl locus (Abdel-Majid et al., 1998) and the
flanking markers were used as probes to isolate genomic DNA fragments from
established libraries in order to start physical mapping. Physical mapping complements
linkage mapping and is based on the direct analysis of DNA rather than on the meiotic
chromosomal segregation. Physical maps are divided into “short-range” and “long-range”
maps. Short-range maps are generally constructed over a range of 30 kb, while long-range
physical maps are usually accomplished over megabase-sized regions using rare-cutting
restriction enzymes and pulsed-field gel electrophoresis (PFGE) for separation of large
fragments of DNA.

Long-range physical mapping is performed on clones obtained from large insert
genomic libraries. The most widely used systems include the phage P1 (Sternberg, 1990;
Pierce and Sternberg, 1992) and the yeast artificial chromosomes (YACs) (Burke et al.,
1987; Dawson et al., 1986; Hahnenberger et al., 1989). Yeast artificial chromosomes
were originally used as a cloning vector by David Burke and Maynard Olson in 1987 at
Washington University (Burke et al., 1987). Large fragments of genomic DNA are
inserted between two arms of artificial yeast chromosomes, one of which ends with a
telomere and a centromere, and in the other a telomere alone, and contain other selectable
markers in the yeast host on both arms. The YAC construct is then transfected into the
yeast host where it positions alongside host chromosomes and moves into daughter cells

at each mitotic division.
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The availability of YAC cloning systems, capable of holding large pieces of DNA
inserts up to megabase pairs, provided a powerful tool for the construction of physical
maps and made it the choice for long-range physical mapping. However, this system has
some technical problems. YAC clones are unstable and will give rise to more stable
products by deleting parts of their insert. A more prominent problem is chimerism. This is
where chimeric clones are formed containing two or more pieces of DNA segments that
are not contiguous in the genome. These are found to represent a high fraction of all YAC
libraries due to the high efficiency of recombination within the yeast cell. Another
problem is that YACs are carried as a single-copy chromosome in a yeast host and yeast
cell densities in overnight cultures are lower than E. coli cell densities. This leads to
longer periods of culture growth with a lower percentage of YAC DNA compared to
yeast chromosomal DNA.

A physical map is a hybrid of a “restriction map” and a * contig map”. Restriction
maps show the order and the distances between cleavage sites of site-specific restriction
endonucleases (Nathans, 1979), while contig maps represent the structure of contiguous
regions of the genome by specifying the overlap relationship between a set of clones
(Olson et al., 1986; Kohara et al., 1987). The approach used in this study was to generate
a contig map by adapting the sequence-tagged sites (STS) strategy. An STS is a short
single-strand copy of DNA, present once in the genome, that can be detected by PCR
amplification. DNA clones are tested for the presence of these STSs and the order of the
STSs in the clones is determined. The extent of overlap between adjacent clones can be

predicted and clones can be aligned into a contig. STS content mapping is a powerful tool
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that aids in the construction of a contig that spans the region of interest of the genome
utilizing results obtained from different methods.

In the previous chapter, the evaluation of Camk2b gene as a candidate for brl and
its exclusion based on its position proximal to the br! locus was discussed. In addition, a
high-resolution genetic map was described in which the br! locus was mapped in a 1 cM
interval between the markers DIIDall and D1IMit226. The next step in positional
cloning was initiated by using the flanking markers as probes to screen YAC libraries for
clones that span the region of interest. This was done in a collaboration with Dr. Leo
Schalkwyk (Max-Planck-Institut fuer Molekulare Genetik, Abteilung Lehrach, Berlin-
Dahlem, Germany). Figure 3.1 summarizes general protocols used to obtain and analyze
YAC clones. Identifying YAC clones from genomic libraries, validation of YAC clones
and identifying insert size was performed by Dr. L. Schalkwyk. Analysis of isolated
YACs for chimeras using fluorescence in situ hybridization (FISH) was performed by Dr.
E. Levy (Wellcome Trust Center for Human Genetics, Oxford, England) and obtaining

end-clones from YAC clones was performed by my colleague Dr. W. Leong.

3.2 Reagents and Solutions

All reagents were autoclaved for 30 minutes on liquid cycle at 15 Ibs/sq. in. prior
to use unless otherwise stated. All reagents were of molecular grade and purity. Similarly,
all glassware were autoclaved for the same period of time. Preparation of reagents and

buffers is presented in Appendix 2.
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Figure 3.1 Flow chart showing procedures used for identifying and characterization of

YAC clones.
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3.3 Methods

3.3.1 Storage of YACs and Yeast Strain DNA

All YAC clones were obtained from the Ressourcenzentrum/Primaerdatenbank
des deutschen Humangenomprojektes (RZPD). The host yeast S. cerevisiae AB1380
strain is grown in a YPD (yeast extract-peptone-dextrose) rich media. The vector pYAC4,
which is capable of holding large pieces of inserts of genomic DNA, carries selectable
markers TRP1 and URA3 that when grown in a selective media will allow the selection
of the YAC vector and favors its stability through successive passages. pYAC4 with or
without the insert were always grown in the AHC selective media or on AHC plates.
AB 1380 strain containing the pY AC4 with or without the insert were streaked onto AHC
plates (S. cerevisiae AB1380 were streaked onto YPD plates). Plates were inverted and
incubated at 30°C for 48-72 hours. A pink colony was inoculated into AHC media (YPD
media for yeast AB1380) and grown at 30°C for another 48-72 hours. AHC plates were
sealed in paraffin and stored at 4°C up to 4-6 weeks. For long-term storage, a pink colony
was inoculated in 3 mls of the desired media and grown overnight at 30°C. The next
morning, 1 ml of 80% glycerol was added, the tubes were mixed thoroughly and 0.5-1.0

ml aliquots were transferred to cryovials and stored at -70°C until further use.

3.3.2 Preparation of Chromosomal YAC DNA
Several protocols were followed for extraction of YAC DNA from yeast clones

according to standard procedures (Current Protocols in Molecular Biology [6.10.1,
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6.10.3]; Current Protocols in Human Genetics [5.1.10]). The following were the most
frequently used protocols depending on the purpose and the size of the required DNA.

3.3.2.A Ten-Minute DNA Preparation from Yeast

The following protocol was used to extract DNA from small volume cultures
according to Hoffman and Winston (1987) with few modifications. Briefly, a single pink
colony was inoculated into 3.0 ml culiture of AHC media and grown overnight at 30°C. A
1.5 ml microfuge tube was filled with the culture and cells were collected by
centrifugation for 5 seconds using a microcentrifuge. The supernatant was decanted and
the cell pellet was vortexed briefly. 0.10 ml of 2% Triton-X-100, 1% SDS, 100 mM
NaCl, 10 mM Tris-HCI (pH 8.0), | mM Na;EDTA were added to the tube. 0.10 ml of
phenol:chloroform:isoamyl alcohol (25:24:1) and 0.20 gm of acid-washed glass beads
(BT-5 0.45 mm, Flex-O-lite Ontario, Canada) were added. The tube was vortexed for 5
minutes followed by centrifugation in a microfuge for 5 minutes. 10 ul of 3 M sodium
acetate was added to 100 pl of the supernatant. 275 pl of 95% ethanol was added
followed by centrifugation for 10 minutes at room temperature. The supernatant was
discarded and the pellet was washed twice with 70% ethanol followed by centrifugation
for 10 minutes at room temperature. The pellet was air dried and then dissolved in a total
of 20 pl of TE buffer. The concentration of DNA was quantitated by electrophorizing 1 pl
in a 1% agarose gel electrophoresis against a known standard. 1 ng was used in DNA

amplification using PCR.
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3.3.2.B Rapid Isolation of Yeast Chromosomal DNA

The following protocol (Currrent Protocols in Molecular Biology, chapter
13.11.2) was used with few modifications for DNA preparation for use in Southern blot
hybridization analysis and/or for DNA amplification using PCR. A single pink colony
was inoculated into a 10 ml culture of AHC media. The cultures were grown for 48-72
hours at 30°C until stationary phase was reached. The cultures were spun in a table top
centrifuge at 1200 x g followed by aspiration of supernatant. Cell pellets were
resuspended in 0.5 ml water and centrifuged for 5 seconds. The supernatant was poured
off and the pellet vortexed briefly. Cells were resuspended in 200 ul of breaking buffer
(2% Triton, 1% SDS, 100 mM NaCl, 10 mM Tris-HCI (pH 8.0), | mM EDTA, pH 8.0).
0.3 gm of acid washed glass beads and 200 pl of phenol:chloroform:isoamyl alcohol
(25:24:1) were added and vortexed at highest speed for 3 min. 200 pl of TE (10 mM Tris-
HCl and 1 mM EDTA, pH 8.0) buffer was added and then the tubes were centrifuged at
high speed for 5 minutes and the aqueous layer was transferred to a clean microcentrifuge
tube. 1 ml of 100% ethanol was added and tubes were mixed by inversion followed by
centrifugation at high speed for 3 min. The supernatant was discarded and 0.4 ml of TE
buffer and 30 ul of 1 mg/ml RNase A were added and the tubes were incubated at 37°C
for 30 min. 10 pl of 5SM ammonium acetate and 1 ml of 100% ethanol were added and the
tubes were mixed by inversion. The tubes were centrifuged at high speed for 3 minutes
and supernatant was discarded. The pellet was allowed to air dry after which it was
resuspended in a total volume of 100 ul TE buffer. Samples were diluted 10 times before

use in a PCR reaction.
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3.3.3 Preparation of High-Molecular-Weight DNA Size in Agarose Plugs

A single pink yeast colony was inoculated in 5 ml of AHC media. The culture was
grown at 30°C for 48-72 hours until it reached saturation. Samples were centrifuged at
2000 rpm using a clinical centrifuge. The supernatant was discarded and cells were
resuspended in 250 pl of sorbitol solution (1.2 M Sorbitol [Sigma Co.}, 10 mM Tris-HCI
(pH 7.5), 20 mM EDTA, 14 mM [-mercaptoethanol and 0.1 mg/ml zymolaze 20-T {ICN
Biomedicals]). 250 pl of low melting agarose (Bio-Rad; 1.5% in sorbitol solution
containing B-mercaptoethanol) was added to each sample. Samples were quickly mixed
and 100 pl was poured into the prepared plug molds. Plugs were pushed out from the
molds into 15 ml tubes containing 200 pl of sorbitol solution where they were incubated
at 37°C for one hour. The solution was decanted and 5 ml of lysis buffer was added (1%
LDS [Sigma Co.], 0.1 M EDTA [Fisher Scientific], 10 mM Tris-HCI, pH 8.0) into each
tube. The tubes were then incubated at 37°C for two hours and mixed by swirling every
15 minutes. At the end of the two hours period, the lysis buffer was removed and replaced
with 5 ml of fresh lysis buffer, and then incubated overnight at 37°C. The next day lysis
buffer was removed and replaced with 5 ml of fresh lysis buffer. Half of a plug was
washed three times with 500 pl TE buffer for 45 minutes each. The plug was finally

dissolved in 1.0 ml TE buffer and incubated in a 70°C water bath until the plug dissolved

completely.
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3.3.4 Southern Blot Hybridization

3.3.4.A Southern Blot Hybridization Using YAC End Clones Probes

3.3.4.A.1 Restriction digest and Southern blot

0.5-1.0 ug of yeast chromosomal DNA from YACs 110g8, 52dS5, yeast and
pPYAC4 or 2 ug of mouse genomic DNA were digested with two restriction digestion
enzymes EcoRI and BamHI (Gibco BRL, Burlington, Ontario) as mentioned previously
(chapter 2). The digested DNA was dried in a speed vacuum, dissolved in a total volume
of 10 ul of tris borate (TBE) buffer and subjected to Southemn analysis according to
standard protocols (Sambrook et al., 1982 pp: 383-386). The blots were hybridized
overnight using a 3 kb and | kb end fragments (prepared by my colleague Dr. Leong)
obtained from two YAC clones 110g8 and 52dS5, respectively. The probes were labeled
using the random primer DNA labeling system as described below.
3.3.4.A.11 Radiolabeling of YAC end clones

End clones from the two YACs 110g8 and 52dS (150 ng each) were labeled using
the random primer DNA labeling system according to manufacturer’s instructions (Gibco
BRL, Burlington; Ontario). The radiolabeled probe was separated from the
unincorporated radioisotope using Sepharose G-50 columns (Boehringer Mannheim)
according to manufacturer’s instructions.

3.3.4.B. Southern hybridization using oligonucleotide probes

3.3.4.B.1 Southern Blots
DNA amplification was performed using mouse genomic DNA, yeast

chromosomal DNA from YAC 110g8 for the microsatellite primer DI/Mit62. Minigels
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were run at 85 volts for 45 minutes. Southern hybridization analysis was performed as
mentioned above with the exception of the deletion of the depurination step since the
expected product was less than 5 kb. The blots were hybridized with the radiolabeled
microsatellite DI1IMit62 probe. Hybridization of the end labeled oligonucleotide was
performed according to standard procedures (Current Protocols in Human Genetics, pp:
2.4.2). The blots were hybridized with the prewarmed hybridization buffer, 7% SDS, 0.25
M NaCl, 0.13 M sodium phosphate (pH 7.0), containing the probe (1 pmole of
oligonucleotide per 1 ml of buffer) at 65°C for one hour after which they were washed
twice with the low stringency wash (6XSSC, 0.1% SDS) at 65°C.
3.3.4.B.1I Radiolabeling of Oligonucleotide Probe

The oligonucleotide DI1IMit62 was radiolabeled using the 5’ end labeling
according to standard procedures (Sambrook et al., 1982, pp: 122-123) with few
modifications. 20 pmoles of D1IMit62 or (CA), repeat, 20 units of T4 polynucleotide
kinase, and 3 ul of 10x kinase buffer (500 mM Tris-HCI (pH 7.4), 100 mM MgCl,, 50
mM DTT, | mM spermidine, and 1 mM EDTA (pH 8.0) and 0.3 pl of [Y*°P]dATP in a
total volume of 30 ul were mixed and incubated at 37°C for one hour. 20 pl of TE buffer
was added and the labeled DNA was separated from the unincorporated [sz]dATP by

centrifugation through small columns of Sephadex G-50.

3.3.5 Preparation of STSs for Physical Mapping
A composite map was prepared from available genetic information from different
web sites including the Whitehead Institute (http://www-genome.wi.mit), the Jackson

laboratory (http://www.jax.org), the European Collaborative Interspecific Mouse
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BackCross (EUCIB; http://www.hgmp.mrc.ac.uk/MBx), genome database (GDB;
http://www.gdb.org), Oxford MRC (http://www.mgu.har.mrc.ac.uk), and Copeland maps
(Appendix 3). Once this was accomplished, several STSs were chosen based on their
position from the composite map. An STS consists of a short, single-copy DNA sequence
that can be detected using PCR. A total of 20 microsatellite markers were prepared as
described previously in chapter 2 and used to screen the YAC clones (http://www-
genome.wi.mit; Appendix 4). These markers included: DIIMitl, 16, 129, 228, 106, 73,
304, 72, 305, 71, 148, 150, 162, 259, 74, 204, 2, 226, 62, 149. In addition, STSs from
seven different genes were prepared from published sequences including insulin-like
growth binding protein 1 (Igfbpl), insulin-like growth binding protein 3 (Igfbp3), zinc
finger protein, subfamily 1A, 1 (lkaros, currently Znfnlal), transcobalamin 2 (Tcn-2,
currently Tcn2), Ewing sarcoma homologue (Ewsh), neurofilament, heavy polypeptide
(Nfh) and glucokinase activity (Gk), and two were developed in our laboratory D11Dall

(a polymorphism in the Camk2b gene) and D11Dal2 (a polymorphism in the Lif gene).

3.3.6 PCR Amplification from Chromosomal and Plug YAC DNA for STS content
PCR amplification from both chromosomal and plug YAC DNA was performed
in a total volume of 25 ul. 1-2 ng of YAC DNA was used in a solution containing 1x
PCR buffer (0.01 M Tris-HC! (pH 8.8), 200 uM each dNTP, 0.5 uM each forward and
reverse primers and 5 U/ml Taq polymerase). Amplification of microsatellites was
performed in a thermal cycler for a total of 35 cycles with 94°C denaturation for 45
seconds, annealing temperature at 57°C for 45 seconds with an extension time of 1

minute at 72°C and an initial denaturation at 94°C for 3 minutes. Amplification of YAC
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DNA for different genes was carried at different conditions depending upon the size of
the product and the annealing temperature. Each PCR amplification was performed three
times to confirm the presence of the STS marker, using the yeast AB1380 strain and the
pYAC4 vector without insert as negative controls, and the mouse genomic DNA as a

positive control.

3.3.7 BI-PCR Fingerprinting of YAC Clones

B1-PCR fingerprinting is another strategy for constructing a contig of YAC clones
for a particular genomic region. This method involves PCR amplification of mouse-
specific Bl repeat sequences. The unique pattern of B1-PCR products generated from
YAC clones determines the extent of overlap shared by the clones that are tested positive
for a given locus. Since Bl sequences are specific for the mouse genome, this method is
also used to confirm the presence of mouse genomic inserts in YAC clones. B1-PCR
finger printing was performed in a total volume of 20 pl. 1 pl of YAC DNA was used in a
solution containing 1x PCR buffer, 0.01 M Tris-HCI (pH 8.8), 200 uM each dNTP, 1.0
uM of either B1 R ( AGT TCC AGG ACA GCC AGG GCT AYACAG A, withY=Cor
T), Bl L (ACT CAG AAATCY RCCTGC CTCTGCCTC withY=CorTandR=A
or G) or Bl A (GTC CGG CCG CCT GGA ACT CAC TCT GAA GAC) and 20 U of
Taq polymerase. PCR amplification carried out for 30 cycles at 95°C (30 seconds), 60°C
(1 minute), 72°C (5 minutes) with initial denaturation at 95°C for 150 seconds and final

extension of 15 minutes at 72°C.
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3.4 Results

The construction of a physical map around the region of the barrelless locus was
initiated by screening YAC libraries for genomic clones using the flanking markers
DI11Mir226 and DIIDall, in addition to the marker DIIMitl49. Subsequently, more
clones from the Whitehead YAC library (WC 11.0 and WC 11.1; as of summer 1996) and
YAC clones probed with end fragments obtained from YAC clones 110g8 and 52d5 were
used. All PCR amplifications of YAC clones were repeated three times before a YAC
clone was considered positive for a given marker. Table 3.1 summarizes data obtained
from DNA amplification using PCR for all 29 STSs and screening a total of 68 YAC
clones.

Amplicon sizes for all the STSs were of the expected size except for the YAC
clone 110g8. When this clone was amplified using the microsatellite D//Mit62, a smaller
amplicon was obtained compared to the B6 wild-type mouse genomic DNA. In order to
verify that this was the correct amplicon, southern blot hybridization analysis was
performed using two different probes, the microsatellite D/IMit62 and a (CA), repeat
probe. Both probes hybridized to the amplicon from YAC clone 110g8 confirming the
presence of this STS in the clone.

Southern blot analysis was also performed in order to check for the presence of an
overlap between YAC clones 110g8 and 52d5. End fragments from both YAC clones
prepared by my colleague Dr. Leong (3 kb and 1 kb for YAC clones 110g8 and 52d5,
respectively) were used as probes for hybridization. Results using two different restriction

endonucleases, revealed that the 1 kb fragment obtained from YAC 52d5 hybridized to



Table 3.1 Characterization of YAC clones from the brl region. The 68 isolated YAC
clones are listed along with the results of testing for the presence (+ve) or absence (blank)
of a specific marker. Screening of YACs, using the 29 STSs, was repeated three times
before a YAC clone was considered positive for the presence of a specific STS.
Abbreviations: DI1Dal6, a polymorphism in the Igfbpl gene; DIl1Dal7, a polymorphism
in the Igfbp3 gene; D11Dal8, a polymorphism in the Gk gene; D11Dal9, a polymorphism
in the Ewsh gene; D11Dall0, a polymorphism in the Nfh gene; DI IMit#, Whitehead

Institute markers.
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both YAC clones, while the 3 kb fragment hybridized only to YAC clone 110g8. These
results suggest that there is an overlap between both clones; moreover, it provided us with
the order of the STSs on both clones.

Screening the first batch of 39 YAC clones revealed that the three STSs,
DI11IMit226, D11Mit62 and D11Mit149, were present on only three YAC clones. Results
from our genetic linkage map revealed that the marker DIIMitl49 did not map to the
right region on proximal chromosome 11 as reported by the Whitehead Institute; hence,

this marker was not used for subsequent screening of any other YAC clone.

3.5 Discussion

Positional cloning strategy was followed in order to isolate the gene responsible
for the barrelless phenotype. The first stage of positional cloning was initiated by
construction of a high-resolution genetic linkage map to get as close as possible to brl as
detailed in the previous chapter. The second stage started by obtaining genomic clones in
YAC:s using the flanking markers D1/Mit226 and D11Dall as probes in order to develop
a contig of overlapped clones that completely spans the region. The generation of a contig
was accomplished by the characterization of YAC clones for specific markers or
landmarks and the identification of genes that are physically present on these clones.

A total of 68 YACs were received from Dr. Schalkwyk that were pulled out from
screening YAC genomic libraries using brl flanking markers, YAC end clones, and
Whitehead Institute markers. The YAC contig was: 1) initiated by screening two YAC
libraries, “ICRFy902” (Larin et al., 1993) and “WIBRy910” (Kusumi et al., 1993), with

D!1Dall and D11Mit226; 2) extended by screening these libraries and the “WIBRy917”
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library (Haldi et al., 1996) with STSs from YAC end-clones (DI1Dal3 and D11Dal4),
and 3) completed after the addition of Whitehead Institute contig WC11.0. and WC11.1.
A total of 29 STSs were used for screening and characterization of these YAC clones
using PCR based analysis and/or Southern blot hybridization analysis. Proper positive
(B6 mouse genomic DNA) and negative (yeast strain AB1380 and pYAC4 vector without
the insert) controls were used in all experiments. YAC clones were also amplified using
inter B1-PCR fingerprinting to verify the presence of mouse genomic inserts in the
clones. Based on the results summarized in Table 3.1, a partially complete contig of
overlapped clones was generated (Figure 3.2; YAC clone characterization using STSs
D11Dal3, 4, 5 was performed by my colleague Dr. Leong). The order of the STSs was
predicted from information obtained from characterization of the YAC clones, our
genetic linkage and finally from the composite map.

STS-content mapping placed four genes, adenylyl type I gene (Adcy!), Gk, Igfbpl,
and Igfbp3 from the region of conserved synteny with human chromosome 7 (Copeland et
al., 1993; Edelhoff 1995) and one gene (Nfh) from the region of conserved synteny with
human chromosome 22. The physical map demonstrated that the distance of the
barrelless interval is larger than the distance the genetic linkage map has predicted. More
YAC clones had to be added in order to construct a complete contig that spans the region.
Finally, deletions of insert were detected in this contig as indicated by open circles in
Figure 3.2.

The physical map identified adenylyl cyclase type I (Adcyl) as a candidate gene

for brl. Using primer pairs prepared from the calmodulin binding site (D11Dal5), Adcyl
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was placed by my colleague Dr. Leong only on one YAC clone, 121¢c10. The adenylyl
cyclase family are membrane bound enzymes that catalyze the formation of cAMP, an
important second messenger that is involved in many signaling pathways. Adenylyl
cyclase type I is neurospecific (Xia et al., 1993) and is expressed in areas of the brain that
play an important role in neuroplasticity and learning and memory (Xia et al., 1991).
Hence, evaluation of adenylyl cyclase type I gene was performed at the biochemical and
the molecular level to determine whether it was the gene responsible for the barrelless

phenotype.



Chapter 4

Evaluation of Adenylyl Cyclase Type I

as a Candidate Gene for brl

101
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4.1 Introduction

A physical map that spans the br! locus was constructed in order to isolate and
identify the brl gene. Additionally, the physical map identified several candidate genes
from the region of conserved synteny with human chromosome 22 and 7. One of these
genes, adenylyl cyclase type I (Adcyl) gene was evaluated as a candidate for the
following reasons: 1) Adcyl mapped physically to the brl region, 2) adenylyl cyclase type
[ (AC1) is neurospecific (detected only in the brain, retina and adrenal medulla based on
northern blot analysis [Xia et al., 1993]), 3) ACI is expressed in areas of brain that are
normally associated with neuroplasticity including the CA1-CA3 region of the
hippocampus and dentate gyrus (Xia et al., 1991), 4) AC1 expression increases in rats and
mice during the first two weeks of postnatal life, coincident with barrel formation
(Villacres et al., 1995). These characteristics of AC1 are consistent with the hypothesis
that this enzyme is important for neuroplasticity and spatial memory in vertebrates.

Adenylyl cyclase (ATP pyrophosphate-lyase [cycling] E.C. 4.6.1.1) is a membrane
bound enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to 3'5’-
cyclic adenosine monophosphate (cAMP) and pyrophosphate in the presence of

guanosine triphosphate (GTP) and magnesium ions as shown below:

Adenylyl cyclase
Adenosine 5°- *P-P-P — Adenosine3’'5’- *P + P-P
ATP, Mg**

Mammalian adenylyl cyclase (AC) is regulated by different hormones and
neurotransmitters through guanosine triphosphate heterotrimeric binding protein (G

protein) coupled receptors (reviewed by Ross and Gilman 1980; Gilman, 1989; 1995).
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The adenylyl cyclase system consists of three main components: a heptahelical receptor, a
heterotrimeric G protein and adenylyl cyclase enzyme. Binding of a ho;mone or
neurotransmitter to a stimulatory receptor causes activation of a G protein, G, promoting
the dissociation of the a subunit from the By subunit which will in turn stimulate adenylyl
cyclase enzyme. The enzyme system is inhibited by a similar mechanism where binding
of an inhibitory ligand to an inhibitory receptor will activate another G protein coupled
receptor, G;. Activation of G; will result in the dissociation of the a; from the By subunits.
Both subunits can inhibit adenylyl cyclase activity.

Adenylyl cyclase type I gene was evaluated at the biochemical level by assaying
the enzyme activity in both wild-type and br! mutant mice, and at the molecular level by
mapping the gene to the genetic linkage map and searching for the mutation in the gene.
In addition, mice homozygous for a null mutation (knockout) in the adenylyl cyclase type

I gene (Adcyl) were examined for the presence of barrels in their somatosensory cortex.

4.2 Reagents and Solutions

All reagents were of molecular grade and purity. Preparation of reagents are
described in Appendix 5. cAMP formation was assayed using Amersham’s (Life

Sciences) enzymeimmunoassay (EIA) kit.

4.3 Methods

Figure 4.1 summarizes various steps used to assay adenylyl cyclase activity in

membrane brain preparations from wild-type and bri/brl mutant mice.
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{ Extraction of adenylyl cyclase from brain ]

'

[ Determine protein concentration using BCA Kit

'

Perform enzyme assay in the absence or presence
of Ca?* and calmodulin

t

[ Extract cAMP from the rest of the assay products ]

t

[ Estimate cAMP concentration using ]

Enzymeimmunoassay Kit (EIA)

'

[ Determine adenylyl cyclase activity

Figure 4.1 A flow chart representing the steps involved in determining adenylyl cyclase
activity from brain homogenate preparations from wild-type and barrelless mutant mice.
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4.3.1 Preparation of Detergent-dispersed Adenylyl cyclase

Two-week-old wild-type (B6) and brl mutant mice were sacrificed using carbon
dioxide. Brains were removed immediately and immersed in cold phosphate- buffered
saline solution. Membrane protein fractions were prepared according to Johnson and
Sutherland (1973). Briefly, brains were weighed and nine volumes of ice-cold
homogenization buffer (0.25 M sucrose [Fisher Scientific), 0.1 M glycylglycine (pH 7.5)
[Sigma Co.], 2 mM MgCl, [Fisher Scientific], | mM EDTA [Fisher Scientific], and 3
mM dithiothreitol [Sigma Co.]) were added followed by homogenization on ice with
three passes of a glass-teflon motor driven homogenizer. The homogenate was
centrifuged at 5,000 rpm (3,000 x g) using a Beckman JA-20 centrifuge for 10 minutes
after which the supernatant was discarded. The pellet was resuspended in nine volumes of
homogenization buffer followed by centrifugation. The process of homogenization and
centrifugation was repeated for a total of three times. The fourth homogenate was
resuspended in ice-cold homogenizing buffer containing 1% Lubrol (ICN Biomedicals)
followed by centrifugation at 15,000 rpm (27,000 x g) for 20 minutes. The supernatant

was collected and aliquoted into small volumes and stored at -70°C until use.

4.3.2 Estimation of Protein Concentration

Protein concentration was determined using the BCA Protein Assay Reagent
(Pierce, Rockford, Nlinois, U.S.A.) according to manufacturer’s instructions with few
modifications. Briefly, bovine serum albumin (BSA) standards were prepared at a final
concentration of 25-2000 pg/ml using the homogenized buffer containing 1% Lubrol as a

diluent (diluted 20 times). 0.1 ml of the sample (diluted 20 times), standard or the diluted
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homogenized buffer was added into each tube. 2 ml of working reagent (50 parts of
reagent A + 1 part of reagent B) was added followed by incubation at 37°C for 30
minutes. The tubes were cooled to room temperature and the absorbance was measured at
562 nm against water as a reference within the next 10 minutes. The standard or sample
results were subtracted from the blank results and a curve was drawn showing the
correlation between the net Asg> and the concentration in pg/ml. The concentration of the
sample was predicted from the standard curve (Figure 4.2) and the total concentration

was calculated after multiplying by the dilution factor.

4.3.3 Adenylyl Cyclase Enzyme Assay

Assaying adenylyl cyclase activity in vitro presents a number of problems: 1) the
enzyme is present in extremely small amounts in membrane preparations, 2) since other
kinases are present at higher concentrations, the adenylyl cyclase enzyme has to compete
with them for ATP, 3) cAMP is quickly hydrolyzed to 5’ adenosine monophosphate (5’-
AMP) especially in the presence of high activity enzymes in these membrane
preparations, and lastly, and lastly, 4) the enzyme is inactivated by the presence of cyclic
nucleotide phosphodiesterases, hence these enzymes should be inhibited in order to
accurately measure the rate of cAMP formation.

The enzyme assay was performed, with and without free Ca®* (estimated to be
300-500 nM) and 2.4 uM calmodulin (CaM; Sigma Co., 55,000 U/mg solid), in a 250 pl
volume containing 30 pug of membrane preparation, 20 mM Tris-HCI (pH 7.4), 1 mM
ATP (Sigma Co.), 5 mM MgCl,, | mM 3-isobutyl-1-methyl-xanthine (IBMX, Sigma

Co.), | mM EDTA, 0.1% BSA (Boehringer Mannaheim), 20 mM creatine phosphate
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Figure 4.2 A standard curve representing the correlation of the net absorbance at 562 nm
with the bovine serum albumin concentration measured by the BCA kit. Points represent
duplicate measurements. Stock solution was prepared at 2 mg/ml.
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(Sigma Co.), 60 U/ml creatine phosphokinase (CPK, from rabbit muscle, Boehringer
Mannaheim), 20 U/ml myokinase (from rabbit muscle, Boehrengir Mannaheim) and 8
U/ml adenosine deaminase (Sigma Co., 400U/0.4 ml). Free Ca®* concentration was
estimated using the Bound and Determined computer program (Brooks and Storey, 1992).
The assay was incubated at 30°C for 20 minutes, and the reaction was stopped by the

addition of 250 pl of 2% SDS followed by boiling for 2 minutes.

4.3.4 Extraction of cAMP

cAMP was extracted using the liquid phase method according to manufacturer’s
instructions. Briefly, 975 ul of absolute ethanol was added to the enzyme assay product
and the tubes were incubated at -70°C for 5 minutes. The supernatant was discarded and
the resultant precipitate was washed with ice-cold ethanol at a final concentration of 65%
followed by centrifugation at 2000 x g for 15 minutes at 4°C. Finally, the extract was
dried using centrifugation in a vacuum and then dissolved in a final volume of 500 ul of

assay buffer (Amersham kit). The extracts were diluted 75 times before cAMP

measurement was performed.

4.3.5 Measurement of cAMP formation

Measurement of cAMP formation was performed using Amersham’s cAMP
enzymeimmunoassay (EIA) system (Amersham, Oakville, Ontario, Canada) according to
manufacturer’s instructions. The assay is based on a competition between unlabeled
cAMP and peroxidase-labeled cAMP for a limited number of binding sites on a cAMP
specific antibody. The amount of the peroxidase-labeled cAMP will be inversely

proportional to the concentration of the added unlabeled cAMP.
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All reagents were equilibrated to room temperature. Assay buffer, standard
solutions, antiserum, cAMP peroxidase conjugate and wash buffer were prepared
according to manufacturer’s instructions. The assay protocol was performed using the

non-acetylation method as described in Table 4.1.

4.3.6 Calculation of Adenylyl Cyclase Specific Activity

Adenylyl cyclase activity is determined by measuring cAMP concentrations
generated by the enzyme in vitro. cAMP concentrations were calculated as follows. The
average optical density was calculated for each set of replicate wells. The percentage of
bound cAMP for each of the samples and the standards was calculated as described by the
manufacturer according to the following equation :
%B/Bo = [(Sample or Standard OD - NSB OD) + (B, OD - NSB OD) ] x 100 where NSB
is non specific binding and By is the binding in the absence of a standard. A standard
curve was generated by plotting the percentage B/Bg against the log cAMP concentration
(Figure 4.3).The amount of cAMP in sample was read directly from the curve and then
was subtracted from its control. The specific enzyme activity was calculated according to
the following equation:
Adenylyl cyclase activity = (Net cAMP conc. x .01875)/ protein conc. (mg)

(pmole/minute/mg)

4.3.7 Histology of Adenylyl cyclase Knockout Mice
Seven-month-old mice homozygous for a targeted disruption of either Adcy! and

Adcy8 genes were obtained from U. Washington (Seattle; U.S.A.). SO um thick sections
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Table 4.1 Adenylyl cyclase enzymeimmunoassay protocol using the non-acetylation
method. The substrate blank was omitted since the non-specific binding in the assay is so

low and the non-specific binding (NSB) wells were used to blank the microtiter plate.
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Figure 4.3 Standard curve representing the percent B/B( as a function of the log cAMP

concentration in fmole/well using the non-acetylation protocol. Standard curve solutions
were prepared at 12.5-3200 fmole. Abbreviations: %B/B(, percent of bound cAMP; log,

logarithm; fmole, concentration of cAMP in femtomole (= 10-12 mole).
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were cut parallel to the pial surface overlying the primary somatosensory cortex, and stained

with cresyl violet (Nissl).

4.3.8 Mapping of D11Dalll

Sequencing of Adcyl cDNA from B6 (Genbank AF053980) and br! mutant mice
(by my colleague Dr. Leong) revealed a polymorphism in the 5’ end of the coding region
(D11Dalll). Genomic DNA amplification of the 5’ end of the Adcy! gene was performed
using half nested PCR for all animals that were recombinant between DIIMit74 and
D11Mit226. The first step of amplification was performed in a total volume of 25 pl
containing 1x PCR buffer (0.01 M Tris-HCI, pH 8.8), 200 uM dNTP, 0.4 pmole of
degenerate primer A93 5°-GCT AAG GGC TCG CAC CCC GTN CAY TGY GT-3
(where N=A/C/G/T and Y=C/T), 0.2 pmole of R1 5’-CTC AAT GCA GTT CCG GGC
CT-3" specific primer, and 250 ng of mouse genomic DNA. The second step of
amplification was performed using 1 pl of the amplified PCR product (diluted 100 times)
in a total volume of 25 pl containing 1x PCR (0.01 M Tris-HCI (pH 8.8), 200 uM dNTP,
0.2 pmole of both forward F1 5’-GCT GCT CTT CAG CCT CAC CTT-3’ and reverse
R1 specific primers). Cycling parameters were: 94°C (3 minutes) - [94°C (45 seconds)-
58°C (45 seconds) - 72°C (1 minute)] 35x - 72°C (10 minutes) - 15°C. Amplified
products were analyzed by electrophoresis in 1.5% agarose gels. Amplicon sizes were
482 b.p. from the first PCR amplification and 375 b.p. from the second amplification. The
second PCR product was digested using Ban/ (20,000 U/ml, New England Biolabs)
restriction endonuclease (as described previously in chapter 2) to give rise to two bands of

262 b.p. and 113 b.p. in the B6-derived allele and 375 b.p. in the bri/brl derived allele.
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4.4 Results

Adenylyl cyclase activity in brain membrane preparations from both wild-type and
brl/brl mutant mice was measured in the absence (Table 4.2) or presence (Table 4.3) of
Ca®* and calmodulin. Basal adenylyl cyclase activity (without Ca**/CaM) in bri/brl mice
was half of wild-type mice, yet this difference was not statistically significant (Figure
4.4). However, there was a significant difference in enzyme activity in the presence of
Ca™ and calmodulin (r = 5.7, df = 3.0, p =0.01). This was the result of a six-fold increase
in adenylyl cyclase activity in wild-type mice, whereas no increase in enzyme activity was
observed in br/ mutants.

Sections through layer IV of the somatosensory cortex of Adcy! knockout mice
revealed the absence of barrels (Figure 4.5A) compared to Adcy8 knockout mice (Figure
4.5B) that displayed the presence of a normal pattern of barrels.

A polymorphism that was found in the 5’ end of the coding region of the Adcy!
gene (D11Dalll) was detected in all [CR-derived lines. Genotyping recombinant animals

(Figure 4.6) in the brl interval mapped DI1Dalll to be 0.17 cM proximal to the brl locus

(Figure 4.7).

4.5 Discussion

The mammalian adenylyl cyclase family is composed of at least nine isoforms
encoded by at least nine genes and additional variants that differ in their regulatory

properties and tissue distributions (Krupinski et al., 1989; Feinstein et al., 1991; Gao and
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Figure 4.4 Adenylyl cyclase activity in two-week-old wild-type and bri/brl mutant mice.
Enzyme activity in brain membrane protein fractions was measured in the absence (white
bars) or presence (black bars) of free Ca”* (estimated to be 300-500 nM) and calmodulin.
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Figure 4.5 Digitized images of layer IV of SI cortex from seven-month-old Adcy! (A)
and Adcy8 (B) knockout mice. Adcy! knockout mice display a barrelless phenotype,
whereas Adcy8 knockout mice have the normal pattern of barrels separated by cell-sparse

septa.
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Figure 4.5



Figure 4.6 Haplotype analysis of intercross and backcross data. Marker loci are shown on
the left hand side with recombinant haplotypes shown at the bottom. The black boxes
represent homozygous genotypes while the white boxes represent heterozygous

genotypes.
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Figure 4.7 A high resolution genetic linkage map in the proximal region of mouse
chromosome 11. The marker D/IDalll (bold) is a polymorphism in the 5’ end of the
adenylyl cyclase type I gene and mapped 0.17 cM proximal to the brl locus (bold). The
brl locus now lies in an interval of 0.42 cM.
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Gilman 1991; Bakalyar and Reed 1990; Ishikawa et al., 1992; Yoshimura and Cooper
1992; Katsushika et al., 1992; Premont et al., 1992; Wallach et al., 1994; Glatt and
Snyder, 1993; Cali et al., 1994; Watson et al., 1994; Hellevuo et al., 1995; Defer et al.,
1994; Premont et al., 1996; Paterson et al., 1995; reviewed in Iyengar 1993; Taussig and
Gilman, 1995; Cooper et al., 1995; Krupinski et al., 1992). Based on their sequences and
functional similarities, they have been divided into four distinct subfamilies which reflect
their distinct pattern of regulation: 1) Ca”*/calmodulin sensitive ACs (ACI, AC3, ACS8);
2) Ca®*/calmodulin insensitive ACs (AC2, AC4, AC7); 3) Ca®*- inhibitable ACs (ACS,
AC6); 4) AC9 which is sensitive to indirect effects of Ca**. While ACs differ in their
response to modulatory factors such as Ca®, Py subunits of the G protein, cCAMP-
dependent protein kinase (PKA) and protein kinase C (PKC), all of them are activated by
the Gsq subunit of the G protein and forskolin. In a more recent study (Buck et al., 1999),
a distinct class of mammalian adenylyl cyclase was described. This adenylyl cyclase is
soluble and insensitive to G protein or forskolin regulation. The varied pattern of
regulation allows the cell to change its cAMP levels in response to a variety of signals,
therefore, varying its physiological functions.

All ACs share a common topology based on secondary structure analysis and
sequence similarity. The proteins are predicted to have a short amino-terminal
cytoplasmic tail, two alternating sets of six transmembrane hydrophobic domains (M, and
M,), two sets of large hydrophilic cytoplasmic domains (C; and C>) followed by a long
carboxy-terminal cytoplasmic tail. No catalytic activity is detected when each half of the

cytoplasmic domains is expressed separately; however, coexpression of the two halves
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results in retrieval of enzymatic activity (Tang et al., 1991). Recently, the crystal structure
of the adenylyl cyclase catalytic core has been determined (Zhang et al., 1997). The
cytoplasmic tail exists as a dimer that has a wreathlike structure with the ATP binding
site in the ventral cavity.

Adenylyl cyclase type I, AC1 (EC 4.6.1.1), is a membrane bound enzyme that
catalyzes the formation of cCAMP, an important second messenger. It was mapped to
mouse chromosome 11 (conserved synteny with human chromosome 7 [Villacres et al.,
1993]) using fluoroscence in situ hybridization (FISH) (Edelhoff et al., 1995). ACI is
neurospecific (Xia et al., 1993; Drescher et al., 1997; Matsouka et al., 1997) and is
expressed in areas of the brain that play important roles in neuroplasticity (Xia et al.,
1991). The enzyme is not stimulated by activation of Gs-coupled receptors alone in vivo,
nonetheless it is stimulated when receptor activation is coupled with Ca®* (Wayman et al.,
1994). AC1 activity is directly stimulated by Ca** and calmodulin in vivo (Tang et al.,
1991; Wu et al., 1993; Wu et al., 1995). Point mutagenesis in the CaM-binding domain
diminishes the ability of Ca®*/CaM to stimulate enzyme activity (Wu et al., 1993). The
physiological role of AC1 is not known; however, it is believed that it may link changes
in intracellular free Ca®* to increases of cCAMP and thus couple the calcium and cAMP
systems (Choi et al., 1992).

Evaluation of Adcy! as a candidate for brl gene was performed by measuring the
biological activity of its product in brain membrane preparations of wild-type and brl/bri
mutant mice. There is no direct assay to measure the enzyme activity in vitro, hence the

enzyme activity is assayed indirectly by measuring the amount of enzyme-generated
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cAMP. Most protocols measure the P cyclic AMP formation from [o-"’P] ATP
(Salomon et al., 1974; Salomon, 1979; Krishna et al., 1968). A new methodology was
developed using an enzymeimmunoassay for the measurement of cAMP. Assaying the
enzyme activity in vitro is very difficult due to its presence in extremely small amounts in
membrane preparations (0.01-0.001%), and due to the instability of the enzyme in the
presence of other kinases and inhibitors. Accordingly, phosphodiesterase activity
inhibitors, ATP-regenerating systems, divalent ions, chelating systems, and adenosine and
adenosine monophosphate degenerating enzymes were important factors that were added
to the enzyme assay reaction to enable the measurement of adenylyl cyclase activity more
accurately. Cyclic AMP derived from adenylyl cyclase was extracted from the rest of the
enzyme assay products before measurement using an enzymeimmunoassay approach.
Basal adenylyl cyclase activity in brl/brl mutant mice was half of that measured in
wild-type mice (Abdel-Majid et al., 1998; Figure 4.4), however this decrease was not
statistically significant. However, measurements of the enzyme activity in the presence
of Ca® and calmodulin as stimulators revealed a significant difference in enzyme activity
in bri/brl mutant mice compared to wild-type. While adenylyl cyclase activity increased
by six-fold in wild-type mice, there was no increase in enzyme activity in br/ mutants.
These results are comparable with previous published results reported in Adcy! knockout
mice (Villacres et al., 1995). The finding that a non-functional AC protein was detected
in the brl mutant mouse suggested further evaluation of Adcy! at the molecular level.
Sequencing of the AC1 cDNA from both wild-type and bri/brl alleles (by Dr.

Leong; Abdel-Majid et al., 1998) revealed the presence of two differences, a
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polymorphism at the 5’ end of the coding region (D11Dalll) and an early retrotransposon
(ETn) insertion (Genbank AF053979). The first difference was a polymorphism that
mapped 0.17 cM proximal to the brl locus (Figure 4.7), while the second was the
mutation which co-segregated with the brl phenotype (Figure 4.8). A loss-of-function
mutation due to an insertion of an ETn in various genes has been previously reported
(Steinmeyer et al., 1991; Mitreiter et al., 1994). In these reports, the ETn insertion lead to
alternative splicing and premature termination of transcripts. Furthermore, Northern blot
analysis has confirmed the presence of two aberrant transcripts in the br/ mutant instead
of the normal transcript present in wild-type mice (Leong et al., 1999). Finally, the causal
relationship between Adcy! and brl was confirmed when Adcy! knockout mice displayed
the barrelless phenotype (Figure 4.5A; Abdel-Majid et al., 1998) in contrast to mice
homozygous for targeted disruption of Adcy8 which displayed the normal pattern of
barrels with the cell sparse centers and septa (Figure 4.5B).

cAMP plays a vital role in signaling pathways and in neuroplasticity in both
vertebrates and invertebrates. Biochemical, behavioral and genetic studies in the fruit fly,
Drosophila melanogaster, have provided evidence for the involvement of cAMP pathway
in leaming and memory. Four Drosophila mutants (dunce, rutabaga, Ddc, and turnip),
which lack genes involved in cAMP pathway, had varied degrees of learning deficits,
thus providing evidence for the importance of cAMP in acquisition and memory. The role

of cAMP in learning and memory extends to Aplysia and mice. In Aplysia, cCAMP is
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Figure 4.8 Final genetic linkage map in the region of the brl locus in proximal mouse
chromosome i1. A mutation in the Adenylyl cyclase type I gene (Adcy!l) co-segregated
with the barrelless phenotype in all animals that were recombinant between DIIMit74
and D1IMit226. A polymorphism (D11Dalll) in the 5’ end of the adenylyl cyclase type I
gene lies at 0.17 cM proximal to the mutation.
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required for short-term (Brunelli et al., 1976; Walters et al., 1983) and long-term
(Montarolo et al., 1986; Dash et al., 1990) facilitation in the synaptic connections
between sensory and motor neurons of the gill- and tail-withdrawal reflexes. It is believed
that short- and long-term facilitation occurs through the release of serotonin (5-HT),
which will activate adenylyl cyclase and hence strengthen synaptic connections in the
reflex pathway (Castelluci et al., 1980; Hawkins et al., 1993). In mice, targeted disruption
of genes involved in cAMP pathways produced mice that are deficient in long-term
memory (Bourtchuladze et al., 1994). The role of AC!l in synaptic plasticity was
confirmed when mice homozygous for a targeted disruption of Adcy! were deficient in
spatial memory and showed depression of long-term potentiation (LTP) in the
hippocampus (Wu et al., 1995) and a nearly complete blockade of LTP in the cerebellum
(Storm et al., 1998). Finally, it has recently been reported that an impairment of
Ca**/calmodulin ACI is involved in the pathogenesis of dementia type of Alzheimer
disease (Yamamoto, 1997), and in the pathophysiology of alcoholism (Hashimoto et al.,
1998) in humans.

A similar barrelless phenotype to that observed in Adcy/ mutants was found in
mice homozygous for a targeted disruption of monoamine oxidase A (Maoa) (Cases et
al., 1995; 1996). In these knockout mice, excess brain 5S-HT during early postnatal
development is responsible for the absence of barrels. Available data support a role for
glutamatergic neurotransmission in the refinement of the thalamocortical projections
since whisker-related patterns fail to develop in the brainstem, thalamus, and cortex of

mice deficient of the NMDA receptors (Li et al., 1994; Iwasato et al., 1996; 1997), and
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pharmacological blockade of NMDA receptors in normal somatosensory cortex disrupts
thalamocortical projections and columnar organization of barrels (Fox et al., 1996) and
produces a barrelless phenocopy in rats (Mitrovic et al., 1996).

The barrelless phenotype may result from loss of AC1 in cortical dendrites or
from thalamocortical afferents (TCAs). cAMP has been reported to stimulate neurite
outgrowth in vitro (Zheng et al., 1994; Song et al., 1997; Lotto et al., 1999), hence its
absence from cortical dendrites will impair their contribution to barrel formation. On the
other hand, if the site of gene action is in the TCAs then cAMP absence will lead to a
reduced glutamate release and a reduced neurotransmission causing thalamic afferents to
grow beyond barrel domains. Accordingly, we propose the following: The shared
phenotypic features of the Maoa knockout mice and Adcy! mutants, and the NMDA
receptor blockade suggest the involvement of serotonin, cAMP pathway and glutamate
neurotransmission in barrel formation (Figure 4.9). A nine-fold increase in 5-HT
concentration in these knockout brains was found during the critical period of barrel
development (Cases et al., 1995). Conversely, early depletion of 5-HT delayed barrel
development and reduced their size due to a decrease in the growth of the TCAs (Bennett-
Clarke et al., 1994). In the first two weeks of prenatal life, thalamic axons express genes
encoding the serotonin transporter (Bennett-Clarke, 1996; Lebrand et al., 1996; Bruning
and Liangos, 1997) and the vesicular monoamine transporter (Lebrand et al., 1996; 1998)
as well as the serotonin receptor 5-HT g (Bennett-Clarke et al., 1993) which decreases
adenylyl cyclase activity (Bouhelal et al., 1988). This reduced PKA activity in VB

thalamic terminals inhibits presynaptically the excitatory thalamocortical transmission
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Figure 4.9 A schematic representing three neuronal processes in the barrel hollow. Only
cortical dendrites (cortex), thalamocortical afferents (TCAs), and serotonergic afferents
(5-HT) are represented. High levels of 5-HT in the first two weeks of perinatal life will
inhibit adenylyl cyclase activity (AC) through serotonin receptor 1B subtype (5-HTg)
that will result in reduced levels of cAMP. The decrease in cAMP concentration will
result in a reduction in cAMP-dependent protein kinase (PKA) activity, which, in turn,
will reduce the activity of Ca** ion channels and hence reduce Ca®* influx (solid arrows).
These events will lead to a reduced glutamate release and reduced neurotransmission in

the TCAs.



131

Raphe Nucleus

Ion Channels
Caz+

S-HTIB
Receptor

Receptor

Cortex

Figure 4.9



132

(Rhoades et al., 1994). Reduction of neurotransmission due to a loss-of-function mutation
in the Adcyl gene will therefore lead to disruption of the topographic refinement of
thalamocortical projections and accordingly abolishes barrel formation in the
somatosensory cortex.

Alternatively, a barrelless phenotype may result from loss of Adcyl in the
posterior medial (POm) thalamic projections to the cortex, which terminate in the septa
between barrels in layer IV (Koralek et al., 1988; Chmielowska et al., 1989; Lu and Lin,
1993). The presence of septa between barrels defines prominent barrels in rodents, and
their absence in certain species give rise to indistinct barrels (Rice and Van der Loos,
1977). However, it is highly unlikely that a barrelless phenotype results from loss of
adenylyl cyclase in the POm nucleus due to the following reasons: 1) it has been reported
that sensory thalamic nuclei express AC! during development (Matsouka et al., 1997);
however, it is not clear whether POm nucleus expresses this enzyme, and 2) the
developmental time course of the POm projections has not been examined yet (Rice,
1995).

Finally, these results provide the first evidence for the involvement of cyclic
nucleotide signal transduction systems in barrel formation. Since pattern formation is not
specific for the barrel cortex, or for that matter for rodents, cAMP may play a more
general role in cortical specification. In the next few chapters, we will try to discover
molecular mechanisms that play important roles in barrel formation in particular and in
pattern formation in general. As summarized in figure 4.9, the main target of CAMP is
cAMP-dependent protein kinase (PKA), which almost accounts for all cAMP biological

effects. In order to determine whether PKA is the cAMP downstream target that is
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disrupted in the barrelless mutant in the thalamocortical afferents, various PKA null

mutant mice were examined for the presence of barrels in their SI cortex.



Chapter §

Involvement of Protein Kinase A

in Barrel Formation

Results presented in this chapter has been submitted for publication in Nature

Neuroscience.
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5.1 Introduction

We hypothesized earlier (chapter 4) that loss-of-function mutation in Adcy! in the
thalamocortical afferents results in a brl phenotype. Since this gene was well
characterized, the initial goals were modified. The main goal at this stage was to identify
signaling pathways involved in barrel formation. Thus, it was logical to investigate the
involvement of cAMP downstream targets.

cAMP transduction pathways play a pivotal role in cell signaling where it is
involved in various cellular responses through the activation of target proteins. It exerts
its effect mainly through the activation of cAMP-dependent protein kinase (PKA), which
controls many biochemical events through the phosphorylation of target proteins. PKA is
a heterotetramer composed of two regulatory (R) and two catalytic (C) subunits that exist
in different isoforms. Four regulatory (Prkarla, Prkarlb, Prkar2a, and Prkar2b) and two
catalytic subunit genes (Pkaca and Pkacb) have been identified. Each subunit has been
disrupted by homologous recombination in embryonic stem cells (Qi et al., 1996; Amieux
et al., 1997; Brandon et al., 1997; Burton et al., 1997). Loss of the Rla isoform in
Prkarla knockout mice is an embryonic lethal condition (Burton et al., 1997). Some
cAMP signaling pathways involve activation of cyclic nucleotide gated channels
(Zimmerman et al., 1995; Kaupp et al., 1995) or cAMP-regulated guanine nucleotide
exchange factors (Kawasaki et al., 1998). In order to determine whether PKA is the
downstream target of the cAMP pathway that is disrupted in Adcy/ mutant mice, we
examined the barrel field morphology in the five viable PKA nuil mutant mice using

cresyl violet (Nissl) staining and cytochrome oxidase (CO) histochemistry.
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5.2 Reagents and Solutions

All reagents were of molecular grade. Cytochrome oxidase reagents were
purchased from Sigma Co. Phosphate buffer, paraformaldehyde and alcohol were from

BDH.
5.3 Methods

5.3.1 Animals

Targeting of embryonic stem cells, establishment of chimeras and mouse lines
carrying mutations in the RIf, RIlo, RIP, and CPp PKA subunit genes have been
described (Brandon et al., 1995a; 1995b; Qi et al., 1996; Burton et al., 1997; Brandon et
al., 1998). Ten-week-old mice homozygous for targeted disruption of the PKA subunit
genes RIB (n=3), Rlo (n=3), RIOP (n=8), Ca (n=3), and CP (n=3) (University of
Washington, Seattle, U.S.A.) were given a lethal dose of sodium pentobarbital, and then
were transcardially perfused first with 0.1 M phosphate-buffered saline (PBS; pH 7.4)
then with chilled 4% paraformaldehyde in 0.1 M PBS. Brains were removed from the

skull and were postfixed for 24 hours in the same fixative.

5.3.2 Histology of the Barrel Field

Due to the position of the barrel field at the arcing dorsal surface of the
hemisphere, it is of great importance to optimize the orientation of brains for proper
demonstration of barrels. The barrel field was approached using sections parallel to the
pial surface overlying the somatosensory cortex (figure 7 in Woolsey and Van der Loos,

1970). Brains were cut at the midline, and each hemisphere was mounted in a 10°
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anterior-posterior tilt on a wedge that was glued to a metal cube and inclined 30°
medially. Hemispheres were sectioned serially at a thickness of 50 pum using a vibratome.
Sections were mounted on gelatin-coated slides, dried overnight and then stained either
with cresyl violet (Nissl) stain or CO histochemistry.

5.3.2.A Cresyl violet (Nissl) stain

Slides were dehydrated in a series of ethanol dilutions (50, 70, 95 and 100%) for
two minutes and then were dipped in two changes of 100% xylene for two minutes each
time. Slides were then rehydrated in the same manner in decreasing dilutions of ethanol
after which they were rinsed with running tap water and then were immersed in cresyl
violet stain (0.1%) for 5-8 minutes. Slides were rinsed again under running tap water and
then were immersed in acid alcohol (10% acetic acid) for blue differentiation. Finally,
slides were dehydrated in increasing dilutions of alcohol (50, 70, 95 and 100% ) followed
by dipping in two changes of 100% xylene and then were coverslipped using a synthetic
resin (Entellan; Merck, Germany).

5.3.2.B Cytochrome Oxidase (CO) Histochemistry

In the barrel field, cytochrome oxidase histochemistry gives rise to darkly stained
patches coincident with thalamocortical afferents termination. Regions of high enzymatic
activity are present in the barrel hollow with the barrel sides and septa being less reactive.
This pattern of staining arises mainly from reactive mitochondria present on dendrites and
axonal terminals of the barrel neuropil and to a lesser degree from neuronal perikarya

(Wong-Riley and Welt, 1980; Wong-Riley, 1989). CO staining pattern in the barrelless
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mutant displays diffuse staining, a pattern that contrasts the wild-type pattern. Therefore,
CO histochemistry was used as a marker for thalamic afferents termination.

Sections were collected in 0.1 M phosphate buffer (PB; pH 7.4) and then were
mounted on gelatin double subbed slides. Slides were allowed to dry overnight and the
next morning they were dipped in 4% paraformaldehyde in 0.1 M phosphate buffer (pH
7.4) for one hour followed by a few rinses with distilled water. Sections were reacted for
CO as described by Wong-Riley (1979). Briefly, slides were incubated for 6-8 hours at
37°C in 0.1 M phosphate buffer containing 4 g sucrose (BDH), S0 mg diaminobenzidine
(DAB; Sigma Co.) and 30 mg cytochrome C (from horse heart, Sigma Co.) in a total
volume of 100 ml 0.1 M PB buffer. At the end of the incubation period slides were rinsed

in three changes of 0.1 M phosphate buffer (pH 7.4), dehydrated and coverslipped.

5.4 Results

Examination of the barrel field using Nissl-stained sections revealed the presence
of barrels in PKA knockout mice; however, one of the five PKA knockout mouse lines
displayed defects in barrel morphology (Figure 5.1). Barrels in mice lacking the RIIP
subunit were hard to discern because the septa and barrel hollows displayed less reduction
in cellularity relative to the barrel sides (Figure 5.1D) than in wild-type animals (Figure
5.1A).

Examination of barrels in all five PKA knockout mouse lines using CO-stained
sections revealed the presence of a multifocal pattern as is observed in wild-type animals
(Figure 5.2). This multifocal pattern contrasts with CO-stained sections of barrelless

(Adcy!®™) mutant mice in which CO-reactivity displays a diffuse staining pattern in layer
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Figure 5.1 Digitized images of cresyl violet (Nissl) stained sections of layer IV of the
somatosensory cortex of adult wild-type mice (A), RIB (B), RIa (C), RIP (D), Ca. (E),
and CB1 (F) null mutant mice. SOum-thick sections were cut parallel to the pial surface

overlying the primary somatosensory cortex. Scale bar = 200 pum.
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Figure 5.2 Digitized images of cytochrome oxidase stained sections of layer IV of the
somatosensory cortex of adult wild-type mice (A), RIP (B), and barrelless mutant mice
(C). Examination of barrel morphology in the five PKA mutant mice revealed the
presence of darkly stained patches coincident with thalamocortical afferent terminations,
a pattern that was indistinguishable from that of wild-type. In contrast to the darkly
stained clusters observed in wild-type, in barrelless mutant mice, the CO staining pattern

was uniform. Scale bar = 200 um.
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Figure 5.2
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IV of the somatosensory cortex (Figure 5.2C). CO staining was observed in the barrel
hollows, giving rise to the pattern of darkly stained patches coincident with the
thalamocortical afferent terminations. The contrast betwsen staining of the barrel-like
domains and the surrounding tissue was reduced in RII mutants relative to wild-type
controls and the other PKA subunit knockouts. In addition, the anterolateral barrel
subfield of RIIB knockouts is uniformly stained with little evidence of barrel-like

domains (data not shown).

5.5 Discussion

The five PKA knockouts examined here had barrels in their somatosensory
cortices and barrel-like domains in cytochrome oxidase histochemistry, suggesting
normal segregation of thalamocortical afferents within the barrel hollows. The barrels in
mice lacking the RIIB subunit were less well defined. The finding that RIP mutant mice
had the poorest barrel morphology may not be surprising as they have the largest reported
decrease in PKA activity and other signs of neurological disorder (Brandon et al., 1998).
Total PKA activity is reduced by 75% in striatum and 50% in hippocampus (Brandon et
al.,, 1997; 1998). In the primary somatosensory cortex of one-week-old RIIf knockout
mice, PKA activity was reduced by 40% (Abdel-Majid et al., 1999). Moreover,
immunohistochemistry with monoclonal antibody to RIIp subunit revealed
immunoreactive cell bodies through layer IV and the supragranular layers (II and III). In
layer IV, low contrast patches of immunoreactive somata appear to be imbedded in a

diffuse immunoreactive neuropil (Abdel-Majid et al., 1999).
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As hypothesized previously, a loss-of-function mutation in the Adcy! gene should
reduce cAMP levels and PKA activity in TCAs and therefore may lead to a barrelless
phenotype through reduced glutamate release (Abdel-Majid et al.,, 1998). Since the
AdcyI®" and monoamine oxidase A (Maoa) mutant mice have a barrelless phenotype with
an overgrowth of thalamocortical afferents in layer IV (Welker et al., 1996; Cases et al.,
1995; 1996), this suggests that the site of action of Adcyl might be in the TCAs without
ruling out the possibility that it may also act in cortical neurons. On the other hand, the
presence of barrels in PKA knockout mouse lines suggests that PKA is not the
downstream target of cCAMP signaling pathway in the thalamocortical afferents disrupted
in the Adcy! (barrelless) mutant mice.

The presence of barrels in PKA mutant mice can be explained by several
possibilities. One is that redundancy in PKA subunits in the TCAs protects against a
barrelless phenotype. Compensatory mechanisms have been reported in mice with
targeted disruption of R subunits genes. For example, there was an increase in the Rlo
subunit in mice lacking the RIB (Brandon et al., 1995b), Rlla (Burton et al., 1997), and
RIB (Cummings et al. 1996) subunits. Thus, it is possible that the site of gene action of
the RIIP subunit might be the same as that in the Adcy/ mutant mice, but the mutant
phenotype is less severe because of compensation of other PKA subunits.

Alternatively, the site of action of RIIf and AC1 may be different, suggesting that
PKA is not the downstream target of cCAMP in the TCAs. It is possible that ACI acts in
both TCAs and cortical neurons whereas PKA acts only in cortical neurons. Other

possible downstream targets for cAMP signaling are cyclic-nucleotide-gated (CNG)
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channels (reviewed in Zimmerman, 1995; Kaupp, 1995) and cAMP-reguiated guanine
nucleotide exchange factors (Kawasaki et al., 1998).

CNG channels have been reported to be involved in sensory axonal guidance
(Coburn and Bargmann 1997). In C. elegans, sensory axons of tax-2 and rax-4 mutants
terminate in inappropriate regions, bypassing their normal site of termination suggesting
that CNG channel activity limits axonal outgrowth of sensory neurons. If CNG channels
are the downstream target of the TCAs, then their inactivation due to low levels of cAMP
can result in a barrelless phenotype.

Another possibility is that the cAMP-mediated pathway in the TCAs exerts its
effect through direct coupling to Ras superfamily signaling pathway (Kawasaki et al.,
1998). In this recent study, the authors report the presence of a family of proteins that
contain domains for both cAMP and guanine nucleotide exchange factor that selectively
activate Rapl in a cAMP dependent manner.

The above results suggest that the site of action of the RIIB subunit is in layer [V
cortical neurons. The mutant phenotype is distinct from that in Adcy! mutants. In
addition, the RO} mutant phenotype resembles that of phospholipase C beta-1 (PLC-B-1)
mutants. As in the RIIB knockout, there is an absence of clearly-defined barrel walls and
hollows, and cytochrome oxidase histochemistry reveals barrel-like domains (Hannan et
al., 1998a). Thus we believe that protein kinase A plays a role in barrel formation by

influencing cortical neuron dendrite growth in response to thalamocortical afferent

activity.
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6.1 Introduction

In order to identify molecules that play a role in barrel formation, it was necessary
to identify the signal that cortical neurons release in response to thalamocortical
innervation. In doing so, several criteria were taken into consideration: 1) this signal(s) is
expressed during the first week of development in the cortex and/or thalamus (when
barrels are formed), 2) it plays a role in synaptic plasticity, 3) activity-dependent
mechanisms regulate its expression or release, and lastly, 4) this signal modulates axonal
and/or dendritic growth. Indeed, neurotrophins were attractive candidates that meet the
above criteria.

Neurotrophins are a group of structurally related proteins that are required for the
survival, differentiation, and maintenance of connections of specific neuronal populations
during development and in adulthood (Levi-Montalcini, 1987a; 1987b; Thoenen et al.,
1987, Barde, 1989; Thoenen, 1991; Davies, 1994). They are widely expressed in the
peripheral and central nervous systems (Ernfors et al., 1990; Maisonpierre et al., 1990;
Korsching, 1993; Zhou and Rush, 1994; Pitts and Miller, 1995; Friedman et al., 1998; )
where they promote the survival of a specific population of neurons (Chun and Patterson,
1977; Hartikka and Hefti, 1988; Barbacid, 1994; Snider, 1994; Lewin and Barde, 1996).
The neurotrophin family includes nerve growth factor (NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5) (for reviews see
Davies, 1994; Lindsay, 1994; Bothwell, 1995; Lewin and Bard, 1996), neurotrophin-6

(NT-6) which was discovered in fish (Gotz et al., 1994), and neurotrophin-7 (NT-7),
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which is the most recent addition to the neurotrophin family that was discovered in
zebrafish (Nilsson et al., 1998).

The biological effects of neurotrophins are mediated through binding to the low-
affinity p75 receptor (for reviews, see Carter et al., 1996; Dechant and Barde, 1997) and
to the high-affinity Trk family of the tyrosine kinase receptors (for reviews, see Glass and
Yancopoulos, 1993; Dechant et al., 1994; Barbacid, 1995a; 1995b). TrkA is the NGF
receptor, TrkB is the receptor for both BDNF and NT-4, and TrkC is the primary receptor
for NT-3, although NT-3 binds at high concentrations to TrkA and TrkB receptors as
well. TrkB and TrkC are also present in a truncated noncatalytic form (Barbacid, 1995b).
Null mutant mice were generated for all the neurotrophins and their receptors (Klein et
al., 1993; Smeyne et al., 1994; Jones et al., 1994; Crowley et al., 1994; Klein et al., 1994;
Emfors et al., 1994a; 1994b; Farifias et al., 1994, Snider, 1994). Examination of the SI
cortex in BDNF (Jones et al., 1994), TrkA, TrkB and TrkC (Henderson et al., 1995) null
mutant mice revealed the presence of barrels; however, these results can be explained by
the presence of compensatory mechanisms that compensate for the loss of the
neurotrophin.

More recently, it has been demonstrated that neurotrophins have a more complex
function than merely enhancing survival and growth of neurons. Numerous lines of
evidence implicate neurotrophins involvement in: 1) long-term potentiation (LTP)
(Patterson et al., 1996; Figurov et al., 1996; Kang et al., 1997; Akaneya et al., 1997), 2)
modulating synaptic plasticity in activity-dependent manner (Zafra et al., 1991; Lohof et

al., 1993; Kim et al., 1994; Kang and Schuman, 1995; Cabelli et al., 1995; Levine et al,,
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1995; Lo, 1995; Thoenen, 1995; Berninger and Poo, 1996; Bonehoeffer, 1996; Cellerino
and Maffei, 1996; Cabelli et al., 1997; Levine et al., 1998; McAllister et al., 1998;
Sherwood and Lo, 1999), 3) remodeling of axonal and dendritic growth (Valverde, 1968;
Volkmar and Greenough, 1972; Wiesel, 1982; Katz et al., 1989; Cohen-Corey et al.,
1991; Goodman and Shatz, 1993; Bailey and Kandel, 1993; Cohen-Cory and Fraser,
1995; McAllister et al., 1995; 1997; Lentz et al., 1999), and 4) providing guidance cues
for developing neurons (Ming et al., 1997; Song et al., 1997; 1999).

Previously, it was hypothesized that an excessive reduction in the thalamocortical
activity, and a reduction in glutamate neurotransmission resulted in overgrowth of the
thalamocortical afferents and hence a barrelless phenotype (Chapter 4; Abdel-Majid et al.,
1998). A corollary to this hypothesis proposes that, in wild-type mice, increasing
glutamatergic activity at TCA terminals during barrel development leads to synapse

stabilization and TCA growth arrest. Thus, the role of neurotrophins in barrel formation

was examined.

6.2 Materials

Neurotrophins BDNF, NT-3 and NT-4/5 were a generous gift from Regeneron
Pharmaceuticals, Inc., (Tarrytown, NY; U.S.A.). NGF was purchased from AUSTRAL
Biologicals (San Ramon, CA; U.S.A). Sheep anti-neurotrophin 3 (IgG fraction)
polyclonal antibody was purchased from CHEMICON International, Inc. (Temecula, CA;

U.S.A).
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6.3 Methods

All surgeries were performed in strict compliance with the policies and guidelines
of the Canadian Counsel on Animal Care, and were approved by the Animal Care
Committee at Dalhousie University. Intracortical injections were performed under sterile
conditions at two days (P2) and at two and half (P2.5) days of postnatal life (PO is the first
24 hours after birth). Pups were anesthetized by hypothermia, taped to a stage and then
were injected stereotaxically (2.5 mm anterior to Bregma, 1.2 mm from the midline, and
1 mm ventral to the skull) with 300 nl of physiological saline or an equal volume of one
of the following: NGF (1 mg/ml), NT-4/5 (0.58 mg/ml), BDNF or NT-3 at a high
concentration of 10 mg/ml or at a low concentration of 0.58 mg/ml. After surgery, the
pups were warmed on an electrical heating pad and then returned to their mother. At three
weeks of age the animals were weighed, deeply anesthetized with an overdose of
pentobarbital, perfused through the ascending aorta first with 0.1 M phosphate buffered
saline (pH 7.4) and then with chilled 4% paraformaldehyde. Brains were removed from
the skull, weighed and then postfixed in the same fixative for 24-36 hours. The
contralateral hemisphere was used as an internal control for each intracortical injection,
while saline injected animals were used as a control between groups. Brain sectioning and

histology were performed as described in section 5.3.2.

6.4 Results

Mice homozygous for targeted disruption of the neurotrophin-4/5 (Ntf5) gene

(Conover et al., 1995) have barrels (Figure 6.1C); however, the barrel walls appear to be
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Figure 6.1 Digitized images of layer IV of the somatosensory (SI) cortex of adult wild-
type mice (A, B), NT-4/5 null mutant mice (C, D) and Adcy!®" mutant mice (E, F).
Sections (50 mm thick) were cut parallel to the pial surface overlying the SI cortex and
were then processed for either cresyl violet (Nissl) staining (A, C, E) or for cytochrome

oxidase histochemistry (B, D, F). Scale bar = 200 um.
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less cellular than normal (Figure 6.1A). CO histochemistry reveals normal segregation of
TCAs into barrel-like domains (Figure 6.1D), a pattern indistinguishable from wild type
(Figure 6.1B).

Intracortical injections of BDNF and NT-3 at the high concentration, but not of
saline, NGF or NT-4/5, disrupted barrel formation in 80% of the wild type mice injected
at two days of age (P2) and 20% of those injected at 2.5 days of age (Figure 6.2 and Table
6.1). The extent of loss of barrels varied from loss of two rows of posteromedial barrels
closest to the injection site to the loss of all five posteromedial barrel rows. The smaller
anterolateral barrels were similarly affected. No effects were observed in the contralateral
cortex (data not shown). None of the above treatments had an effect on body or brain
weight (data not shown), suggesting that neurotrophin injections did not generally affect
brain development.

Intracortical injections of BDNF (n = 9) and NT-3 (n = 12) at low concentrations
resulted in a barrelless phenocopy in a small percentage of animals (Table 6.1).
Intracerebral injections of the four neurotrophins singly (n = 16) or an antibody specific
for NT-3 (n = 11) at two days of age failed to correct the barrelless phenotype in Adcy! brl

mutant mice (data not shown).

6.5 Discussion

The current study investigated the role of neurotrophins in the development of
patterning in the primary somatosensory cortex. Present results demonstrate that loss of
NT-4/5 in knockout mice and exogenous application of BDNF and NT-3 in wild-type

animals disrupted the formation of cortical barrels in the SI cortex of mice.
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Figure 6.2 Digitized images of layer IV of the somatosensory cortex of three-week-old
wild-type mice that had been injected with one of the following neurotrophins at two days
of age (P2): Saline (A and B), NGF (C and D), BDNF (E and F), NT-3 (G and H), or NT-
4/5 (I and J). Nissl-stained sections (A, C, E, G and I) are represented on the left side,
while CO-stained sections (B, D, F, H and J) are presented on the right hand side. Scale

bar = 200 um.
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P2 P25
Wild-type Barrelless Wild-type Barrelless

Saline 5 0 6 0
NGF (1 mg/ml) 7 0 6 0
BDNF (10 mg/ml) 2 12 4 0
BDNF (0.58 mg/ml) 6 3

NT-3 (10 mg/ml) 3 8 5 2
NT-3 (0.58 mg/ml) 10 2

NT-4/5(0.58 mg/ml) 7 0 6 0

Table 6.1 Results of intracortical injections of saline or a neurotrophin into wild-type
CS57BL/6J inbred mice at 48 hours after birth (P2) or between 48 and 60 hours after birth
(P2.5). A total of 123 animals were injected, of which twenty-nine were discarded
because the injections were not near the barrel field or caused cavitated lesions. Some of
the excluded animals were later found to display a barrelless phenotype.
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Loss of NT-4/5 in null mutant mice resulted in poorly-formed barrels. These
deficits are similar to those observed in mice lacking the phospholipase C-beta-1 (PLC-§-
1) (Hannan et al., 1998a), which has been localized by immunohistochemistry to cortical
neurons in the rat developing SI cortex (Hannan et al., 1998b). Thus, the site of NT-4/5
action may be in cortical neurons rather than on TCAs and suggests that it has only minor
effects on barrel formation.

The biological effects of BDNF and NT-3, the two neurotrophins that disrupted
barrel formation, are chiefly mediated through the activation of TrkB and TrkC receptors,
respectively (Chao, 1992; Ip and Yancopoulos, 1996; Lewin and Barde, 1996). TrkB and
TrkC mRNA expression are developmentally regulated in the cortex and thalamus, with
highest levels of expression during the first week of postnatal life (Ringstedt et al., 1993;
Dugich-Djordjevic et al., 1993). Moreover, NT-3 is the most abundant neurotrophin in
the neocortex during embryonic development with high expression in newborns
(Maisonpierre et al.,, 1990). BDNF mRNA in the cortex is upregulated during
development (Maisonpierre et al., 1990) and after sensory stimulation (Castrén et al.,
1992; Schoups et al., 1995; Rocamora et al., 1996), implying that they play a role in
cortical development. Neurons in the barrel wall express BDNF and TrkB in neonatal
mice, and cauterization of whisker follicles at birth results in a down regulation of BDNF
and TrkB mRNA levels in the corresponding barrels (Singh et al., 1997). Thus, it is
possible that injections of exogenous BDNF disrupts the normal interaction between
cortical derived BDNF and the growing TCAs. The observation that BDNF and NT-3

have similar effects on barrel formation during development is in contrast with a previous
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report that these neurotrophins have opposing effects on dendritic growth in layer IV
cortical neurons, with BDNF enhancing dendritic growth of layer IV pyramidal cells, and
NT-4/5 enhancing dendritic growth of layer VI pyramidal neurons (McAllister et al.,
1997).

Differences in effects of exogenous BDNF and NT-4/5 or loss of these
neurotrophins are not completely surprising. Although they activate the same receptor,
they show different affinities, which would result in distinct biological functions (Ibdfiez,
1994; Conover et al., 1995; Windisch et al., 1995). In vitro, neurons in cortical layers V
and VI respond to NT-4/5 but not BDNF, whereas the reverse is true for neurons in layer
IV (McAllister et al., 1995). Moreover, NT-4/5 had a significant effect on striatal
neuronal survival in organotypic slices, while BDNF and NT-3 increased glutamic acid
decarboxylase activity in cultures from rat ventral mesencephalon (Ardelt et al., 1994;
Hyman et al., 1994).

The simplest explanation for the disruption of cortical barrels by exogenous
application of BDNF and NT-3 is that these neurotrophins stimulate TCA growth,
preventing their segregation into barrel-like domains. This hypothesis is supported by the
absence of barrel-like CO-positive patches similar to what is seen in Adcy/®" mutants,
and further is consistent with the classical roles of neurotrophic factors, which include
neurite outgrowth (Levi-Montalcini, 1987; Snider and Johnson, 1989; Kuffler, 1994,
Lundborg et al., 1994) and chemoattraction (Letourneau, 1978; Menesini-Chen et al.,

1978; Gundersen and Barrett, 1980). In addition, gradients of BDNF and NT-3 can guide
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turning of the growth cones of isolated Xenopus spinal neurons (Ming et al., 1997; Song
et al., 1997; Song et al., 1999).

Alternatively, the effects of exogenous BDNF and/or NT-3 may be mediated by
serotonergic or cortical neuronal activity. High serotonergic activity in the first few days
of postnatal life has been implicated in the pathogenesis of the barrelless phenotype of
Maoa knockout mice (Cases et al., 1995; 1996). In addition, infusion of BDNF into the
neocortex of adult rats causes sprouting of serotonergic nerve terminals and augments
serotonergic activity (Mamounas et al., 1995; Siuciak et al., 1996). These effects of
BDNF may be ascribed to the expression of the TrkB receptor by serotonin neurons of the
raphe nuclei (Yan et al., 1997).

Several lines of evidence implicate neuronal activity in the regulation of the
production and release of neurotrophins (Castrén et al., 1992; Lindholm et al., 1994;
Blschl and Thoenen, 1995; 1996). It has been demonstrated that neurotrophins modulate
synaptic efficacy through changes in NMDA receptor function (Levine et al., 1998; Lin et
al., 1998). Moreover, NMDA-dependent processes such as long-term potentiation (LTP)
and long-term depression (LTD) are involved in synaptic elimination of inappropriate
synapses or consolidation of appropriate synapses during development. Both of these
processes were reported to be present during the first week of postnatal life of the rat SI
cortex at the thalamocortical synapses (Crair and Malenka, 1995; Feldman et al., 1998;
[saac et al., 1997). Many of these synapses are silent at birth, because they either contain
non-functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

glutamate receptors or do not have them at all (Isaac et al., 1995; Liao et al., 1995;
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Durand et al., 1996; Isaac et al., 1997; Rumpel et al., 1998; Liao et al., 1999). During the
first week of postnatal life silent synapses are converted into functional ones by acquiring
AMPA receptors (Gomperts et al., 1998; Liao et al., 1999; Petralia et al., 1999). BDNF
was reported to modulate the expression of AMPA receptors (Narisawa-Saito et al., 1999)
and BDNF, NT-4/5 and NT-3 can increase glutamate transmission in the hippocampus
(Lessmann et al., 1994; Lessmann and Heumann, 1998; Scharfman, 1997, Kang and
Schuman, 1995), while NT-3 can inhibit GABAergic transmission in embryonic cortical
neurons (Kim et al., 1994). Thus, exogenous application of BDNF and NT-3 in the
developing somatosensory cortex may increase neuronal activity, thereby disrupting the
pattern and level of activity at thalamocortical synapses, and ultimately barrel formation.
Neurotrophins play an important role in other regions in the brain. Recently, it has
been reported that the TrkB receptor and its ligands (BDNF and NT-4/5) play an
important role in the development of ocular dominance columns (Cabelli et al., 1995;
1997). Neutralizing endogenous neurotrophin receptors with Trk receptor antibodies
(Trk-IgG) or the local infusion of BDNF and NT-4/5, but not NGF or NT-3, during the
critical period in kittens inhibits the formation of ocular dominance columns and activity-
dependent pruning of the lateral geniculate nucleus terminals in visual cortex. The
involvement of BDNF and NT-3 in patterning has also been shown by alteration of
cerebellar foliation in BDNF and NT-3 null mutant mice (Schwartz ;et al., 1997; Bates et

al., 1999).
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The main goal of this dissertation was to determine some of the molecular and
cellular mechanisms that underlie pattern formation in the mouse somatosensory cortex.
In order to accomplish this goal, several approaches were used including the isolation of a
gene responsible for patterning and the identification of molecules that play important
role in pattern formation in the SI cortex. Results from studies presented in this
dissertation can be summarized in the following points: 1) A mutation in the adenylyl
cyclase type I gene (Adcyl) caused the brl phenotype. 2) The effect of Adcy! was not
through its downstream target cAMP-dependent protein kinase (PKA) in thalamocortical
afferents. 3) PKA plays a role in barrel formation through its effect on layer IV cortical
neurons. 4) Loss of neurotrophin-4/5 (NT-4/5) results in a phenotype that is similar to
PKA null mutant mice. 5) Intracortical injections of exogenous BDNF and NT-3 disrupts
patterning in the SI cortex of mice. Taken together, the above results provide strong
evidence for the involvement of the cAMP signaling pathway as well as neurotrophic
growth factors in pattern formation of the somatosensory cortex, thus indicating new

mechanisms for patterning in the cerebral cortex.

7.1 Role of Second Messenger Systems in the SI Cortex

In multicellular organisms, cells communicate with each other by secreting
signaling molecules that bind to specific protein receptors of target cells. Binding of an
extracellular signaling molecule (a ligand) to a receptor is the first step in signal
transduction pathways that will initiate a cascade of molecular and biochemical events,

thereby influencing the behavior of target cells (Hardie, 1990; Snyder, 1985). Ligands
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bind with a high affinity to their receptors and some of them initiate the production of
intracellular messengers, also called second messengers (Kahn, 1976). There are three
main types of second messenger signaling pathway: adenosine 3’,5’-cyclic
monophosphate (cAMP), Ca?*, and inositol phospholipid. Second messenger molecules
mediate their effects mainly through the phosphorylation of protein kinases which, in
turn, will activate their target proteins.

cAMP is a ubiquitous second messenger that was discovered over 40 years ago
(Rall et al., 1957; Sutherland and Rall, 1958a; 1958b). It is synthesized from adenosine
triphosphate by a plasma-membrane-bound enzyme adenylyl cyclase in response to
binding of an extracellular signal to a stimulatory receptor (Pastan, 1972; Schramm and
Selinger, 1984). A variety of extracellular signals control cAMP levels by modulating the
activity of adenylyl cyclase (for reviews see Gilman, 1987; Sutherland, 1972). cAMP
mediates its effects mainly through the activation of PKA, which controls many
biochemical events through the phosphorylation of target proteins.

Ca®* is another widely used intracellular messenger that is responsible for a
variety of cellular responses. It plays a role in all eukaryotic cells and more importantly in
nerve cells. In nerve cells, depolarization of the plasma membrane causes a Ca® influx
into the nerve terminal via voltage-gated Ca’* channels which will initiate the release of a
neurotransmitter (for review see Augustine et al., 1987). Ca®* binds to the intracellular
receptor calmodulin, after which the complex binds to various target proteins and thereby
alters their activity. Most of Ca® effects are mediated by a family of Ca**/calmodulin-

dependent protein kinase which, in turn, will phosphorylate target proteins.
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While some extracellular signals induce cCAMP or Ca** signaling pathways, others
induce inositol phospholipid transduction pathways through the activation of
phospholipase C-f (PLC-B). PLC-B will hydrolyzed phosphatidylinositol biphosphate to
produce two second messengers: inositol triphosphate, which releases calcium from
internal stores, and diacylglycerol, which activates protein kinase C (for review see
Bansal and Majerus, 1990).

The three signaling pathways work in concert to exert cellular responses (for
review see Cohen, 1988). Ca®* influences enzymes that breakdown or produce cAMP.
PKA phosphorylates Ca®* channels and inositol triphosphate receptors in the endoplasmic
reticulum. Additionally, PKA and Ca?*/CaM kinases can phosphorylate different sites on
the same protein, thus allowing these proteins to be regulated by both Ca’* and cAMP.
Moreover, Ca** directly modulates the activity of certain types of adenylyl cyclase, e.g.,
Type I (Tang et al., 1991), thus coupling the Ca’* and cAMP systems (Choi et al., 1992).

Several studies have demonstrated the importance of cAMP transduction pathway
in learning and memory and in regulation of gene transcription both in invertebrates and
vertebrates (Brunelli et al., 1976; Walters et al., 1983; Livingstone et al., 1984; 1985;
Levin et al., 1992; Bourtchuladze et al., 1994; Blitzer et al., 1995; Sassone-Corsi, 1995;
Wu et al., 1995; Feany and Quinn, 1995; Xia and Storm, 1997; Wong et al., 1999). In
fact, results presented in this dissertation provide the first evidence for the involvement of
cAMP signaling pathway in pattern formation in the SI cortex of vertebrates (chapter 4;
Abdel-Majid et al., 1998), thus revealing a new role for this signaling pathway in the

development of the central nervous system.
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As described above, CAMP mediates its effects mainly through PKA. Therefore, it
was logical to hypothesize that loss-of-function mutation of Adcy! gene in the
thalamocortical afferents will decrease cAMP levels which, in turn, will cause a reduction
in PKA activity and that will result in a barrelless phenotype (chapter 4; Abdel-Majid et
al., 1998). Results presented in this dissertation (chapter 5) suggest that this is not the
case, since PKA null mutant mice have barrels. Few possibilities can explain the presence
of barrels in PKA knockout mice. Redundancy in PKA subunits in the thalamocortical
afferents protects against a barrelless phenotype. Alternatively, cAMP in the
thalamocortical afferents may exert its effects through downstream targets other than
PKA (for example, cyclic nucleotide gated channels) and that the site of gene action of
PKA is on layer IV cortical neurons rather than in the thalamocortical afferents. In
support of the second proposal, PLC-B-1 mutant mice displayed a phenotype similar to
PKA mutant mouse lines (Hannan et al., 1998a) and that PKA was localized into layer IV
cortical neurons during development (Abdel-Majid et al., 1999).

Ca®* plays a role in glutamate release in the thalamocortical afferents. In the first
two weeks postnatally, serotonin inhibits adenylyl cyclase activity through 5-HTs
receptor (Bouhelal et al., 1988), which reduces cAMP and PKA levels thus reducing Ca**
influx and hence glutamate release and neurotransmission (Rhoades et al., 1990).
Furthermore, Ca®* directly activates adenylyl cyclase type I, which is non-functional in
brl mutant mice. Ca>* also plays a role in postsynaptic cortical neurons via the activation
of NMDA receptors. Pharmacological blockade of NMDA receptors in rats at birth

affects the topographic refinement of thalamocortical afferents (Mitrovic et al., 1996; Fox
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et al., 1996). Thus, it is apparent that the three second messenger signaling pathways are
involved in pattern formation in the SI cortex of rodents, hence providing evidence for a

new role of these transduction systems during development.

7.2 Role of Activity in the SI cortex

As discussed earlier (chapter 1), there is a great deal of controversy around the
role of activity in the formation of somatotopic maps in the trigeminal system. Available
information from studies performed in the visual system provide compelling evidence for
the involvement of activity and in particular NMDA receptor mediated-activity in the
refinement of topographic maps (for reviews see Constantine-Paton, 1990; Shatz, 1990;
Goodman and Shatz, 1993; Katz and Shatz, 1996); however, most scientists will argue
differently around the role of activity in the trigeminal system (for reviews see O’Leary et
al., 1994; Purves et al., 1994). In the visual system, activity-dependent competition
between inputs from one eye and the other is important for the formation of eye-specific
laminae in the lateral geniculate nucleus (Shatz and Stryker, 1988) and forms the basis of
ocular dominance columns in the visual cortex (Stryker and Harris, 1986). In contrast,
blocking activity in the trigeminal system, either by the application of tetrodotoxin or the
pharmacological blockade of NMDA receptors, did not have an effect on the formation of
somatotopic maps (Henderson et al., 1992; Chiaia et al., 1992d; Schlaggar et al., 1993).

Results presented in this dissertation provide clear evidence for the involvement
of activity-dependent mechanisms in establishment of cortical maps. A loss-of-function

mutation in Adcy! might cause a reduction in glutamatergic neurotransmission and
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subsequently disrupt barrel formation (chapter 4; Abdel-Majid et al., 1998). In support of
this hypothesis, cytoarchitectonic barrels were absent in Nissl-stained sections in rats
treated systemically or locally with ar antagonist to NMDA receptors (Mitrovic et al.,
1996), or when monoamine oxidase A was disrupted by targeted mutation in mice (Cases
et al., 1995; 1996). More recently, it was shown that 5-HT,g agonists enhance neurite
outgrowth from thalamic neurons in culture, an effect that is prevented by blockade of
activity through the application of TTX (Lotto et al., 1999). Such a result can explain the
presence of barrels in TTX-treated animals (Chiaia et al., 1992d).

A crucial role for NMDA receptors in activity-dependent mechanisms has been
reported recently (Iwasato et al., 1997). NMDA receptor is formed of the subunit NR1 (£)
and at least one of four of the NR2 (&) subunits (Nakanishi 1992). NR1 and NR2 were
disrupted by targeted mutation but unfortunately these mutants die shortly after birth
which prevents the examination of whisker-related patterns in the thalamus and the cortex
(Li et al., 1994; Kutsuwada et al., 1996). For this purpose, Tonegawa and colleagues
(Iwasato et al., 1996; 1997) tried to change the level of ectopic expression of the NR1
subunit in the knockout mouse. Their results indicate that low expression of NRI
transgene had no effect on whisker-related patterns in the trigeminal pathway. However,
when the NR1 transgene was expressed at high levels, whisker-related patterns were
absent in brainstem, thalamus and SI cortex providing evidence for the importance of
NMDA receptor mediated-activity in the formation of whisker-related patterns at all

levels of the trigeminal pathway.
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In recent years, it has been proposed that activity-dependent mechanisms such as
long-term potentiation and long-term depression play an important role in the refinement
of thalamocortical inputs in the barrel cortex (Crair and Malenka, 1995; Isaac et al., 1997;
Feldman et al., 1998). Both processes can be induced only in the first week of postnatal
life, which matches closely with critical period of barrel formation.

The above findings, including results presented in this dissertation, provide
compelling evidence for the involvement of activity-dependent mechanisms in
establishing of topographic maps in the trigeminal system of rodents. These results are in
contrast with previous reports suggesting that neural activity does not play a role in
formation of patterns in the whisker-to-barrel pathway (Henderson et al., 1992; Chiaia et
al., 1992d; Schlaggar et al., 1993). However, it is plausible that in these studies
pharmacological treatment was applied too late during development to disturb patterns
that have already been established. For example, blocking the infraorbital nerve at birth
(Henderson et al., 1992) will not have an effect on the emergence of barrelettes in the

brainstem since these patterns are already in place by E20 (Chiaia et al., 1992b; 1992c).

7.3 Role of Neurotrophic Factors in the SI Cortex

Hamburger and Levi-Montalcini in 1949 demonstrated that peripheral targets
regulate the survival of sensory ganglion neurons in the chick embryo. They also drew
attention to the process of “normal” or “naturally occurring cell death” in sensory ganglia.
Additionally, they proposed that both natural cell death and neuronal death in sensory

ganglia following limb removal result from lack of target-derived substances necessary
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for growth and survival, which they termed “trophic” or ‘“neurotrophic” factors
(Hamburger and Levi-Montalcini, 1949; Levi-Montalcini and Hamburger, 1951). From
these observations the neurotrophic hypothesis emerged. The central tenet of the
neurotrophic hypothesis was that during development neurons compete for a limited
supply of target-derived trophic factors for their survival. The neurotrophic hypothesis
was modified later on to include new observations (Purves and Lichtman, 1985; Purves,
1986; Purves, 1988). It was proposed that active postsynaptic cells will release these
factors, and presynaptic terminals that are active at the time of release would be able to
compete more successfully for these factors rather than terminals that were inactive at the
time of release.

Nerve growth factor (NGF) was the first member of the neurotrophic factor family
to be identified (Levi-Montalcini and Hamburger, 1953; Levi-Montalcini and Cohen,
1956). NGF supports the survival of a subpopulation of embryonic dorsal root ganglia
and sympathetic neurons, but not parasympathetic or motor neurons (Arakawa et al,,
1990; Deckwerth and Johnson, 1993; Henderson et al., 1993; Braun et al., 1996). NGF
acts directly on these neurons increasing their size, number, and dendritic and axonal
outgrowth (Levi-Montalcini, 1964; 1987a; 1987b; Hamburger et al., 1981). Other
members of this family have been discovered (BDNF, NT-3, NT-4/5, NT-6, and NT-7).
In recent years, a new role for neurotrophins in the central nervous system has emerged.
In addition to their long-lasting effects on neurons (Levi-Montalcini, 1987a), they also
play an important role in activity-dependent synaptic plasticity (Zafra et al., 1991; Lohof

et al., 1993; Kim et al., 1994; Kang and Schuman, 1995; Levine et al., 1995; Cellerino



171

and Maffei, 1996, Figurov et al., 1996, Lu and Figurov, 1997; Lessman, 1998; Levine et
al., 1998a; 1998b).
In the trigeminal system, neurotrophins play a role in whisker pad innervation, and

in the formation of whisker-related patterns in the brainstem complex, and the SI cortex.

7.3.1 Neurotrophins in the Whisker Pad

Members of the nerve growth factor family are differentially expressed in the
rodent whisker pad. BDNF and NT-3 are localized to the dermal mesenchyme of the
whisker follicle and their expression is high at EI11.5 and at Ell, respectively
(Schecterson and Bothwell, 1992). NGF, on the other hand, is predominantly localized to
the epithelial mesenchyme and its expression peaks at E14.5 (Davies et al., 1987;
Schecterson and Bothwell, 1992). NT-4 is also expressed in the whisker follicles and
levels decrease between E13 and E20. The generation of mutant mice that are deficient in
neurotrophins or their receptors has offered valuable information in understanding the
role of these factors in the development of the whisker pad. Examination of the whisker
pad in these knockout mice revealed that innervation is dependent on a balance between
neurotrophins, and some innervation is dependent on one neurotrophin and at least one
neurotrophin receptor, while others are dependent upon multiple neurotrophins and
multiple receptors (Arvidsson et al., 1995; Wilkinson et al., 1995; Fundin et al., 1997,
Rice et al., 1998). Overexpression of NGF in transgenic mice increased the number and
branches of small unmyelinated fibers to the intervibrissal fur of the mystacial pad

confirming that NGF modulates sensory innervation density (Davies et al., 1997).



172

7.3.2 Neurotrophins and Whisker-related Patterns in the V Brainstem

A combination of different neurotrophic factors regulates the survival rate of V
ganglion cells during embryonic development. Before E1l, V ganglion cells are
dependent on BDNF or NT-3 for their survival and after E11 they switch to be solely
dependent on NGF (for review see Davies, 1997). The expression of NGF is
downregulated after E14, which is coincident with the period of naturally occurring cell
death in the V ganglion. Several groups have investigated the role of neurotrophins on
naturally occurring cell death in the V ganglion, and their effects on formation of
whisker-related patterns in the brainstem trigeminal complex. Henderson et al. (1994)
injected NGF, NGF antibody or NGF receptor antibody (IgG-192) systematically into rat
fetuses (at E15, E16, E18 or at E15 and again at E18) at the time when natural cell death
occurs (E14 - E19) in the V ganglion cells. Their results indicate that NGF injections at
El5 and again at E18 has resulted in a 36% increase in V ganglion cell survival rate.
Moreover, somatotopic patterns in the trigeminal brainstem complex were disrupted in
newborn rats. On the other hand, a decrease in V ganglion cell survival rate, due to
injections of either NGF antibody or IgG-192 at E15 and again at E18, did not have an
effect on patterning in the brainstem. In support of the above findings, it was reported that
loss of 83% of V ganglion cells in guinea pig, due to fetal injection of NGF antibody, did
not alter whisker-related patterns in the brainstem, thalamus, and cortex (Sikich et al.,
1986). The above results indicate that naturally occurring cell death in the V ganglia as a
consequence of neurotrophin regulation is important in the formation of somatotopic

patterns in the trigeminal brainstem complex.



173

In marked contrast to the above findings, Jhaveri et al. (1996) reported that
naturally occurring cell death in V ganglion cells does not play a role in the formation of
whisker-related patterns in the brainstem, and that other mechanisms control the
development of whisker-related patterns. In these experiments, the authors used
transgenic mice that overexpress NGF in the skin of the whisker pad (Albers et al., 1994).
Although NGF overexpression rescued V ganglion cells from naturally occurring cell
death, and their survival rate was doubled as compared to wild-type littermates, whisker-
related patterns developed normally in their brainstem. It is surprising that a 36% increase
in the survival rate of V ganglion cells in rats has disrupted whisker-related patterns in the
V brainstem complex, whereas a 100% increase in the survival rate of V ganglion cells in
mice did not have the same effect. The discrepancy between results from both studies
could be explained by species-differences or most likely by the expression of NGF in the
right place at the right time during development of the whisker pad in transgenic mice, in
contrast to systemic injections that might have an effect on the peripheral as well as on
central patterns in the trigeminal system. Moreover, differences between innervation
densities of the whisker follicles and the interwhisker skin were also noted between

transgenic mice and systemic injected rats (Rice et al., 1994; 1995).

7.3.3 Neurotrophins and Barrels in the SI Cortex
Information available on the role of neurotrophins in activity-dependent plasticity
in the somatosensory cortex is very limited. In these earlier studies, a role for BDNF, NT-

3 and NGF in the SI cortex was reported. While BDNF and NGF play a role in
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modulation of functional representation of whiskers in adults (Prakash et al., 1996),
systemic NGF application failed to rescue barrel formation after transection of the
infraorbital nerve at birth (Henderson et al., 1993), and application of BDNF and NT-3 in
the whisker pad rescued barrels from effects that usually occur in the cortex after
denervation at birth (Calia et al., 1998).

Results presented in this dissertation provide new evidence for a role for
neurotrophins in the development of somatotopic maps in the SI cortex. Present results
indicate that intracortical injections of BDNF and NT-3 can produce a barrelless
phenocopy, and that loss of NT-4/5 in knockout mice results in poorly-formed barrels.
Additionally, these results argue for the critical presence of neurotrophins at a certain
level at a specific time during development.

Neurotrophins have been implicated in axonal growth and elongation (Snider and
Johnson, 1989; Kuffler, 1994; Lundborg et al., 1994), and in axonal guidance as
chemoattractants (Gundersen and Barrett, 1979; Letourneau, 1978; Wang and Zheng,
1998; Song et al., 1997, Ming et al., 1997). The response of the axonal growth cones to
cues in the environment, whether repulsion or attraction, depends on the level of cyclic
nucleotides in their growth cone (Song et al., 1997; 1998; 1999). For example, BDNF
triggers an increase in cytosolic Ca®*, which leads to increased levels of cCAMP in the
growth cone and hence results in an attractive turning response (Lohof et al., 1992). Thus
it is conceivable that neurotrophin effects observed here could be due to their effect on

the turning response of the thalamocortical afferent growth cones.
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In the past few years, several studies have reported the involvement of TrkB and
its ligands in activity-dependent mechanisms during development of the visual system
(Cabelli et al., 1995; Riddle et al., 1995; McAllister et al., 1995; 1996; Cabelli et al.,
1997; McAllister et al., 1997; 1999). However, results presented in this dissertation
provide the first evidence for the involvement of neurotrophins in the development of the
SI cortex, therefore, revealing new cellular mechanisms for the formation of somatotopic

maps.

7.4 Other Factors Related to Formation of Somatotopic Maps

Various factors play important roles in the formation of whisker-related patterns
in the trigeminal system. Table 7.1 summarizes these factors listed according to their
effects in the pathway starting peripherally with the whisker pad and ending with the SI
cortex. Only factors that influenced barrels in the posteromedial barrel subfield were
listed in the table, others that had an effect on brain weight and cortical size, and
indirectly affected the size of the barrel field, such as insulin-like growth factor (Beck et
al., 1995; Gutierrez-Ospina et al., 1996) were excluded.

Factors that affect the whisker pad include: activin and follistatin (Jhaveri et al.,
1998). Activin is a member of the transforming growth factor-f superfamily and
follistatin is an activin binding protein. Mice lacking follistatin die within a few hours
after birth, while activin mutant mice die within 24 hours of birth because of suckling
impaired responses. Activin deficient mice do not have whiskers, whisker follicles are

malformed and whisker-related patterns are absent in the brainstem trigeminal complex.
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Table 7.1 List of factors playing a role in the formation of whisker-related patterns in the
whisker-to-barrel pathway. Various factors affect somatotopic representation at different
levels of the neuraxis and with varying degrees. Abbreviations: KO, knockout mouse; Tg,
transgenic rrﬁce; Camkllo, Ca*/calmodulin protein kinase II o subunit; Trk, tyrosine
kinase receptor; FGF2, fibroblast growth factor 2; MAOA inhibitor, monoamine oxidase
A inhibitor; GAP-43, growth associated protein-43; TTX, tetrodotoxin; Adcy!, adenylyl
cyclase type I; NGF, nerve growth factor; PLC-B-1, phospholipase C-B-1; BDNF, brain-
derived neurotrophic factor; NT-3, neurotrophin-3; NT-4/5, neurotrophin-4/5; 5,7-DHT,
5,7-dihydroxytryptamine; APV and MKS801, antagonists for NMDA receptors; PKA,
cAMP-dependent protein kinase; 5-HT, serotonin; TCAs, thalamocortical afferents;
NMDA &4, NMDA regulatory subunit 2 € isoform; NR1* transgenic mice for the NMDA
regulatory subunit 1 with high expression of the transgene. NR1** transgenic mice with

low expression of the transgene.
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Factor Treatment Effect Reference

A- Whisker Pad

Activin BA KO whiskers are absent Jhaveri et al., 1998
barrelettes are absent

Follistatin KO whiskers are thin and Jhavert et al., 1998
curled, barrelettes are
poorly formed

B- Trigeminal Sensory Neurons

NR2 €2

NRI1

NRI1*

NR|**

NMDA &4

NGF

Infraorbital
nerve

C- Primary Somatosensory Cortex

1. Barrelless

Adcyl

KO
KO

Tg

Tg

KO

exogenous

TTX

Blocking
axonal
transport

Adcylbrl

barrelettes are absent
barrelettes are absent

barrelettes, barreloids,
and barrels are absent

barrelettes, barreloids,
and barrels are normal

barrelettes, barreloids,
and barrels are normal

barrelettes are absent

barrelettes, barreloids,
and barrels are normal

whisker-related patterns
are absent

barrels are absent

Kutsuwada et al., 1996
Lietal., 1994

Iwasato et al., 1996;
1997

Iwasato et al., 1996;
1997

Ikeda et al., 1995

Henderson et al., 1994

Henderson et al., 1992

Chiaia et al., 1996

Welker et al., 1996;
Abdel-Majid et al., 1998
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Factor Treatment Effect Reference

Adcyl KO barrels are absent This thesis;
Abdel-Majid et al., 1998

BDNF exogenous  barrels are absent This thesis

NT-3 exogenous  barrels are absent This thesis

GAP-43 KO barrels are absent Maier et al., 1998; 1999

MAOA KO barrels are absent Cases et al., 1995; 1996

MAOA inhibitor clorgyline barrels are absent Vitalis et al., 1998

NMDA APV barrels are absent Mitrovic et al., 1996

MKaS801
Ablation of thalamotomy barrels are absent Wise and Jones, 1978
TCAs

2. Abnormal Barrels

NT-4/5
PLC-B-1
PKA

Ablation of layer
IV cortical neurons

Reeler

KO
KO
RIIB KO

X-irradiation

mutant

3. Delayed or Changed Barrel Size

Hypothyroidism

Congenital

poorly-formed barrels
poorly-formed barrels
poorly-formed barrels
aggregates of neurons
barrels are small and

irregular in shape

barrel formation is
delayed by three days

This thesis
Hannan et al., 1998a
This thesis

Ito, 1995

Cragg, 1975
Welt and Steindler, 1977
O’Brienet al., 1987

Calikoglu et al., 1996
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Factor Treatment Effect Reference
Malnutrition Protein barrel formation is Vongdokmai, 1980
delayed by two days
5-HT depletion 5,7-DHT barrel formation is Blue et al., 1991;
Fenfluramine delayed Bennett-Clarke
et al., 1994; 1995;
Rhoades et al., 1998
FGF2 KO barrels are reduced Ortega et al., 1998
in size
BDNF exogenous  barrels are smaller Penschuck et al., 1999
by 16%
NMDA APV barrels are larger Penschuck et al., 1999
by 16%
4. Normal Barrels
BDNF KO barrels are normal Jones et al., 1994
CamkIl a KO barrels are normal Glazewski et al., 1996
NGF exogenous  barrels are normal This thesis
NT-4/5 exogenous  barrels are normal This thesis
PKA Rila KO barrels are normal This thesis
PKA RIB KO barrels are normal This thesis
PKA Ca KObarrels are normal This thesis
PKA CB KO barrels are normal This thesis
Semaphorin I KO barrels are normal Ulupinar et al., 1999
Tenascin KO barrels are normal Steindler et al., 1995
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Factor Treatment Effect Reference

Tenascin KO barrels are normal Mitrovic and Schachner,
1995

TrkA receptor KO barrels are normal Henderson et al., 1995

TrkB receptor KO barrels are normal Henderson et al., 1995

TrkC receptor KO barrels are normal Henderson et al., 1995
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Follistatin deficient mice have thin and curled whiskers, follicles were misoriented and
whisker-related patterns in the brainstem were not well developed as in wild-type
controls. It is noteworthy to mention that higher order trigeminal patterns develop
sequentially and that pattern formation in the thalamus and the cortex will not form if
whisker-related patterns were absent from the brainstem trigeminal complex (Killackey
and Fleming, 1985; Killackey et al., 1990; Rhoades et al., 1990; Woolsey et al., 1990).

A role for NMDA activity, neurotrophins and intact periphery in formation of
trigeminal brainstem complex patterns has been demonstrated. Whisker-related patterns
in the trigeminal brainstem complex were disrupted in knockout and transgenic mice for
the NMDA receptor regulatory subunits (Li et al., 1994; Kutsuwada et al., 1996; Iwasato
et al., 1996; 1997). These mutants provide evidence for the importance of NMDA
receptor mediated-activity in formation of somatotopic maps in the trigeminal system. In
contrast to the above findings, blockade of activity by tetrodotoxin at birth did not alter
the representation of whisker-related patterns in the brainstem trigeminal complex
(Henderson et al., 1992). On the other hand, neonatal blockade of axonal transport in the
infraorbital nerve (Chiaia et al., 1996) and systemic application of NGF in rat fetuses
(Henderson et al., 1994) prevented the formation of whisker-related patterns in the
trigeminal system.

A variety of factors can influence the formation of cytoarchitectonic barrels.
Variations in barrel morphology ranged from the complete absence of barrels, delayed
barrel formation, and change in their size, to the formation of abnormal barrels. Factors

that abolish barrels from the SI cortex include molecules that play a role in activity-
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dependent mechanisms such as NMDA receptors (Iwasato et al., 1996; 1997), serotonin
(Cases et al., 1995; 1996; Vitalis et al., 1998), cAMP (Welker et al., 1996; Abdel-Majid
et al., 1998), exogenous BDNF (chapter 6), and exogenous NT-3 (chapter 6) or molecules
involved in axonal guidance such as GAP-43 (Maier et al., 1998; 1999). All the above
manipulations had an affect on the topography of the thalamocortical afferents with no
effects on somatotopy in the SI cortex, with the exception of the GAP-43 mutant mice.
Loss of barrels by pharmacological treatment or by genetic targeting in the above studies
was attributed to an overgrowth of the thalamocortical afferents terminating in layer [V,
while in GAP-43 knockout mice thalamocortical afferents are misrouted and fail to
extend to their targets in layer IV of the cortex, hence resulting in loss of somatotopy in
the SI cortex. Furthermore, exogenous application of BDNF and NT-3 by intracortical
injections abolishes barrel formation (chapter 6).

While the above mentioned factors abolished barrels, others resulted in abnormal
barrels. These factors included loss of PKA (chapter 5), NT-4/5 (chapter 6) and PLC-B-1
(Hannan et al., 1998b) in knockout mice. All these mutant mice displayed a varied degree
of abnormalities in the distribution of cortical neurons in layer IV of the SI cortex without
an effect on the segregation of thalamocortical afferents, as observed in cytochrome
oxidase histochemistry. The reeler mutant, on the other hand, had few normal barrels but
the majority of barrels were small and irregular in shape (Cragg, 1975; Welt and
Steindler, 1977; O’Brien et al., 1987). Irradiation of the cortex at the time when layer IV
neurons are generated (E17) also has an effect on barrel formation (Ito, 1995). The author

reported that barrels were absent from the cortex. However, since patches of
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thalamocortical afferents, albeit smaller, were present in cytochrome oxidase stained-
sections along with the presence of some sort of barrel arrangement, these types of barrels
were categorized with this group rather than with the barrelless group.

The last group of factors that influenced barrel formation include factors that
delayed barrel formation for few days; however, they developed normally afterwards.
These factors include congenital hypothyroidism (Calikoglu et al., 1996), malnutrition
(Vongdokmai, 1980) and serotonin depletion by systemic injection of a neurotoxin
(Bennett-Clarke et al., 1994; 1995; Rhoades et al., 1998). Loss of fibroblast growth factor
2 in knockout mice reduced the cortex thickness and the size of barrels. Modulation of
cortical activity by infusion of BDNF or NMDA receptor antagonist in newborn rats
resulted in equal and opposite effects on barrels size (Penschuck et al., 1999).

Lastly, it appears that a certain level of activity must be maintained at the
thalamocortical synapses for normal barrel formation, modulating the pattern and level by
increasing (e.g. exogenous BDNF or NT-3) or decreasing (e.g. decrease cAMP levels, or
high serotonin levels) activity will disrupt patterning in the SI cortex. Figure 7.1
summarizes results presented in this dissertation. In wild-type animals, high levels of
serotonin during the first two weeks of postnatal life decreases glutamate
neurotransmission as synapses are established, thalamocortical afferents are segregated,
and cortical barrels are formed. A mutation in adenylyl cyclase type I gene might cause a
successive reduction in activity which results in overgrowth of thalamocortical afferents
and loss of cortical barrels. On the other hand, increasing activity levels by exogenous

BDNF or NT-3 will result in a barrelless phenocopy. Other factors that seem to have their
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Figure 7.1 A schematic drawing summarizing results presented in this dissertation. At
birth, TCAs are present in layer IV; however, their terminals are not arborized yet (top).
During the first week postnatally, TCA terminals arborize forming a dense plexus of
clusters that terminate into the barrel boundaries (wild-type, bottom). A variety of factors
can affect cytoarchitectonic barrels in two different directions. Loss-of-function mutation
in adenylyl cyclase type I (Adcyl), or exogenous application of BDNF or NT-3 causes a
barrelless phenotype and overgrowth of thalamocortical afferents in layer IV (barrelless,
bottom), whereas loss of NT-4/5 (Ntf5) and PKA subunit (Prkar2b) by gene targeting
results in poorly-formed barrels without an effect on the segregation of the

thalamocortical afferents (poorly-formed barrels, bottom).
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site of action on layer IV cortical neurons do not abolish barrels completely. Instead they
affect the distribution of layer IV cortical neurons without affecting the segregation of the

thalamocortical afferents, giving rise to poorly-formed barrels.

7.5 Future Perspectives

The main objective of the studies presented in this dissertation was to discover
molecular mechanisms that underlie patterning in the cerebral cortex. In order to achieve
this goal, we started to construct a pathway for molecules that play a role in pattern
formation of the murine SI cortex. Present results provide new evidence for the
involvement of second messenger system signaling pathways and neurotrophins in pattern
formation. However, certain caveats are still present in this pathway that have not been
solved yet: 1) What are the downstream targets of cCAMP in the thalamocortical afferents?
2) What is the role of upstream effectors such as the S5-HTg receptor in the
thalamocortical afferents? 3) If BDNF and NT-4 exert their effects through the activation
of the same receptor, how come they resulted in different effects. 4) How do
neurotrophins exert their effects in the cortex?

Since I am more interested in cAMP signaling pathways, the following discussion
will only deal with this issue. As mentioned previously, cCAMP exerts its effects mainly
through PKA; however, in recent years new lines of evidence started to emerge. It has
been reported that cyclic nucleotides can directly activate cyclic nucleotide gated (CNG)
channels in the photoreceptors of the retina. Since then, it has been shown that they are

present in neuronal and non-neuronal tissues (for reviews see Kaupp, 1991; Barnstable,
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1993; Firestein and Zufall, 1994; Yau, 1994; Zufall et al., 1994). Evidence from C.
elegans mutants argues for a role of CNG channels activity in axonal outgrowth where
axons of sensory neurons terminate in inappropriate positions (Coburn and Bargmann
1997).

It is not known, yet, whether the ventrobasal complex of the thalamus or the
somatosensory cortex express these channels during the first week when barrels are
formed. In order to answer this question, we tried to determine whether CNGs are
expressed in one-week-old wild-type and barrelless mutant mice, using reverse
transcriptase polymerase chain reaction. Preliminary attempts to amplify olfactory and
retina CNG channels were unsuccessful (R. Abdel-Majid, unpublished results); however,
it may be worth using other molecular methods such as northern blot analysis or in situ
hybridization to determine whether they are expressed in the thalamus and/or cortex
during the critical period of barrel formation.

cAMP activates CNG channels causing an increase in Ca>* influx into the cytosol.
A mutation in the Adcy! gene will decrease cAMP levels which, in turn, will decrease the
activity of these channels and will result in an overgrowth of the TCAs. This hypothesis
is supported by evidence from C. elegans mutants. Loss of CNG channel activity causes
an overgrowth of their sensory axons and their termination in inappropriate positions
(Coburn and Bargmann, 1997). If the downstream target of cAMP in the thalamocortical
afferents is cyclic nucleotide gated channel, then according to our hypothesis these

mutants should be barrelless. Finally, the olfactory cyclic nucleotide gated channel has
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been targeted by gene disruption (Brunete et al., 1996). Thus, it is worth examining these

mutants for the presence of barrels in their somatosensory cortex.



Appendix 1

40% Acrylamide/bisacrylamide solution

acrylamide 380 gm

N,N’ methyenebisacrylamide 20 gm

Adjust the final volume to one liter with deionized distilled water. Filter solution and
store in dark bottles at room temperature.

30% Acrylamide/bisacrylamide solution

acrylamide 43.50 gm

N.N’ methylenebis-Acrylamide 1.52 gm

Adjust the final volume to 150 ml with deionized distilled water. Filter solution and store
in dark bottles at room temperature.

15% Acrylamide/bisacrylamide solution

30% acrylamide/bisacrylamide 10 ml
1.5 M Tris-HCI (pH 8.8) S5ml
deionized distilled water Sml
10% APS 113l
TEMED 10l

Adjust the final volume to 150 ml with deionized distilled water. Filter solution and store

in dark bottles at room temperature.

10% Acetic acid

glacial acetic acid 10 ml
deionized distilled water 90 ml
Agarose gels

Agarose gels are prepared at different concentration depending upon the size of the DNA
to be separated. Agarose gels are prepared in 1x TAE buffer by dissolving the required
amount in the buffer and autoclaving until all the powder is dissolved completely (2 - 5

minutes). Ethidium bromide is added at a final concentration of 5 pg/ml and finally gels
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are poured when the temperature of the solution reaches 60 °C allowing 30 - 45 minutes
for polymerization.

Buffer gradient gel solution

Top mix

urea 115 gm

10x TBE 12.5 ml
Add:

40% acrylamide/bisacrylamide 37.5 ml
Adjust the final volume to 250 ml with deionized distilled water.
Bottom mix

urea 46 gm

10x TBE 25 mi

Add:

40% acrylamide/bisacrylamide 1S ml
Adjust the final volume to 100 ml with deionized distilled water.
Add:

sucrose 10 gm
bromophenol blue Smg

Developing reagent for polyacrylamide gel electrophoresis ( 3% Na;CO; 5.5%
SJormaldehyde, .002% sodium thiosulfate)

sodium carbonate 15 gm
37% formaldehyde 0.75 ml
sodium thiosulfate 0.50 ml
5 mM dNTP solution

Dilute 5 pl of 100 mM stock solution of each GTP, ATP, CTP and TTP into a total
volume of 100 pl with deionized distilled water. Store at -20 °C.

DNA Extraction buffer

To prepare 25 ml of extraction buffer:

1 M Tris-HCl (pH 8.5) 25ml
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0.50 M EDTA (pH 8.0) 0.25 ml
20% SDS 0.25ml
3M NaCl 1.67 ml
proteinase K (100 mg/ml) 25ul

Adjust the final volume to 25 ml with deionized distilled water.

DNA markers

Dilute stock solution of 1 kb and 100 b.p. to a final concentration of 100 ng/ul.

0.50 M EDTA solution, pH 8.0

Na,EDTA.2H,O 186.1 gm

deionized distilled water 700 ml

Adjust pH with concentrated hydrochloric acid. Adjust the final volume to | L with
deionized distilled water. Autoclave solution.

Ethidium bromide

Dissolve 10 mg of ethidium bromide into 1 ml of deionized distilled water. Store solution

in a dark bottle. Ethidium bromide is used at a final concentration of 0.50 ug/ml.

LB medium

tryptone 10 gm
yeast extract 5gm
NaCl Sgm
I N NaOH I ml
Complete to 1 L with deionized distilled water. Autoclave solution.
LB plates

tryptone 10 gm
yeast extract S5gm
NaCl 5gm
1 N NaOH 1 ml
agar 15 gm

Complete to 1 L with deionized distilled water. Autoclave solution. When solution is

warm enough add ampicillin to a concentration of 50 pg/ml.
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10x PCR buffer

1.0 M Tris-HCI (pH 9.3) 1.25 ml
2.5 M KCl1 1.0ml
5 M MgCl, 20ul
1M DTT 50wl
ddH,0 2.68 ml

Divide into 500 pl aliquots and store at -20°C.

Proteinase K

Stock solution is prepared at a concentration of 100 mg/ml. Store solution at -70°C.
Running buffer for polyacrylamide gel electrophoresis (50 mM Tris-HCI, 380 mM
glycogen)

1 M Tris-HCI (pH 8.3) 50 ml

glycogen 28 gm

Adjust final volume to 1 L with deionized distilled water.

3 M Sodium acetate, pH 4.5 - 5.2

sodium acetate 61.52 gm

deionized distilled water 150 ml

Adjust pH between 4.5 - 5.2 with glacial acetic acid. Adjust the final volume to 250 ml
with deionized distilled water. Autoclave solution.

3 M Sodium chloride

Dissolve 12 gm of sodium hydroxide in 100 ml of deionized distilled water. Autoclave
solution.

20% Sodium dodecyl sulfate (SDS)

Dissolve 20 gm of SDS in 100 ml of autoclaved distilled water.

2 M Sodium hydroxide

Dissolve 80 gm of sodium hydroxide in 1 L of deionized distilled water.

3 M Sodium hydroxide

Dissolve 120 gm of sodium hydroxide in 1 L of deionized distilled water.
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Silver stain solution for polyacrylamide gel electrophoresis (0.1% AgNO3, 5.5%
Jormaldehyde)

silver nitrate 0.5 gm
37% formaldehyde 0.75ml
Adjust volume to 500 ml with deionized distilled water.

1.0 M Tris-HCI, pH 8.5
Tris-(hydroxymethyl)-methylamine 121 gm
deionized distilled water 800 mi

Adjust pH to 8.5 with concentrated hydrochloric acid. Adjust the final volume to 1 L with
deionized distilled water. Autoclave solution.

TE buffer, pH 7.5 (10 mM Tris, ] mM EDTA)

Tris-HCI 0.6055 gm
Na,EDTA.2H,O 0.186 gm
deionized distilled water 300 mi

Adjust pH to 7.5 with concentrated hydrochloric acid. Adjust the final volume to 500 ml
with deionized distilled water.

50x Tris-acetic-EDTA buffer (TAE)

Tris-HCI 242 gm
glacial acetic acid 57 gm
Na;EDTA.2H,0 37.2 gm

Adjust the final volume to 1 L with deionized distilled water. Autoclave solution.
10x Tris-boric-EDTA buffer (TBE)

Tris-HCI 108 gm
boric acid 55 gm
Na;EDTA.2H.O 9.3 gm

Adjust the final volume to 1 L with deionized distilled water. Autoclave solution.
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Adenine hemisulfate (2 mg/ml (0.2%)

Dissolve 0.05 gm in 250 ml of double distilled water (ddH,0). Autoclave solution.
AHC medium (selective media for growing YACs)

95 ml of 2% glucose & 1% casamino acids.

5 ml of 20x YNB w/o amino acids

1 ml of 0.2% adenine hemisulfate

AHC plates

YNB w/o amino acids 1.7 gm

casamino acids 10 gm

Add 900 ml of water and adjust pH to 5.8, then add 20 gm of agar. Autoclave solution.
When solution is warm to the touch add:

0.2% adenine hemisulfate 10 ml

20% glucose 100 ml

Pour in petri dishes and allow them to cool in a laminar flow hood.

Breaking buffer (2% Triton, 1% SDS, 100 mM NaCl, 10 mM Tris-HCI ( pH 8.0), ] mM
EDTA)

Triton X-100 2mi

20% SDS Sml

5 M NaCl 2ml

1 M Tris-HCI (pH 8.0) 1 ml

0.5 MEDTA (pH 8.0) 0.2 ml

Adjust final volume to 100 ml with deionized distilled water.
0.5 M EDTA, pH 8.0

Dissolve 186.10 gm of disodium ethylene diamine tetracetate.2H,O in 800 ml of
deionized distilled water. Adjust pH to 8.0 with NaOH and complete final volume to 1 L.

Autoclave solution.
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glucose & casamino acid ( 2% glucose & 1% casamino acids)

glucose 20 gm

casamino Acid 10 gm

Adjust the volume to one liter with deionized distilled water. Autoclave solution.

1.5% Low gelling agarose

Dissolve 1.5 gm of low gelling agarose in 100 ml of sorbitol solution at 70°C water bath.
This process will take 15-20 minutes. Keep in water bath until use.

Lysis solution (1% LDS, 0.1 M EDTA, and 10 mM Tris-HCI, pH 8.0)

lauryl dodecyl sulfate (LDS) Sgm
0.5 M EDTA (pH 8.0) 100 mi
1 M Tris-HCI (pH 8.0) 5ml

Adjust the final volume to 500 ml! with deionized distilled water.

5 M Potassium acetate, pH 4.8

glacial acetic acid 29.5 ml

Add KOH pellets to adjust pH to 4.8. Adjust volume to 100 ml with deionized distilled

water and store at room temperature.

20XSSC

sodium chloride 175.30 gm
sodium citrate 88.2 gm
ddH,O 800 ml

Adjust pH to 7.0 with few drops of 10 N NaOH. Adjust the final volume to 1 L with
deionized distilled water. Autoclave solution.

Sorbitol solution (1.2 M Sorbitol, 10 mM Tris-HCI (pH 7.5), 20 mM EDTA)

sorbitol 43.73 gm
1 M Tris-HCI (pH 7.5) 2ml
0.5 MEDTA (pH 8.0) 8 ml

Adjust final volume to 200 ml with deionized distilled water. Before use 1 pl of B-
mercaptoethanol solution and 10 pul of zymolaze 20-T are added per 1 ml of sorbitol

solution.
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1 M Tris-HCI (pH 7.4)

Dissolve 121.1 gm Tris-HCI in 800 ml of deionized distilled water. Adjust pH with
concentrated HCI to pH 7.4. Autoclave solution.

20x yeast nitrogen base (YNB), without amino acids

Dissolve 13.4 gm YNB w/o amino acids in 100 ml of ddH,O. Autoclave solution.
Zymolaze 20-T (20,000 U/gm)

Dissolve zymolaze 20-T at a final concentration of 10 mg/ml in 1 M sorbitol and 50 mM
sodium phosphate, pH 7.5. Aliquot into small tubes and store at -20°C.
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Marker Our Copeland Mit EUCIB JXNBSS MRC MGD
DI1IMit74 0.00 2.20 2.00 0.00
D11Xrf285 0.00

D11Ggcle 0.00

D11Bwg0414e 0.00

D11Bwg0572e 0.00

DI11Bwgl392e 0.00

DI11Bwgl548e 0.00

D1INcvs74 0.00

code335 0.00

DI1IMcgl (Nf2) 0.25 3.00 1.00
DI1IMit72 0.25 3.30* 2.20 0.00 1.00
D1IMit304 0.25 2.20 1.00
DIIMitl6 0.25 2.20 4.00 3.00 1.00
D1IMit106 0.25 3.30* 1.00
Lif 0.25 0.00 4.00* 1.00
DI1IMitl 0.25 2.20 429 0.00 3.00 1.00
DI1IMit73 220 1.00
Camk2b 0.50 0.00 4.00 1.00
Igfbpl 0.50 0.00 2.00
Igfbp3 0.50 2.00
Gk 0.00 3.00 5.00*
laplsl-25 0.00 4.00

lapls3-26 0.00 4.00

Pmv2 0.00 4.00 5.00
Pmv22 1.00 5.00 8.00
brl 1.25

DIIMit71 3.30 0.00* 1.00* 1.00
DI11IMit129 2.20 4.87 1.00
DI1IMit62 1.50 2.20 1.00
D1IMit226 1.50 2.20 5.15 1.00
JKMV80 5.15

JKPAVIS0 5.15

JKAV380 5.35

lkaros 3.30 7.00
D11Bir2 2.00

DI1Bir3 2.00

D11IMir259 3.30 5.50* 544 5.00
DI11IMitl50 4.40 544 2.00
D1IMit204 2.16 4.40 5.44 2.00
DI1IMit2 238 3.30 440 6.02 2.00
D1IMitl33 2.82 440 573 * 2.00
D1IMitl48 3.26 3.30 1.00*
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Marker Our Copeland Mit EUCIB JXNBSS MRC MGD
DI1IMitl62 3.30 6.60* 8.00
ERBB 4.00

D1IMit371 6.60

DIlIMit228 440 2.00
DIIMit75 4.40 6.60 2.00
DI1IMit76 440 6.89 2.00
DI1IMit78 8.79 4.40 775 2.00
DI1IMit77 8.79 4.40 8.04 2.00
D11IMit227 4.40 8.04 2.00
D1 IMit305 440 8.04 2.00
DIIMit295 9.48 13.00
D11IMit306 9.77

D11Mir294 10.64

DI1IMit152 9.40 10.64

D1IMit81 11.50

DI!IMitl9 9.40 11.79 14.00
DIlIMitl5] 11.79

D1IMi83 12.37

D11Mir82 12.37

DIliIMit149 2.20 20.00 1.00

Appendix 3. A composite map in the proximal region of the mouse chromosome 11.
Data was compiled from different published maps as described earlier in chapter 3.
Markers are listed based on data generated in our laboratory (bold) followed by the
Copeland, Whitehead Institute (Mit), EUCIB, Jackson backcross (JXN BSS), Oxford
(MRC), and lastly mouse genome database (MGD). Numbers represent the position of the

loct in cM. * represents discrepancy in the position of this marker with regard to other
published maps.
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Appendix 5§

1 M Glycylglycine, pH 7.5

glycylglycine 66.05 gm

deionized distilled water 350 ml

Adjust pH to 7.5 with 6N NaOH. Complete the final volume to 500 ml with deionized
distilled water. Store at 4°C.

Homogenizing buffer (0.25 M sucrose, 0.1 M glycylglycine (pH 7.5), 2 mM MgCl,, 1
mM EDTA and 3 mM DTT)

sucrose 42.79 gm
I M glycylglycine S0 ml
500 mM MgCl,.6H,O 2ml
500 mM EDTA (pH 8.0) 1 ml
dithiothrietol (DTT) 0.23 gm

Adjust the final volume to 500 ml with deionized distilled water. Store at 4°C.

10% Lubrol

Dissolve 10 gm of Lubrol in 100 ml of deionized distilled water. Heat solution while
stirring until it is completely dissolved. Store at 4°C.

10 mM IBMX

Dissolve 0.0222 gm of IBMX in a total volume of 10 ml of deionized distilled water. Add
few drops of 6 N NaOH to get it in solution. Store in small aliquots at -20°C.

100 mM ATP

Dissolve 0.5511 gm of ATP in a final volume of 10 ml of deionized distilled water. Store
in small aliquots at - 70°C.

1% Bovine serum albumin (BSA)

Dissolve 0.1 gm of BSA in a final volume of 10 mi of deionized distilled water. Store in
small aliquots at -20°C.
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0.1 M DIT

Dissolve 0.3084 gm of DTT in a final volume of 20 ml of deionized distilled water.

200 mM Creatine phosphate (CP)

Dissolve 0.5102 gm in a final volume of 10 ml of deionized distilled water. Store in small
aliquots at -20°C.

Creatine phosphokinase (CPK)

Dissolve 1 mg in a final volume of 500 pl deionized distilled water. This solution is
prepared fresh every time.

24 mM CaM (55,000 U/ mg solid, 66,000 U/mg protein)

Dissolve 0.1 mg in a final volume of 0.245 ml of deionized distilled water.
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