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Abstract

The accuracy of electron densities calculated using density functional theory (DFT)
is assessed by comparison with results obtained from conventional ab initio meth-
ods based upon the Hartree-Fock (HF) ground state wavefunction. To simplify the
comparisons new methods are introduced and are combined with other established
tools. The information gained with these various methods is then used to determine
parameters for two hybrid functionals.

Previously density difference plots have given good qualitative results for many
molecules. An example of this method, with plots for C,H,,, n=2,4,6 and CgHs, as-
sesses the accuracy of a few DFT functionals. Generally all functionals are reasonably
accurate but also show some large differences when compared to conventional ab initio
densities. To improve upon these results the parameters of a new hybrid functional
are optimised using a method inspired by the density difference plots. This functional
exhibits some encouraging results but also shows many problems.

The problems involved with the optimisation of the new functional lead to the
development of the density difference index (DDI) to facilitate the comparison of two
electron densities. Results indicate that the DDI vields a semi-quantitative measure of
the distance between two electron densities. Also. the DDI values reveal a qualitative
difference between DFT and conventional ab initio electron densities.

The spin polarisation index (SPI) extends the results obtained by the DDI by
quantitatively comparing the a and § electron densities in open-shell species. Gener-
ally the SPIs calculated with DFT are quite similar to conventional ab initio results.
A few exceptions are found, though, where DFT substantially underestimates the
SPI.

The radial moments of the electron density are related to many different molecular
properties and can be determined experimentally while also giving information on the
spatial properties of different electron densities. Using a new analytical method for
calculating these moments it is found that the DFT moments compare weli with both
experimental and QCISD results. The solvation effects for all methods are generally
quite similar and there is evidence of rearrangement of the electron distributions upon
dissolution.

The results of the investigations of DFT electron densities indicate that improve-
ments can be made. A reoptimisation of the parameters from Becke’s three-parameter
hybrid functional is carried out to improve the calculated electron density. The opti-
mised parameters are found by fitting the DF T electron densities to MP2 and QCISD
densities using the DDI. A selection of molecular properties. including the radial mo-
ments of the electron density and the SPIs of some open-shell species. calculated
using the new functionals are compared to conventional ab initio results with only
fair results. However, there are indications that the electron densities of the new
functionals gave a reasonable approximation of the two reference electron densities.

xiii
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1. Introduction
“

Advances in both theoretical techniques and computer hardware have increased the in-
fluence of quantum chemical calculations on chemical research. Many of the improved
techniques. though, are very costly in terms of calculation time and hardware storage
and a highly accurate calculation on systems with only five to ten non-hydrogen atoms
can tax even today’s resources. This has limited the chemical systems which can be
effectively studied using these techniques. With the advent of density functional the-
ory (DFT)"? many of these restrictions are relieved and the efficiency of DFT has
allowed calculations on much larger systems with reasonably accurate results.

The accuracy of DFT calculations is wholly dependent upon the calculated densi-
ties which are in turn dependent on the approximate exchange-correlation functionals
used within the Kohn-Sham equations.? Many different methods have been used in
the design of these functionals with mixed results® and today many more methods are
being investigated. The design and assessment of these new functionals has usually
been dependent upon comparing calculated molecular properties with known accu-
rate values. This procedure, though, is limited since the molecular properties can
only give an indirect measurement of the accuracy of the electron density. A more

appealing method for design and assessment of exchange-correlation functionals is
1



1. Introduction 2

through the direct comparison of electron densities.

This work focusses upon the comparison of electron densities to reveal the sim-
ilarities and dissimilarities between densities calculated with various methods. The
results from these comparisons are then used to design a new functional to try and
vield more accurate DFT electron densities. However, before this can be accom-
plished a brief outline of the computational methods used throughout this work will
be presented in chapter 2. Short explanations of conventional ab initio methods are
given first followed by a more in-depth analysis of DFT. The DFT section’s main
focus is upon the relationship of the exchange-correlation functional within DFT and
the design of some of the more popular functionals.

The tools used in this thesis to compare electron densities are presented in the
following four chapters. Chapter 3 presents the density difference plot which has
been used previously to compare different electron densities.*® The usefulness of this
technique is explained through an illustrative example with encouraging results. The
focus of this chapter then shifts to modifying the density difference plots to yield
quantitative results. These values are then used in a preliminary study in the design
of a new functional with poor results.

The tools presented in chapter 4 and 5 were developed to trv and give better
quantitative results when comparing electron densities. The density difference index
(DDI), in chapter 4, gives a direct comparison between DFT electron densities and
electron densities from methods known to be accurate. Results from a series of small
molecules confirm that DFT gives reasonably accurate results and come connections
are made with the density difference plots of chapter 3. The second tool, the spin po-
larisation index (SPI), compares the o and 3 electron densities in open-shell species.

Again the results from various molecules are given with some interesting conclusions.
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The investigation of the spin polarisations given in chapter 5 also lead to some inter-
esting observations about the radially averaged a and § electron densities of O,.
The radial moments of the electron density can yield spatial information about
electron densities and can also be determined experimentally. Although these char-
acteristics make the moments a good tool for comparison of densities, little work has
been done on them lately. Chapter 6 presents a relatively new analytical method for
calculating the radial moments of the electron density and then gives comparisons
with various molecules. Also presented is a study on the effects of solvation upon the

calculation of the radial moments.

Although the establishment of these methods has revealed much about DFT
electron densities, methods must be developed so that they can be used in the design
of functionals. Chapter 7 reinvestigates the simple method of optimising functional
parameters. Again a direct comparison of electron densities will be used to optimised
the parameters. however, this time this will be accomplished through the use of
the DDI. The results of this optimisation are presented through various methods
comparing the new functional with one that is already well established. This is only
one avenue for using these new tools and after giving global conclusions the final

chapter presents some other avenues for the use of the tools presented in this thesis.
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2. Theoretical Background

Theoretical chemistry was set in motion many vears ago with the introduction of Niels
Bohr’s model of the atom and was the foundation for the many theories of today. Like
all aspects of science, though, theoretical chemistry has advanced: from Bohr's model
of the atom to Erwin Schrédinger’s equation and beyond. One must have a thorough
understanding of these fundamental tools which have been developed before being

able to advance in theoretical chemistry.

2.1 Schrodinger Equation

The most fundamental theory of quantum chemistry is that a stationary state of a
molecule can be described by a wavefunction, ¥, which contains both the spin and

spatial variables and satisfies the time-independent Schrédinger equation,!
HY = EV. (2.1)

Here H is the Hamiltonian operator, and E' is the energy corresponding to the sta-
tionary state. The wavefunction found from the solution of this equation contains

all information about the stationary state. This allows for the calculation of any

-

9



2. Theoretical Background 6

observable quantity of the state such as the probability distribution of the electrons,
|¥|2. also known as the electron density.

Examining the equation more closely reveals that the Hamiltonian operator for
nonrelativistic systems can be expressed as the sum of two operators, the kinetic and

potential energy operators,

H=T+V (2.2)

The kinetic energy operator is given by the expression,

. K2
T =— v? 2.3)
; 872m,; ° (2:3)
while the potential energy operator is of the form,
- Q:Q e
V = il 2.4
Z Tij (24)

The sums given are over all particles, nuclei and electrons, m; is the mass of particle
i, h is Planck’s constant, ¢’ = e/\/47e, and r;; is the distance between particles i and
J- The values of Q; and Q; vary with the type of particle. Q; = -1 if the particle is
an electron and Q; = Z; for a nucleus with atomic number Z,.

Although, in theory the Schrédinger equation yields the exact wavefunction of
a stationary state, in practice it is found that for almost all systems the equation is
insoluble. Consequently theoretical chemists have had to devise a series of approxi-

mations which allow for the solution of the equation.
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2.2 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation' 2 is one of the most common approximations
used to simplify the solution of the Séhrﬁdinger equation. Born and Oppenheimer
postulated that considering the mass of a nucleus is on the order of 10 000 times
heavier than that of the electron the mass of the nucleus can be assumed to be
infinite. This means that the nuclear kinetic terms in equation 2.2 can be neglected
and the internuclear repulsion, Vi, can be treated as a constant.

To show the effect of this approximation on H the atomic units. used throughout

this thesis, must first be defined. The unit for length is given by the Bohr radius. a,.

which is,
h? -
% = me (2:3)
while the unit of energy, the hartree, is given by
”
Ey=2 (2.6)
Q,

These definitions allows the terms in A to be gathered into the electronic Hamiltonian

using one- and two-electron terms,
N
Hepee = Y A(i) + v(ry;) (2.7)
1=1

where N is the number of electrons in the system. The one-electron Hamiltonian,

h(z), is defined as,
M
hi) = —2v2 -y Ze (2.8)

r.
A=1 A
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whereas the two-electron potential term v(r;;) is defined as,

N N
W) =333 — (29)

i=1 j#i Y

The corresponding electronic Schrédinger equation,
Hye ¥, = E, ¥, (2.10)

with,

defines the potential energy hypersurfaces that govern the dvnamics of nuclear motion
within the Born-Oppenheimer approximation. The total energy for fixed nuclei can

then be expressed as,

E(R)=E,(R)+ Y Q1@s (2.12)

A

A<B R"‘B
This approximation usually gives satisfactory results for the ground states of
neutral molecules but there are some practical limitations to this approximation which
have been exposed though various spectroscopic experiments.3 Also its failure in
the excited electronic states of polyatomic molecules and ions is common and new

theoretical methods are needed to deal with this and other problems.*

2.3 The Independent Particle Model (Hartree-Fock (HF) Theory)

Even though the Hamiltonian has been simplified through the use of the Born-
Oppenheimer approximation the Schrédinger equation is still not separable. This
is due to the presence of the Coulomb repulsion between two electrons, represented

by the ;‘— term in the Hamiltonian. The introduction of one-electron wavefunctions.
iy
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also called molecular orbitals (MOs), allows for the handling of these interelectronic
repulsion terms. Using MOs allows each electron to be treated separately and the
dynamics of the electron can be thought of being that of a free electron moving over
the whole molecule in some appropriate ’effective’ potential field.!-2

One way to express the wavefunction ¥, in terms of MOs is by simply multiplying
all the occupied MOs together. However, in 1930 Slater noted that since electrons are
fermions with spin 3 the overall molecular wavefunction would have to be antisym-
metric. Unfortunately the basic product of MOs does not produce an antisymmetric
wavefunction thus to keep the wavefunction antisymmetric it should be written as

the normalised determinant,
U(z1, T2, -, Tn) = (N1) " 2det |ty (T1)¢2(32) - - - U (zw)] (2.13)

where z, includes both the spatial and spin coordinates for electron i and v (z,) is

the ith occupied MO.
Usually a linear combination of atomic orbitals (LCAO), ZZ=1 d,, centred at

each atom is used to expand the MO such that,
V=) cudy (2.14)
v=1

The calculation of the coefficients, c,;, is accomplished using a self consistent set of

equations known as the Hartree-Fock-Roothaan (HFR) equations:

D cilFu—6Su) =0 p=12---,n (2.15)

v=1
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where the F),, are the elements of the Fock matrix obtained using the expression,

Fuo = Hy + 37 37 Pral(avlvd) = S (o] (2.16)

v A

and the S, are the overlap matrix elements given by,
S, = / &0, dr (2.17)

The evaluation of the Fock matrix depends on three mathematical objects the
Hamiltonian matrix, H, the density matrix, P, and the two-electron integrals, (uv|y\).

The Hamiltonian matrix is made up of the single electron integrals,

H,, = /¢> (1) (——v2 Z )o,,(l dry (2.18)

while the density matrix is defined as,

acc

P, =2 E CyiCai (2.19)

and the two-electron integrals are given by,

(nv|yA) =//¢;(1)¢u(1)%¢;(2)¢A(2)dﬁd‘rg (2.20)

From this it is apparent that to calculate P the atomic orbital coefficients. C~;, Must
be known. This means that prior knowledge of the values of the coefficients is needed
to solve for the MO energies, €, and vice versa. Thus to solve the HFR equations an
iterative approach is taken with an initial guess for the atomic orbital coefficients.

The most time consuming part of the solution of the HFR equations is the cal-
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culation of the two-electron integrals. This time can be easily reduced if the inherent
symmetry of the two-electron integrals is accounted for. It can easily be shown that

for complex one-electron functions,®
(mvl72) = (YA luv) = (wplhy) = (Avlvp) (2.21)
while for one-electron functions that are real there are further symmetries,

(v A) = (uv|Ay) = (vulvd) = (vuldy) = (FAlpr) = (FAlve) = (Avluy) = Ovlvp)

2.22)

From these expressions the ground state energy of the system can be calculated

easily. From the HFR equations above the calculated MO energy is,
N

€a =< Yalh(1)[tha > + _(aa|bb) — (ablba) (2.23)
b

Using this expression in the Schrédinger equation then gives the Hartree-Fock energy

as,

e

N
(V]
o
g

Eur=2) € — [(aalbb) — (ablba)] + Vi y (2.

1 a,b=1

M i

a

for a system of doubly occupied MOs, also referred to as a ‘closed shell’ system.

A single Slater determinant of doubly occupied MOs represents this singlet ground
state quite well. Problems can arise, though, with this model when the spin multi-
plicity is greater than 1, also known as open-shell states. Many different ways have
been used to help deal with these open-shell states. Two of these will be described
below.

The restricted Hartree-Fock (RHF) approximation is used on a state with mul-

tiplicity (p — g + 1), where p and q are the number of electrons with o and 3 spin
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respectively and p > ¢q. The wavefunction used is given by:

Yeur(1,2,---,n) = detjyi(1)a(1)y1(2)5(2) - --

VUq(29)a(2q)¥q(29 + 1)8(2q + 1) - - - wpiqa(p + q)] (2.25)

The assumption of the equivalence of the spatial functions in the RHF method is not
reasonable since there are an unequal number of open shells with 3 spin than with a
spin. A more general approximation, which does not assume the equivalence of the
spatial functions, is represented in the unrestricted Hartree-Fock (UHF) method. For
each electron with spin a or § a different spatial orbital is assigned so that the single

determinantal wavefunction is written as
Yonr = detlof ()¥5(2) - 3 (P)l (P + DU (0 +2) - ¥ (p+ )| (2.26)

The choice of which method to use is still problematic. In general. the UHF
method yields a lower total energy and a more accurate spin distribution than the
RHF method. Yet, unlike the RHF approximation, the UHF wavefunctions are not
always eigenfunctions of the total spin operator and thus do not correspond to pure

electronic states.

2.4 Basis Sets

As was previously stated the molecular orbitals are constructed using a linear com-
bination of atomic orbitals which in turn are mathematically modelled using a basis
set. The first basis set introduced was formulated based on the atomic orbitals of

hydrogen. These orbitals, called Slater-type orbitals (STO), have the normalised
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form:
1

el 10,0 (227)
n. l and m are integers and £ is the orbital exponent. This model reproduces most of
the spatial properties of the atomic orbitals, like the cusp condition at the nucleus,
but integration problems arise when dealing with multicentre integrals.

A more practical approach can be supplied from the use of Gaussian-type orbitals

(GTOs) which have the normalised form,

r2
n

r"~Lexp|

Y™ (6, 6) (2.28)

Qo

again n. [. and m are integers and £ the orbital exponent. Integrals involving GTOs
are much more tractable since the product of two Gaussians centred at different points
is a third Gaussian centred at a third point.5 The description of the wavefunction
attained through the use of GTOs is not the same as that provided by STOs and
thus accuracy is sacrificed for practicality when using GTOs in a basis set. A method
which tries to achieve a compromise between the accuracy of the STOs and the

computational efficiency of the GTOs is to use several GTOs to model an STO, i. e.
STO = cug; (2.29)

The coefficients c; are optimised to give the best possible fit of the GTOs, gi’s. to the
STO and are held fixed during the calculation.

An infinite number of STOs or GTOs, usually referred to as a complete basis
set, would be needed to perfectly represent the atomic orbitals (AOs) within a basis
set expansion. This, of course, is not feasible and so different size expansions can

be used. The minimal expansion uses just one basis function for each AO while the
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double-zeta (DZ) and triple-zeta (TZ) basis sets have two and three basis functions
for each AO, respectively. Split-valence basis sets try to model the valence region of
an atom more accurately while giving a minimal description of the core. To do this
the basis set uses one basis function to describe the core-shells and two or three basis
functions to describe the valence shells. This description tends to yield results which
are superior to the minimal basis set and as good as or inferior to the double or triple
zeta basis sets.

Geometric concerns can also be taken into account by the use of polarisation
and diffuse basis functions. Polarisation functions add extra p. d or f functions to
the basis set which allows for more angular flexibility during a calculation. Diffuse
functions have small exponents and thus allow for larger AOs which is improtant for
anionic calculations.

The efficiency of theoretical calculations are dependent on the number of basis
functions used. This indicates that minimal basis sets will have the lowest compu-
tational cost but they will also give the lowest accuracy. The double and triple zeta
basis sets will increase the accuracy of the calculations but also increase the com-
putational cost dramatically. Care should be taken to choose the correct basis set
so that the desired accuracy is achieved with the smallest basis set thus making the

calculation as computationally efficient as possible.”

2.5 Correlation Energy

At the heart of the Hartree-Fock-Roothaan equations is the assumption that each
electron is independent of all other electrons. In reality, though, electrons interact
with each other and so the Hartree-Fock energy is only an approximation. However,

the normalised Hartree-Fock wavefunction, ¥, satisfies the variation principle so
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that,

< Uyup|H|Wyr >> & (2.30)

where £ is the correct total energy. From this it is trivial to show that the Hartree-
Fock energy can only provide an upper bound to the correct total energy even in
the limit of a complete basis set. The difference between the true energy and the

Hartree-Fock energy is then defined as the correlation energy,2® i. e.

Ecorr =& — Eyur (231)

Many different methods have been created to deal with the problem of electron
correlation. Most of these methods are based on one of three different modifications
made to the wavefunction before solving the Schrodinger equation. The configuration
interaction (CI) wavefunction observes that the excited states of the wavefunction
contribute to the ground state energy of a molecule. These excited wavefunctions must
therefore be included when solving for the energy of a molecule. The second method,
many-body perturbation theory (MBPT) uses the fact that the effects of electron
correlation are small and can be treated as a slight perturbation to the independent
particle Hamiltonian. The last method, referred to as the coupled cluster method.
uses an exponential expansion of excitation operators to vield excited wavefunctions

similar to CI.
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2.5.1 Configuration Interaction (Cl) Method

The configuration interaction wavefunction introduces the excited electronic configu-

rations through a linear combination of Slater determinants:23

¢ =d, ¥, +Zd’\P'+Zd§,‘, + ) At 4 (2.32)
> PSS

The ground state Slater determinant, ¥,. is equivalent to the Hartree-Fock wave-
function while ¥] corresponds to a Slater determinant with one excited electron,
\I!fj corresponds to a Slater determinant with two excited electrons, and so on. The
expansion coefficients are given by dl. df]s etc

This new formulation of the wavefunction allows for new definitions of Hamilto-

nian and overlap matrices such that,
Hij =< ‘I’iIHI‘I’j >, Sy =< W|¥; > (2.33)

where for simplicity ¥; and W, are used to represent any state with 0 to n excited
clectrons and H is the Hartree-Fock Hamiltonian. By using the variational principle

with the new Hamiltonian matrix. an equation analogous to 2.16 can be obtained.
Z -4ik(ij - Eisjk) =0 (234)
k

The lowest eigenvalue, Ej; is an upper bound to the ground state energy while the
higher eigenvalues are upper bounds for the excited state energies.

The accuracy of the ground state energy increases with the number of excited
configurations included in the calculation. If all possible excitations are included,

referred to as full CI, equation 2.34 will yield the most accurate approximation to the
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ground state energy within a given basis set. This energy Is invariant to the nature
of the orbitals used and hence gives the best result under the LCAO approximation.
However, as the number of electrons increases, full CI becomes too expensive compu-
tationally to calculate and so other approximate methods attempt to achieve the full
CI results at reduced computational cost.

The simplest approximation to make is to truncate the CI expansion after a fixed
number of excitations. Truncation after only single and double excitations (CISD)
can account for most of the correlation energy. Ignoring higher terms in the CI
series, though, introduces a few problems, the most severe of these being the lack
of size-consistency. For any method to be size-consistent the relative errors involved
in any calculation should increase in proportion to the size of the molecule. While
it is generally impossible for any approximate theory to achieve this condition it is
normally required for the model to be size-consistent at infinite separation.

Size-consistency can be attained with a truncated CI scheme in two ways, in-
clude higher-level excitations or increase the size of the reference space used. Both of
these methods greatly increases the computational effort of a CI calculations. Meth-
ods have been derived to approximate the inclusion of higher-level excitations by
using the lower-level excited determinants. One example of this tvpe of approxima-
tion is the Davidson correction. Techniques have also been created to make using a
larger reference space more efficient. These usually focus on using the orbitals from a
multi-configurational Hartree-Fock calculation to enhance the convergence of the CI

expansion.
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2.5.2 Many-Body Perturbation Theory (MBPT)

Perturbation theory allows for the refinement of both the Hartree-Fock wavefunction
and energy. This is achieved by treating the correlation energy as a perturbation of

the Hartree-Fock Hamiltonian. i.e.
H=Hpr+H (2.35)

Splitting up the Hamiltonian in this way creates a mathematical relationship between
the energy and wavefunction of the unperturbed system and the energies and wave-
functions of the perturbed system. This means that the perturbed state can be solved
using the energies and wavefunction of the unperturbed state. The mathematical re-
lationship is established by linking the unperturbed state to the fully perturbed state
by the introduction of a continuum of slightly perturbed states. Mathematically this

is the same as introducing a coupling constant, A, into the Hamiltonian such that,
H=Hyr+ \H (2.36)

Two special cases are immediately apparent, the unperturbed state A = 0 and the
fully perturbed state A = 1.

Due to the A dependence now introduced into the Hamiltonian it is easily shown
that the wavefunction and energy will now also be dependent on A. To introduce this
A dependency expand both the energy and the wavefunction in a Taylor series about

A,

U =00 20 220 4. i=1,2,-.-n (2.37)

Ei=E® + \E" + XE® +... i=1,2,---,n (2.38)
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Here El(o) and \I:§°’ are the unperturbed wavefunction and energy while Ei(k) and
lIIEk) can be thought of the kth order correction to the energy and wavefunction,
respectively. Substituting these expressions for H, E; and ¥; into the Schrédinger

equation and collecting like powers of A will then give the perturbation expressions,

Hyed® = EO0
HY® + Hppt?) = EOWM 4 ENg©

(2.39)

Moller and Plesset introduced a perturbation of the Hartree-Fock Hamiltonian
to approximate the correlation energy excluded from the Hartree-Fock energy. This
method uses the Hartree-Fock wavefunction as the unperturbed wavefunction for the
basis of the calculation. Thus using the single determinantal wavefunction it was

shown that the zeroth-, first- and second-order energy corrections are given by,

N
EY = Y e (2.40)
1 N
EY = ~5 D (aalbb) — (ablba) (2.41)
~ ab=1
bs) — (as|br)|?
E(Q) — I(arl 2.4
0 Z €q + € — €, — € ( 2)
r<s

The energies, ¢;, are just the MO energies previously defined for the Hartree-Fock
MOs. As seen above the Hartree-Fock energy is just the sum of the zeroth- and first-
order corrections and thus to get any correction to the energy the perturbation needs
to be taken to at least second order. This method can also be used to find corrections

to the wavefunction using only the Hartree-Fock wavefunction.
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2.5.3 The Coupled Cluster Approximation

The coupled cluster approximation (CC).%° like the configuration interaction method,
includes excited electronic configurations in its wavefunction in order to calculate the
correlation energy. The CC wavefunction though is usually expressed in a different

manner than the CI wavefunction and is usually expressed as,
VCC = exp(T)| ¥, > (2.43)

The operator T is a combination of excitation operators, T,,. which excite n electrons
from n molecular orbitals and when the operator T includes all electronic excitations
the coupled cluster approximation is indistinguishable from the full CI approximation.
However, due to many constraints T cannot include all electronic excitations and is
usually approximated.

One of the first approximations made by J. Cizek® was to only include excitations
of pairs of electrons, that is T ~ T,. This approximation allows for the derivation of

the closed coupled cluster equations,

D < WolH|PY > d% = Ecorr (2.44)

c<d
t<u

< WGHH|Ro > + ) < UGIH ~ Eo|U% > di% + 3 < Ul H|Y > (d5f * d) = Eeored?y

c<d c<d
t<u t<u

(2.45)
Two points should be made about these equations, the first is that if s * diy was
set equal to zero then these equations reduce to the configuration interaction method

which includes only double excitations. The second point is that the d7j * di value
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is a complex product of the double excitation coefficients given by

ab* deg = dijdey — diidily + dogrsdyt — difdy + ditdis — drtds®
+dpdly — digdia + dyidit + digdls — ditdyy + diudy:
—dabdeq + dizdyg — dijdyl + dijdy — ditdyy + dstdpy (2.46)
which is an approximation to the quadruple excitation coefficients, d;%. By approx-
imating the quadruple excitation coefficients in this way the coupled cluster method

retains size consistency.

2.5.4 Quadratic Configuration Interaction

The quadratic configuration interaction (QCI) method also uses lower excitation co-
efficients to approximate higher excitation coefficients to create a set of closed equa-
tions from a truncated configuration interaction (CI) wavefunction. Doing so the QCI
method creates a new wavefunction which not only retains size consistency but also
improves the truncated CI results. Closer examination of the QCI wavefunction re-
veals that it is very similar to the coupled cluster wavefunction and as such results

obtained with QCI can be viewed as an approximation of the coupled cluster results.

2.6 Density Functional Theory

In 1964 the foundations for another method to solve the Schrédinger equation were
introduced.'®!! Two theorems, put forth by Hohenberg and Kohn,!'? revealed that
one could obtain all the information about a system using only the electron density of
a molecule, p(r). More specifically, the first theorem demonstrated that the electron

density of a molecule, p(r), uniquely determines the external potential, v(r), of the
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system. This indicates that the energy of the system can be represented as a functional

of the density,

Bl = [ p(e)u(e)de + Tlp) + Vel (2.47)

Note that this expression for the energy contains both the kinetic energy functional,
T[p]. and the interelectronic repulsion energy functional, V,.[p]. In a less formal sense
this theorem states that given any electron density, 5, there is a unique wavefunction,
¥, associated with it.

The variational principle is then the basis of the second theorem given by Ho-
henberg and Kohn.'? This implies that the energy associated with a density for a

molecule, p, will always be greater than or equal to the energy associated with the

exact density of the molecule, py. Stated symbolically,
Elp] =< U|H|¥ >> Elp,] (2.48)

Also. the variational principle maintains that the equality holds if and only if p = py.
The use of the variational principle, however, limits density functional theory to
calculations on the ground states of molecules only.

To solve for the density of a molecule the energy of the molecular svstem must be
stationary with respect to the calculated density. To meet this condition the following

equation must hold,

Elp] - £6[ [ px)dr - N] = 0 (2.49)

where £ is a Euler-Lagrange multiplier. Also, the density must be subject to the

constraint,

/p(r)dr =N (2.50)
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The Euler-Lagrange equation can then be formulated,

OT(pl | dVeelr|

& =v(r) + = (2.51)
op(r)  dp(r)
In the above equation both %(Lf)l and ?/Tf(‘r%’l are functional derivatives.

The Euler-Lagrange multiplier cannot be calculated directly without the knowl-
edge of the exact kinetic and electron-electron repulsion energy functionals. However,
an indirect method for solving the Euler-Lagrange equation was introduced by Kohn
and Sham.!® Using a noninteracting reference system Kohn and Sham introduced a
determinantal wavefunction made up of N noninteracting electrons in N orbitals. y,.

This allowed for the exact calculation of the kinetic energy.
al 1
T, = Zn,- <xil = 5V%x: > (2.52)

for this noninteracting system. Also by using this method the electron density was

simplified to,

N
p(r) = Z milx:(r))? (2.53)

It should be noted that for pure state DFT 7; = 0 or 1. This creates an effective

potential, vs, on the system and the orbitals obey the equation,
1_., -
[=5 V" +u(r)lxi = e (2.54)

From this a simple expression for the energy of the noninteracting system can be

obtained,

Elp] = T;[p] + / vs(r)p(r)dr (2.55)

Returning to an interacting system it can be shown that the energy can be written
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Elp] = [ v(®)p(e)de + T,[o] + (Tlo] ~ Tol) + Vel (2.56)

The largest contribution to the interelectronic repulsion term is the Coulomb repulsion

energy,

I =3 [ [ etradotea)dede; (2.57)

which is easily calculated within the Kohn-Sham noninteracting reference space. Us-

ing this expression the exchange-correlation energy functional can be defined as,
Ezclp] = T(p] — Ti[p] + Vee[o] — Jip] (2.58)
This expression for E;. will reduce the expression for the total energy to,
Elp) = /v(r)p(r)dr + T[p] + J[p] + Er[p] (2.39)

This energy expression demonstrates that the interacting electron problem can
be recast into a system involving noninteracting electrons. More specifically, the N

noninteracting one-electron orbitals will obey the set of equations.

[——%V2 + v(r) +/ |rp(—r,1)"|drl + vze(r)]x:(r) = €:x:i(r) (2.60)

given that vy, = dE;.[p]/dp(r). Proceeding as in the Hartree-Fock procedure and

representing the orbitals with a basis set,

Xi = Zcui¢u (2.61)
u
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produces what are known as the Kohn-Sham equations,

zy: <¢,,| - %Vz + v(r) +/ l:(_rll).,ldr’ + Uze(r) — e,~l<p',,> i =0 (2.62)

The Kohn-Sham equations imply that if E.[p] is known, and hence v,.(r) then the
Schrodinger equation can be solve as accuratelv as the basis set used allows. Un-
fortunately, E..p] is unknown and only a few approximations have been proposed.
However. due to the computational efficiency of DFT, which is as efficient as a HF
calculation, there is much interest in creating better and better approximations to
Esclp]. Within time accurate exchange-correlation functionals will be created and
calculations including correlation energies can be done without the computational

drawbacks of CI, MBPT and CC.

2.7 The Exchange-Correlation Energy Functional

The computational efficiency of DFT has spawned much research in the design and
refinement of exchange-correlation energy functionals. As shown above the Kohn-
Sham equations, 2.62, require an explicit form of E; for their solution. Although E,.
must exist the search for E.. has encountered many difficulties and still a systematic
way for calculating E,. has not been found. Thus many different and varying models
have been used to approximate E,. and solve the Kohn-Sham equations.

The simplest of these models is based on a uniform electron gas and has been
studied extensively. More accurate calculations can be achieved by using different
models or through a modification to the electron gas model. An in depth look at

these models will help to shed light on how accurate current functionals are and what

has been done to date.
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2.7.1 The Local (Spin) Density Approximation

The local density approximation (LDA) was one of the first approximations of the
exchange-correlation energy functional. This simple model used a uniform-electron-
gas to model the electron correlations within a molecule.'® The exchange-correlation

functional produced by the LDA then has the form,

ELPpl = [ enc(p)ae (2.63)

This functional is merely the integral of exchange-correlation energy density per unit
volume. e;.. Taking the functional derivative will then vield the exchange-correlation
potential,

sILDA LDA
cLDA OE:z:c 6exc

zc (l‘) = 5pa(r) = 6[)0»(1') (264)

v

which when substituted into the Kohn-Sham equations defines the Kohn-Sham local-
density approximation.

In any system the exchange and correlation energy per particle, .., are separately
and uniquely defined. This allows e, to be split into separate exchange and correlation
contributions, that is €;. = €, + ¢.. An explicit formulation of the exchange-energy
per particle was formulated even before the creation of DFT and was given by Dirac
in 1930,

1/3
ex(p) = ~Cap(e)'”, €, = 2 (;) (2.65)

This approximation is only valid for the spin compensated case where p°(r) =
AA(r) = 3p(r), but complete spin pairing is not present in all cases. For functionals

involving incomplete spin pairing, otherwise known as spin polarisation, the exchange
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energy functional must be expressed as a functional of two different spin-densities,
EZSP4p, %) = 2'2C, / [(0*)** + ()] dr (2.66)

This is known as the local spin density approximation (LSDA) since it accounts for
differences in spin polarisation.
To show that this definition of the exchange energy functional is of the form

represented in equation 2.63 a spin polarisation parameter, £, must be defined,

pP°—p  p*—pf

_ - 2.67
¢ p p* + p? (2.67)

The exchange energy per particle, ¢, can then be given by the expression,
ez(p.€) = e3(p) + [e1(p) — €2(p)] £ (€) (2.68)

where. €2 = C,p'/?, is the spin-compensated exchange density, el = 213C,p'/3 is the
spin-completely-polarised exchange density. Using this definition of ez(p) again puts

the exchange energy functional in the form.

EL240, ) = [ pea(p,€)ir (2.69)

Unlike the exchange energy functional the correlation energy functional, E.[p*, p°].
cannot be broken into the sum of two different spin contributions since correlation
energy affects both like- and unlike-spin electron-electron interactions. It is not sur-
prising, then, that a closed form for the correlation energy for the homogeneous
electron gas has not been found. Some approximate forms for ¢, have been found.

one such is given by Vosko, Wilk and Nusair,'® and coupling them with €, gives the
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local spin-density approximation to the Kohn-Sham Equations.

2.7.2 The Exchange-Correlation Hole

The results obtained from the LSDA were encouraging but indicated that improve-
ments still could be made.'®"!? Investigations of the exchange-correlation hole found
connections between it and the exchange-correlation energy functional. Most impor-
tant were the conditions that the exchange-correlation hole imposed upon the energy
functional.

Put in the simplest of terms the exchange-correlation hole is the region of space
around an electron where the probability of finding another electron is 0. This can

be defined by decomposing the second-order density matrix into,2%2!
P2(ro.T'o) = ny(r)ny(ry. r'y), (2.70)

so that ny(rs, r'o)d3r is the probability of finding an electron in a volume d®r’ centred
at r’ with spin o’ given that there is an electron of spin o in a volume d3r centred
at r. From this the spin-decomposed exchange-correlation hole around an electron of

spin o can then be given by the relation,
n2(Fe, o) = npr (2) + nze(ry, r'yr) (2.71)

For closed-shell species the spins can be summed to give the non-spin decomposed

hole,

Ne(r,r') = Z Z”(—il;)n,c(r,, r',) (2.72)

which then can be related to the spin-summed second-order density matrix.

a0’
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The use of the Hellmann-Feynman theorem connects the exchange-correlation
hole to the exchange correlation energy by treating E. as the electrostatic interaction

between the density and the hole averaged over a coupling constant. A. Thus.

1 —
1 e . -
E, = / dAEzenln] = = / &*r n(r) f iy Rze(T T+ 1) (2.73)
0 2 u
where 7. is the exchange-correlation hole averaged over the coupling constant,
1
aclr 1) = [ meea(e, ) (2.74)
0

The exchange-correlation hole can be approximated by the sum of two linearly inde-
pendent holes, although in real systems this is not always the case. Thus, the hole
can be decomposed into the sum of the exchange hole, n.(r), and the correlation hole,
nc(r). This approach simplifies the exchange correlation hole since each of these two
holes have well known conditions. The exchange, or Fermi, hole is due to the Pauli

exclusion principle, and obeys the conditions:
nz:(ra': rla’) < 0: (275)

and

/d3rnr(r,, r'y) = —b50 (2.76)

While the correlation hole obeys the condition:
r —
j d*r'n.(ry,r'e) =0 (2.77)

The two conditions on the exchange hole can be accounted for by the fact that the
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wavefunction is a non-interacting Slater determinant while the integral condition on
the correlation hole arises from the normalisation of the second-order density matrix.

Another condition arises when the separation between two electrons tends to
zero. At this point the Coulomb interaction dominates and leads to a cusp in the
exchange-correlation hole at zero separation.?? The pair distribution function allows
for a simple formulation of this subtle condition and like the exchange-correlation

hole it can be related to the second-order density matrix,

s
o (F)rg ()] (2.78)

9(ro.r'y) = [

Defining the spherically-averaged derivative of the pair distribution at zero separation

as,

g'(r,r) = [8%] / diz"g(r, r+u), (2.79)
u=0 "

then the cusp condition can be shown to be,2
g'(r,r) = g(r,r) (2.80)

Like the exchange-correlation hole the pair distribution function can be split into
exchange and correlation contributions. Using the above derivative and the Pauli
exclusion principle it is known that only antiparallel spins can have zero separation
and thus the non-vanishing derivative must be a pure correlation effect. From this it

can be shown that,

g.(rs, 1) =0 (2.81)

and,

9e(Fo, o) = (1 = 85,0:)9(xs, To) (2.82)
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2.7.3 Post Local Spin Density Approximation

Although the exchange and correlation holes can place specific conditions upon £, [p]
it is quite difficult to create an actual functional from them. Different methods have
been used to create functionals which improve upon LSDA. The accuracy of these

newer functionals has helped to push DFT to the forefront of theoretical chemistry.

Generalised-Gradient Approximations

The generalised-gradient approximation was on of the first methods used to go bevond
the local spin density approximation and has produced many different functionals
with varying results.**® To improve upon the local spin density approximation the
generalised-gradient approach introduces a dependence on the gradient of the density

into the exchange and correlation energy,

B, o) = [ &rf (o @), x). V0%, V1) (2.83)

The lowest-order gradient correction (LGC) gives the simplest correction to the

LSDA." It can be uniquely determined by dimensional analysis.

4/3

E{°¢ =ELP* -8 o) 4s, (2.84)
4 Po

where 3 is a constant. This functional, sometimes called the Xaf functional has
some severe problems: the exchange potential will diverge asymptotically in atomic
and molecular systems, the value of the constant 3 has been the subject of much
confusion and the value of 3 has some Z dependence and hence the X a8 model isn’t
universal.

As a consequence of these problems Becke derived a semi-empirical correction
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to the Xaf model. To better understand the changes presented by this model the
reduced density gradient, z,, is introduced,

_ Vos]

=
pdl?

(2.85)

As previously stated the XafB potential diverges as this reduced density gradient

increases. To compensate Becke added another term into the model.

Erasy = Ez?* —8) / (Voo)To [1+ 922 ma]  dPr (2.86)

This increased the number of parameters in the expression to two, # and v. When
7 = 0 this expression just reduces to the X a3 expression but assumes a p*/3 integrand
with large values of 7. The integrand will reduce to p*/3 also when the reduced
density gradient is large or within the exponential tail of atomic or molecular charge
distributions. The parameters, 3 and ~. were determined empirically and found to
have values of 0.0036 and 0.004, respectively. These values do not seem to exhibit
any Z dependence and hence give the Xafv model universality.2?

The XaBv model uses a somewhat arbitrary choice of large gradient behaviour
to fix the divergent behaviour of the Xa8 model. Improved theoretical models for
the large reduced density gradient behaviour have been given by Perdew,?® Becke3®
and others.®! In 1988, Becke then proposed a further modification which took into
account the exact asymptotic behaviour of the exchange-energy density.23

It is well known that as the distance between two charged particles tends to
infinity, the Coulomb potential, U(r), tends to } The exchange-hole potential,

Ue = / Nae(Fos U'et) 13 (2.87)

=) T-r
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will then exhibit this same asymptotic behaviour due to its Coulombic nature, that
is

1
lim U] = —— (2.88)

r—00 T

This potential can easily be related to the exchange energy of the molecule through

the simple expression,

1
E. = 5 Z / pUZ d*r (2.89)
[
This equation shows that the behaviour of p must also be known as r tends to infinity.
It is easy to show that the asymptotic behaviour of the spin density is given by,

lim p, = e %" (2.90)

r—oo

where b, is related to the ionisation potential of the system.

In 1988, Becke introduced a functional of the form,

2

E, = EEPA / /3 Lo d®r, 291
* g ; ” (1 + 68z,sinh~! z,) " ( )

which is commonly referred to as the B88 functional. This formulation exhibits the
correct asymptotic behaviour for the exchange-energy density under substitution of
the asymptotic spin density. This system reproduces the LSDA values for a homoge-
neous electron gas and for systems which have smooth slowly varving densities, that
is a system with low density gradients, this functional reduces to the LGC expression.

Since Becke introduced this functional in 1988 many other expressions for ex-
change and correlation energy densities have been devised using the generalised-
gradient approximation. The expressions for these are as complicated, if not more so,

as the B88 expression and are excluded from this thesis. The methods of design may
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vary from using a Taylor expansion of the exchange-correlation functional to fitting
very-accurate correlation data for He and finally to designing a functional from first
principles. All of these functionals fit the GGA model.

With a large number of GGA functionals to date and more being added a tool
to analyse the performance of these functionals was designed by Perdew and co-
workers.? If a dimensionless measure of the gradient is given by,

_ Vo o
s = erp (2.92)

with the local Fermi wavevector, kg, defined as
kp = (37%p)'/3 (2.93)

and given that the local Wigner-Seitz radius, r,, is

47
re= (507 (2.94)

then an exchange-correlation enhancement factor, F,.(rs,s), can be defined as.
EZp/2,p/2] = / p(r)ez[p(r)] Fzclrs(r), s(r)|d’r (2.95)

Then using the exchange energy per particle for a uniform gas, €,(p) = —~3kp /47, a
calculation of the enhancement factor for each functional was completed.

The enhancement factor, F..(7s, ), is a measure of the enhancement in the energy
per particle over local exchange. For real systems the energies can contain significant
contributions up to about s = 3 and r, = 18. Some values for real systems are s < 2

and 1 < rg < 6 for the valence electrons in solid metals and s < 1 and r, < 1 in the
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core of an atom. In the limit of r — oc the values of s and r, grow exponentially.?°
A look at the enhancement factors for the LSDA approximation. figure 2.1.2¢
shows curves that are horizontal lines since the approximation is gradient independent
by definition. When at the high density limit, r, = 0, F;c = 1, while when r is greater
than 1, F;. increases beyond 1 due to the correlation contribution to the exchange-
correlation energy. The LGC approximation on the other hand gives parabolic curves,
figure 2.2%° for the enhancement factors due to including only second-order gradient

contributions. = While the LGC approximation improves LSDA results in systems

2.0
18 =
\.U.)/ N r=18 ]
(&) = =
4 - .
Fey 14_’__’ r=6 =
12 72 ]
lob %
0 1 2 3

S

Figure 2.1: Enhancement factors for the LSDA

with slowly varying densities it typically gives worse results for real electronic systems
which contain regions of rapidly varying densities.

This type of analysis is carried out upon the GGAs to give an indication of
whether or not a GGA obeys known conditions on the true exchange-correlation
functional. One example of this is found using the exchange functional by Becke, as

derived above, combined with the 1986 correlation functional of Perdew and Wang.?
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Figure 2.2: Enhancement factors for LGC

This functional includes the uniform gas limit and the LGC by having the correct s?
dependence, as seen in figure 2.3.2° However, it still violates uniform scaling and the

Lieb-Oxford bound which states,33
F..(rs,s) <227 (2.96)

Although, this method sheds light upon the inherent problems for each functional
it does not reveal how accurate these functionals are in terms of calculated molecular
properties. A study of molecuiar properties is the only indication of this type of
accuracy for a newly designed functional. Many of these types of calculations have
been done, comparing and contrasting the accuracy of GGA functionals.!6-32:34-36
The final results of these studies show that GGAs give a marked improvement over

LSDA and that some functionals are comparable to other high level calculations.
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Figure 2.3: Enhancement factors for BP86

Hybrid Functionals

The accuracy attained by the GGAs is still not satisfactory, generally being within 3
to 5 kcal/mol of experiment for many thermochemical properties, and the limits of
the GGA model may soon be reached.!6:18:19:37 Hybrid functionals were introduced
to try and increase the accuracy of DFT by introducing a small amount of exact
exchange energy into the exchange energy functional. Why this was done is most
easily explained using the adiabatic connection method.

In the adiabatic connection method the exchange-correlation energy may be given
by,

1
E. = / Uld\ (2.97)
0

The coupling-strength parameter, A, controls the Coulomb interaction between elec-
trons, and U}, is the potential energy of the exchange-correlation at the coupling

strength A. This essentially sums over a continuum of partially interacting systems,
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0 < A £1, from the noninteracting Kohn-Sham reference, A = 0, to the fully inter-
acting real system, A = 1. The A = 0 lower limit, corresponding to the Kohn-Sham
reference system, is the limit of greatest importance. The exchange-correlation poten-
tial energy of this system, U2, is the pure exchange energy of the Slater determinant of
the Kohn-Sham orbitals and does not include any dvnamic correlation. This suggests
at A = 0 only exchange energy is present within F,. and this energy is essentially,
although not exactly, equal to the Hartree-Fock exchange energy.?

The LSDA model can be used to calculate U}, for each value of A but this re-
placement is inappropriate in molecular bonds near the A = 0 exchange-only limit.
This problem can be understood by looking at the LSDA description of H,. The
exact exchange hole of the hydrogen molecule is the negative of the g, orbital den-
sity and is reference-point independent. This implies that the static hole which is
uniformly distributed over both centres does not have any left-right correlation. The
hole generated using the electron-gas model, though, is reference-point centred and
relatively localised. The effect of this is to give a crude simulation of leftright correla-
tion which, though needed in the interacting system, misrepresents the noninteracting
system. Thus, it could be argued that the LSDA approximation in the noninteracting
limit. A = 0, is the principal source of error.3?

These problems still occur even with the gradient corrected methodsand even the
most sophisticated approaches still display slight overbinding tendencies. Becke has
therefore created functionals which include a mixture of exact exchange and LSDA

exchange to correct for the A = 0 or noninteracting case. The most useful of these is

the Becke three-parameter expression given by,

Er. = EIFP* + ao(EZ* — EFSP*) + 0, AEP® + a AEPWY (2.98)
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The values of the constants a, = 0.20, a, = 0.72, and a. = 0.81 were determined
semi-empirically by fitting the functional to experimental data. The gradient correc-
tions, AEP® and AEF™9!, are the corrections to the LSDA exchange and correlation
energies, respectively.

Reasonable physical arguments can be made for the motivation of equation 2.98.
The second term has some of the LSDA exchange being replaced by exact exchange
and the amount replaced is controlled by the coefficient a,. Thus a, reflects the
relative importance of the independent-particle character of the model. As a first
approximation this value can be thought of as a constant. The coefficients, a; and
ac. meanwhile allow for the optimum admixture of exchange and correlation-tvpe
gradient corrections. Finally, it should be noted that the above expression is the
simplest mixture of LSDA exchange and correlation, exact exchange and gradient

corrections that recovers the uniform electron-gas limit.
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3. Comparison of Electron Densities
e

The use of computational chemistry to research new aspects of chemistry or to support
experimental work has increased dramatically. A significant factor for this increase
is the recent advances within density functional theory (DFT) which vield results
comparable with other high-level theories.!'? This coupled with the computational
efficiency of DFT calculations has increased the number of systems which can now
be studied.

Even though many improvements have been made to DFT, it is still thought to
be in its infancy and new functionals are constantly being proposed. The molecular
properties found using any functional, though, is dependent upon the calculated elec-
tron densities and thus it is imperative that they vield an accurate density. Therefore.
any information which can be used to improve the electron densities calculated us-
ing approximate DFT functionals is valuable. One method of obtaining information
about the DFT electron densities is to compare calculated DFT densities with the
electron density of a method which is known to give accurate molecular properties.®
However, comparison of electron densities is not straightforward which makes the
process of assessing the functional’s accuracy difficult.

A simple, yet limited, way to compare electron densities, the density difference

43
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plot. has previously been shown to give good qualitative results when comparing
densities.*® Through the use of an illustrative example the use of these plots is stud-
ied and the results explained. These results indicate that with a small modification
a quantitative measure of the density differences can be calculated. This quantita-
tive value can then be used to optimise a new exchange-correlation functional and
hopefully to improve the calculated DFT density. A preliminary investigation of this

modification and a study of a new functional is presented after the density difference

plots.

3.1 Obtaining Electron Densities from Wavefunctions

Before any comparison of electron densities can be accomplished, the method used to
obtain electron densities from the various calculations must be described. The DFT
electron density can be calculated using the Kohn-Sham orbitals’ (see section 2.6)

with the expression,

N
p(x1) = 3 milxi(xr)P (3.1)

Here 7; is the occupation number and N is the number of orbitals. For methods based
on the HF ground-state wavefunction, though, the electron density is a function of
the electronic wavefunction.®® Given an overall wavefunction, W(xy.X2. -+, XN), the

electron density is obtained using the expression,
p(xy) = N/ ¥(x1,X2, -+, XN) ¥ (X1, X2, - -+, XN)dX2dX3 - - - dXN (3.2)

A more generalised version of this function has been developed since the above func-

tion proves problematic for the calculation of one-electron properties.”™ ' This single-
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particle density function is given by:
pr(x1;x)) = N/ W(x1,X2, -, XN)U"(X], X2, - - -, XN )dX2dX3 - - - dXN (3.3)

Obviously the single-particle density function reduces to the electron density function
when x] = x;.

Calculation of the single-particle density for multi-determinant wavefunctions is
quite difficult. For these methods a unitary transform is applied to the molecular

orbitals such that the resulting orbitals have the property,

A
p1(x1;xy) = Z At (x1) Y] (x}) (3.4)

i=1

where M is the number of transformed orbitals. This new set of molecular orbitals,
called the natural orbitals, are then used to calculate the single-particle electron

density.

3.2 Density Difference Plots

One of the simplest methods to contrast electron densities is to compare them visu-
ally with density difference plots.*® To create these graphs wavefunctions or the DFT
Kohn-Sham orbitals for a molecule are obtained and the corresponding electron den-
sities are calculated. Then a one- or two-dimensional grid is set up and the electron
densities are evaluated at every point on the grid. Finally, at each point on the grid
the difference between two electron densities is calculated and the results are plotted.

To simplify the comparison of many methods a single method’s electron density
is used as a standard against which all other methods are compared. However, theo-

retical results are usually compared to available experimental data to determine their
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accuracy. Since, experimental electron densities are not available the chosen stan-
dard method should be known to yield a good approximation of other experimental
results. The quadratic configuration interaction method including single and double
excitations (QCISD)!! is one such method and was chosen as the standard in the

following example.

3.2.1 An lliustrative Example: Density Difference Plots for CoH,,,

n=2,4,6 and CGHG

The Gaussian 94'? computational package was used to calculate the densities for
each of the four molecules at the experimental geometries. The aug-CC-PVDZ!3
basis set was employed for the calculation of ethyne, ethene and ethane but due to
computational restraints the smaller CC-PVDZ!3 basis set was used for the benzene
calculations. A regular rectangular grid with 200 points in both the x and y directions
was then positioned to include a carbon-carbon bond midpoint in each molecule and
two hydrogen atomic centres. Electron densities were calculated at each point on the
grid sampling a 10 a.u. by 10 a.u. area centred at the chosen carbon-carbon bond
midpoint. Density differences were then calculated at each point on the grid and
contour plots of the results were obtained. A second plot was also obtained along the
carbon-carbon bond axis by calculating the density differences at regular intervals 5
a.u. in either direction from the bond midpoint.

The first plots examined were those from the non-hybrid functionals used in the
study. the local spin density exchange and correlation functional, using the Vosko,
Wilk and Nusair parameterisation of the correlation energy, SVWN, 415 the Becke
1988 gradient-corrected exchange functional'® combined with the Lee, Yang and

Parr gradient-corrected correlation functional,!” BLYP, and finally the Becke 1988
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gradient-corrected exchange functional combined with the Perdew 1986 gradient-
corrected correlation functional,!® BP86. All of the density difference plots along
the carbon-carbon bonds, seen in figures 3.1, 3.2 and 3.3, have a similar outline for
these functionals. Negative density differences are observed close to the carbon atoms
and then from this minimum value the density differences increase to a maximum
value at the bond midpoint. Although the plots are similar in shape, differences are
observed both between functionals and between molecules. The density differences
given by the SVWN functional near the carbon atoms are the most negative of all
three functionals and also yield the largest maximum values at the bond midpoint.
For BLYP and BP86 the density difference ranges are much smaller than the SVWN
case but only small differences near the carbon atoms and the bond midpoint are
seen between the two functionals. For the four molecules studied the density differ-
ence plots are organised with respect to increasing bond length and therefore with
respect to decreasing electron density within the bond. Ethyne, which has the short-
est bond length and thus the most electron density within the bond, exhibits the
largest negative density differences near the carbon atoms and a substantial negative
density difference at the bond midpoint for all methods. As the bond length increases
and the electron density within the bonding region decreases the density differences
near the carbon atoms and at the bond midpoint both increase. The magnitude
of these increases are dependent upon which functional is used but positive density
differences are observed at the bond midpoint of ethane for all methods. Positive
density differences are also observed at the bond midpoint of ethene, with SVWN
only, and benzene, with SVWN and BP86. This may suggest that these functionals
underestimate the electron density in the carbon-carbon ¢ bond but overestimate the

7 bond electron density. The magnitude of this overestimation and underestimation,
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Figure 3.1: QCISD-BLYP density difference plots for CoH, (a), CoHy (b), CsHg (c)

and CQHG (d) .
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Figure 3.2: QCISD-BP86 density difference plots for CoH, (a), C,H4 (b), C¢Hg (c)
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though, is functional dependent. The final and most prominent feature of the density
difference plots along the carbon-carbon bonds is the very large spikes of positive
density differences near the carbon atoms. These large differences in core electron
density may not prove to be too problematic since the core density is usually not as
chemically significant as the valence electron density. However, the large differences
will make it difficult to calculate properties which need a good estimation of the core
electron density, such as the hyperfine coupling constant.!®

By examining the planar density difference plots, the behaviour of the function-
als within the carbon-hydrogen bonding region and around the carbon and hydrogen
atoms can be assessed. Unlike the carbon-carbon bonding region the density differ-
ence within the carbon-hydrogen bonding regions are relatively independent of the
molecule but are still dependent on the functional used. The BLYP functional under-
estimates the electron density around the hydrogen atom giving observable positive
density differences but moving within the bonding region the density differences be-
come very close to zero. BP86 gives a better description of the hydrogen atoms. with
no discernible density difference contours, but tends to slightly underestimate the
electron density within the carbon-hydrogen bond. F inally, the SVWN functional
has the most interesting behaviour with large negative density differences near the
carbon atom which increase throughout the bond to finally give substantial positive
values around the hydrogen atom. Two other notable features are also observed in
the planar density difference plots. The first feature is exhibited by all functionals in
all molecules and is a region of negative density differences surrounding the carbon
atoms. The shape of these regions differs between molecules while the size of these
regions differs between functionals with SVWN giving the largest areas and BLYP the

smallest. The other feature is only exhibited in the BLYP and BP86 plots which yield
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small areas of positive density differences adjacent to the carbon-hydrogen bonding
region of all molecules and adjacent to the carbon-carbon bonding region of ethyne.

The hybrid functionals used in this study are based upon the Becke three-parameter
expression for the inclusion of HF exchange energy®® and use either the Lee, Yang and
Parr gradient-corrected correlation functional, B3LYP, or the Perdew 1986 gradient-
corrected correlation functional, B3P86. These two functionals lead to an improve-
ment over the results obtained with the non-hybrid functionals and vield electron
densities with the best overall qualitative agreement with the QCISD electron den-
sity (see figures 3.4 and 3.5). The outlines of the plots along the carbon-carbon
bonds are similar to those of the non-hybrid functionals with the minimum values
near the carbon atom moving to a2 maximum at the bond midpoint. However, the
range of density differences is much smaller with the hybrid functionals which vield
a flatter graph. This leads to bond midpoint values which are very close to zero
for ethene, benzene and ethane and only one bond midpoint value with a positive
density difference, observed in ethane using the B3P86 functional. This indicates an
improvement in the calculation of the electron density in both the ¢ and 7 bonds.
Finally, the very large positive density differences at the carbon atomic centres are
also still present with only slightly smaller maximum values.

The planar density difference plots again show many improvements over the
non-hybrid plots with notable changes around the carbon-hydrogen bonding regions.
B3LYP continues to overestimate the electron density around the hydrogens but the
areas of negative density differences are much smaller than those shown with BLYP.
However, negative density differences are now found within the bonding region instead
of the region of zero density differences exhibited with BLYP. For B3P86 the density

differences around the hydrogen and within the bonding region are approximately
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Figure 3.4: QCISD-B3LYP density difference plots for C;H, (a), CoHy (b), CgHg (c)

and Csz (d)
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zero for ethyne and ethene but small areas of positive density differences are observed
around the hydrogens of benzene and ethane. Missing from the planar density dif-
ference plots of the hybrid functionals are the regions of positive density differences
around the hydrogen bonds and around the carbon-carbon bond of ethyne. Unfortu-
nately, though, the region around the carbon shows no noticeable improvements with
negative density differences that are approximately the same size and shape.

HF and MP2 yield results, as shown in figures 3.6 and 3.7 which are much different
than those exhibited by the various DFT functionals. The plots comparing the
HF density with the QCISD density along the carbon-carbon bonds are not very
dependent on the molecule being studied. These plots exhibit small positive density
differences at the carbon centres which decrease moving towards the bond midpoint.
The density difference passes through zero at a point about one quarter of the way
towards the bond midpoint and continues to decrease to a minimum value at the
bond midpoint. The MP2 plots as expected improve upon the HF plots with very
small negative density difference values at the carbon centres. Within the bond the
density differences are very close to zero with only a couple of molecules showing small
positive density differences. The small observed density differences in both plots are
probably due to the fact that the QCISD and MP?2 electron densities are derived from
the HF density. Thus only small perturbations due to electron correlation should be
observed within the electron density.

The planar density difference plots exhibit the large differences between the HF
and QCISD densities. Large areas of positive density differences are observed around
each carbon and hydrogen atom along with large areas of negative density differences
within the bonding regions. The size and shapes of these regions vary depending on

the molecule. However, the areas of positive density differences around the carbon
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atoms tend to occupy the surrounding non-bonding regions while for the hydrogen
atoms the positive density differences are found to point away from the bonding
regions. While the negative density difference regions tend to occupy large areas in
and around the bonds. The MP2 plots are much improved with only very few areas
with any discernible density differences. The only feature found in all four molecules
are the regions of positive density differences around the hydrogen atoms. Other
noteworthy features are the small areas of negative density differences to either side
of the carbon atoms in ethyne and ethene and the very small region of positive density

differences close to the carbon atoms in ethane.

3.3 Expanding on the Density Difference Plot: Reoptimising the Becke

Three-Parameter Expression

The results of density difference plots indicated that through a simple process infor-
mation about an electronic density could be obtained. However, density difference
plots by their very nature are qualitative and cannot be automated and therefore
have a narrow focus. A simple method, though, can be extrapolated from these plots
to quantitatively assess the difference between two electron densities. This method
involves calculating the electron density of a molecule using two different methods
at its experimental geometry. Then the densities are evaluated at each point on a
large three-dimensional grid and the difference between the two values is calculated.
Finally, all of the differences over the grid are summed to give a quantitative measure
of the density difference. This method apart from being quantitative is also easily au-
tomated and thus can be used as a tool to analyse and improve exchange-correlation
energy functionals.

To study the effectiveness of this expression of the density difference a hybrid
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functional of the form,
E:c = AERp + B(ELSP? + AEP®®) + C(ELSPA 4 AEP®) (3.5)

was optimise to find the values for A, B, and C which gave the smallest quantitative
density differences. To find the optimum values of A, B, and C. densities were
calculated using this functional and were compared to the calculated QCISD density
using the method above. Using a least-squares fit the difference between the two
densities was minimised and the optimum values were found. Since, A, B and C are
optimised with respect to the QCISD density. molecular properties calculated with
the optimum values should be in good agreement with calculated QCISD properties.
The form of this hybrid functional is similar to Becke’s three-parameter expression?’
but has one important difference being that it does not recover the uniform electron
gas limit.

For this investigation electron densities and molecular properties were calculated
using the Gaussian 92/DFT?' and the Gaussian 94'? computational packages. All
calculations were carried out using Dunning’s aug-CC-PVDZ basis set.'® For the 0O,
system the spin unrestricted cases of QCISD!! and DFT were used. The regular
rectangular grid used for these calculations had 150 points in each of the x, v, and
z directions. The sampling was carried out in a cube with 4 A sides. A point-by-
point comparison between the QCISD and the DFT densities was then performed and
the root-mean-square average was calculated. The minimum for the average density
difference was then found using a golden section search.

Geometry optimisations and frequency calculations were then performed using

the optimised values of A, B, and C. The results from these calculations were then

compared to QCISD, B3P86'® and experimental values.
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3.4 Results and Discussion

Table 3.1 shows the optimised values for A, B, and C obtained for Hjy, N3, O,, F,,
CO and HF. As can be seen the values for A and B, which correspond to the exact
exchange energy and the density functional exchange energy, are similar for each
molecule. However, the value for C, which corresponds to the density functional
correlation energy, varies by a large amount, from 0.993 for O, to 0.322 for F5. This
range in the value of C makes it difficult to create a set of universal parameters for
this functional. However, since the correlation energy is approximately an order of

magnitude smaller than the exchange energy the fluctuation in C is less critical.

Table 3.1: Optimised parameters for H,, N5, O,, F,, CO and HF.

Hg N2 02 Fg CO HF Ave.
67 0.252 0.233 0.245 0.245 0.245 0.247
21 0.721 0.713 0.721 0.717 0.721 0.719
89 0.515 0.993 0.322 0.488 0.811 0.653

A 0
B 0.
C 0

The molecular properties, shown in table 3.2, calculated using the optimised pa-
rameters are encouraging with the optimised values generally being in better agree-
ment with QCISD than B3P86. It is important to note that comparisons are to the
calculated QCISD results and not to experimental values since the new functionals
parameters were optimised with respect to the QCISD density. Under this type of
comparison the B3P86 functional may not perform as well as the new functional since
it was optimised with respect to experimental data. The O,, N5, and F, bond lengths
were between 0.001 to 0.007 A shorter with the new functional when compared to the
QCISD values while B3P86 underestimates the bond lengths by 0.012 to 0.036 A, for
the same molecules. The shortening of the bond lengths yields the expected overesti-

mation in the associated calculated frequencies with the optimised parameters giving
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frequencies that are 36 to 102 cm™! too large while the B3P86 frequencies range from

being 85 to 141 cm™! too large. Both functionals give good agreement for the H,

Table 3.2: Comparison of results obtained using optimised values of A, B and C with
B3P86, QCISD and experimental results.

B3P86 Optimised QCISD Experiment®

Hy r. 0.760 0.762 0.761 0.741
v 4373 4350 4349 4401
N2 re 1.103 1.112 1.115 1.098
v 2459 2410 2374 2360
O, r. 1.202 1.214 1.221 1.207
v 1684 1645 1543 1580
Fo r, 1.389 1.424 1.425 1.417
v 1055 987 924 891
HF r. 0.922 0.930 0.922 0.917
v 4130 4053 4118 4139
7 1.800 1.799 1.801 1.82
CO r. 1.132 1.145 1.142 1.128
v 2201 2135 2134 2170
7 0.095 0.080 0.065 0.112

% From ref. 2

and CO bond lengths with only small underestimations, B3P86 by 0.001 and 0.010 A
respectively, and the optimised functionals by 0.001 and 0.003 A, respectively. How-
cver, the B3P86 frequencies overestimate those calculated using QCISD by 24 cm™!
for H, and 67 cm™! for CO while the functionals using the different optimised pa-
rameters yield frequencies only 1 cm™! larger than QCISD for both molecules. HF
is the only exception with B3P86 molecular properties being in better agreement
with QCISD than the optimised functional. However, the results from the optimised
functional, a lengthening of the bond by 0.008 A and a lowering of the frequency by
63 cm™!, are consistent with the magnitudes of the differences shown in the other

molecules and it is the only case where the optimised parameters overestimate the

bond length by a significant amount.
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A closer examination of the electron density differences for the HF case isfs shown
in figures 3.8 and 3.9. Like the previous plots the density differences are calculated
in the plane of the molecule and along the hydrogen-fluorine bond. Large positive
density differences are observed near the heavy atom, fluorine, with B3P86 exhibiting
a maximum of approximately 0.6 a.u. while the optimised parameters give a maxi-
mum of just over 0.8 a.u. indicating that B3P86 gives a better description of the core

electron density. However, the optimised functional exhibits a much more rapid de-

08

0.6F

04

Electron Density Difference (a.u.)

-0.2

Figure 3.8: QCISD-B3P86 density difference plots for HF.

crease in the density differences around the fluorine atom. This may indicate that the
valence electron density may be more heavily weighted than the core electron density

during the optimisation step. So in molecules for which the core electron density is
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Figure 3.9: QCISD-new hybrid functional density difference plots for HF.

important, such as HF which has a high ionic character, the optimised parameters
may not perform as well as other functionals. However, for molecules which don't
have as much dependence on the core and depend more on its valence density then
the optimised parameters may perform as well if not better than B3P86.

Table 3.3 gives the energetics for the functionals using the optimised parameters
and also for B3P86. This table also exhibits the convergence of the optimised pa-
rameters towards the QCISD values. Clearly, there is still room for improvement.
However, a new method for comparing densities is needed since the proposed method
is inadequate. Finally, the B3P86 energies generally are in better agreement with

experiment than the other two values.
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Table 3.3: Comparison of total energies calculated at the experimental geometries.

B3P86 Optimised QCISD Experiment*
H,  -1.21039  -1.18329  -1.16461 -1.1635%
N -109.78475 -109.06938 -109.28666 -109.5376
O, -150.62711 -149.76003 -149.96215 -150.3224
F, -199.84525 -198.47879 -199.14297 -199.5214
HF -100.63615 -100.18687 -100.26407 -100.4563%
CO -113.57002 -112.68346 -113.06883 -113.3199
*energies calculated from
SSEST, — (ERel 4 MassCorr. + LambCorr.) + DEZPt23-26

atomns

3.5 Conclusions

The use of density difference plots has helped to give a good qualitative picture of
the performance of current DFT functionals. The present study shows that although
current DF'T functionals give good approximations of the electron densities problems
do arise most significantly near heavy atomic centres and in the regions surrounding
them. Also, DFT functionals tend to give good approximations of the densities near
bond midpoints but tend to overestimate the density when moving from the midpoint
towards an atomic centre. However, the plots are not without limitations yielding
only quantitative results and having to be done visually.

Expanding on the density difference plots by calculating a quantitative value
vielded a new tool to compare densities. This tool allowed for the optimisation of a
new hybrid functional which yielded encouraging results. The optimum parameters
exhibited properties which tended to converged to the QCISD density as would be
expected. However, all of the calculations used the optimised parameters found for
each molecule and a recalculation of optimum parameters for every new molecule is
not feasible. Unfortunately the average values found from the molecules studied fared

poorly and their results are not shown. A study with more molecules may come up
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with more universal values but the large fluctuation in the value of C is disconcerting.
This functional may still yield better results but before continuing with the design
of new functionals new methods and tools for comparing densities are needed. The

following chapters outline a few such techniques and will hopefully vield better results.
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4. An Orbital-Based Density Difference Index

The accuracy of approximate functionals for use in density functional theory (DFT)
has usually been based on the comparison of total electronic energies and other molec-
ular properties with experiment or high-level theoretical methods which are known
to give accurate results.! Although some functionals have exhibited good agreement
with these high-level methods with respect to energies and molecular properties,? 3
very little is known about the accuracy of DFT electron densities.

Electron densities calculated using DFT are of great importance since all other
properties are derived from it. Comparisons of these densities to those calculated
using other methods can be very informative but can also be a complex process. In
the previous chapter two different methods were studied. The first, a visual com-
parison performed by examining plots of the difference between two densities, Ap. is
onerous and yields only qualitative results.*® The second, a comparison of two elec-
tron densities over a large three-dimensional grid, can be inconsistent and although
some sophisticated multicentre alternatives are available’ an analytical method may
improve results. Neither of these methods provides a framework for getting a quan-
titative or even semi-quantitative measure of the differences between two densities.

Quantitative results for the difference in electron densities provides better insight into

68
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the approximate DFT densities and also facilitates the use of density differences as a
tool for further development of functionals.

The Hohenberg-Kohn® theorem provides the framework for an analysis of the
different functionals via a study of the electron density. Through the use of the
Kohn-Sham orbitals? and the natural orbitals of wavefunction-based methods a semi-
quantitative measure of the differences between two densities will be given. Also, an

analysis on how this new measure performs on a variety of small molecules follows.

4.1 Orbital-Based Density Difference Index

The orbital-based density difference index (DDI) was developed to complement the
qualitative comparisons of DFT densities and high-level densities which have been
previously carried out.>® This was accomplished by reducing the plots of the density
differences into a single quantity. One other approach, the quantum mechanical
similarity measure recently proposed by Carbo et al..,!° has been proposed as a way
of obtaining a quantitative difference between two electron densities. However, this
approach is dependent on the similarity function used to compare the two densities.
The DDI. as developed below, is a method which gives a much more direct comparison
of the two densities.

The electron density, by definition, is given as the diagonal element of the first-

order density matrix,

M
p1(x1. %) = Z Aithi (%) ¥ (x1) (4.1)
i=1

where x, is the combined spatial and spin coordinates of electron 1 and M is the total
number of natural orbitals {1}. A is the occupation number of natural orbital (U
In the Kohn-Sham formalism of density functional theory (DFT), a non-interacting

reference system, which has the same electron density as the actual system, is intro-
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duced. The density of the reference system is written as,

N
p(x1) = p1(x1,%;) = ZniXi(xl)Xf(xl) (4.2)

i=1

where \V is the number of occupied Kohn-Sham orbitals { x} and n; is the occupation

number for orbital ¢;.
The natural orbitals, {1}, form a complete orthonormal basis set, and hence the

Kohn-Sham orbitals can be expressed as linear combinations of {v}; ie.
xi(x1) = Y eyui(x)) (4.3)
Substituting Eq.(4.3) into Eq.(4.2) gives,
N M M
px) =Y Z > micicii (x1) i (x1) (4.4)
= k=1

=1

This new expression of the Kohn-Sham density allows for a direct comparison of
the two densities. Taking the difference between the densities, i.e. Eq.(4.1) minus

Eq.(4.4), vields

M N
Ap(x;) = Z ('\ - anlcu ) vj(x1) Y] (%) — ZZ 2n,ccu (X)) ug(xy) -

Jj=1 k>j5 i=1
(4.5)

Defining a matrix P, which is analogous to a density matrix, as,

N
sz = anckicl:j (46)
k=1
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allows Eq.(4.5) to be simplified to,

M
Ap(x) = Z (Aibi; — Pyj) ti(x1 )9} (x1) (4.7)

t,7=1

From Eq. (4.7), the root-mean-square density difference index (DDI) can be de-

fined as,

Dprars = \//[L\P(Xl)]zdxl, (4.8)

Eq. (4.8) gives a semi-quantitative measure of the difference between the two densities.

From Eq.(4.8), it is obvious that D=0 only if the two density distributions are
identical. Moreover, if the reference density, given by Eq.(4.1), gives a very accurate
description of the molecular properties then it can be treated as the exact density.
This makes D a quantitative measure of the differences between the exact and the
DFT densities. Thus, one can judge the accuracy of an electron density on the basis
of its D value. The QCISD (quadratic configuration interaction method including
single and double substitutions)'! density yields molecular properties which are close
to experimental values. Analysis using the QCISD density to approximate the exact
electron density will be used to test the value of the DDI. MP2 (second-order Moller-
Plesset perturbation theory)!'2-!5 values are also included for comparison.

Although the density ranges over several orders of magnitude throughout the
molecule the value of D is calculated directly without any weighting. As with the
case of the three-dimensional grid an accurate and unbiased weighting scheme would
be very difficult to find. This is due to the fact that at low densities (large distances)
the total energy is dominated by the kinetic energy term and at high densities (small
distances) the total energy is dominated by the potential energy term. Thus, for the

DDI the choice of equal weighting of the orbitals is reasonable.
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The DDI was developed to compare DFT densities to post-Hartree-Fock densities:
the DDI can also be used to compare two different post-Hartree-Fock densities. The
natural orbital expression for the density, equation (4.1), is analogous to the Kohn-
Sham density, equation (4.2), and thus a second natural orbital density can be used
for comparison. Other uses for the DDI, such as being part of the development of

new functionals, increases the importance of this new index.

4.2 Computational Details

The wavefunctions and the Kohn-Sham orbitals for a series of four homonuclear di-
atomics were calculated using the Gaussian 94 program.!® The density differences
were calculated using these results.

Three different basis sets, 6-31+G(d)(or 6-31++G(d,p)'7 in the case of H,), aug-
CC-PVDZ and aug-CC-PVTZ,'® were used to test the basis set dependence of the
DDI. Two different types of functionals, pure and hybrid, were used in this study. The
four pure functionals are SVWN, BLYP, BP86 and BPW91. SVWN uses the local
spin density exchange energy and the Vosko, Wilk and Nusair parameterisation of the
local spin density correlation energy.!® The BLYP, BP86 and BPW91 functionals,
however, all use the Becke 88 gradient-corrected exchange functional?® and combine
it with the Lee, Yang, and Parr correlation functional,?! the Perdew 86 correlation
functional®® and the Perdew and Wang 91 correlation functional,?® respectively.

The three hybrid functionals, B3LYP, B3P86 and B3PW91, use Becke’s three
parameter expression,?! which allows for the inclusion of part of the exact exchange
energy, and mix it with either the Lee, Yang and Parr correlation functional, B3LYP,
the Perdew 86 correlation functional, B3P86, or the Perdew and Wang 91 correlation

functional, B3PW91.
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To allow for direct comparison of densities, experimental values?>-?" for the equi-
librium bond lengths (r.). and bond angles 0.714 A for H,, 1.098 A for N,, 1.207 A
for Oz, 1.412 A for F, 1.2324 A for HB, 0.917 A for HF, 1.065 A for the HC and
1.153 A for the CN bond lengths in HCN, 0.959 A for the HO bond length and 103.9°
for the HOH bond angle in H>O and 1.208 A for the CO and 1.116 A for the HC
bond lengths and 116.5° for the HCH bond angle in H,CO were used.

4.3 Results and Discussion

Table 4.1 lists the calculated DDIs between the QCISD and DFT densities for four
molecules with seven methods and three basis sets. These values show that the
fluctuations in the indices are much larger from one functional to another than they
are from one basis set to another. Figure 4.1 illustrates the functional and basis set
dependence of the QCISD-DFT DDI for H,, while figure 4.2 illustrates the functional
dependence of the QCISD-DFT DDIs for Ny, O,, and F, using the aug-CC-PVDZ
basis set. The values in the graphs and in the tables demonstrate that the DDI does
give at least a semi-quantitative. if not quantitative. measure of the accuracy of the
approximate DFT densities.

The profile in figure 4.1 reveals three distinct functional groupings for the H,
molecule. The first group consists of the functionals with the largest DDIs and con-
tains BLYP and SVWN. It is not surprising that these functionals give the largest
DDIs since SVWN and BLYP, compared to other functionals, give mediocre results for
a variety of properties.®28-30 The next set of functionals, BP86, BPW91, and B3LYP,
vield substantially smaller DDIs, by 0.02 to 0.03. The inclusion of two ”pure” func-
tionals, BP86 and BPW91, with hybrid functional, B3LYP, within this group is note-
worthy. The smallest DDIs are obtained with B3P86 and B3PW91. These groupings
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Table 4.1: QCISD-DFT values for the density difference index.

Basis Set

Molecule Functional 6-31+G(d,p) aug-CC-PVDZ aug-CC-PVTZ

H, SVWN 0.0899 0.0877 0.0981
BLYP 0.0838 0.0895 0.0956

BP86 0.0620 0.0664 0.0711

BPW91 0.0589 0.0668 0.0681

B3LYP 0.0640 0.0679 0.0679

B3P86 0.0457 0.0496 0.0529

B3PW91 0.0480 0.0533 0.0535

(MP2)* 0.0203 0.0219 0.0206

N, SVWN 0.2126 0.2194 0.2215
BLYP 0.2197 0.2274 0.2275

BP86 0.1963 0.2028 0.2011

BPW91 0.1999 0.2071 0.2022

B3LYP 0.1826 0.1877 0.1872

B3P86 0.1719 0.1765 0.1732

B3PW91 0.1735 0.1785 0.1732

(MP2)* 0.0613 0.0644 0.0699

O, SVWN 0.1747 0.1757 0.1822
BLYP 0.1912 0.1908 0.1930

BP86 0.1632 0.1622 0.1638

BPW91 0.1658 0.1654 0.1637

B3LYP 0.1485 0.1478 0.1492

B3P86 0.1346 0.1344 0.1320

B3PW91 0.1363 0.1362 0.1332

(MP2)* 0.0560 0.0568 0.0602

Fy SVWN 0.2360 0.2367 0.2446
BLYP 0.2517 0.2507 0.2530

BP86 0.2178 0.2168 0.2207

BPW91 0.2178 0.2172 0.2176

B3LYP 0.1999 0.1967 0.1963

B3P86 0.1813 0.1784 0.1761

B3PWI1 0.1833 0.1806 0.1775

(MP2)* 0.0651 0.0675 0.0742

*QCISD-MP2 DDIs
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Figure 4.1: Functional and basis set dependence of QCISD-DFT DDIs for H,:
® 6-31++G**, B aug-CC-PVDZ, and A aug-CC-PVTZ.

were also found for the case of H, in previous work which compared the H; approx-
imate DFT density and the QCISD density visually.> However, the second grouping
is unexpected since molecular properties calculated with B3LYP usually differ sig-
nificantly from the corresponding values calculated with BP86 and BPW91. It is
generally accepted that the hybrid functionals give molecular properties which are
similar in value to other high-level treatments.>3:3 Thus the fact that the B3P86
and B3PW91 DDIs indicate that they give densities which are the closest to the other
high-level treatments is not unexpected. Hs, though, is a special case and before any
general conclusions can be drawn other molecules must be considered.

The results shown in figure 4.2 for N5, O, and F, indicate that BLYP and SVWN

give the largest DDIs, as observed for Hy. There is then a steady decrease in the DDIs
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with BP86 and BPW91 giving the next lowest DDIs and then B3LYP giving an even
further lowering in the index. As in the case of H,, the smallest DDIs are obtained
with B3P86 and B3PW91. This grouping of the functionals is more in accordance
with what has been found in the past, with the hybrid methods giving values which

indicate densities that are the closest to the high-level densities.
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Figure 4.2: Functional dependence of the QCISD-DFT DDIs obtained with the aug-
CC-PVDZ basis set: @ N;, A O,, and B F,.

In table 4.2 and in figures 4.3 and 4.4 the MP2 density is used to approximate
the exact density. The same conclusions about the approximate DFT densities can
be made from the MP2-DFT DDIs as were drawn from the QCISD-DFT DDIs above.
However, even though the profiles in the two series of graphs are similar the QCISD-
DFT indices are 0.01-0.02 larger than the MP2-DFT values. Also, the MP2 DDI

values span a smaller range than the QCISD DDI values. This indicates that the DFT
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densities approximate the MP2 density better than they approximate the QCISD
density. Of note, though, are the QCISD-MP2 values in table 4.1 which range from
0.02 to 0.07. This indicates that even though the DFT densities approximate the
MP2 density better than the QCISD density there is a qualitative difference between

the QCISD and MP?2 densities and the DFT densities.
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Figure 4.3: Functional and basis set dependence of MP2-DFT DDIs for H,:
e 6-31++G**, B aug-CC-PVDZ, and A aug-CC-PVTZ.

Many studies based on using hybrid functionals 2332 the B3LYP functional in
particular, have yielded molecular properties which are in close agreement to those
calculated with MP2. The MP2-DFT DDISs for hybrid functionals give values which
are much smaller than the non-hybrid methods. This indicate that these functionals

give densities which have strongest similarities to the MP2 density as indicated by

the previous studies.
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Table 4.2: MP2-DFT values for the density difference index.

Basis Set
Molecule Functional 6-31++G(d,p) aug-CC-PVDZ aug-CC-PVTZ
H, SVWN 0.0781 0.0764 0.0870
BLYP 0.0760 0.0820 0.0868
BP86 0.0513 0.0572 0.0603
BPW91 0.0496 0.0588 0.0579
B3LYP 0.0533 0.0575 0.0635
B3P86 0.0311 0.0371 0.0388
B3PW91 0.0348 0.0417 0.0422
N, SVWN 0.1844 0.1889 0.1924
BLYP 0.1920 0.1965 0.1980
BP86 0.1720 0.1760 0.1762
BPW91 0.1760 0.1814 0.1780
B3LYP 0.1696 0.1719 0.1746
B3P8&6 0.1645 0.1676 0.1668
B3PW91 0.1652 0.1689 0.1671
O, SVWN 0.1551 0.1553 0.1576
BLYP 0.1693 0.1674 0.1649
BP86 0.1393 0.1374 0.1353
BPW91 0.1426 0.1415 0.1363
B3LYP 0.1350 0.1334 0.1315
B3P86 0.1217 0.1217 0.1176
B3PW91 0.1238 0.1239 0.1191
F, SVWN 0.1943 0.1943 0.1951
BLYP 0.2077 0.2055 0.2000
BP86 0.1761 0.1741 0.1712
BPW91 0.1783 0.1766 0.1711
B3LYP 0.1697 0.1671 0.1609
B3P86 0.1592 0.1574 0.1513
B3PW91 0.1609 0.1590 0.1526
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Figure 4.4: Functional dependence of the MP2-DFT DDIs obtained with the aug-CC-
PVDZ basis set: e N,, B O,, and A F,.

Although the three basis sets used differ substantially in the number of basis
functions, the basis set dependence is much more subtle than the functional depen-
dence. For Hy, the DDIs between the MP2 or QCISD densities and the DFT densities
increase as the basis set size is increased. There is one exception to this generalisa-
tion, the SVWN has a minimal value with the aug-CC-PVDZ basis set. Examining
the two tables shows that for the nitrogen molecule the same trend is repeated for
the SVWN, BLYP and B3LYP functionals when comparing MP2 densities to DFT
densities and for the SVWN, and BLYP functionals when comparing QCISD densities
to DFT densities. For all other calculated N, DDIs the values start off at a minimum
with the 6-314+G(d) basis set and then increase to a maximum with aug-CC-PVDZ

and then decrease again slightly with aug-CC-PVTZ.
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With the exception of the SVWN functional, the basis set dependence of the
DDIs between MP2 and DFT densities for O, and F, is the same for all functionals.
These DDIs start out at a maximal value with the 6-31+G(d) basis set and decrease
with increasing basis set size. Thus the aug-CC-PVTZ basis set gives the minimal
DDI for these functionals while the aug-CC-PVDZ value is in between the other two.
For SVWN the exact opposite trend is shown with the minimal value given with the
6-31+G(d) basis set and the maximal value given with the aug-CC-PVTZ basis set.

Examining the basis set dependence of the DDIs for O, and F, between QCISD
densities and DFT densities gives a more complicated picture. The SVWN functional.
as in all other cases, has a minimal value using 6-31+G(d) and a maximal value using
aug-CC-PVTZ. The BLYP and B3LYP functionals give minimal values with the aug-
CC-PVDZ basis set and maximal values with the aug-CC-PVTZ basis set. All other
functionals give maximal values with the 6-31+G(d) basis set and minimal values
with the aug-CC-PVTZ basis set.

After this in-depth examination of Hy, N5, O, and F, the DDI was tested on a
variety of other molecules, as seen in tables 4.3 and 4.4. In view of the fairly weak
basis set dependence noted above the DDIs for the additional molecules were only
calculated using the aug-CC-PVDZ basis set. As in the case of the diatomics the
DDIs were calculated using the same two reference densities, QCISD and MP2.

The results from these molecules do not differ significantly from those found with
the homonuclear diatomics. The SVWN and BLYP approximate functionals give
the largest DDIs, with SVWN being the largest for HB and H,CO, BLYP being
the largest for HCN, HF and H,0, and with both values being approximately the
same for CO. The BP86 and BPW91 approximate functionals again show a marked

improvement, of about 0.02 for most cases, over the BLYP and SVWN. Finally, the
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Table 4.3: Values for the density difference index for a variety of molecules using the
aug-CC-PVDZ basis set.

Reference
Molecule Density SVWN BLYP BPS6¢ BPW91 B3P86 B3PW91 B3LYP
HB QCISD 0.2367 0.2282 0.2124 0.2097 0.1912 0.1917 0.2024
MP2 0.1764 0.1643 0.1472 0.1479 0.1154 0.1157 0.1244
HF QCISD 0.1495 0.1767 0.1344 0.1336 0.0904 0.0946 0.1202
MP2 0.1238 0.1508 0.1128 0.1141 0.0852 0.0878 0.1022
CO QCISD 0.2343 0.2347 0.2146 0.2172 0.1732 0.1754 0.1834
MP2 0.1818 0.1829 0.1632 0.1692 0.1508 0.1522 0.1539
HCN QCISD 0.2375 0.2423 0.2199 0.2231 0.1872 0.1884 0.1989
MP2 0.2016 0.2059 0.1860 0.1907 0.1687 0.1695 0.1749
H->O QCISD 0.1610 0.1829 0.1423 0.1397 0.1043 0.1066 0.1299
MP2 0.1287 0.1544 0.1199 0.1218 0.1030 0.1044 0.1128

H-CO QCISD 0.2722 0.2677 0.2439 0.2449 0.1907 0.1926  0.2040
MP2 0.2235 0.2170 0.1948 0.1987 0.1604 0.1616 0.1663

hybrid methods decrease the DDI as expected, and give the lowest DDIs for these
molecules. Also, comparison of the relative magnitudes of the DDIs using the QCISD
density as a reference and the DDIs using the MP2 density as a reference shows that
the MP2-DFT DDIs are smaller by about 0.03 in most cases.

Table 4.4 compares the DDI values of C,H,, CoHj, C;Hs, and CgHg with the
density difference plots of the previous chapter. Again it is apparent that the DFT
densities give much better agreement with MP2 values than with QCISD values.
Examining specific functionals shows that SVWN has an increase in its DDIs from
ethyne to ethene to ethane while BLYP and BP86 only exhibit an increase between
ethyne and ethene and then show a slight decrease in the DDIs from ethene to ethane.

The hybrid functionals, B3LYP and B3P86, yield the same trends as BLYP and
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Table 4.4: Values for the density difference index for C:H,, n = 2,4,6 using the
aug-CC-PVDZ basis set and CgHg using the CC-PVDZ basis set.

Reference
Molecule Density SVWN BLYP BPS86 B3P8 B3LYP
C,H, QCISD 0.2467 0.2495 0.2213 0.1905 0.2061
MP2 0.2065 0.2092 0.1829 0.1611 0.1710
CoH, QCISD 0.2802 0.2581 0.2348 0.1972 0.2089
MP2 0.2357 0.2167 0.1941 0.1622 0.1683
C,Hs QCISD 0.3017 0.2517 0.2278 0.18356 0.1979
MP2 0.2547 0.2171 0.1888 0.1531 0.1650

Ce¢Hs QCISD 0.4272 0.3947 0.3710 0.3104 0.3208
MP2 0.3728 0.3531 0.3213 0.2739 0.2889

BP86 but yield a substantially larger decrease in the DDI when moving from ethene
to ethane. Comparing with the density difference plots of the previous chapter the
DDIs for SVWN echo what is observed in the plots. While for the other functionals
the changes between ethyne and ethene are difficult to discern but there is a definite
improvement in the density difference plots between ethyne or cthene and ethane
which is also exhibited in the DDIs. Benzene has three times the number of carbon
and hydrogen atoms as does ethyne and could then be expected to vield a DDI
approximately three times that of ethyne but benzene only gives values approximately

1.5 to 2 times as large.

4.4 Conclusions

The DDI introduces a new tool for comparing the differences between two electron

densities by reducing it to a single quantitative value. Calculations using the DDI
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have supplied results which are consistent with the density difference plots given in
chapter 3. Specifically, the DDI values show that the SVWN and BLYP functionals
yield electron densities the least similar to the QCISD electron density while the
hybrid functionals, B3LYP, B3P86, and B3PW91, yield electron densities which are
the most similar to the QCISD electron density.

Comparison of DDIs, though, can be problematic and a normalisation of the
densities may simplify future work. This normalisation is equivalent to dividing
the DDI by the number of electrons in the molecule yielding the DDI/electron and
would not reduce the efficiency or accuracy of the DDI calculations. Using these
DDI/electron values to compare benzene and ethyne it is much easier to see that the
B3P86 functional yields better densities for benzene than ethyne since the QCISD-
B3P86 DDI/electron of benzene is 0.0074 while the QCISD-B3P86 DDI/electron of
ethyne is 0.0136.

Although this tool was designed as a quantitative tool for use in functional devel-
opment it has also shown that there are qualitative differences between the QCISD or
MP?2 densities and the approximate DFT densities. Unfortunately, the DDI does not
actually express what this difference is and thus more information is needed about

electron densities calculated with approximate DFT functionals.
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5. A Spin-Polarisation Index

For closed-shell systems accurate total electron densities calculated using approximate
density functional theory (DFT) methods should lead to accurate molecular proper-
ties since the o and 3 electron densities are equal.! Open-shell systems, though, do
not have equal numbers of & and 3 electrons and the differences in their distribution,
referred to as the spin polarisation, is an important factor for some molecular prop-
erties such as the hyperfine coupling constant.?2 Thus, DFT not only has to calculate
an accurate total electron density but also give an accurate description of the spin
polarisation in order to yield accurate molecular properties for open-shell molecules.

Comparisons of the total electron density calculated using approximate DFT
methods to those calculated using high-level ab initio methods given in previous
chapters have revealed that the DFT densities are reasonably accurate but there
are still some qualitative differences.>7 These studies, though, do not supply any
information on the spin polarisation for open-shell molecules. Also, Pople et al.® have
recently developed a theory to measure the quality of an energy functional. Their
preliminary results for the local spin density (LSD) energy functional, suggests that
the a, 3 spin density partition of the first-row atoms and a selected set of closed-shell

molecules overestimates both the aa + 38 and the af correlation energies. These
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two factors underline the necessity for quantitative studies of the differences between
the a and 3 electron densities.

Unfortunately, theoretical rationalisation of the spin polarisation has been quite
difficult and thus theoretical values of the spin related properties are highly dependent
on the choice of the method and the basis set. This chapter will examine a new method
which gives a quantitative measure of the difference between the a and 3 densities
of a molecule and will report the results of some calculations for a few representative
molecules, with a special emphasis on O,. It is anticipated that the spin-density
polarisation index (SPI) may also prove to be useful in the creation of functionals

that take into account the explicit difference between o and 3 densities.

5.1 Spin-Density Polarisation Index

The total electron density p can be partitioned as a sum of the a and 3 spin densities.
p® and p°. respectively. Since open-shell systems have a different number of a- and
B-spin electrons, there is a polarisation of the spin-densities. One way to gauge the

spin-polarisation at a point r can be given as,

p7(r) = p°(r) — PP (r) (5.1)

However, it is important to also have a simple reliable quantitative measure of the
total spin-density polarisation that can serve to measure the inadequacies of the
various methods and/or basis sets.

The Euclidean distance between the a and [ densities, dop, can be used as a
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polarisation index. Thus, the spin-density polarisation index (SPI) can be defined as,

dag = \/ dr[pa(r) — pA(r)]2 (5.2)

This equation is modelled after the quantum molecular similarity measure (QMSM)
introduced by Carbo et al.*9 However, for the SPI different densities for the o and
3 spins of a single molecule are compared while for the QMSM method the densities
from two different methods and/or molecules are compared.

Equation 5.2 can be rewritten as

dag = \/Zaa + Zgﬁ - 2205 (5.3)

which resembles a distance-like dissimilarity index introduced by previous authors.!

Here,

Zow = / drp?(r)p°(r) (5.4)

and

(1]
(S]]
gl

Zog = [ deo (0P ) (

An analogous integral to equation 5.4 holds for 3 spin. For a restricted closed-shell
calculation d,5 = 0 since p® = p?, by definition.

The evaluation of the integrals in equations 5.4 and 5.5, has been discussed
by Carbo et al.®® Recently, however, another approach!! has shown that for any
single-determinant wave function ¥ built from N®a-spin and N?3-spin orbitals, the

electron-electron coalescence density 1(0) of such a wavefunction is,

1(0) = [ drp® ()P (r) (5.6)
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Here the a and 3 density functions are given by p*(r) = Zf: [%&(r)[? and AP(r) =
Z:\; lw? (r)|2. respectively. Therefore, one can avoid calculating the integral of the
right-hand-side of equation 5.6 simply by calculating the value of the function I(r)atr
= 0, which for single determinant Hartree-Fock-like wavefunctions has been previously
cast into a convenient closed analytical form.!? For the higher level methods beyond
Hartree-Fock one can express the wavefunction in terms of its natural orbitals. The
wavefunction, so expressed, is a working tool which allows us to define the o and Jé]
densities unambiguously but is not equivalent to the post Hartree-Fock wavefunction
since it cannot be reduced to a single determinant using the natural orbitals. Hence,
the I(0) in these cases is the value of the required integral but cannot be associated
with the post Hartree-Fock electron-electron coalescence density. Indeed it has been
shown that it represents a very tight upper bound of the true coalescence density.!!

Taking advantage of this fact the previously derived formulae for I(r) have been used

to efficiently calculate I(0) and consequently the required values for Z,q,. Zsz and Z,4.

5.2 Computational Details

The molecules were optimised using Gaussian 94'3 at each level of theory, allowing
for nuclear as well as electronic relaxation. The SPIs were calculated as described
above from the computed electron densities.

The electron densities were obtained using two different types of methods, wave-
function based methods and density functional methods. The wavefunction based
methods used were Hartree-Fock, second-order [MP2]'*"!7 and fourth-order, includ-
ing single, double and quadruple excitations [MP4(SDQ)| Mgller-Plesset perturbation
theory, and quadratic configuration interaction including single and double excitations

[QCISD].'® The density functional methods included two approximate “pure” func-
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tionals and two hybrid functionals. The pure functionals were SVWN, which uses
the local spin density exchange energy!9 with the Vosko, Wilk, and Nusair parame-
terisation of the local spin density correlation energy,?® and BPW91, which combines
the Becke 88 gradient-corrected exchange energy?! with the Perdew and Wang 91
gradient-corrected correlation energy.?> The hybrid methods both use Becke’s three-
parameter expression?® for the inclusion of Hartree-Fock exchange energy and the
Becke 88 gradient correction to the exchange energy. The B3LYP functional uses the
Lee. Yang and Parr gradient correction to the correlation energy?* while the B3PW91
functional uses the Perdew and Wang 91 gradient correction to the correlation energy.

Since all of the molecules in this study have open shells the unrestricted formal-
ism was used with most of the above methods. With the Hartree-Fock method, how-
ever, the restricted-open-shell (ROHF) and the unrestricted (UHF) formalisms were
used. The aug-CC-PVDZ, aug-CC-PVTZ,® aug-CC-PCV DZ,%:2" IGLO-III,2® and
6-311+G(d)?:3° basis sets were used for the O, calculations. For all other molecules,
the aug-CC-PVDZ basis set was used, with the exception of NO, for which the CC-

PVDZ basis set was used.

5.3 Results and Discussion

The O; molecule is expected to give a large SPI due to its triplet ground state
and was used to evaluate the effect of basis sets and methods on the index. The
calculated SPIs, shown in table 5.1, give very interesting results. It is apparent
that the only significant difference in the SPI values due to basis sets is seen between
Pople’s 6-311+G(d) basis set and the other basis sets used. Despite the fact that there
is a difference in the values the trends are the same from one method to another.

The IGLO-III basis set gives values which are consistent with those given by the
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aug-CC-PVDZ basis set. The similarity between the results obtained with the aug-
CC-PCVDZ and the aug-CC-PVDZ basis sets indicates that the effects ¢f the core
electrons on the SPI are negligible. and hence the spin polarisation effects ought to
be due primarily to the valence electrons.

In contrast with the relatively small basis set effects, the theoretical method has
a large effect on the SPI values. As with the DDI all SPIs will be compared to
the QCISD SPI. which using the aug-CC-PVTZ basis set is 0.3872 and is assumed
to be closest to the “correct” value. The Hartree-Fock values are surprising with
the unrestricted formalism overestimating the SPI value, giving a value of 0.5319 for
the aug-CC-PVTZ basis set, while the SPI for the restricted open-shell formalism
almost vanishes. The trend of very small SPIs is continued with the “pure” DFT
functionals, SVWN and BPW91, with results that are approximately 0.23 smaller
than the QCISD SPI. However, the addition of Hartree-Fock exchange, through the
use of the Becke hybrid exchange functional, does increase the SPI values as expected.
These values are less than but comparable in magnitude to the MP2 SPIs. MP4(SDQ)
gives almost the same result as obtained by QCISD with an SPI of 0.3735 for the
aug-CC-PVTZ basis set. In summary, the HF method overestimates the spin-density
polarisation, and inclusion of electron correlation effects through the Mpgller-Plesset
perturbation theory reduces it appreciably below the exact value. Increasing the order
of the perturbation expansion converges to the exact value (compare the SPIs for
QCISD and MP4(SDQ) in Table 5.1). The approximate DFT methods investigated
in this study clearly underestimate the spin-density polarisation index with the local
spin density(LSD) energy functional, SVWN, yielding only half of the exact SPI
value. Inclusion of non-local gradient corrections to both the exchange and correlation

functionals, through the BPW91 approximate functional, slightly increases the SPI
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values. Finally, the hybrid functionals, B3PW91 and B3LYP, increase further the
spin-density polarisation, with the latter giving values comparable to the MP2 ones,
but still far from the exact QCISD results.

In order to shed light on the origins of the spin-density polarisations mentioned
above, plots of the radial distribution of the spherically-averaged spin density were
made to visualise differences between methods and/or basis sets. Notice that the SPI
is a quantity averaged over the whole molecule, while the spherically-averaged spin-
density is a quantity which varies according to the radial distance from the chosen
origin. For all figures, the origin is chosen to be the centre of symmetry. Figures 5.1
and 5.2 show the difference between the o and 3 spherically-averaged density near
the origin. i.e. near the bond midpoint. Figure 5.1 shows that all wavefunction-based
methods, but one, give 3 electron densities which are greater than the a electron
densities. This implies that near the centre of the bond there is a build up of 3
electrons. For the one method for which this doesn’t happen, ROHF, the 5 and a
electron densities are exactly equal at the origin.

In Figure 5.2 the density functional method is examined near the origin in the
binding region with the QCISD density difference given as a reference. With all of
the functionals used in the present study the a electron density is larger than the
3 electron density. This excess a density is decreased by the addition of the HF
exchange. However, even the hybrid methods give more & than 3 density which is
the opposite of what the wavefunction based methods predict. This supports the
recent conclusions of Pople et al.® who have found that the relative contributions of
aa + 306 and af correlations to chemical bond energies are poorly given by the use
of the LSD functional.

The O, atomisation energies in Table 5.2 show that the “pure” DFT methods
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Figure 5.1: Plot of the radial distribution of the spherically averaged spin-density
difference for wave function based methods using the aug-CC-PVDZ basis

set for O,.
overestimate the experimental atomisation energy by as much as 57 kcal/mol. The
hybrid DFT methods, while giving much better atomisation energies, still overes-
timate the experimental value by about 2 kcal/mol. The MP2 atomisation energy
is the closest to experiment with only a 0.1 kcal/mol difference between the calcu-
lated and experimental values due to fortuitous cancellation of errors. The other two
high-level wavefunction methods both underestimate the experimental value by about
18 kcal/mol. Finally the UHF and ROHF methods as expected give approximately

1/3 of the experimental atomisation energy. This trend, the overestimation by the
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Figure 5.2: Plot of the radial distribution of the spherically averaged spin-density
difference for DFT based methods using the aug-CC-PVDZ basis set for
O,.
DFT methods and the underestimation by the wavefunction methods, is interesting
in view of the o and 3 densities at the bond midpoint. The DFT methods, as men-
tioned above, have a larger a density at the midpoint. However, for pure functionals
the amount of excess « density is greater than that of the hybrid functionals, while
for the wavefunction-based methods there is actually a larger 3 electron density at
the midpoint. Thus the build up of 3 electrons near the midpoint of the bond may
be associated with a lowering of the calculated atomisation energy of O,.

Comparison of the radial distribution of the spherically-averaged o density to
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Table 5.2: Atomisation energies (in a.u.) for O, using the aug-CC-PVDZ basis set

Atomisation

Method O, Energy ZPE Correction Energy
HF -149.64747 0.004498 0.04856
ROHF -149.62624 0.004588 0.03869
SVWN -149.60730 0.003718 0.2788
BPW91 -150.35069 0.003532 0.2149
B3PW91 -150.29315 0.003828 0.1932
B3LYP -150.35255 0.003736 0.1914
MP2 -150.01120 0.003229 0.1883
MP4(SDQ) -150.01569 0.003617 0.1601
QCISD -150.01614 0.003682 0.1587
Experiment 0.1880

the radial distribution of the spherically averaged 4 density. as shown in F igure 5.3,
indicates that the 3 density goes through a minimum near the atomic centres. A
corresponding minimum, though, is not found in the a electron density distribution
with all methods and basis sets yielding a electron distributions similar in form to that
given for QCISD in Figure 5.3. Figures 5.4 and 5.5 show that this minimum is not an
artifact of just the QCISD density but is apparent for all methods. Also. comparison
of the HF densities calculated using different basis sets, as plotted in Figure 5.6, shows
that this minimum is not due to the choice of basis set. The minima of the higher
level wavefunction methods (MP2, MP4(SDQ), and QCISD), as shown in Figure 5.4,
are shallow in comparison to the UHF and the ROHF wells, while the DFT-based
methods exhibit wells which are similar in form to the reference QCISD minimum,
Figure 5.5. The a distributions for the rest of the methods and basis sets, although
not shown are similar in form to the one shown for QCISD in Figure 5.3 and do not
exhibit minima. This implies a distinct. difference in the qualitative behaviour of the

a- and (-spin densities in the binding region with the a-spin density monotonically
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Figure 5.3: Graph of the spherically averaged QCISD densities using the aug-CC-
PVDZ basis set for O,.

decreasing as a function of r from the nucleus to the bond midpoint, while the 3-spin
density exhibits a build-up of density at the bond midpoint along with a minimum
toward the nucleus.

The SPIs for a variety of molecules, table 5.3, provide further insight into the spin-
polarisation given by each of the methods. The results for many of these molecules,
CH, NH, OH, CN and CHj are not as method dependent as was observed for the O,
molecule. Thus, accurate values for the properties which depend on the molecular

spin-polarisation should be easier to obtain for these molecules. However, for FO,
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Figure 5.4: Plot of the spherically averaged 3 densities for the wave function based
methods using the aug-CC-PVDZ basis set for O,.
NO and NOg, the SPIs again show large fluctuations depending on the method used,
and parallel the results found for O,. This implies that spin partitioning can be quite
difficult for certain molecules, especially ones containing oxygen. The CH molecule
was also calculated using the aug-CC-PCVDZ basis set to account for polarisation
of the core electrons. The results are similar to those obtained with the CC-PVDZ
basis set and indicates that the core electrons do not have a large impact on the spin
polarisation. Also the change in basis set size does not significantly change the SPI

values.
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Figure 5.5: Plot of the spherically averaged 3 densities for the DFT based methods
using the aug-CC-PVDZ basis set for O,.

NO: has been reported®' to have a very high spin contamination for the 2A,
electronic state when calculated with the UHF method and a basis set similar to
CC-PVDZ. Thus to compare the SPIs for a molecule which gives a very high spin
contamination the NO, geometries and SPIs were calculated for the 2A, electronic
state using the CC-PVDZ basis set. The UHF wavefunction gave a value of 1.1262 for
<S? >. which is much larger than the pure spin state value of 0.75. This confirmed
that the wavefunction is highly spin contaminated and this leads to a very large SPI.

The ROHF method which by definition does not have any spin contamination yields
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Figure 5.6: Plot of the spherically averaged 3 density calculated with the Hartree-Fock
method using a variety of basis sets for O,.
a SPI of approximately zero. The approximate DFT functionals also give very low
SPIs, with the hybrid values again giving larger values than the other two. The corre-
sponding values for <S? >, 0.7595 for SVWN, 0.7747 for BPW91, 0.8084 for B3LYP
and 0.8101 for B3PW91, are quite small compared to the UHF reference and do not
exhibit much spin contamination. The higher-level methods give much lower SPIs,
with the QCISD value being 0.3351. Previously the spin contamination in CCSD
calculations for this molecule was quite small even if the UHF reference wavefunction

was highly spin contaminated.®! Therefore, since the QCISD wavefunction is very
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similar to the CCSD wavefunction it is assumed that it also has a small spin contam-
ination. The QCISD SPI value for this molecule reflects this low spin contamination
with a value of 0.3351. All other high-level methods gave similar results. Thus, it
can be seen that methods which have only a small degree of spin contamination yield
smaller SPIs.

The size of these SPIs raises some interesting points. NO has a very low SPI which
indicates that within molecular frameworks the Z,, and Z 33 values should be quite
similar which could indicate a delocalisation of the extra a electron. This also seems
to be true for the CN species. The CH, CH; and FO values indicate that the extra o
electron is more localised but there still may be some degree of delocalisation. Finally,
the large value given by OH indicates that the extra o electron is mainly localised on
the oxygen atom. The NH species cannot be directly compared to the others, it is a
triplet state while the others are doublets. Comparing it to the previous O, values,
however. indicates that, much like OH, NH localises the extra « electron density on
the nitrogen atom.

Table 5.4, expands the SPI into the three corresponding integrals, Z,qo, Zgs and
Zqa3, for O,, FO and NO. Z,, is significantly larger than the Zg4 for the UHF method,
while for the ROHF method the values are closer. For both methods the Z .z results
are approximately the same. For the density functional methods all of the integrals
are smaller than the corresponding values found for QCISD. The difference between
the Z,, and the Zgs quantities is also much smaller than that found with QCISD.
This shows that the density functional methods spread out the densities much more
than the other methods. Finally, the MP methods seem to slightly overestimate the

three integrals but are still comparable to the QCISD values.
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5.4 Conclusions

An overlap-like similarity measure has been created for the purpose of quantifying
the spin polarisation within a molecule. A thorough investigation of the spin density
polarisation index (SPI) for O; was completed to investigate method and basis set
dependencies. The choice of the basis set used only had a small effect upon the
caiculated SPIs. However, there was some extreme method dependencies observed
for O> with DFT results being substantially lower than QCISD results and ROHF
giving a zero SPIL.

The investigation of O, also included plots of the spherically averaged a and
electronic densities which have two prominent features. The first feature occurs near
the bond midpoint and shows that the wavefunction based methods predict larger 8
electron densities in this region while the density functional methods predict larger a
electron densities. The second feature observed is a minimum in the G density near
the nuclei which is not mirrored in the o density. This feature, unlike the first, is not
method dependent.

The O results led to the calculation of the SPI for eight other small molecules.
For five of these molecules all of the calculated SPIs were in reasonably good agree-
ment. However, for the other three molecules method dependencies similar to O,
were observed with DFT SPIs being relatively low. It is of interest to note that
these molecules, FO, NO, NO, and O,, all have their unpaired electrons in either
anti-bonding or non-bonding orbitals which gives further indications that DFT has
trouble with these types of orbitals. To investigate the method dependencies of the
SPI it was broken down into its components for FO, NO and O,. The results show
that for DFT the Z,, and Zgg values are smaller and closer together than the corre-

sponding QCISD values.
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The results obtained with the SPI show that the handling of the spin polarisation
is not straightforward for any method. Moreover, the current approximate DFT
functionals have problems calculating the spin polarisations for some molecules. This
problem was not observed with the density difference index of the previous chapter
and indicates how the SPI can give additional information about DFT densities.
However, the spherically averaged results shown for O, give another example of the
differences between the DFT and wavefunction based densities. These differences
are quite interesting and have led to further investigations into spherically averaged

properties.
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6. Radial Moments of the Electron Density

The previous chapters have presented tools for assessing the spin polarisation of a
molecule and the difference between two electron densities. Although both of these
tools provide insight into different aspects of the electron densities they cannot be di-
rectly related to observable properties. Without a direct comparison to experimental
values these tools must depend on other high-level methods for comparison. A cal-
culable value which gives results that are directly comparable to experimental values
while also giving insight into the accuracy of electron densities would complete a set
of tools with which electron densities can be studied.

The radial moments of the electron density, < ™ >= J p(r)r™dT, can be related
to many measurable electronic properties such as the diamagnetic susceptibility and
the nuclear shielding factor.!=® Also, the various powers of the radial distance sample
the short- and long-range electron densities differently giving some insight into the
behaviour of the density in various regions in space. These molecular properties
satisfy both of the above criteria and hence fit in perfectly with the two previous
methods. However, even though the radial moments are accessible from Compton
scattering and small-angle electron scattering data®’ experimental measurement of

these values can be problematic which means that reliable experimental results are
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available only for a small number of molecules.

Until recently the moments of the electron density, < ™ >, have been calculated
using numerical techniques.®® This provided accurate results but also limited the
calculations for larger molecules. New analytical methods to generate these moments
have recently been published.!®!! These methods are much more flexible than nu-
merical techniques and are capable of including the effects of solvation, which have
not been investigated previously. This chapter provides a complete overview of the
algorithm of Sarasola et al.!! for the analytical calculation of radial moments. Us-
ing this algorithm the < r* >, n = —1,1,2,3 values are generated for a selected set
of molecules. Comparison of these values with experimental results shows that this
analytical method is accurate for a series of molecules. Also, two different solvation
models are employed to determine the effect of a solvent upon calculated radial mo-
ments which provides indirect evidence on the effect of a solvent on the molecular
electron densities.

The studies presented in the previous chapters have all focussed on the accuracy
of electron densities obtained with density functional theory (DFT). This chapter
is no exception as it discusses the accuracy of the moments given by five different
approximate exchange-correlation functionals. The values from other methods are
also given for comparison and also to connect to previous results where only theoretical
results were available. As with the other tools, the radial moments of the electron
density will hopefully provide enough insight into the electron density to be used as

a tool to refine exchange-correlation functionals.
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6.1 Analytical Calculation of the Radial Moments of the Electron

Density

The following is the analytical method to calculate the radial moments given by
Sarasola et al.'' which was used for this investigation and all calculations were carried
out at the centre of mass for each molecule. The radial moments of the electron density

are spherically averaged properties given by,
<rt>= /p(r)r" dr (6.1)
where n is an integer and p(r) is given by the expression,
p(r) = /p(r)r2 sin 6 d¢ df (6.2)

and p(r) is the just the single particle density p(x;;xX;)as given in chapter 3. By use
of the natural or Kohn-Sham orbitals, ¥,(r), this density can be easily expressed in

terms of the elements of the density matrix, P, as follows,
p(r) = Y Putu(r)t,(r) (6.3)
'R

Using the customary expansion of the molecular orbitals as a linear combination of

primitive Gaussians, i.e.

Uo(r) = ) caGal(r) (6.4)
A

Ga(r) = Ga(r;a,Ra, k. l,m) = (2 - Xa)f(y—Ya)'(z— Z4)meoI~Ral (6.5)
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the radial moments of the density can be cast in the form,
<r">= Z P, Z caCp / ™G A(r)Gp(r)r?sin 0 dé df dr (6.6)
uy A,B

The Gaussian product theorem!? allows the product of the two primitive Gaus-

sians, G4 and Gpg, to be contracted into a single Gaussian, Gp,
ka+kpla+lgmya+mg .
Ge(e) =K 3 3 3 fufifm(z—Xp)(y = Yp)(z ~ Zp)mel-r-ReP) (6.7)
k=0

(=0 m=0

where

- - 2
K = exp ( aAaBlRA RB' ) (68)
a4y + apg
Y = aatap (6.9)
Rp — asR 4 '; agRp (6.10)

The expression for the coefficients, fi, f; and f,., can be found in standard references.

Linear molecules can easily be rotated so that X p=Yp =0and Zp = Rp
while for nonlinear molecules a coordinate transformation for each pair of nuclei
within a molecule can be defined to make both atoms lie on the z axis, such that

Xp =Yp = 0.3 This allows the integral in equation 6.6 to be expressed in terms of,
I(n) = / rigkyt(z — Rp)mel=1r-Rel) 2 Gin 045 4o dr (6.11)

To establish a common coordinate system the Cartesians in the above expression are
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converted into spherical polar coordinates,

I(n) = /r("+2)(rsin0cosq&)"(rsinOsino’)‘(rcosB— Rp)™

e "+ Rp=2rRe c0s6) sin § dg df dr (6.12)
This expression can then be expanded and after collecting terms has the form.

I(n) = > () (=Rp)™*

s=0

oo
/ [/ﬂ’ eZ‘yer cosﬂ(sin 0)k+l+l(cos 0)3 de] rn+k+l+s+2e—7(r2+Rf,) dr
(o]

]

27
/ (cos ¢)*(sin @)' d¢ (6.13)
0
The integration over ¢ is solved with the use of the Beta function, B(x,y),

2B(&£L, %) if k and [ even (6.14)

0 otherwise

27
/ (cos @)*(sin ®)\do =
0

A transformation of the @ integral must be used before being able to solve it

analytically, the final integral has the form,

27
/ ez-rer coso(sin 9)k+l+1 (COS 0)3 db =
Q

kit
2 ﬂ v
§ : (t2 ) (_1)"—;'—'-‘/ e?1m e cosb(cog 9)R+I+s =2 gin 6 df (6.15)
0

t=0

This can then be simplified to give,

- 1
/ e?1mRp oSO (cog g)kH+a"2 5in g df = / e*uidy (6.16)
o -1



6. Radial Moments of the Electron Density 115

with e = 29rRp,q = k+{+s—2t and u = cosd. This new expression for the integral

can now be expressed analytically as,

Y oan a o1 & !
/;le uldy =e ( +Z(q u'au+1)—(—l)qe (;4—!‘}:_:1?_%) (6.17)

The integrals over r can be solved using the S(u) and R(u) integral functions,

namely

S(u) = / e 1r=Rp) Lk g (6.18)
0

and

R(u) = / e~ +RPY i gy (6.19)
0

Analytical solutions to these integrals are achieved recursively using the relations,

S(u+2)=

“,_;: LS(u) + rpS(u+ 1) (6.20)

and

Ru+2)=12

) — RpR(u + 1) (6.21)

Using the error function the initial cases of u = 0 and u = 1 have been solved so that,

S(0) = g\/g[uerf(ﬁzzpn (6.22)
e 7R: Rp .
S(1) = 5 + — 5 7[1+erf(\/_Rp)] (6.23)
RO) = 3/ - erf(/3Re) (6.24)
€_7RP Rp .
R(1) = ZL+ erf(ARp)] (6.25)

2y 2
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Gathering the various solutions for the integrations over r, # and ¢ allows the

integral from equation 6.13 to be cast into the following analytical form,

m

I(n) = 2B(kj H-Tl)z TTL)( RP)("‘—S)Z< )( l)k—ﬂ—t

[S(v) zq: S(v —u)(—1)4q!
(

=

2vRp q — u)!(2vRp)u+!
_1\q+ R(v) v — u)q!
+(—1)7*! (27Rp Z = u)'(2~,Rp)u+l>] (6.26)

with the variables ¢ and v defined as, g =k +[+s~2tandv=n+k+.[+m+ 1.

This closed form completes the equations needed to calculate < r* > analytically.

6.2 Computational Details

All molecular geometries were optimised at the same level of theory used to calculate
the electron density and the associated radial moments. All computations were carried
out with Gaussian 94.!4

The electron densities were obtained using both methods based on the Hartree-
Fock (HF) ground state wavefunction and density functional methods. Second-order
Moller-Plesset perturbation theory [MP2],15-!8 configuration interaction including sin-
gle and double excitations [CISD] and quadratic configuration interaction including
single and double excitations [QCISD]'? are methods which are known to give accu-
rate molecular properties and are used in this study for comparison. The approximate
exchange-correlation functionals used in the DFT calculations include three “pure”
functionals and two hybrid functionals which include some HF exchange energy. The
pure functionals used were SVWN, which uses the local spin density exchange func-

tional®® with the Vosko, Wilk, and Nusair parameterisation of the local spin density
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correlation functional,?? BPW91, which combines the Becke 88 gradient-corrected
exchange functional®® with the Perdew and Wang 91 gradient-corrected correlation
functional.?® and BLYP which also uses the Becke 88 exchange functional but com-
bines it with the Lee, Yang and Parr gradient-corrected correlation functional.2* The
hybrid methods both use Becke’s three-parameter expression? for the inclusion of
Hartree-Fock exchange energy and the Becke 88 gradient correction to the exchange
functional. The B3LYP functional uses the Lee. Yang and Parr gradient correction to
the correlation functional while the B3PW91 functional uses the Perdew and Wang
91 gradient correction to the correlation functional.

A previous study using this analytical method suggested that H, exhibited an
oscillatory behaviour in the radial moments as the number of polarisation functions
was increased.!! In order to investigate whether or not a similar trend is observed
in larger systems two larger molecules, N, and H,O, are studied using the QCISD
and MP2 methods along with a variety of basis sets. Polarisation functions, d and
f functions for N and O and p and d functions for H, were added to the 6-311G
and 6-311+G basis sets to analyse their effects on the moments.?2" Subsequent
calculations using the CC-PVDZ and CC-PVTZ basis sets as well as their augmented
counterparts were also done for comparison.?®

After the basis set analysis was completed, calculations on ten small molecules
using all of the methods described above and the 6-311G(2df,p) basis set were carried
out. Finally. two solvation model calculations were performed using HF and all the
DFT functionals to investigate their effect on the radial moments. The two models
used were the basic Onsager model and a modified Tomasi polarised continuum model
known as the self-consistent isodensity polarised continuum model [SCI-PCM]. Due

to the limitations inherent in the Onsager model, results for N, and CH, molecules
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could not be obtained using this model since neither of them has a dipole moment.

6.3 Results and Discussion

Table 1 shows the results for N; and H,O obtained using the various basis sets. The N,
results shown in figure 1 do not reveal an oscillatory behaviour as was previously found
for the H, case. The QCISD and MP2 methods give comparable results with QCISD

Table 6.1: Radial moments of the electron density for N, and H,O calculated using
the MP2 and QCISD methods with a variety of basis sets.

Moment
Molecule Method Basis Set <r '> <r> <rf> <>
N,
MP2
6-311G 11.0841 21.8476 41.1917 92.2934
6-311G(d) 11.4442 21.3350 39.6081 88.0673
6-311G(2d) 11.5024 21.2600 39.3540 87.2798
6-311G(2df) 11.5338 21.2292 39.2719 87.0867
6-311+G 11.0677 21.9404 41.8034 95.6926
6-311+G(d) 11.4354 21.4052 40.0889 90.7574
6-311+G(2d) 11.4969 21.3208 39.7909 89.8133
6-311+G(2df) 11.5271 21.2873 39.6824 89.4526
CC-PVDZ 11.3677 21.4053 39.6860 87.6647
CC-PVTZ 11.5290 21.2597 39.4697 88.1713
aug-CC-PVDZ 11.3355 21.5455 40.5318 92.1039
aug-CC-PVTZ 11.5218 21.2926 39.6874 89.4894
QCISD
6-311G 11.2550 21.6195 40.5092 90.4606
6-311G(d) 11.5655 21.1734 39.1146 86.7018
6-311G(2d) 11.6265 21.0929 38.8294 85.7659
6-311G(2df) 11.6585 21.0616 38.7430 85.5460
6-311+G 11.2429 21.7046 41.0903 93.7418
6-311+G(d) 11.5586 21.2349 39.5419 89.1078

6-311+G(2d) 11.6207 21.1505 39.2384 88.1230
6-311+G(2df) 11.6526 21.1146 39.1159 87.6912
CC-PVDZ 11.4854 21.2481 39.2153 86.4056
CC-PVTZ 11.6535 21.0910 38.9306 86.5706
aug-CC-PVDZ 11.4589 21.3685 39.9537 90.3284
aug-CC-PVTZ 11.6505 21.1133 39.0931 87.6164
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Moment
Molecule Method Basis Set <r'> <r> <rf> <>
H,O
MP2
6-311G 19.6483 11.5305 19.5232 40.8610
6-311G(d,p) 19.3018 11.4345 19.1166 39.5756
6-311G(2d.p) 19.3398 11.4440 19.1609 39.7521
6-311G(2d,2p) 19.3669 11.4377 19.1438 39.7076
6-311G(2df,p) 19.3686 11.4272 19.1015 39.3679
6-311G(2df,2pd) 19.3518 11.4297 19.1135 39.6311
6-311+G 19.6699 11.6996 20.4722 45.2727
6-311+G(d,p) 19.3193 11.5952 20.0188 43.7805
6-311+G(2d,p) 19.3709 11.5966 20.0195 43.7578
6-311+G(2d,2p) 19.3773 11.5840 19.9641 43.5402
6-311+G(2df.p) 19.3960 11.5772 19.9431 43.4886
6-311+G(2df,2pd) 19.3640 11.5735 19.9227 43.4309
CC-PVD2Z 19.2009 11.4252 18.9946 38.9692
CC-PVTZ 19.3505 11.4846 19.3890 40.7678
aug-CC-PVDZ 19.2593 11.6518 20.2473 44.7800
aug-CC-PVTZ 19.3566 11.3899 20.0231 44.0146
QCISD
6-311G 19.6169 11.53357 19.5274 40.8313
6-311G(d,p) 19.3146 11.4281 19.0769 39.3959
6-311G(2d,p) 19.3545 11.4356 19.1114 39.5310
6-311G(2d,2p) 19.3754 11.4286 19.0906 39.4744
6-311G(2df,p) 19.3847 11.4164 19.0422 39.3137
6-311G(2df,2pd) 19.3688 11.4170 19.0453 39.3448
6-311+G 19.6380 11.6951 20.4291 45.0534
6-311+G(d,p) 19.3336 11.5733 19.8963 43.2296
6-3114+G(2d.p) 19.3861 11.5717 19.8810 43.1351
6-311+G(2d,2p) 19.4041 11.5562 19.8160 42.8911
6-311+G(2df,p) 19.4125 11.5483 19.7856 42.7871
6-311+G(2df,2pd) 19.3940 11.5408 19.7508 42.6807
CC-PVDZ 19.2128 11.4235 18.9787 38.8803
CC-PVTZ 19.3791 11.4629 19.2824 40.3423
aug-CC-PVDZ 19.2835 11.6276 20.1172 44.1913
aug-CC-PVTZ 19.3900 11.5533 19.8299 43.1637
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having slightly higher values for < 7! > and lower values for the positive powers of r.
Addition of the first set of d polarisation functions to the 6-311G and 6-311+G basis
set leads to a sharp increase for < r~! > and a sharp decrease for all other moments.
The second set of d polarisation functions has a similar influence on the moments,
increasing < 7~! > and decreasing the rest, but the change is much smaller. F inally,
the addition of f polarisation functions to the 2d polarisation functions produces only
small variations in the moments and suggests that the moments are converging to a
limiting value.

The addition of polarisation functions to the 6-311G and 6-311+G basis sets
provides a much different result for H,O than noted above for N, (See figure 2). The
most notable change in the moments comes with the addition of the (d,p) polarisation
functions with all moments decreasing significantly. The addition of more polarisation
functions yields very small oscillations around the (d,p) value for < r >, < r2 > and <
r3 >. This may correspond to the previous H, results which also exhibited oscillations
in their values with the addition of polarisation functions. The r~! moment is the
exception: after the initial sharp decrease its value starts to increase again with
the addition of polarisation functions until the (2df,p) set of polarisation functions
is reached after which there is a small decrease in value with the (2df,2pd) set of
polarisation functions.

The data in Table 1 also show that the addition of diffuse functions to a given
basis set leads to an increase in the moments for n > 0 and a very small decrease in
< r~! >. This observation holds for N, and H,O with both the MP2 and QCISD
methods. Moreover, the effect on < r? > and < r® > of introducing diffuse basis
functions is greater than that of adding polarisation functions to a basis set. This is

readily understood because the higher powers of n sample the long-range behaviour
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Figure 6.1: The effect of additional polarisation functions for N, using both the
QCISD and MP2 methods. ( ¢ MP2 with the 6-311G basis set, B MP2
with the 6-311+G basis set, o QCISD with the 6-311G basis set and

O QCISD with the 6-311+G basis set)



6. Radial Moments of the Electron Density 122

a)19.70 - b)11.75 -
a
19.65 —
g 11.70 — n
19.60
19.55 11.65 -
19.50
A 11.60 — s =
T 1945 £ a o " .
v
19.40 L | g
. 8 °
19.35 | - ¥ 150
19.30 — §
11.45 4
19.25 — s 8 °
19.20 8 o
8. T T T T 11.40 T T T T
None dp 2dp 2d,2p 2df,p 2df.2pd None dp 2dp 2d.2p 2dfp 2df2pd
Polarisation Functions Polarisation Functions
€)20.50 — s d) 46
(8]
[ ]
20.25 — 45+ o
. . 44 + . ™
20.00 . ., s . 4
a 43 - o o o
«t 1975 ° a4 o % o
v v 42 |
19.50 c
41 - o
19.25 40
g8 S 8 o o g & 8 o o
19.00 I T T T 39 T T T T ]
None dp 2dp 2d,2p 2dfp 2df,2pd None dp 2d,p 2d.2p 2dfp 2df.2pd
Polarisation Functions Polarisation Functions

Figure 6.2: The effect of additional polarisation functions for H,O using both
the QCISD and MP2 methods. ( e MP2 with the 6-311G basis set,
B MP2 with the 6-311+G basis set, o QCISD with the 6-311G basis set
and O QCISD with the 6-311+G basis set)
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of the electron density which is the region in which the diffuse functions are most
important.

Experimental values for the 72 moment have been determined for both N, and
H>O. The three experimental values for N, were obtained using high energy-electron
scattering and yield 35.7 £ 0.7,%° 37.2 4+ 0.2%° and 38.7 + 0.2.3' The most recent
value, 38.7+ 0.2, compares well with the moments obtained using the 6-311G(2df)
and the 6-311+G(2df) basis sets, with the MP2 method yielding 39.27 and 39.68 and
the QCISD method giving 38.74 and 39.12, respectively. For H,O the experimental
value of 18.40 + 2.40°? has a large uncertainty but compares reasonably well with the
6-311G(2df,p) basis set values of 19.10 and 19.04 with the MP2 and QCISD methods,
respectively. The use of diffuse functions, as noted before, increases < r >, < r? >,
and < r3 > significantly but the < 72 > values fall within the uncertainty range shown
for the experimental value. Comparing the present N, and H>O moments with the
previously calculated moments of Wang and Smith!° and also those by Feller, Boyle
and Davidson® indicates that although the new values are slightly lower they are
reasonably close to the previous values. The non-augmented double and triple zeta
Dunning basis sets values for N, and H,O are close to the 6-311G(2df,p) values while
the augmented versions of these basis sets compare well with the 6-31 14+G(2df,p) basis
set. The increased values for < r >, < 72 > and < r3 > from both the augmented
Dunning basis sets and the 6-311+G basis set may represent an artificial increase in
the size of the electron cloud due to the addition of diffuse functions. To avoid any
problems diffuse functions were not used and the 6-311G(2df,p) basis set was used
for the remainder of the calculations.

Table 2 shows the moments calculated for the ten molecules by using the 6-

311G(2df,p) basis set and a variety of methods. The first two molecules, N, and CO,
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Table 6.2: Radial moments of the density calculated at the centre of mass using the
6-311G(2df.p) basis set and a variety of methods.

Moment
Molecule Method <r 1> <r> <r2> </3>
No
B3LYP 11.7131 20.9892 38.5392 85.0736
B3PW91 11.7127 20.9696 38.4180 84.5133
BLYP 11.6162 21.1197 38.9597 86.3460
BPW91 11.6204 21.0869 38.7804 85.5560
SVWN 11.6765 21.0418 38.7257 85.6925
HF 11.9027 20.7694 37.8716 83.1043
MP2 11.5338 21.2292 39.2719 87.0867
CISD 11.7304 20.9662 38.4423 84.6658
QCISD 11.6585 21.0616 38.7430 85.5460
CcO
B3LYP 11.8189 21.0937 39.5650 90.7936
B3PW91 11.8182 21.0727 39.4263 90.0918
BLYP 11.7260 21.2266 40.0207 92.2890
BPWI1 11.7288 21.1934 39.8200 91.3083
SVWN 11.7940 21.1357 39.7302 91.3926
HF 11.9860 20.8796 38.8600 88.5116
MP2 11.7198 21.2383 40.0349 92.1632
CISD 11.8471 21.0477 39.3677 89.9570
QCISD 11.7784 21.1415 39.6727 90.8905
CH,
B3LYP 16.7341 15.9715 35.8067 95.1651
B3PW91 16.7337 15.9362 35.5628 93.8570
BLYP 16.7302 16.0407 36.2014 97.0088
BPW91 16.7317 15.9887 35.8514 95.1570
SVWN 16.6603 16.0202 36.0845 96.4022
HF 16.7092 15.9413 35.4612 93.0902
MP2 16.7319 15.9653 35.7114 94.5088
CISD 16.7269 15.9563 35.6135 93.9059
QCISD 16.7222 15.9834 35.7578 94.5322
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Moment
Molecule Method <r 1> <r> <rZ> </o>
NH;
B3LYP 16.8345 13.5643 26.4047 62.5539
B3PW91 16.8283 13.5340 26.2124 61.6128
BLYP 16.6490 13.6507 26.8171 64.3023
BPW91 16.6535 13.6034 26.5294 62.9117
SVWN 16.7658 13.6176 26.6488  63.4770
HF 17.0697 13.4649 25.8386 59.9504
MP2 16.8069 13.5628 26.3397 62.0937
CISD 16.8369 13.5348 26.1759 61.3327
QCISD 16.7830 13.5628 26.3034 61.8396
H,O
B3LYP 19.3970 11.4291 19.1553 39.8987
B3PW91 19.4025 11.4067 19.0316 39.3593
BLYP 19.2868 11.4912 19.4314 40.9640
BPW91 19.3047 11.4577 19.2508 40.1771
SVWN 19.3191 11.4748 19.3310 40.4685
HF 19.5935 11.3233 18.6457  37.8882
MP2 19.3686 11.4272 19.1015 39.5679
CISD 19.4281 11.3948 18.9530 38.9948
QCISD 19.3847 11.4164 19.0422 39.3137
HF
B3LYP 23.7625 9.5211 13.4938 24.0924
B3PW91 23.7709 9.5098 13.4394 23.8893
BLYP 23.7060 9.5564 13.6348 24.5651
BPW91 23.7209 9.5400 13.5567 24.2722
SVWN 23.6702 9.5592 13.6176 24.4358
HF 23.8730 9.4503 13.1921 23.0749
MP2 23.7682 9.5205 13.4636 23.9305
CISD 23.7950 9.4998 13.3841 23.6776
QCISD 23.7757 9.5113 13.4263 23.8088
PH;
B3LYP 39.4068 23.5552 55.7905 169.6639
B3PW91 39.3252 23.4984 55.3406 166.9329
BLYP 39.1721 23.6484 56.3585 172.7083
BPW91 39.0843 23.5640 55.7123 168.8457
SVWN 38.9294 23.5891 55.9659 170.7538
HF 40.0278 23.5327 55.5616 167.7199
MP2 39.5619 23.5266 55.5335 167.8507
CISD 39.6131 23.5189 55.4478 167.1792
QCISD 39.5164 23.5415 55.5737 167.8084
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Moment
Molecule Method <r 1> <r> <rs> <rs>
H,S
B3LYP 44.9893 20.8725 44.4550 124.5433
B3PW91 44.9704 20.8113 44.0164 122.0563
BLYP 44.8274 20.9437 44.8899 126.8131
BPW91 44.8340 20.8569 44.2823 123.4031
SVWN 44.7416 20.8933 44.53577 125.0720
HF 45.3179 20.8412 44.1324 122.3220
MP2 45.0380 20.8570 44.2616 123.1455
CISD 45.0800 20.8400 44.1326 122.3556
QCISD 45.0184 20.8585 44.2350 122.8446
CH3;O0OH
B3LYP 11.1310 35.6786 84.3461 232.9274
B3PW91 11.1763 35.5510 83.7364 230.2145
BLYP 11.0277 35.9713 85.7269 238.8266
BPW91 11.0818 35.8030 84.8808 234.9218
SVWN 11.2329 35.5137 83.9640 232.7309
HF 11.2736 35.3107 82.53866 225.1541
MP2 11.1452 35.6303 84.0652 231.4260
CISD 11.2100 35.4542 83.3346 228.8354
QCISD 11.1566 35.6104 83.9686 230.9188
CH3;SH
B3LYP 16.1814 54.7565 146.4143 470.0249
B3PWO1 16.2715 54.4615 144.7929 461.8121
BLYP 16.0375 55.1907 148.6980 481.1179
BPW91 16.1618 54.7792 146.4314 469.6152
SVWN 16.4252 53.9796 142.5771 453.4708
HF 16.2793 54.4821 144.8629 461.5786
MP2 16.2597 54.5230 145.2274 464.4152
CISD 16.2821 54.4467 144.7146 461.2604
QCISD 16.2201 54.6282 145.6718 465.9191




6. Radial Moments of the Electron Density 127

are isoelectronic and yield similar results but with the CO moments being slightly
larger than the N, moments. The increased < r~! > value could be due to the
shifting of the centre of mass towards the oxygen atom and thus there should be
a slightly larger electron density near the origin. This shift of the centre of mass
along with the fact that the C-O bond is slightly longer than the N-N bond will vield
larger moments for n>0. As was previously stated the QCISD method gives moments
that compare very well with experimental values and therefore the QCISD method
will be the standard used for comparisons with all of the molecules. Comparison
of the DFT functionals with the QCISD values yields very interesting results with
the BALYP and BPW91 functionals giving the best agreement while the BLYP and
B3PW91 functionals give only fair agreement with the QCISD values. Furthermore,
the BLYP and B3PW91 functionals are on opposite sides of the QCISD values with
the BLYP functional underestimating < r~! > and overestimating the others and
B3PWO1 overestimating < r~! > and underestimating the others. The local spin
density functional, SVWN, gives unexpectedly good agreement with the QCISD val-
ues. Hartree-Fock results are poor as is expected since they lack electron correlation
with the < 7~! > values being too large and the rest being too small. This shows that
HF underestimates the size of the electron cloud and puts more density within the
bonding region than other methods. This observation is consistent with the results
of previous studies of the effect of electron correlation on the one-electron distribu-
tions of small atoms.?*3* The MP?2 results, surprisingly, are relatively poor also, with
< r~! > being too small and < 7 >,< r2 >, and < 3 > too large which could indicate
that the MP2 electron density is too diffuse. The CISD moments are also quite poor
but differ in the opposite direction than the MP2 moments. A more detailed discus-

sion of the electron density in CO as calculated by various conventional @b initio and
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density functional methods has already been done giving more information.3%

The high symmetries of the molecules within the neutral ten-electron series, CHy,
NHj, H,O and HF, should lead to electron clouds which are close to spherical in
nature. Thus, as the atomic number of the heavy atom, A, in the binary hydrides,
AH,, increases < r >, < r2 > and < r3 > decrease and < r~! > increases. These
observations are consistent with a contraction of the electron cloud and a concomitant
shortening of the A-H bond length. In this series the 72 moment for CH, has been
determined. yielding a value of 33.69 + 0.72%3 which corresponds reasonably well
to both the QCISD and CISD values, 35.61 and 35.76, respectively. The CH;OH
and CH4SH molecules, which have non-spherical electron clouds, have small < r-! >
values when compared to the other moments which indicates that there is only a
small amount of electron density near the centre of mass. The < r >, < r? > and
< r? > values indicate a large electron cloud as expected with significant differences
between the < r > and< r? > values and between the < 72 > and < r® > values.
This indicates that the electron density continues to have a substantial magnitude
at distances quite far from the centre of mass. This behaviour is also exhibited in
the H,S and PHj molecules which is expected since there is an increased number of
electrons as well as a much larger electron cloud due to the inclusion of third-row
elements.

Comparison of the current values to previously calculated moments reveals an
interesting trend. The calculated < r >, < 2 > and < r® > values from Wang
and Smith'® and the calculated < r? > values from Feller, Boyle and Davidson® for
H,0, CO, N3, NH;, and HF are all slightly larger than the current values. Thus, this
method seems to predict an electron cloud which is slightly smaller than what previous

calculations predict. The < r2 > value of Feller, Boyle and Davidson® for H,S seems
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to contradict this trend since it is smaller than the current calculation. However, the
reported < r? > value for PH; of 26.6669 by Davidson et al.® is clearly wrong and
suggests that an error may have been made in the calculations for molecules with
second-row elements.

The accuracy of different methods, when compared to the QCISD method, is
quite varied. The hybrid DFT functionals give generally good agreement with the
QCISD results, with B3PW91 usually being better than B3LYP. For non-polar or
slightly polar molecules these hybrid functionals tend to overestimate < r—! > and
underestimate the n>0 moments. As the polarity increases, though, the < =t >
values decrease while the < r >,< r2 > and < r® > values increase with respect
to the QCISD values. This helps to increase the accuracy of these methods as the
polarity increases. However, when the molecules become too polar the < r— ! >
values become too small and < 7 >,< r2 > and < r® > become too large. The
r~! moment is underestimated for HF, PH; and H,S with both methods and also for
CH3OH and CH3SH with B3LYP while the other moments are overestimated for HF
only with B3PW91 and in all but Ny, CO and CH, with B3LYP. The inclusion of
second-row elements decreases the accuracy of both of these methods. For the larger
non-spherical molecule CH;OH the accuracy of these methods is quite good but when
coupled with a second-row element, in CH3SH, the accuracy of these methods falls
off once again. The ‘pure’ DFT functionals, SVWN, BLYP and BPW91, give inferior
results when compared to the hybrid functionals. For all molecules both the BLYP
and BPW91 methods underestimate < r~! > and overestimate the other moments
with the one exception being that both methods overestimate the r~! moment of
CH,4. As the polarity of the molecules increases these two methods show a decrease

in the < r~! > values and increased values for the other moments which actually
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decreases the accuracy of both methods. The addition of second-row elements also
decreases the accuracy of BLYP but does not have a significant effect with the BPW91
functional while the CH;OH and CH3;SH molecules, though, are a problem for both
of these methods. The behaviour of SVWN is quite similar to BLYP and BPW91
with only a few exceptions. Again as the polarity of the molecules increases SVWN'’s
agreement with the QCISD values worsens while the addition of second-row elements
does affect SVWN but not to the extent seen with BLYP.

Hartree-Fock is known to give poor molecular properties since it does not in-
clude electron correlation and this is again reflected in the poor values of the radial
moments. For all molecules except CHy, the r~! moment is overestimated while
<r >.<r?>and <r®> are all underestimated which indicates that Hartree-Fock
gives a much too compact electron cloud. For CH, the < r—! > value along with
the < 7 >,< r? > and < r® > values are all too small. Increased molecular polarity
only decreases the accuracy of the Hartree-Fock moments, however, the addition of
second-row elements does not affect the accuracy of the moments to the extent seen
with the ‘pure’ DFT functionals. It is interesting to note that these qualitative ob-
servations for the Hartree-Fock method are not easily discerned from the published
correlation difference density plots.>” MP2 does not give any clear trends but the re-
sults are in much better agreement with the QCISD moments than Hartree-Fock, as
expected. It is well known that MP2 often overcorrects the problems of the Hartree-
Fock wavefunction but this is not done in any systematic way and could account for
the lack of any clear trends. The best overall agreement with the QCISD values comes
from the CISD values. For all molecules, CISD overestimates < r~! > and underes-
timates < r >,< r?2 > and < r3 >. However, unlike the above observations with the

Hartree-Fock method the agreement between CISD and QCISD values increases as
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the molecular polarity increases. The addition of second-row elements has little effect

on the accuracy of the CISD values, as was observed with the Hartree-Fock method.

6.4 The Effects of Solvation on the Radial Moments of the Density

Tables 6.4, 6.4, 6.4 and 6.4 list the differences between the solvated and the gas-
phase radial moments as calculated for the ten molecules by use of the Onsager and
SCI-PCM solvation models, respectively. It is readily apparent that both models
generally give the same trends in the calculated changes in the moments first as the
molecules are dissolved in benzene and then as the dielectric constant is increased
through the use of two other solvents, chlorobenzene and water. In particular, most
of the polar molecules exhibit an overall decrease in the size of their electron clouds
upon dissolution in benzene, as seen in the decreased < r3 > values. This shrinking of
the electron cloud continues as the dielectric constant is increased. The CO molecule
is the only polar molecule which exhibits higher moments in benzene than in the gas-
phase. Furthermore, the CO moments increase as the dielectric constant increases.
Although this result is opposite to that observed for the other polar molecules the
increased moments are evidence that the electron distribution is shifting so as to make
the molecule more polar. In fact, upon close examination of the moments of the polar
molecules there is evidence that their polarity increases in solution. Moreover, the
higher the dielectric constant the greater the increase in the polarity of the molecule.
Since the radial moments are spherically averaged, it is not possible to determine
exactly how the electron distributions are rearranged but the above argument does
agree with previous observations.’®*4% The effects of dissolving the two non-polar
molecules, N, and CHy, are different. The N, molecule, like CO, gives larger moments

in benzene which also increase as the solvent’s dielectric constant increases. CHy,
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Table 6.3: The difference between the solvated and gas phase r~! and r moments as
calculated at the centre of mass using the 6-311G(2df,p) basis set and the
Onsager solvation model.

Benzene Chlorobenzene Water
(e =2.274) (e = 5.62) (e = 78.54)

Molecule Method <r!> <r> <rl> <r> <rls>s <r>
CcO

B3LYP 0.0004 0.0000 0.0007 -0.0001 0.0009 0.0000
B3PW9I1 0.0004¢ 0.0001 0.0005 -0.0001 0.0009 0.0002

BLYP 0.0004 -0.0001 0.0007 -0.0002 0.0010 -0.0001
BPW91 0.0006 0.0001 0.0010 0.0001 0.0014 0.0001
SVWN 0.0006 -0.0001 0.0010 0.0000 0.0013 0.0000
HF -0.0004 0.0001 -0.0005 0.0005 -0.0008 0.0004
NH;
B3LYP -0.0707 0.0022 -0.1110 0.0021 -0.1424 0.0023
B3PW91  -0.0644 0.0016 -0.1053 0.0018 -0.1376 0.0018
BLYP -0.0683 0.0002 -0.1093 -0.0001 -0.1384 -0.0008
BPW91 -0.0634 -0.0002 -0.1003 -0.0007 -0.1278 -0.0009
SVWN -0.0770  0.0022 -0.1267 0.0029 -0.1603 0.0041
HF -0.0641 0.0019 -0.1066 0.0029 -0.1396 0.0035
H,O
B3LYP -0.0260 -0.0039 -0.0458 -0.0061 -0.0601 -0.0075
B3PW91  -0.0258 -0.0035 -0.0437 -0.0053 -0.0580 -0.0069
BLYP -0.0225 -0.0045 -0.0389 -0.0074 -0.0522 -0.0095
BPW91 -0.0249 -0.0035 -0.0421 -0.0061 -0.0557 -0.0078
SVWN -0.0268 -0.0041 -0.0518 -0.0061 -0.0715 -0.0073
HF -0.0286 -0.0021 -0.0480 -0.0030 -0.0622 -0.0035
HF

B3LYP -0.0036 -0.0026 -0.0062 -0.0042 -0.0084 -0.0055
B3PW91 -0.0036 -0.0023 -0.0062 -0.0037 -0.0085 -0.0049
BLYP -0.0031 -0.0030 -0.0052 -0.0049 -0.0071 -0.0063
BPW91 -0.0033 -0.0028 -0.0057 -0.0044 -0.0077 -0.0057
SVWN -0.0039 -0.0026 -0.0068 -0.0042 -0.0093 -0.0054
HF -0.0052 -0.0017 -0.0083 -0.0028 -0.0109 -0.0035
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Benzene Chlorobenzene Water
(e = 2.274) (€ = 5.62) (e = 78.54)
Molecule Method <r7'> <r> <r'l> <r> <rls>s <r>
PH;,
B3LYP 0.0187 -0.0019 0.0290 -0.0045 0.0378 -0.0069
B3PW91 0.0197 -0.0017 0.0301 -0.0043 0.0386 -0.0065
BLYP 0.0195 -0.0064 0.0292 -0.0096 0.0374 -0.0118
BPWJI1 0.0211 -0.0058 0.0312 -0.0090 0.0396 -0.0117
SVWN 0.0158 -0.0066 0.0254 -0.0099 0.0339 -0.0123
HF 0.0237 -0.0019 0.0360 -0.0048 0.0464 -0.0070
H,S
B3LYP 0.0061 -0.0019 0.0077 -0.0037 0.0089 -0.0052
B3PW91 0.0065 -0.0022 0.0079 -0.0038 0.0085 -0.0049
BLYP 0.0021 -0.0022 0.0039 -0.0043 0.0050 -0.0059
BPW91 -0.0104 -0.0017 -0.0093 -0.0035 -0.0084 -0.0051
SVWN 0.0005 -0.0026 0.0000 -0.0025 -0.0002 -0.0059
HF 0.0029 -0.0024 0.0053 -0.0043 0.0068 -0.0055
CH3;0OH
B3LYP 0.0000 -0.0029 -0.0035 0.0014 -0.0064 0.0045
B3PW91 -0.0076 0.0103 -0.0113 0.0147 -0.0140 0.0173
BLYP -0.0074 0.0099 -0.0117 0.0149 -0.0151 0.0194
BPW91 -0.0007 -0.0024 -0.0046 0.0020 -0.0077 0.0061
SVWN -0.0059 0.0067 -0.0093 0.0101 -0.0121 0.0124
HF -0.0071 0.0086 -0.0111 0.0140 -0.0145 0.0180
CH3;SH
B3LYP 0.0011 -0.0056 0.0024 -0.0103 -0.0016 -0.0045
B3PW91 -0.0047 0.0073 -0.0071 0.0103 -0.0092 0.0141
BLYP -0.0040 0.0070 -0.0068 0.0111 -0.0094 0.0157
BPW91 0.0019 -0.0095 0.0007 -0.0093 0.0045 -0.0224
SVWN -0.0414 0.2780 -0.0426 0.2781 -0.0438 0.2788
HF -0.0044 0.0071 -0.0074 0.0126 -0.0101 0.0183
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Table 6.4: The difference between the solvated and gas phase 2 and 3 moments as
calculated at the centre of mass using the 6-311G(2df,p) basis set and the
Onsager solvation model.

Benzene Chlorobenzene Water
(e =2.274) (e = 5.62) (e = 78.54)
Molecule Method <7r2> <r¥’> <r2> <13> <r2> <3>
CO
B3LYP 0.0016 0.0122 0.0026 0.0208 0.0039 0.0293
B3PW91 0.0020 0.0143 0.0029 0.0228 0.0046 0.0324
BLYP 0.0028 0.0220 0.0047 0.0366 0.0066 0.0496
BPW91 0.0029 0.0211 0.0049 0.0362 0.0066 0.0485
SVWN 0.0031 0.0242 0.0057 0.0423 0.0075 0.0561
HF -0.0007 -0.0076 -0.0007 -0.0123 -0.0018 -0.0189
NH;
B3LYP -0.0037 -0.0349 -0.0114 -0.0771 -0.0170 -0.1091
B3PW91 -0.0041 -0.0334 -0.0112 -0.0730 -0.0171 -0.1048
BLYP -0.0127 -0.0724 -0.0234 -0.1301 -0.0327 -0.1784
BPW91  -0.0137 -0.0738 -0.0238 -0.1267 -0.0309 -0.1653
SVWN -0.0048 -0.0402 -0.0102 -0.0744 -0.0120 -0.0937
HF -0.0024 -0.0247 -0.0049 -0.0431 -0.0074 -0.0596
H,O
B3LYP -0.0231 -0.1017 -0.0367 -0.1628 -0.0466 -0.2080
B3PW91 -0.0209 -0.0915 -0.0329 -0.1457 -0.0426 -0.1883
BLYP -0.0264 -0.1181 -0.0435 -0.1950 -0.0562 -0.2525
BPW91  -0.0223 -0.1004 -0.0374 -0.1673 -0.0483 -0.2166
SVWN -0.0247 -0.1092 -0.0379 -0.1705 -0.0477 -0.2165
HF -0.0134 -0.0587 -0.0212 -0.0945 -0.0261 -0.1180
HF
B3LYP -0.0120 -0.0471 -0.0197 -0.0772 -0.0255 -0.0998
B3PW91 -0.0109 -0.0425 -0.0176 -0.0691 -0.0229 -0.0897
BLYP -0.0140 -0.0555 -0.0229 -0.0910 -0.0297 -0.1179
BPW91  -0.0128 -0.0497 -0.0205 -0.0804 -0.0265 -0.1040
SVWN -0.0123 -0.0486 -0.0199 -0.0789 -0.0256 -0.1018
HF -0.0077 -0.0296 -0.0127 -0.0485 -0.0162 -0.0625
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Benzene Chlorobenzene Water
(e = 2.274) (e = 5.62) (e = 78.54)

Molecule Method <r?> <> <r2> <> <r2> <pd3>
PH;

B3LYP  -0.0091 -0.0461 -0.0235 -0.1166 -0.0364 -0.1794
B3PW91 -0.0082 -0.0438 -0.0221 -0.1104 -0.0343 -0.1704
BLYP -0.0352 -0.1716 -0.0519 -0.2519 -0.0644 -0.3134
BPW91  -0.0321 -0.1576 -0.0492 -0.2418 -0.0636 -0.3109
SVWN -0.0360 -0.1753 -0.0538 -0.2623 -0.0678 -0.3321

HF -0.0084 -0.0413 -0.0236 -0.1137 -0.0350 -0.1676
H,S
B3LYP  -0.0114 -0.0573 -0.0214 -0.1055 -0.0297 -0.1446
B3PW91 -0.0126 -0.0620 -0.0217 -0.1056 -0.0281 -0.1373
BLYP -0.0136 -0.0677 -0.0253 -0.1249 -0.0345 -0.1684
BPW91 -0.0118 -0.0597 -0.0223 -0.1117 -0.0314 -0.1547
SVWN -0.0158 -0.0785 -0.0150 -0.0765 -0.0353 -0.1741
HF -0.0141 -0.0669 -0.0238 -0.1114 -0.0306 -0.1424
CH;0H
B3LYP  -0.0208 -0.1251 -0.0189 -0.1842 -0.0181 -0.2336
B3PW91 0.0186 -0.0338 0.0206 -0.0932 0.0195 -0.1491
BLYP 0.0142 -0.0658 0.0178 -0.1278 0.0218 -0.1753
BPW91  -0.0237 -0.1530 -0.0215 -0.2155 -0.0181 -0.2588
SVWN 0.0045 -0.0845 0.0029 -0.1581 0.0002 -0.2208
HF 0.0124 -0.0498 0.0184 -0.0917 0.0226 -0.1254
CH;SH

B3LYP  -0.0476 -0.3207 -0.0919 -0.6287 -0.0861 -0.7104
B3PW91 0.0006 -0.1729 -0.0040 -0.2921 -0.0026 -0.3688
BLYP 0.0041 -0.1393 0.0022 -0.2628 0.0056 -0.3440
BPW91  -0.0719 -0.4529 -0.0910 -0.6428 -0.1723 -1.0918
SVWN 1.6481 7.9328 1.6287 7.7457 1.6155 7.6049
HF 0.0060 -0.1169 0.0131 -0.1837 0.0244 -0.2156
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however, exhibits almost no change in the 7—! moment for all solvents. The rest of
the moments decrease in benzene and continue to decrease as the dielectric constant
increases. This behaviour indicates that the electron cloud contracts but does not
put more electron density near the centre of mass.

The Onsager model is the simplest of the two models and as expected gives the
smallest variations from the unsolvated case while the SCI-PCM model enhances the
effects given by the Onsager method. Although the trends observed from both models
agree with each other reasonably well, there are some interesting differences. The
Onsager model only produces little if any changes in the < r > values for CO vet the
SCI-PCM model shows a substantial increase in < r >. The calculated moments of
PHj; using the Onsager model give the same trend for all methods: < r~! > increases
with increasing solvent polarity while < r >, < r2 > and < r® > give the opposite
trends. The SCI-PCM method, like the Onsager method, shows a decrease in the
<r > <r?>and < r® > values when dissolved in benzene, for all cases except
the B3PWO1 calculation for HF. However, changing the solvent to chlorobenzene
from benzene increases the n>0 moments; for some methods the moments in solution
are even larger than the gas-phase moments. Changing the solvent to water then
produces the expected decrease in the n>0 moments.

All of the DFT functionals seem to give the same overall trends for the solvation
methods with only a few exceptions. The magnitudes of the changes observed in the
moments given by the DFT functionals, though, indicate that the changes observed
with the hybrid functionals are smaller than those given by the ‘pure’ functionals.
The BLYP functional generally yields the largest change in the electron distribution
with either solvation model, while the BSPW91 functional has generally the smallest

changes. Comparing the functionals to the HF results indicates that for all molecules
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Table 6.5: The difference between the solvated and gas phase r~! and r moments as
calculated at the centre of mass using the 6-311G(2df,p) basis set and the
SCI-PCM solvation model.

Benzene Chlorobenzene Water
(€ = 2.274) (e = 5.62) (e = 78.54)
Molecule Method <r !> <r> <rl> <r> <rl> <r>
N2
B3LYP 0.0005 0.0006 0.0009 0.0011 0.0012 0.0015
B3PW91 0.0002 0.0000 0.0007 0.0005 0.0011  0.0008
BLYP 0.0005 0.0007 0.0008 0.0008 0.0012 0.0012
BPW91 0.0006 0.0008 0.0011 0.0012 0.0014 0.0016
SVWN 0.0002 0.0004 0.0007 0.0010 0.0010 0.0014
HF 0.0007 0.0007 0.0011 0.0008 0.0011 0.0009
CcO
B3LYP 0.0000 0.0015 0.0003 0.0022 0.0000 0.0035
B3PWI1 0.0001 0.0017 0.0002 0.0028 0.0002 0.0036
BLYP 0.0004 0.0012 0.0006 0.0021 0.0011 0.0025
BPW91 0.0006 0.0014 0.0009 0.0023 0.0012 0.0029
SVWN 0.0005 0.0012 0.0013 0.0004 0.0011  0.0029
HF -0.0017 0.0029 -0.0030 0.0048 -0.0041 0.0064
CH,
B3LYP 0.0003 -0.0019 0.0003 -0.0029 0.0008 -0.0055
B3PW91 0.0005 -0.0022 0.0006 -0.0039 0.0005 -0.0038
BLYP 0.0002 -0.0015 0.0006 -0.0028 0.0007 -0.0038
BPW91 0.0004 -0.0022 0.0003 -0.0032 0.0005 -0.0040
SVWN 0.0003 -0.0020 0.0008 -0.0037 0.0009 -0.0048
HF 0.0002 -0.0012 0.0004 -0.0020 0.0005 -0.0032
NH;
B3LYP -0.0593 -0.0068 -0.0945 -0.0128 -0.1240 -0.0174
B3PW91 -0.0523 -0.0071 -0.0875 -0.0130 -0.1176 -0.0175
BLYP -0.0512 -0.0097 -0.0854 -0.0167 -0.1124 -0.0221
BPW91 -0.0484 -0.0097 -0.0811 -0.0164 -0.1082 -0.0216
SVWN -0.0641 -0.0076 -0.1072 -0.0131 -0.1299 -0.0175
HF -0.0564 -0.0060 -0.0954 -0.0103 -0.1268 -0.0136
H-»O
B3LYP -0.0406 0.0046 -0.0167 -0.0264 -0.0242 -0.0348
B3PW91 -0.0090 -0.0151 -0.0172 -0.0250 -0.0253 -0.0331
BLYP -0.0036 -0.0178 -0.0086 -0.0297 -0.0142 -0.0389
BPW91 -0.0048 -0.0165 -0.0106 -0.0275 -0.0171 -0.0363
SVWN -0.0071 -0.0170 -0.0212 -0.0271 -0.0304 -0.0357
HF -0.0137 -0.0126 -0.0250 -0.0209 -0.0355 -0.0276
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Benzene Chlorobenzene Water
(e =2.274) (e = 5.62) (e = 78.54)
Molecule Method <r7!> <r> <rl> <r> <rls <p>
HF
B3LYP -0.0131 -0.0006 -0.0154 -0.0095 -0.0178 -0.0171
B3PW91 0.0608 -0.0582 0.0561 -0.0664 0.0534 -0.0737
BLYP -0.0166 0.0033 -0.0180 -0.0062 -0.0194 -0.0144
BPW91 0.0493 -0.0321 0.0459 -0.0409 0.0440 -0.0486
SVWN -0.0029 -0.0128 -0.0079 -0.0216 -0.0109 -0.0293
HF -0.0076 -0.0101 -0.0132 -0.0176 -0.0185 -0.0243
PH;
B3LYP 0.0555 -0.0027 0.1174  0.0002 0.1641 -0.0101
B3PW9I1 0.0642 -0.0016 0.1271 -0.0014 0.1760 -0.0089
BLYP 0.0564 -0.0035 0.1050 -0.0038 0.1557 -0.0094
BPW91 0.0598 -0.0058 0.1313 -0.0051 0.1479 -0.0078
SVWN 0.0558 -0.0075 0.1221 -0.0084 0.1442 -0.0118
HF 0.0710 -0.0006 0.1216 -0.0059 0.1631 -0.0062
H-S
B3LYP 0.0274 -0.0073 0.0471 -0.0136 0.0630 -0.0182
B3PW9I1 0.0292 -0.0083 0.0492 -0.0140 0.0648 -0.0192
BLYP 0.0274 -0.0083 0.0469 -0.0148 0.0626 -0.0206
BPW91 0.0286 -0.0090 0.0479 -0.0155 0.0633 -0.0209
SVWN 0.0269 -0.0095 0.0454 -0.0160 0.0600 -0.0216
HF 0.0306 -0.0084 0.0518 -0.0145 0.0690 -0.0196
CH3;0H
B3LYP -0.0078 0.0027 -0.0128 0.0039 -0.0164 0.0044
B3PW91 -0.0071 -0.0065 -0.0137 0.0065 -0.0178 0.0075
BLYP -0.0092 0.0023 -0.0151 0.0080 -0.0191 0.0085
BPW9I1 -0.0053 0.0006 -0.0100 -0.0014 -0.0129 -0.0021
SVWN -0.0076  0.0042 -0.0114 0.0004 -0.0147 0.0006
HF -0.0100 0.0075 -0.0164 0.0120 -0.0213 0.0151
CH3;SH
B3LYP 0.0010 -0.0096 -0.0024 -0.0019 -0.0021 -0.0060
B3PW91 -0.0002 -0.0055 -0.0028 -0.0035 -0.0036 -0.0045
BLYP -0.0017 -0.0008 -0.0028 -0.0016 -0.0033 -0.0036
BPW91 -0.0080 0.0287 0.0019 -0.0138 0.0028 -0.0210
SVWN -0.0386 0.2647 -0.0388 0.2660 -0.0368 0.2427
HF -0.0020 0.0006 -0.0033 -0.0002 -0.0043  0.0006
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Table 6.6: The difference between the solvated and gas phase r2 and > moments as
calculated at the centre of mass using the 6-311G(2df,p) basis set and the
SCI-PCM solvation model.

Benzene Chlorobenzene Water
(e = 2.274) (e = 5.62) (e = 78.54)
Molecule Method <7r2> <> <r2> <> <r2>s <35>
N,
B3LYP 0.0060 0.0318 0.0103 0.0547 0.0137 0.0724
B3PW91 0.0048 0.0295 0.0091 0.0516 0.0120 0.0673
BLYP 0.0067 0.0355 0.0102 0.0569 0.0137 0.0751
BPWI1 0.0068 0.0349 0.0107 0.0562 0.0143 0.0757
SVWN 0.0063 0.0347 0.0108 0.0582 0.0143 0.0769
HF 0.0049 0.0255 0.0079 0.0428 0.0105 0.0573
CO
B3LYP 0.0102 0.0522 0.0152 0.0807 0.0238 0.1234
B3PW91 0.0107 0.0542 0.0185 0.0947 0.0247 0.1276
BLYP 0.0108 0.0612 0.0194 0.1094 0.0233 0.1364
BPWI1 0.0117 0.0649 0.0195 0.1097 0.0259 0.1462
SVWN 0.0117 0.0673 0.0090 0.0592 0.0273 0.1559
HF 0.0099 0.0307 0.0165 0.0515 0.0223 0.0706
CH,
B3LYP -0.0116 -0.0596 -0.0179 -0.0930 -0.0312 -0.1553
B3PW91 -0.0130 -0.0659 -0.0247 -0.1301 -0.0246 -0.1329
BLYP -0.0094 -0.0510 -0.0174 -0.0914 -0.0234 -0.1232
BPW91 -0.0123 -0.0624 -0.0191 -0.1005 -0.0250 -0.1325
SVWN -0.0124 -0.0664 -0.0229 -0.1204 -0.0301 -0.1600
HF -0.0071 -0.0366 -0.0130 -0.0685 -0.0189 -0.0974
NH;
B3LYP -0.0510 -0.2561 -0.0904 -0.4472 -0.1210 -0.5958
B3PW91 -0.0495 -0.2452 -0.0880 -0.4288 -0.1181 -0.5727
BLYP -0.0648 -0.3191 -0.1102 -0.5398 -0.1459 -0.7143
BPW91 -0.0632 -0.3051 -0.1059 -0.5107 -0.1393 -0.6714
SVWN -0.0563 -0.2830 -0.0956 -0.4785 -0.1256 -0.6295
HF -0.0426 -0.2072 -0.0724 -0.3490 -0.0956 -0.4599
H,O
B3LYP -0.0014 -0.0786 -0.1342 -0.5802 -0.1768 -0.7632
B3PW91 -0.0760 -0.3257 -0.1268 -0.5436 -0.1674 -0.7160
BLYP -0.0908 -0.3968 -0.1513 -0.6605 -0.1992 -0.8695
BPW91 -0.0838 -0.3618 -0.1400 -0.6043 -0.1843 -0.7949
SVWN -0.0864 -0.3755 -0.1405 -0.6142 -0.1851 -0.8076
HF -0.0622 -0.2605 -0.1038 -0.4345 -0.1370 -0.5732
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Benzene Chlorobenzene Water
(e =2.274) (e = 5.62) (e = 78.54)
Molecule Method <r?2> <> <r2> <r¥> <r2> <p3>
HF
B3LYP 0.0002 -0.0081 -0.0399 -0.1619 -0.0736 -0.2896
B3PW91 -0.2478 -0.8772 -0.2845 -1.0175 -0.3170 -1.1395
BLYP 0.0175 0.0548 -0.0256 -0.1134 -0.0625 -0.2556
BPW91  -0.1188 -0.3877 -0.1586 -0.5414 -0.1933 -0.6736
SVWN -0.0582 -0.2264 -0.0982 -0.3818 -0.1333 -0.5161
HF -0.0442 -0.1654 -0.0768 -0.2857 -0.1059 -0.3920
PH;
B3LYP -0.0068 -0.0234 0.0202 0.1128 -0.0315 -0.1273
B3PW91 0.0005 0.0073 0.0116 0.0648 -0.0239 -0.1009
BLYP -0.0103 -0.0391 -0.0027 0.0064 -0.0267 -0.1022
BPW91  -0.0239 -0.1093 -0.0089 -0.0337 -0.0222 -0.0980
SVWN -0.0341 -0.1598 -0.0280 -0.1273 -0.0460 -0.2162
HF 0.0082 0.0499 -0.0152 -0.0541 -0.0105 -0.0266
H»S
B3LYP -0.0419 -0.2087 -0.0763 -0.3752 -0.1019 -0.4985
B3PW91 -0.0473 -0.2346 -0.0800 -0.3963 -0.1084 -0.5338
BLYP -0.0470 -0.2313 -0.0828 -0.4056 -0.1156 -0.5665
BPW91  -0.0511 -0.2536 -0.0882 -0.4362 -0.1181 -0.5828
SVWN -0.0546 -0.2730 -0.0926 -0.4641 -0.1249 -0.6240
HF -0.0468 -0.2250 -0.0796 -0.3811 -0.1068 -0.5088
CH3;0OH
B3LYP -0.0405 -0.3744 -0.0696 -0.6277 -0.0932 -0.8244
B3PW91 -0.1016 -0.6992 -0.0578 -0.5749 -0.0795 -0.7637
BLYP -0.0574 -0.5022 -0.0636 -0.6572 -0.0895 -0.8753
BPW91  -0.0376 -0.3106 -0.0894 -0.6944 -0.1182 -0.9106
SVWN -0.0235 -0.2770 -0.0839 -0.6842 -0.1103 -0.8960
HF -0.0193 -0.2780 -0.0332 -0.4621 -0.0457 -0.6093
CH3;SH
B3LYP -0.0902 -0.6171 -0.0720 -0.6507 -0.1062 -0.8744
B3PW91 -0.0646 -0.4869 -0.0878 -0.7577 -0.1127 -0.9708
BLYP -0.0420 -0.3925 -0.0725 -0.6663 -0.1007 -0.8875
BPW91 0.1636 0.8217 -0.1252 -0.8699 -0.1873 -1.2792
SVWN 1.5488 7.3136 1.5529 7.3095 1.3748 6.2062
HF -0.0349 -0.3492 -0.0622 -0.5940 -0.0787 -0.7703
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except CO, HF gives the same trends as the DFT functionals but the changes induced
are much smaller than anything produced using DFT. The difference between the HF
and DF'T results for CO is not unexpected since HF is known to give the incorrect sign
for the CO dipole. This behaviour, the decreasing value of some of the CO moments,
is also evidence that the electron density is shifting so as to make the molecule more

polar.

6.5 Conclusions

The radial moments for N, and H,O were calculated with MP2 and QCISD to investi-
gate the basis set dependence of the moments. The addition of polarisation functions
show a definite convergence of the moments to specific values while the addition of
diffuse functions gives an increase in the < r >, < r2 > and < r® > values. This
investigation indicated that the 6-311G(2df,p) basis set was sufficiently accurate for
the calculation of the radial moments. Using this basis set the radial moments of a
set of molecules were calculated.

Comparison of the calculated moments to experimental results showed that both
DFT results and conventional ab initio results gave good agreement. For moments
which could not be compared to experiment the DFT values gave reasonable agree-
ment with QCISD results while MP2 and CISD values were the closest to QCISD
results. The DFT values, though, were generally slightly smaller for < r >, < r2 >
and < r® > and slightly larger for < r~! >

Dissolution of the molecules in a variety solvents had only a small effect on most
of the calculated moments. The SCI-PCM model, though, did indicate that the
solvents had a more significant impact on the moments than was indicated when

using the Onsager model. General trends were seen in both solvation models, such as



References 142

a general shrinking of the electron cloud for polar molecules which increased as the
polarity of the solvent increased. Comparison of the different functionals shows that
the B3PW91 and B3LYP functionals gave slightly smaller differences in the moments
than BPW91 and BLYP.

Although the radial moments add to the information about the DFT electron
densities obtained with the density difference index and the spin-polarisation index,
they do not present direct ways to improve these densities. Uses for these tools
must still be devised and tested so as to obtain better electron densities. One simple
way of utilising the density difference index is given in the next chapter which will
hopefully show that these tools can be very useful in designing a new and better

exchange-correlation functional.
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7. Reoptimisation of the Becke Three-Parameter

Hybrid Functional

The molecular properties calculated with density functional theory (DFT) using re-
cent approximate exchange-correlation functionals are approaching experimental and
high-level ab initio results.! Since these properties are inextricably related to the cal-
culated electron density,? these results imply that the calculated electron densities
should be of comparable accuracy. The techniques explored in the previous chap-
ters have indicated that the DFT densities are accurate but they have also pointed
out some qualitative and quantitative differences between the densities obtained with
current approximate functionals and those calculated using high level methods such
as second-order Mpgller-Plesset perturbation theory (MP2)3-6 or the quadratic con-
figuration interaction method using single and double excitations (QCISD).” Thus,
one method for improving existing functionals is to focus on improving calculated
electron densities which should in turn improve the calculated molecular properties.

Most exchange-correlation functionals have at least one parameter which must be
determined. Although it is advantageous to determine these parameters through first
principles,® this cannot be achieved in most cases. Thus, to obtain values for these pa-

rameters fitting schemes are employed to find the optimal results.®!3 Currently most
146
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parameters are fitted to the electron affinities, atomisation energies and ionisation
energies found in the Gaussian 2 (G2)' data set.*!! However, this technique only
gives an indirect improvement in the calculated electron density which can produce
inaccuracies in the electron densities and lead to poor results for properties not used
in the fitting procedures.'®> An optimisation scheme which fits the parameters directly
to an accurate electron density should produce a functional which is not biased to a
particular set of molecular properties. Moreover, the electron density, as calculated
with the new functional, should closely approximate the electron density to which
it was fitted. Therefore, the accuracy of the molecular properties calculated with
the new functional should also approach the accuracy of the method with which the
fitting density was calculated.

This chapter will focus on the use of the density difference index (DDI)!* to
directly fit a hybrid functional to an accurate reference density. This should produce
functionals with electron densities and molecular properties which are similar to those
calculated using the reference methods. To investigate the practicality of these new
functionals the molecular properties of a small set of molecules will be investigated and
compared to the results obtained using the methods used to calculated the reference

density and also to another similar exchange-correlation energy functional.

7.1 Details of Optimisation

The functional which was used in this study was the Becke three-parameter hybrid

functional.!!

E;e = E;7P + ao(EFF — EFP*) + 0. AEP®® + o AEFY®! (7.1)
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The above expression mixes the Becke 1988 gradient-corrected exchange energy!® and
the Perdew and Wang 1991 gradient-corrected correlation energy® with the local spin
density approximation exchange-correlation energy and the Hartree-Fock exchange
energy. Fitting to the G2 data set Becke found that the optimum values were aq =
0.20, a; = 0.81 and a. = 0.72 and the functional using these parameters will be
referred to as B3PW91.

To simplify comparison of functionals the three parameters, ag, a:, and a. will
be optimised using a subset of the molecules in the G2 data set(see table 7.2). Also,
all calculations will be done at the G2 geometries, calculated using an all electron
MP2 geometry optimisation with the 6-31G(d) basis set, as was used by Becke. Elec-
tron densities for all methods were then calculated at these geometries using the
6-311G(df,p)'"!® basis set and the DDIs were calculated between the new functional
and a reference method for all molecules. To give equal weighting to all molecules
each DDI was divided by the number of electrons in each molecule and the results
summed. The optimal parameters were then found by minimising this sum.

The two different reference densities used in the DDI calculations were MP2 and
QCISD and lead to two different sets of optimised parameters. Density difference
plots were then examined for four molecules to visualise the changes in the electron
density induced by the new parameters as compared to the B3PW91 functional. To
test the accuracy of the new functional various molecular properties, including the
radial moments of the electron density, the spin-polarisation index and optimised
geometrical structures, are compared to the results obtained with B3PW91, MP2,
QCISD and where available experimental data. All electron densities and geometries

were calculated using the Gaussian 94 computational chemistry package.!?
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7.2 Results and Discussion

Using the MP2 electron density as the reference density in the DDI calculations
vielded optimal values of ¢y = 0.41, a = 0.61 and a. = 1.00 and the functional
using these values will be referred to as B3P[MP2]. A comparison of these values to
those found by Becke for the BSPW91 functional reveals that it has about two times
the amount of exact exchange czcrgy and approximately 40% more gradient-corrected
correlation energy but only 75% of the amount of gradient-corrected exchange energy.
Moving to the QCISD as the DDI reference electron density gave a functional, which
will be referred to as B3P[QCI], with similar parameters, ay = 0.47, a; = 0.67 and

ac = 0.92, but with noticeable changes. The shift in the gradient-corrected values

Table 7.1: The DDI/electron for all molecules given by B3PW91 and the optimised
functionals and the differences between these two values.

MP2-DFT (DDI/electron) QCISD-DFT (DDI/electron)
Relative Relative
Molecule B3PW91 B3P[MP2] Change(%) B3PW91 B3P [QCI] Change(%)
BeH 0.0192 0.0139 28 0.018 0.0144 20
CyH,» 0.0198 0.0193 3 0.0229 0.0207 10
C,H, 0.015 0.0135 10 0.0189 0.0161 15
C,Hg 0.0122 0.0105 14 0.0151 0.0119 21
CH 0.012 0.0086 28 0.0175 0.0153 13
CHa(1A4)) 0.0122 0.0093 24 0.0186 0.0166 11
CH.(®B,) 0.069 0.007 22 0.0108 0.0086 20
CHj; 0.0092 0.0078 15 0.0116 0.0095 18
CH;Cl 0.0057 0.005 12 0.0068 0.0056 18
CH3;0H 0.0079 0.0067 15 0.0095 0.0072 24
CH3;SH 0.0064 0.0053 17 0.0075 0.0038 23
CH, 0.01 0.0087 13 0.0128 0.0101 21
Cl, 0.0044 0.0039 11 0.0053 0.0044 17
CIF 0.0054 0.0047 13 0.0067 0.0053 21
ClO 0.0081 0.0046 43 0.0083 0.0065 22

CN 0.0245 0.02 18 0.0144 0.0166 -15
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MP2-DFT (DDI/electron)

QCISD-DFT (DDI/electron)

Relative Relative

Molecule DB3PWS1 B3P[MFP2] Change(%) B3PW91 B3P[QCI] Change(%)
CcO 0.0105 0.0119 -13 0.012 0.0105 13
CO, 0.0078 0.0083 -6 0.0101 0.0073 28
CS 0.0092 0.0103 -12 0.0098 0.0089 9
F, 0.0079 0.0081 -3 0.0096 0.0089 7
H, 0.0162 0.0111 31 0.0239 0.0204 15
H,O 0.0085 0.0078 8 0.0096 0.0081 16
H,0, 0.0078 0.0076 3 0.009 0.0079 12
H,S 0.0067 0.0057 15 0.0082 0.0067 18
HCI 0.0054 0.0048 11 0.0064 0.0055 14
HCN 0.012 0.0122 -2 0.0131 0.0118 10
HCO 0.0101 0.0108 -7 0.0113 0.0099 12
HF 0.0072 0.0062 14 0.0079 0.0063 20
HOC! 0.0059 0.0054 8 0.0068 0.0057 16
Li, 0.0194 0.0176 9 0.0366 0.0354 3
LiF 0.0078 0.0078 0 0.0107 0.0066 38
LiH 0.0177 0.0117 34 0.0199 0.024 -21
N, 0.0122 0.0126 -3 0.0125 0.0115 8
N.H, 0.0079 0.007 11 0.0092 0.0076 17
Na, 0.0108 0.0076 30 0.0128 0.0102 20
NaCl 0.0058 0.0042 28 0.0064 0.0041 36
N\H 0.0083 0.0061 27 0.0102 0.008 22
NH, 0.009 0.0074 18 0.0109 0.0089 18
NH; 0.0091 0.0085 7 0.0109 0.0093 15
NO 0.035 0.0349 0 0.0108 0.0099 8
O, 0.0076 0.0076 0 0.0081 0.007 14
OH 0.0077 0.0062 19 0.0089 0.0072 19
P, 0.0076 0.0075 1 0.0086 0.0077 10
PH, 0.0077 0.0058 25 0.0091 0.0067 26
PH; 0.0085 0.0064 25 0.0102 0.0074 27
S, 0.0047 0.0044 6 0.0055 0.0047 15
Si, 0.0503 0.0559 -11 0.0531 0.0127 76
Si,Hg 0.0075 0.0052 31 0.0085 0.0054 36
SiH,('A,) 0.0104 0.0073 30 0.0122 0.0092 25
SiH,(®*B,) 0.0089 0.0062 30 0.009 0.006 33
SiH3 0.0096 0.0068 29 0.0103 0.0066 36
SiH, 0.0107 0.0075 30 0.0115 0.0071 38
SiO 0.0086 0.0106 -23 0.0104 0.0085 18
SO 0.0078 0.0073 6 0.0066 0.0054 18
SO, 0.0075 0.0092 -23 0.0085 0.0068 20
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corresponds better with Becke’s parameters while the exact-exchange results continue
to diverge from Becke’s value of 0.20.

Table 7.2 shows the various differences in the DDI/electron values between B3PW91
and the two new sets of parameters. The B3P[MP2] parameters produced an overall
mean relative improvement of 12% and an absolute mean relative difference of 16% in
the DDI/electron values when compared to B3PW91. Also, the maximum absolute
relative difference in the DDI/electron values was 34% for LiH. The average differ-
ences in the DDI/electron values between the B3P[QCI] functional and the B3PW91
functional increased to an overall mean absolute improvement of 19% and a mean
absolute relative difference of 20% while the maximum absolute difference increased
to 76% for Si,. The standard deviation of the absolute relative differences were 11%
for both the B3P[MP2] and B3P[QCI] functionals, respectively. These deviations
indicate that most of the DDI values only have a 10 to 30% reduction.

Figures 7.1 - 7.7 compare the B3P[MP2] and the B3P[QCI] densities with their
reference densities through density difference plots. Also presented are MP2-B3PW91
and QCISD-B3PW91 density difference plots to indicate where improvements have
been made in the electron densities calculated with the B3P[MP2] and B3P[QCI]
functionals. Although this is a relatively small subset of molecules, they give enough
information to assess the two new electron densities. Two different features are im-
mediately apparent in the density difference plots of BSP[MP2] and B3P[QCI] when
compared to the respective B3PW91 plots. The first is observed near the atomic
centres of all of the atoms excluding hydrogen. In the B3PW91 plots the atomic
centres have substantial negative density differences which are then followed by large
spikes of positive density differences moving towards the valence region. The two

new functionals substantially decrease the magnitudes of the large spikes of positive
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Figure 7.1: Density difference plot for BeH. a) MP2-B3PW91 and MP2-B3P[MP2] b)

QCISD-B3PW91 and QCISD-B3P[QCI]
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Figure 7.2: Density difference plot for LiH. a) MP2-B3PW91 and MP2-B3P[MP2] b)
QCISD-B3PW91 and QCISD-B3P[QCI]
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Figure 7.3: Density difference plot for CO. a) MP2-B3PW91 and MP2-B3P[MP2] b)

QCISD-B3PW91 and QCISD-B3P[QCI]
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density difference but move too much electron density towards the atomic centres
increasing the negative density differences there by up to eight times. The second
feature is the size of the areas where non-zero density differences are observed. For
the B3PWOI plots small areas or relatively large density differences are observed
while the B3P[MP2] and B3P[QCI] have much larger areas of relatively small density
differences. Overall the B3P[MP2] and B3P[QCI] functionals have an almost uniform
distribution of absolute density differences over the whole molecule. This may be
an indication that the new functionals’ electron density are converging towards the
reference density but there may not be enough flexibility in parameters for full con-
vergence. Also, the uniform differences in the electron density may also lead to poor
electronic properties since the electron density is slightly inaccurate over most of the
molecule.

Two different sets of molecular properties are used to assess the accuracy and
practicality of the new functionals. The radial moments of the electron density,
explored in chapter 6, can give a comparison of the spatial properties of the differ-
ent electron densities. The analytical method?® outlined in chapter 6 was used to
calculated radial moments for fourteen different molecules and the results are pre-
sented in table 7.2. A simple statistical analysis of these results shows that the aver-
age absolute difference between the MP2 and B3PW91 moments is, 0.0061, 0.0281,
0.1314 and 0.7933 for the r~!,r,7? and r® moments, respectively. Between the MP2
and B3P[MP2] moments the average absolute differences increases to 0.0082, 0.0359,
0.1999. and 1.1876 for the r~',r,r? and r® moments, respectively. This indicates
that the B3P[MP2] results are slightly worse than the BSPW91 values. However, for
some molecules, Si; and H; for example, the B3P[MP2] functional outperforms the

B3PWO1 functional slightly. Comparison of B3PW91 moments to B3P[MP2] mo-
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Figure 7.4: Density difference plot for CO,. a) MP2-B3PW91 and MP2-B3P[MP2]
b) QCISD-B3PW91 and QCISD-B3P[QCI]
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Figure 7.5: Density difference plot for HCN. a) MP2-B3PW91 and MP2-B3P[MP2]
b) QCISD-B3PW91 and QCISD-B3P[QCI]
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ments shows that for most molecules the B3P[MP2] functional gives slightly larger
< r~! > values and slightly smaller < » >, < r2 > and < 3 > values. The QCISD
and B3PW91 moments yield average absolute differences of 0.0060, 0.0280, 0.1305 and
0.5885 for the r~!,7,r? and r3 moments, respectively. This shows a slight improve-
ment in the performance of the B3PW91 functional when compared to QCISD than
when compared to MP2. The average absolute differences between the B3P[QCI] and
QCISD moments, 0.0109, 0.0438, 0.2668 and 1.4273 for the r~!,r, 72 and 73 moments,
respectively, is much larger than those observed with the B3PW91 functional. The

B3P[QCI] functional again shows increased values and decreased < r >, < r2 > and

Table 7.2: Comparison of molecular properties for fourteen different molecules.

Molecule B3PW91 B3P[MP2] B3P|QCI] MP2 _ QCISD

BeH
<r7l> 6.9280 6.9321 6.9381 6.9275 6.9299
<r> 8.6226 8.6153 8.6041 8.6614 8.6507

<r?> 23.4421 23.3745 23.2982 23.6774  23.6105
<rd> 79.1023 78.6145 78.1584  80.2921  79.9324

C2Hy
<r !> 9.9078 9.9085 9.9107 9.8976 9.8988
<r> 32.9338 32.9220 329165  32.9927  32.9877

<r?> 82.6728 82.5340 82.4894  83.0315  82.9669
<rd> 243.2201 242.2012  241.9025 245.0698 244.5513

CH
<r!'> 12.2834 12.2828 12.2900 12.2769  12.2820
<r> 9.4227 9.4151 9.4051 9.4375 9.4228
<r?> 19.1770 19.1136 19.0642  19.2140 19.1533
<rd> 48.2395 47.8990 47.6913  48.2888  48.0705
CH;0H

<r7l> 11.1106 11.1155 11.1175 11.1028 11.1068
<r> 35.6955 35.6690 35.6604 35.7485  35.7371

<r?> 84.2634 84.0581 83.9967 84.5646  84.4741
<rd> 231.8359 230.5870  230.2301 233.2596 232.6723

CH,4
<rl> 16.7321 16.7319 16.7410  16.7248 16.7218
<r> 15.9384 15.9246 15.9187  15.9841 15.9780

<r> 35.5862 35.4534 35.4079  35.8052  35.7408
<rd> 94.0096 93.2321 92.9889  94.9410 94.5346
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Molecule B3PWOL_B3PMP2] B3P[QCI] _MP2  QCISD
CN

<r-l> 10.5036 10.5101 10.5143 10.4889 10.4954
<r> 20.1602 20.1471 20.1376 20.1701 20.1775
<r¢> 38.5461 38.4696 38.4247 38.5717 38.6104
<rd> 89.4985 89.1150 88.9264 89.5355 89.7006
CcO

<r l> 11.6232 11.6256 11.6292 11.6127 11.6179
<r> 21.3407 21.3313 21.3220 21.3827 21.3574
<rz> 40.2791 40.2211 40.1754 40.4890 40.3503
<rd> 92.6086 92.3205 92.1265 93.4906 92.8688
Ha

<r~l> 1.9546 1.9579 1.9633 1.9540 1.9534
<r> 2.8268 2.8169 2.8079 2.8210 2.8193
<r:> 5.1639 5.1170 5.0827 5.1293 5.1194
<rd> 11.7098 11.5172 11.3989 11.5507 11.5080
H,O

<r-l> 19.3442 19.3415 19.3489 19.3386 19.3339
<r> 11.4373 11.4185 11.4093 11.4563 11.4505
<r?> 19.1406 19.0357 18.9979 19.2123 19.1723
<rd> 39.6816 39.2451 39.1134 39.9175 39.7346
LiH

<r !> 4.5510 4.5551 4.5595 4.5520 4.5517
<r> 7.5906 7.5707 7.5595 7.5962 7.6030
<r?> 23.0714 22.8979 22.8093 23.0862 23.1516
<rd> 88.1590 86.8059 86.1788 88.0190 88.5516
No

<r l> 11.3976 11.3968 11.3991 11.3913 11.3903
<r> 21.4096 21.4148 21.4090 21.4213 21.4304
<r?> 39.8176 39.8288 39.8014 39.8754 39.9092
<rd> 88.5342 88.5247 88.4128 88.7891 88.8856
O,

<r-l> 12.2825 12.2851 12.2877 12.2773 12.2792
<r> 24.7832 24.7793 24.7710 24.7896 24.7960
<r?> 44.6934 44.6654 44.6267 44.7223 44.7456
<rd> 93.2139 93.0682 92.9210 93.3223 93.3855
Sis

<rl> 14.0292 14.0248 14.0491 14.0333 14.0356
<r> 62.6775 62.6948 62.5269 62.6293 62.6203
<r¢> 160.4743 160.5629 159.6836 160.4818 160.3335
<rd> 484.8195 485.0841 481.8326 487.2823 485.8494
SO,

<rt> 23.9385 23.9263 23.9229 23.9340 23.9237
<r> 63.6712 63.7059 63.7125 63.7051 63.7427
<r?> 161.3489 161.4789 161.4929 161.5859 161.7477
<rd> 468.1479 468.4477  468.4141 469.5300 470.0323
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< r¥ > values for most molecules. These changes, though, are much larger than was
observed in the B3P[MP2] values and thus, the B3P[QCI] functional is outperformed
by B3PW91 for all molecules studied.

The optimised geometries for the same fourteen molecules are given in table
7.3 along with the frequencies of the diatomic molecules. Comparison of these val-
ues shows that the performance of the new functionals is mixed but produces some
discernible trends. The bond lengths calculated by the B3P{MP2] and B3P[QCI]
functionals are quite a bit smaller than the B3PW91 and as expected this leads to
higher calculated diatomic frequencies than observed for B3PW91. Although the
performance between the functionals is important, of more interest is how the new
functionals perform when compared to the reference methods. Table 7.4 shows the
mean of the absolute differences for the various properties when the DFT results are
compared to QCISD, MP2 and experimental results. The B3PW91 functional contin-
ues to outperform the other two functionals when compared to experimental results
while the B3P[MP2] functional is only slightly worse. However, the B3P[MP2] func-
tional performs as well if not slightly better than B3PW91 when compared to the MP2
results while B3P[QCI] continues give worse results than B3PW91 when compared
to QCISD. Focussing on the diatomic frequencies shows that for some molecules the
B3P[MP2] and even the B3P[QCI] functional yield more accurate frequencies than
B3PW91. The continued poor performance of B3P[QCI] is discouraging but a look
at the maximum absolute differences shows that there has been some convergence of
the B3P[{QCI] density towards the QCISD density.

Many of the molecules used for the optimisation of these functionals have open-
shell ground states. In chapter 5 some DFT functionals were shown to exhibit very

low spin polarisation within some molecules. To examine how well the new func-
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Table 7.3: Calculated geometric parameters and frequencies. Bond lengths are in A
and frequencies are in cm™!.

Property B3PW91 _B3PMP2] B3P[QCI] MP2 QCISD Experiment =2
BeH
T 1.348 1.344 1.340 1.343 1.348 1.343
v 2049 2064 2082 2107 2062 2059
CoH4
re(CC) 1.325 1.318 1.318 1.332 1.333 1.339
re(CH) 1.086 1.080 1.078 1.085 1.087 1.085
LCCH 121.7 121.7 121.7 1214 1216 121.1
CH
re 1.130 1.120 1.116 1.120 1.127 1.120
v 2815 2892 2927 2946 2862 2858
CH3;0OH
re(CO) 1.411 1.400 1.402 1.411 1.410 1.421
r.(OH) 0.958 0.950 0.947 0.956 0.955 0.963
r.(CH') 1.092 1.086 1.084 1.091 1.093 1.093
re(CH") 1.100 1.093 1.091 1.098 1.100 1.093
ZCOH 107.8 108.3 108.4 106.5 106.8 108.0
ZOCH' 107.1 107.3 107.3 107.0 107.1 107.0
LOCH" 112.8 112.6 112.5 1126 112.5
CH,
r. 1.090 1.086 1.083 1.090 1.093 1.086
CN
re 1.163 1.152 1.150 1.127 1.170 1.172
v 2170 2251 2269 2887 2181 2069
CcO
r. 1.125 1.116 1.115 1.135 1.129 1.128
v 2239 2308 2320 2156 2215 2170
Ha
re 0.745 0.741 0.736 0.738 0.743 0.741
v 4418 4485 43552 4533 4423 4401
H,O
Te 0.959 0.950 0.948 0.956 0.956 0.959
LHOH 104.0 104.6 104.8 102.7 102.9 103.9
LiH
r. 1.600 1.596 1.592 1.601 1.603 1.595
v 1398 1407 1417 1431 1407 1406
Na
Te 1.094 1.084 1.082 1.117 1.101 1.098
v 2459 2542 2560 2190 2410 2360
02
Te 1.199 1.181 1.179 1.222 1.200 1.207
v 1678 1791 1802 1469 1676 1580
Si,

Te 2.159 2.142 1.967 2.005 2.018 2.246
v 353 273 806 714 683 511
SO,

Te 1.448 1.429 1.427 1.454 1.438
£ 0OSO 118.8 118.8 118.8 1199 119.2
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Table 7.4: Mean of the absolute differences between DFT and high-level ab initio
or experimental geometric parameters. Maximum absolute differences are
given in the brackets.

Experiment- MP2- QCISD-
B3PW91 B3P[MP2] B3P[QCI] B3PW91 B3P[MP2] B3PW91 B3P[QCI]
Te 0.010 0.015 0.027 0.016 0.015 0.011 0.014
(0.087) (0.104) (0.279) (0.154) (0.043) (0.141) (0.051)
v 54 100 147 197 184 32 91
(101) (211) (295) (717) (618) (130) (150)
Z 0.3 0.5 0.6 0.7 1.0 0.5 0.7
(0.6) (0.7) (0.9) (1.3) (2.1) (1.1) (1.9)

tionals handle the spin-polarisation of open-shell molecules the spin polarisation
index (SPI)** has been calculated for a series of doublet and triplet ground state
molecules.(see table 7.5) No discernible trends are observed in the calculated SPIs
using any of the three functionals with some values being larger than the MP2 and
QCISD values and others being smaller. The B3PW91 yields good SPIs for all of the
molecules except for O, where it gives a value which is much lower than would be
expected. The B3P[MP2] functional improves the SPIs of B3PW9I1 for all molecules
when compared to the MP2 results. The same is not true for the B3P[QCI] func-
tional which only gives more accurate SPIs than B3PW91 for a few molecules when
compared to QCISD.

Overall performance of the new functionals is fair to poor. The B3P[QCI] func-
tional performed rather poorly for most calculated properties when compared to the
QCISD results. However, there were some signs that the new parameters yielded
electron densities that gave a reasonable qualitative approximation of the QCISD
density. The B3P[MP2] functional fared much better even sometimes outperforming

the B3PW91 functional when compared to MP2 results. Again the BSP[MP2] results
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Table 7.5: Calculated SPIs for molecules in doublet or triplet states.

Molecule B3PW91 B3P[MP2] B3P[QCI] MP2 QCISD
Doublet States

BeH 0.1799 0.1832 0.1855 0.1878 0.1867
CH 0.4260 0.4254 0.4273 0.4207 0.4187
CH; 0.4003 0.3997 0.4017 0.3890 0.3896
OH 0.7245 0.7252 0.7264 0.7180 0.7181
NH, 0.5604 0.5573 0.5583 0.5438 0.5441
CN 0.2365 0.2516 0.2552 0.3339 0.2574
Triplet States
CH.(®By) 0.6273 0.6188 0.6194 0.6049 0.6065
NH 0.9084 0.9041 0.9053 0.8966 0.8956
O, 0.2228 0.2907 0.3099 0.2513 0.3521
SiH,(3B;) 0.4014 0.3948 0.3975 0.3829 0.3833

show that its calculated electron density gives a good qualitative approximation of
the MP2 density and gives a reasonable quantitative approximation of the MP2 den-
sity. Results from this fitting technique could be limited by the parameters which
can be optimised and improved results could probably be obtained by fitting more

parameters.

7.3 Conclusion

The parameters for a hybrid functional were determined through fitting the DFT
electron density directly to a high-level ab initio electron density. This fitting was
achieved by using the DDI to give a quantitative difference between the DFT and
high-level ab initio electron densities. The optimal parameters ay = 0.41, a, = 0.61
and a. = 1.00 were obtained using the MP2 electron density as a reference with the
resulting functional being called B3P[MP2]. Using the MP2 molecular properties as a

reference showed that the performance of the B3P[MP2] was only fair when compared
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to B3PWO1. Switching to the QCISD electron density for the DDI calculations yielded
the optimal parameters ag = 0.47, a; = 0.67 and a. = 0.92, with the functional using
these parameters being identified as B3P[QCI]. These parameters only gave a small
decrease in the DDIs giving only a relative change between 10 and 30% for most
molecules which may not be a significant increase. Like the B3P[MP2] functional
the comparison of the B3P[QCI] and B3PW91 results used the reference method,
that is QCISD, molecular properties as a reference. This time the performance of
the new functional, B3P[QCI], dropped off giving relatively poor values. A close look
at the results, though, shows some encouraging signs that both the B3P[QCI] and
B3P[MP2], electron densities give at least a reasonable qualitative description of their
reference densities QCISD and MP2, respectively.

Although the results from these two functionals were relatively poor, it should be
remembered that this is just the first attempt to reoptimise parameters through the
use of DDI. Improvements can be made in both the fitting technique and also to the
functional that is being fitted to allow for more flexibility and hence a better fit of
the electron densities. Also, the other properties presented in the previous chapters
should help to provide some of the framework for further attempts at functional
design. Increasing the use of electron densities in functional design should lead to

functionals with increased accuracy.
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8. Conclusion and Future Work

This work has presented an indepth analysis of the electron densities calculated using
many different methods. Three different methods were employed to measure many
different aspects of these densities focussing, in particular, on the accuracy of the
electron densities from density functional theory (DF T) calculated using several dif-
ferent approximate exchange-correlation functionals. The first method, the density
difference index (DDI), gave a difference between the DFT densities and high-level
electron densities. The spin polarisation index was the second method and was used
to measure the difference between the a and 3 electron densities within an open-shell
molecule. The final method yielded the radial moments of the electron density giving
spatial information about the calculated electron densities. The observed results gave
insights into many aspects of the electron density which led to the reoptimisation of
a hybrid functional to try and increase the accuracy of its calculated electron density.

The results from the density difference index (DDI) indicate that it gives a semi-
quantitative measure of the differences between two electron densities. The elec-
tron densities from many different functionals were reasonably close to the second
order Moller-Plesset perturbation (MP2) theory electron density with Becke’s three-

parameter hybrids having the best results. When these electron densities were com-

169



8. Conclusion and Future Work 170

pared to the the quadratic configuration interaction method including single and
double excitations (QCISD) electron density the DDIs were slightly larger. Compar-
ison of the DFT DDIs to the QCISD-MP2 DDIs indicates that there is not only a
quantitative difference between DFT densities and MP2 or QCISD densities but there
is a qualitative one as well.

The indication of a qualitative difference between the electron densities as calcu-
lated using DFT and those calculated using methods based on the Hartree-Fock (HF)
ground state wavefunction led to the investigation of other properties of the electron
density. One aspect of the electron density, the spin-polarisation, has proven to be
difficult to quantify yet is important in open-shell species. A new method was out-
lined to try to solve the problem of quantifying this important property, termed the
spin-polarisation index (SPI). The SPI results calculated using DFT vield very low
values for a small number of open-shell molecules indicating that they did not calcu-
late the spin-polarisation properly for these molecules. For the rest of the molecules
the DE'T SPIs were in reasonably good agreement with QCISD results. O, was one of
the molecules where the DFT functionals performed poorly and a further investiga-
tion of O, electron density was carried out. The radially averaged a- and (-electron
densities of O, were plotted and two interesting features were observed. The first,
exhibited by all methods, was that the 3-electron density went thorough a minimum
between the bond midpoint and the oxygen atoms which was not mirrored in the
a-electron distribution. The second feature revealed a qualitative difference between
the DFT and wavefunction-based electron densities at the bond midpoint. For the
former methods the electron densities revealed an excess amount of a-electron den-

sity at the bond midpoint, while the latter methods revealed an excess amount of

B-electron density is at the bond midpoint.
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The observations of the radially averaged a- and B-electron densities of O, led
to the investigation of other radially averaged properties, specifically the radially
averaged moments of the electron density. Obtained from the results of these cal-
culations were insights into the spatial distribution of the electron densities for sev-
eral methods. Also, by using experimental results the accuracy of electron density
distributions could be assessed. The DFT radial moments calculated with several
exchange-correlation functionals showed good agreement with the experimental data
available and for values which were not available comparison to QCISD results also
showed good agreement. Usually, though, the DFT radial moments were too large for
all moments which indicates a more expanded electron cloud.! Results were also ob-
tained for approximating the effects of solvation with two different methods. Again,
the DFT results gave differences which were in very good agreement with the changes
in the QCISD moments. The results from the HF based methods which included cor-
relation effects were all quite similar as is expected.

The results from the DDI, SPI and radial moments of the electron density calcu-
lations are good indicators of the accuracy of electron densities but should also be of
use in improving DFT electron densities. An attempt at using one of these tools, the
DDI, in reoptimising the parameters of the Becke three-parameter functional was per-
formed. Fitting the parameters by minimising the DDI values of a series of molecules
should produce a functional with an electron density that approximates the reference
density used in the DDI calculations. The two functionals found using this method
were obtained by fitting the parameters to the MP2 and QCISD densities. Compar-
ing the molecular properties calculated with these two functionals to those calculated
with B3PWO91 gave poor to fair results. However, there were some encouraging in-

dications that the calculated densities from the two new functionals gave at least a
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reasonable qualitative description of the reference densities.

Although the results from the new functionals were discouraging, there were some
signs of qualitative similarities between the reference and DFT densities. Further
optimisations using more flexible functionals or a more refined fitting technique should
yield even more accurate functionals. However, with the information that can be
obtained with only these three tools about the qualitative and quantitative differences
between electron densities a fitting procedure which utilises two or three of these
methods may yield even better fit parameters. This procedure should then produce a
functional with an accurate electron density that gives not only correct spin properties
but also spatial properties. Ultimately though any new fitting procedure should
balance many properties including energetics, geometrical properties, and electron
densities.

Fitting techniques, though, are limited to reoptimising preexisting functionals or
to being applied to methods such as Becke’s systematic optimisation scheme.?2 To get
the most improvement in calculated electron densities functionals must be designed
from first principles. With many new methods, such as the Zhao, Morrison and
Parr method,? being proposed there are many opportunities to incorporate the tools

presented in this thesis into the design of new functionals.
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