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ABSTRACT

The procedure presented builds a bridge between computational intelligence and hydrologic
modeling in applying fuzzy and multivariable data to design in urban and rural watersheds.
Watershed parameters such as soil moisture content, cover density and impermeability are
viewed as continuous parameters using fuzzy set theory and are then analyzed in a fuzzy logic
control expert system. This logic model, involving relations between these parameters uses
methods that explicitly take vagueness into account. The theory of fuzzy sets, especially
fuzzy modeling, is employed in a new way to represent watershed parameter relations as a set
of fuzzy rules. This approach was implemented as an interactive modeling system, called the
“Fuzzy Logic Expert Watershed Curve Number” ( FLEW®Y). This model is based on logical
relationships between parameters rather than experimental data. Fuzzy logic control
methodology was used in development in three consecutive phases in which each phase
produced a base for the next phase of development. These phases were firstly, a single-input-
single-output (SISO) model for soil texture (% sand versus % clay), followed by double-
input-single-output (DISO) models for % sand versus each individual watershed parameter.
The final stage of fuzzy logic control was to develop a multi-input-single-output (MISO)
model based on the parallel algorithm by forward reasoning strategy with regard to
conditional and unconditional rule-based systems. The final model has an open-loop control
structure (output has no effect on input).

The program is organized as a procedural process with elements of action (membership
functions). Each membership function is defined in binary format as an object of an element.
Each element has two different references as a pivot (only a specific element appears to act
when the program is called) and as a global (all of the elements are affected when the program
calls the elements). This process appears during execution time as a user interface.

The user interface links keyboard input of fuzzy data to the fuzzy control and graphically
illustrates each input space. The user interface also indicates the inference action in a screen

output space. The user interface provides an effective means to assess the effect of changes



xv
in combination of inputs on the output response.

The program is coded in the Turbo C environment on a DOS platform using the Borland
graphic support system. This program is independent of any expert shell during the time of
execution.

Vertfication was carried out by comparison with the Soil Conservation Service (SCS)
method. The validation showed that the fuzzy logic model predicted a curve number in a
similar range to that of the SCS method. However, predictably some differences were
observed which can be attributed to fuzzy logic methodology. This is because fuzzy logic
control produces a continuous model, whereas the SCS model is a discrete model. The
advantage of the FLEW" model is that it is not limited to a specific range of inputs; any
combination of inputs (%esand, % cover, % moisture, and % of impermeable area) can be

translated to an output response (CN).



CONTRIBUTION TO KNOWLEDGE

The main contribution of this work is in building a bridge between computational intelligence
and hydrological modeling by using fuzzy set theory to develop a model called Fuzzy Logic
Expert Watershed Curve Number (FLEW®). The model converts watershed parameters’
continuity into a continuity of curve numbers.

The model is efficiently written on a DOS platform to be used by watershed developers to
estimate direct runoff based on the SCS curve number methodology.

The program is based on fuzzy logic control methodology and uses logical interpretation
of complex multivariable parameters in a watershed to quantify fuzzy data.

The model is an integrated parallel algorithm and uses a parallel rule firing system with a
forward chaining strategy in mixed with parallel rule firing method by applying antecedent
rules in conditional and unconditional forms. This strategy gives the program an ability to
apply unequal weight rules. An interface, developed for the multiple inputs, visually presents
the fuzzy logic membership functions on the monitor screen by use of three connected

algorithms that represent initialization, connection and visualization.

Xvii



1. INTRODUCTION

1.1 Background to Hydrologic Modelling

A watershed is one of the most complex subjects to study as it comprises an interaction

between climate, cover complex (vegetation), soil and human activities. Several approaches

have been suggested to model these phenomena by physical or mathematical (empirical and
theoretical) methods. Nash (1988) pointed out that hydrology has been unable to provide
general scientific procedures for predicting the effect of ground cover on hydrological
response.

Given the complexity of the system, no model has become widely accepted, for many of
the following reasons:

() Models are generally limited by the knowledge of the developer,

(i) Some models are structured by simplifying the concepts and assumptions which then
become the basis of model validation,

(iii)  Models are based on inadequate casual theory of the physics of hydrologic processes
in a watershed,

(iv)  Natural phenomena are often defined by a mathematical model without consideration
of the relevant features,

W) Spatial and temporal variability of parameters are not usually accounted for, and

(vi)  Some models are not able to be used for management in a large watershed.

For many of the above reasons several models have recently been developed or modified to
suit a specific region or application.
Traditional models may be classified in one of the following application categories :

(1) Research models. These models attempt to define system behaviour and formulate
principles. These types of studies are governed by the desire to seek fundamental
knowledge of modelling as a mathematical representation of a watershed.

(i) Operational and management models. These models concentrate on the effects of
development or operating changes on watershed response.

Recent developments have taken advantage of high technology computerized environments

within which watershed models have been developed. These include:

) Spatial software. Estimation and representation of hydrologic parameters is based on
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using the advanced technology of spatial analysis tools such as remote sensing, GIS
and GPS in large scale areas. Remote sensing facilitates the development of a spatial
and temporal database for modelling a watershed based on representation of
parameters in GIS. Physical geographers develop models based on a geomorphologic
point of view of a watershed and erosion processes. Dermo at al. (1994) developed
the LImburg Soil Erosion Model (LITEM) which is based on spatial variability of
runoff and soil erosion. This model is one of the first examples of a physically-based
hydrologic and soil erosion model in a raster GIS environment.

(i1) Artificial intelligence. This is a new alternative for representing the logical
relationship between qualitative and quantitative parameters in a watershed in the

present and in the future.

1.2 Computational Intelligence Models
Computational intelligence and soft computing approaches exploit a tolerance for imprecision,
uncertainty and partial truth to achieve tractability, robustness and low solution cost (Zadeh
1992). These types of approach typically borrow and adapt models from nature such as
biological neural networks, evolutionary adaptation, models of human cognition, etc. The
field therefore interfaces in many and interesting ways with traditional biological research.
Comoputational intelligence may be defined as, a computational system that can gather and
store information and process it in explicit and implicit manners with a degree of randomness
to efficiently solve the problem at hand.

In recent years, fuzzy logic applications have entered the mainstream of academic and
industrial research and development to the extent that commercial applications are now
common (Kaufmann 1975, Lee 1990a,b, Zimmermann 1994, Cox 1992, Schwartz et al.
1994, Yager and Filev 1994) Fuzziness can be found in many areas including engineering
(Schwatz 1994) and in manufacturing (Mamdani and Assilian 1981). There has also been
significant progress in efforts to combine fuzzy computation paradigms with other approaches
such as neural networks, to create hybrid systems with enhanced capabilities (Kosko 1992,
Berenji 1992, Nauck and Kruse 1992). Both neural networks (NN) and fuzzy logic systems
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(FLS) deal with important aspects of knowledge representation, inferencing, and learning
processes. However, they use different approaches and have their own strengths and
weaknesses. Neural Networks (NN) can learn from sample data automatically but lack an
explanation ability, whereas, fuzzy logic systems (FLS) are capable of performing
approximate reasoning but are usually not self-adaptive. The real power of artificial
intelligence lies in the integration of NN and FLS. Existing integration methods can be
classified into three broad categories: (i) building FLS with NN, (ii) converting NN into FLS,
and (iii) combining FLS and NN into a hybrid system. A variety of applications involving the
integration of NN and FLS are reviewed and the direction for further research in this area is
suggested.

Many scientists and engineers now use the paradigms of fuzzy computation to tackle
problems that are either intractable or unrealistically time-consuming to solve through
traditional computational strategies.

The paradigms of evolutionary computation such as genetic algorithms (GA) (Kim and
Kim 1995, Negoita and Roventa 1994, Perneel et al. 1995, Zhang et al. 1995, and Castro
1995), parallel algorithms, evolution strategies, genetic programming, classifier systems, and
combinations or hybrids thereof have been applied to problems that fall under the categories
described by Lee (1990a).

Recently there have been vigorous initiatives to promote cross-fertilization between the
hydrological and agricultural sciences, expert systems and soft computing paradigms
(Bardossy and Duckstein 1995, Ferson and Kuhn 1992) and also to combine these paradigms
with other approaches such as neural networks to create hybrid systems with enhanced
capabilities. Shen and Leitch (1993) used qualitative reasoning and fuzzy set theory to
produce an effective algorithm for simulation of dynamic systems by qualitative data. Zeng
and Singh (1995) developed an approximation MIMO model to demonstrate the
approximation properties such as fuzzy approximation mechanism, global approximation
bound, convergence property, and approximation capability of fuzzy systems. Turksen and
Tian (1995) investigated a rule search for a fuzzy expert system based on the overall similarity

measure (OSM) for industrial application.



1.3 Research Objectives

The overall objective of this study was to apply artificial intelligence and soft computing to

build a fuzzy expert system to provide hydrologic design information for a watershed, and to

predict the curve number (CN).

Specific objectives were:

1) To derive relationships among hydrologically significant watershed components of
soil, cover, land use, moisture content and impermeability based on logical relations.

(i1) To modify the discrete SCS method of classifying hydrologic soil groups to facilitate
modeling the real continuity of soil and moisture conditions.

(i) To enable prediction of the hydrologic curve number (CN) using computational
artificial intelligence, and

(iv)  To develop a PC-based fuzzy expert system for use by soil and water managers to

determine the CN for runoff potential as used by many hydrology models.



2. LITERATURE REVIEW

2.1 Overview of Current Conventional Models

The concept of modelling is generally based on a mathematical method in the form of an

analytical or numerical technique, used to represent the physical properties of the system. The

mathematical problem is then solved by an acceptable method and the result should then

represent the response reality of the physical phenomena modelled. Ferreira and Smith (1988)

presented the basic concepts of hydrologic and watershed modelling under the following

categories:

@) Problem definition; identification of the hydrologic quantities of interest to the
intended application.

(i1) System conceptualization; design of algorithms and conceptualization of the
modelling processes within the prototype system that need to be modelled in order to
estimate the desired quantities.

(i)  Mathematical formulation; this part of a model is based on previous study and some
selection of formulation to represent each identified component of the hydrological
processes.

(iv)  Re-organization and synthesization; the selected process equations are transformed
into a computational framework to reach the desired responses for the system as a
whole. This stage commonly involves computer programming.

(v)  Model validation; the model has to be tested in two stages. The first stage comprises
the venfication of the logical functioning of the parameters by testing the computer
program, while the second stage is to validate the adequacy of the model by
application to a real situation.

Current mathematical models of watershed hydrology can be classified in terms of
quantities and qualities of the variables used for prediction, spatial scale, time scale, generality
of the model and the applicability of the model. One of the simplest models (a single
equation) that explain the relationships among components in a watershed is the Universal
Soil Loss Equation (USLE) (Wischmeier 1959). A recent update of the USLE has been the
development of the Revised Universal Soil Loss Equation (RUSLE) (Renard et al. 1991).
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This again is an empirical model supported by a huge number of more recent experimental
studies. The RUSLE model, which uses USLE factors, greatly extends the USLE by
including runoff, interrill and rill erosion, sediment size and densities, erosion of channels, and
deposition of detached soil in parts of the watershed.

By the early 1950s digital computers become generally available and hydrologists began

to explore the application to hydrologic problems (Decoursey and Snyder 1969).
In 1960 Linsley and Crawford reported their work on the development of the Stanford

Watershed Model I (SWM). This was a relatively simple model using daily rainfall, a simple
infiltration function, and a combination of the unit hydrograph and recession functions to
generate the mean daily flow hydrograph.

Development also began on a model later named Areal Non-point Source Watershed
Environment Response Simulation (ANSWERS) (Huggins and Monke 1966). This model
was initially developed to simulate the response of small (2 ha) agricultural watersheds, during
and immediately following a rainfall event. Its primary application was initially for flood
generation. However, it was further developed for evaluating strategies for controlling
nonpoint source pollution from intensively cropped areas. The ANSWERS model uses a
distributed parameter approach compared to a lumped paraméter approach used in previous
models. A spatially distributed model has the potential for providing a more accurate
simulation of natural catchment behaviour, and the ability to simultaneously simulate
conditions at all points within the watershed (Beasley and Huggins, 1991). A complete
discussion of the development of the ANSWERS model is presented by Huggins and Monke
(1966) and Beasley et al. (1980).

The Cool Season Soil Erosion Model (COSSEM) was developed specifically for soil
erosion modelling in Prince Edward Island (Burney and Edwards 1992). COSSEM is based
on the ANSWERS model and is a major revision of the model presented by Burney (1977).
The model is designed for specific application to 'cool season' nonpoint source pollution
modelling in Prince Edward Island. The ANSWERS model, which was developed for
summer conditions has limited use in regions such as Prince Edward Island where the soil

is subjected to many freeze-thaws cycles from November through April, during which the
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major runoff events occur. COSSEM was written to be used on catchments or terrace
systems having channels, as well as non-channelized catchments such as fields or rainfall
simulator plots.

A spatially distributed model, Water Resources Management Model (WRMM) was
designed for continuous modelling over a full summer period with primary application to
Prince Edward Island (Mbajiorgu 1992). WRMM was aimed at modelling the effects, on
summer runoff events, of installing soil conservation structures.

The Chemicals, Runoff and Erosion from Agricuitural Management Systems (CREAMS)
model models the daily response of agricultural fields (Knisel 1980). CREAMS may be
viewed as a fundamental model whose component sub-models have been applied in later
models. CREAMS consists of three sequential modules: hydrology, erosion, and chemicals
(plant nutrients or pesticides). The erosion section of the CREAMS model is much more
sophisticated than either the hydrology or chemicals sub-models.

The Groundwater Loading Effects from Agricultural Management Systems (GLEAMS)
model was developed from CREAMS (Knisel et al. 1990). GLEAMS includes shallow
groundwater (soil profile) effects as well as all the components included in CREAMS. Most
of the GLEAMS parameters are the same as CREAMS, including the surface representation.

Following the development of EPIC (Erosion Productivity Impact Calculator), Williams
et al. (1985) used many of the concepts in developing the Simulator for Water Resources in
Rural Basins (SWRRB) model. SWRRB is a semi-spatial adaptation of the CREAMS
model, making it suitable for applications involving large, complex watersheds. The major
processes included in the model are surface runoff, percolation, return flow,
evapotranspiration, channel transmission losses, pond and reservoir storage, erosion and
sedimentation, and crop growth. Arnold et al. (1991) added water quality to the SWRRB
model and named the model Simulator for Water Resources in Rural Basins-Water Quality
(SWRRBWQ). The objectives of these models are to predict the effect of management
decisions on water, sediment, nutrient, and pesticide yields with reasonable accuracy for
ungaged rural basins. Each of the CREAMS, GLEAMS, SWRRB and SWRRWWQ models
uses the Soil Conservation Service (SCS) Curve Number (CN) technique for predicting



surface runoff depth on a daily basis.

Both the SWRRB (Arnold et al. 1990) and SWRRBWQ models have size limitations (up
to a few hundred square kilometres) and numbers of such watersheds (maximum ten
subbasins). The SWRRB model also had a simplistic routing structure with outputs
transferred from the sub-basin outlets directly to the basin outlet. To improve modelling
simulation, a model called ROTO (Routing Outputs to Outlet)(Amold et al. 1995) was
developed to take the outputs from multiple SWRRB runs and route the flows through
channels and reservoirs. However, this combination required considerable computer storage,
and manual intervention.

Amold et al. (1995) developed a more sophisticated model called SWAT (Soil and Water
Assessment Tools) to overcome these limitations. Thus, the SWAT model was developed
by merging SWRRB and ROTO into one basin scale model. SWAT allows a basin to be
divided into hundreds or thousands of grid cells or sub-watersheds. SWAT is a continuous
time model (daily step) that facilitates simulation of long-term impacts of management (e.g.,
reservoir sedimentation over 50-100 years) and timing of agricultural practices within a year
(e.g., crop rotations, planting and harvest dates, irrigation, fertilizer, and pesticide application
rates and timing).

In 1987, the United States Department of Agriculture (USDA) Agricultural Research
Service (ARS) began developing a new process-based technology to replace the empirical
USLE technology as the primary means for predicting soil erosion (Foster 1987). The
resulting model is known as the Water Erosion Prediction Project (WEPP), and is in the form
of a user-friendly computer program. The WEPP model separates water erosion into rill and
interrill components, and combines the results to calculate total erosion on a storm-by-storm
basis over an entire growing season. WEPP allows application to a diversity of environmental
conditions, as well as improvements in simulating the effects of soil moisture, topography,
residue cover, and seasonal changes in crop growth (Elliot et al. 1989). WEPP can be used

in either a continuous simulation mode or a single event mode.



2.2 SCS Methods of Direct Runoff Prediction
The Soil Conservation Service (SCS) method was developed by SCS hydrologists for
estimating direct runoff from storm rainfall (Mockus 1964). The principles of the method are
not new, but they are continually put to new uses. The SCS method builds a bridge between
meteorological and physiographic parameters in that the volume and rate of runoff depends
on both meteorologic and watershed characteristics, and estimation of runoff utilizes an index
to link these two factors. The precipitation volume is the single most important
meteorological characteristic used in estimating the volume of runoff. This meteorological
parameter is influenced by physiographic variables such as elevation, local slope degree,
orientation of the slope, and the moisture source. The soil type, land use, and hydrologic
condition of the cover are the watershed factors that have the most significant impact in
estimating the volume of runoff. The antecedent soil moisture is also an important
determinant of runoff volume.

The Soil Conservation Service developed several empirical equations for various soil and
land use practices. The principal application of the method is in estimating quantities of
runoff in flood hydrographs or in relation to flood peak rates. Four types of runoff can be
considered as:

(i) Channel runoff: occurs when rain falls on a flowing stream. It contributes directly to the
flood hydrograph. However, its magnitude is negligible.

(i) Surface runoff: occurs only when the rainfall rate is greater then the soil infiltration
capacity. This type of runoff occurs after the initial demands of interception, high
infiltration capacity, and surface storage have been satisfied.

(iii) Interflow: occurs when infiltrated rainfall percolating downwards encounters a soil layer
of low transmission. Flow then travels above the layer and may reemerge on the soil
surface downbhill as a seep or spring.

(iv) Baseflow: occurs as a fairly steady flow from natural deep storage below the vadose
zone. This type of flow seldom appears soon enough after a storm to have any influence
on the peak rate of runoff for that storm, but baseflow from a previous storm will

increase the flow rates.
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In arid regions the flow on smaller watersheds is nearly always surface runoff, but in humid
regions it is generally more of the subsurface type. The SCS method lumps all types of runoff
into direct runoff, which consists of channel runoff, surface runoff, and sub-surface flow in

unknown proportions. The Curve Number (CN), is an indicator of the probability of flow type
proportions: the larger the CN the more likely that the estimate is of surface runoff. The

value of the curve number (CN) ranges from 0 to 100 and depends on the watershed
properties such as soil type, cover type, treatment, antecedent soil moisture condition (AMC),
and hydrologic condition. McCuen (1982) and Boughton (1989) argued that the main source
of error in estimating runoff by SCS Curve Number is the selection of the CN.

The best fitting relationship for estimating runoff, found by empirical analysis was:

P -0.25)?
Q=——(P+o_2£ (2.1)

where P is rainfall (mm), Q is runoff (mm) and S is the maximum potential difference
(storage) between rainfall and runoff (mm).
The SCS method uses the runoff Curve Number CN, which is related to storage by:

25400

S=
( CN

- 254) (2.2)

Many models including CREAMS (Knisel 1980), GLEAMS ( Leonard et al. 1987),
AGNPS (Young et al. 1994a, b), SEDIMOT (Wilson et al. 1986), SPUR (Wight, 1983),
SWRRB (Williams et al. 1985), SWMM (Huber et al. 1981), SWAT(Amold et al. 1995) and
a sophisticated graphical user-friendly interface commercial model, Watershed Management
System (WMS v.S ) (Charistiansent 1997) all use the CN method for runoff prediction. All
are based on the work originally done by Mockus (1964).

The Soil Conservation Service (SCS) Curve Number (CN) procedure requires an initial
organization of the physiographic data base for the problem watershed. The SCS method is

composed of the three principal dimensions of soil (hydrologic soil groups), runoff (volume,
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peak flow, lag, time of peak), and cover-management (vegetation, management practices)

(McCuen et al. 1984).

2.2.1 Hydrologic Soil Group Determination

Soil properties influence the process of generation of runoff from rainfall and they must be
considered, even if only indirectly, in methods of runoff estimation. In agricultural land, the
minimum rate of infiltration is obtained for a bare soil after prolonged wetting. In the SCS
method the soil properties are represented by a hydrologic parameter, which indicates the
runoff potential of the soil and is the qualitative basis of the classification of all soils into four
groups. The classification is broad but the groups can be divided into subgroups. Schmidt
and Schulze and Schmidt (1987a,b) adapted the SCS method by changing the four basic soil
hydrology groups for Southern Affican soils. Three intermediate soil groups have been used
in the classification of soil forms and series. These groups are A/B, B/C, and C/D, giving a
total of seven soil groups.

The definition of soil groups is based on soil texture, infiltration rate, transmission rate, and
runoff potential. The hydrologic soil groups, as defined by SCS, consist of four groups which
are identified by the letters A, B, C and D. Soil characteristics that are associated with each
group are as follows:

Group A: Soils with very low runoff potential, having high infiltration rates even when
thoroughly wetted and consisting chiefly of deep sand, deep loess and gravelly sand. These
soils have a high rate of water transmission.

Group B: Soils having moderate infiltration rates, comprising shallow loess and sandy loam
(with fine to moderately coarse textures). These soils have a moderate rate of water
transmission.

Group C: Soils having slow infiltration rates when thoroughly wetted (high runoff potential).
The soil textures comprise chiefly clay loam and shallow sandy loam. These soils have a
moderate rate of water transmission.

Group D: Soils having very low infiltration (very high runoff potential). Soils consist chiefly

of clay soils , soils with very poor drainage or permanent high water table and soils with a
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claypan or clay layer near the surface. These soils have a very slow rate of water
transmission.

The SCS soil group can be identified at a site by one of three methods:

(1) Soil characteristics,
(i1) Soil survey classification (county soil map), or
(iif) Minimum infiltration rate.

The soil characteristics associated with each group are listed above. County soil surveys
give a detailed description of the soils at locations within a county. These surveys are usually
the best means of identifying the soil group. Soil analysis can be used to estimate the
minimum infiltration rates, or best estimation of some soils are by measurement of infiltration
rates in situ (e.g., using a double ring infiltrometer), which can be used to classify the soil

using the values in Table 2.1.

Table 2.1. Minimum infiltration rates for hydrologic soil groups (SCS 1972).

Soil Group Minimum infiltration rate (mm/hr) Class
A 75 - 125 High
B 375 - 175 Moderate
C 1.25 - 375 Slow
D 0- 125 Very Slow

Classification according to texture is presented in Table 2.2. The relationship between soil
classes based on the SCS soil classification and % sand, %clay and minimum infiltration rate

are presented in Figs 2.1 and 2.2, respectively.
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Table 2.2. Soil texture and permeability classification (after: Cook et al. 1985).

Texture Permeability class Hydrologic soil group
Silty clay, clay, heavy clay 6 D

Silty clay loam, sandy loam 5 C-D

Sandy clay loam, clay loam 4 C

Loam, silt loam, silt 3 B

Loamy sand, sandy loam 2 A

Sand 1 A

2.2.2 Hydrologic Condition (Cover)

Hydrologic condition is a qualitative definition of cover density. This condition is classified

as poor, fair, or good as defined below:

(1) Poor condition: an area that is grazed heavily and has mulch or plant cover on less than
50% of the area.

(1) Fair Condition: an area not heavily grazed and with cover ranging from 50% to 75% of
the area.

(1ii) Good condition: an area lightly grazed and has plant cover on more than 75% of the
area.

These classifications of poor, fair and good are fuzzy, but discrete, and can be translated to

statements in fuzzy set theory.

Wood and Blackburn (1984) evaluated the hydrologic soil group on rangelands by using
the SCS runoff method. As a result of these studies, they recommended that the hydrologic
soil groups should be abandoned, or greatly modified, for use in estimating infiltration rates
and runoff in arid and semi-arid rangeland, and criteria should be developed which make use

of surface soil characteristics.
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2.2.3 Surface Treatment Effects

Land treatment applies mainly to agricultural land uses and it includes mechanical conservation
practices such as planting on the contour as against up-and-downhill planting and conservation
tillage. These activities decrease the runoff potential. In an urbanizing setting, as the
population increases, the surface land is developed for urban use and a region is transformed
from the natural state to a totally manmade state. New structures, which add large amounts

of impervious areas to the watershed, decrease the water storage (infiltration capacity

approaches zero).

2.2.4 Antecedent Moisture Conditions (AMC)

The effects of antecedent moisture condition (AMC) were originally presented by SCS (1972)
as a discrete value for three specific conditions of dry, average and wet. These AMC classes
are estimated from five-day antecedent rainfall for either the dormant season or the growing

season, as applicable.

2.2.4.1 Determination of CN for AMC I and AMC I

The CN depends on soil type, cover type, treatment, hydrologic condition, and antecedent
moisture condition (AMC). SCS (1972, 1986) presented CN based on AMC II (average). One
of the common error-causing components in the CN estimation procedure is the AMC. Tables
for converting curve numbers from average (AMC II) to wet (AMC II) or dry (AMC I)
conditions also can be found in these publications. Yoon and Padmanbhan (1995) estimated
AMC I and AMC I by using a non-linear procedure to obtain the regression relationships.
Their fitted polynomial equations are given below.

(1) For conversion from AMC II to AMC I:

CNyc s = --24236 + 0.4878(CN,, )-T.4104E-3(CN - ,)?+3.9971E-4

(CNye 1)* -5.249E-6(CN e )*+2.5014E-8(CN - 1)° (2.3)
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(ii) For conversion from AMC II to AMC III:

CNy i = 0.61611 + 2.4914(CN,, - ,)-4.4208E-2(CN,, . ,)*+6.6839E-4

(CNupgc ' ~SA912E-6(CNyc ;)*+21.T112E-8(CN y c )’ (2.4)

2.2.5 Runoff Characteristics

The volume and rate of runoff depends on both meteorologic and watershed characteristics,
and estimation of runoff requires a method to represent these two factors. The rainfall volume
is the single most important meteorological characteristic in estimating the volume of runoff.
The soil type, land use, hydrologic condition of the cover and antecedent moisture condition
are the watershed factors that will have the most significant impact in estimating the volume
of runoff.

The SCS method has been applied by many hydrologists( Hawkins, 1978) for direct runoff
estimation. Jackson and Rawls (1981) applied the SCS curve number method to an urban area
using Landsat data. They concluded that Landsat data bases can be used in the CN estimation
process. The CN method also has been suggested as an appropriate method for infiltration
estimation (Chen 1982, Aron et al. 1977, Kumar and Jain 1982).

Curve numbers range from 0 to 100 depending on the watershed properties such as soil
type, cover type, treatment, antecedent soil moisture conditions (AMC), and hydrologic
condition. Typical values of CN are given in publications based on AMC II (average). This
average does not correspond to the actual watershed condition and CN can be adjusted
appropriately by use of expert systems.

Hawkins et al. (1985) suggested a probabilistic interpretation of AMC in the curve number
(CN) method, and applied the results to the problem of determining CN from rainfall-runoff
data. Any P and Q pair with Q>0, leads to an S, and to a CN using the relationship:

S=5(P+20-v (402 + 5PQ)) 2.5)

Bullock et al. (1990) suggested a modification of CN to account for varying moisture content
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with depth in the soil profile.

The original SCS infiltration model was developed for predicting total runoff volumes from
watersheds where only total precipitation data were available. Kumar and Jain (1982)
extended the SCS model to determining flood hydrographs, in which a plot of accumulated
runoff versus accumulated rainfall shows that runoff starts after an initial abstraction. They
showed that the infiltration rate depends on the rate of rainfall and, CN as representative of soil

hydrologic groups, cover complex, and land use.

2.3 Artificial Intelligence and Combined Models
2.3.1. General
The concept of expert systems (ES) and computational intelligence originated from research
in the area of artificial intelligence (AI). This knowledge is a branch of computer science and
electrical engineering with a soft computing point of view, and is concerned with the
development of systems that exhibit human-like intelligence from logic orders phenomena.

Research in this area began in the 1950's and the target point was the general process of
human reasoning (Minsky 1986, Newell et al. 1990). Further research indicated the general
patterns of reasoning a person uses for any problem (Feigenbaum 1977). In developing an
expert system an attempt is made to represent the knowledge of an expert in a specific area
of application. In general, a specific expert system then assists a user in making a decision,
or solving a problem, within a specific domain of expertise by mimicking an expert. Jackson
(1986), Barr and Pratt (1988) identified the characteristics of an expert system such as:
complexity, that normally needs a considerable amount of human expertise; high performance
in terms of speed and reliability; anid the justification of solutions and recommendations to the
user interface. An expert system has three main components: the inference engine that drives
the decision making process, a knowledge base that organizes known facts and information
necessary in making a decision, and the user interface.

Many of the early efforts at expert system construction were based on the collection of large
numbers of rules that captured empirical associations about their domain. A program such as

MYCIN (Shortliffe 1976) is composed of several hundred rules that encode the experience of
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human expertise. Essentially, the area of expert systems is the world of uncertainty. For
instance, in the field of soil and water engineering, we can find several qualitative expressions
such as Slow, Medium, High, Good, Very Good, Rapid, and so on. These expressions are
kinds of classes that only can be defined in an expert system domain as quantitative values.
There are three common knowledge representations and inference process schemes, which are

Rules, Semantic Networks and Frames.

2.3.2 Current Use of Expert Systems in Hydrology
The development and application of Artificial Intelligence (AI) in agriculture as well as in
hydrology is a new domain that has emerged only in the last five to ten years. In this time
there have been many efforts to develop expert system applications, but few systems are
operational. Examples are Water Efficient Landscape Planner(WELP) developed by Adams
et al. (1992) to reduce water use in residential areas, and Decision Support System (DSS) for
risk assessment of groundwater quality developed by Embleton and Engel (1992). Site layout,
water well condition, septic systems and fertilizer and pesticides applications are all assessed
by DSS. Rouhani and Kangari (1987) developed an expert systems for landfill site selection
with application to urban areas. Newell et al. (1990) applied a graphical support system to
groundwater contamination problems. The Snowmelt Runoff Model (SRM) was originally
developed by Martinec (1975) for simulation of snowmelt runoff for small European basins.
Engman et al. (1986 ) developed an expert system by incorporating the SRM model into a
model called EXSRM. SRM was written in FORTRAN and the source code for the SRM
model was converted in ZETA LISP with a FORTRAN tool kit. The EXSRM model appears
to be a very effective means for improving the utility of complex simulation models. Recently,
Varas and Von Chrismar (1995) developed an expert system for selection of methods to
calculate design flood flows. This expert system is able to select the appropriate method based
on the size of the watershed.

Schroeder et al. (1995) developed an expert system for irrigated wheat crop management
with an integrated architecture of the knowledge based system.

Arbour (1992) developed an expert system for soil erosion control, planning and soil
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conservation recommendations in Prince Edward Island (PEI). The expert system is based on
field physiographic information, human expert logical relations in practical agricultural
problems and the use of the USLE to estimate soil loss. This expert system demonstrated a
strong potential for developing soil conservation recommendations. The knowledge base was
structured in a frame formulation.

Yoon and Padmanabhan (1995) developed an expert system called Expert Hydrologist for
synthetic rainfall and direct runoff prediction for 12 mid-western states of the USA. Expert
Hydrologist is a mixed model with some external programming, obtained by implementing
OBJECT LEVEL 5 as an expert development shell. The main problem with using a very
sophisticated expert shell is then the dependency of the expert system hydrology on the expert
shell.

DaRe (1993) developed an expert system for groundwater protection (well protection)
called PROTEX. This expert system evaluates the contaminant transport around a well based
on the physical and chemical properties of the soil and water.

For real-time hydrologic control application, the artificial intelligence process often has
superiority over conventional methods. Shukla et al. (1996) used artificial neural networks
(ANN) to solve the Boussinesq Equation for transient drainage design. They indicated that
the ANN was about 2,600 times faster than the procedure of Numerical Method of Lines
(NMOL) developed by Skaggs (1976).

Fuzzy logic based Al has a vast domain of categories of application such as fuzzy clustering
(Bezdek and Hathaway 1992), fuzzy optimization (Buckley and Hayashi 1993), fuzzy
relational equations (Giuclea et al. 1996), fuzzy expert systems (Kim and Kim 1995), fuzzy
classifier systems (Bonarini 1993), fuzzy information retrieval and database queering (Kraft
et al. 1995), fuzzy decision making, financial and economic models (Cox 1993),fuzzy
regression analysis (Ghoshray 1996), and fuzzy pattern recognition and image processing
(Albert et al. 1990).

In environmental engineering applications such as hydrology, agriculture, food processing,
forestry, and waste management the application of fuzzy logic becomes an attractive area of

study. Duckstein et al. (1990) applied fuzzy set theory for optimization of water resources.
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Guillermo and William (1989) investigated forest planning with respect to decision-making
under fuzzy environments. David (1989) applied fuzzy graphs to analyze ecological modeling
of forest land. Woldt et al. (1992) proposed the use of a geostatistical method such as kriging,
together with fuzzy set theory for mapping groundwater in three-dimensions. Bardossy et al.
(1990) used fuzzy linear regression in hydrology for soil electrical resistivity and soil
permeability. Bardossy and Disse (1993) used a fuzzy rule-based model for infiltration.
Bardossy et al. (1995) applied fuzzy logic to study the movement of water in one, two and
three-dimensions. Smith and Eli (1995) developed a neural network model to predict the peak
discharge and time of peak from rainfall patterns, and Raman and Sunilkumar (1995)
investigated artificial neural networks in the field of synthetic-inflow for multivariate time
series in a watershed. Davidson (1997) applied fuzzy logic control in food processing.
McBratney and Moore (1985) implemented fuzzy set concepts for climatic classification of
forest and agricultural areas. Burrough (1989) applied a fuzzy mathematical approach for soil
survey and land evaluation. Flick (1993) used fuzzy set theory in modeling management of
agricultural ecosystems. Hansen (1997) developed a fuzzy expert system called SIGMAR for
marine forecasting based on a climatological analysis system and operational meteorology
(Murtha, 1995). Ameskamp (1997) developed a three-dimensional continuous soil-landscape
rules based fuzzy system for modelling soil information with a continuous perspective of the
soil called the TRCS model. This model is integrated in the GIS GRASS system to explicitly

produce a soil-landscape model with a low cost of operation.



3. COMPUTATIONAL INTELLIGENCE MODEL
The major terminology and some basic definitions are introduced in this chapter which
provides an overview of the application methodology. Specific relevant applications are

presented in the next chapter.

3.1 Fuzzy Set Theory
Fuzzy set theory provides the mathematical foundation for the description and handling of
human's imprecise knowledge. The theory of fuzzy sets was originally proposed by Zadeh
(1965) as a theory of graded concepts in which everything is a matter of degree. Fuzzy set
theory is a super set of conventional (Boolean) logic that has been extended to handle the
concept of partial truth - truth values between "completely true" and "completely false".
The concepts of fuzzy set theory, as a means for expressing the degree of ambiguity in
human thinking and quantifying it in real numbers, allows uncertain phenomena to be treated
mathematically. This theory is sometimes called modeling of uncertainties, as the following

kinds of uncertainties are distinguished:

@) Statistical uncertainty. An event occurs with a given probability as, for example,
the result of the throw of a dice,

(i)  Lexical or linguistic uncertainty. The imprecise description of an object like large
apartment, low price, rapid, etc.,

(i)  Informational uncertainty. The uncertainty caused by missing or incomplete

information such as credit worthiness.

By definition if X is a collection of objects each denoted generally by x, then a fuzzy set

A in X is a set of ordered pairs, such that,

A=, 1) xex @3.1)

Where p;(x) is called a membership function, degree of compatibility, or degree of truth of
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x in A, which maps the set X to the membership space M.

The membership function can be any real-valued function but, in general, normalized
membership functions with values between 0 and 1 are used. There, therefore, seems to be
a similarity to the description of possibilities which does not occur in reality (Zadeh and
Kacprzyk 1992). The extension of binary logic towards an interval enables grey values.
Instead of only black or white (definitely belongs to or does not belong to) grey levels are
introduced. Therefore, an element can partially belong to a set. Because of this an early fault
detection, based on trends and a smooth starting of control actions, is possible before a crisp

limit is exceeded.

3.1.1 Fuzzy Operators

Fuzzy logic offers an approach towards quantifying human decision making by handling
imprecise knowledge. This offers the possibility of moving the man-machine interface of
technical systems towards the human operator. Some of the mathematical operators in fuzzy

set theory are presented below.

3.1.1.1 Intersection
The intersection of two fuzzy sets A and B can be calculated by different mathematical

operations such as minimum, bounded difference, and algebraic product. For example:

Minimum : pg, = min(yp, , H4,)
Mg, = min (i, B, ) if max (u,, u, ) =1

0 else
Bounded difference : pg, = max (0, p, + p, - 1)
_ (u, - My ) (3.2)

2 - (Mg * My M, M)
Algebraic product: pg; = 1, . W,
(M, - My )

(g * My ~ M, - B )

Hsq

Hses

Besides these fixed operators parameterized operators such as those of Dubois, Hamacher

and Yager are presented by Zimmermann (1992).



3.1.1.2 Union
The operators for the union of two fuzzy sets A and B are:

Macimum : p, = max(u, , u,)
My, = max (M, H, ) if min (p,, p, ) =0
1 else

Boundedz D My =min (1, p, + p, )

e = (Mg - 1) (3.3)

+ (1, - Hy)
Algebraic Z DoMps T Mg Y H, T KW, - M,
g vy -2, 1)
Hrs (1- Ho - Ky )

For these calculations the result is greater than or equal to the maximum operation in the

equation. The union can also be calculated by parametrized operators such as those of

Hamaccher and Yager (Zimmermann 1992).

3.1.1.3 Compensating Operators
The compensating operators return a result greater than the intersection and less than the

union operators:
p. = p’a +l‘lb -“'a . pb
eyt -2,
o max (W, , M,
<l Ry)

e = = G4
min (g, , K, )
e T T, - 1)
i THTH
s T T h T 2, Hy

B

esides these conventional compensating operators, parameterized compensating operators are
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also used in order to fit an artificial linguistic description according to a given input-output

behavior. Operation of implementation of two fuzzy set A and B are presented in Fig 3.1.

3.1.1.4 Complement or Negation

The complement of a normalized membership function is evaluated by calculating:

ey () =1 -p;(x), xekX 3.5)

3.1.1.5 Criteria for Operators Selection

The variety of operators for the aggregation of fuzzy sets make it difficult to decide which

one to use in a specific model or situation. Zimmermann (1992) listed eight important criteria

according to which an operator can be selected as the most appropriate operator to be used

in an application as follows:

®
(i)

(iif)

@v)

W)

(Vi)

(vii)

Axiomatic Strength. The less limiting the axioms it satisfies, the better the operator.
Empirical Fit. It is not only important for an operator to satisfy certain axioms from
a mathematical point of view, but the operator must also be an appropriate model of
real-system behavior. This can normally be proven by empirical testing.
Adaptability. An operator is independent of the context and semantic interpretation
of an application. However, some operators can be adapted to a specific application
based on the scale of the system and parametrization.

Numerical Efficiency. In practice, this might be quite important, in particular when
large problems have to be solved.

Compensation. Some operators such as logical “AND” do not allow for
compensation. By using a compensatory operator instead of the AND operator the
system can be presented correctly.

Range of Compensation. In general, the larger the range of compensation the better
the compensatory operator.

Aggregating Behavior. The degree of membership in the aggregated set depends very

frequently on the number of sets combined. For example, by using product operators



LINGUSTIC TERM:

A

ANB
| ===

Jﬁn:pjnj(:)-h(ﬂj(x)-llj(x))

AUB

MI[.IM(:) =‘ﬁ!(ﬂ1(x).[‘3(¥))

A:

2z(x)=1-p,(x)

Fig 3.1 Implementation of operation between two membership functions A and B.
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each additional fuzzy set will normally decrease the aggregate degrees of membership.
This might be a desirable feature (not adequate).

(viii) Required Scale Level of Membership Functions. The scale level (interval, ratio, or
absolute) on which membership information can be obtained depends on a number of
factors. In general, the operator that requires the lowest scale level is the most

preferable from the point of view of information gathering.

3.2 Determination of Fuzzy Memberships
For most control applications the sets that will have to be defined are easily identifiable. For
other applications they will have to be determined by knowledge acquisition from an expert
or group of experts. Once the names of the fuzzy sets have been established, one must
consider their associated membership functions.

In building a fuzzy comprehensive evaluation model, fuzzy memberships are determined
and differ for subjective and objective factors (Turksen 1986, 1991, Norwich and Turksen
1984, and Lee 1990a) as discussed below.

3.2.1 Subjective Factors by Numerical Definition
In this case, the grade of membership function of a fuzzy set is represented as a vector of
numbers whose dimension depends on the degree of discretization. For a certain membership

situation, if u, tests are conducted, then the fuzzy membership is calculated by a simple ratio:

number of u, € A

ue) = Y

total number of u, (3.6)

3.2.2 Objective Factors or Functional Definition
To determine fuzzy memberships for objective factors as a function that can express the
membership function of a fuzzy set in a functional form, typically a distribution appropriate

for the application must be selected. Standard distributions, which are used for objective fuzzy
membership calculations, include the normal distribution, the half-decrease distribution, the
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triangular distribution, and the trapezoidal distribution, as shown in Fig 3.2. The fuzzy
membership functions associated with these distributions are defined by the mean a and the
range b:

For a bell-shape (normal) function (Fig. 3.2a):

2

For the half-decrease distribution (Figure 3.2b.):

1 (0<x<a)
1o [ a+b] (2 (3.8)
u(x) = 5 z(sm[x . ]x(x)) (a<x<b)
0 (b<x)

For the triangular distribution (Figure 3.2c) defined by a triplet (al, a2, and a3):

( 1 (x < al)
(x—alj (al<x<a3 (3.9)
u(x) = 4 a2 -al } ’
a3 —x
(:3-?;;) (a2 < x <a3)
L 0 (a3 <x)
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Fig. 3.2 Four types of Fuzzy Membership Distributions: (a) normal; (b) half-decrease;
(c) triangular; and (d) trapezoidal.
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For the trapezoidal distribution (Figure 3.2d), defined by the quarternion (al, a2, a3, a4):

K (x <al) )
(ﬁ) (al < x < a2)
p(x)=41 (a2 <x<a3); (3.10)
(___a4-x ) (a3 < x <ad)
a4 - a3
K (a4 < x) |

Selection of the type of distribution that best represents the actual situation is based largely

on an understanding of the problem and on experience.

3.2.3 Composition of a Fuzzy Relation
All of the fuzzy subsets assigned to each output variable are combined together to form a
single fuzzy subset for each output variable. In fuzzy set theory the concept of a fuzzy relation
is introduced as a generalization of crisp relations. These fuzzy relations in different product
spaces can be combined with each other by an operation called composition. There are
different versions of composition operators suggested for different applications which differ
in their results and also with respect to their mathematical properties. The general form of the
max-* composition differs in the associative operator *. Two max-* compositions are
considered in this section.

As an example, let R, (x, y), (x,y)¢e X x Y)and R, (y, 2), (v, z) € (Y x Z) be two fuzzy

relations. The max-min composition R; max-min R, is then the fuzzy set,
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hg, .5, = ((x , 2), max, (min (ug (€ .9), g, 020
|xeX yet ze2)

(3.11a)
where, Hg, - &, is the membership function of the fuzzy relation
on the fuzzy sets.
For max-prod Eq. 3.11a can be rewritten as:
Mi, @ &, = (((x, 2), max, (ug (x .) ug (0.2)]
|xe X, yeVl ze 2)
(3.11b)

where, u; ; IS the membership function of the fuzzy relation
/@ & P i
on the fuzzy sets.

In this study the max-product or max-avg and max-min composition is used. In max
composition, the combined output fuzzy subset is constructed by taking the point-wise
maximum over all of the fuzzy subsets assigned to a variable by the inference rule (fuzzy logic
OR). In SUM composition, the combined output fuzzy subset is constructed by taking the
point-wise sum over all of the fuzzy subsets assigned to the output variable by the inference
rule. All of the fuzzy relations with max-composition should be done by matrix operation to
reach the R,° R,. Eqgs. 3.11a and 3.11b for any operation relation matrices R, and R, may

generate different results.

3.3 Fuzzy Logic Control and Fuzzy Expert Systems

Expert systems and fuzzy logic expert systems have one thing in common: both model human
experience and human decision-making behavior (both are rule-based systems). An extension
of fuzzy theory is a fuzzy expert system or fuzzy logic control (FLC). To date, fuzzy expert
systems are the most common use of fuzzy logic. There are, however, also clear differences
between expert systems and fuzzy logic control (Zimmermann 1987). These are:

)] The existing FLC system originated in control engineering rather than in artificial
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intelligence,
(ii) FLC models are all rule-based systems,

(ii) By contrast to expert systems, FLC serves almost exclusively the control of
technological production systems (their domains are even narrower than those of expert
systems),

(iv)  In general, the rules of fuzzy logic control systems are not extracted from a human
expert through the system but are formulated explicitly by the FLC designer, and

(v)  FLC inputs are normally observations and their output will be numerical values rather
than qualitative expressions.
FLCs are used in several wide-ranging fields, including: linear and nonlinear control, pattern
recognition, financial systems, operations research, and data analysis.
By considering the fuzzy system which comprises four principal components: fuzzification,
fuzzy rule base evaluation, fuzzy inference engine or decision-making logic and, defuzzification,
the flow chart of the process of inferencing of the fuzzy expert system controller (FESC) is

shown in Fig 3.3.

3.3.1 Fuzzification

Labeling the crisp value of a numerical input variable with a linguistic term or adjective and

determining the corresponding grade of membership is called fuzzification. The fuzzification

interface perorms the following functions:

() Measures the values of input variables,

(1) Performs a scale mapping that transfers the range of values of input variables into a
corresponding universe of discourse, and

(iii)  Performs the function of fuzzification that converts input data into suitable linguistic
values which may be viewed as labels of a fuzzy set.

The most commonly used fuzzifier is the singleton fuzzifier and the fuzzy rule base consists

of N=T]";., N rules in the following form:
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Fig 3.3 Flowchart of the fuzzy expert system controller
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Ri,iy..i :ifxlis ‘ul":/‘ x2 is y2i2 A Ax ispu i 612
then y is the C,, i,....i, for I, =1,2,..., N, i,...N,..., 12)
I, =1, 2...N
where,

x;(=1,2, ..., n)are the input variables of the fuzzy system,

y is the output variable of the fuzzy system,

Ri, i, ...1, = fuzzy relation by implication in matrix form, and

pui;;cU; and C;» ;< Vv are linguistic terms characterized by the fuzzy

membership function.

3.3.2 Inference Engine
According to the definitions used in artificial intelligence (Al), the determination of conclusions
or the generation of hypotheses based on a given input state is called inference.

For operation within the standard control loop this means that the rules define the
dependencies between linguistically classified input values and linguistically classified output
values. The result is a variable u manipulated according to the input situation. This all occurs
in an upper symbolic level first. The implementation can use operators which are partially
discussed above.

Common inference strategies are the max-prod inference, which multiplies the whole output
membership function, or the max-min inference, which cuts the output's membership function
at the top.

The fuzzy inference engine is a decision-making logic module which employs fuzzy rules
from the fuzzy rule base to determine a mapping from the fuzzy sets in the input space U to the
fuzzy sets in the output space V. Ifx is an arbitrary fuzzy set in U and u(X) is its membership
function, then each rule Ri, i, ...I, of Eq. 3.12 determines a fuzzy set V p  Ri, i, ...i; 1, ..., in V

based on the sup-star composition (Lee 1990a),

V. Riji,....i,(¥) = 8up,_, , [0(X) = Riji...i (X, )] (3.13)
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where * is assumed to be the algebraic product. This is one of the most commonly used T-

norms in applications (Zimmerman 1992). The sup-star composition in the fuzzy inference

engine then becomes a sup-product composition and the composition is simplified to,

V W Rii,...5 (y) = Sup_, ., [WX) wiji,....i, (X),Cii,....i, )] (3.14)

where,

Wi iy, O = pil (x) p2(x,) oo™ i (x). (3.15)

The fuzzifer performs a mapping from the sets in V to crisp points in V. However, the
symbolic control action cannot be used for a real technical plan as the linguistically obtained

manipulated variable has to be defuzzified.

3.3.3 Defuzzification
Defuzzification is the calculation of a crisp numerical value from a space of fuzzy control
action. Defuzzification is usually the most time-consuming operation in fuzzy processing.

In most cases several rules will be invoked by different fuzzy terms and therefore different
control actions will be activated. But the result will be a crisp value which can be calculated by
different approaches. The most common defuzzification methods are :

(i)  Center of gravity (COG). This method computes the centroid of the area determined
by the joint membership functions of fuzzy action,

(i1) Mean-of-maxima (MOM). This method calculates the arithmetic mean of all values
with maximum membership, and

(i)  Height defuzzification (HD). This method computes the weighted sum of the height
values of all membership functions associated with conclusion terms.

March et al.(1993) evaluated several defuzzification methods for industrial application based
on memory requirement and speed of computation, as illustrated in Tables 3.1 and 3.2.

In this study, the method used is that of the most commonly used defuzzification , which is the
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Table 3.1 Comparison between some defuzzification methods based on speed and memory

requirement (from March et al. 1993).

Characteristic of the crisp output

Defuzzification Method

Memory requirements [1]  Speed [5] COG with singleton output membership
Product: Some output fluctuation function

Memory requirements [S] Speed [1] COG with non-singleton output
Product: Smooth output membership function

Memory requirements [2]  Speed [4] Left maximum

Product: Some optimistic output

Memory requirements [4] Speed [3] Right maximum

Product: Very optimistic output

Memory requirements [4]  Speed [3] Average of maxima
Product: Optimistic output

Memory requirements [3] Speed [4] Midpoint of maxima
Product: Some output fluctuation

Memory requirements [S]  Speed [1] Medium

Product: Some output fluctuation

Note : Memory requirement ranges from [1] =low to [S] = high

Computational speed ranges from [1] =slow to [5] = fast
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Table 3.2 The formulation of five defuzzification methods reported by the International
Electro-technical Commission (IEC) : Measurement and Control (1993)

Max
pr(x)dx
— Min
Z= Max
COG [p(x)dx
Min
il X; x u(x;)
Z = i=
COGS
'il m(x;)
x° Max
COA Z=x" [ p(x)dx= [p(x)dx
Min x°
RM Z=supx)xu(x’)= Sup u(x)
xe [MinMay]
Z =Inf(x’) xu(x') = Sup p(x)
LM x€ [Min,Max]
where

Z: Result of defuzzification
X: output variable
p: number of singletons
u: membership function after accumulation
1 index
Min: lower limit for defuzzification
Max: upper limit for defuzzification
Sup: largest value
Inf:  smallest value
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centroid defuzzifer called center of gravity (COG) with singleton output defined as:

Z V““'Rx xzn(yn,xz x)y:,t.. A,

_ ‘l'2 l €Em

= (3.16)
Z V. Ril fyu.dy (yil i,....i")
ili‘:"'iu €Em - =
and,
m = (i, i,..1| ij. =l,2...,Nj ;) = 1,2,...n) (3.17)

When the fuzzy system is a single-input single-output (SISO), the fuzzy rule base is given
by:

R =IFxispu, THENyisC, ,i = 1,2,...,N (3.18)

and Eq. 3.16 then becomes:

y = A0 = 31 LS,

" ):u,(x)

(3.19)

The antecedent (the rule's premise) describes to what degree the rule applies, while the
conclusion (the rule's consequent) assigns a membership function to each of one or more
output variables. Most tools for working with fuzzy expert systems allow more than one

conclusion per rule. The set of rules in a fuzzy expert system is known as the rule base system.

3.4 FLC Models
There are four possible forms for construction of a fuzzy logic control system based on input-

output relations. A FLC can be in the form of a single-input-single-output (SISO), double-
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input-single-output (DISO), multi-input-single-output (MISO) system, or multi-input- multi-
output (MIMO) system. In this study, SISO, DISO, and MISO models will be applied for

estimation of a curve number (CN). The theory for each of these three models is discussed

below.

3.4.1. SISO Model

On the basis of a verbal description, which is called a linguistic model as introduced by Zadeh
(1973), an overall fuzzy relation R for a single-input-single-output (SISO) system is created
by the formula below, where X; and Z; stand for fuzzy (linguistic) inputs and outputs,
respectively. Gupta et al. (1986) introduced an open-loop SISO model such that the output
has no effect upon the input control actions. A block diagram of the fuzzy system for an open
loop SISO model is shown in Fig 3.4a. Such a system, when described by fuzzy relations is
called an open-input fuzzy system. The compositional rule relation used by Zadah (1973) and
Mamdani (1974) is:

N
R=4 (X=Z) (3.20)
1=1

where ¢ stands for an operation which interprets the sentence connective “ALSO”. It is

assumed that, the verbal description of the process behaviour contains N relations:

RI : IF X is (X)) THEN Z is (Z,)

ALSO (3.21)
RN : IF X is (X,) THEN Z is (Z,)
In enhanced form,
Rl (u ,w) = min(XI(u), Z1(w))
.................. (3.22)

RN (u ,w) = min(XNu), ZN(w))



Input Output
X(u)— —>Z
(d)
X1 —> | Riuw) = MAX ®] @), R (@, R () -
R¥uwy = MAX R @, R} @w),-..RE ()
X2/ —> |
(c)
X1 >
XN >
. .
Xn >

Fig 3.4 Fuzzy logic controller open loop model for (a):SISO; (b) DISO (c):MISO

z
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where u and w stand for the universe of discourse of fuzzy inputs and outputs, respectively.
The relation R should be obtained as a union of R1, R2, R3,.... RN since the sentence “also”

is defined as the union:

(3.23)
R(u,w) = max(RI(u,w),.....RN(u,w))

Min and max operators are chosen for intersection and union. The compositional rule of
inference for approximate reasoning is suggested by Zadeh (1973). Max-min composition is
chosen to infer a fuzzy conclusion Z to a fuzzy observation X. If the fuzzy relations R1,
R2,... RN are created by application of some definition of fuzzy implication such as {[R1 = X1
xZ1],.....,[RN= XN x ZN ]} then:

Z=XeoR (3.24)

and,

Z(w) = max,., [min(X(x),R(uw))] (3.25)

3.4.2 DISO Model
For the case of a double-input-single-output (DISO) controller, the method of infering the

response to the inputs consists of extending the model which can be characterized by variables
X' and X? as inputs and Z as output. A block diagram of the fuzzy system for an open loop
DISO model is shown in Fig 3.4b. This model consists of creating the set of linguistic
statements, called fuzzy rules, where fuzzy subsets of input and output variables are used as
antecedents and consequents. If X',, X', ,...... Xy is a fuzzy subset of X !, and X 2, X3,
X?2, are fuzzy subsets of X2, and Z,, Z,,........Z, are fuzzy subset of Z, then fuzzy relation
R is defined by a set of fuzzy rules as follows:
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RI . IF X' IS X} N X* IS X! THEN Z IS Z,, ALSO
R2 . IF X' IS X, N X* IS X; THEN Z IS Z,, ALSO

Ri : IF X' IS X A X* IS X THEN Z IS Z, ALSO
RI :IF X' IS Xy N X* IS X,; THEN Z IS Z,,

(3.26)

By normalizing the inputs and output in the same universe of discourse a method, to create
the fuzzy relation R; which represents the fuzzy implication, can be derived by the
decomposition of the first rule into two parts. For the first variable (X"):

R'=Xx'°Z (3.27)

where ° stands for the max-product operator and for the second variable,

R*=X*x2Z (3.28)

Note that R *; and R? represent partial relations, or sub-relations, and therefore the overall

relation R=R! U R2. The overall relation for the combination of the first variable X' and the

output Z is therefore given by:

R'=R/UR, u,..,UuRy (3.29)

and for the combination of the second variable X? and the output Z it is:

R* = R’U R} u,...u R} (3.30)

By replacing the UNION operators with a fuzzy MAX operator the following is obtained:
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R'(uw) = MAX (R, (uw), Ry (uW),....Ry (u,W)) Gt
1
R¥uw) = MAX (R} (uw), R} @w),...Ry @w)) Y

As a result, two overall rules coexist in this model and can be used to infer output Z by
using the MIN-superposition of two relations with respect to the input X' and X*. An

alternative way to infer DISO is:

Z = MIN, _ ,(MAX MINIX", R'(uw)], MAX MINLX?, R*(u,w)]) (3.32)

3.4.3 MISO Model

To describe the multi-input-single-output (MISO) system (Fig.3.4c), let the system’s
performance be given by N relations (R) and the system have M fuzzy inputs XM X2 ,
X™ and a single output O. Then Eq. 3.12 is rewritten as:

R, = IF XV is (X") A XD is XP)......A X% is (X) THEN O is Ol
ALSO
, (3.33)
R, = IFXWis X)) A XD is (XD).....A X9 is (X3”) THEN O is ON

where X,®, X,®,.... X ™, and O1 stand for the values of fuzzy inputs X, X®,.. . X®™ and
fuzzy output O, respectively, when rule R, is created, and X, ), Xy @,......., Xy (M) are input
values, and ON is the output value used to create rule Ry. The variables X, X®, ..., X* are
normalized to the same universe of discourse. The first and following rules are decomposed

into M separate sub-rules and are given as:



R = x{V x 01

RM = x™ x 01

: (3.34)
RY = x{P x ON
Ry = Xy° x ON
In enhanced form, Eq. 3.34 can be rewritten as:
R® (u,w) = min(X" (), O1(w))
R*™ (u,w) = min(X* (), 01(w))
RY (u,w) = min(X® (), O1(w)) (3.35)

R (u,w) = min(X$? (), O1(w))

where u and w stand for the universe of discourse for inputs, respectively. The M overall sub-

rules are then given by:

RW

RI(1) u R2(1) u ...... v RN(1)

RIGM) U R2M) o ..o RN(M) (3.36)

R®

Eqs. 3.35 and 3.36 can be enhanced as follows:
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RIW (uw) = max (RIM(u,w), R2M(uw),... RNV (u,w))
(3.37)

RI™ (uw) = max (RI*(uw), R2*(uw), .. RN“)uw))

In this case, the fuzzy output of the MISO model is obtained using min-superposition of

all the M outputs inferred from the sub-models:

O = min { (XYWeRW) (X0 R00Y) (3.38)

It should be noted that the projection applied in Eq. 3.38 which determines a one-
dimensional fuzzy output will result in some loss of accuracy. In the extended form, Eq. 3.38

is rewritten as:

Ow) = min ([max, (min (X" (), R® (u, w))]..

[max_ (min (X*(u), R*(u, w)))]) (3.39)

3.5 Fuzzy Controller Requirements
In fuzzy logic inference, and particularly in fuzzy-logic control, one may run into difficulties
unless certain conditions are satisfied in the associated knowledge base.
FLC requires a 5-step sequence of principles and procedures for designing a fuzzy logic
rule-based system as:
) Analyze and partition the control system:
(a) Identify inputs and outputs,
(b)  Analyze and simplify the problem, and
(©) Identify fuzzy units (i.e. linguistically oriented adjectives).
(i)  Define input and output surfaces:
(a) Specify universe of discourse,

() Scale universe of discourse,
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(c) Determine number and distribution of membership functions, and
(d) Compare the deffuzification methods.
(iii)  Write rules:
(a) Write obvious rules,
(b) Write less obvious rules,
(c) Consider special cases, and
(d)  Rule tuning (alpha-cut, contribution weights, compensatory operators).
(iv)  Observe model behavior, begin verification and tune as needed:
(a) Examine output results, and
(b) Examine control surface.
) Optimize system for target platform:

(a) Implementation schemes.

3.5.1 Analyze and Partition the Control System

As in many designs, a starting point is to first describe the overall system (both the fuzzy and
the non-fuzzy variables) to be controlled. Specifically, it is necessary to specify what inputs
go to the system, and what outputs come out However, since design is an iterative process,

it may be found necessary and/or beneficial to go back and forth between steps to simplify the

problem.

3.5.2 Define Input and Output Surfaces

Once the inputs and output have been identified, the universe of discourse and its scale have
to be considered. The universe of discourse has to be an optimum for an input. If, the
universe of discourse is too large, the response will be large, resulting in a flat response.

An output membership function manifests itself in the defuzzification process. A large
output membership function will overpower others by lending its entire mass to the
defuzzification process.

Determination of the number and distribution of membership functions depends on the

sensitivity of the output to the input. Too many membership functions can rapidly fire different
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rules for small changes in input values, resulting in large output changes which in turn can
cause system instability. In practical application, the number of membership functions ranges

from 3 to 9 with appropriate overlap of memberships .

3.5.2.1 Overlap Indices
March et al. (1993) has proposed two indices to describe the overlap of membership functions

quantitatively as:

Overlap scope

Overlap Ratio =
i Adjacent scope (3.40a)
and,
Overlap Robustness = .Area of summed overlap
Maximum area of summed overlap
(3.40b)

! ﬁ(u,h + p, )dx
2[U-L]

A guideline for an overlap ratio indicates that this should be kept between 0.2 and 0.6. The
value of overlap robustness is usually greater than that of overlap ratio: it should be kept
between 0.3 and 0.7. For smooth operation of a fuzzy control model the desirable overlap ratio

is about 0.33 and overlap robustness about 0.5.

3.5.3 Rule-Base System

From a knowledge acquisition point of view, a fuzzy expert system is in the form of a rule-
based system. The rule-base system contains expert knowledge in the form of linguistic
expressions with some linguistic modifiers. Of interest in the use of linguistic vaniables in the
management of uncertainty, is the capacity for changing the intensity of the characteristic of the
variable by means of linguistic modifiers (Zadeh 1973). Zadeh (1996) stated that fuzzy logic

= computing with linguistic words. A linguistic modifier is an operator M which provides a
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new characterization M(A) of a fuzzy set A in the form of a mathematical function F in which:

YuelU pM(A)(u) = F(u(u)) (3.41)

There are several linguistic modifiers such as “very”, “strongly”, “really, “moderately”, “not

very”, “relatively”, etc. However, only four simple modifiers p\(x) =[very, low, medium, high]
will be used.
Three kinds of production rules have been defined:

®

®

(iii)

Simple rule. This kind of rule consists of a SISO model in the form of:
IF <antecedent> THEN <consequent> <CF>.
Multiple proposition rule. This is composed of several simple rules and can be either a
MISO or a MIMO in the form of:
IF < operator> <antecedent 1>

<antecedent 2>

<antecedent n>
THEN <consequent/s> <CF>
The operators may be one of, or a combination of such operators as AND, OR, ALSO,
or AVG.
Gradual rules. Sometimes two data sets are closely connected. The relation between
such gradual knowledge can be formulated with a gradual rule. In such a rule, a little
modification in the antecedent part entails some modification in the consequent part.
By using classical rules, the expert has to introduce in the rule-base all of the possible
linguistic variable’s combinations to formalize the relation between the linguistic
variables of the antecedent and the consequent part. By using gradual rules, it is only
necessary to use judicious linguistic variables and values with two key words “more”
and/or “less”. A gradual rule then is expressed by:

IF <more/less><antecedent> THEN <more/less><consequent> <CF>

For each rule there is a certainty factor <FC> characterized by key words which represent
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the importance of degree in the rules such as the following associations. The factors of

certainty may be presented by <FC> as:

Never 0 Very uncommon 0.1
Uncommon 0.2 Not usual 0.3
Sometimes 0.4 Neutral 0.5
Quite common 0.6 Common 0.7
Very common 0.8 Principally 0.9

Always 1.0

The factors of certainty are illustrated in Fig 3.5.

3.5.3.1 Writing Rules
To write rules, one must first encode the knowledge describing the system behavior. This
encoding results from observations of:
6)) System operators,
(i1) Interviewing experts, and/or
(ii)  Using existing control surfaces to describe the model. This generally provides a good
description of the model.

FLC behavior is defined by rules which map input labels to associated output labels by a
knowledge base system.

A rule-base should meet the following conditions:
) The rule base should be “complete”,
(1) The rules should not “interact”,
(iii)  The rules should be “consistent”,
(iv)  The inferences should be “continuous”, and
W) The rule-based system should be “robust” and “stable”.

The first phase of rule encoding involves describing all the rules that are practical to describe

a system. It should entail writing rules based on the visibility of rules. On the other hand, there
are rules that are obvious, yet intuitively correct. The second phase of writing rules is after the

model has been simulated and its behavior observed. Individual rules are then tuned
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so that their contribution to the control surface reflects more accurately the desired behavior
of the system being modeled. There are three areas to consider when tuning: compensatory
operators, alpha cuts, and contribution weights (techniques which depend on the desired model

accuracy).

3.5.4 Observed Model Behavior and Verification

The model characteristics that need to be verified are:

@) Output values: the defuzzified values returned by the model should be checked for
accuracy.

(i) Control surface: this consists of mapping of inputs to output as in a control surface and
is possible only for a DISO (two inputs and one output system) models for which the
control surface can be visualized in 2- or 3-dimensions, respectively.

(i)  Time simulation: the behavior of the model over time must be observed for sensitivity

and stability.

3.5.5 Rule Tuning

Once the model is running and the simulated output is determined, the output behavior can be
modified by tuning the individual rules to reflect more accurately the desired system output.
Techniques that can be used for tuning are alpha cuts, contribution weights, and compensatory

operators which are described below.

3.5.5.1 Alpha Cuts

An alpha cut is a process in which a designer specifies a threshold under which specified fuzzy

properties are evaluated; i.e., which rules are permitted to contribute to an inference process.

Two types of alpha cuts are:

@) Fuzzy Set-Level. This type of alpha-cut is applied at a level of individual fuzzy sets and
serves globally for the whole system.

(i)  Rule-Level. This type is applied at the rule level. If the truth value of the premise of
a rule falls below this type of alpha cut, the rule strength is set to zero. This means that
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the rule will not fire in control action.

3.5.5.2 Contribution Weights

Not all fuzzy rules are created equal during operation. In traditional fuzzy logic, rules are
selected and fired based on compatibility between the rules and the current input data vector.
The strength of a rule’s contribution to a consequent fuzzy region depends solely on this level
of compatibility. To provide the engineer with means to prioritize rules, a multiplicative
weighting factor can be assigned to each rule. These weights are called contribution weights
since they adjust the contribution of each of the rules to the final model solution. This weight

normally lies in the interval [0, 1].

3.5.5.3 Assertion

Assertions are consequents without antecedents. An assertion in a fuzzy model can be
conditional or unconditional. An unconditional assertion establishes a fuzzy region that acts as
the limiting boundary for the consequent solution space. For example, the statements
“saturation situation has maximum curve number” or “ very high sandy soil has minimum curve
number”is an unconditional assertion. When an unconditional assertion using fuzzy set W is

applied to fuzzy region S, the consequent region S*, is constrained as follows:

S = min[p,(x), udx)] (3.42)

The result of defuzzification for an unconditional assertion when the assertion is minimal should
be less then the consequent that is obtained by an ordinary COG method, or if the assertion is

maximal the consequent should be greater than the COG defuzzification result.

3.5.5.4 Compensatory Operators
Connective operators compensate for Zadeh’s strict rules of combination for fuzzy intersection
[AND] and union [OR]. The type of compensatory operators used in the rule evaluation

process impacts the way in which the control surface is created.
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One possible problem with the min/max operators is that if rules with many antecedents are

written, the AND operator moves the truth value to zero and OR moves the truth to unity. If

this type of behavior is not acceptable within a system, an average or sum operator may be more

appropriately used.

3.6 Knowledge Translation

In the development of a fuzzy logic application there are several different languages and shell

expert tools that are used in the field of fuzzy reasoning strategy. The choice of the

development environment will determine the structure that will go into the formalization.

The most prevalent of the languages that are used in the development of fuzzy logic control

are described below:

®)

(i)

Procedural and logical languages. The most prevalent procedural language is the family
of C languages. C languages are midway between algebraic languages, such as
FORTRAN, BASIC, ADA, etc., and logical languages such as LISP (McCarthy et al.
1965) and PROLOG. Algebraic languages are known as procedural languages, because
of the methodology of solving the problem by algorithm. On the other hand, logical

languages deal with problems with strategies such as backward or forward reasoning.

The knowledge representation of a fuzzy process is composed of data, rules and
procedures (Ross 1992). C is a scientific programing language, and in some case is a
lower level language, than a logical language. More recently, C was integrated to
produce object oriented programming capability using C++ libraries (Rao and Rao
1993).

Fuzzy logic acts as an algorithm for solving a problem. Fuzzy logic therefore has a
procedural structure from a programing point of view. In addition, fuzzy logic uses a
forward reasoning strategy as in an expert system. C language has the capacity to deal
with both characteristics of procedural and logical programming.

Fuzzy expert shells: Expert shells may be classified according to the method of
knowledge output. In general, there are different classes of fuzzy expert shell

knowledge generator :



(a)

(b)
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Code generators. As an example FUZZLE is a fuzzy system development shell
for PCs that helps the user understand the advantages and limitations of this
new technology via its straightforward and simple work flow. The software is
fully supported with graphics displays and mouse functions. One of the outputs
is a source code in C or FORTRAN language that can be converted into an
executable code and attached to an application environment. In addition,
FUZZLE has its own execution module with graphics support which does not
require any programming, compilation or linking. Using this option, the user
can obtain inference results directly from the FUZZLE shell by entering data via
the keyboard or by use of external data files. Once the inference engine is
validated, the executable portion of the software can be extracted by a click of
a button and it can be customized for special purpose applications. The final
product, which is stripped from FUZZLE related functions and screen images,
is ready for distribution and it is royalty-free. Thus, it is possible to not only
develop a fuzzy inference engine, but also to build software using FUZZLE.
This is all possible without knowing any programming language or compiling
any program segments.

Knowledge-based generator. This kind of expert shell generates only the
knowledge-based (rule-based) code rather than exact code. The amount of
information depends on the design purpose. For instance, Fuzzy Knowledge
Builder (FKB) developed by McNiell (1994) for a PC platform is a software
product of use to any fuzzy system designer. It is a graphics-based rule and
fuzzy set editor. It allows simple definitions of the verbal meanings of fuzzy
sets. Rules are displayed and edited as a graphics multi-dimensional matrix.
Fuzzy sets are displayed and edited as graphic line drawings. Output after
editing is a file to be included in the application source code. This file contains
the rules and fuzzy sets captured from the expert and this is needed for the
construction of the fuzzy associative memory or fuzzy estimation surface in any
application. The program provides an intuitively helpful interface for capturing



(iii)
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the expert judgements needed to build a fuzzy system.
Fuzzy systems use fuzzy estimation and control transforms. Input and output
fuzzy sets and rules for mapping from input to output make up the knowledge
base. But, the main problem for this kind of expert shell is the generation of a
rule-based system based on random rule generation. For example, for a very
sensitive output as in this study, the generated rule base is full of uncertainties.
For example, for a FLC with five inputs with this amount of fuzzy membership
functions the number of possible rules which can be generated is equal
5%5*5*8*3 =3000. This knowledge base is very large to manipulate with a PC
computer. In other words, the use of this kind of shell is limited in a small
computer environment.
Combined fuzzy language and expert shell. As an example of this mixed language, the
expert shell Fuzzy Programming Language (FPL) was developed by Togai Infralogic
(1993) specifically for the implementation of fuzzy logic systems. Consisting of fifteen
different objects, FPL provides ease and flexibility in defining fuzzy systems. TILShell
accelerates the fuzzy system design process by allowing the user to define and
manipulate the objects of FPL graphically rather than as text. The debugging and tuning
tools of TILShell interact directly with the FPL file which allows the fuzzy system to
be thoroughly tested before turning it into an executable form, thus saving
considerable time and effort in the development process. The Fuzzy-C Compiler
converts a fuzzy system from FPL into C source code which then may be compiled and
linked with other modules to produce an executable application. The Fuzzy-C Compiler
is specifically designed to provide the maximum possible flexibility in terms of trading
between speed, space, and precision of the output C source code. The most important
interaction between the fuzzy system and the rest of the program, from the point of
view of the user, are the calls to the fuzzy system by the rest of the program. FPL
makes this interface very simple. The program simply calls the name of the Project
object specified in the FPL file with the appropriate parameters as if it were a C routine
(which by this time it has been compiled to).
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4. CURVE NUMBER COMPUTATION
Fuzzy logic controllers mimic human knowledge by describing control strategies using
linguistic rules. Clearly, the control rules are model-free: no matter how mathematically
difficult the process is, an experienced operator can still generate some control rules. Fuzzy
logic controllers are most applicable to non-linear, dynamic, and ill-understood processes.

In particular, fuzzy rules may have different semantics, which lead to different choices
concerning the multiple-valued connective used to model the rules.

In this study, based on available information and the theoretical relationships between
parameters, it is assumed that the rule-based system is purely gradual with uncertain
conclusion parts. Purely gradual rules are of the form “the more Xis A, the more Y is B”
which qualitatively describes a relation between the values of X and Y without certainty.

In this study it is assumed that the curve number (CN) is a function of soil texture (S),
cover density (C), moisture content (M), and land use (L). This chapter details the application
of FLC models for all of these variables to determine the curve number (CN).

The FLC design in this study will be implemented in three different stages in terms of the
FLC models for which the theory was presented in Ch.3. The first model is a SISO and is a
preliminary model for % clay and % sand as individual inputs with curve number as the
output. The second FLC model is a DISO applied to soil texture versus each of the
parameters in turn to improve the relationship between an individual parameter and the curve

number. The final, complete model is in the form of a multi-input-single-output (MISO).

4.1 SISO Model

With reference to the concepts of fuzzy set theory (described in detail in Ch.3), this section
considers the nature of fuzzy data. As a start, a distinction is made between the way in which
we quantify between crisp data and fuzzy data. For example, in standard science and
technology for time when specified as a specific moment the value is a crisp (and definite)
number (e.g. one second, two hours, one thousand years, etc.). However, if time is specified
in terms such as “very long time”, “long time”, “short time”, “very short time”, etc. these

adjectives are not crisp (i.e., indefinite) and are described as being fuzzy. By the same
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argument, physical and chemical soil properties such as infiltration, hydraulic conductivity,
soil texture, permeability, soil moisture, etc. can be classified as fuzzy (and specified as fuzzy
data ranging in value). McBratney and De Gruijiter (1992) and Burrough et al. ( 1992)
investigated the use of fuzzy set theory for soil classification. The purpose of classification
was to reduce a complex system, represented by some sets of data, into explicitly defined
classes. Observations are grouped into continuous classes (fuzzy) rather than exactly defined
(hard) classes.

In this section, it is assumed that the relationship between soil texture and curve number
is not well known. However, the CN index can be specified for specific unique locations in
a watershed. This process demonstrates considerable non-linearity with respect to different
regions of soil classes within a soil classification diagram.

Let us represent the effects of soil texture (% sand and %clay) on curve number as {CNij},
where / denotes the i-th step of % sand and J denotes the j-th step of %clay. Also let the set
of membership functions for % sand, % clay, and curve number be denoted by Si, Cj, and CN,

respectively. Fori=j= 10,

§ = [S10 520 S30 S40 S50 S60 S70 S80 S90 $100}
C = [C10 C20 C30 C40 C50 C60 C70 C80 C90 C100] (4.1)
CN = [CNI10 CN20 CN30 CN40 CN50 CN60 CN70 CN80O CN90 CN100]

Based on the logic of the problem % sand has the effect of a decreasing distribution function
(DDF) while % clay has the effect of an increasing distribution function (IDF), with both

defined on i : [0, 1]. At this time, we are using the following membership functions
Mam®) = CUP | pg, (x) = [1-80) (4.2)

where C; and S; represent % clay and % sand, respectively each with a membership function
i (x). Depending on the process characteristics, the process regions can be categorized as
very low CN [CN10, CN20], low CN [CN30,CN40], medium CN [CN50,CN60], high CN
[CN70, CN80], and very high CN [CN90, CN100].
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By applying a SISO FLC model with inputs of soil texture (% sand and % clay individually)

with a very small rule-base that contains only five rules (in the form of Eq. 3-21) then:

Ri:  IFthe Clay is Very Low [C10, C20] THEN the CN is Very Low ALSO

R2:  IF the Clay is Low [C30, C40] THEN the CN is Low ALSO

R3:  IFthe Clay is Medium [C50, C60] THEN the CN is Medium ALSO (+4.3)
R4:  IF the Clay is Low [C70, C80] THEN the CN is High ALSO

R5:  IF the Clay is Very High [C90, C100] THEN the CN is Very High ALSO

and for % sand and curve number similar rules can be constructed:

Ri1:  IF the Sand is Very Low [S10, S20] THEN the CN is Very High ALSO
R2:  IF the Sand is Low [$30, S40] THEN the CN is High ALSO
R3:  IFthe Sand is Medium  [S50, S60] THEN the CN is Medium ALSO (4.4)
R4:  IF the Sand is Low [S70, S80] THEN the CN is Low ALSO
RS:  IF the Sand is Very High [S90, $100] THEN the CN is Very Low ALSO

By following the methodology of coding the SISO as an open-FLC (as presented in Ch.3)
the ALSO is a union operator (as in Eq. 3.3) which translates the fuzzy membership function
to a crisp value by application of Egs. 3.22, 3.23, 3.24, and 3.25. The input and output of
such a model is given in Fig 4.1. This figure represents the relationship between each of %
sand and % clay versus curve number based on the assumptions given above. Fig 4.1 shows
that the effect of % clay on the curve number appears as a complement of the effect of %

sand. In other words, clay has an inverse effect on the curve number such that:

CNg,, = 100 - CN,, (4.5)
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4.2 DISO Models
Double-input-single-output (DISO) FLCs were constructed for % sand versus each of the
other parameters with the three outputs used as input to a multidimensional-input-single-
output MISO for final estimation of CN. In a DISO, one way to recognize the possible rule
construction and visualization is by applying an n-dimensional matrix, called a fuzzy
associative memory (FAM), for each two variables. A FAM is an n-dimensional table where
each dimension corresponds to one input universe of rules. The ith dimension of the table is
indexed by the fuzzy sets that comprise the decomposition of the ith input domain.

For example, by using the FAM matrix, 25 possible combination rules relating % sand and
% cover density to CN is derived in rules system cells. Each cell in the FAM represents one
possible rule. The result of the defuzzification is a crisp number which is presented in the
form of a control surface in three-dimensional form. All of the stages involved in the FLC
model described in Ch.3 are considered in model development. Only the first DISO FLC
(sand and clay inputs) model is presented in detail as representative of the other component

DISO models.

4.2.1 Soil Texture
Soil properties markedly influence the process of generation of runoff from rainfall and must
be considered directly in methods of runoff estimation. The relevant soil properties are
commonly represented by a hydrologic parameter which indicates the runoff potential of a soil
and is the qualitative basis for the classification of all soils into four groups ( A, B, C or D).
The classification is broad but the groups can be divided into subgroups if desired. Wood and
Blackburn (1984) evaluated these four hydrologic soil groups and reported that the
hydrologic soil group classification system provides a poor basis for estimating infiltration
rates on rangelands but that modifying them may even accentuate the prediction error.
Schmidt and Schulze (1987b) adapted the SCS method by changing the four basic soil
hydrology groups for Southern African soils. Three intermediate soil groups have been used
in the classification of soil forms and series. Additional groups are A/B, B/C and C/D, giving
a total of seven soil groups (A, A/B, B, B/C, C, C/D, D).

In this study fuzzy logic facilitates change from division into hydrologic soil groups to a
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continuum classification based on the two parameters, % sand and % clay.

It is assumed that the effects of % sand and % clay on the estimation of CN are the same
but the relations are inverse (CN = [(%clay) and CN = [(1/ %sand) as formulated in Eq 4.5
as a result of the previous SISO model. Also it is assumed that the soil texture is continuous
by use of five fuzzy labels. Soil can range from very sandy (sand > 80%) to heavy clay (sand
<30%) based on a rectangular or triangular soil classification.

In considering soil texture alone, an assumption is made of no soil cover and an initially dry
soil. In this case CN is a function of soil texture only. Soil texture is composed of three
elements viz. sand, silt, and clay. These basic elements are classified in a rectangular soil
classification that presents twelve soil classes. Infiltration of water into the soil and the
transmission rate for these classes range from VERY RAPID for sandy soil to VERY SLOW
for clay soil. The curve number is based on the infiltration capacity and runoff potential of
each of the soils. The right-angle soil classification was used as a fuzzy associated matrix
(FAM) for sand, clay, and the curve number. The hypothetical representation of the fuzzy
membership function and, two-dimensional matrix for the rectangular soil classification is
illustrated in Fig. 4.2 As can be seen, the extremes of the input universes of discourse
corresponding to sand and clay are [0 - 100]. Based on the definition of curve number the
universe of discourse of the output value is [0 - 100]. All domains under consideration were

normalized for purposes of programming.

4.2.1.1 Terms and Membership Function
The choice of the number of terms of the linguistic variables as well as the shape and position
of the corresponding membership function is essential for the next design step. The magnitude
of the task of formulation of the rule-base depends exponentially on the number of terms or
adjectives. A larger number of terms enables smoother control actions, but leads to a
significant increase in the number of rules. In expert systems this is called combinatoric
explosion.

An example of combinatoric explosion is the following. If the input variable e(k)
distinguishes between three terms, and two previously obtained system deviations e(k-1) and
e(k-2) are also used, then the number of possible rules equals 3 x 3 x 3 =27 for a complete
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and consistent rule-base. If the number of distinguished terms is increased to five, 5 x 5§ x 5
= 125 rules are necessary.

Therefore a sensible compromise Leiween accuracy and computing effort has to be
determined for each application. During an examination of tlie form of the membership
function, the normal distribution form Eq. 3.7 and the triangular form Eq. 3.9 were selected.
The 3 x 3 FAM for sand, clay, and CN was applied for both membership function shapes,
assumning the fuzzy interval to be the same for both. The results are presented in Figs 4.3 and
4.4 for the triangular and the normal distribution, respectively. As may be noted there is no
considerable visual difference between Figs 4.3 and 4.4. In other words, these attributes are
not sensitive to the membership function shape.

However, based on the previous SISO test, the three adjectives fuzzy membership function
created an inadequate result as shown in Figs 4.3. and 4.4. It was therefore decided to
increase the number of adjectives from three to ten to reduce the interval of simultaneous
partial truth of several rules (normally four rules). The triangular decomposition membership
function of inputs and output values are presented in Tables 4.1, 4.2, and 4.3, respectively.

However, some basic rules concerning shape, size and position also must be considered.
A first distribution is usually equally distributed. The border terms of the control differences
have to include the ranges of disturbance or larger system deviations in the whole measuring
range. If the center of gravity is calculated for defuzzification in control applications, then the
border terms of the manipulated variables have to be chosen so that the center and not the

extreme equals the limit of the manipulated variable.

4.2.1.2 Rule-Base
For generation and checking of rule-bases concerning completeness and consistency, a rule
matrix is an adequate representation scheme, especially for mappings which easily can be
visualized in a three-dimensional diagram. But this is in contrast to the wish of realizing
complex operator strategies which would lead to a higher controller input dimension.

If the rule-base is very sensitive a higher input dimension, taking more previous values
into account is an adequate choice. In most cases two sampling steps are sufficient, taking the

curvature of the input shape implicitly into account. However, as mentioned earlier, this
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Fig 4.3. Control surface for CN based on a triangular membership function

Fig 4.4. Control surface for CN based on a normal distribution membership function



Table 4.1 Adjectives for curve number and related membership function.

Adjectives a, a, a,
Crsp p(x) Crisp u(x) Crisp p(x)
CN10 - 63 10 1.7 0.0
CN20 35 00 130 10 23.0 0.0
CN30 11.0 0.0 240 1.0 333 0.0
CN40 224 0.0 345 1.0 445 00
CN50 333 0.0 453 10 557 0.0
CN60 443 00 565 1.0 66.7 0.0
CN70 55.7 0.0 672 1.0 776 0.0
CN80 66.7 00 786 1.0 91.0 0.0
CN90 77.6 00 898 1.0 100 0.0
CN100 91.3 00 100 1.0 -
Table 4.2 Adjectives for % sand and related membership function .
Adjectives a, a, a,
Crisp_p(x) Crisp _u(x) Crisp u(x)
S10 - 45 1.0 11.0 0.0
S20 23 0.0 110 10 224 0.0
S30 11.0 00 224 10 333 00
S40 22.6 00 333 1.0 443 0.0
S50 353 00 453 1.0 57.7 0.0
S60 453 00 557 1.0 67.7 0.0
S70 55.7 00 687 10 776 0.0
S80 66.7 00 776 1.0 90.8 0.0
S90 77.9 00 9.0 10 100 0.0
S100 89.8 00 100 10 -

Table 4.3 Adjectives for % clay and related membership function.

Adjectives al a2 a3
Crisp _ u(x) Crisp _u(x) Crisp u(x)
C10 - 00 10 150 0.0
C20 00 00 150 10 224 00
C30 150 00 224 10 333 00
C40 224 00 333 10 443 00
C50 333 00 443 10 557 00
C60 443 00 557 10 664 00
C70 557 00 667 10 776 0.0
C80 667 00 776 10 898 00
C90 779 00 890 1.0 100 0.0

C100 89.3 00 100 1.0 -
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increases the number of possible rules very quickly.

The relation between the inputs and output cannot be derived from a theoretical study
using previous knowledge. However, there is a logical relationship among inputs and output.
Where terms like “sandy soil”, “heavy clay”...etc. are used to describe the fuzzy variables, the
control reaction will be the curve number (CN). As mentioned previously, because of the
partial matching attribute of fuzzy control rules, and the fact that the preconditions of rules
overlap, up to four rules can fire at the same time. The fuzzification of the cell groups of the
10 x 10 FAM matrix and the triangular membership function are presented in Fig 4.5 This
produces 100 rules in the form of the “/F...AND...THEN" rule-based system strategy, as
presented in Table 4.4.

Assuming that in the inference sub-process, the Min-Max operator is used as the rule
evaluator (as described in Ch.3), the methodology used in deciding what control action should
be taken results in the firing of four rules. This combination of rules produces a non-fuzzy
action or crisp value of output which is calculated using the COG defuzzification method
(Eq. 3.16).

The three-dimensional control surface of the FAM is presented in Fig 4.6. This figure is
a product of COG defuzzification and presents the interaction of sand versus clay to produce
the curve number control surface. All possible rules are used in a wide range of test data
across the universe of discourse. Fig 4.6 presents the control surface which results from the
mapping of inputs (% sand and % clay) to output (curve number). As expected, the estimated
maximum value of the curve number occurs with heavy clay and the minimum value with soil
high in sand content. As may be seen the control surface shows the gradual effect of changes
in the inputs on the resulting output. It is noted that the rules used to generate this surface
(Table 4.4) are not based on experimential data, as in control applications of fuzzy logic
control. These rules are based on logical relationships between the inputs and the output
space which are applied in a2 SISO model (Sec. 4.1) as a purely gradual process with an
uncertain conclusion part. This type of control surface does not need a compatibility index
(C) verification, as the compatibility index (CI) of inputs and the output space can be readily
verified visually .
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Table 4.4 Rules-based system for sand, clay, and curve number (CN) based on 10 x

10 FAM matrix.

IF Sand IS S10 AND Clay IS C10 THEN CN IS CN90
IF Sand IS S20 AND Clay IS C10 THEN CN IS CN90
IF Sand IS S30 AND Clay IS C10 THEN CN IS CN80
IF Sand IS S40 AND Clay IS C10 THEN CN IS CN70
IF Sand IS S50 AND Clay IS C10 THEN CN IS CN70
IF Sand IS S60 AND Clay IS C10 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C10 THEN CN IS CN40
IF Sand IS S80 AND Clay IS C10 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C10 THEN CN IS CNI0
IF Sand IS S10 AND Clay IS C10 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C20 THEN CN IS CN9%0
IF Sand IS S20 AND Clay IS C20 THEN CN IS CN80
IF Sand IS S30 AND Clay IS C20 THEN CN IS CN80
IF Sand IS 840 AND Clay IS C20 THEN CN IS CN70
IF Sand IS S50 AND Clay IS C20 THEN CN IS CN70
IF Sand IS S60 AND Clay IS C20 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C20 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C20 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C20 THEN CN IS CN20
IF Sand IS S10 AND Clay IS C20 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C30 THEN CN IS CN80
IF Sand IS S20 AND Clay IS C30 THEN CN IS CN70
IF Sand IS S30 AND Clay IS C30 THEN CN IS CN70
IF Sand IS S40 AND Clay IS C30 THEN CN IS CN70
IF Sand IS S50 AND Clay IS C30 THEN CN IS CN70
IF Sand IS S60 AND Clay IS C30 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C30 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C30 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C30 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C30 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C40 THEN CN IS CN80
IF Sand IS S20 AND Clay IS C40 THEN CN IS CN70
IF Sand IS S30 AND Clay IS C40 THEN CN IS CN70
IF Sand IS S40 AND Clay IS C40 THEN CN IS CN70
IF Sand IS S50 AND Clay IS C40 THEN CN IS CN70
IF Sand IS S60 AND Clay IS C40 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C40 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C40 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C40 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C40 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C50 THEN CN IS CN80
IF Sand IS S20 AND Clay IS C50 THEN CN IS CN80
IF Sand IS S30 AND Clay IS C50 THEN CN IS CN70
IF Sand IS $40 AND Clay IS C50 THEN CN IS CN70
IF Sand IS $50 AND Clay IS C50 THEN CN IS CN70
IF Sand IS S60 AND Clay IS C50 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C50 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C50 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C50 THEN CN IS CNI0
IF Sand IS S10 AND Clay IS C50 THEN CN IS CN80

IF Sand IS S10 AND Clay IS C60 THEN CN IS CN80
IF Sand IS S20 AND Clay IS C60 THEN CN IS CN80
IF Sand IS S30 AND Clay IS C60 THEN CN IS CN70
IF Sand IS S40 AND Clay IS C60 THEN CN IS CN70
IF Sand IS S50 AND Clay IS C60 THEN CN IS CN80
IF Sand IS S60 AND Clay IS C60 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C60 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C60 THEN CN IS CN40
IF Sand IS S90 AND Clay IS C60 THEN CN IS CN10
IF Sand IS S100 AND Clay IS C60 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C70 THEN CN IS CN90
IF Sand IS S20 AND Clay IS C70 THEN CN IS CN90
IF Sand IS S30 AND Clay IS C70 THEN CN IS CN80
IF Sand IS S40 AND Clay IS C70 THEN CN IS CN80
IF Sand IS S50 AND Clay IS C70 THEN CN IS CN80
IF Sand IS S60 AND Clay IS C70 THEN CN IS CN60
IF Sand IS S70 AND Clay IS C70 THEN CN IS CN50
IF Sand IS S80 AND Clay IS C70 THEN CN IS CN50
IF Sand IS S90 AND Clay IS C70 THEN CN IS CN20
IF Sand IS S10 AND Clay IS C70 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C80 THEN CN IS CN90
IF Sand IS S20 AND Clay IS C80 THEN CN IS CN90
IF Sand IS S30 AND Clay IS C80 THEN CN IS CN80
IF Sand IS 840 AND Clay IS C80 THEN CN IS CN80
IF Sand IS S50 AND Clay IS C80 THEN CN IS CN80
IF Sand IS S60 AND Clay IS C80 THEN CN IS CN70
IF Sand IS S70 AND Clay IS C80 THEN CN IS CN60
IF Sand IS S80 AND Clay IS C80 THEN CN IS CN50
IF Sand IS S90 AND Clay IS C80 THEN CN IS CN20
IF Sand IS S100 AND Clay IS C80 THEN CN IS CN10
IF Sand IS S10 AND Clay IS C90 THEN CN IS CN100
IF Sand IS S20 AND Clay IS C90 THEN CN IS CN90
IF Sand IS S30 AND Clay IS C90 THEN CN IS CN90
IF Sand IS 840 AND Clay IS C90 THEN CN IS CN100
IF Sand IS S50 AND Clay IS C90 THEN CN IS CN80
IF Sand IS S60 AND Clay IS C90 THEN CN IS CN70
IF Sand IS S70 AND Clay IS C90 THEN CN IS CN60
IF Sand IS S80 AND Clay IS C90 THEN CN IS CN50
IF Sand IS S90 AND Clay IS C90 THEN CN IS CN20
IF Sand IS S100 AND Clay IS C90 THEN CN IS CN20
IF Sand IS S10 AND Clay IS C100 THEN CN IS CN100
IF Sand IS S20 AND Clay IS C100 THEN CN IS CN100
IF Sand IS S30 AND Clay IS C100 THEN CN IS CN90
IF Sand IS S40 AND Clay IS C10 THEN CN IS CN%0
IF Sand IS S50 AND Clay IS C10 THEN CN IS CN90
IF Sand IS S60 AND Clay IS C10 THEN CN IS CN80
IF Sand IS S70 AND Clay IS C10 THEN CN IS CN70
IF Sand IS S80 AND Clay IS C10 THEN CN IS CN60
IF Sand IS S90 AND Clay IS C10 THEN CN IS CN30
IF Sand IS S80 AND Clay IS C10 THEN CN IS CN20
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4.2.2 Sand Content versus Soil Moisture

Moisture content is a component in the scientific classification of natural soils and is a
necessary parameter in defining important properties, such as the Atterberg limits, curve
number, etc. Soil moisture condition greatly affects infiltration and thereby directly affects
the watershed index. This parameter was originally defined by SCS (1972) in terms of
Antecedent Moisture Condition (AMC) for calculation of a curve number in the distinct class
ranges of DRY (AMCI), AVERAGE (AMCII), and WET (AMCIHI). These AMC are
selected and the category estimated from five-day antecedent rainfall for either the dormant
season or the growing season. These adjectives have a fuzzy meaning, but in practice, this
information is used to assign a deterministic value in hydrologic modeling.

In reality, moisture condition is a continuous rather than a discrete value and has
additionally, a different effect on the CN index for different soil types. Based on the fuzzy
meaning of the terms of the indefinite interpretation of moisture class labels used by some
models (Ch.2) it was decided to increase the number of classes from three to five labels that
will be presented in the final MISO model. However, at this stage the requirement was the
relationship between % sand and moisture content in the form of a 10 x 10 FAM matrix. In
this form the FAM matrix was solved in a double-input-single-output (DISO) fuzzy logic
model, and the reaction was the curve number. The methodology of this application is the
same as previously described for soil texture (Sec. 4.2.1)

The fuzzy membership functions for curve number (output), and % sand and % moisture
content as inputs, are presented in Tables 4.5, 4.6, and 4.7, respectively. Fig 4.7 shows the
FAM matrix for sand versus moisture content with 10 x 10 = 100 rules in the form of the IF...
AND...THEN.. ALSO strategy.

The Max-Min inference was used as described in Ch.3. The GOC defuzzification method
was applied to calculate the reaction to the input values as a crisp output number. The results
of defuzzification are shown as a control surface diagram in Fig 4.8. A plot of the design
relation between % sand, % moisture content , and curve number, derived from the control

surface, is illustrated in Fig 4.9.



Table 4.5 Adjectives for Curve Number and related membership function.

Adjectives a, a, a,
Crsp _ u(x) Crisp p(x) Crisp p(x)
CN10 - 00 1.0 13.7 0.0
CN20 25 0.1 110 1.0 25,0 00
CN30 82 00 224 1.0 36.1 0.0
CN40 19.6 00 333 1.0 47.1 0.0
CNS50 306 00 443 1.0 584 0.0
CN60 41.6 0.0 557 1.0 694 0.0
CN70 52.9 00 667 1.0 80.4 0.0
CN80 63.9 00 776 1.0 91.8 0.0
CN9S0 749 00 80 1.0 100 0.0
CN100 86.3 00 100 1.0 -

Table 4.6 Adjectives for Moisture content and related membership function .

Adjectives a, a, a,
Crisp p(x) Crisp p(x) Crisp p(x)

M10 - 00 1.0 11.0 0.0
M20 0.0 00 110 1.0 224 00
M30 112 00 224 10 333 00
M40 19.6 00 333 1.0 443 0.0
MS0 333 00 443 10 557 00
M60 43 00 557 10 667 0.0
M70 557 00 66.7 1.0 776 0.0
M80 667 00 776 10 898 00
M90 74.9 00 8.0 1.0 100 0.0
M100 898 0.0 100 1.0 -

Table 4.7 Adijectives for% Sand and related membership function.

Adjectives al a2 a3
Crisp  p(x) Crisp p(x) Crisp p(x)

S10 - 0.0 1.0 11.0 0.0
S20 00 00 110 1.0 224 0.0
S30 11.0 00 224 1.0 333 0.0
S40 224 00 333 1.0 443 0.0
S50 333 00 443 1.0 557 0.0
S60 443 0.0 557 1.0 664 0.0
S70 557 00 66.7 1.0 776 0.0
S80 667 00 776 1.0 898 00
S90 779 00 890 1.0 100 0.0

S100 89.3 00 100 1.0 -
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4.2.3 Sand Content versus Land Use

Land use is the general description for catchment cover and includes all types of vegetation,
mulch and fallow as well as non-agricultural conditions such as water surfaces (lakes,
swamps, etc.), urban, and suburban land use and impervious surfaces such as roads, roofs,
etc. In the SCS model, land use includes a subset of qualifiers which describe the land
treatment and hydrologic condition. Land treatment applies mainly to agricultural land uses
and includes mechanical conservation practices such as planting in rows, contouring as against
straight- row planting, and conservation tillage. Hydrologic condition is a qualitative
definition of cover density and may be classified as Poor, Fair, or Good. These adjectives are
based on cover density and engineering factors with fuzzy meaning.

In terms of categorizing the land use in discrete classes as from VERY HIGH runoff
potential (lakes, high % impermeable area, etc.) to VERY LOW runoff potential (forest,
planted forest, very high density pasture, etc.), the curve number is assumed to be a function
of the kind of land use and cover density for different soils. From a global point of view, the
effect of land use form having a very high density cover (forest) to very low density cover
(urban area) has an increasing distribution function (IDF). As before, the procedure follows
the definition of fuzzy membership function and fuzzy interval, FAM matrix, inference of
rules, defuzzification, and the visualization of results. The double-input-single-output was
designed for % sand and land use as inputs. The fuzzy membership function used was of the
triangular shape and the fuzzy intervals for inputs and output are presented in Tables 4.8, 4.9
and 4.10, respectively. The 10 x 10 FAM matrix of 100 rules is presented in Fig 4.10. Again,
the rule base system is structured in the form of /F...AND... THEN. However, in this section,
rules that contain the 10 label (high impervious area) unconditional strategies were applied
to enforce a determined action rule. The control surface reaction to the rules system is shown
in Fig 4.11. The two-dimensional plot of % sand and land use control surface is presented

in Fig 4.12.



Table 4.8 Adjectives for Curve Number and related membership function.

Adjectives a a, a,

1
Crisp p(x) Crisp p(x) Crisp _p(x)

CN10 . 00 10 150 0.0
CN20 25 01 110 10 250 0.0
CN30 82 00 224 10 361 00
CN40 196 00 333 10 471 00
CN50 306 00 443 10 584 0.0
CN60 416 00 557 10 694 00
CN70 529 00 667 1.0 804 00
CN80 639 00 776 10 918 00
CN90 749 00 80 1.0 100 00
CN100 863 00 100 1.0 -

Table 4.9 Adjectives for Land Use and related membership function .

Adjectives a, a, a,
Crisp  u(x) Crisp u(x) Crisp p(x)
L10 - 00 1.0 11.0 0.0
L20 0.0 00 11.0 1.0 224 0.0
L30 1.2 00 224 10 333 00
L40 196 0.0 333 10 443 00
L50 333 00 443 1.0 557 0.0
L60 443 00 557 10 66.7 0.0
L70 55.7 00 667 1.0 776 0.0
L80 66.7 00 776 1.0 8908 0.0
L90 749 0.0 8.0 1.0 100 0.0
L100 89.8 0.0 100 1.0 -

Table 4.10 Adjectives for% Sand and related membership function.

Adjectives al a2 a3
Crisp  u(x) Crisp p(x) Crisp p(x)
S10 - 00 10 110 0.0
S20 00 00 11.0 1.0 224 00
S30 11.0 00 224 10 333 00
S40 224 00 333 10 443 00
S50 333 00 443 10 557 00
S60 443 00 557 10 664 00
S70 557 0.0 667 10 776 00
S80 667 00 776 10 898 00
S90 779 00 890 1.0 100 00

S100 89.3 00 100 10 -
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4.2.4 Sand Content versus % Impermeable Area

Urbanization of a watershed is a situation in which impervious surfaces cover, or will soon
cover, a considerable portion of the area. Impervious surfaces include roads, sidewalks,
parking lots and buildings. Most urban areas are only partially covered with impervious
surfaces: and permeable surfaces remain an important factor in runoff estimates. Moreover,
permeable land surface in urban areas mostly differ from those in agricultural lands.
Permeable land surfaces in urban areas are more disturbed and often evidence mixing with
imported material.

Assuming infiltration is influenced more by soil texture (% sand) and % impermeable area
in urban and sub-urban areas, the curve number was derived as a function of % sand and %
impermeable area.

The fuzzy membership function, fuzzy intervals and rule-based system were developed as
described for the previous DISO models. Again a DISO FLC model was used and the fuzzy
membership function used was of triangular shape. Ten fuzzy intervals of input values were
used. The adjectives and related membership functions are presented in Tables 4.11, 4.12 and
4.13 for output and inputs respectively. The fuzzy membership functions are shown in Fig
4.13 and the FAM surface for % sand and % impermeable area is presented in Fig 4.14. One
hundred rules were used in the knowledge-base system in the form of an
IF...AND. THEN..ALSO.. strategy and a Min-Max inference was applied to evaluate the
rules-based system. The translator of fuzzy output to crisp output utilized the COG
defuzzification method.

In this component, in addition to conventional fuzzy logic based on conditional relations
between a rule’s antecedent and consequent, situations occur in which some rules have more
power. In some cases a rule will have absolute power to determine its consequent. This
unconditional situation will be elaborated on later in describing the MISO model. The result
of the reaction control surface to inputs and a plot of the relationship between % sand and %
impermeable area is shown in Fig 4.15. The results of this section are discussed at the end

of Ch.5.



Table 4.11 Adjectives for Curve Number and related membership function.

Adjectives a, a, a,
Crisp  p(x) Crisp p(x) Crisp p(x)
CN10 - 00 1.0 150 0.0
CN20 25 01 110 10 250 00
CN30 8.2 00 224 1.0 36.1 0.0
CN40 19.6 00 333 1.0 471 0.0
CN50 30.6 00 443 1.0 584 0.0
CNG60 41.6 00 557 1.0 694 0.0
CN70 529 00 667 1.0 804 0.0
CN80 63.9 00 776 1.0 91.8 0.0
CN90 74.9 00 890 1.0 100 0.0
CN100 863 00 100 1.0 -

Table 4.12 Adijectives for Impermeable area and related membership function .

Adjectives a, a, a,
Crisp _p(x) Crisp p(x) Crisp u(x)
IMP10 - 00 10 150 00
IMP20 00 00 110 1.0 250 00
IMP30 112 0.0 250 1.0 340 00
IMP40 196 00 340 10 450 0.0
IMP50 333 00 450 10 550 0.0
IMP60 443 00 550 10 660 00
IMP70 557 00 660 10 770 00
IMP80 667 0.0 770 1.0 900 0.0
IMP90 749 0.0 9.0 1.0 100 00

IMP100 90.0 0.0 100 1.0 -

Table 4.13 Adjectives for% Sand and related membership function.

Adjectives al a2 a3
Crisp p(x) Crisp u(x) Crisp u(x)

S10 - 00 1.0 110 00
S$20 00 00 11.0 1.0 220 00
S$30 110 00 220 10 330 0.0
S40 220 00 330 1.0 440 00
S50 330 00 440 10 550 00
S60 443 00 550 10 660 00
S70 550 00 660 10 770 0.0
S80 660 00 770 1.0 890 0.0
$90 770 00 890 10 100 0.0

S100 89.0 0.0 100 1.0 -
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% impermeable area for urban areas.

Fig 4 .14 Control surface for Curve Number as a function of % sand and
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84



85

5. MULTI-INPUT-SINGLE-OUTPUT (MISO) FUZZY LOGIC MODEL

5.1 General

Multivariable fuzzy control systems have received a great deal of recent attention from
engineers and scientists. This interest results from a recognition that:

(1) Real control systems are multidimensional (multi-inputs), and

(i)  Computer implementation of real physical systems requires the processing of a large

data base, which is often accompanied by memory overload.

Analysis and design procedures for each system are consequently very difficult. Shakouri et
al. (1982) proposed a fuzzy control algorithm for multivariable systems which is based on a
state space model of the system. Walichiewicz (1984) proposed a multidimensional fuzzy
controller using the decomposition of rules through intersection coefficients. Gupta et al.
(1986) developed a multivariable fuzzy control for an open system. Koczy and Hirota (1992,
1993) argued that decomposition of rules through intersection produced better sensitivity in
approximation reasoning and low memory requirement. Gegov et al. (1994), Gegov and
Frank 1996), and Valente de Oliveira (1995) considered a decentralized method for solving
a multi-variable system by passive and active decomposition methods using off-line and up-
line algorithms. They found that a decentralized method was suitable under certain
conditions. The use of a Genetic Algorithm (GA) in a hierarchical multi-variable fuzzy
controller (HIFLC) to reduce the number of rules was investigated by Linkens and Nyongesa
(1996). They assumed that the number of rules is a linear function of the number of state

inputs with a conditional rule inference.

5.2 MISO Model
In this chapter a muiti-variable fuzzy logic controller, based on the theory presented in Ch.3
for an open-loop control system by paralle! rule firing, is presented. Open-loop fuzzy systems
are those systems, described by fuzzy relationships, in which the outputs have no effect upon
the input control actions.

This comprises a division of the crisp values of variables such as % cover density, % sand,

% moisture condition and % impermeable area into classes and the assigning of a fuzzy label
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in the universe of discourse ( which ranges from 0 to 100 for all inputs and outputs in this
study) to each of the classes of crisp inputs. As an example, soil moisture condition class
labels may comprise VERY DRY, DRY, MOIST, FC, and, SATURATION. The
membership functions defined on the input variables are applied to their actual values to
determine the degree of truth for each rule premise. The definition of domain and universe
of discourse for a fuzzy logic controller is very important. These definitions are normally
based on human expert experience; however, at times the developer has to determine these
mathematically.

As described in the previous section, a triangular distribution (Eq. 3.8) was used to define
the fuzzy membership function for the soil texture , the cover density, the moisture condition,
and the % impermeable area as inputs, and for the curve number (CN) in the output space.
However, since in this model the fuzzy quantity space was modeled by use of linguistic terms
which are used in the rules, the fuzzy relation degenerates to a conventional binary relation,
with the ranges of the input spaces (X'...X™) based on the theory presented in Ch.3.

The specific MISO model developed in this study is named FLEW (Fuzzy Logic Expert

Watershed model for Curve Number),

5.2.1 Effect of Membership Function on Inference
In this section, a set of rational properties for membership functions involved in an inference
is postulated. Basically, the nature of these properties is semantic and related to information
processing issues. It should be stressed that other properties may be considered in the design
of interface membership functions. Two main properties are as set out below:
) Semantic concern. Semantics of relevance to the interface comprise:
(a) The number of adjective terms (or referential fuzzy set) used. Human beings
only can memorize and utilize a limited number of linguistic terms per fuzzy
variable. Therefore, this number should not exceed a practical limit of 7 = 2
different terms.
(b)  The “natural zero” positioning: one point should exist to represent the natural

zero position. That is, whenever required, there should be a linguistic term
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that can include zero.

Coverage of the universe of the discourse (UoD): the linguistic term should
cover the entire universe of discourse so that every datum value has a
linguistic representation.

Normalization of the membership functions: since each membership function
represents a linguistic term with a clear semantic interpretation, then at least
one datum in the universe of discourse (UoD) should exhibit full matching
with each membership function.

Distinguishability of the linguistic terms: the adjectives should have a clear

semantic meaning; i.e. they should be distinct from each other.

Information processing concerns: Since inference can also be viewed as the

pre/postprocessing blocks of a fuzzy system, from an information point of view the

interaction between the membership functions of the referential fuzzy set and an

interface should:

(@)

(®)

©

Allow information equivalence between the original and the converted data
i.e. an inference should conserve the information inputted into the processing
block. This is directly related to the necessity of ensuring that the overall
system will process the input signals and not something which is
unrepresentative.

Contribute to improving the overall system capabilities. This includes both
the level and the optimization of explicit performance.

Keep computational requirement as low as possible. This includes both

memory requirement and time of execution.

5.3 Organization of Input/Qutput

A conventional computer algorithm cannot handle ambiguities. On the other hand, programs
based on fuzzy theory are specifically designed for ambiguities. Given a fuzzy set of the

possible conditions in the real world, representation of an ambiguity simply means that more

than one member has a non-zero confidence interval.
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The selection of the most appropriate shape for a membership function depends on its
intended use. If the final output is to be non-numeric, then a flat-topped membership function
with adjacent functions having maximum overlap are usually best. However, if the output is
to be numeric, then peaked functions intersecting at one half confidence intervals are usually
the most appropriate.

In terms of computer programming, the method of representation of a fuzzy membership
function in the input and output spaces for this study is in matrix format, as below:
) Input space. This is a four dimensional space for which the dimensions are sand, cover

density, moisture condition, and impermeable area defined as:

Xen = | x x@ xo X | (.1

where X, X® X® and X are sand, cover density, moisture content, and impermeable area,
respectively. The units of the input space are percentage of interval space of the fuzzy sets.
The effect of each variable on the curve number is based on a logical relationship between
inputs and output. For instance, the behavior of soil texture is based on runoff potential
which ranges from very low runoff potential (very sandy soil) to very high runoff potential
(very low sand or very high clay soil). Each variable in the input space is fuzzified into five

membership functions as below:

vis = x0 VLC = X® VDRY = x& VLIA = xO

Ls = xO LC = xP DRY = X LA = x8

X0 = | MS = XM X® = | MC = x| X9= | MOIST = x| X9= | M4 = X
vLs = x{ HC = X8 FC = x& HIA = Xx¥

VHS = X VHC = x& SATU = X& VHIA = X

(5.2)

The fuzzy sets were arranged in a 2-D matrix form for simplicity of programing. Each

membership function was presented as a vector in [0, 1] space. The X™ input space relation



matrices were then as below:

(a) For sand,

VLS VLS LS MS HS VHS VHS
VLS 10 10 0 0 O 0 0
LS © 0 0 0 O 0 )
x = ! (53)
MS O 0 0 10 O 0 0
HS O 0 0 0 10 O 0
VHS 0 0O 0 0 O 10 10
(b)  For cover density:
VLC VLC LC MC HC VHC VHC
VLC 10 10 0 0 0 0 0
LC 0 0O 10 0 O 0 0
X® = 5.4)
MC O 0 0O 10 O 0 0
HC 0 0 0 10 O 0
VHC O 0 0 10 10

(©) For moisture content:

VDRY VDRY DRY MOIS FC SATU SATU
VDRY 1.0 1.0 0 0 0 0 0

DRY 0 0 10 O 0 0 0
XO - (5.5)
MOIS 0 0 10 © 0 0
FC 0 0 10 0 0
SATUO 0 0 0 10 1.0
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(d) For impermeable area:

VLIA VLIA LIA MIA HIA VHIA VHIA
VLIIA 10 10 0 0 0 0 0
yo |H4 0 0 10 0 0 0 0 oo
M4 0o o0 0 10 0 0 0
HA 0 o0 0 10 0 0
VHIA 0 0 0 0 0 1.0 10

(1) Output space. The curve number (CN) is the only output of this model and is
presented in fuzzified form in the output space. In terms of its definition CN ranges
from O to 100. In other words, the UoD for the output space is [0, 100]. The crisp
values of the output space [O] are fuzzifed in five intervals and the membership

function is:
VLCN = O,
LCN = O,
0 = | MCN = O, 5.7
HCN = 0,
VHCN = O

The relation matrix of the output space is:

VLCN VLCN LCN MCN HCN VHCN VHCN

VICN 10 10 0 0 0 0 0
LCN © 0 10 0 0 0 0
[0] = (5.8)
MCN 0 0 10 0 0 0
HCN 0 0 10 0 0
VHCN 0 0 0 10 10
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5.4 Program Structure and Strategy

In an expert system reasoning follows one of two strategies: forward chaining or backward
chaining. In principle, forward chaining draws all possible consequences from rules in light
of available data-whereas backward chaining selects rules appropriate for achieving specific
goals. Fuzzy control is a branch of fuzzy expert systems which has a fairly narrow purpose,
process control, and is a highly developed field. A fuzzy algorithm generally is a forward
chaining strategy in which data are combined with rules to deduce new information. From
a programming point of view, fuzzy logic is a mixed algorithm with logical programing style
as in an expert system development, because fuzzy logic control has an
IF..AND..THEN...ALSO knowledge-based system. However, in addition, fuzzy logic is also
a procedural process. Numerical (N) data or crisp values are transferred to fuzzy data or
linguistic (L) “adjectives” (N — L) for fuzzification. Inference is a computational process
which calculates the fuzzy relations based on the rule-based system as for an expert system.
However, the (N—L) is followed by a transfer back to numerical values in the defuzzification
process (L—N). In the case of multi-input-single-output (MISO) models and the multi-input-
multi-output (MIMO) models there are several approaches for the design of I/O.

As mentioned previously, in this study some unconditional rules occur (e.g. when there
is a very high moisture content and a very large percentage of impermeable area) which can
reduce the number of rules. A problem occurred when the fuzzy knowledge builder (FKB)
software Fuzzy Knowledge Builder V.2.5 (McNeill 1994) was used to generate a rule-based
system for an input space of four variables with dimensions of (5*5*5*8), in that eighteen
hundred rules were generated as a black box and this was very difficult to manipulate in a low
RAM computer.

The parallel algorithm with decomposition was used to manipulate the multi-inputs fuzzy
model in this study using the mathematical model for MISO systems described in Ch.3. The
concept used to connect the /O and transform the flow of numerical input to numerical
output is illustrated in Fig 5.1. The overall procedure of the fuzzy model was coded in C
language to build the steps of fuzzification, rules evaluation, inference engine, and



N

Normalization and
fuzzification of input
variables

L

Execution of rules

Inference engine

v 3

Rules evaluation

i

|
\ 4

Output fuzzy set

XM, XM, XM, XM, XN,

I=1 Term set
Adjective fuzzy sets

lL

Defuzzification of

1ttt desiitthttttiit] mmxm::xmmlmmmuumxmuunmrmmmunmmm:xmxu:mumuuuzummn

output variables

N

OUTPUT
(O]
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defuzzification process. The model comprised three algorithm A, B, and C listed below.
Algorithm A initialized the overall model and algorithm B connected the inference engine to
the user interface. Algorithm C initialized the keys to switch algorithm B to the user

interface.

Algorithm A

Step 1: Collect N samples of numerical data from the universe of discourse (UoD).
The collection of data should be well distributed over the UoD.

Step 2: Select the number of variables and their membership functions (n) with n> I.
The value of n should kept small (3< n <5). An increase in n is only required
when higher levels of nonlinear processing at the interface must be enforced
(then n can be chosen as 5< n <10).

Step 3: Select the shape of the membership functions. Membership functions with
three parameters, such as departure point, center point and aperture point are
sufficient for most applications (Egs. 5.3. to 5.7)

Step 4: Calculate the membership values based on Step 3, minimum operators (Eq.
3.2) and maximum operators (Eq. 3.3).

Step S: Interpolate the parameters in Step 3 for membership functions based on linear
interpolation.

Step 6: Get the Max operators on the fuzzy set X", based on Step 3 and 5.

Step 7: Run inference engine by solving Eq. 3.39 with regard to Egs. 3.11a and 3. 11b
for the MISO.

Step 8: Defuzzify fuzzy inputs to crisp output by solving Eqs. 3.16 and 3.17 based on
the COG method and singleton membership function.

Step 9: Generate defuzzified output data in visual form using an interface program.

Algorithm B

Step I: Define the UoD [X™] (Eq. 5.1) and membership function [X™ ] (Eq. 5.2).

Step 2: Solve Algorithm A for Input/Output space.



94

Step 3: Define the membership shape and soive Eqs. 3.7, 3.8 and 3.9 as applicable.

Step 4: Define the graph (mode and driver).

Step S: Define position (x, y) for each graph in terms of size and memberships.

Step 6: Get Step 1 to initialize singleton of terms [X ™,] and the UoD [X ™].

Step 7: Calculate the offset for the singleton Xi = {x [N_SET - 1]-X[0]/100.0} for
X singieton = (X0 - X[0}/Xi)

Step 8: Define the controller key action.

Step 9: Repeat Step 6 for all the UoD.

Algorithm C

Step 1: Draw the membership function graph, with respect to algorithms A and B.

Step 2: Switch action key to Step 8 in Algorithm B using an open-loop strategy.

Step 3: Visualize all on-screen based on defined Algorithm B.

Step 4: Do action with defined input/output with user interface.

Step S: Repeat Steps 5, 6 and 7 of Algorithm B.

5.5 Inference Engine in a MISO

An inference mechanism is a procedure by which a control action can be inferred given a rule-
base and a set of input values. The main difficulty in using a fuzzy rule-base control or fuzzy
expert system is the large number of rules required if the number of state variables is not very
small. Both memory space and time increase exponentially in modeling using (fuzzy) rules.
A highly complex computational problem is, therefore, limited in applicability as can be
noticed when analyzing an existiné fuzzy rule-based system in which the number of variables
is severely restricted. A partial solution to this problem is offered by the rules interpolation
method that reduces the number of terms per variable. However, the exponent of the number
of rules does not change but the use of rule interpolation itself reduces considerably the size
and processing time of the rule-base using an alpha-cut and Lagrangian interpolation method
(when rules have an equal weight). These problems become more evident when dealing with

unequal rule power or unconditional rules. In a conventional rule-based system all rules are
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treated with equal rule weight. In this model, for instance, when the moisture content is
close to saturation, or the percentage of impermeable area is very high, then the curve number
value should be close to 100. This means that in reality the rules of the saturation
membership function have absolute power on the rule’s consequent. For this specific case,
a method was proposed to reduced the number of rules by giving power to such rules that
they alone act to determinate the final consequent of all the rules defuzzified to produce crisp
output. Smith (1993) proposed a situation-specific switching to a different defuzzification
method. In practice, the selection of an appropriate defuzzification method depends on
application specifics such as static, dynamic, statistical and implementation properties
(Runkler 1997). However, this kind of selection requires considerable implementation effort.
Therefore, this study was restricted to a fuzzy rule-based system with a fixed defuzzification
method. As for the DISO model (used in Ch.4) the COG standard defuzzification method
was chosen. Also, fuzzy rule-based systems not only depend on the defuzzification method
used but also on the inference and composition operators selected. It is important to consider
the compatibility of all operators used in a fuzzy rule-based system. The Min-Max and Max-
Prod methods (Eqs. 3.11a and 3.11b) are the most popular general form used in the inference
engine of a MISO. Additionally, Eq. 3.39 is commonly used.

The process of generating the rules for a MISO model with four inputs and one output is
presented in Fig 5.2. As seen, the number of rules for this model, without a reduction in
rules, increases exponentially with the number of membership functions [number of rules =
MM = 54 =625, where N is the number of variables and M is the number of terms]. Also
assuming the input space is defined by Eqs. 5.1 to 5.6, that output space is given by Eq. 5.7
or 5.8 and that only one process is considered (one crisp input for each variable and with a
response of one crisp output value), then based on Eq 3.33, the possible number of rules
generated for this example are presented in Table 5.1. The processes of fuzzification, rules
evaluation and defuzzification are illustrated in Fig 5.3.

In this example, only one process was considered, because of the complexity mentioned
before. As shown in Fig 5.3, the eight membership functions for the input space (X") are:
X', XY, X4, X4, X2, X3, X4, X with O4 and OS5 in the output space [Z]. These input
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Fig 5.2 Processes of rules generation for a MISO fuzzy logic model
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Table 5.1 Number of rules generated in Fig 5.2.
RI: IFX'=X' AND X*=X}, ANDX’=X?}, AND X‘=X‘, THENZ =04 ALSO
R2:IFX!'=X' AND X>*=X}, AND X=X}, AND X*=X‘, THEN Z =04 ALSO
R3:IFX'=X,ANDX*=X},, ANDX’=X’, ANDX‘=X‘ THENZ=05 ALSO
R4&:IFX'=X, ANDX*=X}, ANDX’=X’, ANDX‘=X‘% THENZ=05 ALSO
RS:IFX'=X', AND X3=X}, AND X’=X’, ANDX*=X* THENZ=04 ALSO
R6: IFX'=X! AND X?=X?, AND X’=X’, ANDX*‘=X‘, THEN Z =04 ALSO
R7: IFX'=X', AND X?=X}, AND X*=X?, ANDX*‘=X‘% THENZ=05 ALSO
R8: IFX'=X' AND X=X}, AND X*=X’, AND X‘=X‘ THENZ=05 ALSO
R9: IFX'=X, AND X*=X? ANDX*=X*, AND X‘=X‘ THENZ=04 ALSO
R10: IF X'=X, ANDX*=X}, ANDX’=X’, AND X‘=X‘, THEN Z=04 ALSO
R11: IF X'=X', AND X*= X}, AND X*=X*, AND X‘=X* THEN Z=05 ALSO
R12: IFX!=X', AND X*=X} AND X’=X’, AND X‘=X4 THENZ =05 ALSO
RI3: IFX'=X', AND X’*=X}, AND X’=X?, AND X‘=X*, THENZ =04 ALSO
Ri4: [FX'=X', ANDX*=X}, AND X’=X’, ANDX‘=X‘, THEN Z=04 ALSO
RIS: IFX'=X, AND X?=X?, AND X’=X?, ANDX*‘=X‘ THENZ=05 ALSO
Ri6: IFX!=X', AND X*=X?, AND X’=X?, ANDX‘=X% THENZ=0S5 ALSO

Ri =Rule number

XM = Input number for i=1,...4.

XM, = Membership function for N =1,...5.

Z = output space with membership function Qj for j =1,...5.
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Fig 5.3 Fuzzy inference schematic for MISO model for generated rules presented in Table 5.2.
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membership functions are overlapped with 50% partial similarity of degree of truth. The first
step in inference is to obtain the value of each membership function. This gives the grade
(Eq. 3.8) for each variable obtained by calculating the value of the function for a given input
x, (e.g., the degree of acceptance for variable X' = [X'; = g,,, X'; = 8,,]). The same
procedure is performed for all functions. For the semantics of the AND or ALSO operator
the minimum operator ( such as Eq 3.2) is applied to the functions in the antecedent section
by selecting the minimum grade. The consequent processing in Table 5.1 involves obtaining
the functions O4 and OS5 by lopping off the part greater than the value of the membership
function that can affect the output. As shown in Fig 5.3, the minimum grade (g) belongs to
variable X! with membership X' ,=g,, and X* with membership X*; = g,, As may be noted the
output space [Z] is influenced by variable X* rather than the other variables. The output space
Z (CN) therefore is affected more by a high impermeability rather than soil, cover or even low
moisture content (except the saturation level). In this way it is inferred that the variables X?
and X* are unequal to other variables in order to reduce the number of rules without affecting
the results. In any combination of rule generation the number of rules is reduced (from 16 to
4 in this example) by similarity properties. The relationship between each input space
(antecedent) and output space (consequent) is illustrated in Fig 5.4. As shown, it is clear that
the variables X* and X* (with membership function X*; and X, have a maximum effect on
the rules’ consequent. It is therefore not necessary to have different antecedents and degree
of acceptance for which the determination of the output space will be the same. In application

this results from the number of rules fired.

5.5.1 Rule Firing Method

Fuzzy control and fuzzy reasoning are similar, the difference being that fuzzy control is a
specialized subset of fuzzy reasoning. In both, there are two types of inference engine (rule
evaluation) which enable emulation of two different types of thinking; deductive logic (serial
rule firing) and inductive logic (parallel rule firing). Which type is better depends partly on
the problem, partly on how the input data are acquired and partly on the preferences of the

domain expert and the knowledge engineer.
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Deductive reasoning is most useful when information must be obtained from the user in
a context-dependent fashion, and amounts to an in-depth search of a decision tree. Inductive
reasoning is usually useful when most of data are already present, or can be gathered in a
context-independent fashion, and can be processed in batches in which fuzzy sets are used
to represent ambiguities.

In senial rule firing the deductive method used in programming involves firing one rule at
a time, and evaluating the effect of the rule firing after each step.

In parallel rule firing, and specifically in the inductive method parallel mode, all newly
fireable rules are fired concurrently and no backtracking stack is maintained, since there are
no fireable rules left unfired.

The reasoning strategy in FLEW" is implemented by parallel rule firing. This strategy is
particularly useful when multi-variable fuzzy sets are employed. The general rule-firing
scheme for one state rule-firing step in parallel form for FLEW" is shown in Fig 5.5. All
fireable rules are fired at once, based on the user’s interface strategy. Unfired rules are left
over for backtracking.

The sequence of operations in a round of parallel rule firing is:

(1) A list is made of rules made fireable by the data and user specified control,

(i1) These rules are fired, and a list prepared of data modifications which call for the next
action, and

(iii)  Only those rules that relate to the specific space of inference are permitted to act and
the rest are omitted.

A rule is fireable if the data yield an antecedent confidence above the rule-firing threshold.
However, to actually be fired, the rule must also be turned on for firing (default condition),
the rule must be picked for firing, and the program must be in run mode.

The number of rules which fire are proportional to the number of inputs. For example,
assume that a single input and a single output are considered. During the rule evaluation for
each action two rules should fire simultaneously to infer output action. By increasing the
number of variables the number of rules increase exponentially (e.g., for a DISO model four

rules should be fired at a time). Fig 5.5 shows five space for processes. The first and second
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phase of processes are presented in Fig 5.2, and Table 5.1, respectively. This example of a
rule-based system has 16 rules. However, only two membership functions (O4 and O5] of
output space [Z] have a maximum degree of acceptance to be the target in rule firing. In
other words, other membership functions [O1, O2 and O3] have not been included in rule
firing. When rules and output space are known then the rule with maximum <CF> is
permitted to act in the defuzzification process. At the end of the process the output space will
comprise Rf = [rl, r2, r4]. Therefore, Table 5.1 can be summarized into only four rules rather
than sixteen rules, as given in Table 5.2.

The interpretation of Figs. 5.3, 5.4, and 5.5 are summarized in Fig 5.6. as an illustration of

the whole process.

Table 5.2 Number of rules after reduction using a similar rules consequent.

Rl: IFX'=X', =g, AND

X!=X* =g, AND

X*=X°, =g, AND

X'=X‘,=g, THEN =  Z=04 ALSO
R2: IFX'=X! =g, AND

X!=X? =g, AND

X'=X°, =g, AND

X‘=X‘,=g, THEN =  Z=04 ALSO
R3: IFX'=X=g, AND

X!=X? =g, AND

X' =X°, =g, AND

X‘=X.=g,THEN =  Z=05 ALSO
R4: IFX'=X'=g,, AND

X'=X’ =g, AND

X*=X3, =g, AND

X‘=X.=g,THEN =  Z=05.
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5.6 User Interface

Monitor definition for an application system of interest is a two-step process, which
comprises construction of a model followed by definition of the user interface. It is well
known that programing of a user interface is difficult. Myers (1992) stated that studies
consistently show that the user interface portion comprises about 50% of the code and
development time. The most important characteristics of a user interface is simplicity,
visibility of the course of action, transparency of the system, and pre-visibility of the effects
of user action for flow of I/O. In large scale software development it is recommended that the
user interface should be independent of the program. Some programs can be connected to
the interface with text /O (non-graphical) in the form of a question and answer strategy. The
process of I/O has to be done in the screen rather than on the keyboard. This is more useful
in a conventional expert system. However, in a fuzzy logic algorithm there is a different style
of visualization of flow of input and output. The most popular one is the presentation of /O
as an event. When the user hits a keyboard or a mouse button, an event, or reaction, appears
in a task window. This kind of user interface is very simple but is also dependent on the main
program. In other words, any changes in the main program may necessitate changes to the
user interface.

In computer programming terms, each parallel rule firing is highly non-procedural in that
the sequence of rules has nothing to do with what happens and the response is determined
solely by the data. This is difficult to program in most computer languages as almost all
common computer languages (FORTRAN, COBOL, BASIC, C++) are procedural; only a
few Al languages such as PROLOG, LISP and FLOPS are non-procedural.

The FLEW® user interface model contains the graphics routines used to display and
simulate the I/O of the model graphically. To display it in the graphics mode it uses the
EVAGVA BGI (Borland 1994) library.

This user interface is designed for ease of user operation to operate simply and is based on
keyboard commands with C language capability. This program is externally switched to
algorithm A, B or C (previously mentioned). The structure of the routines is as follows:

@) Definition of the function that is used for echoless keyboard entry which includes the
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CURSOR and FUNCTION keys (UP, DOWN, HOME, END, LEFT, RIGHT,
PGUP, PGDN) on the keyboard.

“Initialize Graphics” is used to initialize the graphics library. An initialize graphics
system test results for visualizing the output on the screen.

“Draw Graph” is used to initialize a graphical plot area on the VGA monitor screen
and save the current viewport setting boundary around the bar controller.

Display text mode in the screen such as title, variables, membership function, etc. on
the screen.

“Initialize Coordination” is used to draw the axes and coordinates of each variable
used in the inputs and output.

“Plot Graph” is used to plot a fuzzy set X[] in the graph plot area on the screen.
Transform the universe X¥[ ] and sets X[ ] into a normalized universe x = [0,..,255]
having a fuzzy set [U_SET] with transfer function X, = 2.55.

Draw and plot a UoD [U_SET].

“Plot Singleton” is used to plot a singleton value onto the fuzzy set Xo[] which was
previously plotted in the graph plot area on the screen. The “Plot Singleton” routine
uses a set write mode (XOR_PUT) to draw graphics to the screen.

Calculate the offset for a singleton based on the scale of output and draw a singleton
for all event inputs and resulting output.

Indicator for showing the change of input variables that change the output based on
fuzzy logic open loop control.

“ Initialize Bar” is used to initialize a bar plot area and the borders on the VGA screen
to predefine inputs and output.

“Draw Bar” is used to plot a fuzzy set X[ ] in the bar plot area as pre-defined under
(xii) above on the screen.

“Initialize Controller” is used to simulate the startup routines that would be performed
if this was an actual controller. In this case, it simply initializes the VGA display and
sets up the user interface.

Set color for controller text display.
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(xvi) “Get Input” is used to simulate the reading of the input variables for the fuzzy logic
controller.

(xvii) “Set Input” is used to simulate the setting of the output variables for the fuzzy logic
controller. In this case, however, it updates the user display and retrieves new input.

(xviii) Plot new action results from inference engine program output.

5.6.1 Visualization of /'O

The style of graphical presentation of input and output on the screen depends on the quantity
and quality of data. Although large quantities of information become available on-line,
information itself is useless without effective access mechanisms. One form of information
can be displayed using information murals. This kind of presentation not only shows relative
position and size of the focus area, but also gives the user an attractive view of the whole of
the system on the screen. Color, in this method, is used to highlight attributes in line and bar
forms. As indicated in the previous section, Eqs 5.1 to 5.9 are presented as line display
membership functions in the I/O space. The control action of the input bars represent the rate
of change of inputs that determine the output result. The example presented in Sec .5.4, in
Figs 5.2 t0 5.6 and in Tables 5.1 and 5.2 is presented in visual form in Fig 5.7 (main screen
of the user interface). In this display inputs are sand (25%), cover (19%), moisture content
(18%) and impermeable area (78%). As it appears on the screen, the output bar shows that
CN =92. This output is calculated based on the methodology presented in Ch.3.  In the
second display (Fig 5.8) input is sand = 50% (partially LS and partially MS), cover = 50%
(partially LC and partially MC), moisture content = 80% (partially FC and partially
Saturation) with the presence of 59% impermeable area. The curve number shown appears
as partially HCN and partially VHCN. However, the crisp response to such inputs is a value
of 85. This value represent the result of defuzzificd output space as a curve number.

Validation of the estimated curve number is discussed in the next section.
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Fig 5.7 Visual display of user interface for inputs and output given in Table 5.1.



109

Fuzzy CN { TexturedsZ $and)
ULCN  tCN MEN HON i wieN. || ws s S  HS  UHS

1 . z ' LOOP o - 1

i : ‘ -
0.5 ; 0.5 -
i !

o.ol I a.0¢ |
Tt Ty o e ST T - M
i ' : ' Couer('l{) f
100% 100% roox 100z 1007 4o e Lo de He  unc |
1 L.0—— S . —
P PS% P57 ?S7 ?S~ sg S~ : -

; 50 S0 _ a.s,
| s0% S0z sox so% ' sox :
i : ' 0.0l
. 237 257 2524 25~ : 29
| T i 233 n e Moisture(x) I
i i B 0% L o= UDRY DRY  MOIST F¢ satu
.s 1 e M 1 . ON 1.0——
; ] ! : . , e . . —] ;
Curve Number 0'5? T l
ULCN  LCN MCN HCM | UHCN o.0b— i
1. - . |
o - Inperneable(y) 1
' N - h .
. @.3 N : <o ULIA LIA MIiA HIA UHIA
: N . , 1.0— N . —
‘0.0 j ; I R
: 0.3]) : g P .
Increase Sand ===> CURSOR PGUP ‘ i . P )
Decrease Sand ===)> CURSOR PGDN i o.ot -
T ez g i E PR e ! T —e
T+ aer o . _ ; HIEZ4 'WHthfe Tl [CBEHddER
Increase Moisture === }
Decrease Moisture ===> CURSOR LEFT |
Increase Inpermneable ===)> CURSOR HOME
Decrease Inpermeable ===> CURSOR END i

Fig 5.8 Visual display of user interface for a set of inputs differing from those of Fig 5.7.
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5.7 Quantification of CN for Forest and Rangeland

A particularly onerous task is the estimation of the curve number based on land use. In
practice, unlimited variations in land use exist in terms of management and cover. In the SCS
method specific land uses are considered such as fallow (an agricultural land use with highest
runoff potential), row crop, small grain, close-seeded legumes, grassland, meadow,
woodlands, and forest. Specifically the SCS method defines woodland as an isolated grove
of trees being raised for woodlot use and visually evaluated in terms of hydrologic condition.
SCS classifies woodlands in one of three fuzzy classes as Poor, Fair or Good condition, as
described in Sec.2.2.

As an example of the application of the FLC method, assume a woodlot with ten classes of
cover condition, from W10 (10% wooded cover) to W90 (90% wooded cover) and with
twelve soil classes, as represented by a rectangular soil classification. Soil ranges from sandy
soil ( more than 80% sand) to clay soil (less then 30 % sand or having more then 60 % clay).
By applying the same methodology as presented in Ch.3, the result of the simulation for a
wooded area is presented in Fig 5.9 As shownin Fig 5.9, for sandy soil with wooded cover,
the curve number ranges from CN=2 (W90) to CN = 62 (W10). The highest CN values
obtained are for low wooded cover (W10) and clay soil (60% clay) for which the CN values
range from 62 to 91.

Another example is the generated curve number for a rangeland area. Again, the SCS
method categorizes rangelands into three hydrological conditions of Poor, Fair or Good as
for woodland areas in the previous example. A rangeland area can be evaluated in the form
of a continuity of % cover density and soil texture (% sand). The results of simulation are
presented in Fig 5.10. As may be seen, the response of the rangeland and woodland is similar
when based on % cover density and soil texture. Figs 5.11 and S.12 show a comparison
between generated curve number (CN) for rangeland and woodland for sandy soil and clay
soil (clay < 60) respectively. Cover density and soil are the same, only the types of cover are
different. Quantitatively, it can be concluded that the percentage of cover density is more

important then the type of cover.
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5.8 Validation

Development of an environmental model, whether static or dynamic, is an activity that
generally involves two phases: first by creation of a model or modification of an existing
model, and second by comparison of the model with the real system modeled. This second
phase is known as model validation. In conventional modeling cross-validation between
observed and estimated values (statistical modeling) is a common way to validate a model
(Cressie 1993). In expert systems the main guiding principle might be called " expert knows
best . However, this approach is often infeasible; an example being that of validation of a
logical model. For this reason one of the most difficult and controversial tasks in artificial
intelligence development is validation and verification of an expert system. Lee and O’Keefe
(1994) argued that there are numerous possible methods for expert system verification and
validation. However, an artificial intelligence product only can be verified based on explicit
objectives and final conclusions. Lehner (1989) further speculated about expert systems for
which there are no human experts or experience to evaluate and to verify the response.

In view of the above, for evaluation of the response of the FLC model a comparison was
made with the SCS model presented as a benchmark for this study. Again it is noted that
the SCS method is a discrete model, whereas the FLC model is a continuous model.

A comparison was made between the SCS method and the FL.C method for calculating the
curve number for an urban area, based on % impermeable area and soil texture. Figs 4.14
and 4.15 present results of a 10 x 10 FAM for % impermeable area and soil texture (% sand)
with equal membership function domains with 50% overlap. The SCS method was used to
simulate five different percentage impermeable area classes for urban areas (20%, 27%, 30%,
38%, and 65%) in four discrete hydrologic soil groups A, B, C, D. The results of the SCS
method application were compared with Fig 4.15 which was generated using the FLC
continuous model for hydrologic soil groups A, B, C, and D. The results of this comparison
are presented in Fig 5.13. As may be seen, the response of the FLC method to %
impermeable area is close to that of the SCS method for 65% impervious area and hydrologic
soil group D, but differs most for hydrologic soil group B. It was expected that the results
would be different because of the nature of the model predications. The FLC model is based
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on fuzzy logic as a continuous translator of fuzzy data, whereas the SCS method is a discrete
model based on empirical small watershed data. The FLC model has no limitation to any

combination of % impermeable area and soil texture for predicting curve number.
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6. DISCUSSION

The program FLEWN was developed based on logical relationships between watershed
parameters rather than on experimental data. The general form of the development was an
integration based on of three areas of knowledge viz. hydrology, expert system, and fuzzy
logic. The model was developed in three phase of: SISO model (individual relationship of
% sand and % clay with curve number), DISO models (soil texture and each of the other
parameters in turn with curve number output in three dimensional space), and finally a MISO
model called Fuzzy Logic Expert Watershed Curve Number (FLEW™). FLEW®" is based
on a DOS platform and comprises a mixed algorithm composed of the conditional “/F..
AND... THEN” clauses and unconditional “/F.. AND... ALSO...THEN..ONLY” clauses. The
latter give specific power to specific variables.

The strategy in development of a traditional expert system is to use one of the more
sophisticated artificial intelligence languages such as PROLOG (a declarative language) or
LISP (a list processing language). However, fuzzy logic algorithms are more easily adapted
to integration in a procedural language (algebraic language) such as C or Pascal, etc. The
program FLEW®" is coded in the Turbo C language by combining three algorithms in
sequential procedural processes of initialization, processing and graphical representation of
inputs and output (user interface). The program is in the form of a fuzzy control procedure
rather than that of a conventional program and is user-friendly in application, even for a
person with no knowledge of fuzzy logic. From a programming point of view, the fuzzy logic
algorithm is easy to understand; however it was complex to program and to visually show an
interaction of input and output space. Capture of the knowledge was a complex process, in
particular in dealing with the interactions of the variables (e.g., soil texture has an effect on
cover, moisture content, infiltration, etc.). From a programing point of view this would be
an impossible task for any but professional computer programmers without tools such as an
expert system shell. However, programs developed using an expert shell depend on the
specific expert shell for execution. At present, no expert shell exists which manipulate fuzzy
data in a manner similar to that of conventional expert systems. However, some fuzzy expert

shells can generate C code based on the specific user defined model; however, this type of
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approach does not allow for interaction between fuzzy data and a user interface. The
advantage of FLEW® is that it is independent of any expert shell or any other program. It
also provides some of the structures that can increase efficiency in use of the model, such as
visual demonstration of inputs and output.

The program is organized as a procedural process with elements of action (membership
functions). Each membership function is defined in binary format as an object of an element.
Each element has two different references of pivot (only a specific element appears to act
when the program calls for action) and global (all of the elements are affected when the
program calls the elements). This process appears during execution time as a user interface.

The user interface provides a fuzzy control program to answer questions of the “How
much?” type (quantity) by key action to show the quantity of input’s space and inference
action in the output space. This feature provides an effective means to assess the effect of
changes in combination of inputs to reach an output response.

An unconditional assertion is used for fuzzy set “saturation” (membership function) and
fuzzy set “very high impermeability”. The certainty factor <FC> is characterized by key
words which represent the importance of the degree of the rules. For example, when several
rules in the data-base are designated for action during rule firing, a particular rule has a
maximum effect to associate with the response space when it has a linguistic definition
“always” or CF=1. If a membership function has a minimum effect on the consequent the
associated FC is a minimum, of CF=0. (never). These processes occur as inference processes
during rule firing.

In a conventional expert system the user deals with such questions as “what?”, “what if?”,
“ how much? “ and “why?”. This program is designed only for quantitative (how much)
inputs and output. If a question does not fit within this strict boundary of limitation, then the
program does not have the ability to provide an answer.

One of the most powerful, untapped, capabilities of computational intelligence technology
is in dealing with solutions to complex phenomena, by applying adaptation and estimation
based on the experience and logical relations of parameters. In this project, computation of
logical relationships between parameters was built into the knowledge-base as an integral part
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of the way in which the system works.

For some specific limited intervals the curve number computed by the SCS model and
FLEW® were close. However, the FLEW®" program is not limited to the prediction of curve
numbers for only specific intervals, but is able to predict curve number for all combinations
of inputs. FLEW comprises four inputs and one output. The universe of discourse for each
input ranges from 0 to 100. This means that FLEW" has a knowledge-base of (100)* inputs
which is used to predict the output response.

This program differs from other expert systems that have been developed in the field of
hydrology. In general, an expert system is commonly developed based on the experience of
a human expert, or it can be merged with another conventional program. FLEW® is a stand-
alone program which uses fuzzy control methodology that is more conventionally used in
industrial applications.

This program has incorporated in it an innovative addition to conventional fuzzy expert
system technology in using inputs based on parallel rule firing and having a parallel structure.
Each variable with its membership function is first compared in the output space in parallel
with the other variables to reduce the number of rules, before the inference process continues
with a max-* operator to reach a conclusion. This process of reasoning is able to be used

in a fuzzy expert system by utilizing the ability to manage the inference engine.
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7. CONCLUSIONS

In the introduction to this dissertation, needs were identified for finding tools that could
contribute to the development of hydrologic design. Fuzzy set theory and fuzzy logic control
were the be used to develop a program to estimate a watershed curve number. Advanced
technology and artificial intelligence in the field of computer programming, and recent theory
of uncertainty to quantify fuzzy data, are seen to hold great promise in pursuing the goal of
improved hydrological modeling.  An open-loop fuzzy control (FLEW®Y) model was
developed from different intermediate fuzzy logic models.

There are a number of significant areas in which the development of this fuzzy logic expert
system for watershed curve number computation contributes to urban and suburban
hydrology and computational intelligence. These are:

@) The algorithms (A, B and C) developed for multivariable fuzzy control, decomposed
a complex fuzzy controller into several simple fuzzy controllers. This approach
results in a smaller number of control rules than the traditional multivariable fuzzy
controller while maintaining the power of parallel computing and rule firing.
Furthermore, the new approach resulted in a complexity no in not greater than that
of the simple fuzzy controllers used.

(i1) the use of fuzzy data (quality data) pertaining to the conceptually well-known
hydrologic indicator of watershed curve number was based on logical relationships
rather than human expert experience. The methodology of using an open-loop fuzzy
logic control is a new idea in hydrology and environmental science. This research
builds a bridge between computational intelligence and watershed hydrology.

@iii)  In the field of computational intelligence the capturing of knowledge, organization
of knowledge, processing of data, and visualization of a response in a simple way is
critical. The development of FLEWSN has shown the ability to present all of the
relevant terms in only one task window.

(iv)  The generality of the development indicates that the methodology used is not only
applicable to curve number estimation, but also to other technological applications.
It may, for example, be used to control other fuzzy data sets to reach a crisp response,
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(Vi)

(vii)

(viii)

(ix)
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as in the design of irrigation systems, ventilation, etc.

Validation and verification are difficult tasks in an artificial intelligence domain. The

FLEW® program is a logicaly-based program and was validated by comparing its

response to that of the SCS method which is a well-accepted empirical model. The

comparison between FLEW and SCS validated the use of fuzzy logic control in the

form of a continuous model versus the empirical and discreet SCS model.

FLEW® provides a logical step forward in the development of tools for estimation

of complex and time-consuming hydrologic parameters, and is particularly useful for

urban areas with portion of impermeability. The curve number index is a logical way

to estimate not only runoff potential but also for estimating peak flow.

The graphic on-screen visual response of FLEW™ to inputs enables enhanced

communication between a user and the program. In this way the program provides

for a greater understanding of the underlying theory .

Based on the comparison with the SCS method and the program performance, it is
recommended that FLEW® be applied to urban and suburban areas to obtain a

logical prediction of the curve number.

Based on the predicted values for woodland and rangeland, it may be concluded that

cover density is more important than type of cover for prediction of the curve number.
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8. FUTURE RESEARCH
Given the complexity of the task of study (multi-relational variables with multi-effects),
FLEW®" does not include an evaluation of the curve number for all possible land uses. This
is because the program has a data base limited by time constrains. There are significant areas
where further development is required through use of multi-task windows with different land
uses. These land uses could be integrated as specific expert systems to estimate not only
curve number (CN) but also infiltration and other desired parameters in the form of a MIMO.
FLEW® is not an empirical nor a physical model but is based on logical relations between the
watershed parameters. This advantage gives such a model a more practical and dynamic
prediction ability for parameters that are changed by time such as moisture content and cover
density. With further development the system will allow the user to not only estimate
hydrologic parameters but also to obtain expert advice. Another area in which this algorithm

could be used is that of automatic control of sprinkler and drip irrigation systems.
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