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Abstract

This thesis presents some results in nonlinear analysis and their applications to math-
ematical economics.

Chapters 2 and 3 are the most important and technical part of this thesis. In
Chapter 2, duals of two important results due to Gale and Mas-Colell in 1975 and
Shafer and Sonnenschein in 1975 respectively in equilibrium theory are presented.
Two examples of how to use these results to resolve equilibrium problems with closed
preferences are given. Chapter 3 is devoted to establishing a random version of
a Tietze type extension theorem together with its applications. The proof of the
theorem is very complicated and technical. We think that the work of Mas-Colell
et al can be classified as “selection” type in the sense that the proofs almost always
invoke Michael’s selection theorem or similar ones. Our work can be classified as
“extension” type in the sense that we need Tietze type extension theorems to do the
proofs, although in a related result, we still have to use the powerful Ky Fan minimax
inequality. It is worthwhile to point out that as far as we know, this is the first time
that Tietze type extension theorems have been used to study economic problems with
closed preferences.

In Chapter 4, we generalize many minimax inequalities. These include Fan'’s,
Sion’s, Granas and Liu’s and Tan and Yu's results. Applications to fixed point theory,
variational inequalities, complementarity problems and abstract economies are given.

Chapter 5 presents a fixed point theorem for correspondences on [0,1]. This is an
interesting result for its simplicity and elementary proof. Some examples comparing

it to related work and also some simple applications to game theory are included.
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Chapter 1

Introduction

1.1 Some Basic Concepts and Notation

In this section, we shall introduce some basic concepts and notation that will be used
throughout this thesis. More specific concepts and notation will be presented when
they are needed.

In this thesis, R is the set of all real numbers. If A is a set, we shall denote by 24
the family of all subsets of A and by F(A) the family of all non-empty finite subsets
of A. If Ais a subset of a topological space X, we shall denote by intx(A) the interior
of Ain X, by clx(A) the closure A in X and by dx(A) the boundary of A in X. If
A is a subset of a vector space, we shall denote by co(A) the convex hull of A. By a
correspondence F defined on X with values in Y, denoted by F : X — 2Y, we mean
that to each z € X, F assigns a unique subset F'(z) of Y, i.e., an element of 2¥. A
correspondence is also called a multifunction, set-valued map or multi-valued map,
etc.

For a correspondence F : X — 2Y, we let GrF denote the graph of F, i.e., GrF =
{(z,y) e X xY : y € F(z)}. Also we define F~!': Y 52X by F-!(y) = {z € X :
y € F(z)}foreachy €Y and F : X = 2¥ by F(z) = {y € Y : (z,y) € clxxy(GrF)}
for each z € X.

Let X and Y be topological spaces and F' : X — 2¥ be a correspondence. Then

1



F is called (1) upper semicontinuous if for each open subset U of Y, the set {z €
X : F(z) C U} is open in X; (2) lower semicontinuous if for each closed C of Y,
the set {z € X, F(z) N C # 0} is closed in X; (3) continuous if it is both upper

semicontinuous and lower semicontinuous.

1.2 An Introduction to Games and Abstract
Economies

There are many different kinds of games. In this thesis, we only consider non-
cooperative games, which are closely related to another concept, abstract economies.
The latter are also called non-cooperative generalized games.

The theory of non-cooperative games studies the behavior of players (also called
agents) in any situation where each player’s optimal choice may depend on his forecast
of the choices of his opponents. Let I be the (finite or infinite) set of players, the set
of choices of player i (z € I) is denoted by X;. Elements of X; are called strategies
and X; is player i’s strategy set. Let X = II;c/X; be the set of strategy vectors.
Each strategy vector determines an outcome. Players have preferences over outcomes
and this induces preferences over strategy vectors. For convenience we shall work
with preferences over strategy vectors. There are two ways to do this. The first is
to describe player i's preferences by a binary relation P; defined on X. Then 13.(:1:)
is the set of all strategy vectors preferred to z. Since the player i only has control
over the ith component of z, it is more useful to describe player i’s preferences in
terms of the good reply set. Given a strategy vector z € X and a strategy y; € X,
let (z*,y;) denote the strategy vector obtained from = when player ¢ chooses yi and
the other players keep their choices fixed. We say that y; is a good reply for player
i to strategy vector z if (z*,y;) € P;. This defines a correspondence P; : X — 2% ,
called the good reply correspondence by Pi(z) = {y; € X; : (z',5;) € P;}. It will
be convenient to describe preferences in terms of the good reply correspondence P;

rather than preference relation P;. So we will use the former description (i.e., ;) in



this thesis. Note however that we may lose some information by doing this. Given
a good reply correspondence P;, it will not generally be possible to reconstruct the
preference relation B;, unless we know that P; is transitive. Thus a game in strategic
form is a tuple (X;, P;);c; where each P; : X — 2%i,

A shortcoming of this model of games is that frequently there are situations in
which the choices of players cannot be made independently. To take such possibilities
into account, game theorists introduce a correspondence F; : X — 2%i which tells
which strategies are actually feasible for player 7, given the strategy vector of the
others. Note that for the sake of technical convenice, we refer to F; as a correspondence
of the strategies of all players including player :. In modeling most situations, F;
will be independent of player i’s choice. The jointly feasible strategy vectors are
thus the fixed points of the correspondence F = I;¢/F; : X — 2%. A game with
the added feasibility or constraint correspondence is called a generalized game or
abstract economy. The reason for the latter name is because this abstract model is
found useful in proofs of the general equilibrium theorems in mathematical economics.
It is specified by a tuple (X;, F}, P;);e; where F}, P; : X — 2%,

A Nash Equilibrium of a strategic form game or abstract economy is a strategy
vector z for which no player has a good reply. For a game, an equilibriumisan z € X
such that P;(z) = 0 for each ¢. For an abstract economy, an equilibrium is an z € X
such that z € F(z) and F;(z) N Pi(z) = @ for each .

Nash [59] proved the existence of equilibria for games where preferences are rep-
resentable by continuous quasi-concave utilities, and the strategy sets are simplexes.
Debreu [20] proved the existence of equilibrium for abstract economies. He assumed
that strategy sets are contractible polyhedra, that the feasibility correspondences have
closed graphs, that the maximized utilities are continuous and that the sets of utility
maximizers over each constraint set are contractible. These conditions are jointly as-
sumptions on utility and feasibility. The simplest way to make separate assumptions

is to assume that strategy sets are compact and convex, that utilities are continuous



and quasi-concave, and that the constraint correspondences are continuous with com-
pact convex values. Arrow and Debreu [3] used Debreu’s result to prove the existence
of Walrasian equilibrium for an economy and coined the term abstract economy.

Since Nash’s and Debreu’s work in the fifties, a large number of papers have been
produced generalizing, improving or developing it. Among them, we would like only
to mention Gale and Mas-Colell’s, and Shafer and Sonnenchein’s papers here because
the main topic of Chapter 2 is studying duals of the results in these two papers. Gale
and Mas-Colell [32] proved a fixed point theorem which allowed them to prove the
existence of equilibria for a game without ordered preferences. They assumed that
strategy sets are compact convex sets and that the good reply correspondences are
convex valued and have open graphs. In the work following this paper, it was found
that the open graph in his original result can be replaced by open lower section or
lower semicontinuity. Shafer and Sonneschein proved the existence of equilibria for
abstract economies without ordered preferences. They assumed that the good reply
correspondences have open graphs and satisfy the convexity/irreflexivity condition
z; & co(P;(z)). They also assumed that feasibility correspondences are continuous
with compact convex values. The problem is:

Can the good reply correspondences in Gale and Mas-Colell’s and Shafer and Son-
nenchein’s models be upper semicontinuous with closed convex values instead
of the conditions such as open graph or similar ones ?

We give a complete answer to this problem and do more work on its extensions
in Chapter 2. We point out here that Gale and Mas-Colell’s result can be considered
as the generalization of the Fan-Browder fixed point theorem and our corresponding
result can be considered as the generalization of the Kakutani-Fan-Glickberg fixed
point theorem. Further, while we can write some theorems that can include both
situations, we only present one of these in finite dimensional spaces and give two
applications of it. The reason for doing this is that we want to illustrate the spirit
of studying closed preference games rather than becaming involved in complicated

discussions of the structures of infinite dimensional spaces used in this area.



Another direction in general equilibrium theory is to take the structure of the
space of the agents into account in the economics models. This was initialized by
Aumann and Schmeidler. Aumann [5] and [6] extended Debreu’s abstract economy
theory that permits the set of agents to be a measure space. Aumman resolved this
problem by assuming the set of agents is an atomless measure space which means the
influence of each agent is “negligible”. The similar argument was applied in game
theory by Schmeidler [66]. We explore the equilibrium problems for this kind of
economics models in Chapter 3.

The tools for studying these problems are the Tiezte type extension theorems and
the Ky Fan inequality. As far as we know, this is the first time that the Tiezte type
extension theorems have been used to study equilibrium problems in mathematical
economics. At the beginning of this study, we did not know there existed any Tiezte
type extension theorems for correspondences. So we developed one and used it to
resolve the equilibrium problems. However, after we carefully checked several hundred
papers, we found there indeed were a few papers dealing with the set-valued extension
problems. We felt a little disappointed at first but this was remedied when we found
we could use several construction techniques to develop a random version Tiezte type
extension theorem. The proof of this theorem is very complicated and technical. It

1s one of the author’s favorite results in this thesis.

1.3 An Introduction to Some Minimax Inequali-
ties and Counter Examples to a Conjecture of

K. K. Tan

In Chapter 4, we shall study the generalizations of the Ky Fan minimax inequality
and their applications to fixed point theory, variational inequalities, complementarity
problems and abstract economies.

In 1972, Ky Fan proved a celebrated minimax theorem [30] which is equivalent to



the following:

Theorem 1.3.1 Let E be a topological vector space and X be a non-empty compact
convez subset of E. Let f be a real-valued function defined on X x X such that
(1) for each z € X, f(z,z) <0;
(2) for each fized z € X, f(z,y) is a lower semicontinuous function of y on X;
(3) for each fized y € X, f(z,y) is a quasi-concave function of ¢ on X.
Then there exists y € X such that f(z,y) <0 forall z € X.

In the above theorem, the space E is not required to be Hausdorff as Ky Fan
originally stated. This fact was observed by Ding and Tan [23]. This slight improve-
ment sometimes is important since in the study of unifying approach to existence
of Nash equilibria by Balder [8], he has to use the above minimax theorem under
non-Hausdorff settings.

Our work is to weaken the continuity of the function, the compactness and the
convexity conditions in Theorem 1.3.1. This is motivated by Baye et al [11] who
studied the characterizations of the existence of equilibria in games with discontinuous
and non-quasi-concave payoffs. Using one of our results, we also give a generalization

of the following minimax theorem due to Sion [74]:

Theorem 1.3.2 Let X be a convez subset of a liner topological space, Y be a compact
convez subset of a linear topological space, and f : XxY — R be upper semicontinuous
on X and lower semicontinuous on Y. Suppose that

(1) for ally € Y and A € R, the set {z € X : g(z,y) > A} is convez;

(2) for all z € X and A € R, the set {y € Y : g(z,y) < A} is convez.

Then

minsup f = sup min f.
VEY zex zeX YEY

The importance of Sion’s weakening of continuity to semicontinuity was that it
indicated that many kinds of minimax problems had equivalent formulations in terms

of subsets of X X Y, and led to Fan’s 1972 work [30] on sets with convex sections and



minimax inequality (Theorem 1.3.1), which have since found many applications in
economic theory. So K. K. Tan postulated if another minimax theorem, the Kneser
minimax theorem, had a geometric form, or a similar one such as intersection form.

For convenience, we state Kneser’s minimax theorem [53] as follows:

Theorem 1.3.3 Let X be a non-empty convez set in a vector space and Y be a non-
empty compact convez subset of a topological vector space. Suppose that f is a real-
valued function on X XY such that for each z € X, f(z,y) is lower semicontinuous
and convez on Y, and for each y € Y, f(z,y) is concave on X. Then

minsup f(z,y) = sup min f(z,y).
yel’:egf( v) ,e}?yeyf( y)

The following is a conjecture of K. K. Tan, which is an attempt to formulate an

intersection form for Kneser’s minimax theorem:

Problem 1.3.4 Let X be a non-empty convez subset of a vector space, Y be a non-
empty compact convez subset of a topological vector space, F : X — 2Y\{0} be such
that

(i) for all z € X, F(z) is closed and convez;

(i) for all y € Y, X\F~(y) is convez.

Then Neex F(z) # 0.

Since Kneser’s minimax theorem also plays a very important role in game theory,
mathematical economics and studying variational inequalities, if the above conjecture
were true, we could write a geometric form for it which in turn could be used to obtain
some significant results. Unfortunately, it is not true. We have two counter examples

as follows:
Example 1.3.5 Let I =[0,1], X =Y =I. We define F: X — 2\ {0} by

F(x)_{m}, 0<z<y;



Then

(a) For each z € X, F(z) is closed and convex.

(b) Forany y € Y, if y = 0, X\F~'(y)= X\[0,1/2] = (1/2,1]; if y = 1,
X\F~(y) = X\(1/2,1] =[0,1/2]; if 0 < y < 1, F~'(y) = 0. So (ii) is satisfied.

But NyexF(z)=0. ®

Example 1.3.6 Let I = [0, 1],'X =Y = 1. We define F: X — 2¥V\ {0} by

Flz) = { [0,1/4, 0<z<};
[3/4,1], ; <z <1
Then
(a) For each z € X, F(z) is closed and convex.
(b) Forany y € Y, ify € [0,1/4], X\F~'(y) = X\[0,1/2] = (1/2,1}; ify € [3/4, 1],
X\F~'(y) = X\(1/2,1] =[0,1/2]; if y € (1/4,3/4), F~'(y) = 0. So (ii) is satisfied.
But NzexF(z)=0. A

We note that in this thesis, the Kneser minimax theorem is mainly used to study

the existence of solutions for variational inequalities.

1.4 An Introduction to a Simple Fixed Point Prob-
lem

In Chapter 5, we study a fixed point problem on [0, 1].

The problem is motivated by the work of Milgrom and Roberts [58] and Guillerme
[36]. The authors of the two papers found an interesting fact about a function on
[0,1]: A real function f : [0,1] — [0,1] that is upper semicontinuous on the right and
lower semicontinuous on the left has a fixed point. So our problem is:

Does a correspondence that is upper semicontinuous on the right and lower semsi-
continuous on the left have a fized point?

We give a yes answer to this problem. Some examples comparing it to related

work and also some simple applications to game theory are included.



Chapter 2

Equilibria for Games and Abstract

Economies: Duals for
Gale-Mas-Colell’s and

Shafer-Sonnenschein’s Theorems

2.1 Introduction

Let us start with the following Fan-Browder fixed point theorem that appears in [29]
and [16]:

Theorem 2.1.1 Let X be a nonempty compact convez subset of a topological vector
space E, and F : X — 2% a multifunction with nonempty convez values such that for
each € X, F~Y(z) is open. Then F has a fized point.

In studying game theory and mathematical economics, we need to study a family
of correspondences from the product space of several spaces into each of them. In
1975 and 1979, Gale and Mas-Colell in [32] and [33] proved the following theorem:
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Theorem 2.1.2 Let I be e finite indez set. For each i € I, let X; be a nonempty
compact convez subset of R™, and F; : X := [ X; = 2% a lower semicontinuous
correspondence with convez values. Then there exists z € X such that for each i€ I

either z; € Fiy(z) or Fi(z) = 0.

Originally, in Gale-Mas-Colell [32] the correspondences in the above theorem were
assumed to have open graphs instead of lower semicontinuous. In Gale-Mas-Colell
[33], they gave the above form while commenting that the proof of the above the-
orem was the same as the original one, which used Michael’s selection theorem. In
[22], Deguire and Lassonde proved the following theorem which partially generalizes
Theorem 2.1.2.

Theorem 2.1.3 Let I be any indez set. For eachi € I, let X; be a nonempty compact
convez subset of a Hausdorff locally convez space E;, and F; : X := H;erX; — 2%
be a correspondence with convez values such that for any y; € X;, F7 ' (y;) is open in
X. Further, for any ¢ € X, there ezists i € I such that Fi(z) # 0. Then there ezist
z € X and i € I such that z; € Fi(z).

In 1975, Shafer and Sonnenschein [69] proved the following theorem for abstract

economies:

Theorem 2.1.4 Let I be finite and let (X;, F;, P;)ic1 be an abstract economy such
that for each 2,

(1) X; C R™ is nonempty, compact and convez;

(2) F; is a continuous correspondence with nonempty compact convez values;

(3) GrP; is open in X x X;;

(4) zi € co(Pi(z)) forall z € X.

Then there is an equilibrium.

On the other hand, Theorem 2.1.1 can be thought of as a dual of the following
well-known Kakutani-Fan-Glicksberg theorem (Kakutani [43]; Fan [28]; Glicksberg
[34]):
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Theorem 2.1.5 Let X be a nonempty compact convez subset of a Hausdorff lo-
cally convez space E, F : X — 2X be an upper semicontinuous multifunction with

nonempty closed convez values. Then F has a fized point.

Our problem is whether the conditions in Theorem 2.1.2, Theorem 2.1.3 and
Theorem 2.1.4 such as lower semicontinuity or having an open graph, etc. can be
replaced by upper semicontinuity (or similar conditions)? i.e, are there corresponding
duals for these theorems? We give a positive answer to this problem and expand
on the original problem. Also some applications to general equilibrium theory in

mathematical economics are included.

2.2 A Star-shaped Extension Theorem and an Ex-
istence Theorem of Equilibria for a Game with

Star-shaped Good Replies

A set X in a linear space is said to be star-shaped if there exists ro € X such that
for any z € X, tzo+ (1 —t)z € X for all t € [0,1]. Such an g is called a center of
the star-shaped set X.

Proposition 2.2.1 Let X, Y be two star-shaped sets in a linear space, then X + Y

is also a star-shaped set.

Proof. Let zo be a center of X and yo be a centerof Y. Let zp = zo+yo € X+Y. For
any z =z+y € X+Y and t € [0,1], tzo+ (1 —t)z = [tzo+ (1 —t)z] +[tyo+ (1 —2t)y] €
X+Y. So X +Y is also a star-shaped set.

The following lemma is a remark in Aubin and Ekeland [4] on page 108.
Lemma 2.2.2 If F is a compact-valued correspondence from a metric space X to a

metric space Y, then F is upper semicontinuous at zo € X if and only if for each

€ > 0, there exists § > 0 such that
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for all z € O(zo,6), F(z) C O(F(z0),¢),
where O(zo,48) := {z € X : d(z,z0) < 8} and O(F(zo),€) := UyeF(z,)O(y, €)-

We frequently refer to the following result, which is Proposition 11 on page I1.34
in Bourbaki [15].

Lemma 2.2.3 Let E be a metrizable locally convez space. The topology of E can be
defined by a distance that is invariant under translations, and for which the open balls

are conver.

We now prove a Tietze-Dugundji extension theorem for upper semicontinuous

correspondences with nonempty compact star-shaped values.

Theorem 2.2.4 Let M be a nonempty closed subset of the metrizable space X, E
a metrizable locally convez space, and F : M — 2F an upper semicontinuous cor-
respondence with nonempty compact star-shaped values. Then there erists an upper
semicontinuous correspondence F : X — 2E with nonempty compact star-shaped val-

ues such that F|ys = F and F(z) C co(F(M)) for each z € X.

Proof. (1) Let d be a metric inducing the topology on X. By Lemma 2.2.3,
the topology on E can be induced by a metric p on E which is invariant under
translations, and for which the open balls are convex.

To each y € X\M, we assign an open ball U, in X\M with center at y and
diam(U,) < d(Uy, M), where diam(U,) denotes the diameter of the set U,. This
gives us a covering (U,) of X\M. Since X is a metric space, there is a partition of
unity {f,}yex\sr on X\M subordinated to the covering {U, : y € X\M}, that is,
fy : X\M — [0,1] is continuous for each y € X\ M and is zero outside of U,, while
each z € X\M has an open neighborhood V(z) in X\M such that all but a finite

number of f, are identically zero on V(z) and

z fu(z) =1, forall z € X\M.

yeX\M
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For each y € X\M we choose an m, € M such that d(m,,U,) < 2d(M,U,) and
define F' : X — 2E by

F()_{F(z)v if.’DEM;
Yvex\u fu(z)F(my), ifze X\M.

By Proposition 2.2.1, F(z) is a nonempty compact star-shaped subset of co( F(M ))
for each z € X.

(2) We now show that it is upper semicontinuous at each point in X'\ M.

Forr > 0and p € E, let O(p,r) = {z € E : p(p,z) < r}. First let zp € X\ M.
Then we can find an open neighborhood V(z) of zp in X\ M (since M is closed in
X) such that all but only a finite number of f,, y € X\ M are identically zero. We
denote the latter as f,,..., fy,. For any € > 0, since each F(m,,) is compact (hence
bounded), we can find § > 0 such that §y € 0(0,&/n) for all y € UL, F(m,,).

Since each f;(z) is continuous, there exists an open neighborhood V’(zg) of o in
X\M such that for each i € {1,...,n}, |fy:(z) — fu:(z0)] < & for all £ € V’(zq). Let
V(o) = V'(z0) N V(z0), then V"”(z0) is an open neighborhood of zo in X\ M. Let
i € {1,...,n}. For each ¢ € V"(z0) and any y € F(m,,), we have

p(fu(2)y: fui(zo)y) = p((fu(z) = fu(0))y,0)
< ¢/,

It follows that
fu(2)y € fu(z0)F(my,) + O(0,¢/n),
so that
fu(2)F(my) C fy(zo) F(my;) + 0(0,¢/n).
Therefore n n
S £u(@F(my) C 3 fulzo) Flmy) + 0(0, €;

=1 =1
ie., F(z) C F(zo) + 0(0,¢) for all z € V"(zo), which implies that F is upper

semicontinuous at zg.



14

(3) We now show that it is upper semicontinuous at each point in dx(M).

(3.1) Let zo € Ox(M) be given. Then F(zo,) = F(zo). Since F is upper
semicontinuous, for any ¢ > 0, by Lemma 2.2.2 there exists §; > 0 such that
F(z) C F(zo) + O(0,¢), i.e., F(z) C F(zo) + O(0,¢) for all z € O(zo,8) N M.

(3.2) f z € X\M and f,(x) # 0 for some y € X\M, then by the construction of
fy, we have z € U,. Applying the triangle inequality yields

d(my, z) < d(my, Uy) + diam(U,) < 3d(M,U,) < 3d(zo, z),

and therefore
d(my, o) < d(my, ) + d(z, o) < 4d(zo, ).
(3.3) Take é; = 4;/4. For any z € O(zo,d2) N (X\M), if f,(z) # 0 for some
y € X\ M, we have d(my, o) < 4d(zo,z) < 46, = &;. Hence F(m,) C F(z0)+0(0, ¢).
(3.4) For any z € O(zo,d2) N (X\M), we have 3 4\ fy(z) = 1 and only a finite
number of f,(z)’s are not zero.

Note that O(0, &) is convex, we have
Y f@F(my)C Y] fu(=)F(z0) + 0(0,¢),
yeX\M yeEX\M
or

F(z) C F(zo) + 0(0,¢)

for any z € O(zg,d2) N (X\M).
(3.5) For any z € M N O(zo,82) C M N O(xe, d1), we have

F(z) = F(z) C F(zo) + O(0,¢) = F(zo) + 0(0,€).
(3.6) By (3.4) and (3.5), for any z € O(zq, d2), we have F(z) C F(zo) + O(0,&).
Thus F' is upper semicontinuous at zo € xM. B

We remark that Theorem 2.2.4 is a partial generalization of Theorem 2.1 in [54]
in that F may have star-shaped values instead of convex values while the space E is

a metrizable locally convex space instead of a Hausdorff locally convex space.
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Let us recall the definition of an acyclic space. A compact metrizable space X is
said to be acyclic if

(1) X is nonempty;

(2) the homology groups Hy(X) vanish for g > 0;

(3) the reduced 0-th homology group Hy(X) vanishes.

Obviously nonempty compact convex or star-shaped sets in a metrizable locally
convex space are acyclic.

The following lemma is the Eilenberg-Montgomery fixed point theorem [27]:

Lemma 2.2.5 Let X be an acyclic absolute neighborhood retract and F: X — 2X
an upper semicontinuous correspondence such that for every z € X the set F(z) is
acyclic. Then F has a fized point.

The following fact is easy to prove.

Lemma 2.2.6 Let F' be an upper semicontinuous correspondence from the topological
space X to the topological space Y, then the set {z € X : F(z) # @} is a closed subset
of X.

Now we give the following theorem:

Theorem 2.2.7 Let I be countable. For each i € I, let X; be a nonempty compact
convez subset of the metrizable locally convez space E;, and F; : X := e X; — 2%
an upper semicontinuous correspondence with closed star-shaped values. Then there

erists £ € X such that for each i € I, either z; € Fi(z) or Fy(z) = 0.

Proof. We know that E := II;c/F; is also a locally convex space when equipped
with the product topology. Since I is countable and each FE; is metrizable, E is
metrizable (refer to Corollary 7.3, page 191 in [25]). By the Tychonoff theorem (refer
to Theorem 1.4, page 224 in [25]), X is a compact subset of E. Obviously, X is

convex. Hence X is acyclic and is an absolute neighborhood retract. For each i € I,
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let C; = {x € X : Fi(z) # 0}. By Lemma 2.2.6, C; is a closed subset of X. Define
F;: X — 2%i a5 follows:

(1) If C: = @, let Fi(z) = X; for all z € X;

(2) ¥ Ci = X, let Fi(z) = Fy(z) for all z € X;

(3) If C; is a proper nonempty subset of X, by Theorem 2.2.4, there exists an
upper semicontinuous correspondence F; : X — 2% with nonempty closed star-
shaped values such that Fi(z) = Fi(z) for all z € C;.

Define F: X —+ 2X by F = H.'GIF'.-. Then F is an upper semicontinuous cor-
respondence (by Lemma 3 of Fan [28]) with nonempty closed star-shaped values in
X. By the Eilenberg-Montgomery fixed point theorem (Lemma 2.2.5), there exists
z € X such that z € F(z). Now if F{z) # 0, we have Fi(z) = F(z), which in turn
implies z; € Fi(z). B

A direct application of Theorem 2.2.7 yields the following result:

Theorem 2.2.8 Let (X;, P;)ic1 be a game, where I is countable. For each i € I,
let X; be a nonempty compact convez subset of a metrizable locally convez space
E;. Suppose that for each i, P; : X := IL;e;X; = 2% is an upper semicontinuous
correspondence with closed star-shaped values and z; ¢ P;(z) for all z € X. Then
there ezists an equilibrium z € X, i.e., Py(z) =0 for each i € I.

Remark: Note that in the Eilenberg-Montgomery fixed point theorem, the values
of the correspondence are assumed to be acyclic only. We wonder whether the sum of
two acyclic sets is acyclic. If it were true, we could replace the star-shaped values with
acyclic ones in Theorem 2.2.4 and hence Theorem 2.2.7 and Theorem 2.2.8 could be
improved in this way. However, K. Johnson gives the following example which tells

us that even the sum of two contractible sets is not necessarily an acyclic set.

Example 2.2.9 Let two figures in the plane have the shapes of C and I, where the
height of I is equal to that of the gap of C. Obviously they are contractible and hence
they are acyclic. But the sum of them is a set with the homology group H, # 0.
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Nevertheless, we have the following open problem:

Let I = {1,...,n}. For each i € I, let X; be an acyclic absolute neighborhood
retract and F; : X = II"_, X; — 2Xi an upper semicontinuous correspondence with

acyclic or empty-set values. Does there exist x € X such that for each i € I either

z; € Fi(z) or Fi(z) =0°?

We next give an existence theorem for equilibria of a game in which the preferences
are majorized by upper semicontinuous correspondences. Let us recall some concepts
and notation introduced by Tan and Yuan in [76]:

Let X be a topological space, Y a nonempty subset of a vector space E. Let
6 : X — E be a single-valued map and ¢ : X — 2¥ be a correspondence. Then
# : X — 2Y is said to be of class Uy if (a) for each z € X,8(z) € ¢(z) and (b) ¢
is upper semicontinuous with closed and convex values in Y; (2) ¢, is a Us-majorant
of ¢ at z if there is an open neighborhood N(z) of z in X and ¢, : N(z) — 2Y
such that (a) for each z € N(z), 6(z) C ¢.(z) and 8(z) & ¢.(z) and (b) ¢, is upper
semicontinuous with closed and convex values; (3) ¢ is said to be Uy-majorized if for
each r € X with ¢(z) # 0, there exists a Up-majorant ¢, of ¢ at .

The following result is a particular case of Theorem 2.1 in [76]:

Lemma 2.2.10 Let X be a metrizable space and Y a subset of a metrizable topological
vector space E. Let 6 : X — E and P : X — 2Y\{0} be Uy-majorized. Then there
ezists a correspondence ® : X — 2Y of class Uy such that P(z) C ®(z) for each
zeX.

Here we shall deal with X = II;¢;X; and § = m; : X — X, the projection from X
onto X;. In the following, we shall write &f instead of Up.

Theorem 2.2.11 Let (X;, P;)icsr be a game, where I is countable. For each i € I,
let X; be a nonempty compact convez subset of a metrizable locally convez space E;.

Suppose that for eachi € I, P; : X := ;1 X; — 2% is a U-majorized correspondence
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such that the set C; := {z € X : Pi(z) # 0} is closed in X. Then there ezists an

equilibrium.

Proof. For each 2, since P; is U-majorized, by Lemma 2.2.10, there exists a
correspondence ®; : C; —+ 2%Xi of class U such that Pi(z) C ®;(z) for all z € C;.
Since C; is closed in X, by Theorem 2.2.4 there exists an upper semicontinuous
correpondence ¥; : X — 2% with nonempty star-shaped values such that ¥;|c, = ®.
Now define F : X — 2X by F = I;c;¥;. Then F is an upper semicontinuous
correspondence (by Lemma 3 of Fan [28]) with nonempty closed star-shaped values
in X. By the Eilenberg-Montgomery fixed point theorem (Lemma 2.2.5), there exists
z € X such that z € F(z). It is easy to check that z is an equilibrium. B

2.3 Equilibria for Games and Abstract Economies
in Locally Convex Spaces

In this section, we shall study equilibria for games and abstract economies in locally
convex spaces.

Let F be a topological vector space. We shall denote by E’ the continuous dual
of E, by (w,z) the pairing between E’ and FE for w € E' and z € E and by Re{(w, z)
the real part of (w, z).

First we have

Theorem 2.3.1 Suppose that I is a (possibly uncountable) indez set. For eachi € I,
let X; be a nonempty compact convez subset of the Hausdorff locally convez space E;,
F; : X := Uje1X; — 2% be an upper semicontinuous correspondence with closed
convez values. Then there exists x € X such that for each i € I, either z; € Fi(z) or
Fi(z) =0.

Proof. Suppose that the conclusion is false, then for any z € X there must exist
¢t € I such that z; € Fi(z) # 0. By the Hahn-Banach theorem, there exists p; € E!
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such that
Re(p;i, z:) > Re(p;,y;) for all y; € Fi(z).

For each z € I, let m; : X — X, be the projection map. Define
Vo: = {z € X : Re(pi, mi(z)) > Re(pi,y:) for all y; € Fi(z)}.

Since F; is upper semicontinuous, V,,(z) is open. Now we have

xclJ U %-
i€l p;eE;
Since X is compact, it is covered by finitely many V,i, where PleE,j=1,...,n;
for finitely many 7 in I. Without loss of generality, we suppose i = 1,...,m. So

Let {f/},i=1,...,mand j=1,...,n; bea partition of unity subordinated to
this cover and let ¢ : X X X — R be defined as follows

m n;

$(z,y) =Y Y fi(z)Re(p], mi(z) — wi).

i=1 j=1

Since for each fixed y € X, £ — ¢(z,y) is continuous and for each fixed z € X,
y = &(z,y) is concave, there exists £ € X such that ¢(z,y) <0 for all y € X by the
Ky Fan inequality in [30] (refer to Theorem 1.3.1).

Now since there is at least one i such that Fj(Z) # 0 (see the beginning of this
proof), we can take j as follows: let §; be any point in F;(z) if it is nonempty and be
any point in Xj if Fi(Z) is empty. We prove that ¢(z,7) > 0. In fact, if ff(:i:) > 0, then
= Vp{, which in turn implies that Re(p;, 7:(Z)) — Re(pi, #:) > 0 since §; € Fi(z).
Note that there must be some f/(z) > 0 since 3.7, 37 | f/(Z) = 1. This is a
contradiction. W

It is easy to write an equilibrium existence theorem for a game corresponding to

Theorem 2.3.1, which we omit here.
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Remark. Theorem 2.3.1 generalizes the well-known Fan-Glicksberg fixed point
theorem. However, we know that the Himmelberg fixed point theorem [40] is a little
more general than the Fan-Glicksberg fixed point theorem. We formulate the following

problem here:

Let I be an index set. For each i € I, let X; be a nonempty conver subset of
Hausdotff locally convez space E; and D; a nonempty compact subset of X;. If for
each i € I, F; : X := H;erX; — 2P¢ is an upper semicontinuous correspondence with
closed convez values, does there ezist z € D := ;e D; such that for eachi € I either
z; € Fi(z) or Fi(z) =07

The following lemma was proved in [63]:

Lemma 2.3.2 Let M be a nonempty closed subset of a metric space X, E a metriz-
able locally convez space, F' : M — 2E an upper semicontinuous correspondence with
nonempty closed convez values and ¢ : X — 2 a continuous correspondence with
nonempty closed convez values such that F(y) C ¢(y) for each y € M. Further sup-
pose that the closure of ¢(N) := U,end(z) is compact for any bounded subset N of
X. Then there ezists an upper semicontinuous correspondence F : X — 2B with

nonempty closed convez values such that F|yr = F and F(z) C ¢(z) for each z € X.

Note that in [63], £ is required to be a normed space. The proof remains valid
when E is a metrizable locally convex space. This can be done by Lemma 2.2.3 and

the following two lemmas.

Lemma 2.3.3 Let X be a metrizable space and Y a nonempty compact convez subset
of the metrizable locally convez space E. Suppose that F : X — 2Y is an upper
semnicontinuous correspondence with compact values, then T : X — 2Y defined by

T (z) := cly(co(F(z))) for each = € X is also upper semicontinuous.

Proof. Since E is a metrizable locally convex space, by Lemma. 2.2.3, the topology

of E can be defined by a metric d that is invariant under translations, and for which
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the open balls are convex by Lemma 2.2.3. We will also denote any metric on X
which can induce the topology as d.

Let € > 0 and zo € X. Since F' is upper semicontinuous, by Lemma 2.2.2, there
exists § > 0 such that for all z € O(zo,d) =: {z € X : d(zo,z) < &}, F(z) C
F(zo) + 0(0,€/2). Now let any z € coF(z). Then there exist z,,...,2, in F(z) and
nonnegative numbers A, ..., A, with > A\; = 1 such that z = o1 Aizi. We take
Yi,---,Yn In F(zo) with z; € y; + 0(0,¢/2) for all = 1,...,n. Then we have

i Aiz; € i Ay + i /\;0(0,6/2).
i=1

=1 i=1

Since O(0,¢) is convex, we have

i Aiz; € 5"\_‘ Aiyi + 0(0,¢/2)

i=1 =1
or coF'(z) C coF(zo) + 0(0,&/2). So we have cly(coF(z)) C cly(coF(zo)) + 0(0,¢),
i.e., T(z) C T(xo) + O(0,€). By Lemma 2.2.2 again, T is upper semicontinuous. l

The following appears as Proposition 1 in [83].

Lemma 2.3.4 Let X be a topological space and Y a normal topological space. If
F : X — 2Y is upper semicontinuous, then the correspondence clF : X — 2Y defined

by clF(z) = cly (F(z)) is also upper semicontinuous.

Theorem 2.3.5 Suppose that I is countable. Let (X;, F, P;)icr be an abstract econ-
omy such that for each: € I

(1) Xi is a nonempty compact convez subset of a metrizable locally convez space
E;;

(i) F; : X := O X; — 2% is a continuous correspondence with nonempty
compact convex values;

(i) P; : X — 2% is upper semicontinuous;

() z; & clx,(co(P;(z))) for all z € X := I X;.

Then there is an equilibrium.
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Proof. Note that I is countable, X is a subset of the metrizable space E :=

O erE;. It is also compact and convex. For each ¢ € I, define G; : X — 2% by
Gi(z) = Fi(z) Nelx,(co(Pi(z))) for each z € X.

Since P, is upper semicontinuous, z — clx,(P;(z)) is upper semicontinuous by Lemma,
2.3.4. By Lemma 2.3.3, clx,(co(clx;(P:(z)))) is upper semicontinuous. Note that
clx:(co(elx;(Pi(z)))) = elx;(co(Pi(z))) for any = € X, clx,(co(P:(z))) is upper semi-
continuous. Further since F; is upper semicontinuous, G; is also upper semicontinuous
by Lemma 2.2 in Tan and Yuan [78]. Now let M; := {z € X : G;(z) # 0}, then M;
is closed. Note that for each z € M;, we have G;(z) C Fi(z). By Lemma 2.3.2, there
exists an upper semicontinuous correspondence é,-(:z:) with nonempty closed convex
values such that Gi(z)|a. = Gi(z) and Gi(z) C Fi(z) for each z € X. Now define
G : X = 2% by G = IL;e/G;, then G is upper semicontinuous correspondence (by
Lemma 3 of Fan [28]) with nonempty closed convex values. By the Fan-Glicksberg
fixed point theorem, G has a fixed point z € X. Obviously, z is an equilibrium. Wl

Remark. Recently Kim and Lee [47] claimed a “theorem” as follows:

Suppose that I is a (possibly uncountable) indez set. Let (X, F;, P:)icr be an
abstract economy such that for each i € I

(i) X; is a nonempty convez subset of a locally convez topological space E; and D;
s a nonempty compact subset of X;;

(ii) cLF; : X — 2P¢ is an upper semicontinuous correspondence such that Fi(z) is
convez for each z € X =: I je1 X;;

(i) P; : X — 2% {s upper semicontinuous with convez values;

(iv) the set W; := {z € X : (F: N P;)(z) # 0} is closed;

(v) z; & clx,(Pi(z)) for allz € W;.

Then there is an equilibrium z € D, i.e., for each i € I, z; € clFi(z) and A;(z) N
Pi(z) =0.

If it were true, it would be much more general than Theorem 2.3.5. A very simple

example shows that their result is wrong:
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Example 2.3.6 Let I = {1}, X; = X =[0,1]. Suppose

Fi() = { 01 Fa=1/
{1-z} ifz#1)2.

1/3} ifz=1/2;
Py { 003 =1
0 ifz#1/2.
Then F} and P, are upper semicontinuous with closed convex values. Further,
W1 = {1/2} is closed. The only fixed point of F} is 1/2. However, F;(1/2)NP;(1/2) =
{1/3} #0. ®

We think that a reasonable conjecture is as follows:

Suppose that I is a (possibly uncountable) indez set. Let (X, F;, P;)icr be an
abstract economy such that for each i

(i) X; is a nonempty convez subset of a locally convez topological space E; and D;
is a nonempty compact subset of X;;

(ii) F; : X — 2P¢ is a continuous correspondence such that Fi(z) is a nonempty
convez closed set for each z € X := ;1 X;;

(iii) P;: X — 2% is upper semicontinuous with convez values;

(iv) z; &€ clx,(P:(z)) forallz € X.

Then there is an equilibrium x € D, i.e., for each i € I, z; € Fi(z) and Fi(z) N
P(z)=0.

Since most Tietze-Dugundji extension theorems require that the domain of the
map to be extended be a metric space, the extension techniques we have used can
not be applied to the open problem. There are a very few exceptions ( for single-
valued maps) in the literature which do not have such a requirement, but they are
too crude to be used for our problems. It is not known whether the Tietze-Dugundji
extension theorem holds when the domain of the map to be extended is a closed
(even compact) subset of a (non-metrizable) locally convex space. This is probably

a “classical question”. Sticking on this technique may not be a good idea. Possibly



24

other approaches (think about Theorem 2.2.7 and Theorem 2.3.1!) can resolve this

question.

2.4 Equilibrium Existence Theorems with Closed
Preferences

In this section, we first present an equilibrium theorem for an abstract economy with
mixed preferences (which means that some of the preferences have open graphs, and
the others are upper semicontinuous with closed values). Then, as applications, we
provide two examples to illustrate how the general result established in this section
can be used to give the existence of equilibria of economic models such as the pure
exchange model and the Arrow-Debreu model.

The discussions are restricted to R"™ spaces. The reason for this is that we want to
illustrate how to resolve general equilibrium problems with closed preferences rather
than becoming involved in the explanation of the complex structures of infinite di-
mensional spaces used in this area. Also some concepts are restated or reexplained

with their underlying settings.

2.4.1 Introduction

Following Debreu, I' = (X;, F;,U;)Y, is called a generalized N-person game (or
an abstract economy) if for each person (agent) i = 1,..., N, X; is a choice set,
F; : X := ;s X; = 2% is a constraint correspondence and U; : X — R is a util-
ity (payoff) function. The objective of the i*® agent is for each £ € X to choose
an action z; which maximizes U;(Z;,- -+, Zi-1,°, Zit1,- -+, ZN) subject to z; € Fi(z).
The vector £ = (&, --,&,) of actions is an equilibrium for [ if #; maximizes
Ui(£1,---,Zi-1, ", Zi41, £N) subject to z; € Fy(z) for each ¢ = 1,...,N. This no-

tion of equilibria is a natural extension of the concept of an equilibrium introduced
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by Nash [59] for non-cooperative N-person games. If each X; is a non-empty com-
pact convex subset of R/, each F; is continuous with non-empty convex values and
each U; is continuous on X and quasi-convex in z;, then Debreu [20] showed that an
equilibrium exists. Arrow and Debreu [3] used this result to prove the existence of a
competitive equilibrium.

Following Shafer [67], E = (¥;,w;, V;)X, is said to be an economy if N is the
number of individuals, and for each ¢ = 1,...,N, Y; C R'is a consumption set
of the i** individual, w; € Rf,_ is the i** individual’s initial endowment vector, and
Vi : Y = R is a utility function which represents the preferences of the it* individual.
Let Y =IIY,Y: and A = {p € R, : T!_, p; = 1} denote the set of normalized prices.
For two elements z,y € R/, zy will be used to represent the scalar product of z and
y. A competitive equilibrium for E is a point (§,p) € Y X A such that the following

three conditions are satisfied:

(1) Eil\;lgi < Ef’ilwi;

(2) py = pw; for eachz =1,...,N;

(3) for z = 1,..., N, ¥; is the solution to ‘maximize V; subject to py; < pw; and
yi €Y.

We associate E with an (N 4 1)-person generalized game I = (Y, F}, Vi)Y, in the
following manner: For each ¢ = 1,..., N, the i*" person has a utility function V;, a

choice set Y; and a constraint correspondence F; defined by

Fi(y,p) ={yi € Y : py; < pw;}

for each (y,p) € Y x A. The 0% person, called a market player, has a utility (payoff)
function Vp which is defined by

Vo(y, p) = p(Zy: — Tw;)

for each (y,p) € Y x A, a choice set A and a constraint correspondence Fy defined
by
Fo(y,p) =A
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for each (y,p) € ¥ x A. Then, if each Y; is compact and convex, w; € intY; and
each V; is continuous and quasi-concave, this (/V + 1)-person generalized game ' will
satisfy the sufficient conditions mentioned above for the existence of an equilibrium.
It is easy to see that (y*,p") is an equilibrium for E if for each: =0,...,N, yf isa
maximum of V;. Note that the above argument remains valid if each agent’s utility
function V; is assumed to depend not only on his own consumption y;, but also on the
consumptions of the other agents and on the prices p. Thus, Arrow and Debreu also
showed how to prove the existence of a competitive equilibrium with consumption
externalities and price dependent preferences.

We now follow Shafer’s idea to extend the above result to the existence of an
equilibrium in an abstract economy. Given an N-person generalized game ' =
(X;, F:,U;)N.,, for each i = 1,..., N, consider the correspondence P; : X — 2X:
defined by

P,‘(.‘E) = {Zg‘ € Xi : U’{(xl," Ty L1y iy Ligly 1271) > Lf‘(‘t)}

for each £ € X. Note that £ is an equilibrium of I" if and only if P;(Z) N Fi(z) = 0
and £; € F;(Z) foreachz = 1,..., N. We shall consider abstract economies in which
the individual preferences are given by a preference correspondence P; rather than by
a utility function. In this formulation, preferences, which depend on the actions of

others, are not required to be either transitive or asymmetric.

2.4.2 An Equilibrium Theorem for an Abstract Economy

We have the following equilibrium existence result for an abstract economy.

Theorem 2.4.1 LetT = (X;, F;, P)Y, be an abstract economy and I[,UI, = {1,..., N},
where Iy and I; are disjoint. Suppose that

(i) for each i =1,...,N, X; is a nonempty, compact and convez subset of R';

(i) for each 1 =1,...,N, F; is a continuous correspondence with nonempty com-
pact convez values;

(ii1) (a) for i € Iy, P; has an open graph and convez values,
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(b) for i € I, P; is upper semicontinuous with closed convez values;
(iv) for each i =1,...,N, z; € Pi(z) for all z € X.

Then ' has an equilibrium.

Proof. Let X =1I¥ X;.

(1) Fixan ¢ € Iy. Let U; = {z € X : Fi(z) N P(z) # 0}. Since F; is lower
semicontinuous and P; has open graph, F;N P; is lower semicontinuous by Lemma 4.2
of Yannelis [85]. Hence U; is open. By Michael’s selection theorem [56], there exists
a continuous function f; such that f;(z) € Fi(z) N P;(z) for each z € U;.

Define G; : X — 2% by

{fi(z)}, ifzelU..

Then G;(z) is upper semicontinuous with nonempty compact convex values.

(2) Fixan ¢ € . Let M; = {z € X : Fy(z) N P(z) # 0}. Then M; is closed
since F; N P; is upper semicontinuous by Lemma 2.2 in Tan and Yuan [78]. Note
that for each z € M;, Fi(z) N Pi(x) C Fi(z), by Lemma 2.3.2, there exists an upper
semicontinuous correspondence G; : X — 2%X¢ with nonempty compact convex values

such that Gi|a; = F; N P; and Gi(z) C Fi(z) for each z € X.

(3) Now define G : X — 2X by G(z) = I, Gi(z) for each = € X, then G is upper
semicontinuous (by Lemma 3 of Fan [28]) with nonempty compact convex values. By
the Kakutani fixed point theorem (Kakutani [43]), G has a fixed point z € X. Clearly,

z is an equilibrium for I'. @

Remark 1. Suppose Fi(z) = X; foreachi =1,...,Nand forallz € X. (1) If
I, = 0, then Theorem 2.4.1 reduces to the fixed point theorem (Theorem 2.1.2) in
Gale and Mas-Colell [32] (2) If I = 0, Theorem 2.4.1 can be regarded as a dual of
Gale and Mas-Colell’s fixed point theorem.

Remark 2. (1) if I, = @, Theorem 2.4.1 reduces to the abstract result (Theorem
2.1.4) in Shafer and Sonnenschein [69]. (2) If Iy = @, Theorem 2.4.1 can be regarded
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as a dual of Shafer and Sonnenschein’s abstract result.

Remark 3. By Lemma 2.3 of Tan and Yuan [79], it follows that the condition
(iii)(a) in Theorem 2.4.1 is equivalent to the condition that “ P; is lower semicontin-

uous with convex and open values (which may be empty)”.

2.4.3 Application 1

In this section, we shall give an application of our Theorem 2.4.1 to economic models.
Suppose there are n traders. For each trader i € I = {1,...,n}, the trading set
X; is a subset of R! and there is a preference correspondence P; from X; to 2%i. There
is also a subset Y of R’ which is called the technology of the economy (Gale and
Mas-Colell [32]).
An allocation z is an n-tuple (zy,---,z,) where z; € X; for ‘each i € I. Thus

z € X = Il;c;X;. An allocation is said to be feasible if &% z; € Y.

For a given allocation = = (1, - -, z,), zo denotes the sum T, z;.

For two points z = (z',...,z!) and y = (z!,...,%') in R/, we say that ¢ > y if
>y fori=1,...,andz>yifz >y fori=1,...,1[;

Let A be the unit (I —1)-simplex. Each element p of A will be called a price vector.
In formulating equilibrium models, we describe the way in which an allocation z is
associated with the price vector p as follows: For each : € I, let the trader i have
income a;(p) at the price p. In the pure exchange model, it is assumed that the trader
¢ has an initial endowment vector w; and his income is then given by a;(p) = pw;.
The Arrow-Debreu model [3] involves a more complicated set of income functions. It
is assumed that the technology set Y is the sum of some sub-technologies Yi,---,Y;
which are to be thought of as firms, and trader 7 is provided with a portfolio vector
6; = (0i1,---,0:r), where 6;; represents trader ¢’s share of the firm Y;. The Arrow-

Debreu income functions are then given by

ai(p) = pw; + T7_,6;; sup pY;.



29

In the present treatment, by following Gale and Mas-Colell [32], we wish to allow for
more general income functions. For any p € A, define the profit function II(p) by

Ii(p) = sup pY.
Since Y maybe unbounded, it follows that II may be infinite. We define A’ C A by
A'={p e A:1I(p) < co}.

The following lemma is implicitly contained in the proof of Lemma 2 in Gale and
Mas-Colell [32]. We shall give a detailed proof here.

Lemma 2.4.2 Suppose Y C R is closed convez, contains the negative orthant and
has a bounded intersection other than {0} with the positive orthant. Let e be a point
inY and Y = {y:y € Yandy > e}. Suppose for some p € R, and z € Y,
pz = max,cy py. Then there is ¢ € A such that gz = maxyey qy.

Proof. Since pz = max .y py, the set D := {y € R': y > 2} is non-empty open
convex and disjoint from Y. D is also disjoint from Y. Otherwise, let 4 € DNY.
Then 7 > 2 > e so that § € Y which contradicts pz = maX,ppy. Since Y is
convex, by the Hahn-Banach theorem, we can find ¢ € R’ such that g7 > qy for all
¥ € D and y € Y. Note that since Y contains the negative orthant, it follows that
q = (qi,---.qa) € R}, Take y = z and a sequence (§,) in D converging to z. We
have gz = maxyey qy. Obviously, ¢ > 0 and ¢ # 0. If Zf-=l g; # 1, replace it with
q/ Zi‘:x g € A which is required. @

Our hypothesis on Y will guarantee that A’ is non-empty. One also verifies that
A’ is convex. We also assume the existence of n real-valued functions o; on A’ (to be

called income functions) satisfying the following formula:
Ein1ai(p) = 1(p)
forallp e A'.

By following Aliprantis et al’s book [1], we have the following definition.
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A Walrasian (or, a competitive) equilibrium for the model described above

consists of a price vector p in A and an allocation £ such that

(1) pz < ai(p) for all 7 € I (budget inequality);
(2) for each i € I, if z; € Pi(Z;), then pz; > pZ; (preference condition);
(3) z is feasible (balance of supply and demand).

The following lemma is Lemma 3 in Debreu [21].

Lemma 2.4.3 Suppose X is a non-empty compact conver subset of R! and D =
{(p,w) € R*! : min,ex pr < w}. Let B : D — 2% be defined by B(p,w) = {z € X :
pz < w}. Ifw® > min,ex p°z, then B is continuous at (p°, w°).

The following lemma is contained in the proof of Theorem 4 in Debreu [21] [page

707-710], but here we shall give an explicit proof based on Debreu’s idea.

Lemma 2.4.4 Suppose X i3 a non-empty compact convez subset of R! and a(p) is a
continuous function on a non-empty compact subset Y of R!. If a(p) > min,ex pz for
all p €Y, then correspondence A : Y — 2X defined by A(p) = {z € X : pz < a(p)}

s continuous.

Proof. SinceY is compact and A is non-empty and closed-valued, A can be shown
to have a closed graph. Hence A4 is upper semicontinuous. It remains to show that A
is also lower semicontinuous.

Let p° be any point in Y. To show A is lower semicontinuous at p°, we consider
a sequence (p')®, in Y converging to p° and a point 2° € A(p°).

Let w' = a(p') fori = 1,---, then (w*)2, converges to w® = a(p°). Fori =0,1,---,
since w* = a(p) > min,ex p'z, (b, w') € D := {(p,w) € R*! : min,cx pz < w}. By
Lemma 2.4.3, 8 : D — 2% defined by B(p,w) = {z € X : pz < w} is continuous at
(% w°®). So for 2° € A(p°) = B(p° w®), there exists a sequence (z°)2,, where z* €
B(p*,w') = A(p') for each i = 1,.. ., converging to 2°. Thus A is lower semicontinuous.
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Now we have the following theorem:

Theorem 2.4.5 The following conditions are sufficient for the ezistence of an equi-
Lbrium:

(i) the set Y is closed convez, contains the negative orthant, and has a bounded
intersection with the positive orthant;

(i) for each i = 1,...,n, the set X; is non-empty closed conver and bounded
below;

(i3i) for each ¢ = 1,...,n, the preference P; is upper semicontinuous with closed
convez values and is irreflezive (i.e., z; ¢ Pi(z) forallz € X);

(iv) for each i = 1,...,n, the function a;(p) is continuous and satisfies a;(p) >

inf pX; forallp € A'.

Proof. Aseach X; is bounded below, it follows there exists a vector e such that
for any non-empty subset S of {1,---,n}, we have e < y for all y € L;csX;.

Without loss of generality, we may assume that e < 0 so that e € Y. Now
defme Y = {y € Y : y > e}. Note that ¥ contains all feasible zo = %, z; and
by the condition of Y, ¥ is also bounded above as well as below. Thus there exists
a vector f such that f > Y. By the feasibility, zo = £7_,z; < f — e, so that
z; < f—LXjzz; < f —e. Following Gale and Mas-Colell [32], we define the set
A" C A’ as follows

A" ={pe A': py =I(p) for some y € Y}.

Take any p € A’. Since Y is compact, there is z € ¥ such that p-z=sup,pp-y.
By Lemma 2.4.2, there is ¢ € A such that q- z = sup ey ¢- y = II(g) so that g € A".
Thus A” is non-empty. It is easy to see A” is closed.

Also let A* be the convex hull of A”. Then A~ C A’ since A’ is convex and A* is
also closed as A” is closed.

By the definition of A", we shall show that there is a nonempty finite set X! C X;
such that minpX] < ai(p) for all p € A*. Indeed, for each p € A*, let z, € X;
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be such that pz, < a;(p). By the continuity of «;, it follows that there is, for each
p € A", an open neighborhood V,, of p in A* such that gz, < ai(q) for each q € V.
The family of open sets {V, : p € A*} covers A" and since A” is compact, there is a
finite subcover {V,,,---,V,,}. Then take X! = {z,,,---,z,,}. Let r be sufficiently
large and we define X; = {zi € Xi : z: < r}. Without loss of generality, we may
assume that X} C )2; forallz =1,...,n.

Now for each i = 1,...,n, define F; : A* x X — 2Xi by

Fi(p,z) = {zi € Xi : pz: < ai(p)}

for each (p,z) € A*x X , Where X = H}‘=If(,-. By the construction of X,- above and the
condition (iv), it follows that F;(p, z) is nonempty and convex for each (p, z) € A*x X
and, moreover, by Lemma 2.4.4, F; is continuous with non-empty closed and convex
values.

Now define Fy : A* x X — 22" by

FO(pa :L') = A.

for each (p, z) € A* x X. Of course, Fy is continuous with non-empty closed convex

values for all (p,z) € A" x X. Finally, define P, : A" x X — 247 by

Po(p,z) ={qg€ A" :q-(ZL,z:) —O(q) > p- (S, z:) — H(p)}

for each (p, z) € A= x X. It follows that P, has an open graph, each Py(p, z) is convex
(maybe empty), and p ¢ Po(p,z) for all (p,z) € A™ x X.

Identify P; with P; : A® x X — 2%i defined by Pi(p,z) = P,(z;) for each (p,z) €
A* x X. By the condition (iii), it follows that the abstract economy (X;, F;, i)
satisfies all hypotheses of Theorem 2.4.1, where X, = A*. By Theorem 2.4.1 with
Ip = {0} and I; = {1,...,n}, there exists (5,2) € A" x X such that € A* and

Fo(p,2) N Po(p,2) = A" N{ge A" : q(D_ &) —1I(q) > 5()_ #:) — ()} = 0

i=1 =1
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which implies that for each ¢ € A*, we have

oD %) - T(q) <A _ &) — ().
i=1 i=1

Moreover, for each : = 1,2,---,n, Z; € Fi(p,Z) for : = 1,2,---,n and Fy(p,z) N
Pi(p,z) =0.

Now we prove that (p,z) is a Walrasian equilibrium. First we claim that o =
Y. i1 Zi is feasible, i.e., £o = Y . & € Y. Suppose the contrary, i.e, 2o ¢ Y. We
may choose A such that yy =Xe+(1 —A)Zp € Y and yo = ae+ (1 —a)zo € Y for all
a< A

Since Zo > e, by a similar argument as in the proof of Lemma 2.4.2, there exists
g in A such that qyx = II(q) and ¢, > II(q). Note that yy € Y, it follows that
p € A" C A*. Therefore, we have q(Zo) — II(q) < p(Z0) — I(p). Thus p(Ze) >
II{p). However, we do have that p(Zo) = -, #(%:) < T, a:(p) = II(p), which is a
contradiction. Thus we must have £o =) ., &; € Y.

Finally, we wish to show that pz; > pz;, for each z; € P;(&;). Since Pi(p,Z) N
Fi(p,z) = 0, it follows that for each z; € Pi(p, Z:), z: ¢ Fi(p, 2:), i.e, pz; > ai(p).
As ai(p) > pZ;, it follows that pz; > pz; for all z; € P,(Z;). Therefore (p,z) is a

Walrasian equilibrium and the proof is complete. B

2.4.4 Application 2

As another application of Theorem 2.4.1, we shall generalize one of Shafer and Son-
nenschein’s results in [70].

We now consider the pure exchange economy £ with n consumers and ! commodi-
ties. For each 7 = 1,...,n, the i*® consumer is specified by his consumption set X;
which is a subset of ]R’+, his initial holdings w; which is a point in R}, and a preference
indicator P;. A preference indicator may take different forms. In economies without
externalities, it may be either a utility function U; : X; — R or an irreflexive relation
P; C X; x X; which was used by Gale and Mas-Colell [32]. Also it is more general
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than the utility function formulation since P; is not required to be asymmetric or
transitive. If U;(z) > Ui(y), or alternatively if (z,y) € P;, we then say that the it}
consumer prefers z to y. In economies with externalities we allow the preference of
each individual to depend not only on his own consumption, but also on the consump-
tion of each consumer and price. A price vector p is a point in Rﬂ_. An allocation

z = (zy, --,zp) € X = ;e X; specifies a consumption for each consumer.

A competitive equilibrium for the economy £ is defined as an allocation price pair
(P, #) € R, x X such that for each i =1,2,---,n,

(1) p- & <P -w; for all ¢ (budget inequality);
(2) if z; € Pi(p, i) , then p- z; > p - w; (preference condition).
(3) Yo, & < Yo, w; (demand cannot exceed supply).

We shall study the existence of competitive equilibrium for the pure economy £ in
which each preference indicator P;: R} x X — 2% is such that P;(p,-) is an irreflexive
relation in X X X; for each fixed price vector p € Rf,,, ie., z; ¢ Pip,z). Also we
assume that P; is upper semicontinuous with closed values instead of being lower
semicontinuous or having open graph (which is the usual form used in the literature,

e.g., see Gale and Mas-Colell [32], Shafer and Sonnenschein ([69], [70]), Debreu [21]

and references therein).

Theorem 2.4.6 Let & = (X;,w;, P;)%, be an economy satisfying for eachi =1,--- n,

(1) the consumption set X; is a nonempty compact convezr subset of R;

(i) the #* initial endowment w; € intX;;

(iii) the preference indicator P; : Rfi_ x X — 2%Xi is upper semicontinuous with
closed convez values such that z; ¢ Pi(p,x) for each (p,z) € R, x X, where X =
e, X;.

=1

Then there ezists a competitive equilibrium for the economy E.

Proof. Let A= {peR,: Zf.=1 pi = 1}. For each i = 1,---,n, we define
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F:i: AxX —2%X by
Fi(p,z) = {z € X : pzi < pwi}
for each (p,z) € A X X. Then F; has nonempty closed convex values. As w; € intX],

F; is both upper and lower semicontinuous by Lemma 2.4.4. Now we define the

correspondence Fp : A x X — 22 by
Fo(p,z) = A
for each (p,z) € A x X and define another correspondence Py : A x X — 22 by
Po(p,z) = {q€ A: q(EL,zi — B wi) > p(EL, zi — T wi)}

for each (p,z) € A x X. Clearly, F, is continuous and P, has an open graph.
Also, p ¢ Py(p,z) for each (p,z) € A x X. Thus the family (X;, F;, P;)%,, where
Xo = A, satisfies all hypotheses of Theorem 2.4.1. By Theorem 2.4.1, there exists
(p,z) € A x X such that for each : = 1,---,n, we have that Z; € F;(p,Z) and
Fi(p,%) N P(p,z) = 0, and p € Fo(p, %) and Fo(p,2) N Po(p,2) = 0. That is, we have
the following:

() peAand p-z; <pw;forz=1,...,n;
(b) ﬁ(Z?:l z; — Z?=1 w;) > Q(Z?=1 z; — Z?:l w;) for all ¢ € A; and
(c) Pipi2)N{z; € X;:p-z; < pw;} =@ fori=1,...,n.

By (a), we have

PY 8 <HY wi (2.1)

i=1 i=1
We claim that ) 7, & < Y 7, wi. Suppose not, let z = (21,...,2z1) =: Y0, &i —
Y i wi. Then there must be some k such that zx > 0. Take ¢ = (q1,...,q) € A
such that g = 1 and ¢; = 0 for 7 # k. Then we have gz = z > 0 so that p(}_~, &; —
Y.imywi) > 0 by (b). This contradicts to (2.1). So we have Y&, z; < S0 wi.
Further, by (a) and (c), (p,Z) is an equilibrium for £. B
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2.5 Comment

In correspondence theory, there are two techniques, “extension” and “selection”, that
are commonly used. The former is represented by the Dugundji-Ma theorem [54],
which is often used to resolve problems involving “upper semicontinuity” ; the latter
is represented by Michael’s theorem [56], which is often used to resolve problems
involving “ lower semicontinuity”. In Theorem 2.4.1, we used both techniques while
remarking that there exists some duality between the existence theorems of fixed
points for correspondences that have open graphs and that are upper semicontinuous.
In fact, this can be attributed to duality between “ extension ” and “selection”, or
more fundamentally, “upper semicontinuity” and “lower semicontinuity”. The better
the underlying spaces, the better the duality between the two categories of problems.
The following theorem from [17] is also interesting.

Theorem 2.5.1 (Cellina and Solimini), Let E be a Banach space, X a metric
space and D a closed subset of X. Let F : X — 2E be a lower semicontinuous
correspondence with nonempty closed convezr values; let ¢ : D — 2F be continuous
with nonempty closed bounded values. Further, suppose that ¢(z) C F(z) for all
z € D. Then there ezists continuous correspondence ¢ : X — 2€ with closed bounded

values such that

5(13) C F(z) forz € X,

and

é(z) = ¢(z) for = € D.

This theorem can be regarded as a dual of Theorem 2.3.2. Note that we can replace
“¢ has nonempty closed bounded values” with “¢ has nonempty closed bounded
convex values” if we impose some common conditions on the image of F, for example,
requiring that the image of F' be contained in a nonempty compact convex subset of
E. This can be done by Lemma 2.3.3 and Proposition 2.6 in [56] (refer to Lemma
4.3.8 in this thesis).
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The following table roughly summarizes the duality shown between “upper semi-

continuity” and “lower semicontinuity”.

Lower semicontinuous Upper semicontinuous

Michael selection Theorem Ma-Dugundji extension Theorem

Fan-Browder Theorem Kakutani-Fan-Browder Theorem

Gale-Mas-Colell Theorem Theorem 2.2.7 or Theorem 2.4.1

Deguire-Lassonde Theorem Theorem 2.3.1
Cellina and Solimini Theorem | Pruszko Theorem
Shafer-Sonnenschein Theorem | Theorem 2.3.5 or Theorem 2.4.1

Note: The Michael selection Theorem refers to some results in Section 3 in [56]; the
Ma-Dugundji extension Theorem refers to Theorem 2.1 in [54] (also see Theorem 2.2.4 in
this thesis); the Fan-Browder Theorem refers to Theorem 2.1.1; the Kakutani-Fan-Browder
refers to Theorem 2.1.5; the Gale-Mas-Colell Theorem refers to Theorem 2.1.2; the Deguire-
Lassonde theorem refers to Theorem 2.1.3; the Cellina and Solimini Theorem refers to
Theorem 2.5.1; the Pruszko Theorem refers to Theorem 2.3.2; the Shafer-Sonnenschein

Theorem refers to Theorem 2.1.4.



Chapter 3

Equilibria for Abstract Economies

with a Measure Space of Players

3.1 Introduction

As we saw in Chapter 2, the Tietze type extension theorem may be used to study
equilibria theory in mathematical economics. This provides a new approach in this
area.

The following are examples of how the Tietze extension theorem has been devel-
oped: Dugundji proved an extension theorem in [24] for single valued maps, which
generalizes the Tietze extension theorem; Ma [54] generalized Dugundji’s theorem to
compact convex-valued correspondences; and Pruszko [63] proved a completely con-
tinuous extension theorem for convex-valued selections. These results have been used
in topological degree theory and in studying generic structures of underlying spaces.

On the other hand, Han$ [39] proved a random version of Tietze’s extension the-
orem. Andrus and Brown [2] proved a random version of Dugundji’s theorem which
extended Hans’ result. Also Bocsan et al proved a particular type of continuous ran-
dom theorem (the same result was presented in Papageorgiou [62]). A slightly more
general version of this theorem was also presented in [42].

In this chapter, we shall prove an extension theorem for a correspondence defined

38
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on the product space of a measure space and a metric space. The extension theorem
we shall prove (somewhat) corresponds to the Pruszko extension theorem (refer to

Lemma 2.3.2). Finally, we apply it to study the equilibria for abstract economies.

3.2 Notation and Definitions

Let X be a topological space. X is said to be Polish if X is separable and metrizable
by a complete metric, and Souslin if X is metrizable and the continuous image of a
Polish space.

Let T denote a measurable space with o-algebra 7. If necessary, (T, 7) will be
used to imply that T is associated with the o-algebra 7. In case there is a o-finite
(respectively, finite) measure p defined on 7 we say that (7,7, pu), or simply T, is
a o-finite (respectively, finite) measurable space; and if there is a complete measure
p defined on 7 we call T a complete measurable space. If (T},7;) and (T3, 7;) are
two measurable spaces, (T} x T;, 71 ® 72) will denote the measurable space where the
product o-algebra 71 ® 72 on T7 x T3 is generated by the sets A x B, where A € T;
and B € T;.

A correspondence F' : T — 2% is measurable (weakly measurable, B-measurable) iff
F~Y(B):={t € T : F(t)n B # 0} is measurable for each closed ( resp., open, Borel)
subset B of X. If F : Y — 2% where Y is a topological space, then the assertion
that F' is measurable(weakly measurable, etc.) means that F' is measurable (weakly
measurable, etc.) when Y is assigned the o-algebra B of Borel subsets of Y. Likewise,
if F: T xY — 2%, then the various kinds of measurability of F are always defined
in terms of the product o-algebra 7 @ B(Y) on T x Y. In addition, if 7T} and T}, are
two measurable spaces, a correspondence F : T} — 272 is said to have a measurable
graph if GrF belongs to the product o-algebra 77 ® 7;. Further, F is said to be (1)
random if it is measurable in the first variable; (2) upper semicontinuous (respectively,
continuous) if it is upper semicontinuous (respectively, continuous) in the second

variable; (3) random upper semicontinuous(respectively, random continuous) if F is
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both random and upper semicontinuous (respectively, continuous).

Let (T, T, 1) be a complete finite measure space, Y be a Banach space and L;(g,Y)
denote the space of equivalence classes of Y-valued Bochner integrable functions f :
T — Y normed by

17l = /T £ ()l du(2).

A correspondence ¢ : T — 2¥ is said to be integrably bounded if there exists a map
g € Ly(p) such that for almost all ¢ € T, sup{||z|| : =z € #(¢)} < g(2).

Now we recall the notion of a separable measure space. Let M be the measure
algebra of (T, T, u) which is the factor algebra of 7 modulo the u-null sets. M is a
metric space with the distance given by the measure of the symmetric difference. If
M is separable, then the measure space (T, 7, ) is called separable. A well-known
fact is that for a separable Banach space Y, L,(g,Y) is separable if (T, 7T, u) is.

If X is a metric space, except specified, d will be the metric on X. Now suppose
that A, B are two subsets of the metrc space X, we define (1) d(z, A) as oo if A is
empty; (2) d(A, B) as inf ¢4 d(z, B) if A is nonempty and oo otherwise.

3.3 A Random Extension Theorem

The following three lemmas are respectively Proposition 2.1, Proposition 2.2 and
Theorem 3.5 (iii) in Himmelberg [41].

Lemma 3.3.1 For any correspondence F : T — 2% B-measurability implies mea-

surability, and if X is perfectly normal, measurability implies weak measurability.

Lemma 3.3.2 If F : T — 2X is measurable or weakly measurable, the set {teT:
F(t) # 0} is measurable.

Lemma 3.3.3 Let T be a complete o-finite measure space, X a separable complete
metric space, and F : T — 2X a correspondence with closed values. Then the following

statements are all equivalent:
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a) F is B-measurable;

b) F is measurable;

¢) F is weakly measurable;

d) t — d(z, F(t)) is a measurable function of t for each r € X;
e) GrF is T @ B(X)-measurable.

Note: Since the notation and terminology are quite messy in this area, we have
tried as hard as possible to make the results cited here consistent with those defined
in this chapter. For instance, the term “complete” measure space in [41] means a
o-finite and complete measure space in our terminology. So when these cited results
are really needed to be checked, please take care of the notation and terminology
(sometimes they are very tricky).

We shall frequently refer to the following result (Theorem III. 14 in [19]):

Lemma 3.3.4 Let T be a measurable space, X a separable metrizable space, U a
metrizable space and ¢ : T x X — U. If ¢ is measurable in t and continuous in z,

then ¢ is (jointly) measurable.
The following is Lemma 4.6 in [49].

Lemma 3.3.5 Let T be a measurable space, X an arbitrary topological space and
Wa, n = 1,2,..., correspondences from T to X with measurable graphs. Then the
correspondences U, Wy,(-), N.Wy(-), and X\W,,(-) have measurable graphs.

The following result is Theorem II1.23 in [19].

Lemma 3.3.6 Let T be a o-finite measure space, and X a complete separable metric

space. If G belongs to T @ B(X), its projection projr(G) belongs to T .

Lemma 3.3.7 Let T be a o-finite measure space, and X a complete separable metric
space. If F : T — 2X has a measurable graph, the set {t € T : F(t) # 8} is

measurable.
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Proof. Since the set {t € T : F(t) # 0} = Projr(GrF), by Lemma 3.3.6, it is

measurable. l

Lemma 3.3.8 Let T be a o-finite measure space, X a complete separable metric
space, and F : T — 2X a correspondence with a measurable graph. Then for every

z € X, d(z,F(-)) s a measurable function.

Proof. First wehave S = {t € T' : F(t) # 0} belongs to 7 by Lemma 3.3.7. Next
{s€S§:d(z,F(s)) <A} ={s€S: F(s)NB(z, ) # 0} = Projr[GrN(T x B(z, )))]-

The conclusion follows from Lemma 3.3.6. B

Lemma 3.3.2 Let T be a o-finite measure space, and X a complete separable metric
space. Let W : T — 2X be a weakly measurable correspondence or have a measurable

graph. Then the correspondence V : T — 2X defined by
V(t) = {z € X : d(z,W(t)) > A}, where ) is any fized real number,

has a measurable graph. The conclusion still holds if > is replaced by any of <, > or
<.

Proof. Part of this lemma was given in Lemma 4.8 in [49], or Lemma 4.8 in [50].
But it seems to us that the same minor error appears in the two papers ( [A, co] should
be replaced by (A, o] in the proofs). Consider the function g : T x X — [0, co] given
by g(t,z) = d(z,W(t)). If W is a weakly measurable correspondence (respectively,
has a measurable graph), by Theorem 3.3 in [41] (respectvely, by Lemma 3.3.8), ¢(¢, z)
is measurable in ¢ and continuous in z. Thus g is therefore jointly measurable, i.e.,
measurable with respect to the product o-algebra 7 ® B(X) by Lemma 3.3.4. For a
real number A, define Ux(t) = {z € X : d(z,W(t)) > A}. Then GrU = g~ !((}, o0}).
Hence U has a measurable graph.

The other conclusions can be proved similarly. B

The following lemma is Lemma 4.5 in [49].
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Lemma 3.3.10 Let (T;,7;) for i = 1,2,3 be measurable spaces, y : Ty — T3 a
measurable function and F : Ty x Ty — 2T a correspondence with a measurable

graph, i.e., GrF € Ti @ T @ Ts. Let W : T, — 272 be defined by
W(t) = {z € Ty : y(t) € F(t,2)}-
Then W has a measurable graph, i.e., GrW € T, ® Ts.

Lemma 3.3.11 Let T be a o-finite measure space, X a complete separable metric
space, and W,V : T — 2% two correspondences with measurable graphs. Then the
function g : T — [0, 0] defined by

g(t) =d(W(t),V(t)) foreachteT
s @ measurable function.

Proof. Since Sy, :={t € T : W(t) # 0} and S, := {t € T : V(¢) # 0} are
measurable by Lemma 3.3.7, S := S; N 5, is measurable. By Lemma 3.3.9, we know
Va : T — 2% defined by

W(it)={z €T :d(V(t),z) <A}, where A is any fixed real number,

has measurable graph.

Now
{s€S:dW(s),V(s)) <A} = {se€S:W(s)NnVW(s)}
= Projr(GrW N Gr(V}))
is measurable by Lemma 3.3.4 (Lemma 4.2 in [49]). @
The following lemma is Theorem IIL.9 in [19].
Lemma 3.3.12 Let T be a measurable space and X a separable metric space, and

F : T — 2% a correspondence such that F(t) is a nonempty complete subset of X for
each t € T. Then the following properties are equivalent.



(1) F is weakly measurable,
(2) d(z, F(-)) is measurable for every z € X,
(3) F admits a sequence of measurable selections (f;) such that F(t) = cl(U{fi(t)}).

Lemma 3.3.13 Let T be a o-finite measure space, and X a separable complete metric
space. Suppose that F : T — 2% is a correspondence with nonempty closed values and

has a measurable graph, then F has a measurable selection.

Proof. By Lemma 3.3.8, for every z € X, d(z, F(-)) is a measurable function. By

Lemma 3.3.12, F has a measurable selection. B

Let K be a nonempty subset of a Hausdorff locally convex space E, and E’ the
continuous dual of E. The function §* : E' = R U {oo} defined by

§*(2') .= 6*(2'|K) := sg}g(z', z)

is called the support function of K.
The following result is a particular form of Theorem III.37 in [19].

Lemma 3.3.14 Let T be a o-finite measure space, E a Hausdorff locally convez
space, X a convez Souslin subset of E and F : T — 2X a correspondence with
nonempty convex compact values. Then the following properties are equivalent:

(1) for every ' € E', §(z'|F(-)) is measurable.

(2) F has a measurable graph.

Lemma 3.3.15 Let T be a complete o-finite measure space, X a separable complete
metric space, and f : T — [0,00) a measurable function. Then F : T — 2X defined
by F(t) := {z € X : d(0,z) < f(t)} for each t € T is measurable.

Proof.

Define g : T x X — R by g(t,z) = d(0,z) — f(t). Then g is measurable in ¢ and
continuous in z. By Theorem 6.4 in [41], F(t) = {z € X : g(t,z) < 0} is measurable.
u
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Lemma 3.3.16 Let T be a o-finite measure space and X a nonempty compact subset
of the Fréchet space E. Let F and G : T — 2% be two correspondences with nonempty
closed values. If F and G have measurable graphs, then F+G has a measurable graph.

Proof. For any z’' € E', consider the support functions §*(z’|F(-)) and §*(z'|G(-)).
By Lemma 3.3.14, they are measurable. Now by [(26) on page 31 in [4]], §*(z'|F(-) +
G(-)) = §*(«'|F(-)) + 6°(z'|G(-)) is measurable. By Lemma 3.3.14 again, F + G has
measurable graph. B

The following theorem is one of the main results in this thesis. It says that under
some conditions, a measurable upper semicontinuous correspondence T' x X — 2Y
can be extended to a correspondence with the same properties but with nonempty
values. It is very useful to the study of abstract economies with measurable spaces of
agents. The main idea of the proof is this: for each fixed t € T, X can be represented
by two disjoint subsets: the one (partl) on which F(,-) is empty and the other one
(part2) on which F(t,-) is nonempty. By carefully constructing a partition of unity
and using some set approximation techniques, we can define different (nonempty)
values for F(t,-) on partl. This new correspondence still keeps the measurablity and
continuity (and even some more) as the original one has. But to realize this idea is not
easy. The proof of the theorem is very technical (at least I think so) and extremely
complicated (you will know this after you have read it).

Theorem 3.3.17 Let T be a complete o-finite measure space, X a complete separable
metric space and Y a nonempty compact convez subset of the separable Fréchet space
E. Let F,¢ : T x X — 2Y be correspondences with compact conver values, and ¢
nonempty valued. Suppose that

(1) F and ¢ are upper semicontinuous and continuous, respectively;

(%) F' and ¢ are measurable and for each (t,z) € T x X, F(t,z) C #(t, z).

Then there ezists F : T x X — 2V with nonempty compact convez values such
that

(a) F is upper semicontinuous;
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(b) F is measurable and for each (t,z) € T x X, F(t,z) C #(¢,z);
(c) F(t,z) = F(t,z) if F(t,z) # 0.

Proof.

Define M : T — 2X by M(t) = {z € X : F(t,z) # 0} for each t € T. Then
M(t) is closed for each t € T since F(t,-) is upper semicontinuous. Without loss
of generality, we suppose that M(¢) # @ for each ¢t € T. For if not, we consider
T\, = ProjrGrF. By Lemma 3.3.4, T} is measurable. After we get an extension Fof
F on T} x X with nonempty compact convex values such that

(a") F is upper semicontinuous;

(¥') F is measurable and for each (¢, ) e Ty x X, F(t,z) C ¢(t,z);

(¢) F(t,z) = F(t,z) if F(t,z)# 0,
we simply define F(t,z) = ¢(t,z) # @ for all (¢,z) € (T\T}) x X. Then F is an
extension of F' as demanded.

In the following, d will be the metric on X and p will be the metric on Y which
induces the topology on Y such that the metric is invariant under translations, and
for which the open balls are convex (by Lemma 2.2.3).

(1) Since GrM = {(t,z) € T x X : F(t,z) # @} which is measurable by Lemma
3.3.2 (i.e., Proposition 2.2 [40]), M is a correspondence with a measurable graph.

(2) Let Xo = {zn : n = 1,...} be a dense subset of X. Define W,(t) = {z :
3d(z,zn) < d(x,, M(t)} for each n = 1,2,.... We show that W, has a measurable
graph. Obviously W,,(¢) may be an empty set.

Consider g, : T x X — [0,00] given by ga(t,z) = d(zn, M(t)) — 3d(z,z,). By
Lemma 3.3.9, d(z,, M(t)) is a measurable function. So g,(¢,z) is measurable for each
z and is continuous for each ¢. Thus g, is jointly measurable by Lemma 3.3.4 (i.e.,
Lemma III.14, [19]). Now GrW,, = g;![(0, oo]] is measurable.

(3) Define N : T — 2X by N(t) = X\M(t) for each t € T. Then N has a
measurable graph by Lemma 3.3.5. Further, for each t € T, {W,(¢),n = 1,...}
covers N(t).
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(4) For each m = 1,2, ... define the operator (), : 2X — 2X by
(W)m = {w € W: d(w, N(t)\W) > 1/2™}.

(4.1) We show that (W),, is closed in N(%) for any set W C N(t).
Let w, € (W), such that w, — w € N(¢). If w & (W), then either w & W, i.e.
w € N(¢)\W, which implies that d(w, N(¢)\W) = 0 or d(w, N(¢)\W) < 1/2™. This

is impossible since d is continuous.

(4.2) For each m = 1,..., we show that (W(-)),, has a measurable graph if W(-)
has a measurable graph.

First N(-)\W(-) has a measurable graph by Lemma 3.3.5. Also (W(-))m has a
measurable graph by Lemma 3.3.9.

(4.3) Let Vi(t) =Wi(t)fort € T. Forn =2,...and t € T, let

Va(t) = Wa )\ | (We())n.
k=1

Then V,(t) is open in N(t) by (4.1). Since W,(-) has a measurable graph, V,,(¢) has
a measurable graph by (4.2) and Lemma 3.3.5. Further, {V,(¢),n = 1,2,...} is a
locally finite open cover of the set N(%).

(5) If N(t) # 0, let f.(¢,-) be the partition of unity subordinated to the open
cover {V,(t):n =1,2,...} defined by

d(z, N(t)\Va(t))
2 k1 d(z, N()\Vi(t))
Then f.(¢,z) is measurablein ¢ on {¢t € T, N(t) # 0} and continuous in z. Note that
since N(-) has a measurable graph by (3), the set {¢t € T, N(¢) # 0} is measurable by
Lemma 3.3.7.

(6) For each n = 1,2,..., define M’ : T — 2X by

falt,z) = foreach n =1,2,---.

M.(t) = {z € X : d(z, Wa(t)) < 2d(M(t), Wa(t))} foreachteT.

Then M has a measurable graph. This can be proved by Lemma 3.3.11 and by the

same trick as in by (2).
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Now for each n = 1,2,..., define G, : T — 2X by
Gn(t) ={z € M(%) : d(z,W,(t)) < 2d(M(t),W,(t))} for each t € T.
This is equivalent to
G.(t)=M(t)N M, (t) foreachteT.

Then G, has a measurable graph by Lemma 3.3.5. Without loss of generality, we
may assume for each n = 1,..., {t € T : Gu(t) # 0} # 0. By Lemma 3.3.13, we
can choose a measurable function y.(t) € Gn(t) such that y,(t) is measurable on
{t € T : Gu(t) # 0}. By Theorem 8.1 in [40], y,(¢) has a measurable extension on T'.
(7) Let B, ={y € E : p(y,0) < r}.
(7.1) Let
sn(t, 2) = 20(F (%, yn(2)), 8(¢, 2)),
¥n(t, 2) = F(£,yn(t)) + Bsy(e,2)
R(t,z) = 3 o2, fal(t, 2)(¥n(t, 2) N &(2, 2)),
Si(t, z) = cleo(U e xy:d(zz) <173 B(E: 2)),
S(t,z) =Nz, Si(t, z).
Define F: T x X — 2" by

Ft,z)= F(t,z), if F(t,z)#0 (ie,z € M(t) );
’ S(t,z), if F(t,2) =0 (ie., = € N(2)).

(7.2) For any z € N(t), S(t,z) is nonempty since S;(¢, z) is a decreasing sequence
of nonempty compact sets.

(7.3) We shall show that F(¢,z) C ¢(¢,z) for all (¢t,z) € T x X.

By condition (ii) and the definition of F (t,z), we see that f’(t,z) C ¢(¢,z) for
each z € M(t).

Now consider z € N(t). By the upper semicontinuity of ¢(%, -), for any € > 0 there
exists § > 0 such that ¢(¢,y) C ¢(¢,z) + O(0,¢) provided y € O(z, ). Therefore

R(t,z) C ¢(t,z) + 0(0,¢€) for each z € O(z,d) N Xo,
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because the sets ¢(¢,z) and ¢(¢,z) + O(0,€) are convex.

This shows that F(t,z) C #(t,z)+0(0, 2¢) for any € > 0. Since ¢(¢, z) is compact,
we have F'(¢,z) C ¢(t, ).

(8) We claim that for each fixed z € X, R(t, z) is measurable.

(8.1) We shall first prove that F(¢,y,(t)) is measurable.

In fact, for each y € Y, d(y, F(t,z)) is measurable in (¢,z) by condition (ii) and
Lemma 3.3.8. By (6), Gr(ys) is measurable. By Lemma IT1.39 in [19], d(y, F'(t, yn(%)))
is measurable. Hence F'(t,yn(t)) is measurable by Lemma 3.3.3.

(8.2) We shall now show that for each fixed z € X, R(-, z) is measurable.

Fix an arbitrary z € X. We know that ¢(-,z) has a measurable graph. Let
9(y,t) = d(y, F(t,yn(t))) — sau(t,z). Also s,(-,2z) is measurable for the by Lemma
3.3.11. By Lemma 3.3.15, B,,(,:) is measurable in ¢. By Lemma 3.3.16, ¥,(-, 2) is
measurable.

Note that for each f' € E’,

5 (fIR(t,2)) = Y falt, 2)8(F1(¥alt, 2) N (2, 2)))

is measurable, R(-, z) is measurable by Lemma 3.3.14.
(9) We shall show that F' is measurable.
Let U = {(¢t,z) : F(t,z) = 0} and B be any nonempty closed subset of Y.
(9.1) For each i = 1, ..., define Gi(t,z) = U{R(¢,2) : z € Xq,d(z,z) < 1/:}. We
claim that G; is measurable.
Note that
{(t,z) e T x X : Gi(t,z) N B # 0}
=U:exo({t€T: R(t,2)NB #0} x {z € X : d(z,z) < 1/i})
€ T ® B(X).
Therefore, G; is measurable so that it has a measurable graph.
(9.2) For any f' € E’, by Lemma 3.3.14, §*(f'|Gi(-)) is measurable. Since
*(f'|Gi(-)) = &*(f'|clcoGi(-)) (refer to [4], page 27), 8*(f'|clcoG;(-)) is measurable.
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By Lemma 3.3.14, clcoG;(-) is measurable. Since S; = clcoG;, S; is measurable which
in turn implies it has measurable graph.

(9.3) Since § = N, S;, S has measurable graph by Lemma 3.3.5. By Lemma
3.3.3, S is measurable.

(9.4) Now

{(t,z) €T x X, F(t,z) N B # 0}

={(t,z) eU: F(t,z)nB#0}U {(t,z) ¢ U : S(t,z)N B # 0}

={(t,z) eTxX : F(t,z)NB #B}NU)U({(t,z) e Tx X : S(t,z)NB # O}\U)

€T QB(Y).
Thus F is measurable.

(10) Next we shall show that for each t € T, F(¢,z) is upper semicontinuous on
X.

Fixed an arbitrary t € T. If N(t) = @, F(t,z) = F(t,z) is upper semicontinuous
on X. Now suppose N(t) # 0.

(10.1) It is easy to see that F(¢,-) is upper semicontinuous continuous at each
point in wntx(M(t)).

(10.2) To prove the upper semicontinuity of ﬁ’(t,-) at any point zo € N(%),
choose a ball O(zo,r) which intersects a finite number of sets of the open cover
{Va(®)}-

We observe that the set F(t,z0) = S(t,zo) is the Hausdorff limit of the sequence

of compact sets
Si(t,z) = cl(coUgzexo:d(=,z0)<1/i} R(t, 2)) provided 1/i < r .
Therefore, for every € > 0 there exists an integer z such that for all ¢ > 7,
Si(t,zo) C S(t, z0) + O(0, ).
For any y € N(t) with d(y, zo) < § := min{1/(24,), 7}, we have

{2z € Xo:d(z,y) <1/(2i0)} C {z € X0 : d(2,20) < 1/i0}.
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Hence, S, (t,y) C Si,(t,z0) and
S2io(ts y) - Sio(tv .’Do) C S(tv 'tO) + 0(016)

ie., F(t,y) C F(t,zo) + O(0,¢) for any y € O(o, 5).
(10.3) Now we shall show that F(¢,-) is upper semicontinuous at each point in
OxM(t).
Let zo € OxM(t). Then F(t,zo) = F(t, ).
If z € N(t), we have z € V,(2) for some n. Applying the triangle inequality yields

d(za, M(t)) < d(zo,z,)

d(zo, .’B) + d(z9 xﬂ)
< d(zo,2) + d(zn, M(2))/3.

IN

Hence
d(zn, M(t)) < 3d(zo,z)/2.

Now take (v;) in W,(t) such that d(y.(t),v:) = lim; d(yn(t),vi). Note that
d(Yn(t), zn) < d(yn(t), vi) + d(vi, zn),
and by (2), we have

d(yn(t),zn) < Limd(yn(2),vi) + d(zn, M(t))/3
d(yn(t), Wa(?)) + d(zn, M(t))/3
< 2d(M(¢), Wa(t)) + d(zn, M(2))/3.

Now

d(yn(t),zo) < d(yn(t),za) + d(zn, ) + d(z, z0)
< 2d(M(t), Wa(t)) + d(za, M(2))/3 + d(zn, M(t))/3 + d(z, z0)
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IA

(2 +2/3)d(zn, M(t)) + d(z0, z)
8/3 - 3d(zo, z)/2 + d(z0, z)
< 5d(zo, z);

IN

ie,
d(yn(t), zo) < 5d(zo, 7). (*)
For any € > 0, by condition (i), there exist §; > 0 and d2 > 0 such that
F(t,z) C O(F(t,xo),€/8) for each z € M(t) N O(zo, ;)
and
H(é(t,y), d(t, z0)) < €/8 for each O(zo, 52)

where H is the Hausdorff distance. Since by condition (ii), F'(t,ze) C ¢(2,zo) for
zo € M(t), so
F(t,zo) C ¢(t,z0) C O((t,y),2¢/8).
Now
F(t,z) C F(t, zo) + 0(0,¢/8)
C O(s(t.y),2¢/8) + 0(0,£/8)
C O(é(t,y),3e/8).

Hence, d(4(t,y), F(t,z)) < 3¢/8 for each z € M(t) N O(zo,81) and y € O(zo, 52).

Let § = min{é,/5,4,} and = € O(zo,d), then y.(¢) € O(zo,8;) N M(t) for all
n € N such that z € V,(¢) by (*). So we have

sn(t, z) = 2p(F(t,ya(t)), #(t,z)) < 2-3¢/8 = 6¢/8 for any = € O(xo, §).
Therefore,
¥n(t,2) = F(4yn(t)) + Basea)

F(t,yn(t)) + O(0,6¢/8)
F(t,zo) + O(0,€¢/8) + O(0,6¢/8)
F(t,zo) + O(0,7¢/8).

n nNn N
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Since {V;(t),? € N} is a locally finite covering of N(t) by (4), there exists an open
neighborhood On(z¢) in N(t) such that {z : On(zo) N V;(¢) # B} is finite. Hence for
z € On(zq),

D filt,z) (Wit 2) N d(t ) C Y filt, z)(F(t,z0) + O(0,7e/8))

=1 =1

C F(¢,z0) + O(0, 7¢/8).

For any z € N with 1/: < § — d(zo, z),

S;(t, -'8) dco(nzexo:d(z,x)<l/iR(t7 2‘))
cl(F(t,z0) + 0(0, 7¢/8))

F(t, z0) + O(0, ).

n N

Hence for any z € Oy(zo),

F(t,z) S(t, z)
N2, S:(t, z)
C  F(t z0) + 0(0,¢)

F(t,zo) + O(0, €).

Also for any z € O(xo,6) N M(t),

F(t,z) = F(t,z)
C O(F(t,zo),e/8)
C O(F(t,xo),¢).

Therefore F is upper semicontinuous at every point in dx M(¢). B

Remark. Suppose that X, Y and T are as in Theorem 3.3.17. Lemma 3.3.4 (i.e.,
Lemma II1.14 in [19]) claims that a single-valued map f : T x X — Y is (jointly)
measurable if it is measurable in the first variable and continuous in the second

variable. One might ask if a nonempty closed valued correspondence F : T x X —
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2 that is measurable in the first variable and continuous in the second variable is
(jointly) measurable. Indeed, this is true. Consider the function ¢ : Y x T x X —
R U {co} defined by g(y, t, z) = d(y, F(¢, z)) for each (y,t,z) €Y x T x X. For each
fixed (t,z) € T x X, g(-,¢, =) is continuous. For each fixed y € Y, note that g(y,¢,z)
is measurable in ¢ and continuous in z, hence g(y,¢,z) is measurable in (¢,z). By
Lemma 3.3.12, F(t,z) is measurable. The next question is whether a (nonempty)
closed valued correspondence F : T' x X — 2Y that is measurable in the first variable
and upper semicontinuous in the second variable is measurable. The answer for this

problem is no. This can be seen by the following example from [83].

Example 3.3.18 Let T := [0,1] be equipped with the o-algebra T of Lebesgue mea-
surable sets, X := [0, 1] be equipped with the Borel o-algebra B(X) andY := [0,1]. Let
M be a subset of [0,1] which is not Lebesgue measurable. Define F : T x X — 2Y by
F(w,z) := [0, Xw(w, )] for each (w,z) € T x X, where Xyy denotes the characteristic
function with respect to W and W := {(w,w) : w € M}.

First we note that W = {(w,w) : w € M} ¢ T ® B([0,1]). If this were not true,
M = Projr(W) would be measurable by Lemma 3.3.6. It is easy to check that F
is random upper semicontinuous with nonempty closed and convex values. However

the mapping F is not jointly measurable as the set
F'{1}) ={(w,z2) ET x X :1 € F(w,z)} = {(w,w) :w € M},
which is not a Lebesgue measurable set. Bl

Nevertheless, we have the following conjécture. Roughly speaking, it states that
a random upper semicontinuous correspondence has a nonempty valued extension.
Note that in this case, we only require F' to be measurable in the first variable rather
than measurable in both variables as in Theorem 3.3.17. If it is true, it can be used

to resolve some different economics problems (see the next section).

Let T be a complete o-finite measure space, X o complete separable metric space

and Y a nonempty compact convez subset of a Fréchet space. Let F,¢ : T x X — 2Y
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be correspondences with compact convez values, and ¢ nonempty-valued. Suppose

(i) F and ¢ are upper semicontinuous and continuous, respectively;

(1t) F' and ¢ are random (i.e., measurable in the first variable) and for each
(t,z) e T x X, F(t,z) C ¢(¢,z).

Then there ezists a correspondence F' : T x X — 2 with nonempty compact
convez values such that

(a) F is upper semicontinuous;

() F is random and for each (t,z) e T x X, F(t,z) C $(t,z);

(c) F(t,z) = F(t,z) if F(t,z) # 0.

Let (T, T) be a measurable space, X be a topological space, and F': T x X — 2X
be a correspondence. Then the (single-valued) map f : T — X is said to be (1) a
deterministic fized point of F if f(t) € F(t, f(t)) for all ¢t € T and (2) a random fized
point if f is measurable and f(t) € F(¢t, f(t)) for all t € T. It should be noted here
some authors define a random fixed point of F' to be a measurable map f such that
f(t) € F(t, f(t)) for almost every t € T, for example, see [60] and [64].

The following lemma is Theorem 2.3 in [76].

Lemma 3.3.19 Let (T, 7T) be a measurable space, T a Souslin family, X a topological
space, and Xy a Souslin subset of X. Suppose that F : T x Xy — 2X is such that
GrF € T @ B(Xo x X). Then F has a random fized point if and only if F has a
deterministic fized point, i.e., for each t € T', F(t,-) has fized point.

Theorem 3.3.20 Let T be a complete o-finite measurable metric space, and X a
nonempty compact convez subset of a separable Fréchet space Y. Let F : T x X — 2X
be a correspondence with compact conver values, and further,

(i) for each t, F(t,-) : X — 2X is upper semicontinuous,

(i) F: T x X — 2% is measurable.

Then there exists a measurable function f : T — X such that for each t € T either
f(t) € F(t, f(2)) or F(t, f(2)) = 0.
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Proof. Since X is compact, it is a separable and complete metric space. Let
¢ : X — 2% be defined by ¢(z) = X for all z € X. By Theorem 3.3.17, there exists a
measurable correspondence F : T x X — 2X with nonempty compact convex values
such that

(a) F(t,z) = F(t,z) if F(t,z) # 0;

(b) for each t € T, F'(¢,-) : X — 2% is upper semicontinuous.

By the Fan-Glicksberg fixed point theorem, for each ¢t € T, F(t,-) has a fixed
point. Since X is a compact metric space, B(X x X) = B(X) ® B(X) (see [65], page
113). Note that GrF belongs to T ® B(X) ® B(X) = T ® B(X x X). Thus F has
a random fixed point f : T' — X by Lemma 3.3.19. Now for each ¢ € T such that

F(t, f(t)) # 0, we have f(¢) € F(t, f(t)) = F(t, f(t)). ®

Theorem 3.3.21 LetT be a complete o-finite measurable metric space, X a none;npty
compact convex subset of a separable Fréchet space Y, F : T x X — 2% a corre-
spondence with compact convez values and ¢ : T x X — 2Y a correspondence with
nonempty compact convez values and further,

(i) for each t € T, F(t,-) : X — 2% is upper semicontinuous and #(t,-) : X — 2¥
s continuous.

(it) F,¢ : T x X — 2% are measurable.

(iit) for eacht € T, z & F(t,z) for all z € X.

Then there ezists a measurable function f : T — X such that for eacht € T

f(¢) € 6(t, £(t)) and F(2, f(t)) N (2, £(2)) = 0.

Proof. Define G: T x X — 2X by G(t,z) = F(t,z) N §(¢, z) for each (¢, z) €
T x X. Then G(t,z) € ¢(t,z) for each (t,z) €T x X. Let U = {(¢t,z) e T x X :
G(t,z) # 0}. If U is empty, the conclusion follows trivially. We now consider that U
is not empty.

Note that G is measurable by Lemma 3.3.3 and for each fixed t € T', G(%, -) is upper
semicontinuous by Lemma 2.2 in Tan and Yuan [78]. By Theorem 3.3.17, there exists

an upper semicontinuous correspondence G with nonempty compact convex values
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such that G|y = G and G(t,z) C #(t,z) for each (t,z) € T x X. So by Theorem
3.3.20, there exists a measurable function f : T — X such that f(t) € G(¢, f(t)) for
all t € T. Obviously, f(t) € #(t, f(t)) for all t € T. Now for each t € T, G(¢, f(¢))
must be an empty set. Otherwise, we have f(t) € G(¢, f(t)) = G(¢, f(t)) which

contradicts condition (iii). Thus the conclusion holds. B

3.4 An Equilibrium Existence Theorem for an Ab-
stract Economy

Throughout this section, (T, 7, ) will be a finite, positive, complete, and separable
measure space of agents. Let Y be a separable Banach space. For any correspondence
H:T —2Y, L,(u, H) denotes the subset of L, (1, Y) consisting of those z € L;(u,Y)
for which z(t) € H(t) for almost all ¢ in T. Following Kim et al [48], we define the
notion of an abstract economy with a measure space of players as follows:

An abstract economy T is a tuple [(T,T,u), H, P, F], where

(1) (T, T,u) is a measure space of agents;

(2) H : T — 2" is a strategy correspondence;

(3) P : T x Ly(u,H) — 2Y is a preference correspondence such that
P(t,z) C H(t) for all (¢t,z) € T x Ly(u, H);

(4) F : T x Ly(u,H) — 2Y is a constraint correspondence such that
F(t,z)C H(t) for all (¢t,z) € T x Ly(u, H).

An equilibrium for T is a point Z(t) € L;(u, H) such that for almost all ¢ € T the
following conditions are satisfied:
(i) £(t) € F(t, 2);
(ii) P(t,z)N F(¢,z) = 0.

The following lemma has been proved in many ways. It seems that the simplest

proof is the one in Khan and Papageorgiou [45] which was reproduced in Yannelis
[85].
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Lemma 3.4.1 Let Y be a separable Banach space, and H : T — 2¥ an integrably
bounded, nonempty convez valued correspondence such that for allt € T, H(t) is a
weakly compact subset of Y. Let 8 : T x Ly(u, H) — 2Y be a nonempty closed convez
valued correspondence such that

(a) for each (t,z) € T x Li(pu, H), 6(t,z) C H(t);

(b) for each fized x € Ly(u, H), 6(-,z) : T — 2Y has a measurable graph;

(c) for each fized t € T, 6(¢,-) : Li(u, H) — 2Y¥ is upper semicontinuous in the
sense that the set {z € Li(u,H) : 8(t,z) C V} is weakly open in L(pn, H) for every
norm open subset V of Y.

Then the correspondence F' : Ly(u,H) — oL (u.t) defined by F(z) = {y €
Li(p, H) : y(t) C 8(t,z) for almost all t € T} is upper semicontinuous in the sense
that the set {x € Li(u, H) : F(z) C V'} is relatively weakly open in L\(u, H) for every
relatively weakly open subset V of Ly(u, H).

We now state the assumptions in order to obtain an equilibrium for the generalized

abstract economy.

(i) H : T — 2Y is a correspondence such that it is integrably bounded
and for all t € T, H(t) is a nonempty weakly compact convex subset
of Y.

(i1) F: T x L,(p, H) — 2Y is a correspondence such that

(ii.1) {(t,z,y) € T x Ly(p, H) x Y : y € F(t,z)} € T x
Bu(Li(p, H)) x B(Y) where B, (Li(¢, H)) is the Borel
o-algebra for the weak topology on L(u, H) and B(Y)
is the Borel o-algebra for the norm topology on Y.

(1i.2) for all (t,z) € T x Ly(u,H), F(t,z) is a nonempty
closed convex set in H(t);

(ii.3) for each t € T, F(t,-) is continuous from the weak
topology of Ly(u, H) to the strong (norm) topology of
Y.
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(iii) P: T x Ly(p, H) — 2Y is a correspondence such that:

(iii.1) {(t,z,y) € T x Li(p,H) xY : y € P(t,z)} € T ®
Bu(Li(n, H)) ® B(Y);

(1ii.2) for all (¢,z) € T x Ly(u, H), P(t,z) is a closed convex
subset in H(t);

(1ii.3) z(t) € P(t,z) for all z € L (i, H) and for almost all
teT.

(iii.4) for each t € T, P(t,-) is upper semicontinuous from
the weak topology of L;(u, H) to the strong (norm) topol-
ogyof Y.

Theorem 3.4.2 Let ' = [(T,T,u), H, P,F] be an abstract economy satisfying (i)-
(iii). Then T has an equilibrium.

Proof. First note that L,(y, H), endowed with the weak topology, is compact
by Theorem 4.2 in Papageorgiou [61]. Since the relatively weak topology of a weakly
compact subset of a separable Banach space is metrizable, L;(u, H) is a compact
metrizable space (Theorem V.6.3.3, page 434 in [26]).

Define ¢ : T x Ly(u, H) — 2¥ by ¢(¢t,z) = F(t,z) N P(t,z). Then for each
(t,z) € T x H, ¢(t,z) is closed convex and for each fixed t € T, #(¢,-) is upper
semicontinuous by Lemma 2.2 in [79]. By Lemma 3.3.5, ¢ has a measurable graph.

Let U = {(t,z) € T x Li(p, H) : ¢(t,z) # 0}. By Theorem 3.3.17, there exists
G:T x Li(u, H) = 2Y such that

(1) G has a measurable graph;

(2) For each t € T, G(¢,-) : L (u, H) = 2" is upper semicontinuous with

nonempty closed convex values;
(3) (a) G(t,z) = é(t, z) if (¢,z) € U and
(b) G(t,z) C F(t,z) for all (¢,z) € T x Ly(u, H).
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Define ¢ : Ly(u, H) — 2L1nH) by
¥(z) = {y € Ly(p,H) : for almost all t € T', y(t) € G(¢,z) }.

Since H(t) is integrably bounded and has a measurable graph, L;(u, H) is nonempty
by the Aumann measurable selection theorem [7}, and obviously it is convex since H (¢)
is so. Since for each z € L,(y, H), G(-, ) has a measurable graph, 3 is nonempty val-
ued as a consequence of the Aumann measurable selection theorem [7]. Furthermore,
since G is convex valued, so is ¥. By Lemma 3.4.1, v is weakly upper semicontinuous.
Therefore, by the Fan-Glicksberg fixed point theorem (Theorem 2.1.5), there exists
& € Li(u, H) such that £ € (). It can now be easily checked that the fixed point

is by construction an equilibrium for I'. W



Chapter 4

Generalizations of the Ky Fan
Minimax Inequality with

Applications

4.1 Introduction

Motivated by the work of Baye et al [11] and Tian [84], we first establish several
generalizations of the Ky Fan type minimax inequalities in Section 4.2. In Section
4.3, we study the fixed point versions and maximal element versions of the minimax
inequalities obtained in Section 4.2. These results improve the corresponding results
of Ding and Tan [23] and include a fixed point theorem of Tarafdar [81] as a corollary
and an existence theorem for an equilibrium point of an abstract economy. In Section
4.4, we give some von Neumann type minimax inequalities which are in turn applied
to obtain some generalizations of Tan and Yu’s recent work. Section 4.5 is devoted to
studying variational inequalities. Related topics such as complementarity problems
and fixed point theorems are also included. We point out here that our results do not
require the topological spaces to be Hausdorff which were assumed in many papers
such as in Baye et al [11], Tian [84] and Tarafdar [81].
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4.2 Minimax Inequalities of the Ky Fan Type

We begin with the following lemma from [23] which is a slightly modified version of
Lemma 1 of Fan in [29].

Lemma 4.2.1 Let X and Y be nonempty sets in a topological vector space and F :
X — 2Y be such that

(i) for each z € X, F(z) i3 a nonempty closed subset of Y';

(ii) for each A € F(X),co(A) C UzeaF(z);

(iii) there ezists an zo € X such that F(zq) is compact.

Then Nyex F(z) # 0.
Now we are ready to establish

Theorem 4.2.2 Let E be a topological vector space, X a nonempty convez subset of
E and f,g: X x X = RU {—o00,+00} satisfy the following conditions

(i) for each z,y € X with f(z,y) > 0, we have

(i1) g(=z,y) > 0;

(i.2) there ezist some point s € X and some open neighborhood Nx(y) of y in X
such that f(s,z) > 0 for all z € Nx(y);

(ii) for each A € F(X) and for each y € co(A), mine4 g(z,y) < 0;

(iii) there ezist a nonempty closed and compact subset K of X and zo € X such
that g(zo,y) > 0 for all y € X\K.
Then there ezists y € K such that f(z,y) <0 forallz € X.

Proof.
Define F,G : X — 2% by

F(z)={yeX: f(z,y) <0} forall z € X,

G(z)={ye X :9(z,y) <0} forall z € X.
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We first show that NexF(z) = Nzexclx(F(z)) and for this it is clear that it is
sufficient to show Nyex F(z) D Nyexclx(F(z)). Suppose, on the contrary, there is
some y € Nzexclx(F(z)) such that y € Nzex F(z). Then y € F(z) for some z € X
and thus f(z,y) > 0. By (i.2), there is some s € X and some open neighborhood
Nx(y) of y in X such that f(s,z) > 0 for all z € Nx(y). Thus y & clx(F(s)) which
is a contradiction.

Next we prove that Nyexclx(G(z)) # 0. We observe that

(1) If A is any finite subset of X, then co(A4) C UzeaG(z); for if this were false,
then there would be a finite subset {z1,...,2zm} of X and z € co({z, ..., zn}) with
z & U, G(z;) so that g(z;,2) > 0 for all j = 1,...,m which contradicts (ii). Hence
co(A) C Uzeaclx(G(z)).

(2) Note that zo must be in K, otherwise, we have g(zq, o) > 0 which contradicts
(ii). By (iii), G(zo) C K. Since K closed, clx(G(zo)) C K. Since K is compact,
clx(G(zo)) is compact.

(3) For each z € X, G(z) is nonempty by (ii); thus c/x(G(z)) is nonempty and
closed.

It follows that the map clG : X — 2%, defined by (cIG)(z) = clx(G(z)) for
all z € X, satisfies all the hypotheses of Lemma 4.2.1. Hence by Lemma 4.2.1,
Neexclx(G(z)) # 0.

Now by (i.1), we have G(z) C F(z) so that clx(G(z)) C clx(F(z)) for all z € X.
Hence

0 # Nzexclx(G(z)) C Neexclx(F(z)) = Neex F(z).

Take any § € Nzexclx(G(z)), then § € K and § € Nyex F(z). Hence F(z,§) <0,
forallze X. R

We point out here that when X is compact and f = g, Theorem 4.2.2 was implic-
itly contained in the proof of Theorem 1 of Baye et al in [11]. Also it closely relates
to the results in Tian [84]. As we noted in the introduction, the topological vector
space E need not be Hausdorff. In addition, Theorem 4.2.2 improves Theorem 1 of
Shih and Tan in [72] which in turn generalizes Ky Fan’s minimax inequality in [30]
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in several ways.

Theorem 4.2.3 Let E be a topological vector space, X a nonempty convez subset of
E and f,g: X x X = RU {—o0c0, +oo} satisfy the following conditions:

(1) for each z,y € X with f(z,y) > 0, we have g(z,y) > 0;

(ii) for each nonempty compact subset C of X and for each z,y € C with f(z,y) >
0, there exist s € C' and an open neighborhood N of y in C such that f(s,z) > 0 for
all z € N;

(iii) for each A € F(X) and for each y € co(A), min,c4 g(z,y) < 0;

(iv) there exist a nonempty closed and compact subset K of X and zo € X such
that g(zo,y) > 0 for ally € X\K.
Then there ezists § € K such that f(z,5) <0 forallz € X.

Proof.

(1) First we observe that if C' is any nonempty compact subset of X,
Nzec{y € C: f(z,y) < 0} = Nzecclc({y € C : f(z,y) < 0}).

Suppose not, then thereis y € Nzecclc({y € C : f(z,y) < 0}) such that f(zo,y) > 0,
for some zo € C. By (ii), there exist s € C and an open neighborhood N of y in C
such that f(s,2z) >0 forallz€ N. Thus NN {z € C : f(s,z) <0} = @ so that
y & cle({z € C: f(s,z) <0}) which is a contradiction.

(2) Define F : X — 2K by

F(z)={y€e K : f(z,y) <0} forall z € X.

We shall prove that Nyexclg F(z) # 0.

Let {z1,Z2,...,Z,} be any finite subset of X. Set C = co({zq, Z1,...,Zn}), then
C is nonempty compact convex. Note that by (iii), g(z,z) < 0 for all £ € X. Define
G:C —2° by G(z) ={y € C:g(z,y) <0} for all z € C. Note that

(a) if A is any finite subset of C, then co(A) C U,e4G(z); for if this were false,
then there would be a finite subset {zi,...,2,} of C and z € co({z1,.--,2m}) with
z € UL, G(z;) so that g(z;,z) > 0 for all j =1,..., m which contradicts (iii);
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(b) for each =z € C, cc(G(z)) is closed in C and is therefore also compact. By
Lemma 4.2.1, Nyecclc(G(z)) # 0.

Since for each z € C, G(z) C {y € C : f(z,y) < 0}, hence NyecclcG(z) C
Necceloly € C = f(2,y) < 0} = Necoly € C : f(z,y) < 0} by (1).

Take any § € Nzeccle(G(z)). Since zo € C and G(zo) C K by (iv), § €
clc(G(zo)) C clx(G(zo)) = clk(G(z0)) C K. Moreover, since f(z;,§) < 0 for each
t=1,...,n,N%, F(z;) #0. Thus {F(z) : z € X} has the finite intersection property.
By the compactness of K, Nyexclx(F(z)) # 0.

(3) We next shall show that

ﬂxexclK(F(:B)) = ﬂzexF(.’B).

Suppose not, then there is yo € Nyexclg(F(z)) with yo & NzexF(z) so that yo &
F(Zo) for some Zo € X. Let Ko = K U {Z}, then K, is compact, Zo,y0 € Ko
and f(Zo,yo) > 0. By (ii), there exist s € Ky and an open neighborhood Ny of
Yo in Ko such that f(sq,z) > 0 for all z € Np. Thus Ny N F(s¢) = @. Note that
Zo # yo; it follows that Ny = No\{Zo} is an open neighborhood of y in K such
that NyN F(so) = 0. Thus yo & clk(F(so)) which is impossible. Hence N;ex F(z) =
Nzexclk(F(z)) # 0.

By (2) and (3), NzexF(z) # 0. Choose any § € Nzex F(z), then f(z,§) < 0 for
alzreX. N

If for each fixed z € X,y — f(z,y) is lower semicontinuous on each nonempty
compact subset of X, condition (ii) in Theorem 4.2.3 is satisfied. Hence Theorem
4.2.3 improves Theorem 2.2 in [77].

The following result is a slightly modified Lemma 2 in [51] (page 229):

Lemma 4.2.4 (Minty’s lemma) Let E be a topological vector space and X be a
nonempty convez subset of E. Suppose f : X x X — RU{+o0} satisfies the following
conditions:

(i) for each y € X,z — f(z,y) is concave;
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(ii) for any z,y € X, f(z,y) < 0 implies f(y,z) > 0 and for each r € X,
f(z,2) < 0;

(iii) for each z € X,y — f(z,y) is lower semicontinuous along line segments in
X.

Define F, F* : X — 2X by

F(z)={ye X : f(z,y) <0} for each z € X;
F(z)={ye X : f(y,z) > 0} for each z € X.

Then Ngex F(z) = Neex F*(z).

Proof.

We first note that F(z) C F*(z) for all z € X by (ii). Therefore N,exF(z) C
Nzex F*(z).

Conversely, let y € Nzex F*(z), then y € F*(z) for all z € X. Fix any z € X. For
each t € (0,1), define w(t) = ¢tz + (1 — t)y, then 0 < f(y,tz + (1 — t)y) since X is
convex and y € F*(w(t)). For each z € X, f(z,z) < 0 by (ii) and z = f(z,y) is

concave by (i), so we have for each ¢t € (0,1),

0 < fly,tz+(1-t)y)—f(tz+ (1 —t)y,tz+ (1 —t)y)/(1—1t)
< fly,tz+ (1 —-t)y) —(tf(z,t2+ (1 —t)y) + (L — &) f(y, 22+ (1 — t)y))/(L — 2)
= —tf(Z,tZ + (1 —t)y)/(1 —t);

it follows that f(z,tZ+4 (1 —t)y) <0 for all ¢ € (0,1); by taking ¢t — 0%, (iii) implies
f(Z,y) < 0. Hence y € F(Z). Since Z is arbitrary in X, y € Nzex F(z). Therefore we
also have Nzex F*(z) C Nyex F(z). W

Theorem 4.2.5 Let E be a topological vector space, X a nonempty convezr subset of
E and f: X x X = RU {400} satisfy the following conditions:

(i) for each fized y € X, z — f(z,y) is concave;

(ii) for any z,y € X, f(z,y) < 0 implies f(y,z) > 0 and for each z € X,
f(z,2) < 0;
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(iii) for each x € X,y —> f(z,y) is lower semicontinuous along line segments in
X;

(iv) for each z,y € X with f(y,z) < 0, there ezist some point s € X and some
open neighborhood Nx(y) of y in X such that f(z,s) <0 for all z € Nx(y);

(v) there exist a nonempty closed and compact subset K of X and zo € X such
that f(zo,y) >0 for ally € X\K.
Then there ezists § € K such that f(z,5) <0 forallz € X.

Proof. Define F, F*: X — 2X by

F(z)={y€ X : f(z,y) <0},
F(z)={ye X : f(y,z) > 0}
for each z € X. We have:

(1) Nzexclx(F(x)) # 0. Indeed, we observe that:

(a) By (ii), for each z € X, z € F(z), so that F(z) is nonempty. Hence clx(F(z))
is nonempty and closed.

(b) For any A € F(X), we show that co(A) C UzeaF(z) C Uzeaclx(F(z)).
Suppose not, then there is a finite subset {z,,...,z,} of X such that co{z,,...,z.} ¢
UL, F(z;). Let £ = Y Miz; & F(z;) for each i = 1,...,n, where \; > 0 for each
i=1,...,nwith 3 A =1. Then for each ¢, f(z;,z) > 0. By (i),

f(:z:,:z:) = f(z /\.‘.’L‘,’,.’L‘) Z Z /\,‘f(.’B,',.'B) >0

i=1 i=1
which contradicts (ii).
(c) By (v), we have F(zo) C K so that clx(F(zo)) is compact.
By Lemma 4.2.1, Nzexclx(F(z)) # 0.
(2) By Lemma 4.2.4, Nzex F(z) = Neex F*(z).
(3) By (iv), we have Nzexclx (F*(z)) = Nyex(F*(z)). Hence

anXF(z) - anXdX(F(z)) - anXdX(F‘(z)) = anX(F‘(x))'
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By (1) and (2), NzexF(z) = Nzexclx(F(z)) # 0. Take any § € Nyex F(z), then
g€ K and f(z,y) <O0forallzec X. W

Another Fan’s type minimax inequality is the following one which generalizes
Theorem 1 in [23].

Theorem 4.2.6 Let E be a topological vector space, X be a nonempty convez subset
of E and f — RU {400, —oc0} be such that _

(1) for each nonempty compact subset C of X and for each z,y € C with f(z,y) >
0, there exist s € C and an open neighborhood N¢(y) of y in C such that f(s,z) >0
for all z € N¢(y);

(i) for each A € F(X) and for each y € co(A), mingea f(z,y) < 0;

(iii) there ezist a nonempty compact convez subset Xy of X and a nonempty com-
pact subset K of X such that for each y € X\K, there is z € co(Xo U {y}) with

f(z,y) > 0.
Then there is § € K such that f(z,y) <0 forallz € X.

Proof.

(1) First we observe that if C is any nonempty compact subset of X,

Nzec{y € C : f(z,y) < 0} = Nzeccle({y € C : f(z,y) < 0}).

Suppose not, there is y € Nyecclc({y € C : f(z,y) < 0}) so that for some z, €
C, f(zo,y) > 0. By (i), there exist s € C and an open neighborhood N¢(y) of y in C
such that f(s,z) > 0 for all z € N¢(y). Thus Ne(y)N{z€ C: f(s,2) <0} =B so
that y & clc({z € C : f(s,z) < 0}) which is a contradiction.

(2) Define F : X — 2K by

F(z)={ye K: f(z,y) <0} forallz € X.

We shall now show that the family {clx(F(z)) : z € X} has the finite intersection
property. Indeed, let {z,,...,z,} be any finite subset of X and let C = co(X, U
{z1,...,2,}), then C is nonempty and compact. Note that f(z,z) <0 forallz € X
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by (ii). Define G : C = 2€ by G(z) = {y € C : f(z,y) < 0} for each z € C. We
observe that:

(a) If A is any finite subset of C, then co(A) C U;caG(z); for if this were false, then
there would exist a finite subset {z1,...,2m} of C with co({z1,...,2.}) & U, G(z;).
Choose any z € co({z1,...,2m}) With z & UT,G(2;) so that f(zj,z) > 0 for all
J =1,...,m and hence min;<;j<m f(zj,2) > 0 which contradicts (ii).

(b) For each z € C, clc(G(z)) is closed in C and is therefore compact.

By Lemma 4.2.1, we must have N ecclcG(z) # 0. By (1), NzecG(z) = NzecclcG(z).
Take any § € NzecG(z), then § € C and f(z,y) < 0 for all z € C. In par-
ticular, f(zj,y) < 0 for all : = 1,...,n. If § € X\K, then by (iii), there is
z € co(Xo U {yo}) C C with f(z,j) > 0 so that § & G(z) which is a contradic-
tion. Thus § € K. It follows that § € N?_, F(z;) and hence {F(z) : ¢ € X} has the
finite intersection property.

By the compactness of K, Nyexclx(F(z)) # 0.

(3) Next we shall show that

nxeXClK(F(x)) = Nzex F(z).

Suppose not, then there is yo € Nzexclx(F(z)) with yo & NyexF(z) so that yo &
F(zo) for some zg € X. Let Ko = K U {20}, then K, is compact, o,y € Ko and
f(zo,y) > 0. By (i), there exist so € K, and an open neighborhood Ny of y in K
such that f(so,z) > 0 for all z € Ny. Thus No N F(sg) = @, so that yo & clx(F(s0))
which is impossible. Hence Nzex F(z) = Nyexcli(F(z)).

By (2) and (3), NzexF(z) # @ Choose any § € N;exF(z), then § € K and
f(z,7) <0forallze X. A

4.3 Fixed Point Theorems and Equilibria of One-
agent Economy

We shall first prove that Theorem 4.2.2 implies the following fixed point theorem:
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Theorem 4.3.1 Let E be a topological vector space, X be a nonempty convez subset
of E and F,G : X — 2% be such that

(1) for each z € X, F(z) C G(z);

(ii) for each y € X, F(y) # @ tmplies that there exists s € X such that
y € intx(F}(s));

(iii) there ezists a nonempty closed and compact subset K of X such that
Nyex\kG(y) #0;

(iv) for each y € K, F(y) # 0;

(v) for each z € X, G(z) is convez.

Then there ezists § € X such that § € G(3).

Proof.
Define f,g: X x X — R by

1, ifze F(y),

ﬂ%”={o,ﬁx¢Fw»

o y)={ 1, ifze G(y),
’ 0, ifz¢&G(y)

for all z,y € X. It is obvious that condition (i.1) of Theorem 4.2.2 is satisfied. If there
are z,y € X such that f(z,y) > 0, then F(y) # 0. By (ii), there exist s € X and an
open neighborhood Nx(y) of y in X such that for each z € Nx(y), s € F(z); that is,
f(s,z) > 0 for all z € Nx(y). Thus condition (i.2) of Theorem 4.2.2 is also satisfied.
By (iii), take any zo € Nyex\xkG(y), we have g(zo,y) =1 > Oforally € X\K.
Therefore condition (iii) of Theorem 4.2.2 is also satisfied.

If hypothesis (ii) of Theorem 4.2.2 were also satisfied, then by Theorem 4.2.2, there
would exist § € K such that f(z,7) < 0forall z € X. It follows that F(§) = @ which
contradicts (iv). Therefore condition (ii) of Theorem 4.2.2 does not hold. Hence there
exist A € F(X) and § € co(A) such that minze4 g(z,7) > 0; i.e., z € G(§) for all
z € A. Therefore § € co(A) C G(7) by (v). R
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Theorem 4.3.1 implies the following result which is Theorem 1 in [35] due to

Granas et al.

Theorem 4.3.2 Let X be a nonempty compact convezr subset of a topological vector
space E and A : X — 2X a mapping with nonempty values satisfying the following
conditions:

(1) A~ '(y) s convez for everyy € X;

(ii) there ezists a selection B : X — 2X of A with nonempty values ,i.e. B(z) C
A(z) for every x € X such that

(ii.1) B~Y(y) # 0 for everyy € X;

(1i.2) B(z) is open for every z € X.

Then there exists w € X such that w € A(w).

Proof.

For each z € X, let F(z) = B~(z), G(z) = A™!(z) and K = X. By (a), for each
z € X, F(z) # 0. Let s € F(z) = B™'(z), then z € B(s). By (b), N = B(s) is an
open neighborhood of z in X contained in F~!(s) so that z € intx(F~'(s)). Thus
condition (ii) of Theorem 4.3.2 is satisfied. All other conditions of Theorem 4.3.2 are
easily verified, hence there exists w € X such that w € G(w), i.e., w € A(w). B

Now we shall show that Theorem 4.3.1 implies the following existence theorem of

a maximal element:

Theorem 4.3.3 Let E be a topological vector space, X a nonempty convex subset of
E and M,N : X — 2X such that

(1) for each z € X, M(z) C N(z);

(ii) for ¢ € X,M(z) # O implies there ezists some s € X such that y €
intx(M~1(s));

(iii) for each A € F(X) and for each y € co(A), there is an z € A such that
= & N(y);

(iv) there ezists a nonempty closed and compact subset K of X such that Nzex\x N(z)

#0.



72

Then there ezists y € K, M(j) = 0.

Proof. Suppose on the contrary that M(z) # @forallz € K. Let F,G : X — 2X
be defined by F(z) = M(z) and G(z) = co(N(z)) for each z € X. Then by Theorem
4.3.1, there is y € X such that y € G(y) = co(N(y)). Now let y = }""_, Aix; where

iA=L A >0and z; € N(y) foreachi=1,...,n. Let A={z;:i=1,...,n},

then y € co(A) and for each z € A,z € N(y), which contradicts (iii). B

The following corollary is Theorem 4 of Metha and Tarafdar in [55]:

Corollary 4.3.4 Let K be a nonempty compact convez subset of a topological vector
space E and T : K — 25X such that

(i) T(z) is convez for z € X;

(ii) z &€ T'(z);

(iii) if T(z) # O, there exists y € K such that z € intx (T (y)).

Then there exists T € K, such that T'(z) = 0.

Proof. Let M = N =T in Theorem 4.3.3, we only need to prove that for any
A € F(X) and for each y € co(A), there is z € A such that z ¢ T(y). Suppose not,
there exist A € F(K) and y € co(A) such that for all z € A,z € T(y). By (i), we
have y € co(A) C T(y) which contradicts (ii). B

In Theorem 4.3.2 and Corollary 4.3.4, we note that E is not required to be Haus-
dorff which was assumed in [35] and [55], respectively.

Remark. We see that Theorem 4.2.2 = Theorem 4.3.1 = Theorem 4.3.3. We
shall now show that Theorem 4.3.3 = Theorem 4.2.2.

Let
M(y) = {z € X : f(z,y) > 0},

N(y) = {z € X : g(z,y) > 0}

for each y € X. Then the conditions of Theorem 4.3.3 can be easily verified. By
Theorem 4.3.3, there exists § € K such that M(g) = 0; i.e., f(z,7) <0forallz € X.
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Thus Theorem 4.2.2, Theorem 4.3.1 and Theorem 4.3.3 are all equivalent.

Other fixed point versions equivalent to Theorem 4.3.1 can be similarly stated
and verified as those in [23] and [77]. Similarly we can obtain fixed point theorems
and existence theorem of maximal elements which are equivalent to Theorem 4.2.6.

However, we shall only state the following two equivalent versions of Theorem 4.2.6.

Theorem 4.3.5 Let E be a topological vector space, X a nonempty convez subset of
E and G : X = 2% a nonepmty valued correpondence such that

(1) for each nonempty compact subset C of X and eachy € C with G(y)NC # @,
there is s € C such that y € intc(G™!(s) N C);

(ii) there ezist a nonempty compact convez subset X,y of X and a nonempty com-
pact subset K of X such that for each y € X\K there is co(Xo U {y}) N G(y) # 0.

Then there exists § € X such that § € co(G(Y))-

Theorem 4.3.6 Let X be a nonempty convez subset of a topological vector space and
G : X — 2X. Suppose that

(i) for each nonempty compact subset C of X and eachy € C with CNG(y) # 0,
there is s € C such that y € intc(G~'(s) N C);

(ii) for each A € F(X) and for each y € co(A), there is z € A such that x &€ G(y);

(iii) there ezist a nonempty compact convez subset Xy of X and a nonempty com-
pact subset K of X such that for each y € X\K, co(Xo U {y}) N G(y) # 0.

Then there ezxists § € K such that G(g) = 0.

Proof of Theorem 4.2.6 = Theorem 4.8.5:
Let f : X x X — R be defined by

_} 1, ifzeG(y),
f(x’y)‘{o, if z ¢ G(y)

forall z,y € X. Since for each z € X, G(z) # 0, by Theorem 4.2.6 there must be some
A € F(X) and y € co(A) such that minzea f(z,y) > 0 i.e. for each z € A,z € G(y).
Hence y € co(A) C co(G(y)). &
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Proof of Theorem 4.8.5 = Theorem 4.3.6:

Suppose that for each z € X, G(z) # 0, then all conditions of Theorem 4.3.5
are satisfied. By Theorem 4.3.5, there exists y € X such that y € co(G(y)). Now
let y = 3 7, \iz; where \; > 0, z; € G(y) foreach i = 1,...,nand 3 . A\ = L
Let A= {z;:i=1,...,n}, then y € co(A) and for each z € A,z € G(y), which
contradicts (ii). So there must be § € X such that G(3) = 0. By (iii), § must be in
K. nu

Proof of Theorem 4.83.6 = Theorem 4.2.6:

Define G : X — 2% by G(y) = {z € X : f(z,y) > 0} for each y € X. It is easy to
verify that all conditions of Theorem 4.3.6 are satisfied. So by Theorem 4.3.6, there
is g € K such that G(g) = 0; i.e., f(z,7) <Oforallze X. B

A quadruple (X; A, B; P) is a one-agent abstract economy or a one-person gener-
alized game if X is a nonempty convex subset of a topological vector space, A, B :
X — 2% are constraint correspondences with nonempty values and P : X — 2X is
a preference correspondence. An equilibrium point for (X; A, B; P) is a point £ € X
such that £ € clx(B(Z)) and A(Z) N P(z) = 0.

Theorem 4.3.7 Let (X; A, B; P) be a one-agent abstract economy such that

(1) for each z € X, z & co(P(z) N A(z)) and co(A(z)) C B(z);

(ii) for each nonempty compact subset C of X and each z € C such that CNA(z) #
@, there is s € C such that z € intc(A~'(s) N C);

(iii) for each nonempty compact subset C and each z € C such that C N A(z) N
P(z) # 0, there is s € C with z € intc(A™(s)N(P7 () UM)NC), where M = {z €
X :z & clx(B(z))};

(iv) there ezist a nonempty compact convez subset Xy of X and a nonempty com-

pact subset K of X such that for each y € X\K,

co(Xo U {y}) N A(y) N P(y) # 0.

Then (X; A, B; P) has an equilibrium point z € K.



75

Proof.
Suppose that for each £ € X, we have either =z & clx(B(z)) or A(z)N P(z) # 0.
Define G : X — 2% by

() = { A(z)N P(z), ifz € cdx(B(z)),
A(z), if z & clx(B(z)).
We shall prove that for any compact subset C of X and for any z € C such that
C N G(z) # 0, there is s € C such that z € intc(G~'(s) N C). Indeed, suppose
CNG(z) #0. If z & clx(B(z)), then G(z) = A(z). Hence A(z)NC = G(z)NC # 0.
By (ii), there is s € C such that z € intc(A~!(s) N C). Since z & clx(B(z)), there
is an open neighborhood N(z) of z in X such that N(z) C X\clx(B(z)). Take
Ni(z) = N(z) Nintc(A™'(s) N C), then Ny(z) is an open neighborhood of z in C
such that for any z € Ni(z), s € A(z) = G(z). Therefore z € intc(G™(s) N C).
If z € clx(B(z)), then C N A(z) N P(z) # 0. By (iii), there is s € C such that
z € intc(A~Y(s) N (P~(s)U M) N C). Note that

Gl(s) = [(P7(s) N A™'(s)) N (X\M)] U[A™Y(s) 0 M]
= A7) N[(P~(s) N (X\M)) U M]
= A7Y(s)N(P7'(s)U M).

Hence = € intc(G~'(s) N C). Thus all the conditions of Theorem 4.3.5 are satisfied.
By Theorem 4.3.5, there exists £ € X such that z € co(G(%)). If £ € clx(B(z)), then
Z € co(A(z) N P(z)) which contradicts (i). If £ ¢ clx(B(Z)), then £ € co(A(Z)) C
B(z) which is impossible. Therefore there must exist £ € X such that Z € clx(B(z))
and A(z) N P(Z) = 0, that is, £ is an equilibrium point for (X; A, B; P). By (iv), £

is necessarily in K. W
We need the following simple result which is Proposition 2.6 of Michael in [56]:
Lemma 4.3.8 Let X be a topological space and Y be a nonempty convez subset of a

topological vector space. If F : X — 2Y is lower semicontinuous, then coF : X — 2Y

defined by coF(z) = co(F(z)) for each z € X is lower semicontinuous.
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Now we give an existence theorem for approximate equilibria.

Theorem 4.3.9 Let X be a nonempty convez subset of a topological vector space E.
Let A,B : X — 2% be correspondences with nonempty values and P : X — 2X.
Suppose that

(i) A is lower semicontinuous such that for each z € X, = & co(A(z) N P(z)) and
co(A(z)) C B(z);

(i1) for each nonempty compact subset C of X and each z € C such that C N
A(z)N P(z) # 0, there is s € C with = € intc(A™'(s) N P~'(s) N C).

(iii) there ezist a nonempty compact convez subset Xy of X and a nonempty com-

pact subset K of X such that for each y € X\K,

co(Xo U {y}) N A(y) N P(y) # 0.

Then for each open convez neighborhood V' of zero in E, the one-agent abstract econ-
omy (X; A, Bv; P) has an equilibrivm point & € K ; that is, there ezists a point zy €
K such that zv € By(zv) and A(zv) N P(zv) = 0, where By(z) = (B(z)+ V)N X
for each r € X.

Proof. Suppose the conclusion does not hold, then there exists an open convex
neighborhood V' of zero in E such that for each z € X, we have either z ¢ clx(By(z))
or A(z) N P(z) # 0. Define Ay : X — 2% by Ay(z) = (co(A(z)) + V) N X for each
z € X. Then Ay has an open graph in X x X by Lemma 4.3.8 and by Lemma 4.1
of Chang in [14] such that for each z € X, Av(z) C Bv(z). Let My = {z e X :z ¢
By(z)}. Define Gy : X — 2X by

A(z)N P(z), ifz €& My,

Gy(z) =
V( ) { Av(.’l}), ifze My.

Suppose C is a nonempty compact subset of X and z € C such that C N Gy (z) # 0.

Case 1. If z € My, then Gy(z) = Ay(z). Hence Ay(z)NC = Gy(z)NC # 0.
Take any s € Ay(z)NC. Since Ay has an open graph, Ay;'(s)NC is open in C. Since
T € My, there is an open neighborhood N(z) of z in X such that N(z) C My. Take
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Ni(z) = N(z) N Ay'(s) N C, then N;(z) is an open neighborhood of z in C such that
for any z € Ny(z),s € Av(z) = Gyv(z). Therefore = € intc(G~'(s) N C).

Case 2. If ¢ € My, then A(z)N P(z) N C # 0. By (ii), there is s € C such that
z € intc(A™(s) N P~!(s) N C). Note that

Gy'(s) = [(P7H(s)NATY(s)) N(X\Mv)] U [AF (s) N My]
D A7(s)N[(P7'(s) N(X\Mv)) U My]
= A7'(s)N(P~'(s)U My)
D A7N(s)nP7I(s).

Hence z € intc(Gy'l(s) N C).

Finally, by (iii), there exist a nonempty compact convex subset Xy of X and a
nonempty compact subset K of X such that for each y € X\ K, co(XoU{y})NGv(y) #
0.

Thus all the conditions of Theorem 4.3.5 are satisfied. By Theorem 4.3.5, there
exists £ € X such that # € co(Gv(%)). If £ € By(z), then £ € co(A(Z) N P(£)) which
contradicts (i). If # € By (), then £ € co(Av(2)) = co(A(z)) + V C By (%) which is
impossible. Therefore for any open convex neighborhood V of zero in E, there must
exist zv € X such that zv € By(zv) and A(zv) N P(zv) = 0; that is, zv is an
equilibrium point for (X; A, By; P). By (iii), zv is necessarily in K. W

The following result is Lemma 5.3 in Tan and Yuan [77]:

Lemma 4.3.10 Let X be a topological space, Y a nonempty subset of a topological
vector space E, B a fundamental system of open neighborhoods of zero in E and
B: X — 2Y a nonempty valued correspondence . For each V € B, let By : X — 2Y
be defined by By(z) = (B(z)+ V)NY foreachz € X. If £t € X and § € Y satisfy
J € NvesBy(2), then § € B(%).

Theorem 4.3.11 In Theorem 4.3.9, if, in addition,E is a locally convez topological
vector space and the set {z € X : A(z) N P(z) # 0} is open in X, then the one-agent
abstract economy (X; A, B; P) has an equilibrium point in K.



78

Proof. Let B be a fundamental system of open convex neighborhoods of zero in
E. For each V € B, by Theorem 4.3.9 there exists £y € K such that Zy € B—v(:iv)
and A(Zv)NP(2v) = 0. It follows that the set Qv := {z € K : z € By(z) and A(z)N
P(z) = 0} is a nonempty closed subset of K.

Now we shall prove {Qv }ves has the finite intersection property. Let {V;,...,V,}
be any finite subset of B. Let V = N%_,V;. Then V is also an open convex neighbor-
hood of zero in E such that N, Qv; O Qv # @. Therefore, the family {Qv : V € B}
has the finite intersection property. Since K is compact, NyesQv # 0. Now take any
% € NyesQv. We have & € By (z) for each V € B and A(£)N P(£) = @. By Lemma

4.3.10, £ € B(). Thus # € K is an equilibrium point of (X; A, B; P). &

We point out that our results in this section are closely related to those in [23]
and [77] and the references therein. Further applications to abstract economies with

more than one agent (finite or infinite agents) can be done without difficulty.

4.4 Minimax Inequalities of the von Neumann

Type

In this section, we shall develop some von Neumann type minimax inequalities. We

begin with the following theorem:

Theorem 4.4.1 Let X and Y be nonempty convez sets, each in a topological vector
space and let f,u,v,g be four real-valued functions on X x Y and p € R. Assume

(1) for each z,y € X with f(z,y) > p, we have

(i.1) u(z,y) > p;

(1.2) there ezist some point s € X and some open neighborhood Ny (y) of y in Y
such that f(s,z) > p for all z € Nx(y);

(i1) for each r,y € X with g(z,y) < p, we have

(ii.1) v(z,y) <p;
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(1i.2) there exist some point c € Y and some open neighborhood Nx(z) of z in X
such that g(z,c) < p for all z € Nx(z);

(iii) there ezist a nonempty compact convez subset K of X XY and (Zo, %) € X XY
such that u(Zo,y) > p and v(z, %) < p for all (z,y) € X x Y'\K.

(iv) for each A € F(X x Y') and for each (z,y) € co(A), there is (Z,7) € A such
that either u(Z,y) < p or v(z,y) > p.

Then there exists a point (To,yo) € K such that f(z,y) < p forall z € X or
9(zo,y) 2 p forallyey.

Proof.
Define F,G: (X xY)x (X xY) - R by

1, if f(Z,y) > p and g(z,7) < p,

0, otherwise;

F((z,9),(z,9)) = {

G((Z,9), (z,y)) = { o BuE)>pmding) <

0, otherwise

for each ((z,y),(z,y)) e (X xY) x (X xY).

(1) Note that by (i.1) and (ii.1), for each ((Z,7), (z,y)) € (X xY) x (X x Y) with
F((z,9),(z,y)) > 0, we have G((Z, 3),(z,y)) > 0.

(2) If F((z,9).(z,y)) > 0, then by (i.2), there exist some s € X and an open
neighborhood Ny (y) of y in Y such that f(s, z) > p for all z € Ny (y); by (ii.2), there
exist some c € Y and some open neighborhood Nx(z) of z in X such that g(¢,c) <p
for all ¢ € Nx(z). Then we have F((s,c),(t,z)) > 0 for all (¢,z) € Nx(z) x Ny(y).

(3) By (iii), we have G((Zo, %0), (z,y)) > 0 for all (z,y) € X x Y'\K.

Suppose that the assertion of the theorem were false. Then for each point (Z,3) €
K, there exists (z,y) € X X Y such that f(z,7) > p and g(Z,y) < p so that
F((z,y),(%,7)) > 0. Hence by Theorem 4.2.2, there must be some 4 € F(X x Y)
and some (z,y) € co(A) such that min; ges G((Z,7),(z,y)) > 0; but this would

violate (iv). @
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Corollary 4.4.2 Let X andY be nonempty compact convez sets, each in a topological
vector space and let f,u,v, g be four real-valued functions on X x Y. Assume

(i) for each z,y € X and A € R with f(z,y) > A, we have

(1) u(z,y) > X

(1.2) there ezist some point s € X and some open neighborhood Ny(y) of y in Y
such that f(s,z) > A for all z € Ny (y);

(i1) for each z,y € X and A € R with g(z,y) < A, we have

(ii.1) v(z,y) < A;

(ii.2) there exist some point c € Y and some open neighborhood Nx(z) of £ in X
such that g(t,c) < A for all t € Nx(z);

(l)u<von X xY;

(iv) for each fized y € Y, x —> u(z,y) is quasi-concave on X and for each fized
z € X, y —> v(z,y) is quasi-convezr on Y.

Then

inf sup f(z,y) < sup mf £ 9(z,y)-
Y ze

Proof. We shall prove by contradiction. Suppose that there is p € R such that
sup mf g(z,y) <p< mf sup flz,y).
reX ¥€
Then clearly condition (iii) of Theorem 4.4.1 is satisfied for K = X x Y. We shall
show that condition (v) of Theorem 4.4.1 is also satisfied. Suppose not, there is
A={(zi,yi):i=1,...,n} EF(X xY) and (Z,§) = Y, Mi(zi, ¥:) € co(A), where
dimAi=1land \; > 0foreachi=1,...,nsuch that foreachi = 1,...,n,u(z;, 7) >
p and v(Z,y;) < p. Then by (v) we have v(a‘:, J) < p < u(Z,7), which contradicts (iii).
Now by Theorem 4.4.1, there exists a point (zg,y0) € X x Y such that either
f(z,y0) < pfor all z € X or g(zg,y) > p for all y € Y. This is a contradiction. W

Suppose that X is a nonempty convex subset of a vector space. Recall that a real-
valued function f on X is quasi-convez if for each real number A, {z € X : f(z) < A}
is convex. f is quasi-concave if —f is quasi-convex. By taking f =u =v =g in

Corollary 4.4.2, we have the following generalization of Theorem 3.1 of Sion in [74]:
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Corollary 4.4.3 Let X andY be nonempty compact convez sets, each in a topological
vector space and let f be a real-valued function on X x Y. Assume

(1) for each z,y € X and A € R with f(z,y) > A, there ezist some point s € X
and some open neighborhood Ny (y) of y inY such that f(s,z) > A for all z € Ny(y);

(ii) for each z,y € X and A € R with f(z,y) < A, there ezist some point c€ Y
and some open neighborhood Nx(z) of z in X such that f(t,c) < A for allt € Nx(z);

(iii) for each fized y € Y,  — f(z,y) is quasi-concave on X and for each fized
z € X, y — f(z,y) quasi-convez on Y.

Then

i up o) = s gl £

Corollary 4.4.4 If the compactness of Y in Corollary 4.4.2 is dropped, the conclu-
ston of Corollary 4.4.2 still holds.

Proof. Suppose that there is A € R such that
sup inf g(z,y) < A < inf su z,y).
IEE yeYy 9(z.y) yey zeg f(z.9)

Then for each z € X there is y € Y with g(z,y) < A. Thus by (ii.2) of Corollary
4.4.2, there exist some ¢ € Y and some open neighborhood N§(z) of z in X such
that g(t,c) < A for all t € Ng(z). Because X is compact, we can find a finite subset
{c1,...,¢cn} of Y such that UL, N¥ = X. Take N = {ci,...,¢.}, then for any z € X
there is y € N with g(t,y) < A, for all £ € N¥(z) so that sup,x infyen g(z,y) < A.

Take ¢’ = g|lxxco(n) and f' = flxxco(n)- Note that for any (z,y) € X x co(N)
with f(z,y) > A, there exist some s € X and an open neighborhood Ny (y) of v in
Y such that f(s,z) > A for all z € Ny(y); thus f'(s,z) > A for all z € Nywy(y) =
Ny (y) N co(N) which is an open neighborhood of y in co(N). By Corollary 4.4.2,
Sup,ex Infyeco(n) 9'(2,y) 2 infyecon) SUPex f(z,Yy)-

But

sup inf g'(z,y) < sup inf g(z,y) < A

z€X yEco(N) zeX V€
< inf su z < inf supf’ z,Y).
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This is a contradiction. I

The following is a generalization of Theorem 1 of Tan and Yu [80].

Theorem 4.4.5 Let X be a nonempty compact convez subset of a topological vector
space E and Y a nonempty convez subset of a topological vector space F. Suppose
that the real-valued function f : X x Y — R and the set-valued map T : X — 2Y
satisfy the following conditions:

(i) for each (z,y) € X XY and A € R with f(z,y) > A, there exist some point
s € X and some open neighborhood Ny (y) of y in Y such that f(s,z) > X for all
z € Ny (y);

(ii) for each (z,y) € X x Y and A € R with f(z,y) < A, there exist some point
¢ € Y and some open neighborhood Nx(z) of z in X such that f(t,c) < A for all
t € Nx(z);

(iii) for each fized y € Y, z — f(x,y) is quasi-concave on X and for each fized
z € X, y—r f(z,y) quasi-convez on Y.

(iv) for each z € X,T(z) is compact conver and there is y € T(z) such that
fz,y) <0.

(v) for each z € X with {u € X : f(u,y) > 0 forally € T(z)} # 0, there is
Z € X such thatz € intx{v € X : f(Z,y) >0 for all y € T(v)}.

Then there ezists (Z,9) € X x Y with § € T(Z) such that f(z,3) < 0 for all
z€eX.

Proof.
Define F : X — 2Y by

F(z)={u€ X : f(u,y) >0 for all y € T(z)}

for each z € X. Fix an z € X. Let u;,u; € F(z) be given, then f(u,,y) > 0 and
f(u2,y) > 0 for all y € T(z). By (iii), for each A € [0,1] and each y € T(z),

f(’\ul + (1 - /\)Ug, y) ..>. min{f(ul’ y)1 f(u2a y)} > 0
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so that Au; + (1 — A)uz € F(z). Thus F(z) is convex for each z € X.

By (iv), ¢ € F(z) for all z € X. By (v), if F(z) # 0, there is Z € X such that
z € intx F~(z).

By Corollary 4.3.4, there exists £ € X such that F(z) = 0. Thus, for each u € X,
there is y, € T(2) such that f(u,y.) < 0. It follows that infyer(z) f(u,y) < 0 for all
u € X.

Since all the conditions of Corollary 4.4.3 hold, we have

inf_sup f(z,y) = sup inf f(z,) <0.
veT(2) zeXx reX ¥eT

Fix an arbitrary € > 0. Let A, = {y € T(z) : sup,ex f(z,y) < €}, then clearly
A. is nonempty. We shall prove that A, is also closed in T'(Z). Indeed, if yo € T(%)
and yo & A., we have sup_cx f(z,%) > €. Then by (i) , there exist s € X and an
open neighborhood N(yo) of yo in Y such that f(s,z) > eforall z € N(yo). Let
No(yo) = N(yo) NT(Z), then No(yo) is an open neighborhood of yo in T'(Z) such that
f(s,z) > e for all z € No(yo), i.e. No(yo) N A. = 0. Hence A, is closed in T'(z).

Since the family {A, : € > 0} has the finite intersection property, N.50A4. # @ by
the compactness of T'(z). Choose any § € N.>0A., then § € T(£) and sup_x f(z,9) <
eforalle > 0;ie., f(z,g) <Oforallzc X. A

Let X be a topological space such that X = U2,C,, where C, is an increasing
sequence of nonempty compact sets. Then a sequence {z,}2, is said to be escaping
from X relative to {C,}52, if for each n € N, there exists M € N such that yx & C,
for all K > M. The concept of escaping sequences was introduced by Border in [13],
page 34.

Theorem 4.4.6 Let X be a nonempty subset of a topological vector space E such
that X = U,Cn where {C,}32, is an increasing sequence of nonempty compact
convez subsets of X and Y be a nonempty convez subset of a topological vector space
F. Suppose that the real-valued function f : X x Y — R and the set-valued map
T : X — 2Y satisfy the following conditions:
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(i) for each n € N, each (z,y) € C, X Y and A € R with f(z,y) > A, there exist
some point s € C,, and some open neighborhood Ny (y) of y inY such that f(s,z) > A
for all z € Ny(y);

(ii) for each (z,y) € X x Y and A € R with f(z,y) < A, there ezxist some point
¢ € Y and some open neighborhood Nx(z) of z in X such that f(t,c) < A for all
t € Nx(z);

(iii) for each fized y € Y, z — f(z,y) is quasi-concave on X and for each fized
z € X, y—r f(z,y) quasi-convez on Y.

(iv) for each z € X, T(z) is compact convez and there is y € T(z) such that
f(z,y) <0;

(v) for eachn € N and each z € C,, with {u € C,, : f(u,y) >0 for ally € T(z)} #
0, there is T € Cp such that z € intc,{v € Cy : f(ZT,y) > 0 for all y € T(v)};

(vi) for each sequence {z,}2, in X, where z,, € C,, for each n = 1,2,..., which
is escaping from X relative to {C,}32,, and each sequence {yn}2,, wherey, € T(z,)
for eachn =1,2,..., there exist ng € N and z;, € C,, with f(z ,yn,) > 0.

Then there exists (z*,y) € X x Y with y* € T(z") such that f(z,y") < 0 for all
r € X.

Proof.

For each n € N, by Theorem 4.4.5, there is (zn,ys) € C, X Y with y, € T(z,)
such that f(z,y,) <0forall z € C,.

Suppose that the sequence {z,}32, were escaping from X relative to {C,}2,. By
(vi), there exist no € N and z, € C,, with f(z] ,yn,) > 0 which is a contradiction.
Therefore the sequence {z,}52, is not escaping from X relative to {C,}2,, so that
some subsequence of {z.}32, must lie entirely in some Cy;. Since C,; is compact,
there exist a subnet {zs}aer of {zn}s2, in Cy; and z= € Cy; such that z, — z~.
Denote z4 = Zp(q), Where n(a) — oo.

F{ueX: f(u,y) >0forally € T(z*)} # 0, there exists nj > n} such that
{u€Cp : f(u,y) >0 for all y € T(z")} # 0. By (v), there is Z € C,, such that z* €
intc,.; {veCpy: f(Z,y) >0for ally € T(v)}. Since z, — z*, there is ag such that
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n(ap) > nj and f(Z,y) > 0 for all y € T(24,)- Since Yn(ao) € T(Zn(ao)) = T(2a0), We
have f(Z, Yn(ao)) > 0 which contradicts the fact that Z € Cy(ag) and f(Z, Yn(ao)) < 0.
Therefore {u € X : f(u,y) > 0 for all y € T(z")} = 0; i.e. infyer(ze) f(u,y) < 0 for
all v € X.
By Corollary 4.4.4, we have
yei’?(fr') sex f=y) = aex yei’lr‘l(:fr') Hzy) 0.

Similar to the last step in the proof of Theorem 4.4.5, we can prove that there exist
y~ € T(z") such that sup_cx f(z,y") <0; ie., f(z,y*) <O0forallze X. B

4.5 Applications to Variational Inequalities and
Related Problems

Let E be a topological vector space, X a nonempty subset of E and T : X — 2F',
Then T is said to be (1) almost monotone if for each z € X, sup,er(,) Re(u,y —
z) > 0 implies inf,er(y) Re{w,y — z) > 0 and (2) monotone if for each z,y € X,
SUp,er(s) Re(u,y — z) < infuer(y) Re{w,y — z). Clearly if T is monotone, then T
is almost monotone. The converse is not true in general as the following example

illustrates:

Example 4.5.1 Let A =[1,00). Define T : A — 2R by T(z) = [1, z+1] for all z € A.
Suppose T,y € A such that z < y. Chooseu=z+1 € T(z) andw =1 € T(y). Then
(v —w,z —y) = z(z — y) < 0, which shows that T is not monotone.

On the other hand, let z,y € A. Clearly, +f SUP,er(y) (W, T —y) 2 0, then z > y

so that inf,e(z)(u,z —y) > 0. Hence T is almost monotone. B

Recall that if y € E, the set
Ix(y)={z € E:z=y+r(u—y) for some u € X and r > 0}

is called the inward set of y with respect to X [38].
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As an application of Theorem 4.2.5, we have the following generalized variational

inequality for almost monotone operators.

Theorem 4.5.2 Let E be a Hausdorff topological vector space and X a nonempty
convez subset of E. Let T : X — 28’ almost monotone and upper semicontinuous from
line segments in X to the weak* topology of E' such that each T(z) s weak* compact.
Further suppose that there ezist a nonempty weakly closed and weakly compact subset
K of X and zo € X such that inf,er(y) Re{w,y — zo) > 0 for all y € X\K. Then
there ezists § € K such that inf,erg)(w,y —z) < 0 for all z € Ix(§). If, in addition,
T(y) ts convez, then there ezists a point w € T(y) such that Re(w,§ — z) < 0 for all
z € cp(Ix(9))-

Proof. Define f : X x X — R by f(z,y) = infyery) Re{w,y — z) for all
z,y € X. Then:

(i) For each fixed y € X, z — f(z,y) is concave.

(ii) For any z,y € X with f(z,y) < 0, that is, inf,e7(y) Re(w,y — z) < 0, we have
SUPyeT(y) Re(w,z — y) > 0. Since T is almost monotone, inf,er(z) Re(u,z —y) > 0,
ie., f(y,z) > 0.

(iii) Fix any z € X and A € R, let Ay = {z € L : f(z,z) < A} where L =
{tu+ (1 —¢t)v:0<t <1} and u,v € X. We shall show that A, is closed in L. Let
(2ta )aer be a net in Ay converging to z,, € L where z; = tu + (1 — t)v, ¢t € [0,1]. Fix
an arbitrary ¢ > 0, then for each a € ', there is w,, € T(z:,) such that

A+e > Re(w,,z,—z)
= toRe(w,,u — z) + (1 — t,)Re{w,,v — ).
Since T is upper semicontinuous from line segments in X to the weak* topology on
E' and each T(z) is nonempty weak™ compact, Usepo,1)T'(2:) is weak* compact in E'.
Thus there is a subnet (w_, )arer’ of (w, )aer such that w;_, converges to wo € E’

in weak* topology. Since for each z € L, T(z) is weak* closed and T is upper

semicontinuous, wg € T'(z,). Thus we have

A+e > toRe(wo,u— z) + (1 — to) Re{wo, v — )
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= Re(wg, zo — z)

> inof Re(w,z, — z).
wET (z¢q)

Since ¢ is arbitrary, we have inf,er(,,) Re(w, 2, — ) < A. Therefore for any fixed
r € X, y — f(z,y) is lower semicontinuous from line segments in X to the weak*
topology on E'.

Clearly, for each z € X, f(z,z) = 0.

(iv) If f(y,z) = infuer(z) Re{u,z — y) < 0, then there exists ug € T'(z) such that
Re(ug,z — y) < 0. Thus there is an weakly open neighborhood Nx(y) of y in X such
that Re(uq,z — z) < 0 for all z € Nx(y). Hence f(z,z) = iﬁfuer(x) Re(u,z —z) <0
for all z € Nx(y)-

(v) By assumption, there exist a nonempty weakly closed and weakly compact
subset K in X and zo € X such that f(zo,y) = infuer(y) Re(w,y — zo) > 0 for all
y € X\K.

Equip F with the weak topology, then all conditions of Theorem 4.2.5 are satisfied.
Hence there is y € K such that f(z,§) = inf,er(g) Re(w,j — z) < 0 for all z € X.
Let z € Ix(y), then r = g+ r(u—y) for someu € X and r > 0. Thus j—z =r(u—yg)
so that

inf Re(w,y—z)=r inf Re{w,§—u)<0.
Jof Re(w,§ —z) ik Re(w,§ —u) <

If T(g) is convex, then by Kneser’s minimax theorem [53],

min sup Re{w,y—z)= su inf Re{w,y—z)<0.
weT(9) zez,f?m tng = =) zelxlza)weT(ﬂ) b4 = 2)

Therefore there exists a point @ € T'(g) such that Re(w,§—z) < 0 for all z € Ix(J).
Since @ is continuous, we conclude that Re(w,§ — z) < 0 for all = € clg(Ix(7)). B

If X is a cone in a topological vector space E, we shall denote by X the set
{w € E': Re{w,z) > 0 for all z € X}, then X is also a cone in E’, called the dual
cone of X in E’. A result of S. C. Fang (e.g. see [18]) can be easily modified to give
the following:
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Lemma 4.5.3 Let X be a cone in a vector space E and T : E — 25, Then following
statements are equivalent:
(a) There exist j € X and w € T(§) such that Re(w,j—z) <0 forallz € X.
(b) There ezist § € X and & € T(§) such that Re(i,j) =0 and & € X.

By using Lemma 4.5.3, we have the following existence theorem of a generalized

complementarity problem:

Theorem 4.5.4 Let E be a Hausdorff topological vector space and X a cone in E.
Let T : X — 2% be almost monotone and upper semicontinuous from line segments
in X to the weak* topology on E' such that for each z € X, T(x) is weak* compact
convez. Suppose there ezist a nonempty weakly closed and weakly compact subset K
of X and zo € X such that inf,er(y) Re{w,y — zo) > 0 for all y € X\K. Then there
ezist j € K and b € T () such that Re(w,§) =0 and v € X.

Theorem 4.5.5 Let (E,||-||) be a reflezive Banach space and X be a nonempty closed
conver subset of E. Let T : X — 2F' be upper semicontinuous along line segments in
X to the weak topology on E' such that each T(z) is weakly compact conver and T is
almost monotone. Suppose there is 2o € X such that

lim inf Re(w,y—zo) > 0. 5.1
l-seo wi2, Be(wsy — o) (5.1)
Yy

Then there exist § € X and w € T(y) such that Re(w,j — z) < 0 for all z €
cle(Ix(§))-

Proof. Leta= lim inf Re(w,y —zp). Then by (5.1), > 0. Let M > 0

llyylle-;{w weT(y)

be such that [|zof| < M and infuer(y) Re{w,y — zo) > § for all y € X with ||y|| > M.
Let K = {z € X : ||z|| £ M}; then K is a nonempty weakly compact subset of X.
Note that for any y € X \ K, infuer(y) Re(w,y — zo) > $ > 0. The conclusion now
follows from Theorem 4.5.2. B
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If H is a Hilbert space with inner product (-,-) and the corresponding induced
norm || - || and X is a nonempty subset of H, we shall denote by bcc(X) the family of
all nonempty bounded closed convex subsets of X.

Now we shall give an existence theorem for a variational inequality in Hilbert

space. It can be reduced to a fixed point theorem under suitable conditions.

Theorem 4.5.6 Let H be a Hilbert space and X a nonempty convez subset of H. Let
T : X — bec(H) upper semicontinuous from line segments in X to the weak topology
on H such that I —T is almost monotone. Suppose that there ezist a nonempty weakly
compact subset K of X and an zo € X such that inf,er(y) Re(y — w,y — zo) > 0 for
ally € X\K. Then there ezxist § € K and w € T(j) such that

Re(y — w0,y —z) <0 for all z € dg(Ix(3)).

Moreover, if either §j is an interior point of X in H or p(§) € clg(Ix(3)), where p(%)
is the projection of § on T(3y), then y is a fized point of T, t.e., § € T(3).

Proof. Equip H with the weak topology. Since T is upper semicontinuous from
line segments in X, I — T : X — bec(H) is also upper semicontinuous along line
segments in X. Now [ — T satisfies all the hypotheses of Theorem 4.5.2. Thus by
Theorem 4.5.2, there exist § € K and w € T(§) such that

Re(y —w,§—z) <0 for all z € cdg(Ix(y)).

Now if § is an interior point of X in H, then above inequality implies that § = w €
T'(y). Next suppose that p(7) € clg(Ix(7)). Note that the projection p(7) of § on
T'(§) has the property, and in fact is characterized by (e.g., see Theorem 1.2.3 in [51],
Page 9.

p(9) € T(9) and Re(p(§) — §,w — p(§)) > 0 for all w € T(§).
Since w € T'(j), we have

0 < Re(p(y)—g,w—p(3))
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= Re(p(9) — 9,9 — 3§+ —p(9))
= Re(p(§) —g,@ — ) — l§ — p(@)I*.

Therefore, ||§ — p(#)||* < Re(p(3) — §,w — §) < 0; thus § = p(y) € T (7). W

The following fixed point theorem, closely relates to Theorem 7 in [9], is an im-

mediate consequence of Theorem 4.5.6.

Theorem 4.5.7 Let H be a Hilbert space and X a nonempty convez subset of H. Let
T : X — bec(H) be upper semicontinuous from line segments in X to the weak topology
on H such that [ —T is almost monotone. Suppose that there ezist a nonempty weakly
compact subset K of X and zo € X such that

(i) for each y € K N dy(X), p(y) € ce(Ix(y)), where p(y) is the projection of y
on T(y) and

(ii) for each y € X\K, inf, er(y) Re(y — w,y — z0) > 0.

Then T has a fized point in K.

Corollary 4.5.8 Let H be a Hilbert space and X a nonempty bounded conver subset
of H. Let T : X — bec(H) be upper semicontinuous from line segments in X to the
weak topology of H such that I — T is almost monotone. If for each y € 9y(X),
p(y) € ce(Ix(y)) where p(y) is the projection of y on Ty, then T has a fized point in
X.

Corollary 4.5.9 Let H be a Hilbert space and X a nonempty bounded closed convez
subset of H. Let T : X — bec(X) be upper semicontinuous from line segments in X
to the weak topology of H such that I — T is almost monotone. Then T has a fized
point in X.



Chapter 5

A Note on Fixed Point Theorems
for Semi-continuous

Correspondences on [0,1]

5.1 Introduction

A function either continuous or nondecreasing from [0, 1] to itself has a fixed point.
What are common points between these two results? This problem has been investi-
gated independently by Milgrom and Roberts [58] and Guillerme [36]. Their findings

can be summarized as:

Theorem 5.1.1 Suppose that the real function f : [0,1] — [0,1] is upper semicon-

tinuous on the right and lower semicontinuous on the left, then it has a fized point.

On the other hand, Strother [75] asserted that a continuous multivalued function
on [0, 1] has a fixed point. This is a surprising result in the sense that a fixed point
theorem for a multivalued function usually requires the function to have convex val-
ues. For example, the Kakutani theorem, or some theorems involving a continuous
selection (for which Michael’s [56] result is often needed). Do we have an analogy to
Theorem 5.1.1 for multivalued functions? The answer is positive. Strother’s result
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was proved also by constructing a continuous selection. But our result is not. More-
over, we shall give an example to show that correspondences satisfying the hypothesis
of our theorem may not allow a continuous selection. Also some simple applications

to game theory are included.

5.2 Fixed Point Theorems

First we give some definitions. Let T' : R — 2Y be a correspondence, where Y is
a metric space. T is said to be upper semicontinuous on the right (RUS) if for any
Z € R and any sequence (z,) such that z, | Z, and every sequence y, converging to 7
such that y, € T(z,) for every n, then § € T(z); T is said to be lower semicontinuous
on the left (LLS) if for any sequence z, 1 Z and every § € T'(Z), there is a sequence
(yn) converging to y such that y, € T'(z,) for every n.

Now we are ready to prove an intermediate value theorem.

Proposition 5.2.1 Let T : [0,1] — 2R be an RUS and LLS correspondence. Suppose
that T'([0,1]) is contained in some bounded set in R and for any y € T(0) (if there is
such y), y > 0; for anyy € T(1) # 0,y < 0. Then there ezists z € [0,1] such that
0€T(x).

Proof.

Part (I). We first prove that for any z € [0,1), T'(z) # 0. Suppose not, let
zo = sup{z : T(z) = 0}.

(1) We claim that T'(zo) # 0. If 2o = 1, T(z0) # @ by hypothesis. If o < 1, take
any z, | To. Then T(z,) is not empty. Take any y, € T(z,), we can assume that y,
converges to some yo. Then yo € T'(zo) # 0.

(2) If zo = 0, by (1), the conclusion of Part (1) holds. If zo > 0, we can find
Zn T o and T'(z,) = 0. This is not possible for T(zo) # 0.

Part(II). Define z; = inf{z : there exists some y € T(z) such that y < 0}. Ob-
viously z, exists. If z; = 1, we have 0 € T(1), for otherwise, take any y;, € T(1).
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Then yr < 0. Now take any sequence (z,) in [0,1] such that =, 1t z,. Since T is
LLS , we can find (y,) such that 0 < y,, € T(z,,) for each n and y, = y,. Thisis a
contradiction. In fact, T(1) = {0} in this case.

Now suppose that 0 < z; < 1. Then there is a sequence (z,) in [0, 1] such that
z, | o and there is a sequence (y,) such that for each n, y, € T(z,) and y, < 0.
Since the set T'([0, 1]) is bounded, we can have a subsequence (y,;) of (y.) converging
to some y; = limy,; < 0. Since T is (RUS), we have y;, € T(z.). If z; = 0, then
yr = 0. fzy > 0, we can find a sequence (z,) in [0,1] such that z,, T z,. Since T is
LLS, there exists (y,) such that for each n, y, € T(z,) and y, — yr. Since for each
n, Yn >0, we have y, > 0. Soy, =0, i.e.,0€ T(z.). W

Theorem 5.2.2 Let T : [0,1] — 2(%! be an RUS and LLS correspondence with T(1)
nonempty. Then T has a fized point.

Proof. Define G:[0,1] = 2R by G(z) = {y —z : for y € T(z)}, then G satisfies
all conditions of Theorem 1. So there is an Z such that 0 € G(z) which means that
zeT(z). N

Example 5.2.3 Let F: [0,1] — 201 pe defined by

1/3 -(z+1)/8,2/3+(z+1)/8] =z <1/2;
F(z) =1 [1/3,2/3] U {3/4} z=1/2;
[2/5,3/5] U {3/4} z>1/2.

It is easy to check that F' is RUS and LLS, but it is neither upper semicontinuous
nor lower semicontinuous. Moreover, it has non-convex values. Therefore the usual

Kakutani fixed point theorem cannot be applied. l

In [75], Strother proved the result we mentioned in Section 5.1 by constructing a
continuous selection of the continuous correspondence. We give an example to show

that our conditions may not allow a continuous selection.
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Example 5.2.4 Let F : [0,1] — 21 be defined by

F(z) = { [0,1] z<1/2;
{lsin(1/(z — 1/2))],| cos(1/(z — 1/2))]} = >1/2.

Then F is RUS and LLS, but it is not possible that F’ has a continuous selection. For if
it had, we denote it by f and suppose f(1/2) = a € [0,1]. If a = sin(7/4) = cos(7/4),
we take z, = 1/2 + 1/(nr), then F(z,) = {0,1}, d(a, F(z,)) = (1 — sin(7/4)). If
a # sin(w/4), take z, = 1/2 + 1/(n7 4+ /4), then d(a, F(z,)) = |a — sin(7/4)|. So
F(z) has no continuous selection. This also demonstrates that F is not continuous

for otherwise F' would have a continuous selection by Strother’s Theorem. B

Again, since F is not convex-valued, the Kakutani fixed point theorem cannot be

applied.

Theorem 5.2.2 does not contain Theorem 5.1.1, that is, for a monotone multivalued
function in the usual sense, it is easy to show that it has a fixed point. We give another
simple result in which the meaning of monotonicity is defined as follows.

A multivalued function F : [0,1] — 2[%! is said to be monotone if for any = < y,
and any u € F(z),v € F(y) we have min{u,v} € F(z) and max{u,v} € F(y).

Theorem 5.2.5 Let F : [0,1] — 20U be monotone with nonempty closed values,
then it has a fized point.

Proof.
Let f :[0,1] — [0,1] be defined by f(z) = min F(z). Then f is non-decreasing.
For any z < y,
f(z) = min F(z) < min F(y) = f(y).

Otherwise we have min{f(z), f(y)} = f(v) € F(z). Thus f, and hence F, has a fixed
point by Theorem 5.1.1. l
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5.3 Applications to Game Theory

Consider a two-person game in which the two players are identified as Player 1 and
Player 2. The strategy spaces for them are sets X; and X,, respectively. The best
responses of Player 1 and Player 2 are defined by correspondences T} : X, — 2%
and T, : X; — 2%, respectively. Let T : X; x X, — 2%t x 2%X2 be defined by
T(z) = Ti(zz2) x Ta(z1) for z = (z1,z2) € X; X X;. The set of Nash equilibrium
points of this game is defined as the set of fixed points of T. Note that such a
game has a non-empty set of equilibria if and only if the composite correspondence

T\T, : X; = 2%t or ToT : X, — 2%2 has a fixed point.

Theorem 5.3.1 For a two-person game on [0,1] X Y where Y is a compact metric
space, let T\(y) be the best response of Player 1 and Ty(z) the best response of Player
2. We suppose that T} ts continuous with nonempty closed values and T, is RUS and

LLS with nonempty closed values, then there is a Nash equilibrium for this game.

Proof.

We define T : [0,1] = 2% by T = T\Ty. If T has a fixed point Z, then there is
g € T,(z) such that £ € T1(9). So (Z,y) will be a Nash equilibrium of the game.

Now we prove that T is RUS. Suppose that z,, | z and z, € T(z,,) = z. Then there
is yn € Ty(zn) such that z, € Ti(yn). Since Y is compact, without loss generality,
we suppose that (y,) converges to y. Then z € Ti(y) since T is continuous with
nonempty closed values (hence it is closed). But y € T3(z) since T3 is RUS. Therefore
z € T1T2(z) = T(z). That is, T is RUS.

Next we shall prove that T" is LLS. Suppose that z,, 1 z and z € T'(z). First there
is y € Ty(z) such that z € T\(y). Since T, is LLS, there is y, € Ty(z,) such that
Yn —> Y. Since y, — y and z € T(y), there is 2, € Ti(yn) such that z, — z since T}
is lower semicontinuous. Now we have z, € T1T>(z,) such that z, — z € T(z). Thus
T is LLS.

So by Theorem 5.2.2, there is a fixed point £ € T'(Z), i.e. there is a Nash equilib-

rium for the two person game. M
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Corollary 5.3.2 For a two-person game on [0,1] X Y where Y s a Banach space,
let Ti(y) be the best response of Player 1 and T(z) the best response of Player 2. We
suppose that T\ is lower semicontinuous with nonempty closed convez values and T,
is RUS and LLS with nonempty closed values, then there is a Nash equilibrium for

this game.

Proof. In fact, by Theorem 3.2” in Michael [56] there is a continuous selection
of T1. So the result follows. B
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