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Abstract

The main results in this thesis are about invariant subspaces of multiplicative
semigroups of quasinilpotent positive operators on Banach lattices.

There are some known results that guarantee the existence of a non-trivial closed
invariant ideal for a quasinilpotent positive operator on certain spaces. for example on
Co(Q2) with Q a locally compact Hausdorff space or on a Banach lattice with atoms.
Some recent results also guarantee the existence of non-trivial closed invariant ideals
for a compact quasinilpotent positive operator on an arbitrary Banach lattice. In
fact it is known that given such an operator T, on a real or complex Banach lattice.
there is a nontrivial closed ideal which is invariant under all positive operators that
commute with T.

This thesis deals with invariant ideals for families of positive operators on Banach
lattices. In particular it studies ideal-decomposable and ideal-triangularizable semi-
groups of positive operators. We show that in certain Banach lattices compactness is
not required for the existence of hyperinvariant closed ideals for a quasinilpotent pos-
itive operator. We also show that in those Banach lattices a semigroup of quasinilpo-
tent positive operators might be decomposable without imposing any compactness
condition. We generalize the fact that the only irreducible Cp-closed subalgebra of &
is Cp itself to extend some recent reducibility results and apply them to derive some
decomposability theorems concerning a collection of quasinilpotent positive operators
on reflexive Banach lattices.

We use these results for “ideal-triangularization”, i.e., we construct a maximal
closed ideal chain, each of whose members is invariant under a certain collection of
operators that are related to compact positive operators, or to quasinilpotent positive

operators.
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Introduction

There are two notions which gave rise to the questions this thesis attempts to
address.

First is the consideration of the existence of invariant subspaces for certain collec-
tions of quasinilpotent operators, especially non-compact quasinilpotent operators.
Several mathematicians have made progress in this direction and have obtained a
number of results concerning certain semigroups of quasinilpotent operators on a
Hilbert space. An example for the compact case can be found in [33]. For the non-
compact case an application of the Andé-Krieger theorem [48, Theorem 136.9] implies
that every quasinilpotent integral operator with non-negative kernel on £,(X, S, u).

where X is a topological space. 4 is a positive Borel measure on X. and
dim(L(X.Z, pu)) > 2,

has a nontrivial invariant subspace.

Since 1970. there have been a number of works on invariant order ideals. motivated
by interest in the spectral radius of positive operators on Banach lattices. (If there
exists a nontrivial closed ideal for a positive operator T on a Banach lattice, then T
is called reducible. The term “reducibility” has been used in (1].[2).[3].[4].[5].[6].[34].
and [46]. In this thesis, for technical reasons, the term “decomposability” will be
used instead of “reducibility” in the application of the results of those papers. For
precise definitions and terminology see Chapter 0.) It has been proven [45] that an

indecomposable positive operator on a closed ideal of an AM-space with unit must
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have a positive spectral radius. Other works are based on several attempts at under-
standing the And6-Krieger theorem - which states that a band-irreducible positive
kernel operator has a strictly positive spectral radius. One of the most important
works on invariant ideals is the elegant theorem of de Pagter [34] - which states that
every ideal-irreducible compact positive operator on a Banach lattice has a strictly
positive spectral radius. In 1992, by a close study of de Pagter’s proof, Abramovich,
Aliprantis, and Burkinshaw proved that every compact quasinilpotent positive op-
erator T on a Banach lattice E has a nontrivial closed ideal that is invariant under
every positive operator S on E that commutes with T (see [1]). Using this theorem,
they further established several results that guarantee a positive operator with certain
properties has a strictly positive spectral radius. Also in [2},13],[4],[5] these authors
established a number of invariant subspace theorems for positive operators on Banach
lattices under weaker conditions. Since in these theorems the invariant subspaces for
positive operators are quite often order ideals, one may consider them as invariant

ideal theorems.

The second notion is the investigation of a maximal chain of closed ideals of a
Banach lattice E each of whose members is invariant under all the operators in a
collection T of positive operators on E. This concept is the Banach lattice version of
triangularizability of operators on a Banach space. The concept of triangularizabil-
ity of operators on a Banach space has been studied by many authors. Kaplansky
[24] gives triangularizability results for semigroups of operators on finite-dimensional
spaces. In [27], by considering infinite-dimensional analogues of the known results.
the results of McCoy [31] were generalized to get necessary and sufficient conditions
that collections of compact operators on an infinite-dimensional Banach space be tri-
angularizable. In [36]. one can find the generalization of Kaplansky's result in the case
where the spectrum of every operator in a semigroup of trace-class operators is con-
tained in {0,1}. Other triangularizability results are given in (10], [25].[33].[36].[37],
and [38].

In this thesis, we consider several questions concerning the existence of a nontrivial



closed ideal of a Banach lattice E that is invariant under every member of a collection
[ of positive (quasinilpotent) operators on E. After introducing the concept of ideal-
triangularizability of operators on a Banach lattice we investigate a number of ideal-

triangularizability problems.

In Chapter 0 we cover basic definitions and results for future use. We also in-
troduce some notations and terminology. Most of the material in this chapter comes

from [7], [26], [35], and [46].

Chapter 1 is about a special class of operators on a Banach space, called trace
ideals, whose properties enable us to extend some reducibility and triangularizability
results of operators on a Hilbert space. In this chapter we first introduce the concept
of operator and trace ideals and use basic properties of these classes of operators to
extend Theorem 6.1 of [39]. Then we apply this theorem to extend the results of (33]
and [38].

In Chapter 2 we study the decomposability of a collection of positive operators on a
Banach lattice E. We improve some well-known decomposability results and establish
new decomposability results for a commutative collection of positive operators on A V-
spaces and in Banach lattices with atoms. As an example, we prove that a positive
quasinilpotent operator T in Co(f), where Q is a locally compact Hausdorff space.
has a nontrivial closed ideal that is invariant under every positive operator S in Cy(f)
that commutes with T'. We also derive the decomposability of certain semigroups of

integral operators on C(K), where K is a compact Hausdorff space.

Chapter 3 is devoted to the study of the Banach-lattice version of triangularizabilty
of operators. In this chapter we use the same procedure as in [41, Chapter 4] to
introduce the notion of ideal-triangularizability of operators on Banach lattices. The
results of Chapter 2 enable us to establish some ideal-triangularizabilty results. For
example, we show that each quasinilpotent positive operator on C'(K), where K is a
compact Hausdorff space, is ideal-triangularizable. We also discuss discrete Banach

lattices with order continuous norms. We shall also prove that each quasinilpotent



positive operator in such Banach lattices is ideal-triangularizable.

In Chapter 4 we introduce Banach lattices in which one can define an indecom-
posable quasinilpotent positive operator. The existence of such operators was first
established in [45]. In fact, it was shown that if T is the circle group and if © is the
Haar measure on T, then, for each p € [1.o), one can construct a quasinilpotent
positive operator on L,([',®). We shall use the examples found in [45] to show that,
if (X, X, 1) is a o-finite measure space with no atoms and if L(X, S p),1<p<oo,
is separable, then there exists an indecomposable quasinilpotent positive operator on
Ly(X.Z,u). In Chapter 4 we also present some examples and remarks to further

illustrate our results in the earlier chapters.



Chapter 0

Basic Concepts

0.0 Prerequisites and Notations

The principal prerequisite for this thesis is a knowledge of the theory of oper-
ators on Banach spaces. The terminology of the books [7] and [46] will be em-
ployed throughout with the exception that. for technical reasons, the term “decom-
posability” will be used instead of “reducibility” in the application of the results of
[1],(21,[3].[4].[3].[6].[34], [45], and [46]. The following conventions and notations will
also be adhered to.

The symbols X.Y. and Z always denote real or complex Banach spaces, and
whenever Banach lattices are under discussion we use E.F and G instead of X.Y and
Z. respectively. Throughout this thesis we assume that all the Banach spaces have
dimension greater than one. The symbols X. Q, and K are used to denote a general
topological space, a locally compact Hausdorff space, and a compact Hausdorff space.
respectively. The symbols N, R, and C are used to denote the set of positive integers,
the set of real numbers, and the set of complex numbers, respectively.

By a measure (without adjectives) we shall always mean a non-negative and count-
ably additive set function u defined on a o-algebra ¥ of subsets of .¥. Almost all the
measures we shall encounter will be strictly positive o-finite measures, i.e. such that

#(U) > 0 for all nonempty open subsets I/ € ¥ and there exists a sequence {X,}72,

3



in ¥ such that X =|J32 | X, and p(X,) < oc foralln € N. The symbol (X, X, u) is
used to denote a measure space.

The closure of a subset A of X is denoted by A. In those cases that .X' has several
topologies we use the symbol A~ to identify the topology under which closure is
taken. The convergence of a sequence {z,}%2, of points in a metric space to a point
z is denoted by r, — .

The space of continuous functions on (2, the space of bounded continuous functions
on , the space of continuous functions on Q whose support is compact, and the space
of continuous functions on Q which vanish at infinity, are denoted by C(£2), Cy(Q),
Ce(?). and Co(Q). respectively. It is known that Cy(Q) is the completion of C,(f),

relative to the metric defined by the supremum norm. Of course,
Ce(Q) € Co(R2) C C(Q)

and they are equal whenever Q is compact.

If 1 < p < oo the Banach space of all u-measurable functions f on X such that
Jyv IfIPdu < = is denoted by Ly(X.X,u) or simply by L,(x) or L,(X) if there
is no ambiguity. If X' is countable and u is the counting measure. we denote the
corresponding L,-space by [,. The Banach space of all functions f on the set of
positive integers such that f(r) — 0 as n — oc with sup-norm is denoted by cq.

By an operator T : X — Y between two Banach spaces. we shall mean a
continuous linear mapping. The class of all operators between two Banach spaces X
and Y is denoted by B(.X,}) and the symbol B(X) is used whenever X = Y. The
class of all linear mappings T : V' — W between two vector spaces is denoted by
L(V. W) and the symbol £(V) is used whenever V = W. Unless otherwise stated,
the topology on B(X,Y) is the norm topology.

The symbols o(T') and r(T) denote the spectrum and the spectral radius of an
operator T € B(.X), respectively. If 7(T) = 0, T is called a quasinilpotent operator.

By the term (multiplicative) semigroup of operators on X. we shall mean a subset

S of B(X) such that ST € § whenever S, T € 8.
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There are other notations that appear in the appropriate sections.

0.1 Vector Lattices

The function spaces which appear in real analysis are usually ordered in a natural
way. This order is related to the norm and is important in the study of the space as
a Banach space. In the sequel we study partially ordered Banach spaces whose order

and norm are related according to the following Definitions.

Definitions 0.1.1 A partially ordered vector space V over the real numbers is
called an ordered vector space if
(1) z < y impliesx + = < y + =, for every z.y.z € V, and
(ii) az > 0. for every z > 0 in V and every nonnegative real a.
It is called a vector lattice (or a Riesz space) if it also satisfies
(iii) for all .y € V there exists a least upper bound zVy and a greatest lower bound
zAyin V.
Let V be a vector lattice. For all r € V, we define z+ = r v 0. r— = (=x)Vv 0 and
lz] = 2V (=z). r*. r~ and |z| are called the positive part. the negative part. and

the modulus (or absolute value) of x. respectively.

Definition 0.1.2 A vector lattice V. endowed with a norm. is called a normed
vector lattice if |x| < [y| implies ||2|| < ||y|| for all z.y € V.

If a normed vector lattice is a complete space, then it is called a Banach lattice.

By Proposition [46, I.5.2], the lattice operations are norm continuous. The con-
tinuity of the lattice operations implies, in particular. that the set
Vi={zeV:z>0}
is norm closed. The set V. is a convex cone and is called the positive cone of V.
Definitions 0.1.3 An ideal in a vector lattice V is a linear subspace J for which

y € J whenever y € V and |y| < |z| for some z € J. An ideal B of V is called a band
if A C B andsup A €V together imply sup A € B.



Let E= L,(¢). 1 < p < oc. Then the subspace

J={f€Llyp): f=0 ae [u] onS},

where S is a measurable subset of X, is an ideal of E.

The following well-known proposition characterizes all closed ideals of E = (K).

For completeness, we present its proof here.

Proposition 0.1.4 Let J C C(K). Then J is a closed ideal of C(K) if and only
if there erists a closed subset Sy of K such that

J={feCK): f(t)=0 Vte S,}.

Furthermore, J is isomorphic to Co(U). where U = K\ S, is a locally compact Haus-
dorff space.

Proof :  Suppose J is a closed ideal of C(K). Let g € J and f € C(K). Since
lgl € J. 11 fll(Jgl) € J. Thus the relation

[fgl =1f1-1gl < A1l - Il

implies that fg € J. Therefore; J is in fact an algebraic ideal of C(K). Now the result
follows from {23, Theorem 3.4.1]. The converse and the last part of the Proposition

are obvious.

Definition 0.1.5 Let A be a nonempty subset of a vector lattice V. Then fhe
ideal generated by A is the smallest (with respect to inclusion) ideal that contains A.
The ideal generated by an element £ € V will be denoted by V. and will be referred

to as a principal ideal.

The above definition reveals that an ideal generated by a nonempty subset A of a

vector lattice V is of the form

{xGV : 371, .70 €A and Ay,---,\, € R with |x|sz,\;|x5|}.

=1



In particular, for each element z of a vector lattice V

Vo ={yeV:3Xx>0 with |y| < Alz|}.

Let V be a vector lattice and let J be an ideal of V. Denote by = the canonical
map of V onto the quotient vector space V/J. The relation “m(z) < #(y) if and only
if there exist elements r; € r + J and z2 € y + J satisfying £, < r, in V7 obviously
gives an ordering under which V/J is a vector lattice.(cf.[46, Proposition I1.2.6]). If V
is a normed lattice and J is a closed ideal of V then the following Proposition, which

will be used freely in the sequel, holds.(cf. [46. Proposition I1.5.4]).

Proposition 0.1.6 For any closed ideal J of the normed vector lattice V. the
quotient V /] is a normed vector lattice under its canonical order and norm: V/])isa

Banach lattice whenever V is.

Definition 0.1.7 A topological vector space V. which is also a vector lattice. is
said to have a quasi-interior point, if there exists an element u € V4 such that V, is

dense in V.

It is known. [46, Section IL.6]. that if u is o-finite then each of the Banach lattices
Lp(p) (1 < p < <) possesses quasi-interior points. If ¢ is not o-finite then none of
the spaces L,(y) (1 < p < oc) contains quasi-interior elements. If ¥ is a completely
regular topological space. then for the Banach lattice Cy(X') the functions f for which

inf;ex f(t) > 0 are quasi-interior elements.

Definitions 0.1.8 A subset A of a vector lattice V is called order bounded
if it is bounded both from above and from below, (i.e. there exist r,y € V such
that £ < = < yforall - € A. A vector lattice V is called Dedekind complete or,
briefly, complete whenever every nonempty subset that is bounded from above has a
supremum (or. equivalently. whenever every nonempty subset bounded from below

has an infimum).

It is known, [30, Chapter 4], that the simplest examples of concrete complete
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Banach lattices are the L,(u) spaces with 1 < p < = (though L,(0.1) is not a
conjugate space). It is also known that. [30, Section 143], the space C(K) is a complete
Banach lattice if and only if the closure of every open set in K is open. Banach
lattices generated by unconditional bases are also complete: the supremum can be

taken coordinate wise.

0.2 Positive Operators

Definitions 0.2.1 Let V and W be two ordered vector spaces. A linear
mapping T € £(V.W) is said to be a positive linear mapping (in symbols: T > 0)
if T(xr) > 0 holds for all £ > 0. It is called strictly posttive (in symbols: T > 0) if
Tz > 0 for all £ > 0. The linear mappings lying in the vector subspace generated by
the positive linear mappings are referred to as regular linear mappings. We say that
T < 5 whenever S — T is positive.

For a linear mapping T € £(V.W) between two vector lattices we say that its
modulus |T| exists whenever T V (—T) exists (in the sense that T vV (—=T) is the
supremum of the set {T. —T'} in £(V.W)). In this case we write IT|=Tv (-T).

For a positive linear mapping T € £(V.W). between two vector lattices. its null
tdeal N1 is defined by
Nr={zxeV:T(z|)=0}.
Clearly. T is strictly positive if and only if V; = {0}. Also. Nt is a closed ideal in V

whenever V is a normed vector lattice.

Positive linear mappings between Banach lattices are necessarily continuous. In

fact:

Proposition 0.2.2 [46. Theorem I1.5.3] Every postitive linear mapping from a

Banach lattice to a normed vector lattice is continuous.
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The linear mapping T : C[0, 1] — C[0, 1], defined by

Tf(z) = / " feyde.

carries positive functions of C[0. 1] into positive functions, and is thus an example of a
positive linear mapping. It is well known that many linear mappings between Banach

spaces arising in classical functional analysis are in fact positive linear mappings.

Suppose V, W are vector lattices. Then T € L(V,W) is called a lattice homomor-
phism if T(xVy) =Tz V Ty and T(z A y) =Tx ATy for all z,y € V. Since for such

T we have
T:c=T(z+)=T(;1:V0)=T:L'V0=(T:z:)+20 VreV,.

every lattice homomorphism is positive. Now if T € £(V.W) is positive. then |Tz| <
T|zfforallz € Vas =z < |z| implies +Tz < T|z|.

If Vis a vector lattice and if J is an ideal of V. then (cf. [46. Proposition I1.2.6]),
the canonical map 7 of V onto V/J is a lattice homomorphism. and hence the image
of each ideal of V under 7 is an ideal of V/J.(cf [46, Proposition [1.2.3]). It can also
be easily checked that for any ideal J of V/J; #=Y(J) is an ideal of V. Now if V is a
vector lattice as well as a topological vector space with a compatible topology, then
= is continuous and open and hence for each closed ideal Jo of V: %(Jp) is a closed
ideal of V/J and for each closed ideal J of V/J, 7r“(.]) is a closed ideal of V. These

facts are also used freely in the sequel.

Definition 0.2.3 Suppose V and W are vector lattices and T.Se&V.W).Its
is positive and if

IT(z)| < S(lz]) VzeV,

then we say that S dominates T. A subset € of L£(V.W) is called majorized by S if
Sel(V.W)and T< Sforall T € ¢.

It is obvious that every linear mapping on a Banach lattice which is dominated
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by a positive linear mapping is continuous, and that a positive linear mapping T is
dominated by another positive linear mapping S if and only if 0 < T < S.

It is known (cf. [7. Theorem 1.10]) that if T € £(V.W) is a linear mapping
between two vector lattices such that sup{|T(y)| : ly] £ =} exists in W for each

z € Vg, then |T| exists and

IT|(z) = sup {|T(y)| : |y| <z}

holds for all £ € V. Therefore, when V is an order complete vector lattice, then a
linear mapping T € £(V) is dominated by a positive linear mapping S if and only if

T is regular, —T— exists and [T| < S.

Linear mappings dominated by a compact (weakly compact) positive operator
have many remarkable properties. The next two propositions introduce some exam-

ples.
Proposition 0.2.4 [7, Theorem 16.14] [f in the diagram of positive operators

M M. M.
E M, p My g M

between Banach lattices each M; is dominated by a compact positive operator. then

Mz My M, is a compact operator.

In the above theorem the number of operators cannot be reduced to two (cf. 7.

Example 16.13]).
Proposition 0.2.5 (7. Theorem 17.12] If in the scheme of positive operators
ESLF 26

between Banach lattices each S; is dominated by a weakly compact positive operator.

then 5,8 is a weakly compact operator.

The following simple fact about positive operators will be used later. Its proof can

be established by using the fact that for each positive operator T on E the relation

TN =sup{||ITz|| : >0, f|z]| <1}
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holds.

Lemma 0.2.6 Let E be any Banach lattice and let T.S € B(E) be two positive
operators such that T < S. Then, ||T|| < ||S||.

0.3 Examples of Banach Lattices

Most classical Banach spaces over R are. in fact, Banach lattices on which positive
linear mappings appear naturally. Clearly every L,(u) space, 1 < p < oo, and every
C(K), is a Banach lattice with the pointwise order. Banach lattices of type C(K),
Ly(¢), and I, where | < p < oo are among the most important examples of Banach

lattices; so it is natural that they are also of special interest in our context.

Definitions 0.3.1 A Banach lattice E is said to be

l. an abstract L-space (briefly, AL-space) whenever
lz+yll=llzll +llyll Vz.y €E,.
2. an abstract M-space (briefly, AM-space), whenever
lzvyll=lzlvigl Ve.y k.
If the unit ball of an AM-space contains a largest element e, e is called the unit of E.

The vector space Cy(X) of all bounded real valued continuous functions on X.
endowed with its canonical order is an AM-space with unit e, where e(s) = 1 for all
sekX.

The closed vector sublattice ¢ of all convergent real sequences is a separable A M-
space with unit e = (1,1,...), and co, the space of all real sequences that vanish at
infinity, is an AM-space without unit.

Another important example of an AM-space is the space Dy(X) (cf. [46, Example
[1.7.2]). Let ¢ : ¥ — R be a strictly positive function. A continuous real function
fon X is called ¢-dominated if for each ¢ > 0, there exists a compact subset K of X

such that [f(s)| < eé(s) whenever s € X \ K. Under the norm

l1flle = inf{X : |f] < Ao} .
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the vector lattice of ¢-dominated functions is a normed vector lattice denoted by
Dy(X). If ¢ is an upper semi-continuous function, then D;(X) is an AM-space.

The prime example of an AM-space with unit is C (K); in fact:

Proposition 0.3.2 (cf. [46, Section IL.7]) The Banach lattice E is an AM-
space with unit if and only if there ezists a compact Hausdorff space K such that E is

isomorphic to C(K).

Note: In conformity with the usage of the term “isomorphism™ (without qualifier)
to indicate preservation of all structures implied by a given concept, we understand
by an isomorphism of an ordered vector space V; onto an ordered vector space V,, a

linear bijection T : V; — V, such that z SyinV; ifand only if Tz < Ty in V,.

The spaces L;(u) and I; are AL-spaces and in fact, as the following Proposition

shows, the spaces L,(u) are the most general AL-spaces.

Proposition 0.3.3 (cf. [46, Section IL.8]) For every AL-space E, there erists a
locally compact Hausdorff space Q and a strictly positive Radon measure u on Q such

that E is isomorphic with L(u).

After an equivalent renorming if necessary. every Banach space with an uncondi-

tional basis {r,}3%, is a Banach lattice when the order is defined by

ZanznZO & a,>0. Yn.

n=1
This order is called the order induced by the unconditional basis. Such Banach lattices

are called discrete Banach lattices with order continuous norm. Recall that:

Definition 0.3.4 A normed vector lattice V is said to have order continuous

norm if every order convergent filter in V norm converges, (cf. [46, Section II.1]).

Examples of Banach lattices whose order is not induced by an unconditional basis
are Lp(p), where 1 < p < oo, p is not purely atomic (and o-finite), and C(K), where

K is infinite. Every space L,[0,1], | < p < oo, has an unconditional basis, namely
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Haar basis, but the natural order in these Banach spaces is completely different from
the order induced by the basis.

Some examples of Banach lattices whose positive cones are generated by their
unconditional bases are ¢y and [, (1 <p < o). In fact, {ex}22,. where e, = (6nm)-
is an unconditional basis for these Banach lattices and. as one can easily check, the

positive cone of ¢p and [,. (1 < p < o0), are generated by this basis.

If we fix a basis {z.}32, for a Banach space X, then every linear transformation
T € £(X) can be identified in the usual manner with an infinite matrix [Tj]- Note
that a linear transformation T € £(X) with matrix [Ti;] is positive if and only if

T:; 2 0 holds for each pair (7. ). If the basis {zn}32, is also unconditional. then every

Some elementary permanence properties of AL- and AM-spaces are simple to

describe. We omit their easy verifications.

Lemma 0.3.5 FEach closed vector sublattice of an AM-space (AL-space) is an
AM-space (A L-space).

Lemma 0.3.6 The quotient of an AM-space (with unit) over a closed ideal is an
AM-space (with unit).

Lemma 0.3.7 The quotient of an AL-space over a closed ideal is an AL-space.

Recall that 2 Banach space X has the Dunford-Pettis propertyif r, — 0 in X
and z, — 0 in X’ imply lim z,(Zn) = 0. A non-trivial property of AL- and AM-
spaces is the Dunford-Pettis property. A. Grothendieck [15] has shown that AL- and
AM-spaces have the Dunford-Pettis property.

Proposition 0.3.8 (cf. [7, Corollary 5.19.9]) If T is a weakly compact operator

on an AL- or an AM-space. then T? is a compact operator.

Definition 0.3.9 Suppose E is an ordered vector space. A nonzero element rq

of E; is called an atom if for every y € E the relation 0 < y < zo implies y = Azxq for
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some A > 0.

As we shall see, in Section 3.3, every closed idea! J and quotient E/J of a discrete

Banach lattice with order continuous norm E contains an atom.

Remark 0.3.10 Suppose V is any [i-relatively complete normed lattice. (cf.
[46. Definition I1.1.8]). Then the basic concepts about E can be extended to the
complexification of E. (cf. [46, Section II.11]).

Remark 0.3.11 Suppose E¢ is the complexification of a Banach lattice E. A
linear map T € £(Ec) is positive if T is real (i.e. if the range of T is a subset of
R) and its restriction Ty = T'|e is positive. Now it is not difficult to check that the
norm of a positive operator T on a real Banach lattice E does not change whenever
we consider T as an operator on the complexification of E. Therefore in cases that
we deal with the spectral radius of positive operators we shall assume without loss of

any generality that our Banach lattices are all real Banach lattices.

0.4 Invariant Subspaces and Invariant Ideals

A closed subspace M of a Banach space X is said to be invariant for ¢ C LX)
if T(M) C M for all T € €. The collection of all closed invariant subspaces of € will
be denoted by Lat(€). If E is a Banach lattice and if ¢ C £(E), then the collection
of all closed invariant ideals of € will be denoted by llat(€). If € consists of a single
linear mapping T, then we simply use T instead of €.

A closed ideal J of a Banach lattice E is said to be p-hyperinvariant for a positive

operator T' € B(E), if J is invariant for all S € {T},. where
{TY, = {SeB(X): S>0 and ST=TS}.

The concept of a p-hyperinvariant ideal was introduced in (1] under the name of

“hyperinvariant ideals”.

Definitions 0.4.1 Suppose X is a Banach space and € C B(X). We say that €

is reducible if Lat(€) contains an element other than {0} and X otherwise € is called



irreducible. (If € is an irreducible algebra it is also called transitive.)

Definitions 0.4.2 Suppose E is a Banach lattice and € C B(E). We say that €
is decomposable if Ilat(€) contains an element other than {0} and E: otherwise € is

called indecomposable.

It is well known that each compact operator on a Banach space is reducible. Ex-
amples of decomposability results can be found in [1],[2],[3],[4].[5].[6] and [34], where
it has been shown that each compact quasinilpotent positive operator on an arbitrary
Banach lattice of dimension at least 2 has a nontrivial invariant ideal. More examples

of reducibility and decomposability will be discussed in the sequel.

Suppose X is a Banach space. T € L(X), and M € Lat(T). If we define a map
TLWM—ﬁXM“wﬂrMﬂ=TPMmeThmﬂ@%deT€ﬂXMﬂ
The linear mapping 7" will be called the compression of T to X /M.

The following simple but useful facts, concerning the compression of linear linear

mappings, can be easily verified.

. Lemma 0.4.3 IfE is a Banach lattice. T € L(E) is positive, and J € Ilat (T),

then the compression T of T to E/J is also a positive linear mapping on E/J.

Lemma 0.4.4 Suppose X is a Banach space. T € B(X) and M € Lat (T).
Let T be the compression of T to X/M.
(a) IfT is quasinilpotent, then T is a quasinilpotent linear mapping on X/ M.
(b) IfT is compact, then T is a compact operator on X/ M.
(c) IfT is weakly compact, then T is a weakly compact operator on X /M.

Lemma 0.4.5 Suppose E is a Banach lattice, S.T € L(E) and J € Hat({S.T}).
Let S and T be the compression of S and T to E/J, respectively.
(a) IfT is a positive linear mapping that dominates S, then T' dominates $.
(b) FST, then S$<T.

Suppose E is a Banach lattice, dim E > 2. T € B(E), and T is a compact
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quasinilpotent positive operator. As mentioned above. T is decomposable. Now
suppose that J;.J, €llat(T) with J; C J, and dim(J2/Jy) > 2. By Proposition 0.1.6.
J2/J is a Banach lattice and by Lemma 0.4.3 and 0.4.4. the compression T of T
to Jo/J; is a compact quasinilpotent positive operator and hence is decomposable.
This property of compact operators enables us to find maximal invariant ideal chains
for compact operators. We introduce special terminology for operators that possess

maximal invariant ideal chains.

Definition 0.4.6 The collection € of operators on a Banach lattice E is ideal-
triangularizable if there is a maximal ideal chain each of whose members is invariant
under all the operators in €: such an ideal chain will be said to be triangularizing for

€. If € = {T}. we simply say that T is ideal-triangularizable.

Remark The above terminology is another version of the well-known triangu-
larizability concept. A collection € of operators in a Banach space is said to be
triangularizable if there exists a maximal subspace chain each of whose members 1s

invariant under all the operators in €.

The concept of quasinilpotency at a point. which was first introduced in [ 2]
enables us to derive many decomposability results under weaker conditions. This has
been observed by Y.A. Abramovich. C.D. Aliprantis. and O. Burkinshaw in [2] and
[3]. We also use this concept in Chapter 2 to extend Theorem 4.3 of (1]. Recall that:

Definition 0.4.7 Anoperator T € B(X)is quasinilpotent at a point ro whenever

lim [|T"zol|"/™ = 0.

There might be many operators T on a given Banach lattice E that leaves all
bands of E invariant. i.e.. T(B) C B holds for each band B of E. Such operators are
called band preserving. If a band preserving operator T on E is also an order bounded
operator. i.e.. T'(A4) is an order bounded set for each order bounded subset 4 of E.
then T is called an orthomorphism. The set of all orthomorphisms on E is denoted

by Orth(E).



19

Definition 0.4.8 The order ideal 3(E) of Orth(E) generated by the identity
operator [ is called the center of E, i.e. @ € Orth(E) N 3(E) if and only if |x] < nI

for some n € N.

For examples and properties of band preserving operators and orthomorphisms we
refer the reader to [7, Sections 1.1 and 2.8]. For properties of the center of a Banach

lattice we refer the reader to [43. Section 20.140].

0.5 Operator Ideals

We start with the fundamental concept of an operator ideal that was introduced by
A. Pietsch [35, Chapter 1]. We then introduce some special operator ideals which play
an important role in deriving reducibility and decomposability results for collections
of operators on Banach spaces or Banach lattices.In what follows the class of all

operators between arbitrary Banach spaces will be denoted by B.

Definition 0.5.1 An operator ideal T is a subclass of 8 satisfying the following

conditions:
(i) Ix €T for every l-dimensional Banach space X.

For every pair of Banach spaces X, Y the set
I(X.Y) = InW(X.Y).

the so-called (X, Y')-component of T, has the following properties:
(i) fT,.T, € Z(X,Y) then T\ + T» € I(X.Y).
(iii) [T € B(Xo.X), S€I(X,Y), and R € B(Y.Y,), then RST € Z(Xo. Yo).

The class of all finite-rank operators F, the class of all compact operators R,
and the class of all weakly compact operators 27 are three examples of operator
ideals. Note that the components F(X) = §nN B(X), R(X) = & n B(X), and
W(X) = WN B(X), are the familiar algebraic ideals of B(X). In general, for any
operator ideal Z, the component Z(X) = T NB(X) is an algebraic two-sided ideal of
B(X).
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Definition 0.5.2 A map q from an operator ideal T into R+ is called a quasi-
norm if the following conditions are satisfied:
(1) q(Ix) =1 for all X.

(ii) There exists a constant & > 1 such that
ATy +T2) < &[q(Th) + q(T3)]  for Ty, T2 € I(X.¥) and for all X, ¥ .
(iii) If T € B(Xo, X), S € Z(X,Y), and R € B(Y, Yp). then
a(RST) < |[Rlla(SIT] -

A quasi-normed operator ideal [Z,q] is an operator ideal T with a quasi-norm q such
that all linear topological Hausdorff spaces [Z(X,Y).q] are complete. If x = 1, then

[Z.q] is called a normed operator ideal.

Examples of quasi-normed operator ideals are introduced in the sequel. The next
propositions reveal some properties of quasi-normed operator ideals that we need

later.

Proposition 0.5.3 ([35, proposition 6.1.4]) Let [Z,q] be a quasi-normed operator
ideal. Then ||T|| < q(T) for all T € T.

Remarks Suppose [T, q] is a quasi-normed operator ideal. Definition 0.5.1 shows
that for any Banach space X the component Z(.X') is closed under the addition and
composition of operators in B(X), and hence it is a subalgebra of B(X). Now by

definition 0.5.2(iii)
a(ST) = a(STIx) < ISlla(D)l|Lxll = ||S|la(T)
for all § € B(X) and T € Z(X). Thus
a(ST) < q(S)a(T)

for all S.T € Z(X) by proposition 0.5.3. Therefore; Z( X)) is a quasi-Banach algebra

under the quasi-norm q.



We can also conclude from Theorem 1.2.2 of [35] that F(X) € Z(X) for any

Banach space X.

The following notation is convenient in the sequel. If X* is the dual of a Banach
space X, r € X, and ¢ € X~, we write (z,d) for ¢(z). The operator A of rank
one on X defined by Az = (z.d)u, where u and ¢ are fixed members of X and X~
respectively, is denoted by u @ ¢. Every operator of rank one on X is of this form
and (u © 0)" = ¢ @ &, where @ denotes the image of « under the natural injection of

X into X™. Also |lu @ 8| = [|u[| - ||2]]-

Proposition 0.5.4 ([35, Proposition 6.1.5.]) Let [Z.q] be a quasi-normed oper-
ator ideal. Then q(z* @ y) = ||z"|| - ly|| for all z= € X~ andy € ¥V

Since every operator F' € B(X,Y), of rank one, is of the form F = z* @ y, where
y and r~ are fixed members of ¥ and X~ respectively, and since HEN = Nz~ - llyll.

we can state:

Corollary 0.5.5 Let [Z,q] be a quasi-normed ideal. Then for each rank-one op-
erator F' € T(X.Y') we have q(F) = ||F||.

0.6 Integral Operators

Consider a measure space (X', %, 1) and let M(X, i) be the corresponding vector
lattice of all real measurable functions. The product measure of g and g in the
Cartesian product .Y’ x X is denoted by u x #t. The product measure is first defined
on the semiring A of all sets A x B with A,B € © by

(r x pu)(A x B) = u(A) u(B) .,

(with the convention that 0-oc = oc -0 = 0), and the resulting measure on the

semiring A is then extended by means of the Caratﬁeodory extension procedure.
Let K(z,y) be a real valued (u x pu)-measurable function on X x X. For any

f € M(X. ) the function A'(z, ¥)f(y) is (g x p)-measurable, which implies by Fubini’s

theorem that for p-almost every « € X the function K(z,y)f(y) is p-measurable as
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a function of y. It follows that

hy(z) = A K (z.3) fly)] du(y)

is well defined for these values of z (the value +oc0 for A 7(z) is permitted) and by
Fubini’s theorem the function A; is y-measurable on X'. The set of all feMX,u)
for which the corresponding A is finite almost everywhere is called the domain of K.
and will be denoted by dom (RK’). It is clear that dom (K') is an ideal of M (X, u). For
f € dom (K) the corresponding function A s is finite p-almost everywhere on X. and
so

01(@) = [ K(z.9)0(0)duty)

is also finite p-almost everywhere on .X. The function gs is p-measurable as

gr(z) = [ (K(z.y)f(y)) T dp(y) - [ (K(x,y)f(y))" duly).
Y R4

and the terms on the right are y-measurable by Fubini’s theorem. Hence the map
f — gy defines a linear mapping T with dom (K') as its domain and with range in
M(X.p). The linear mapping T is called an integral operator. The function A is
called the kernel of T and is denoted by A7.

If T is an integral operator with kernel A'r and if J is an ideal of M(X,pu), then
T is said to be an integral operator on J if J is included in dom (A) and T maps J

into J.

Suppose v is a o-finite positive regular Borel measure on Q. Let Cs(2) be the
Banach lattice of all bounded real valued continuous functions on Q and suppose A
is a v-measurable function on Q x Q such that for each f € Cy(Q) the function T f
defined by

Tf@)= [ K@nfwdd) ren
belongs to Cy(). Then T is an operator on Cs(2) that is also called an integral

operator. As an example, let Q = [0, 1], v be the Lebesgue measure on [0, 1], and

0 : >
A’(x,y)={ oy>r
L iof y<=z



Then, C4[0.1] = CJ0, 1],

T = [ Kenfwan = [ oy vee pa.
and T f € Cy(Q). This operator T is known as the Volterra operator on C[0. 1].

Remark 0.6.1 According to [22, Section 12] there are conditions under which
certain class of operators on C(Q) can be represented as integral operators. As an
example, it is known that each locally compact and locally continuous operator on
C(€) can be represented as an integral operator by way of a regular measure (cf. [22
Theorem 12.2]). However. it is not known whether we can find a single regular measure
by way of which a semigroup of such operators can be represented simultaneously as

integrals.



Chapter 1

Reducibility of Operators on

Banach Spaces

There are several known theorems giving sufficient conditions under which a semi-
group of compact or quasinilpotent operators. on a Hilbert space, is reducible. As
an example. [38. Theorem 2] states that if every member of a semigroup 8, of op-
erators on a Hilbert space. is a nonnegative scalar multiple of a compact idempotent
and r(AB) < r(A)r(B) for every pair of A and B in 8, then S is reducible. Another
example is [33, Theorem 1]. which states that if § is a semigroup of quasinilpotent
operators, on a Hilbert space. and if § contains an operator other than 0 in some Cp,
l < p < oc. class, then § is reducible.

Our main results in this chapter concern semigroups of compact or quasinilpotent
operators on a more general Banach space. We first derive an extension of [39.
Theorem 6.1] for a reflexive Banach space X. Using this. we further extend some
results of [33] and (38]. Finally we use these facts to establish new reducibility and

triangularizability results on Banach Spaces.

1.1 Trace Ideals

Definition 1.1.1 Let [T.q] be a quasi-normed operator ideal. For a Banach

24
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space X we call Z(X) a trace ideal, provided
(i) the set of finite-rank operators §(X) is g-dense in Z(X). and
(i) whenever {),} is the sequence of nonzero eigenvalues of T € $(X), counted

according to their multiplicities, the trace
tr : F(X) —C

defined by tr(T) = ©,\.(T), is a g-continuous linear functional on S(X).

We call Z(X) a C-trace ideal if it is a trace ideal and the functional ¢r on I(X) is
well-defined as the g-continuous linear extension of the trace on 5(X).

We call [Z.q] a C-trace quasi-normed operator ideal if Z(X) is a C-trace ideal for

every Banach space X.

To present examples of quasi-normed operator ideals. C-trace quasi-normed oper-
ator ideals, and C-trace ideals. we should introduce certain definitions and remarks.
In this paper we confine ourselves to those examples which are used in the sequel and
which collapse to the trace class C; when X is a Hilbert space. Recall that whenever
H is a Hilbert space then the trace class C; is the set of all operators T in B(H)
which satisfy the following condition: for each orthonormal system {vi : keN} in
H.

Z [ (Ter.wy) | < oc.

keN
Recall also that for each T € C; the trace of T. denoted by tr(T). is defined by the

tr(T) = > Aa.

where {A,} is the sequence of nonzero eigenvalues of T. counted according to their

equation

multiplicities. It is known that:

(a) Ci is a Banach space with the norm | - |; defined by

I Th=> |\l TeC.



(b) the class (H) of all finite-rank operators on H is | - [i-dense in C;,
(c) the functional ¢r on C; is well defined as the | - [1-continuous linear extension
of the trace on F(H). and
(d) the only irreducible | - |;-closed subalgebra A of C, is C; itself.
The facts (a). (b). and (c) can be found in [41]. and the fact (d) is a special case
of Theorem 6.1 of [39].

Definition 1.1.2 An operator T € B(X. Y') is called nuclearif there is a sequence

{z:} in X" and a sequence {y,}> in ¥ such that
T=) #i2yn with Y |zill-lyal <oc. (1)
n=|1 n=1

The set of all nuclear operators is denoted by M. For each T € N we define
v(T)=inf Y [lz;ll - llyall-
n=1

where the infimum is taken over all so-called nuclear representations described above.

Proposition 1.1.3 ([35. Proposition 6.3.2]) The function v defines a norm on

Y(X.Y) and with this norm [N.v] is a normed operator ideal.
The next Proposition is an easy consequence of Definition 1.1.2.

Proposition 1.1.4 For any Banach space X. §(X) Y= N(X). where N(X) =
NNB(X).

If T € F(X). with representation

n
T=er3z;: r;eX". r,eX,
=1
the expression £, z3(r;) turns out to be independent of the particular representation

of T and thus the trace of T can be defined as

tr(T) = ) _zi(x:).

=1
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As is well known, this “matrix trace” is equal to the “spectral trace”,
tr(T) = Y M(T).

For (infinite-rank) nuclear operators T with representation (1), the infinite sum
L2,17(x;) converges absolutely. Unfortunately, this sum will not define a notion
of trace, since its value may depend on the particular (infinite) representation of T if

the space X does not satisfy the “approzrimation property”.

Definition 1.1.5 A Banach space X has the approzimation property (abbreviated
A.P.), if for every compact subset Y of X and every € > 0 there is a finite-rank

operator F' € §(X) such that [[Fz —z|| < eforall zr €Y.

A result which goes back to the beginnings of functional analysis asserts that the
compact operators on a Hilbert space are exactly those operators which are limits in
norm of operators of finite rank. This assertion is also true for Banach spaces with
A.P.. In fact:

Proposition 1.1.6 A Banach space X has A.P. if and only if F(X) = K(X).

where the closure is taken in the norm topology.

For a proof of Proposition 1.1.6 refer to, €.g.. [28, Theorem l.e.4]. Another theorem
which we apply in the sequel and which requires A.P. is the following classical result
of Grothendieck [16. [.5.1].

Proposition 1.1.7 Let X be a Banach space. Then the following are equivalent:
(a) X has A.P.
(b) |tr(T)|< v(T) for all T € F(X), i.e.

tr : §(X) — C

ts a v-continuous linear functional.

Corollary 1.1.8 If the Banach space X has A.P. then N(X) is a C-trace ideal.
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By Enflo’s famous counterexample [13] there are spaces without A.P. In fact, the
construction of Davie given in [28] can be used to define a nuclear operator T on ¢y
for which trace is well defined, t7(T) = 1, and T? = 0. Thus all the eigenvalues of T

are zero and hence

L=tr(T)# Y M(T) =0,
n=1

where {A,(T')}:2, is the sequence of eigenvalues of T. However, there are suitable
ideals of operators on a general Banach space. satisfying a compactness criterion, for
which the linear functional £ A,(-) is continuous. Some examples of these ideals

are introduced in this section.

Definition 1.1.9 Let T € B(X. Y). The approrimation numbers a,(T), n =
[.2.---. of T are defined by

a.(T) = inf{||IT — S|| : S€B(X.Y) and rank(S)< n}.

Let S} denote the collection of all operators T between arbitrary Banach spaces

for which (a.(T)) € I, and for such a T define

51(T) = |[(an(T))[l1 -
Then the following holds (cf. [26. Section 1.d])

Proposition 1.1.10 The function s, defines a quast-norm on S} and with this

quasi-norm [S%,s] is a quasi-normed operator ideal.

Definition 1.1.11 Let T € B(X,Y). The operator T is 2-summing if there is a

constant ¢ > 0 such that for any finite sequence s = (zi)imy iIn X
QO ITEHY? < ceals),
=1

where

g2(s) = sup { (Z fz7(zi) P)'? : 2= € X= and lz=)| =1}.

=1
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The smallest constant c is denoted by ,(T) and the collection of all 2-summing

operators is denoted by IT,.

Proposition 1.1.12 (a) The function defines a norm on I, and with this
norm (I, 73] is a normed operator ideal.

(b) [I13, 73] is a quasi-normed operator ideal, where for each XY MI3(X,Y) is
the collection of all T € B(X,Y) for which there ezist Z. RellyX,Z), and S €
[12(Z,Y) such that T = SR and for each T € II2

73(T) = inf { 73(S)ma(R) : T = SR}

The proof of Proposition 1.1.12 can be found in [26. Section 1.d]. In the following
theorem it is shown that the functional trace on S§(X) and IT3(X) is well defined

and well behaved.
Proposition 1.1.13 ([26, Section 4.a) The ideals St and ITZ are trace ideals.

As we shall see, the existence of a g-continuous linear functional on Z(X). where
[Z,4q] is a quasi-normed operator ideal, enables us to derive some reducibility results
for a semigroup of operators on a Banach space. We have already seen that the
functional trace is v-continuous on (X ), whenever X is a Banach space with A.P.
(see Corollary 1.1.8). This means that 9(X) is a C-trace ideal whenever X has A.P..
Another application of Proposition 1.1.7. shows that [M.v] is not a C-trace quasi-
normed operator ideal as there are Banach spaces without A.P.. However, there are.

at least. two examples of such operator ideals as shown in the next Theorem.

Theorem 1.1.14 ([26. Theorem 4.a.6]) Let X be any Banach space and let
T € S{(X) or T € I3(X). Then the trace of T is well-defined as the s;-continuous
or mi-continuous (linear) ertension of the trace on the operators of finite rank and

the trace formula

tr(T) = > M(T)

i=1
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holds.

The following Lemma is useful in deriving some triangularizability results con-

cerning semigroups of operators in Z(X), where 7 is an operator ideal.

Lemma 1.1.15 Suppose I is an operator ideal, T € I(X), and M € Lat(T).
Then
(i) Tlm € Z(M).
(i) If X is a reflexive Banach space, then T ¢ Z(X/M), where T is the com-
pression of T to X/ M.

Proof: (i) Consider the operator § = [y o T 0j, where j : M — X is the
inclusion map. We have S € Z(M, X) by the condition (iii) of definition 0.5.1, and
hence § € Z. On the other hand, S =T lar and T |y € B(M). Thus

Tlw € TNB(M) = I(M).

(i) We know that
(X/M)y" = M+ C X~

(see, e.g.. [11, Theorem III.10.2]). We also know that X/M is a reflexive Banach
space as X is reflexive. These facts and an application of the Hahn-Banach Theorem
imply that

X/M = (X/M)™ = (M) C X~ = X.

Let j be the induced inclusion map from X/M to X and let @ be the canonical map
from X to X/M. Then QTj = T, and QTj € Z(X/M) by the condition (iii) of
Definition 0.5.1.

|

1.2 Irreducible Algebras Containing Operators
of Finite Rank

Barnes [9] has proved that a uniformly closed. irreducible algebra of operators on
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a reflerive Banach space that contains a non-zero operator of finite rank necessarily

contains all operators of finite rank. In fact he proved the following:

Proposition 1.2.1 Suppose X is a reflezive Banéch space and 2 is an irreducible
subalgebra of B(X) such that:
(1) U contains a finite-rank operator other than 0, and
(ii) 2A is a Banach algebra under some norm |-| with the property that || A|| < |A|
for all A € A and ||F|| = |F| for operators in A of rank one.

Then A contains all finite-rank operators

This case of Barnes’s theorem was obtained in [32] in a fairly straightforward
manner avoiding any algebraic machinery. We use the method used in (32] to establish
a new version of Proposition 1.2.1 concerning quasinormed operator ideals I(X),

where X is a reflexive Banach space.

Lemma 1.2.2 Suppose X is a Banach space and I is a quasi-normed operator
ideal under the quasi-norm q. Let U be an irreducible q-closed subalgebra of T(X). If
U contains an operator of the form zy o @0. 0 # 0 € X. 09 € X~. then U contains

D¢y forallr € X.

Proof:  Fix r € X. Since 2 is irreducible, there exists a sequence {4,}22, in A
with lim,_ ||4nz0 — z|| = 0.
Since (Ao} & @0 = An(ro 2 60) € A and since. by Corollary 0.5.5. q(F) = || F||

for all rank-one operators in 2. we have:
q[(Anzo) D 0 ~ (Amo) © do] = q[(Anzo — Amzo) S 60)

= [[(Arzo — Amro) @ ol = [[Anzo — Amzol| - [|Gol| -
Since {A,z0}22, is a Cauchy sequence in X, it follows that {(4,zq) = P}, is a

q-Cauchy sequence in 2; hence there exists A € 2 such that

lim q[(Anzo) © 6o — A] = 0,

n—0C



as A is g-closed and Z(X) is g-complete. By Proposition 0.5.3 we have
’}L“olc [[(Anzo) @ 6 — Al| = 0.

which implies A = r © a,.
[ ]

Lemma 1.2.3 Let X be a Banach space and T be a quasi-normed operator
ideal under the quasi-norm q. Assume that U is a q-closed subalgebra of I(X) which
contains a nonzero operator of finite rank. If A~ is irreducible. then U contains every

operator of finite rank.

Proof:  First observe that the irreducibility of 2 implies the irreducibility of 2.
Now suppose F'is a nonzero finite-rank operator in 2. Then F = {FA: AecU}isa
subalgebra of 2 whose members leave M = {Fz : z € X'} invariant. The restriction
F2 |y is obviously an irreducible algebra of operators on the finite-dimensional space

M; and hence. by Burnside’s theorem (cf. [21])
FU |y = B(M).

Thus there exists A € A such that FA |ar is of rank one. Then FAF is in 2 and has
rank equal to one.
Let g € X and 09 € X~ be such that FAF = Io D 0&g. Then. D og € A for all

Define U(A") = q(A) for all A € A. It can be easily seen that ¥ is a quasi-norm on

2* and with this quasi-norm 2" is a quasi-Banach algebra. Also since [[A"]| = || 4]|.
U(F™) = ||F for each rank-one operator F~ ¢ 2

and
|A™|| < W(A™) foreach A™ e A™.

by Corollary 0.5.5 and Proposition 0.5.3.. respectively. Thus by the same argument

as in Lemma 1.2.2 we deduce that, since ¢ S 7 € A, 0 D1 isin A" for all 6 € X~.
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Hence 2 D ¢ € A for all z € X and ¢ € X~. This shows that all rank-one operators
are in A and consequently 2 contains all operators of finite rank. as every operator

of finite rank is a finite sum of operators of rank one.

Theorem 1.2.4 Let X be a reflexive Banach space and I be a quasi-normed
operator ideal under the quasi-norm q. Assume that U is a q-closed irreducible subal-
gebra of I(X) which contains a nonzero operator of finite rank. Then A contains all

operators of finite rank.

Proof: It is known that 2~ is irreducible whenever X is a reflexive Banach

space and % is an irreducible algebra. Now use Lemma 1.2.3.

To prove the main result of this section we recall two well-known results that are

also crucial in the sequel. We state them without proof and give a reference.

Proposition 1.2.5 (Lomonosov’s Lemma [29]) IfU is a (non-zero) irre-
ducible subalgebra of B(X) and K, is any compact operator other than 0. then there
erists an A € A such that [ is in the point spectrum of K = AKj,.

Proposition 1.2.6 [20] Suppose (X. | - l) is a Banach space and T € B(X).
If r(T) < L. then there is a norm ||| - ||| on X which is equivalent to || - || such that
Tl < L.

Note For the case of Hilbert spaces we have the following version of Proposition
1.2.6 which was proved by Rota [42]. Every bounded linear operator on a Hilbert space
whose spectrum lies in the interior of the unit disc is similar to an operator of norm

less than one (that is, to a proper contraction).

The following theorem is the main result of this chapter and it extends Theorem
6.1 of [39].

Theorem 1.2.7 Suppose [Z.q] is a quasi-normed operator ideal. X is a reflerive
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Banach space. and the set of all finite-rank operators §(X) is q-dense in Z(X). Then
the only irreducible q-closed subalgebra A of I(X) is I(X) itself.

Proof: First observe that all of the elements of I X') are compact by Proposition
0.5.3. Therefore there is a compact operator A" € 2 with 1 in its point spectrum by
Proposition 1.2.5. With no loss of generality assume r(A’) = 1. Let o(K) = 0y U o5.

where

or={A€o(R):|A|=1}

and 02 = o(A)\o;. Since A is compact o is finite and o, is closed. We also
know that both o, and o, are nonempty. as 1 € oy and 0 € ;. Thus. by the Riesz
Decomposition Theorem (see. e.g.. [40. Theorem 2.10}) there are two projections P,
and P, with the following property:

If My and M, are the ranges of P, and P, respectively. then:

(i) M, is finite dimensional.

(i) M; and M, are complementary and they are invariant under A".

(ii) if Ay =R |y, and R, = K [ss,» then o(K() = o,. and o(Ky) = o5.

(iv) after applying a similarity A = " + V. with {" an m x m unitary matrix
and .V an m x m nilpotent matrix commicting with [,

Since X is a Banach space. if we define a norm on My = M, by
fi(my = ma)j| = |[my| + |[ma| my=m2 € My = M,.
then the Inverse Mapping Theorem implies that the linear mapping
L:My=M, — X

defined by L(m; = my) = m; + m; is a homeomorphism. and hence X and M, = AL
are isomorphic. Thus. we can work with M 12 M, instead of .X and A} = A, instead
of A'.

Since A" € I(X). A, and A, are in Z(My) and Z(M,). respectively. by Lemma
L.1.15 (i). We can also verify that q(A; £0) = q(A1) and q(0 = A,) = q(A,) for all
A € I(My) and A, € T(M).
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Consider the operator A,. Since o(A,) = o5, r(A2) < 1, and hence, by Proposi-

tion 1.1.6, there is an equivalent norm ||| - ||| on M; such that [[|A2l]] < 1. Hence
tmy [l = 0.

We now distinguish two cases:

1) N=0. In this case K = U & R,. Hence, for each n € N,
K" =(U"& KR}).

Since U is unitary, some subsequence of {U™}, say {U™}. approaches the m x m

identity /.. Since A™*! = U™t 30400 K}**!, we conclude from
K™+ (U™ 50) = 05 K+
that
LA™ — (U™ 3 0)] = q(0 @ Ap*') = g(KPY)
< qUR A ] < q(A)|[[A|]™ .

which means limp, . q[A™*+! — (U'™*! £0)] = 0. Since
ql(U™* 2 0) — (U 3 0)] = q{(U 2 0)[(L™ — I,) = 0f}

S qU 0L - L) 2 0]l < q(U)|U™ = L.

we also have lim,, o q[(U™*! £0) — (U 5 0)] = 0. Therefore

lim q[K™*' — (U 5 0)] = 0.

n—0

and hence [/ = 0, which is a finite-rank operator, is in 2. This is because {K™*1} is

a sequence in A and 2 is g-closed.

2) N #0. In this case let £ € N be such that NV* # 0 and .V¥*! = 0. Then

!
U+ N = U 4+nU" "N 4o g 0 pm—k gk
(U + N) +n + +k!(n_k)!(
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for every n. Once again, since U is unitary, some subsequence of {'*, say {{/™~*}

approaches the identity /,,. Thus if we put m; = W::—'T)' we get

lim (m7')(U + N)™ = N*.

Since (m')RK™+! = (m7Y) (U + N)™+' o (m 7K, and since lim,, _, m7' =0,

we conclude from
(m7)E™ — (m7 ) (U + N 50) = 0@ (my) K+

that
lim g[(m;')K™*! - (mYWU + Ny=+l 5 0)] =0.

ny—oc

by the same method as in case 1. Also since
a{[(m7')(U + N)"*1 50] - [(U + N)N* 3 0]}

= q{[(U + N) 0][((m WU+ N)™30)— (VN 30)]}
< q(U+N —BO]II[(m WU+ N)™ — N*] 50|
< q(U + N)[[(m7Y) 0 + N)™ — N9

limg, o q((m7')N 0 + NV)™* 2 0) — (U + N)N*20)] =0 holds. Therefore.

lim g[(m;" )RA™* - ((U + N)N* 5 0)] = 0.

n,—0

and hence the finite-rank operator (U/ + N)N* &0 is in A, as A is g-closed.
So far we have proved that 2 contains a finite-rank operator. Thus all the condi-
tions of Theorem 1.2.4 are satisfied, and hence §(X) € AU. Therefore,

I(X) = 3(X)" c .

and hence Z(X) = A, as desired.
|

Corollary 1.2.8 [f X is a reflerive Banach space, then the only irreducible
v-closed subalgebra A of M(X) is N(X) itself.
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Proof:  Apply Proposition 1.1.3 , Proposition 1.1.4, and Theorem 1.2.7 with
Z=Nand q=v.
[ |

The following Corollary is another version of Lomonosov’s Lemma (Proposition

1.2.5).

Corollary 1.2.9 Let X be a reflerive Banach space with A.P. Then the only
norm-closed irreducible subalgebra A of K(X) is RK(X) itself.

Proof: Apply Theorem 1.2.7 with T = & and q = Il - || and use Proposition 1.1.6.
|

Corollary 1.2.10 Let X be a reflezive Banach space. Then, the only irreducible
si-closed (w2-closed) subalgebra U of SHX) (TI3(X)) is ST(X) (II3(X)) itself.

Proof: Apply Theorem 1.2.7 with T = §* (T = 1) and q = s, (q = 72) and use
Propositionl 1.1.10, 1.1.12. and 1.1.13.
[

1.3 Reducibility of Semigroups of Operators on
Banach Spaces

In [38] there are several reducibility results for certain semigroups of compact
operators on a Hilbert space. that satisfy a submultiplicativity condition. In this
section we apply Theorem 1.2.7 to extend some results of [38] to the cases where a
reflexive Banach space is under consideration. The proofs of many of the results that
we present here. are similar to those of [38], with some necessary changes, and we

include them here for completeness.

The first result is a well known lemma for algebras. We include its short proof to
emphasize that it is also valid for semigroups of operators on Banach spaces. Recall

that a subset 7 of a semigroup 8 is a semigroup ideal, if JS and SJ belong to J for
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all J € J and S € 8.

Lemma 1.3.1 If a semigroup 8 of operators on a Banach space is irreducible,

then so is every nonzero semigroup ideal J in 8.

Proof: Let M be a subspace of X and consider the following two subspaces:
(1) My = the closed linear span of {JM : J € T }. and
(it) My = the intersection of kernels of all ./ in 7.
If M is an invariant subspace for J then M; and M, are invariant subspace for § and

it is easy to check that at least one of them is nontrivial whenever M is.
[

The next result is an easy consequence of our results in Section 1.2. It plays an

important role in the sequel.

Lemma 1.3.2 Let [Z,q] be a quasi-normed operator ideal and let X be a reflexive
Banach space for which Wq = I(X). Suppose 8 is a semigroup in Z(X) and f
IS @ nonzero q-continuous linear functional on Z(X) whose restriction to 8 is zero.
Then S is reducible.

Proof: Let % be the algebra generated by §. Observe that fls = 0 implies flq = 0
and that 2 is irreducible whenever $ is. Now the irreducibility of 2 shows that A is
g-dense in Z(X') by Theorem 1.2.7 . which means f is a zero functional on Z(.X). a

contradiction.

[n the following we get a stronger result about functionals.

Proposition 1.3.3 Let [Z.q] be a quasi-normed operator ideal and let X be a
reflexive Banach space for which F(X) "= I(X). Suppose € is any subset of T(X)

and f is a nonzero q-continuous linear functional on Z(X) such that

f(ALAz--- 4;) = f(AoqyAggay - - - As(n))

for any n € N, any members Ar.---, An of €. and any permutation o. Then & is
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reductble.

Proof: First observe that the permutability condition also holds on A, where 2 is
the algebra generated by &. If 2 is commutative, then it is reducible, by Lomonosov’s
theorem. If there are members A and B in % with AB— BA # 0, generate a semigroup
ideal J of % by AB — BA. The condition on f implies that f |7= 0. so that J is
reducible, by Lemma 1.3.2. Thus 2 is reducible by Lemma 1.3.1.

]

Corollary 1.3.4 [f in the hypotheses of Proposition 1.3.3, we replace € by a

semigroup 8 and f by a nonzero multiplicative functional on Z(X), then § is reducible.

Corollary 1.3.5 If in the hypotheses of Proposition 1.3.3 we replace € by a
semigroup 8 and f by a nonzero functional on T(X) which is constant on S, then 8

s reducible.

The next result is crucial in the sequel. We state it without proof and just give a

reference.

Theorem 1.3.6 (Ringrose’s Theorem [41]) (i) A nest N in a Banach space
X is marimal if, and only if. for all N € N, dim(N/N_) < 1. where N_ denotes the
smallest member of N containing all M € N such that M c N and M # N.

(i) If T € A(X) leaves each member of a marimal nest N tnvariant, then its
eigenvalues are. with the possible erception of zero, precisely its diagonal coefficients,
namely the numbers Ax(T), N € N, where AN(T') is the (scalar) operator induced by
T on N/N_.

We also need the following simple fact concerning the direct sum of Banach spaces.

This proof can be derived from [11, Proposition [TL.4.4.].

Proposition 1.3.7 Suppose (X1, ||-|[,) and (Xa. ||- ll2) are Banach spaces. Then
the space

.Y[ %-X-z = {(11,132) T € oX'lv I € ~Y2}
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ts a Banach space under the norm
I(zez2)ll = Nzl + [lz2fl: V(z1,22) € X1 & X
If we define a new norm on X; & X, by
(21, 22) [l = max {{|lzills. lzall2}  V(21.22) € X1 3 X,
then |||(-.-)||| is equivalent to ||(-,-)|| and
ANl < max{]lAu]. | A2[|} .
whenever A; € B(X,), A, € B(X32), and A = A, T A, .

We are now ready to extend some reducibility results of [38]. We start with a
result about a semigroup of compact operators for which the spectral radius of each

member is bounded by 1.

Theorem 1.3.8 Let [Z, q] be a quasi-normed operator ideal and let X be a reflez-
ive Banach space for which Z(X) is a trace ideal. Suppose 8 C I(X) is a semigroup
with r(S) <1 for all S € 8. Suppose also that 8 contains a non-zero operator A that

is not a contraction under any renorming of X. Then S is reducible.

Proof: By Proposition 1.2.6 there would be a new norm [[I- Il on X under which
Al < Lif r(A) < 1.

Therefore r(A) =1 and o(A) = o, U 73, where
or={A€a(A) :[A|=1} and on={Aeo(A):|A]|< 1}.

both o, and o are nonempty and closed, and o, is finite. Let M,. M,. U. and V be
as in the proof of Theorem 1.2.7, where A", A}, and R, are replaced by A. 4;, and A,
respectively. Since r(A;) < 1, as a(A;) = o3, by another application of Proposition
1.2.6. there is a renorm [|| - ||| on M, such that |[|4,]]] < L.

Consider M, & M, in which M, is equipped with its original norm and M, with

Il - |- This induces a new norm

H(ma.ma)lll = [fma]] + [[[ma]].
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whenever m; € M; and m; € M,, on M; & M; which is equivalent to l(-.-)]]; and
hence to the original norm of X. By Proposition 1.3.7. we can define an equivalent

norm ||| - [||"on My & M, . and hence on X, such that
A" < max{ ||t + N[, |||} .

This shows that under this new norm. ||| ]|’ < 1 whenever V = 0. which is impossible
by hypocthesis. Hence NV # 0 and we conclude that m 2> 2 and there exists £ €¢ N
such that V¥ # 0 and NV¥*! = 0. Now a procedure similar to that in the proof of
Theorem 1 of [38] and an application of the continuity of spectral radius on £(.X) (cf

[8. Corollary 1.2.7]). show that there exists a finite-rank operator B such that
tr(BS)=20 for every S € 8.

Define f : I(X) — C by f(T) = tr(BT). Since the functional #r is g-continuous
on §(X), the functional f is g-continuous on Z(X). Therefore: all the conditions of

Lemma 1.3.2 are satisfied with the functional f. and hence § is reducible.
[ |

The following is an extension of a result about compact idempotents on a Banach
space X (cf. [38. Theorem 3.1]. The strategy of the proof is the same, making use of

the results of Section 1.1.

Theorem 1.3.9 Suppose X is any reflezive Banach space and let S be a semi-
group of operators on X. [f every member of 8 is a nonnegative scalar multiple of a

compact idempotent and

r(AB) < r(A)r(B)
for every pair A and B in 8. then 8 is reducible.
Proof: It is easy to verify that the semigroup
RYS = {pS : S €8. p a positive number }

satisfies the hypotheses of the theorem and hence we may assume, without any loss

of generality, that § = R*S. It is well known that each compact idempotent has
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finite-rank, hence all members of $ are finite-rank operators and we can assume
8 C I(X), where [Z.q] is a quasi-normed operator ideal, Z( X)) is a trace ideal, and
the functional ¢r is g-continuous on Z(X). (Either [S3.51] or [T, 73] would do. by
Proposition 1.1.14.) If 8§ = {0} there is nothing to prove; otherwise follow the proof
of Theorem 2 of [38] to find an idempotent P of minimal positive rank m with the

following property:
tr(PJ) = tr(J) for every J € T,

where

J={SPT :S.TeS8}.
This shows ¢r[(/ — P)J] =0 on J. i.e. the linear functional f:I(X) — C, defined

by f(T) = tr[(I — P)T), is zero on J. Since the functional ¢r is g-continuous on
Z(X), J is reducible by Lemma 1.3.2. The reducibility of 8§ now follows from Lemma
1.3.1.

|

We now use the results of Section 0.4, about the compression of an operator. to

prove a Corollary of Theorem 1.3.9 that also strengthens it.

Corollary 1.3.10 Assume all the conditions of Theorem 1.3.9. Then 8 is trian-

gularizable.

Proof: Let F be a maximal chain of invariant subspaces of 8. We must show that
F is a maximal subspace chain. Suppose not. Then there are members M and NV of
F with M C N and dim(N/M) . Since X is reflexive, N is reflexive and hence
N/M is also a reflexive Banach space. It is also easy to verify that the compression
SofSisa semigroup consisting of nonnegative multiples of idempotents. It remains

to show that

-

r(l::o'f') < r(S")r(T) for every S',T €8§. (1)

Now it can be easily checked that, ”(ﬁ")"” < (ST)™| for all n € N, whenever
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S.T € 8. Thus.
r(S'T) = r(ﬁ") S r(ST) < r(S)(T) for every S.T€S. (2)

If either S =0 or T = 0 then ST =0 and hence

0 =r(ST) = r(S)~(T).
If $ and T are both nonzero. then $ and T are both nonzero and since the spectral
radius of each nonzero idempotent is 1, we have r(S‘) = r(S) and r('f') =r(T). In
this case it follows. from (2), that r($T) < r(tA?)r(T). Thus (1) is satisfied and it
follows, from Theorem 1.3.9, that $ is reducible. This means there exists a nontrivial
invariant subspace W of N/M for §. An easy verification now show that the set A.
defined by
W={zeN:c+MecW}.

is a proper subspace of V that contains M as a proper subspace. and is invariant for
8. This contradicts the maximality of F among invariant chains. Therefore. F is also

a maximal subspace chain, as desired.
[ |

An application of Corollary 1.3.10 shows that a semigroup satisfying the hypothe-

ses of Theorem 1.3.9 is essentially a semigroup of idempotents.

Corollary 1.3.11 Assume all the conditions of Theorem 1.3.9. Let
S
=y —: 8 .
T {45) es}.
in which we define 0/0 = 0 whenever 8 contains the =ero operator. Then T is a
semigroup of idempotents.
Proof: As in the proof of Corollary 4 of [38]. we just need to verifv that if $; and
S are in 8 and if 515, # 0. then r(5152) = r(S1)r(S,). By Corollary 1.3.10, there
is a triangularizing chain F for 8. By Theorem 1.3.6, F contains a pair of subspaces

M and N. with dim(NV/M) = 1. such that the compression ﬁ of $152 to N/M is
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the scalar 7(5,53). Thus, if we consider the corresponding compressions 51 and .§2
of S; and §,, respectively, then S, and 52 are nonzero and equal to r(.S;) and r(S5,),
respectively. Hence r(S5,.5,) = r(S;)r(S2) holds.

[ ]

Definition 1.3.12 Suppose T € B(X). We say that r(T) is the dominant
member of o(T') if r(T) € o(T) and |A] < r(T) for all A € a(T)\ {r(T)}.

The next theorem shows that, under suitable hypotheses, the dominance condition

also leads to the reducibility of a semigroup of operators on a Banach space.

Theorem 1.83.13 Let [Z.q] be a quasi-normed operator ideal and let X be a
reflezive Banach space for which I(X) is a trace ideal. Suppose 8 C I(X), and 8

contains a non-quasinilpotent operator. Suppose also that
r(AB) < r(A)r(B) VYA,BeS.
and r(A) is the dominant member of o(A) for every A in' S. Then 8 is reducible.

Proof: If for each S € 8§ we cannot define an equivalent norm {l] - ||l on X such
that |||S])| < L. then. by Theorem 1.3.8, § is reducible. Otherwise, follow the proof
of Theorem 3 of [38] to find: (i) a nonquasinilpotent § = r(S), & C, where m is
minimal. [, is the m x m identity matrix, and r(C') < r(S), and (ii) an idempotent
P of rank m in the (uniform) closure § of S. and consider J = SPS. Observe that

every members of J has rank at most m.

(i) Assume that J contains a nonzero nilpotent operator. Then the inequality
of the hypothesis shows that the set J; of all nilpotent members of J is an ideal of
J. Since Jo C I(X), Jo is reducible by Lemma 1.3.2, and Theorem 1.1.15 (with tr

serving as the functional f). Hence Lemma 1.3.1 implies the reducibility of J and S.

(i1) Asin case (ii), in the proof of Theorem 3 of [38], every member A of J would
be r(A) times an idempotent of rank m if there is no nonzero nilpotent operator in

J . Therefore; by Theorem 1.3.9. J is reducible, and so is S.
[ ]
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The following Corollary is an extension of Theorem | of [36] to our broader context.

Corollary 1.3.14 Let [Z,q] be a quasi-normed operator ideal and let X be a
reflezive Banach space for which I(X) is a trace ideal. Suppose 8 C I(X) is a

semigroup and [ is the dominant member of o(S) for every S inS. Then 8 is reducible.

With exactly the same proof as the one given for Theorem 4 of [38], one can obtain
an extension of this theorem simply by using our previous extensions and replacing

NS M by M/N, where M and N are the appropriate subspaces of X with M C V.

Remark: Using Lemma 1.3.1, we are able to weaken the hypotheses in many of
the previous results. In the following we state one of them as a sample and give no

proof. It is obvious that one may state and prove similar versions of the other results.

Theorem 1.3.8*% Let [Z,q] be a quasi-normed operator ideal and let X be a
reflezive Banach space for which I(X) is a trace ideal. Suppose § C B(X) is a
semigroup such that § N I(X) is nonempty and contains an operator A that is not
a contraction under any renorming of X. [fr(S) < 1 for every S € 8. then S is

reducible.

[t should be noted that the hypothesis of the dominance is essential in our previous
results. It should also be noted that the condition on Z(X). that it be a trace
ideal, cannot be removed [rom the hypotheses of these results (cf [38, Theorem 6 and

Theorem T]).

1.4 Triangularizability of Semigroups of
Operators on Banach Spaces.

There are several triangularizability results for certain semigroups of compact
operators both in Hilbert and Banach spaces. Examples of such results can be found
in [25],[27],[33], and [37].

Our main results in this section concern semigroups of quasinilpotent operators
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on a reflexive Banach space. We then use these results in Chapter 2 and 3 to estab-
lish certain decomposability and ideal-triangularizability (see Definition 0.4.6 below)
results. The results of this section are the extensions of those in [33] that can be
obtained from the theorems of Section 1.1. The proof of each new version is similar

to the proof given in [33] with some necessary changes.

Theorem 1.4.1 Let [Z,q] be a quasi-normed operator ideal and let X be a reflez-
twe Banach space for which I(X) is a C-trace ideal. IfS is a semigroup of quasinilpo-
tent operators on X and if § contains an operator other than 0 in I(X), then Lat (8)

contains a nontrivial element.

Proof:  Suppose Lat (8) = {{0}, X}, then the algebra 2 generated by § has
the same trivial lattice of invariant subspaces. Now let 7 denote the set of all linear
combinations of operators in $ N Z(X). Since 8 is a semigroup, 2 is an algebra,
and since Z(X) is an ideal in B(X), J is a two-sided ideal in 2. Since A has no
nontrivial invariant subspace. J has no nontrivial invariant subspace by Lemma 1.2.1.

Therefore an application of Theorem 1.2.7 shows that J is g-dense in Z(X'). Since
tr(T) =0 VT € J.
and since tr is g-continuous on Z(.X). we have
tr(T) =0 VT € I(X).

a contradiction.
|
We now derive several corollaries about triangularizing semigroups of operators

on a reflexive Banach space.

Corollary 1.4.2 Suppose [T, q] is a C-trace quasi-normed operator ideal. Suppose
also that X is a reflerive Banach space and 8 is a semugroup of quasinilpotent opera-
tors on X that is generated by a commutative set of polynomially compact operators

and a subset of I(X). Then § is triangularizable.
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Proof: Choose a chain F of subspaces that is maximal as a chain of common
invariant subspaces of the operators in 8. If F is not maximal as a subspace chain,
there must exist a subspace M in F, such that dim(M/M_) > 2 (see [41]). Now
consider the compression § of § to M /M_. We distinguish two cases:

1) The compression T of every T € I(X)NS8 to M/M_ is zero. Thus § is a
commutative family of polynomially compact operators. and hence $ is reducible by
Lomonosov’s Theorem.

2) There exists T € Z(X) N S such that the compression 1" of T to MIM_ is
not zero. Since M/M_ is a reflexive Banach space, since T' € I(M/M_.) by Lemma
1.1.15, and since § is a semigroup of quasinilpotent operators by the results of Section
0.4, it follows from Theorem 1.4.1 that § is reducible.

In either case we can find a nontrivial subspace Ay of M /M_ which is invariant

under §. As before one can easily check that the subspace
K={xeM_ : z+M_€ Ky}

is invariant for 8. properly contains M_. and is properly contained in M. But this
contradicts the maximality of F, and hence F is also maximal as a subspace chain.

as desired.

Corollary 1.4.3 Suppose [T, q] is a C-trace quast-normed operator ideal. Suppose
also that X is a reflexive Banach space. Let 8 be a semigroup of quasinilpotent
operators that is generated by the union of a finite subset T of I(X) and an operator
B € B(X). If some power of B, say B™, is compact, then

Y A+ B
Aer
is quastnilpotent.

Proof: The semigroup § is triangularizable by Corollary 1.4.2. Now proceed as in

the proof of Corollary 3 of [33] and use Theorem 1.3.6. to prove that (3 .- A+ B)".
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[ |

As a consequence of Theorem 1.4.1, we know that under the conditions of that
theorem. a semigroup 8 in B(X) is reducible. In the following we observe that under

a weaker condition we can still prove the reducibility of a semigroup in B(X).

Corollary 1.4.4 Let [Z,q] be a quasi-normed operator ideal and let X be a
reflexive Banach space for which T(X) is a C-trace ideal. Suppose § C B(X) is a

semigroup of quasinilpotent operators, k € N, and
8 ={5S5,---S : S5 €8 i= L---k}.

(a) If there erists an element A in 8 such that A* # 0 and A¥ € I(X), then §
is reducible.

(b) If8* CI(X). then S is reducible.

Proof: First observe that 8* is a semigroup ideal.

(a) Since A* € 8%, 8* is reducible by Theorem 1.4.1, and hence 8 is reducible
by Lemma 1.3.1.

(b) If 8% # {0} we use (a). So assume that Sk = {0}. Let m be the smallest
positive integer such that 8™ = {0}. If m = 1 there is nothing to prove, otherwise

there exist S;.S>.---.5,,_; in 8 such that

Therefore
S5 =0 VS eS,

and hence § has a nonzero kernel which is also not the whole space X. Thus 8 is

reducible.

Corollary 1.4.5 [f, in Corollary 1.4.4. [Z,q] is a C-trace quasi-normed operator

ideal, then. in case (b), 8 is triangularizable.
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Proof: First use Lemma 1.1.15 to observe that:
(a) (5182 Sk)lar = (Silar)(Salar) - - - (Sklar) € T(M).

whenever M €Lat(8) and S.---.5; € S, and

e —

() Si---Sk=8---5 e I(Mx/M,).

I~ ——

whenever My, M, €Lat(8) with M, C M5 and b’”\l, --+. Sk, 81 --- Sk are the compres-
sions of Sy. ---. Sk, S1--- Sk to M, /M, respectively.

Now use the same technique as in the proof of Corollary 1.4.2 and apply Corollary

1.4.4(b).
]



Chapter 2

Decomposability of Positive

Operators on Banach Lattices

2.1 Decomposability Theorems

There are many decomposability theorems concerning compact and non-compact
quasinilpotent positive operators. Several such theorems can be found in (1]. [2].[3].[4].
[5].[6] [34]. [45], and [46]. In this section we recall a number of those theorems which
are well-known and crucial in our investigation of decomposability problems con-
cerning a collection of quasinilpotent positive operators. Note that by a “positive

operator” we mean “a nonzero positive operator”.

Declaration: Since in the remaining chapters we deal with quasinilpotent pos-
itive operators on Banach lattices, from now on we can — and we shall — assume
with no loss of any generality that our Banach lattices are all real Banach lattices
(see Remark 0.3.11).

Theorem 2.1.1 [45, Lemma 1 and Theorem 2] Suppose E is either Co(Q) or a
Banach lattice with atoms. If T € B(E) is a quasinilpotent positive operator, then T

ts decomposable.



B. de Pagter [34] has shown that every positive, indecomposable. compact linear

operator T' € *B(E) has strictly positive spectral radius. In other words:

Theorem 2.1.2 34, Proposition 2] Every compact. quasinilpotent, positive op-

erator on a Banach lattice is decomposable.

In [1], Y.A. Abramovich , C.D. Aliprantis, and O. Burkinshaw obtained the next

result which is much stronger than the result stated in Theorem 2.1.2.

Theorem 2.1.3 [1, Theorem 4.3] Every compact. quasinilpotent, positive operator

on a Banach lattice has a nontrivial p-hyperinvariant closed ideal.

2.2 Decomposability of a Semigroup of Positive
Operators in a Trace Ideal

In this section we use Corollary 1.4.3 to establish the decomposability of certain

semigroups which are subsets of C-trace ideals.

Theorem 2.2.1 Suppose [Z.q] is a C-trace quasi-normed operator ideal. Suppose
also that E is a reflerive Banach lattice. Let S be a semigroup of quasinilpotent positive
operators that is generated by the union of a finite subset € of Z(E) and a positive
operator. B € B(E). If some power of B is compact. then 8 is decomposable.

Proof: By Curollary 1.4.3, T = ZA€¢ A+ B is quasinilpotent. Since T is positive.
since § = ZAec A is compact. and since T dominates S. as S < T and both are
positive operators, T is decomposable by Corollary 1.3 of (3]. Since we also have
A< Tforall A€ € and since B < T, it follows that ¢ U {B}, and hence also 8. is

decomposable.

Theorem 2.2.2 Suppose [Z.q] is a C-trace quasi-normed operator ideal. Suppose
also that E is a reflezive Banach lattice. Let S be a semigroup of quasinilpotent positive

operators that is generated by a countable subset € of I(E). Then S is decomposable.

Proof: Suppose € = { A, : n € N}. Without loss of generality we can assume



Ut
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that
1

K*n?

A, =( )Bx VA, € ¢,
where B, € I(E) with q(B,) = 1 and & > | is the coefficient that appears in the
quasi-triangle inequality related to q. By a simple verification one can show that the
sequence {S,}22, with
Sn = 2.4,‘
=1
is a q-Cauchy sequence in Z(E) and hence converges, in g, to an element A of Z(E).

It is clear that A is a positive operator and since
1Sn — Al < q(Sn — A) n €N,

S, also converges, in norm, to A. We also know that Sa is a compact operator for
each n and hence A is compact and

lim r(S,) = r(A)

n=—og

by the continuity of spectral radius on compact operators [6. Corollary 1.2.7]. Since
each S, is a quasinilpotent operator, by Corollary 1.4.3, r(A) = 0. Thus A is a
quasinilpotent positive operator in Z(E) and it is decomposable by Theorem 2.1.2.
Now since

A4, < A4 n €N,

€, and hence also 8, is decomposable.

Corollary 2.2.3 Suppose [Z.q] is a C-trace quasi-normed operator ideal. Suppose
also that E is a reflexive Banach lattice. Let$ be a semigroup of quasinilpotent positive
operators in I(E) that is separable in the strong operator topology of B(E). Then S

is decomposable.

Proof: Let € = {T, : n € N} be a countable dense subset of § in the strong
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that € is decomposable. Now let J be a nontrivial closed ideal in flat(€). If S € 8,
then there exists a subsequence {Tn,}2, of € that converges strongly to S. This

means
lim |7, —Sz|| =0 Vze X.

Therefore; Sz € J whenever z € J, and hence J € Ilat(8), as desired.
[ ]

The following is a Banach lattice version of Lemma 1.3.1. It enables us to derive
some decomposability results under weaker conditions. It certainly plays an important

role in the further investigation of decomposability problems.

Lemma 2.2.4 If a semigroup $ of positive operators on a Banach lattice E is

indecomposable, then so is every nonzero semigroup ideal J of 8.

Proof: Suppose | € [lat(J) is a nontrivial closed ideal. Let l; be the closure of

V= {ze E:3r,---2, €Wand Ap.---. A, € R with [z] < inm},

=1

where

W = U{Jr:rel}.
JeT

Then |, is a closed ideal of E and li Clas WCI. Now for each S € $ and r eV

|S) < Slal < SO Mileil) = Y XS wl) -
=1

=1

where J;,---J, € J and Y1. - Yo € |. Thus

1Sz| <Y NSyl -

i=1
Since J is a semigroup ideal, S.J; € J for each i, and since | is an ideal of E. lyi| €1
for each i. Thus Sz € V and hence |, € llat(8). We distinguish two cases:
Case 1) I, # {0}. In this case, since li C | and since | is nontrivial, I; is a

nontrivial invariant ideal for 8. a contradiction.



Case 2) I, = {0}. This means W = {0} and hence Jz = 0 for all J € J and all
z €1l. Thus | C ;. where

b=(){z€E: J(z))=0}.

JeJ

We know that |, is a closed ideal of E and it is easy to verify that |, is invariant under
S. Since | # {0} and since |, # E, as J is a nonzero semigroup ideal of 8, |, is a

nontrivial invariant ideal for S. another contradiction.
[ |

Proposition 2.2.5 Let [Z.q] be a C-trace quasi-normed operator ideal and let
E be a reflexive Banach lattice. Suppose S is a semigroup of quasinilpotent positive
operators which is a countably generated subset of B(E). If there exists an integer

k € N such that 8* C I(E). then 8 is decomposable.

Proof: First observe that 8* is generated by the countable set
Cr = {.41A2'--Ak t A €€, 1= 1,...,k},

where € is the generator of §. Here we also distinguish two cases.
Case 1) 8* # {0}. Since 8* is decomposable by Theorem 2.2.2, § is decomposable
by Lemma 2.2.4.
Case 2) 8F = {0}. Let m be the smallest positive integer such that 8™ = {0}.
I[f m =1 there is nothing to prove, otherwise there exists S51.82,---,Sm~1 in S such
that
S0 = 5152+ St #0.

Therefore;
55 =0 VS €8,

and hence the null ideal Ns, defined by

Ns = ({z€E: S(z)=0}.
Ses
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is a nontrivial invariant ideal for 8.
[ |

2.3 Decomposability of a Commutative Collection
of Positive Operators

Our reading of [1] and [34] revealed that there is an extension of Theorem 2.1.3,
whose proof is a slight modification of the proofs given in [34] and [1] for Theorems
2.1.2 and 2.1.3. respectively. To do this we need to state an important lemma that

has been established in [34].

Lemma 2.3.1 Let E be a Banach lattice whose positive cone contains a quasi-
interior point. If0 < u < |z| where z.u € E. then there exists a sequence {7, : n €

N} in 3(E) such that mpx — u (in norm) as n — oo and |w,| < Ig for all n.

The previous lemma was used in the proof of part two of [34, Proposition 2]. In

the following we shall indicate that part and give its proof for completeness.

Lemma 2.3.2 Let E be a Banach lattice whose positive cone contains a quasi-
interior point. Let A be a linear manifold of B(E) with the property that #A € A
whenever A € A and = € 3(E). Then for each r € E the closure of the set

Ar ={Az : AeA}

is a closed ideal of E.

Proof:  Suppose that 0 < u < |Az| in E for some A € . By Lemma 2.3.1 there
exists a sequence {7, : n € N} in 3(E) such that |r,| < I and To(Az) — u (in
norm) as n — oc. Since 7,4 € U for all n, u € Az.

Now let | denote the ideal generated by 2z and take v € l+. Then there exist
A, Ag - A € A such that v < >ty |Axz|. Thus we can write v = D re, Uk With
0 < vx < [Arz|. By the first paragraph vy € Az for each k € {1.2,--.,m}, and hence



v € Az. Therefore
Ar C 1 C Az,

and this implies that I = Az. Since the closure of an ideal is an ideal. Az is an ideal.

We now use the techniques used in [1] and [34] to establish new versions of Propo-
sition 2 of [34] and Theorem 4.3 of [1].

Theorem 2.3.3 Let T € B(E) be a nonzero compact positive operator. If T is
quasinilpotent at some xo > 0 in E. then T has a nontrivial p-hyperinvariant closed
ideal.

Proof : Since the null ideal Ny = {z € E : T(lr|) =0} is a p-hyperinvariant
closed ideal for T, we are done if Txy = 0. If Tzo # 0 we proceed as follows:

As in the proof of [1, Theorem 4.3], the set
F={zr€E:3y>0 suchthat |z|< Ty}~

contains a nonzero element and is a p-hyperinvariant closed ideal of T. F urthermore.

E, = F. where u = S,‘f_lzlﬁ:' 7 > 0. and {z,} is 2 norm-dense sequence in T(E). If
E.=F # E. then E, is a nontrivial p-hyperinvariant closed ideal for T. otherwise E

contains a quasi-interior point and this, by Lemma 2.3.2. shows that:

For each z # 0 the closure Uz is a nonzero closed ideal which is invariant

under T. where
Ql:{sl-'~2 : Sl?SL€m+}?

and

={S€B(E):0<S<R for some Re (T}, }.

By the last part of [I, Theorem 4.3], &z is a p-hyperinvariant closed ideal for T
therefore we are done if we show that there exists r # 0 in E such that %z # E.
The proof is the same as the final step in the proof of [34, Proposition 2] with some

minor changes. Suppose, on the contrary, that Az = E for all = # 0, in E. Since z,
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w

and T'zq are not equal to zero. we can choose an open ball U, with center z,, such

that 0 ¢ T(X) and 0 ¢ U. For any r € T(U) we have z # 0 and so. by hypothesis,
Az = E. In particular zo € Az, hence there exists S € A such that S,z € U. Let
Uz be an open neighborhood of z such that $,(,) C U. Now {U: - e TU)} is
an open covering of the compact set T (), hence there exist Ti. . Zq in T(U), with
corresponding ¥/; =U,. S;j = S:, (j=1,---.n) such that

—_—

TU)YCUhU---UU,.

Since T'zo € T(U), there exists j, € {1.---.n} such that Tz, € Uj.s0 S;Txg €U
and hence T'S;,Tzo € T(U). Repeating the argument we obtain a sequence {jn :

m € N}in {1,2,---,n} such that:
gm=SjmTSjm_lT~--Sle1‘0€U VmeN.

Now write S; = SJ(I) - 51(-2) with 0 < SJ(»i) < R;-i) €E{TY, J=1.---.n;i =1.2)
and let C' = max{ HR;”!I :J€N,n;i=1.2}. Then

| 9m |=1 Siu T+ 53, T2 | < (R + RENT - (R 4 BT,
= (R} + R (R + Ry,
and hence ||gm|| < (2C)™||IT™col|. i.e.
lgm|I'/™ < 20| T™xo|¥/™ vm € N.

Since T is quasinilpotent at zq, ||gm|| — 0 and hence 0 € I&{ contradicting the choice

of .
[ |

Definition 2.3.4 Let E be a Banach lattice. A semigroup § of positive oper-
ators in B(E) is said to be convez if it is closed under addition and positive scalar

multiplication.
A trivial example of a convex semigroup is

{p(T) : pis a polynomial with positive coefficients}
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in which T is any positive operator on a given Banach lattice. For nontrivial examples
of convex semigroups see Section 4.2. In the following we prove several decompos-

ability theorems for convex semigroups of positive operators.

Theorem 2.3.5 Let E be a Dedekind complete Banach lattice whose positive
cone contains a quasi-interior point. Suppose S C B(E) is a conver semigroup of
quasinilpotent positive operators that contains a non-=ero compact operator K'. Then

S s decomposable.

Proof: Suppose 8 is not decomposable. Let
J={0<Re&B(E): RS.SR €8 VS €S§}.
At ={0< T €B(E) : IR € T such that T<R}.

and
A={T"-T: T\, T, e A }.
[t can be easily checked that A* is a semigroup that is closed under addition and
positive scalar muitiplication and hence U is a subalgebra of B(E).
Since each element of A is regular. |T| exists for each T € % as E is a complete
Banach lattice. Let T be in 2. Then T = I\ —T,, where T},.T, € A*. and there are
Ri.R; € J such that Ty < R, and T, < R,. Since

ITR| < |T|K < T\K + TuK < RK + Ro I\

and since Ri K + Ry K € 8. |[TK| is quasinilpotent by Lemma 0.2.6. Therefore TH is
quasinilpotent as [[((TA)*|| < || (TA)* || < || |TK'|*|| for each positive integer n.

Finally, as in the proof of Proposition 2 of [34]. it is easy to verify that =T € A
whenever T € 2 and = € 3(E).

By the above observations we can deduce that for each € E the set Az is a
subspace of E which is invariant under 8. Since I € A, Az # {0} for each non-zero
element r of E.

By Lemma 2.3.2 for each r € E, J, = Az is a closed ideal of E. Since J, is invariant

under 8, we have J; = E for each nonzero element z € E as § is indecomposable.
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We now apply Lomonosov’s Technique in the proof of Lemma 8.22 of [40] to find
a finite number of operators 4; € A, 1 < i < n, and a finite number of real numbers

b; €[0,1], 1 < i < n, such that
Z bA;Nr =z for some r € V,
=1

where V' = {x € E : ||z — z¢9|| < 1} and ro € E with [[zoll > 1. This shows that
if T =37 biA;, then T € % and 1 is in the point spectrum of TA. But, as we

observed above, TK is quasinilpotent, a contradiction.

Remark: As we mentioned in Section 0.2, many classical Banach lattices are
Dedekind complete Banach lattices. It is also known [46, Theorem I1.5.11] that all
reflexive Banach lattices are Dedekind complete Banach lattices. Therefore the proof

of Theorem 2.3.5 is valid for a large number of Banach lattices.

We now investigate the decomposability of a commutative semigroup of positive

operators. on certain Banach lattices. without imposing a compactness condition.

Lemma 2.3.6 Suppose E is a Banach lattice whose posttive cone E contains an
atom and suppose § is a conver semigroup of quasinilpotent positive operators on E.
Then 8 is decomposable.

Proof: Suppose § is indecomposable. Let z, € E; be an atom and let Jy be the
one dimensional ideal generated by ro . Consider the ideal V which is generated by

the set
A={Sz: S5€8}.

Since § is a semigroup of positive operators, V is invariant for 8 and hence V = E as

S is indecomposable. Thus, by [46. Proposition IL.1.1],
JQnV=Jon\7=J0,

which shows Jo NV # {0} and hence Jo C V. Since § is convex, there exists § € §
€S

such that ro < Szo. For this § we have r(S) > 0 which is a contradiction as S
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and S should be quasinilpotent.
[ |

Lemma 2.3.7 Suppose E = Co(Q) and let $ be a conver semigroup of quasinilpo-

tent positive operators on E. Then 8 is decomposable.

Proof: By using Urysohn’s lemma (cf. [43, Section 2.12]) we can find a nonzero
function f € Co(Q) with the following properties:
(i) 0<f<1 onQ,
(i) Ko =supp(f) is compact.
Suppose § is indecomposable. If Sf =0 for all S € S then the null ideal

Ns={f€Co(N) : Sf=0 forall $€8}

is a nontrivial closed ideal of E which is invariant for S. a contradiction. Thus. there
exists 5 € 8 such that Sf # 0. Now we distinguish two cases:

Case 1) There exists o € Q such that (SfNzo) =0 for all S € 8.
[n this case the closed ideal

J={geCo(Q): 9| <Sf for some S € 8§}

is a nontrivial closed ideal of E which is invariant for §. contradicting the indecom-
posability of 8.

Case 2) Given & € Q there exists S, € 8 such that (S:f)(z) # 0. Hence for
each z € Ky there exists an S, € S and a neighborhood V. of r such that

(S:f)(t)>0 VYieV,.

Since Ky is compact there exists a finite number of elements $51.55.---.8, of 8 and

a finite number of open subsets V;,V,, - - - , Vn of Q such that:
Ko C U V.
=1
and foreach i =1,2,---n
(S:if)(t)y>0 Vtey;.
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Now if we put $ = 3>""_  S;, then S € § and
(SAH)>0 Vtek,.

Therefore. there exists € > 0 such that ef < Sf, and hence r(S) > ¢ > 0. another

contradiction.

Lemma 2.3.8 Let E be any Banach lattice and let T be any nonzero quasinilpotent
positive operator on E. Then the subset J of {T}., defined by

J ={Se{T}, : IR € {TY, such that S<RT},

is @ nonzero semigroup ideal of {T}Y, all of whose elements are quasinilpotent. Fur-

thermore J is a conver semigroup.

Proof: Since I.T € {T}, and T = IT. T € J and hence J is nonzero. Since for
each R € {T'}, we have r(RT) < r(R)r(T). r(RT) = 0. Thus all of the elements of
J are quasinilpotent as § < RT implies 1S™ < I(RT)*||, n € N, by Lemma 0.2.6.
and hence r(S) < r(RT).

Now consider S € J and R € {T}.. Then, there exists Ry € {T}. such that
S < RoT. Thus RS < RRoT and SR < RoT R and hence RS.SR € J as RRy. RyR €
{T'}, and RyTR = RoRT. Therefore J is an ideal of {T},. The last part is obvious
as {T'} is itself a convex semigroup.

The following two theorems reveal that we may drop the compactness hypoth-
esis in certain situations and find nontrivial p-hyperinvariant closed ideals. even in

nonreflexive Banach lattices.

Theorem 2.3.9 Suppose E is a Banach lattice with atoms. Then, every quasi-
nilpotent positive operator T on E has a nontrivial p-hyperinvariant closed ideal. In
particular. every quasinilpotent positive operator T on l,, | £p< oc has a nontrivial

p-hyperinvariant closed ideal.
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Proof: Let J be defined as in the proof of Lemma 2.3.8. Then J is decomposable

by Lemma 2.3.8 and Lemma 2.3.6. and hence {T'}, is decomposable by Lemma 2.2.4.
[

Theorem 2.3.10 Every quasinilpotent positive operator on Co(Q) has a p-
hyperinvariant closed ideal. More generally, if E is a closed ideal of an AM-space
F with unit, then every quasinilpotent positive operator T on E has a nontrivial p-
hyperinvariant closed ideal.

Proof: Let J be defined as in the proof of Lemma 2.3.8. Then J is decomposable
by Lemma 2.3.8 and Lemma 2.3.7, and hence {T}’, is decomposable by Lemma 2.2.4.

For the general case we proceed as follows. By Proposition 0.3.2, F is isomorphic
to C'(K) for a suitable compact Hausdorff space K, and, by Proposition 0.1.4, E is
isomorphic to Co(f2), where Q is a locally compact open subset of K. The general

case now follows from the first part of the theorem.
[ ]

Using the results of this section we may derive some simple decomposability facts
concerning a commutative collection of positive operators on certain Banach lattices.
The interesting fact is that in some cases such collections need not contain a compact

operator.

Proposition 2.3.11 Suppose € is a commutative collection of positive operators
on E and T € B(E) is a nonzero positive operator that is quasinilpotent at a nonzero
element of E,.

(a) IfT is compact and € contains T. then € is decomposable.

(b) IfT*#0, if T® € €, and if T is dominated by a compact operator, then €
is decomposable.

(c) IfE an AL-space. if T* #0, if T* € €. and if T is weakly compact, then €
ts decomposable.

(d) IfE is an AL-space,if T* #0, if T* € €. and if T is dominated by a weakly

compact operator, then € is decomposable.
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Proof: (a) Since € C {T'}’,, Theorem 2.1.3 gives the desired result.
(b) By Proposition 0.2.4. T2 is compact and hence € is decomposable by (a).
(c) As in the proof of Corollary 2.1.4, T? is compact. Now apply (a).
(d) By Proposition 0.2.5, T? is weakly compact and hence € is decomposable
by (c).
|

Proposition 2.3.12 Suppose E is either a closed ideal of an AM-space with
unit or a Banach lattice with atoms. Suppose also that € is a commutative collection
of positive operators in B(E). If € contains a quasinilpotent operator T. then € is

decomposable.

Proof:  Since € C {T}',, an application of Theorems 2.3.9 and 2.3.10 gives the
desired result.

Other examples of decomposable collections of operators on E, that may not con-
tain a compact operator. can be obtained by using the following simple fact. The

proof is omitted.

Lemma 2.3.13 Suppose € CB(E), T € B(E). T is a positive operator. and J €
llat (T).
(a) IfT dominates all of the operators in €. then J € Ilat ().
(b) If all elements of € are positive and if S < T for all S € €. then
J € Iat (€).

Proposition 2.3.14 Suppose € C B(E), T is a quasintlpotent positive operator
on E and either (a) T dominates all members of € or (b) all elements of € are positive
and T majorizes €. Then in each of the following cases € is decomposable:

(1) E is a closed ideal of an AM-space,

(i1) E is a Banach lattice with atoms.

(i) E is an AL-space and T is weakly compact,
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(iv) E is any Banach lattice and T is compact.

Another example of a decomposable collection of operators on E that does not

contain a compact operator can be obtained by using [3, Theorem 7.1].

Proposition 2.3.15 Suppose 8 is a semigroup of positive operators on E that is
generated by the set € = {T.S}. IfST =TS, S is quasinilpotent at a nonzero positive

element of E, and T dominates a nonzero compact operator, then § is decomposable.

2.4 Decomposability of a Semigroup of Integral
Operators on C(K)

It is known that every positive integral operator on a Banach lattice E that is
quasinilpotent at some zo > 0 is decomposable (cf. [3. Corollary 6.4]). Therefore. it
is natural to ask if the same result holds for a semigroup of such operators. In general.
we do not know the answer. In some special cases, when the quasinilpotency is under
discussion, the answer is affirmative as has been observed in [10]. In this section we
follow the strategy given in [10] to show that under some conditions a semigroup of

positive quasinilpotent integral operators on C'(K) is decomposable.

In what follows g is a non-negative o-finite regular Borel measure on Q such that

every non-empty open subset of Q has positive measure. .

Lemma 2.4.1 Let U be a non-empty open subset of Q). Suppose for each k € R*
the operator Ty is an integral operators on Co(Q2) with a non-negative kernel K1, such
that K1, (x.y) > k > 0 on F x U, where F is some measurable subset of Q with
nonzero measure. Then there erists a measurable subset G of U of nonzero finite

measure such that

ITull > ku(G)  for all k € R*.

Proof : Since u is o-finite and u(U/) > 0 we can choose a measurable subset A



of U with 0 < p(A4) < oc. Let f = y4 and apply the techniques used in the proof
of Lusin’s Theorem, (cf. [43. Theorem 2.23]). to find a function g in C.(Q) with the
following properties:
(i) g(z) > 0 Vz € Q.
(it) w(B) < u(A)/2. where B = {z € Q : g(z) # f(z)}. and
(i) lglloe < flle = 1.
Fix £ € R*. Since C.(Q) C Co(9Q) we have

Tig(z) = | Rr(z.y)g(y)duly) > [ Kr.(z.y)g(y)du(y).
Q A

So for z € F.
Tegte) 2 & [ owdutn) + [ gtnrdutn)}.

where Ay = {y € 4 : g(y) = f(y) =1} and A, = {y € A : g(y) f(y)}. Since
A2 © B. p(A2) < p(B) < p(A)/2. Hence p(4;) = p(A) — p(A2) > p(A)/2 > 0. and

Tigt) 2 {uta) + [ ohdutn)} 2 bua) veeF.
as jjh 9(y)dp(y) = 0. and hence Tig(z) > ku(A,;) for all r € F. Therefore:
ITegll = sup{Tig(z) : £ € Q} > sup{Tig(z) : £ € F} > kp(A,).
So with G = 4; we obtain
Tl = sup{lITetllee : |lhlle <1} > kp(G).
|

Lemma 2.4.2 Suppose T is an integral operator on Co(S2) with a non-negative
kernel Kr. If Kr(x.y) > k > 0 on some rectangle {" x U, where U is @ non-empty
open subset of Q0 . then there erists a measurable subset C; of U of nonzero finite

measure such that r(T) > ku(G).

Proof : Use Lemma 2.4.1 to find a measurable subset G with the stated properties

given in that Lemma.
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Let [\'(T") denote the kernel of T™. Then for r.y € (.

l\'(r"’(x-y) = /[\’T(r-tl)l\"r(tl:tz)"’A'T(tn—lty)dtl"'dtn-l
Q

> / kndtldt‘_)”'dtn—l = k"p([f)"_l.
UxUx---xU

Therefore
T > E"p(U) ' w(G) > k"u(G)™.

which means || 7"||'/* > ku(G) for all n. and hence r(T) > ku(G).
n

Lemma 2.4.3 If T is a quasinilpotent integral operator on Co(Q) with non-

negative. lower semicontinuous kernel R'r. then Kr(z.z) =0 forall r € 0.

Proof : Suppose not and choose any rg with Kr(xg.r9) = 2k > 0. Lower semicon-
tinuity implies there is an open set {7 such that Kr(r.y) > kforall (r.y) e U x (.
Now apply Lemma 2.1.2 to obtain a subset G of [ of nonzero finite positive measure
such that ~(T) > ku(G). which contradicts the fact that T is quasinilpotent.

[ |

Suppose § is a semigroup of quasinilpotent integral operators on Cy(9Q) such that
every operator on § has a non-negative. lower semicontinuous kernel. By using Lemma
2.1.3 and an argument similar to the proof of [10. Theorem 3.4] we can show that

there exists an open set 1" of finite measure such that the subspace
J={f€Co(Q): f=00nQ\V}

1s invariant under 8. Since J is a closed ideal of Co(Q). we conclude that § is de-
composable. We summarize this observation in the following theorem and use the

procedure given in the proof of [10. Theorem 3.4] to give a sketch of its proof.

Theorem 2.4.4 Let S be a semigroup of quasinilpotent integral operators on
Co(Q) by way of the measure u. such that every operator in & has a non-negative.

lower semicontinuous kernel. Then S is decomposable.
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Sketch of Proof : If 8 = {0}, with any open subset V of €2, the closed ideal
J={feCo(Q) : f(¢) =0 forall t € O\ V} is invariant under 8. Otherwise
choose T € 8. with T(zo,y0) > 0 for some (zo,y0) € Q x Q, and use the lower
semicontinuity of its kernel and Lemma 2.4.3 to find two open subsets Uy and Vj of
Q) with the following properties:

(i) UonVp=0,
(i) A's(y.z) =0 whenever S € § and (z,y) € Uy x V.

Now for each = € Uy define
We={teQ: KRs(t,z) =0 for all S €8}

and observe that it is a closed subset of Q that includes Vj. We distinguish two cases:

(1) p(Q\ W,) =0 for every z € U,. In this case put V' = [y and observe that
Rs(r.y)=0 V(z,y)€(Q\V)x V.

whenever S € 8.
(2) p(Q\ W;) # 0 for some z € Uy. In this case cut Lo down and relabel if

necessary. to assume that z is xo. Put V = Q\ W, and show that
Ks(r.y)=0 V(r.y)e W, x (Q\W,,).

whenever S € 8.

In each case verify that the closed ideal
J={feCo(Q) : f(t)=0 forall teQ\ 1}

is invariant under S.

2.5 Decomposability of Positive Operators on
a Discrete Banach lattice

There are several invariant subspace theorems for positive operators acting on a

Banach space with basis. These results that obtained by Abramovich, Aliprantis,
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and Burkinshaw in [2] and [4] for locally quasinilpotent operators are much stronger
than the corresponding analogues for quasinilpotent operators. If a discrete Banach
lattice with order continuous norm is under discussion, then these results can be
considered as invariant ideal theorems. In this section we follow the strategy given in
[10] to obtain one of those results for quasinilpotent positive operators. Then we use
it to show that a semigroup of quasinilpotent positive operators on a discrete Banach

lattice with order continuous norm is decomposable.

Let {z,};2, be a basis of a Banach space X. The sequence of linear functionals

{fa}2, defined by

x

fi(z) = a; ( =Zai-l'i€X,j€N).

i=1
is called the sequence of coefficient functionals associated to the basis {z.}%, (we
shall write: a.f.).
Thus. if {z,}32, is a basis of the Banach space X and {fa}2, the a.f.. then
every z € X has a unique expansion of the form
™~
r=3 filz)zi.
i=1
The following is the fundamental fact about the coefficient functionals associated

to a basis of a Banach space X. (Cf. [47, Theorem [.3.1]).

Lemma 2.5.1 Let {z,}22, be a basis of a Banach space X. Then the coefficient
functionals f,.n € N, associated to the basis {.}32,, are continuous on X and

there erists a constant M such that

L < zallllfll € M (neN).

Now consider the closed cone generated by the basis {rn}32,. It is easy to check
that the coefficient functionals fasn € N, associated to the basis {z.}2_, are auto-

matically positive with respect to this cone.
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Recently in [4] several invariant subspace theorems were established for operators
acting on a Banach space with basis. In this section we find invariant closed ideals for
semigroups of positive operators on a discrete Banach lattice with order continuous

normi.

Lemma 2.5.2 Let {z,}2, be a basis of a Banach space X and let {fa}2, be
the a.f. Suppose T is a quasinilpotent operator on X which is positive with respect to

the positive cone generated by {z,}2,. Then
T;j = fi(Tz;)=0 for each j €N,

where [T;;] is the matriz representation of T.

Proof: Observe that for each n € N we have

(T3)" < fi(T"zj) JEN.

Since for each j € N, f; is a positive linear functional and since. by Lemma 2.5.1

each f; is continuous, we also have

(Tin)™ < WEIT 5l < WS IITm -

Another application of Lemma 2.5.1 reveal that there exists a constant \/ > 1 such

that
T, < MU TV jeN.

Therefore. for each j € N , T;; =0 as T is quasinilpotent.
|

It is easy to verify that if {r,}3%, is an unconditional basis for a discrete Banach
lattice with order continuous norm E. then. for each n € N. z, is an atom for E.
Therefore each discrete Banach lattice with order continuous norm is a Banach lat-
tice with atoms, and hence each quasinilpotent positive operator on such spaces is
decomposable by Theorem 2.1.1. This fact can also be obtained under weaker con-

ditions (cf. [4]). In the following we prove this fact by another method and use this
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method to establish the decomposability of a semigroup of quasinilpotent positive

operators on a discrete Banach lattice with order continuous norm.

Theorem 2.5.3 Let {z,}7%, be an unconditional basis for a discrete Banach
lattice with order continuous norm E. Suppose T is a nonzero quasintlpotent positive

operator on E. Then T is decomposable.

Proof: Fix j € N and let {f,}32, be the sequence of coefficient functionals
associated to the basis {z,}32,. Observe that for each k € N . T* is a positive
quasinilpotent operator. By Lemma 2.5.2, TE = fi(T*z;) =0 for all k. If Tz; =0,
then the nult ideal

Nz ={z€E: T(|z[) =0}

is a nontrivial closed invariant ideal for T.
Suppose T'z; # 0 and consider the closed ideal J7. where Jr is the ideal generated

by the set {T*z; : k € N}. Since

m
Jr={r€E:3n.---.nn €Nand \.---, A, €R* with |z| < > ATz},
=1
it is easy to check that J7 is invariant under T. Hence J7 is also invariant under T.
Let £ € Jr. Then there exists positive integers n,.---.n, and positive scalars

Aior-.Am such that |2| < 377 \T™z;. Since f is positive.
1fi(2) < fill=]) < Y Mfi(T™z,).
=1

Therefore f;(z) = 0 for all £ € Jr and hence fi(z) = 0 for all z € J;. This shows

that J7 is a nontrivial invariant ideal for T.
[ |

Theorem 2.5.4 Let {z,}>2, be an unconditional basis for a discrete Banach lat-
tice with order continuous norm E. Suppose S is a nonzero semigroup of quasinilpotent

positive operators on E. Then 8 is decomposable.
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Proof:  As in the proof of the previous theorem, for each J the closed ideal Js,
where Js is the ideal generated by the set {Sz; : S € § }, is invariant under § and
fi(x) = 0 for each z € Js. Thus Js is a nontrivial closed invariant ideal for $ unless

Sz; =0 for all S € 8. in which case the null ideal
Ns = {z € E : S(jz]) =0}

is a nontrivial closed invariant ideal for S.



Chapter 3

Ideal-Triangularizability of Positive

Operators on Banach Lattices

It is the purpose of this chapter to introduce a Banach lattice version of triangular-

izability and a few related results.

3.1 Ideal Chains

Let E be a Banach lattice and let A(E) denote the collection of all closed ideals
of E, partially ordered by inclusion. A totally ordered subset € of A(E) will be called
an ideal chain. If each element of € is invariant under a collection of operators €
on E. we shall call € as an invariant ideal chain. A trivial example of an invariant
ideal chain is {{0}.E}. The existence of nontrivial invariant ideal chains for several
classes of operators on Banach lattices can be deduced from some of the theorems in
Chapter 2.

A similar argument to the one given at the beginning of [41, Section 4.3, shows
the following:

If & denotes the class of all ideal chains that is partially ordered by the inclusion
relation then

(1) every totally ordered subset o of & has a least upper bound and hence

=]
o
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an application of Zorn’s Lemma reveals that ® contains maximal elements, which we
call mazimal ideal chains,
(2) every ideal chain G is contained in at least one maximal ideal chain G,.
(3) theclass &; of all invariant ideal chains contains maximal elements, which we
call mazimal invariant ideal chains. Besides. each invariant ideal chain is contained

in at least one maximal invariant ideal chain.

Remark: Of course it is not the case in general that maximal invariant ideal
chains are necessarily maximal ideal chains. However, the following lemma gives a

sufficient condition for this to happen.

The proof of the following lemma is a simple modification of the proof given in

[41, Lemma 4.3.1 and Lemma 4.3.2].

Lemma 3.1.1 Let E be a Banach lattice and € C B(E). Suppose for each pair
Ji.J; €llat(€) with J; C J, and dim(J2/J1) > 2 the compression

C={T :TeCand T is the compression of T to J/J; }
is decomposable. Then € is ideal-triangularizable.

Proof: By Definition 0.4.6. it suffices to show that each maximal invariant ideal
chain is a maximal ideal chain.

Suppose that € is a maximal invariant ideal chain for €. Since € is maximal.
{0} eCandEcC. (1)
Let Co be a subfamily of C. It is clear that
t=n{J:JeC}
is a closed ideal. Since G is totally ordered by inclusion the set
V=U{l:JeG}

is a linear manifold of E. Now suppose z € V and y € E are such that [y| < |z|. Let
J € €y be such that z € J. Since J is an ideal, y € J and hence y € V. Thus V is an
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ideal of E and hence its norm closure, i.e. I’ = V, is a closed ideal of E. It is obvious
that both | and I" are invariant for € and it can be easily checked that € U {1} and

€U {I'} are invariant chains. Thus, by maximality of @,
I 'and I' are in C for each subfamily Gy of C. (2)
Suppose J € € and define
W=u{/l": JeCand ¥ S}
Let
=W (*)

By hypothesis. there exists a nontrivial closed ideal K of

and assume dim(J/J_) > 2.
for all T € €.

J/J_ such that T(K) C
If we define

2
K

K={zel:z+4+J_ €K},
then, as the canonical map 7 is a lattice homomorphism, K is a closed ideal of E. It
is also easy to verify that T(K) C K forall T € € and J_ G K& J. Given any ideal
Jo in €, we have either (a) J C Jy. and so K G Jo, or (b) Jo € J and. by definition of
Jo.JoCJ_ S K. Hence K ¢ € and CU {K} is an invariant chain. contradicting the

maximality of €. Therefore,
for each J € C. the quotient space J/J_ has dimension at most I. (3)

Now suppose € is not a maximal ideal chain. Then there is an ideal chain G which
properly contains €. Let J € G\ €. By (1), J # {0} and J # E. By (2). I.I' € C.
where

l=n{JeC:JCJ}
and I’ =V with
V=u{leC:)VCJ}.
Since I C J C | and since J ¢ C,

rgiIgl. (%)
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Since I' € Cand I' G I. I C I_, where I_ is defined as (x). Let J € @ with J g l.
Then J € ¥, by definition of I. Since G is totally ordered and since J',J € G, J C J,
and so J' C I' by definition of I. This shows | C I’ and hence I’ = |_. Thus, by (sx).
dim(l/I_ > 2, contradicting (3).

|

3.2 ldeal-Triangularizability of Positive Operators

In this and the next sections we present some examples of ideal-triangularizability

results.

Theorem 3.2.1 Suppose E = C(K) and T € B(E) is a quasinilpotent positive

operator. Then T s ideal-triangularizable.

Proof: By Theorem 2.1.1, T is decomposable. Let Ji,J2 € Hat (T), with J;, C J,
and dim(Jy/J;) > 2. Since E is an AM-space, J, is an AM-space, by Lemma 0.3.5.
Since J; is a closed ideal of both J, and E, Ja/Jq is a closed ideal of E/Ji. J2/J; and
E/J\ are both AM-spaces and 1 + J; is a unit for E/J: by Lemma 0.3.6. Therefore
E/Jy = C(K') for a suitable compact Hausdorff space K', by Proposition 0.3.2. and
hence J,/J; = Co('). where ' C K’ is a locally compact Hausdorff space.

Since T is a quasinilpotent positive operator on E. T is a quasinilpotent positive
operator on J,. Hence Tis a quasinilpotent positive operator on J,/J; by Lemma 0.4.3
and Lemma 0.4.4(a). Therefore Theorem 2.1.1 implies that T is decomposable. Thus

€ = {T} satisfies the condition of Lemma 3.1.1 and hence T is ideal-triangularizable.
u

Theorem 3.2.2 [fE is any Banach lattice and K € B(E) is a compact quasinil-
potent positive operator, then € = {K}, is ideal-triangularizable.

Proof: By Theorem 2.1.3, € is decomposable. Let J;.J, € [lat (€)), with J; C J,
and dim(J,/J1) > 2. We know that A is a compact quasinilpotent positive operator

on J;/J; by Lemma 0.4.3. Lemma 0.4.4(a). and Lemma 0.4.4(b). Hence. by Theorem
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2.1.3, the compression ¢ of € to J/Jy, is decomposable, as & - {Ii'}'. Therefore &
satisfies the condition of Lemma 3.1.1 and hence € is ideal-triangularizable.
|

Theorem 3.2.3 Suppose I € B(E) is a weakly compact quasinilpotent positive
operator such that K* # 0. Suppose also that E is either Li(p) or Co(Q). IfC =

{K},, then € is ideal-triangularizable.

Proof: Since L,(p) is an AL-space and C(R) is an AM-space, A% is compact by

Remark Propositions 0.3.2 and 0.3.3 show that Theorem 3.2.1 and Theorem
3.2.3 are valid for more general Banach lattices, namely AM-spaces with unit and

AL-spaces.

3.3 Discrete Banach Lattices and
Ideal-Triangularizability

In this section we will assume that {za}7%, is the unconditional basis of the given

discrete Banach lattice with order continuous norm.

Lemma 3.3.1 Suppose E is a discrete Banach lattice with order continuous norm.

Then. for each x € E, with x = Yt ,ant,. the following holds:

5

I-rI:ZIan'zn'

n=1

Proof: We first find £+ = z V0. Let 2+ = £ 3,7, and let y =32 (a,) ..
Since z+ > z and zt > 0, we obtain
Bn 2 a, and 8, >0, VYneN.

Hence 3, > (an)* for all n which means ++ > y. On the other hand, y > z as

at >a, forallneNandy >0 as at >0 for all n € N. Thus y > z* and hence



-1
-1

n=l1

Similarly,

r = Z(an) I,

n=1

Therefore;

[} 0

=zt +27 = Z ((an)'*'-l—(an)').rn = Z | an | Tn -
n=1 n=1

Definition 3.3.2 Let J be an ideal of a discrete Banach lattice with order
continuous norm E. We say that z; participates in J if there exists z € J with
r = Y32 anr, such that a; # 0.

Lemma 3.3.3 Suppose J is a closed ideal of a discrete Banach lattice with order
continuous norm E and P = {z; : z; participates in J }. Then, P C J and

J={.1:€E:J:=Za,-;r;}.

r,€P

Proof: If r; € P, then there exists r = © Qnr, in J such that a; # 0. Since
n=1

| z|€ Jand since | r |= S | ay, | r, by Lemma 3.3.1. we can conclude, from

oo
lei |2 <) | an | 2n.

n=1
that | a; | x; € J. Hence r; € J as o; # 0. Thus P C J and hence
{ze€E: x:Za,ﬂ:;}gJ
,EP
as J is closed. On the other hand the definition of P implies that

JQ{IGE:J;:ZQ;J;;},

r,€P



and this completes the proof.

|
Lemma 3.3.4 Suppose E is a discrete Banach lattice with order continuous norm.

Then J is a closed ideal of E if and only if there exists a subset Sy of N such that

Jz{zzz:an.rneE: om=0 Vm¢s,}.

n=1

Proof: Suppose J is a closed ideal of E. Let P be as in Lemma 3.3.3. Then with
SJ={i€N :r; €P}
we have

J={2=) 02,€E: an=0 Vm¢s,}.
n=1

Conversely, suppose S; is a subset of N such that
xS
J = {J=Zan1‘ne E: an=0 VYm¢S,}.
n=l1

Using the definition of an ideal it is easy to verify that J is an ideal of E. Now let
{yx}2, be a sequence in J that converges to y in E. Suppose for each k. {3kn}nes,
is a sequence of scalars such that y;, = Ynes,BknZn. Suppose also that {3,}3%, is a
sequence of scalars such that y = £ 3 .. Since the coefficient of linear functionals

are continuous in E, we have
lim 3, = 3, whenever n € S;.
k—oc
and
Llim Bn=0 whenever n & S;.
Sands

Thus 3, =0 for all n ¢ S;. which means y € J and hence J is closed.
[ |

Corollary 3.3.5 For each closed ideal J # {0}, of a discrete Banach lattice with

order continuous norm E. there erxists i € N such that z; € J.
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Proof: If J = E there is nothing to prove. If J is a proper closed ideal of E. let
Sy be as in Lemma 3.3.4. Since S, is not empty, there exists : € S;. For this ; we

have z; € J.
[ |

Corollary 3.3.6 The positive cone of each nonzero closed ideal J of a discrete

Banach lattice with order continuous norm E contains an atom.

Proof: Let S, be as in Lemma 3.3.4. By Corollary 3.3.5, let i € S, be such that
z; € J. Suppose y € J, is such that 0 < Yy < z; and suppose {a, }nes, is a sequence

of nonnegative scalars such that

y=z QI .

neS,

Then, by the properties of a basis we should have an, =0 for all n € S,\{:}. Hence

y = a;z; which means r; is an atom for Ji.

Corollary 3.3.7 Suppose 1. J,, with J1 € Jy are two closed ideals of a discrete
Banach lattice with order continuous norm E. Then the posttive cone (Jo/J1)4 of the

quotient space J»/Jy contains an atom provided J,/J; # {o}.

Proof: It is clear that J, # J;. Let S, and S), be as in Lemma 3.3.4. Clearly
Sy, & Si,. Let j € Sy, be such that zj € Ji. By Corollary 3.3.6. r; generates an
atom for (J2);. We claim that z; + J; is an atom for (J5/J;)..

Let y € J; be such that y + J, € (J/J1)4. (Without loss of generality we can

assume that y € (J2)+.) Suppose the sequence of positive scalars {an}msgj2 is such

that
y = Z Jo A

n€$,2

Ify+J, < z; + )i, then there exists = € Ji such that y < r; + . Hence

a,-.rj+zanxn+ Z QnTn < I+ Z Y Tn .

nes nGS,l nesjl
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where S = 5, \ (5_1l U {j}) and {vn}nes,, is a sequence of scalars such that

~—
- -

SnGSJl InTn .
Thus, by definition of positivity, o, = 0 for all n € S. and hence

y+hi=ajz; + Z anTpn + = a;r; + J; = aj(z; + Jp),
nES]l

which means z; + J; is an atom for (J,/J;)..
|

Corollaries 3.3.6 and 3.3.7 now imply the main result of this section concerning
discrete Banach lattices with order continuous norms and, in particular, the Banach

lattices co and [,. where 1 < p < oc. In fact:

Theorem 3.3.8 Suppose E is a discrete Banach lattice with order continuous
norm and T is a quasinilpotent positive operator on E. Then T is ideal-triangulari-
zable. In particular. any quasinilpotent posttive operator on l,. 1 < p < oc or ¢ is

ideal-triangularizable.

Proof: Since E is a discrete Banach lattice with order continuous norm. for each
closed ideal J of E. J, contains an atom, by Corollary 3.3.6. Hence. for each J €[lat(T)
with dim(.J) > 2. T[; is decomposable by Theorem 2.1.1. Let Ji. o € Hat(T). with
Ji € Jz and dim(J,/Jy) > 2. Since (Jo/J; )+ contains an atom. by Corollary 3.3.7. and
since T is a quasinilpotent positive operator on J,/J;. by Lemma 0.4.3 and 0.4.4(a).
T is decomposable by Theorem 2.1.1. This shows that € = {T} satisfies the condition

of Lemma 3.1.1 and hence it is ideal-triangularizable.

In the following theorem we establish a stronger version of Theorem 3.3.8 by using

the results of this section and Theorem 2.5.4.

Theorem 3.3.9 Let E be a discrete Banach lattice with order continuous norm.
If 8 is any semigroup of quasinilpotent positive operators on E, then 8 is ideal-

triangularizable. In particular, any semigroup of quasinilpotent positive operators



only,, 1 <p < oo orcy is ideal-triangularizable.

Proof:  Since each discrete Banach lattice with order continuous norm has an
unconditional basis, § is decomposable by Theorem 2.5.4. Let Ji.J; €llat(8) with
Ji C J2 and dim J,/J; > 2. Use Lemma 3.3.4 to verify that both J, and J,/J; are
discrete Banach lattices with order continuous norms. Now consider the compression
$of S to J2/J1 and use Theorem 2.5.4 to show that $ is decomposable. This shows

that § satisfies the condition of Lemma 3.1.1 and hence it is ideal-triangularizable.
]

3.4 Ideal-Triangularizability of Collections of
Operators on General Banach Lattices

The following proposition and its corollary give us other examples of ideal-triangul-

arizable collection of operators on certain Banach lattices.

Proposition 3.4.1 Suppose E is any Banach lattice, € C B(E) and T € €.
Suppose {T'} satisfies the condition of Lemma 3.1.1. Then € is tdeal-triangularizable
if either T dominates all of the elements of €, or all of the elements of € are positive

operators and T majorizes €.

Proof: Apply Lemma 0.4.5 and Lemma 2.3.13.. and Lemma 3.1.1.
|

Corollary 3.4.2 Suppose € CB(E), T€ € is a quasinilpotent positive operator,
and either (a) T dominates all elements of € or (b) all elements of € are positive and
T majorizes €. Then € is ideal-triangularizable in each of the following cases;

(1) E is a closed ideal of an AM-space,

(i1) E is a discrete Banach lattice with order Continuous norm.
(iii) E is an AL-space and T is weakly compact,
(

iv) E is any Banach lattice and T is compact.

Proof: Apply the results obtained in Sections 3.2 and 3.3, and Proposition 3.4.1.



An application of Proposition 2.3.15 establishes the ideal triangularizability of a
semigroup of operators which is generated by a certain pair of positive operators on

Banach lattices.

Proposition 3.4.3 Suppose E is any Banach lattice. T € B(E) is a nonzero
quasinilpotent positive operator, and there erists a non=ero operator S € {T}/, that
dominates a nonzero compact operator K € B(E). Then the multiplicative semigroup

S generated by {S.T} is ideal-triangularizable.

Proof: Since T is a quasinilpotent positive operator. there exists ro > 0in E such
that T is quasinilpotent at ro. and hence, by Proposition 2.3.15. § is decomposable.
Suppose J;,J; € Ilat (8) such that J, C Ja. It is easy to see that J;.J, € Ilat (K)
and, by Lemma 0.4.5. the compression S of S to J2/J1 dominates the compression A
of A" to J2/J;. Use Lemma 0.4.4. Lemma 0.4.5 and Proposition 2.3.15 to prove § is
decomposable, if dim(J,/J;) > 2. Now apply Lemma 3.1.1.

]

Proposition 3.4.4 Suppose [Z.q] is a C-trace quasi-normed operator ideal. Sup-
pose also that E is a reflerive Banach lattice. Let S be a semugroup of quasinilpotent
positive operators that is generated by the union of a finite subset € of I(E) and a
positive operator. B € B(E). [f some power of B. say B™. is compact. then S is

tdeal-triangularizable.

Proof: We show that § satisfies the condition of Lemma 3.1.1. Let J1.Jd2 €llat(8)
with J; € J; and dim(J;/J;) > 2. Since E is a reflexive Banach lattice. Jo/J; is a re-
flexive Banach lattice. Now an easy verification and an application of the appropriate
lemmas in Section 0.4. show that all conditions of Theorem 2.2.1 are satisfied with
J2/J1 in place of E. the compression § of § to J2/J1 in place of 8. the compression
of € of € to J2/J; in place of €. and the compression B of B to J2/J1 in place of B.

Thus § is decomposable.
a
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Proposition 3.4.5 Suppose [Z,q] is a C-trace quasi-normed operator ideal. Sup-
pose also that E is a reflexive Banach lattice. Let S be a semugroup of quasinilpotent
posttive operators that is generated by a countable subset © of I(E). then 8 is ideal-

triangularizable.

derive the desired result.

Proposition 3.4.6 Suppose [Z,q] is a C-trace quasi-normed operator ideal. Sup-
pose also that E is a reflexive Banach lattice. Let S be a semigroup of quasinilpotent
positive operators in I(E) that is separable in the strong operator topology of B(E).

then § is ideal-triangularizable.

Proof:  Observe that: (a) For any subspace M € Lat(S) the semigroup Sy =
{Sluw : S € 8} is separable in the strong operator topology of B(M). (b) If
M, N € Lat(8) with M C .V then the compression § of § to N/M is separable in the
strong operator topology of B(N/M).

Now proceed as in the proof of Theorem 3.4.4 and use Corollary 2.2.3 to conclude

the claim.
[ |

Using Proposition 2.2.5, we may find another ideal-triangularizability result. for

a semigroup of quasinilpotent positive operators in C-trace ideals.

Proposition 3.4.7 Let [Z.q] be a C-trace quasi-normed operator ideal and let
E be a reflexive Banach lattice. Suppose 8 is a semigroup of quasinilpotent positive
operators which is a countably generated subset of 9B( E). If there exists an integer

k € N such that 8¢ C Z(E). then § is ideal-triangularizable.

Proof:  First, use Lemma 1.1.15 and proceed as in the proof of Corollary 1.4.5.

Then, use Proposition 2.2.5 to show that § satisfy the condition of Lemma 3.1.1.
|



3.5 ldeal-Triangularizability of a Semigroup of
Integral Operators on C(K)

Under suitable conditions, we can say more about a semigroup § of quasinilpotent
integral operators on £ = C(K), each of whose members has a non-negative lower

semicontinuous kernel. To do this we need the following lemmas.

Lemma 3.5.1 Let p be a finite regular Borel measure on Q, Qg a nonempty
compact subset of Q, and hg € C(Qy). Then, given x > 0. there exrist a closed subset
A of B = Q\Qq and a continuous extension h of hg to Q such that the following hold:

(a) wu(B\A)< &
(b) h(z) = 0 for all x € A.
(c) [h(z)] £ |lholl~ for all z € Q.

Proof: If Qg = Q there is nothing to prove. Otherwise, use Tietze Extension
Theorem (cf. [43, Theorem 20.4]), to find a continuous extension g of hg to Q such
that |lgllec = [lAollsc. Then use the regularity of i to find a compact subset A of
B with p(B \ A) < &. This can be done as 4 is also a finite measure. Since Q is
a Hausdorff space A is a closed subset of Q. Now use the normality of Q and the
fact that AN Qo = 0 to find a continuous function f on Q such that f(A) = {0}.
f(Q) ={1},and 0 < f(r) <1l forall r € Q. Finally define h = fg. Then h is a
continuous function on Q.

h(y) = f(y)g(y) = 1- holy) = ho(y) for all y € Qo,
h(t) = f(t)g(t) =0-¢(t) =0 for all t € A,
and
[h(2)] = f(£) 9()] < lg(2)] < lholloe  for all z € Q.
]

Lemma 3.5.2 Assume all the conditions of Lemma 3.5.1 and let I be a bounded

integrable function on Q) x Q0. Then, given € > 0. there ezists a continuous extension



0]
Ut

h of hg to Q such that
| / K (z, t)h(t)du(t) — / K (2, t)ho(t)du(t)| < e.
Q Qo

foral z € Q.

Proof: Put & = €/(M||ho||), where M is a bound for A", and use Lemma 3.5.1
to find a continuous extension A of kg to Q with the stated properties given in that

lemma. Then

/[\'(J;.l)h(i)dﬂ(ﬂ:/ [{(z,t)h(t)(lp(t)+/[\’(.r,t)h(t)dy(t)
Q Qo A
+ [ K(z.t)h(t)du(t)
B\4

=/ [\’(x,t)ho(t)dy(t)-i-/ K (z.t)h(t)du(t).
Qo

B\A

for any z € Q. and hence

| / K (2. t)h(1)du(t) — / K (2. )ho(t)du(1)] < / K (. )] - |h(8)|dp()
Q Qo B\4

< Mllhollop(B\ A) < kM|lholl = €.

for all r € Q.
n

The following lemma is known and was implicity used in [44]. For completeness

we state and prove it here.

Lemma 3.5.3 Let J be a closed ideal in C(K). Then the quotient C(K)/J can
be canonically identified with C(Ky) where Ko is a suitable closed subset of K.

Proof:  Since J is a closed ideal of C'(K), there exists a closed, and hence compact,
subset Ky of K such that

J={feC(K): f(t)=0 for all teKy}.
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Define p : C(Ko) — C(K)/J by p(fo) = f+J. where f is a continuous extension of f;
to K. Tietze's Extension Theorem and the structure of J imply that p is well defined,
and it can be easily verified that p is linear, one-to-one, onto, and p~'(f + 1) = fo.
where fo = flk,.
We show that [|p(fo)]l = || folleo. First observe that for each feC(K)and g€ J
sup{|(f +g)(z)| : £ €K}
=sup {{I(f +9)(x)] : = € K\ Ko} U {If(z)] : = € Ko} }.

and hence || follso < [If + gllo for all g € J. This shows that || folls < [If + J||. On
the other hand, if we use Tietze’s Extension Theorem to find a continuous extension

h of fo to K with [[A]l = I foll~, then
ILf+ 3 =Na+ I <kl = (| follos -

Thus p is an isometric isomorphism from C(K,) to C(K)/J.
a

Lemma 3.5.4 Suppose i is a reqular Borel measure on K. Let T be an tntegral
operator on C(K) with a bounded kernel K'r. If J €llat(T), then the operator T’ :
C(K)/J — C(K)/J can be identified with an integral operator.

Proof: Suppose Ky is a closed, and hence a compact. subset of K such that
J={feC(K): f(t)=0 for all teko}.

Since Ky is a Borel subset of A_. the restriction o of 1 to Ko is well defined. Define

To on C(Ky) by
Tofoly) = A Kr(y. ) fo(t) do(t) Yy € Ko.

We claim that T, = p‘lj’p. where p is as in Lemma 3.5.3, and hence T can be
identified with the kernel operator T,. To prove the claim, let fo € C(Ky). Then
p‘ITp(fg) = (T f)|k,. where f is any continuous extension of foto K. Let € > 0 and

use Lemma 3.5.2, with Q = K. Q¢ = K,. and ho = fo, to find an extension k of f; to
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K such that
| [ rto- b dutt) — [ By, 05u0e) dutt)] <.
K Ko
for all y € Ky. Since

(T Plkaly) = (Th) |y (y) = /x Kz(y, )h(t) du(t)

and

Tofoly) = / Kr(y. ) fo(t) duo(t) = /x Kr(y. t) folt) dp(t).

Ko

for each y € Ko . ||p~' To(fo) — To(fo)lls < €, and hence p='Tp = Ty, as desired.
a

Lemma 3.5.5 Assume all the conditions of Lemma 3.5.4. Then T|y can be

identified with an integral operator.

Proof: Let Kg be as in the Proof of Lemma 3.5.4. Put & = K \ Ko. then U is
locally compact and J is isomorphic to Co(U). In fact 7 : J — Co(Uf) defined by

7(f) = flu is an isometric isomorphism. Now for each g € Co(U) we have
Tr~'g =T\ f = (Tf)lu .-
where f € Jis such that fl;; = g. But Tf(zr)=0.forall z € Ko. and. for each r € U.

T f(x) =/’C[\'T(I~,t)f(t)dﬂ(t)=/ Nr(z, t)g(t) dpu(t).

(44

where iy is the restriction of u to U, hence T|; can be identified with an integral
operator on Co(lf).
[ ]

We are now ready to state and prove the main result of this section.

Theorem 3.5.6 Let i be a reqular Borel measure on K and suppose § is a
semigroup of quasinilpotent integral operators on C(K) by way of the measure p. each
of whose members has a non-negative bounded lower-semicontinuous kernel. Then S

is ideal-triangularizable.
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Proof: By Theorem 2.4.4, 8 is decomposable. Let J;,J, € . [at(8S) such that
Ji € J; and dim(J2/J;) > 2. Let § be the compression of § to C(K)/J,. By Lemma
3.5.4. each T € § can be identified with an integral operator on C(Ky) by way of the

regular Borel measure p|x,. where Kg is a closed subset of K such that
h={feC(K): f(t)=0 for allt € Ko}.

By Lemma 3.5.5, since J,/J; €llat§ for each T € $, each Tl(Jz/Jl) can be identified
with a non-negative integral operator on Co(i4p) by way of the regular Borel measure

e, where Up = Ko \ Koo and Kgg is a closed subset of Ko such that
J2/J1 = {fo € C(KQ) : fo(t) =0 for all t € Koo} .

Since. for each T € 8. the compression of T|y, of T|y, to Jo/J; is ]:'I(Jz/_jl). and since

for such T. TI(leJl) is. by Lemma 0.4.4(a). a quasinilpotent operator. the semigroup
8-'2 = {TI(J2/JI) : T € 8}

can be identified with a semigroup of quasinilpotent integral operators on Co(Up) each
of whose members has a nonnegative lower-semicontinuous kernel. Therefore: $ 1, Is
decomposable by Theorem 2.1.4. This shows that § satisfies the condition of Lemma

3.1.1 and hence it is ideal-triangularizable.



Chapter 4

Examples, Remarks,

Consequences, and Open Questions

In this chapter we present examples and comments on some questions concerning the

results obtained in the previous sections.

4.1 Indecomposable Quasinilpotent Positive
Operators

First we recall the following definitions, notations. and facts from [18]. Consider
a measure space (X'.A,pu). Redefine the concept of equality: if two sets A and B
in A are such that u(A A B) = 0, consider them equal and write 4 = B (mod [p]).
With the altered concept of equality observe that u(4) = w(B)if A= B (mod [y]).
Besides. if A, = B, (mod [u]) for all n € N. then

ANBi=A4\B: and | JAw=]Ba (mod [4]).

n=1 n=1
Therefore, after the alteration of the concept of equality, A is a o-algebra with respect
to the familiar set operations, x is unambiguously defined on A, and g is a positive
measure. We shall use the symbol A(x) to denote the o-algebra A with equality

interpreted modulo p and call (A(g), ) a measure algebra.

39
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Remark 4.1.1 Fix 1 < p < oo. It is obvious that X4 = XxB a.e. [u], whenever
A= B (mod [u]). Thus

/édﬂ=/¢x.4dﬂ=/éxfzdﬂ=/¢dﬂ o€ F,
A B

where F), is the set of all measurable simple functions ¢ on X’ with
r({r€X : 6(z)#0}) < 0c.

Since F), is dense in E = L,(X, A, u) (cf. [43. Theorem 3.13]), this shows that, if

f € E, we can define
[ frdu = [1ipd.
(4] A

where [A] = {B € A : A = B (mod [g]}. Therefore, we may consider A(u) as an
algebra of sets and deduce that E and L,(X.A(p),u) are identical.

A mapping @ of a measure algebra (A(x). 1) into a measure algebra (B(v).v) is

called an isomorphism if ® is a one-to-one mapping from A onto B such that
(AN B) = ®(A)\ &(B). &((J 4a) = | 0(An).
n=1 n=1
and

#(A) = v(9(4)).

whenever A, B. and A, are elements of A(y), n € N. If such an isomorphism exists
between two measure algebras. we say that they are isomorphic. Two measure spaces

(X.A,p) and (V.B,v) are isomorphic if (A(#).p) and (B(v),v) are isomorphic.

An element A # 0 in a measure algebra A is called an atom if B C A can occur

only for B= A and B = 0.

Let F(u) denotes the set of elements of finite measure in A(p). Then F(u) becomes

a metric space if we define

d,(A, B) = p(AAB) A.B € F(u).
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This metric space is always complete, and the mappings A — A®, (A, B) — AUB.
and (A. B) — AN B are continuous. A measure algebra (A(u), ) is called separable

if F(p) is separable.

Let m be (the) Lebesgue measure on [0, 1] and M the algebra of all m-measurable
subsets of [0, I]. It is known that (M(m), m) is a separable measure algebra without
atoms. The following proposition asserts that, it is (up to an isomorphism) the only

such measure algebra.

Proposition 4.1.2 (Carathéodory) Let (X, A.pu) be a measure space with
#(X) =1 and let (A(pn)p) be its associated measure algebra. If (A(u), ) is separable.
then there is an isomorphism ® from (A(p), p) into (M(m),m). If ® is onto then
A(p) has no atoms: if A(u) has no atoms then ® can be taken to be onto.

Suppose (X, A. i) is a measure algebra, with 1(X) = oc. such that its associated
measure algebra is o-finite and non-atomic. Let A, € A(p). It can be shown that
for every extended real number a with 0 < o < #(Ag). there exists an element A in
A(p) such that A C 4g and u(A) = a. It follows that there exists a sequence {X,}
of pairwise disjoint elements in A(u) such that X = Unz, Xn and u(X,))=1,neN.
Now if (A(p). ) is separable, an application of the previous proposition yields the

following;

Corollary 4.1.3 Let m be Lebesque measure and let B be the algebra of all
m-measurable subsets of the real numbers R. Suppose (X.A.pu) is a measure space.
with p(X) = oo such that (A(p), 1) is separable, non atomic. and o-finite. Then. the

measure algebras (A(p), 1) and (B(m),m) are isomorphic.
All of the above facts can be found with more details in [18. sections 40 and 41].

The following lemma shows that every Banach lattice L,(X,A,pu). 1 < p < oo,
subject to certain not too restrictive conditions, is (up to an isomorphism) the Banach

lattice L, on [0, 1].
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Lemma 4.1.4 Let (X, A, ) be a measure space such that p is finite and (A(u), )
is a separable measure algebra with no atoms. Let m be the Lebesgue measure on
Y = [0.1] and let M be the algebra of all m-measurable subsets of Y. Then for
each 1 < p < oo the Banach lattices Ly(X.A,p) and L(Y.M,m) are isometrically

isomorphic.

Proof: According to Remark 4.1.1 it is enough to show that the Banach lattices
E=Ly(X.A(n),p) and F = L,(Y.M(m), m) are isometrically isomorphic.

Suppose S, and S,, are the respective sets of all measurable simple functions on
X and Y. Let

Fo={6€5, :pu{zeX:o(z)#£0}) <oo}.

and
Frn={veS, :m({yeY: :¥(y)#0} <oc}.

It is known (cf. [43 Theorem 3.13]) that F, and F,, are dense in E and F, respectively.

Pick ¢ € F,. Suppose ¢ = Z;;l a;x 4, 1s the canonical representation of 4. i.e.
a; € R are distinct and 4; € A(g) are disjoint, | < i < n. Define =T @iea,)
where @ is the isomorphism from (A(u). 1) onto (M(m), m) in Proposition 2. Then
v € F, and the relation Tyé = v defines a mapping Ty from F, into F,,. It is easy to
verify that T is linear. Since ® is onto. Ty is also onto. The fact that ® is one to one
implies that the image of each simple function, that is represented in its canonical
form. is a simple function in its canonical form. Therefore if Toor = To,. we conclude

that ¢; = 02 and hence T} is one-to-one. We also have

IToolly = [ MoePdm =" laf [ voradm = 3 laiPrm(a()
i=1 1 4 i=1

=3 lalPu(4) =3 Jaip /\ \adp = /Y 6P = ]2
=1 =1 < ¢

and hence ||To9||, = |||, for all 6 € F,. Finally

n

Tool =) aixe(ayl = D laidxea = To(l6l) -
=1

=1
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Thus |Tog| = To(|9]) for all © € F,. These properties of Ty show that the extension
T : E — F of Tp, defined by

Tf= lim To(¢y),

where {¢,}2, is a sequence in F, that converges to f, is an isometric isomorphism

that is also a lattice homomorphism from E onto F.
|

With the same procedure as the one used in the proof of the previous lemma and

by using Corollary 3 we can also prove the following.

Lemma 4.1.5 Let (X.A,p) be a measure space such that u(X) = oo, p is o-
finite. and (A(u), p) is separable with no atoms. Then, for each 1 < p < oo, the
Banach lattices L,(X,.A,p) and Ly(R.M.m), where m is the Lebesque measure and

M is the algebra of all m-measurable subsets of R, are isometrically isomorphic.
We now recall the following fact from [43].

Proposition 4.1.6 Let [ be the circle group, © the Haar measure on . and
T the algebra of all ©-measurable subsets of I'. Then there exists an indecomposable

quasinilpotent positive operator on L,(I.T7.0),1<p< x.

Using Proposition 4.1.6, the fact that Ly(T'.T.0) is isometrically isomorphic to

L,([0,1].M.m). and Lemma 4.1.4. we can deduce the following:

Lemma 4.1.7 Let (X.A.p) be a measurable space such that u(X) < oo and
(A(p), 1) is a separable measure algebra with no atoms. Then there exrists an inde-

composable quasinilpotent positive operator on L(X.A.p), l <p<.

To extend the above lemma to the case of o-finite measure we should first recall
the following. Let {E;}32, be a sequence of normed vector lattices. It is known that,

for 1 < p < oc, the space

o0

@Eiz{l':(d;l,xg’xs’...) € HEit [ n ”.‘L'i”p}l/p<oo}
P 1

=1 =
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is a normed vector space once we define

(=7}

el = | i_oj lede]” V= (ononz ) € []E.

Let z = (z1.22.23.--- ),y = (Y1, 42.93,---) € D, Ei. Under the ordering z > y
whenever r; > y; holds for all ; € N, the space EBP E: is a normed vector lattice. It is
a Banach lattice if and only if each E; is a Banach lattice. It can be verified that every
operator T : @p Ei— &P o F: between two direct sums of normed vector lattices can
be represented by a matrix T = (T3;). where T;; : E; — F; are operators defined
appropriately. Finally, each closed ideal J of @p E: is of the form J = @p Ji, where

each J; is a closed ideal of E;.
Now consider the following example.

Example 4.1.8 Let E = @p E:, where E; = F = L,([0,1].A.p). 1 < p < oc. for
each : € N. Define T in E by

[ s s (hs (s

B)S ()S (HS (&)
T=|hHs S (LS (&)s

(DS (XS (XS (2)S

B T

where S is an indecomposable quasinilpotent positive operator on F that has been

found in Proposition 4.1.7. Since E=F@®/, and T = S ® R. where

-

&

I
W= dafr= N
Sl wi— mi= -
Bl Gl e e
2l 8- Gl o

is an operator on [, T" = §™ @ R" for all n € N. Thus 1T = (IS*HUIR™]) for all

n € N and hence r(T') = 0 as S is a quasinilpotent operator.
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Let J be a closed ideal of E that is invariant under T. As we mentioned above,
we have J = @p J; where each J; is a closed ideal of F, ; € N. Suppose, if possible,
that J is nontrivial. Then there exists £ € N such that J, # {0}. With no loss of
generality we may assume that k=1. Choose a nonzero positive element f € J; and
consider the element r = (x,.z3,23,---) € E with z; = fand z; =0 for all i > 2.

Then z € J and we must have Tz € J. Since

1 [ s ]
Tz=T 0 = (%)S(f) (*)
0|  [(})S(f)
L

and since the null ideal Ns is not {0}, as S is indecomposable, J; # {0} for all : € N.
Thus there exists at least one &£ € N such that J, # F. Once again. with no loss of
any generality assume k = 1; (x) shows that S(f) € J1 for each f € J; which means
Ji is invariant under S contradicting the fact that S is indecomposable. Therefore
the only closed ideals that are invariant under T are the trivial ideals. This means T
is indecomposable.

The above example. the fact that. for each 1 S p<oc, L(R,.M.m) is isomet-

(o )
n=1

rically isomorphic to Ly([0.1].M.m), and Lemma 4.1.5. imply the following

Lemma;

Lemma 4.1.9 Let (X, A,pu) be a o-finite measure space such that u(X) = oc.
If (A(u). pt) is a separable measure algebra with no atoms, then, for each 1 < p < o,

there erist an indecomposable quasinilpotent positive operator on L,(X. A, pu).
We may summarize our previous results in the following Theorem:

Theorem 4.1.10 Suppose (X, A,pu) is a o-finite measure space. If (A(u), )
ts a separable measure algebra with no atoms, then there erists an indecomposable

quasinilpotent positive operator on L(X.A.p),1<p < oc.

Remark 4.1.11 Recall that for each measure space (X, A, ), the Banach lattice
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E=L.(X.A.u)is an AM-space with unit (cf. [46, Example [1.7.3]). Therefore each

quasinilpotent positive operator on E is decomposable by Theorem 2.1.1.

It is natural to ask what would happen if, in the Theorem 4.1.10. {4 was not o-
finite or the measure algebra (A(u), 1) was not separable or (A, i) has an atom? The

following lemma is a partial answer to this questions.

Lemma 4.1.12 Let (X.A, ) be a measure space and 1 Sp<o. Ifu is not o-
finite or the measure algebra (Alu). i) has an atom then every quasinipotent positive

operator on E = L,(X,A.pu) is decomposable.

Proof:  Suppose p is not o-finite. Then. by [46. Example I1.6.1]. E does not
contain any quasi-interior positive element and hence every positive operator on E is
decomposable by a Corollary of [46, Proposition I11.8.3].

Now let (A(u).u) be a measure algebra with an atom. say 4. Observe that
f = \.a is an atom for E,. Therefore every quasinilpotent positive operator on E is

decomposable by Theorem 2.1.1.
|

4.2 Miscellaneous Examples

The first example. which was introduced in [32]. shows that the condition of

reflexivity cannot be omitted from Theorem 1.2.1.

Example 4.2.1 Let X be a non-reflexive Banach space and let 2 be the norm-
closure of §(.X') in B(X). Then A" contains finite-rank operators and it is transitive.
however F(X=) ¢ A~.

The assumption F(.X) = Z(X) is essential in Lemma 1.3.2. as the following

example will show.

Example 4.2.2 Let X be a reflexive Banach space without the approximation
property. For such X we know that F(X) is not norm-dense in RK(X). Using the

Hahn-Banach Theorem we can find a norm-continuous nonzero linear functional on
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£A(X) such that f is zero on the norm-closure of 5(X) in &(X), however 8 = F(X) is

not a reducible semigroup.

The next example shows that the functional trace is not norm-continuous on F(.X)

even if X is a Hilbert space. Hence £(X) is not even a trace ideal.

Example 4.2.3 Let H be a separable Hilbert space and let {e:}2, be an or-
thonormal basis for H. For each n € N define T,on {e.e---} by
T,,e,- = %e,— if ¢ S n
The;=0 if: > n.
and extend T, by linearity to H. An easy verification shows that each T}, is a finite-
rank operator. tr(T,) = 1 for each n, and T, converges in norm to 0. however
lim tr(T,) # 0 = tr(0).
As the following example shows, there are different quasi-normed operator ideals

even on reflexive Banach spaces.

Example 4.2.4 Consider X = [, where | < p < oc and p # 2. We know that
X is a reflexive Banach space which is not isomorphic to a Hilbert space. Hence

N(X) # S3(X) and V(X)) # [I3(X) by [26. Corollary 4.b.12].

The condition of convexity imposed on a semigroup of quasinilpotent positive
operators is very strong. A trivial example is the one that is generated by a single
quasinilpotent positive operator. The following non-trivial examples illustrate the

usefulness of the results that were found in sectjon 2.3.

Example 4.2.5 Let E=1,, 1 < p < 00, and let X(E) be the set of all compact

operators on E. Let
S={TeX(E):T= (@ij)ijen, with a;; = 0 if i > j and a;; >20if i< }.

Then S is a convex semigroup of quasinilpotent positive operators.
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Example 4.2.6 Suppose m is the Lebesgue measure on X = [0.1] and M is the
algebra of all m-measurable subsets of X. Let E = Ly(X ., M. m) and let S be the
set of all positive Volterra operators on E. i.e. S is the set of all operators T € B(E)
for which there exists a positive function A in La(m x m), with K(z,y) = 0 when

zr < y, such that

(Tf)(z) = / " Krle. ) f(y) dy feE.

Then S is a convex semigroup of quasinilpotent positive operators (cf. [19, Problems
186 and 187}]).

Some other examples of convex semigroups of quasinilpotent positive operators

can be found by using Lemma 2.3.8.
In the following we shall construct a concrete process of ideal-triangularization.

Example 4.2.7 Let E = L?[0,1],1 < p < oo, or E = C'[0,1], and let V be the

Volterra integral operator on E. i.e, the indefinite integral
Vi = [ ) de.
It is known that V is a compact quasinilpotent operator on E. If we define
Ex={f€E: f>0ae on0.1]}.
where E = L?[0, 1] and
Er={f€E: f(t)>0 vie[0.1]},

where E = C[0.1], then it is also obvious that V' is a positive operator.

For each s € [0, 1], let
k={f€E: f=0a..0n[0,s]}

if E= LP[0.1], and let
s={f€E: f=00n[0.5]}
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if E= C[0,1]. In either case it is clear that the I, form closed ideals of E which are
invariant under V. It was shown. in [12], that in both cases. such subspaces(ideals) are
the only closed invariant subspaces(ideals) of the operator V. In a similar discussion
to that of {41, Example 4.3.12], it can also be shown that. in both cases, the family
F={l; :0<s<1}is a maximal chain, and hence F is a triangularizing ideal

chain for V.

Example 4.2.8 Let K = [0,1] and let E = C(K). For each nonzero f ¢ E.,
let o and 3 be two distinct positive numbers such that [a, 8] C [0.1] and f(¢) > 0
for all ¢ € [a. 3]. Let g be a continuous function on [, B] such that g(¢) > 0 for all
t €[a,8]. fla) =g(a), f(B) = g(8), and f(t) > g(t) for all t € (a,3). Define k on
[a, 8] by h(t) = 2f(t) — g(t). Then *k is also continuous on [, 3], h(t) > 0 for all
t € [a.f]. f(a) = h(a). f(B) = h(B), and A(t) > f(t) for all t € (a. 3).

Now if we define g, & on [0,a] U [, 1] by

g(t) = h(t) = f(t) Vte[0.a]U[8,1],

then it is easy to show that: g,h € E, .

ft) = M vie (o, 1],

and g,k are not positive multiples of f which means E has no atoms. This shows
that if we consider the Banach lattice F = R & E. the closed ideal E of F has no
atoms. Therefore we cannot apply the procedures used in Chapter 3 to establish the
ideal-triangularizability of a quasinilpotent positive operator on a Banach lattice with

atoms.

Suppose [Z,®] is a quasi-normed operator ideal and X is a reflexive Banach space
such that Z(.X) is a C-trace ideal. Using Theorem 1.4.1, we know that every semi-
group 8 of quasinilpotent operators on X that contains a nonzero element of Z(X)
is reducible. However, we do not know, in general, if § is triangularizable. This is
because the same procedure, as the one used in the proof of Corollary 1.4.2. cannot

be applied to prove this triangularizability, as the following example shows.
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Example 4.2.9 Consider X = [,, 2 < p < oc. We know that X is a reflexive
Banach space. We also know that X has the approximation property, as it has a basis,
and hence 9(X) is a C-trace ideal by Corollary 1.1.8. By Theorem 2.d.6 of [28], X has
a subspace M which does not have the approximation property, and hence M(M/{0})
is not a C-trace ideal. Therefore; if § is a semigroup of quasinilpotent operators on
X that contains a nonzero element of Z(X) and if M € Lat(8), then we cannot apply

Theorem 1.4.1 to the compression $ of § to M/{0}.

4.3 Remarks, Consequences, and Open Questions

Remark 4.3.1 If we examine the proof of Theorem [.3.8, we will realize that
the thegrem is also true for the normed operator ideal £(X) whenever X is a reflexive
Banach space with A.P.. This is because in such a case:

(1) S—Lﬁ”." = R(X) by Proposition 1.1.16,

(2) we can certainly apply Corollary 1.1.7 of [§], and

(3) for the linear functional f we have
IA(T)] = |er(BT)| < |tr(B)|-|IT|| VT € &(X).

Therefore f is a norm-continuous linear functional on R(X), and hence all the con-

ditions of Lemma 1.3.2 are satisfied and we can state:

Theorem 4.3.2 Let X be a reflezive Banach space with A.P.. Suppose § C &(X)
i a semigroup such that r(S) < 1 for all S € S. If § contains an operator A that is

not a contraction under any renorming of X, then $ is reducible.

Considering Example 4.2.3. Theorem 1.3.2 shows that, under suitable conditions.

Theorem 1.3.8 is also valid for some operator ideals that are not C-trace ideals.

Remark 4.3.3 Even if a Hilbert lattice H is under discussion. one cannot say
that in a semigroup of quasinilpotent positive operators the sum of two quasinilpotent

positive operators is quasinilpotent. This was observed by P. Guniand in [17].
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Remark 4.3.4 If the semigroup S, in Theorem 1.3.9, is commutative the con-
dition on the spectral radii is fulfilled and the result is trivial. However, there are
many nontrivial examples of non-commutative semigroups satisfying the hypothesis
of Theorem 1.3.9 even in finite dimensions. For example every semigroup of idempo-
tents is triangularizable by [37], but not necessarily commutative by any means. For

other examples of such semigroups see [14].

In Chapters 2 and 3 we observed that under suitable conditions a semigroup of
(compact) quasinilpotent positive operators is decomposable. Some examples are
Theorem 2.2.1. Theorem 2.4.4, and Theorem 3.3.9. The results of Section 4.1 show.
in general, that this is not always the case. However, it seems that the following

question has an affirmative answer.

Question 4.3.5 Is a semigroup of compact quasinilpotent positive operators. on

an arbitrary Banach lattice E, decomposable?

Considering Lemma 2.2.4 and the results of [3]. it is natural to ask the following

(in some sense) strong version of Question 4.3.5.

Question 4.3.6 [fa compact operator on a Banach lattice E majorizes an element

of a semigroup 8§ of quasinilpotent positive operators on E . must § be decomposable?

Remark 4.3.7 Suppose E is a Banach lattice such that E; does not contain any
quasi-interior point. By Corollary to the proposition II1.8.3 of [46], any semigroup
of positive operators in B(E) which is separable in the strong operator topology of
B(E) is decomposable. In particular, any positive operator on E is decomposable.
Therefore Question 4.3.3 is much more interesting whenever a Banach lattice E, that
possesses quasi-interior positive elements, is under discussion. This also shows that it
seems to be unnecessary to weaken the hypothesis of Theorem 2.3.4 by withdrawing

the condition on E to possess a positive quasi-interior point.

Theorems 2.1.1. 2.3.9, 2.3.10, 2.4.4, and, 2.5.4 suggest the following question about

a semigroup of quasinilpotent positive operators on C (K).
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Question 4.3.8 [s a semigroup of quasinilpotent positive operators on C(K)

decomposable?

Remark 4.3.9 [t is known that there are o-finite measure spaces (X, A, u) for
which (A(g),p) is a non-separable measure algebra with no atoms. For example.

consider the family of topological spaces
{Ys : a€R and X, = [0,1]}

and let (X', T) denotes its corresponding Cartesian product space. Let U be an open
subset of X. Then &/ = HQGR U, . where, for each o, U, is an open subset of [0.1] and
U, = X, for all but a finite number of indices. Define

v(U) = H m(U,) .

a€ER
Then it can be verified that v induces a finite measure ¢ on X that has no atoms.
With this measure pu, it can be verified that the space Lo(X ., A, u), where A is the
algebra of all u-measurable subsets of X, is not separable. Thus, by [18, Section 42.1].

the measure algebra (A(y). ) is not separable.
At present, however, we do not know the answer to the following question:

Question 4.3.10 Suppose (X.A.u) is a o-finite measure space such that
(A(p).p) is a non-separable mecasure algebra with no atoms. Does there exists an

indecomposable quasinilpotent positive operator on L,(X.A.u). 1 <p<oc)?

Remark 4.3.11 Suppose T € B(E) is quasinilpotent at a nonzero element roof E
and let | be an ideal of E which belongs to llat(T). Since it is quite possible that rq ¢ .
the procedure given in Chapter 3 may fail to prove the ideal-triangularizability of
classes of positive operators which contains compact operators that are quasinilpotent

at a point. Therefore, one may ask the following question.

Question 4.3.12 Suppose E is an arbitrary Banach lattice. Is every compact
positive operator T € B(E). that is quasinilpotent at a non-zero positive element,

ideal-triangularizable?
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Remark 4.3.13 In Section 3.3 we observed that a semigroup of quasinilpo-
tent positive operators on a discrete Banach lattice with order continuous norm is
ideal-triangularizable. In fact the existence of an atom in each closed ideal of such
Banach lattices is one of the keys in finding ideal-triangularizing chains. However. as
we observed in Example 1.2.8, the procedure of ideal-triangularizability of a single
quasinilpotent positive operator given in Section 3.3 is not applicable when a general

Banach lattice with atoms is under consideration. Therefore it is natural to ask:

Question 4.3.14 [s a quasinilpotent positive operator on a Banach lattice with

atoms ideal-triangularizable?



Bibliography

[1] Abramovich, Y.A., Aliprantis, C.D., and Burkinshaw, O.. On the spectral radius
of positive operators, Math.Z. 211 (1992), 593-607.

. Invariant subspaces of operators on l,-spaces. Journal of Functional Anal-

ysis 115 (1993), 418-424.

- Invariant subspace theorems for positive operators, Journal of Functional

Analysis 124 (1994), 95 - 111.

. Invariant subspaces for positive operators acting on Banach space with

basis. Proceedings Amer. Math. Soc. 123 (1995), 1773-1777

[5] ———. Local quasinilpotence, cycles and invariant subspaces. in: N. Kalton. E.
Saab. and S. Montgomery-Smith eds.. Proceedings of the Conference [lteraction
between Functional Analysis. Harmonic Analysis. and Probability, (Lecture Notes

in Pure and Applied Mathematics) 175 (1995), Marcel Dekker, New York, 1-12.

[6] ———. The invariant subspace problem:some recent advances, To appear in :

Rend. Istit. Mat. Univ. Trieste.

[7] Aliprantis. C.D., and Burkinshaw. O.. Positive Operators, Academic Press.. New

York/London, (1985).

(8] Aupetit. B., Propriétés Spectrales des Algébres de Banach. Lecture Notes in
Mathematics 735, Springer, Berlin, 1979 .

104



[9]

[10]

[13]

[14]

[13]

[16]

[17]

105

Barnes, B.A.. Density theorems for algebras of operators and annihilator Banach

algebras, Michigan Math. J. 19 (1972), 149 - 155 .

Choi, M. -D., Nordgren, E.A., Radjavi. H., Rosenthal, P.. and Zhong, Y.. Tri-
angularizing a semigroup of quasinilpotent operators with nonnegative entries.

[ndiana Univ. Math. J. 42 (1993) 15-25

Conway. J.B., A Course in Functional Analysis, New York. Springer-Verlag, st
Edition, 1985.

Donoghue. W.F.. The lattice of invariant subspaces of a completely continvous

quasi-nilpotent transformation, Pacific J. Math. 7 (1957) 1031-1035.

Enflo, P.. 4 counterexample to the approzimation property in Banach spaces,

Acta Math. 130 (1973) 309 - 317 .

Fillmore, P., MacDonald. G., Radjabalipour. M., Radjavi. H.. Towards a classi-

fication of marimal unicellular bands, Semigroup Forum 49 (1994) 195-215.

Grothendieck. A. Sur les applications linearés faiblement compactes d ‘espaces du

type C(K). Canad. J. Math. 5 (1953) 129-173. MR 15. 438.

- Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math.

Soc. 16 (1955).

Guinand, P., The structure of quasinipotent operators. Dissertation, University

of Toronto. (1987).

Halmos. P.R.. Measure Theory, New York. Springer-Verlag. 1974.

» A Hilbert Space Problem Book. 2nd Edition, New York. Springer- Verlag,
1982.

Holmes, R.B.. 4 formula for the specrtral radius of an aperator. American Math-
ematical Monthly 75 (1968) 163-166.



[21]

(33]

106

Jacobson, N.. Lectures in Abstract Algebra II, Linear Algebra, D. Van Nostrand.

Princeton. 1953.
Jorgens, K.. Lineare Integraloperatoren, B. G. Teubner Stuttgart. 1970.

Kadison. R.V., and Ringrose, J.R.. Fundamentals of the Theory of Operator
Algebras [, Academic Press, 1983.

Kaplansky, I.. The Engel-Kolchin theorem revisited, in contributions to algebra.
edited by Bass, Cassidy and Kovacik. Academic Press. New York, (1977).

Katavolos. A., and Radjavi, H.. Simultaneous triangularization of operators on
a banach space, J. London Math. Soc. (2) 41 (1990) 547-554.

Konig, H.. Eigenvalue Distribution of Compact Operators, Operator Theory: Ad-

vances and Applications 16, Birkhauser, Basel, 1986.

Laurie, C.. Nordgren, E.. Radjavi, H.. and Rosenthal, P., On triangularization
of algebras of operators, J. Reine Angew. Math. 327 (1981) 143-155.

Lindenstrauss. J.. Tzafriri, L.. Classical Banach Spaces I. Springer-Verlag, 1977.

Lomonosov. V.J.. Invariant subspaces for operators commuting with compact op-

erators. Functional Anal. Appl. 7 (1973), 213 - 214 .

Luxemburg, W.A.J., Zaanen, A.C., Riesz Spaces I, Amsterdam-London: North-
Holland 1971.

McCoy. N.H., On the characteristric roots of matriz polynomials, Bull. Amer.
Math. Soc. 42 (1936) 592-600.

Nordgren. E.. Radjavi, H.. and Rosenthal. P.. Transitive algebras containing

operators of finite rank, Unpublished.

Nordgren. E., Radjavi, H., and Rosenthal, P.. Triangularizing a semigroups of

compact operators. Indiana Univ. Math. J. 33 (1984), 271-275.



107

[34] de Pagter, B., Irreducible compact operators, Math. Z. 192 (1986) 149 - 153 .

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[+3]

[44]

[43]

[46]

[47]

Pietsch. A., Operator Ideals, North-Holland, Amsterdam, 1980.

Radjavi, H.. On the reduction and triangularization of semigroups of compact

operators, J. Operator Theory 13 (1985) 63-71.

. A trace condition equivalent to simultaneous triangularizability, Can. .J.

Math. 38. No. 2, (1986), 376-386.

. On the reducibility of semigroup of ompact operators, Indiana Univ.
Math. J. 39, No. 2, (1990), 499 - 515 .

. and Rosenthal, P.. On transitive and reductive operator algebras, Math.

Ann. 209 (1974), 43 - 56 .

» [nvariant Subspaces, Springer-Verlag, New York. 1973.

Ringrose. J.R., Compact Non-selfadjoint Operators, Van Nostrand. Princeton.

1971.

Rota, G-C.. On models for linear operators, Communications on Pure and Ap-

plied Mathematics, 13 (1960), 469-472.
Rudin. W.. Real and Complex Analysis, 1974.

Schaefer. H. H., [nvariant ideals of positive operators in C'(X). I Illinois .J. Math.
11 (1967) 703-715.

—. Topologische nilpotenz irreduzibler operatoren, Math. Z. 117 (1970) 135-
140.

. Banach Lattices and Positive Operators, Springer-Verlag, Berlin/New
York, 1974.

Singer, I.. Bases in Banach Spaces. Springer-Verlag, Berlin/New York, 1970.



108

[48] Zaanen, A.C., Riesz Spaces I, North Holland, Amsterdam. 1983.



CHEE
S FEE

N EEEEPTI

16

—_—
—

n otr
ochester, NY 14609 USA
e: 716/482-0300

IMAGE . Inc
653 East Main Street
716/288-5989

(=3
2
~£auw

W

1.4
ax:

——
———

150mm
6

Q

——
| e—
——
——

<

.
I

IMAGE EVALUATION
TEST TARGET (QA—3)
|

© 1993, Applied Image, inc., All Rights Reserved





