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Abstract

Edge waves are shallow water waves which are trapped along the shoreline waveguide by
reflection and refraction. The cross-shore pattern of nodes and antinodes in edge waves has
long been hypothesized to have the right lengthscale to explain longshore bars. However,
different frequencies and modes have antinodes in different locations, and there is little
existing field data to suggest frequency and mode selection. A bar can also provide a local
minimum in shallow water wave speed, C — \/ghbar, (where h is depth), needed to produce a
separate waveguide, which can trap and amplify edge waves relative to the shoreline. These
trapped solutions have similar shapes over the bar, regardless of frequency or wavenumber.
Calculations of drift velocity, in the absence of phase locking, show drift convergence near
the top of the bar, at the top of the bottom boundary layer; these bar-trapped waves may
cause bar growth. Edge waves react to a longshore current as though it were a change in the
bottom topography; the profile will be deeper for edge waves travelling with the current and
shallower for edge waves travelling against the current, with the magnitude of the change
dependent on the direction and the strength of the current shear relative to the bottom
slope. For strong shears, the bottom can be changed to the degree of creating a virtual bar,
on which edge waves can also be trapped and amplified. This could be a mechanism for
moving a bar, or creating a bar on a plane beach.

These theories were tested using frequency-wavenumber spectra of the longshore compo-
nent of orbital velocity from observations taken during the DELILAH experiment, October
1990, Duck, N.C.. Continuous, unexplained, diagonal lines of variance have been observed
in this data, and similar data from other experiments. Here, these diagonal lines are shown
to be evidence of bar-trapped edge waves. These lines not only have the same frequency-
wavenumber coordinates as bar-trapped edge waves, but also vary in a predictable manner
with changes in the longshore current and depth profile. For example, when the effect of
the current was strong enough to remove the effect of the bar in theoretical predictions,
the diagonal line of variance disappeared. (The diagonal line reappeared, when this strong
current shear moved shoreward into the trough, at high tide). On such days, when the
edge wave shape is strongly controlled by current (or for example on a plane beach), the
expected affect on topography is unclear because the location of edge wave trapping moves,
when the longshore current profile changes with changes the tide. However, on days when
the edge wave shape is strongly influenced by the bar, calculations of cross-shore drift, using
the DELILAH data to obtain realistic magnitudes, show the drift should allow the bar to
grow or maintain itself against gravity and other destructive forces.
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Chapter 1
Introduction

The nearshore environment is characterized by a complex combination of waves and
mean currents. However, large-scale spatial patterns of sediment accumulation sug-
gest that flows of similar scale must dominate for sufficiently long times to allow these
features to evolve. Though there are a large number of models describing how these
features may form, few have demonstrated the necessary predictive skill to determine
where and when these features actually occur. In practice, simple parametric descrip-
tions of the beach based on long term observations, for example Wright and Short
(1984), have been more successful at predicting such large scale features. However,
such descriptions give little insight into the underlying physical processes.

Edge waves, which are discrete-mode waves trapped by refraction and reflection
at the shoreline (Eckart, 1951), have long been argued to provide spatially distributed
convergences of velocity of the appropriate length scales to explain cusps, longshore
sand bars, crescentic sand bars, and other rhythmic features (Bowen and Inman,
1971; Guza and Inman, 1975; Bowen, 1980; Holman and Bowen, 1982). Progressive
edge waves or reflected longwaves, both of which are standing in the cross-shore
direction, may generate longshore bars at the location of cross-shore nodes or anti-
nodes. Standing edge waves have a longshore pattern of nodes and anti-nodes which
could cause crescentic bars and cusps. This correlation of length scales and the

observation of substantial energy in the low-frequency range of the nearshore spectrum

1



(Huntley and Bowen, 1975; Huntley, 1976; Guza and Thornton, 1985; Holman and
Sallenger, 1985) provides a strong indication that edge waves, or at least cross-shore
standing waves, could be energetic enough to generate and maintain major beach
features. Unfortunately, in order to allow the resulting topographic features to evolve,
it would seem necessary that appropriate waves must be dominant for long periods
of time (hours to days). Theoretical arguments exist for the selection of edge wave
modes with the right dimensions, for example Symonds and Bowen (1984). However,
discrete edge waves are rarely observed in field data, even on beaches with rhythmic
topographic features. Though the correct wavelength scales are observed in the field,
the nearshore longwave spectra generally seem to be broad banded, and preferential
selection of an isolated frequency has rarely been observed (Holman, 1981; Oltman-
Shay and Guza, 1987). As a result, the role of edge waves and other longwaves in bar
dynamics is still unclear.

Other non-infragravity based arguments for the formation and maintenance of
bars exist. Bars may form at the incident wave breakpoint, where seaward of the
breakpoint there is a shoreward drift related to wave orbital asymmetry and landward
of the break point there is a seaward directed undertow, resulting in a convergence
at the bar (i.e. Dally and Dean, 1984). Apart from being difficult to test (Holman
and Sallenger, 1993), one of the main problems with this theory is that it requires a
very narrow region of breaking. This is generally not the case (Holman and Sallenger,
1993), for example some field evidence shows that the cross-shore scale of a bar was
much smaller than the width of the surf zone over the bar (Sallenger et al. 1985).
Though a positive feedback between the bar and wave breaking is clearly important,
the main contender to infragravity wave models, the break point bar model, is also
not a completely satisfactory theory of bar formation and growth.

Evidence of edge waves has come from observations at convenient locations such
as shoreline run-up data and from arrays located in the trough. However, arrays are
rarely located at the bar crest where conditions are turbulent and potentially highly
mobile, making data acquisition difficult. On plane beaches and on beaches of simple



monotonic depth variations, the edge wave amplitude is maximum at the shoreline
and decreases seaward, so shoreline measurements of edge waves are representative
of the edge wave conditions throughout the beach. For complex topographies this is
not necessarily the case. Recent numerical calculations show that edge waves can be
trapped on bars and longshore currents on beaches (Kirby et al., 1981: Wright et al.,
1986, Falques and Iranzo, 1992, Schonfeldt, 1991, Schénfeldt, 1995). This trapping
mechanism allows the orbital velocities and sea surface displacement to be severely
amplified over the bar relative to their values at the shoreline. Bar-trapped edge
waves would not necessarily be evident in observations collected at the shoreline or
trough.

The significance of bar trapping is that when the amplification is large, the shapes
of the edge wave solutions trapped on the bar are not strongly dependent on mode
number, frequency, or longshore wave number. The increased hydrodynamic activity,
for example, in the drift velocities associated with bar-trapped edge waves, may be
similar for whole ranges of solutions. This raises the possibility of positive feedback
in which the trapped modes tend to provide flow patterns which may result in bar
maintenance or growth. The bar might then be somewhat resistant to changing wave
conditions, bar-trapped waves of similar form existing for all incident wave conditions.

The early results of Kirby et al. (1981) and Wright et al. (1986) showed the
amplification, relative to the shoreline, was a mild change in the edge wave amplitude
over the bar. Their main conclusions were that the bar had the ability to attract
an edge wave anti-node with implications to the accumulation of sediment on top of
the bar. Conversely, Falques and Iranzo (1992) and Schonfeldt (1991) show a few
examples in which the amplification can be an order of magnitude larger over the
bar than at the shoreline, for the specific geometries they used. Schénfeldt (1995)
extends his result for edge waves trapped his geometry to include the effect of a
longshore current. Howd et al. ( 1991b) show generally that the effect of a steady
longshore current on the edge wave shape is analogous to a change in the depth

profile, with the direction of the change dependent on the direction of the longshore



current. Schonfeldt (1995) uses this result to show a case in which a current in the
trough increases amplification for edge waves travelling with the longshore current,
and reduces amplification for edge waves travelling against the longshore current.
He comments that if the mean longshore current profile were such as to change the
amplification to a location other than the bar, sediment convergences might cause
movement of the bar to this new location. Howd et al. (1992) show that a longshore
current on a plane beach may cause a bar to form when edge waves travel with the
longshore current, though they do not relate this effect directly to amplified edge
waves.

Neither Falques and Iranzo (1992), nor Schénfeldt (1991,1995) attempt to general-
ize their observations. Falques and Iranzo (1992) present the amplification as an aside
to a more detail discussion of the effect of longshore current on edge waves. Though
strong amplification was evident in one of their numerical runs, they do no more than
comment that it is an interesting phenomenon. Of the geometries they experimented
on, only one exhibited the amplification. Schénfeldt (1991,1995) shows amplification
on the outer bar of a two barred beach, and noted that this occured when the phase
speed approached a constant, \/gRpar, Where hp,. is the depth of the bar. He gave
some examples of two different shapes of amplification that occur on the outer bar,
but he-does not attempt to clearly explain why some shapes are favoured in some
instances but not others. He also does not explain the lack of amplification on the
inner bar, on the two-barred profile. In the case in which he introduces the effect of
a longshore current, for simplicity, he uses a synthetic longshore current profile over
the trough, though other longshore current profiles could give significantly different
results. These works represent experiments with numerical results on specific geome-
tries with specific longshore current profiles. They served their purpose, in that they
introduced the idea that bars can severely change the edge wave solutions, with the
interplay between bars and longshore currents being important, and that this ampli-

fication may have implications for sediment transport. However it is difficult to gain



an intuitive understanding from the very specific cases they present. A deeper under-
standing would allow prediction of the conditions under which amplification would
occur on other beach profiles, and be of immediate use to nearshore researchers in
general. More importantly, very little field evidence has been presented to suggest
that these theoretical amplified solutions are significant in practice. Until convincing
field evidence is presented, there is no compelling reason for beach studies to include
the effect of amplification over bars and longshore currents.

Bar-trapped edge waves should be evident in observations collected near a bar.
The question is whether they are dominant relative to the other possible modes.
Symonds et al. (1982) suggest that a significant component of edge wave forcing is at
the location of the bar, where the incident wave heights are close to maximal. Thus
energy transfer might occur more easily between the incident waves and these bar-
trapped modes (which naturally are most energetic at the bar) than between incident
waves and modes which have their greatest maxima at the shore; the bar-trapped
wave may be preferentially forced. An edge wave with its greatest maxima at the
location of the bar might also experience reduced damping due to bottom friction, as
the energetic region of the trapped edge waves is concentrated in deeper water, with
relatively small orbital velocities in the shallow water near the shoreline.

The theoretical work of Kirby et al. (1981), Wright et al. (1986), Schonfeldt (1991,
1995) and Howd et al. (1991b, 1992) suggest that bar-trapping of edge waves, may be
a mechanism for bar growth, or maintenance against destructive forces (such gravity,
or other hydrodynamic patterns), and that the added effect of longshore currents could
provide a mechanism for generation of a bar on a plane beach, or the movement or
growth of a bar on a barred beach. This preliminary work provides the foundation on
which a detailed examination of the theoretical basis for bar-trapping and longshore
current trapping of edge waves is developed here. Of course, establishment of bar-
trapping as an important hydrodynamic effect in the field of nearshore dynamics
requires evidence that these modes exist and are important in field data. The most

significant result presented here is the convincing evidence of bar-trapped edge waves



in the longshore component of orbital velocity from an experiment in Duck, N.C..
These observed bar-trapped modes are present under all combinations of depth and
longshore current profiles which might lead to bar-trapping, as predicted from the
theoretical understanding presented here. These clear field observations allow more
realistic analysis of the second order drift patterns induced by these bar trapped
solutions than has been attempted in the past for edge waves in general (i.e. Holman
and Bowen, 1982). Though establishing that a particular wave is instrumental in
causing morphological change is very difficult, demonstrating that bar-trapped edge
waves provide the spatially and temporally coherent drift patterns needed to influence
topography will go a long way toward this goal.

1.1 Objectives

The main objective of this thesis is to thoroughly investigate bar trapped edge waves
both theoretically and in the field, and to examine their significance to the formation,

growth and movement of longshore bars. Specifically:

1. To explain physically why edge waves may be trapped and amplified on bars and
longshore currents, and from this, to study the shape and dispersive properties
of bar-trapped edge waves. Also, to gain insight into the effect on edge wave

shape of combining longshore currents and bars.

2. To clearly demonstrate the existence of bar-trapped edge waves in field data.
Having accomplished this, to show to what extent, and under what conditions,
bar-trapped edge waves dominate over other hydrodynamic processes in the
field. Also to investigate the influence of naturally occuring longshore current
profiles on the calculated edge wave solutions, and the sensitivity of edge waves

in field data to changes in the longshore current profile.

3. Having demonstrated that bar-trapped edge waves are hydrodynamically impor-
tant, the final objective is show that they provide the spatially and temporally



coherent drift patterns needed to cause enhancement of a bar (or generation or

movement of a bar when edge wave is trapped on a longshore current).

These objectives break naturally into three distinct Chapters. The first objective
is addressed analytically with a simple solution over step-barred topography and
then numerically with more complex topography and longshore currents in Chapter
2. The second objective is addressed in Chapter 3 using depth profiles, longshore
current profiles and frequency-wavenumber spectra of the longshore component of or-
bital velocity observed during the DELILAH experiment, October 1990, Duck N.C..
(DELILAH stands for Duck Experiment on Low-frequency and Incident-band Long-
shore and Across-shore Hydrodynamics, an experiment specifically designed to study
waves travelling in the longshore direction). The longshore current and depth pro-
files are needed to calculate theoretical edge wave solutions for comparison with the
spectra. In Chapter 4, the third objective is addressed by calculating the Lagrangian
drift velocities induced by bar trapped edge waves and normalizing these solutions

using the edge wave variance measured during DELILAH.



Chapter 2

Theoretical Basis for Bar Trapping
of Edge Waves

Edge waves can be trapped on any feature of the beach which causes a local minimum
in the phase speed, for example, changes in depth and mean current speed. On a plane
beach, the shoreline acts as a phase speed minimum, so that waves are trapped along
the shoreline, and decay exponentially out to sea. Stokes (1849) showed the existence
of the lowest (fundamental) mode edge wave which had no zero crossings in the cross-
shore profile. Eckart (1951) solved the linear shallow water equations on a plane beach
to show that an infinite set of discrete modes (including the Stokes mode) existed,
with the mode number corresponding to the number of zero crossings. Ursell (1952)
solved the full linear, depth-dependent, equations of motion for edge waves on a plane
beach, and showed there was a cut-off frequency at which edge waves could no longer
be trapped (the leaky wave cut-off).

Following the work of Eckart and Ursell, researchers experimented with more
complex topographies such as exponential beaches (solved analytically by Ball, 1967)
and arbitrary depth profile (solved numerically by Holman and Bowen, 1979). The
conclusion was that the variable topography could cause some variation in the cross-
shore shapes of edge waves, and the dispersion properties of edge waves. Recently

the effect of longshore current on edge waves solution has been shown to be similar
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to the effect of variable bottom topography (Howd et al., 1991b; Falques and Iranzo,
1992), but the longshore current introduces anisotropy into the edge wave solutions.

When the the bottom topography (or the longshore current) varies to the point of
providing a local minimum in the phase speed, such as in the case of a longshore bar,
the edge wave cross-shore shapes and dispersion properties can be noticeably different
from the plane beach solutions. Longshore bars can attract edge wave anti-nodes, and
cause amplification of edge waves over the bar relative to the shoreline (Kirby et al.,
1981; Wright et al., 1986; Schénfeldt, 1991; Falques and Iranzo, 1992). Schénfeldt
(1995) showed that adding a longshore current could enhance or diminish this effect
depending on the direction of the current. Early observations of this bar-trapping
effect in numerical calculations focused on small changes in the edge wave solutions
over the bar, with no change to the edge wave dispersion properties (Kirby et al.,
1981). The more recent results of Schénfeldt ( 1991) and Falques and Iranzo (1992)
showed strong amplification and changes to the dispersion properties, in particular
cases. However, very little field evidence demonstrating bar trapping of edge waves
exists. As a consequence, the effect of bars on edge waves is still neglected, and
researchers have frequently considered the plane beach solution acceptable, even on
highly variable topography (i.e. Aagaard and Greenwood, 1994).

In this chapter, the effect of bars and longshore currents as edge wave trapping
mechanisms will be examined theoretically, in significantly more detail than Kirby
et al. (1981), Wright et al. (1986), Schonfeldt (1991, 1995) or Falques and Iranzo
(1992). Much can be learned about a system from very simple topographies. For
example, shallow water solutions have been derived for trapped waves on stepped shelf
topography, (Snodgrass et al., 1962; Buchwald and Szoeke, 1973). In a similar way,
a simple analytic solution for edge wave modes on idealized step-barred topography
will identify the important parameters causing the amplification and trapping. This
simple physical explanations will provided the understanding needed to interpret more
complex situations, with many bars and longshore currents. A numerical model,
based on Holman and Bowen (1979) and Howd et al. (1992) will be used to confirm
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these predictions and demonstrate trapping over more complex beach topographies,

longshore currents and combinations of both topography and currents.

2.1 Analytic solutions over simple topography

Assuming a wave-like solution travelling along a topography which is of infinite extent
in the longshore direction, sea surface elevation 7, cross-shore velocity u, and longshore

velocity v are the real parts of
n = n(z)e' V=71,
u = y(z)e'kv-o%), (2.1)
v = v(z)eFv—ot)
where z is positive in the offshore direction, y is the longshore direction, o is the
radian frequency, and k is the longshore radian wavenumber. The linear, irrotational,

inviscid shallow water equations of momentum and continuity are combined, resulting

in the edge wave equation

ghn: k2gh
(02) +(l— = |1 = 0 (2.2)
where
-~
u = —=ns, (2.3)
_ 9k
vo= . (2.4)

Equation 2.2 is a second-order homogeneous ordinary differential equation. The
boundary conditions for the edge wave to be trapped near the shore, are that the
sea surface elevation must decay at an infinite distance from the shoreline, and must

equal some arbitrary constant at the shoreline.
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Figure 2.1: Dispersion diagram for edge waves on a plane beach, A. Frequency against
wavenumber, B. Phase speed against frequency. The leaky-wave cut-off is marked

with a dashed line. Solutions are not shown for the lowest wavenumbers, as the cross
shore profiles of these modes extend beyond the seaward limit of the depth profile.
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2.1.1 Plane beach solutions

The solutions for edge waves on a plane beach have been well established. Eckart’s
(1951) solution of (2.2), for edge waves on a plane beach, shows discrete solutions
which are sinusoidal near the shore and exponentially decaying out to sea. The sea

surface elevation has the form
n(z) = anLa(2kz)e™* (2.5)

where n is the modal number, 8 is the slope, a is the amplitude and L, is a Laguerre

polynomial. The frequency and wavenumber must satisfy the dispersion relation
o = gk(2n + 1) tan 3. (2.6)

The dispersion diagram (Figure 2.1) has curves corresponding to different edge wave
modes, the mode number being the number of zero crossings in the solutions for sea
surface elevation. The cross-shore behaviour of the edge wave solution changes from
sinusoidal to exponentially decaying, when the depth equals C? /g, where C is the
phase speed C' = o /k. At a set phase speed, the lowest modes have the smallest long-
shore wavenumber and frequency (Figure 2.1). So therefore the discrete combinations
of longshore wavenumber and frequency given in the dispersion diagram correspond
to the multiple of cross-shore wavelengths of sinusoids which exist shoreward of C? /g.
A small longshore wavenumber corresponds to a low mode, which corresponds to a
large cross-shore wavelength or a small cross-shore wavenumber. The slope of the
beach governs the spacing between modes; the shallower the slope, the larger the
cross-shore dimensions of the wave near the shore. Each combination of wavenumber
and frequency falling on any of the modal lines on the dispersion diagram corresponds
to a unique cross-shore distribution of sea surface elevation and current.

Also shown on Figure 2.1, with a dashed line, is the leaky wave cut-off (Ursell,
1952). This is the maximum frequency, as a function of wavenumber, for which edge

waves are trapped. The leaky wave cut-off is

o? = gk. (2.7)
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This is derived from the dispersion relation for edge waves calculated without the

shallow water approximation
o? = gksin(2n + 1), (2.8)

considering that sine can be no larger than one (there are no limits on edge waves
solutions calculated from the shallow water equations). The leaky wave cut-off is also
the maximum wavenumber that the incident waves propagating from deep water can
have. This can be shown from Snell’s law in which sina/C must be conserved as the
incident wave shoals, where « is the angle of approach, and C is the phase speed.
The plane beach solutions introduce some of the concepts which also apply to
barred beaches. The change from sinusoidal to exponential of the cross-shore shape
of the edge wave solutions, depending on depth, suggests that the solutions could be
sinusoidal on the bar, but exponential in deeper regions around the bar. Also the
sinusoid on the bar could have modes, in the same way as the sinusoid close the shore

on a plane beach has different modal shapes.

2.1.2 Simple step-barred topography

Given an idealized step-barred topography, with depth of the water k constant in each
region, (Figure 2.2), (2.2) can be solved separately in each of the four regions with
constant bathymetry, matching sea surface elevation and mass continuity at each of
the three discontinuities at region boundaries, and assuming no cross-shore mass flux
at the shoreline. The result is a system of eight equations and eight unknowns (a;, ;)

governing the shape of the sea surface:
1; = a;cosh(y;z) + b;sinh(v;z), (2.9)

J = step, trough, bar, sea

C?
7j=k“1_g—h,-’ C=%. (2.10)

where
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Figure'2.2: Idealized step-barred geometry for the analytic case. Topography is

constant in the longshore y direction.
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Therefore the solution in each section is either oscillating or exponential, depend-
ing on whether v; is imaginary or real. In the former case, 7;/% is the cross-shore
wavenumber. Solving the system of linear equations results in a dispersion relation
between wave frequency and longshore wavenumber and also in a free variable, which
is arbitrarily chosen to be the amplitude at the shoreline (set to 1 for convenience).
The dispersion relation (in terms of cyclical frequency and wavenumber) is shown
in Figure 2.3 and again in terms of phase speed and frequency in Figure 2.4. The
resulting sea surface elevation shapes can be divided into five categories, depending
on particular combinations of frequency and phase speed.

1. If the phase speed is smaller than \/th,p, then the solutions are exponential in
all sections, which makes it impossible to satisfy the matching conditions at the three
discontinuities. Thus there are no solutions in this area of the dispersion diagram
(Figure 2.4).

2. If the phase speed is smaller than \/ghpa, (and \/M) but greater than
\/ertep, then a discrete set of wave-like solutions exist over the step, and exponential
solutions exist in all other regions. These oscillating solutions must decay outside
of the step region without creating a discontinuity in sea surface elevation. The
only multiples of cross-shore wave length (i/ Ystep) OR the step that satisfy this are
A/ x (1,3,5,7...) corresponding to a 0,1,2,3... mode wave, respectively (where A
is the cross-shore wavenumber). When phase speed approaches |/ghg.p, the term
(1—C?/ghytep) from (2.10) tends to zero. In order to maintain a finite cross-shore wave
length, k (from equation 2.10) must approach infinity in this limit, and, consequently,
so must frequency (recall C(= o/k) — \/_t—]r,ep) This asymptote of frequency and
wavenumber occurs anytime the cross-shore wavenumber is restricted to decaying
outside of a region.

3. If the phase speed is smaller than m (and \/gheea) but greater than
V/GPbar, then a discrete set of wave-like solutions exist over the step as before, but
also, another discrete set of wave-like solutions exist over the bar; the solution remains

exponential over the trough. In this case the oscillating solution over the bar must
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Figure 2.3: Dispersion diagram for the step-barred case, with cyclical longshore
wavenumber, k/2m, plotted against cyclical frequency, solved numerically. Each point
on each curve represents a solution. The dashed line is the leaky wave cut-off.
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decay in each of the surrounding regions, without creating a discontinuity in sea
surface elevation. The only multiples of cross-shore wavelength (i /7bar) on the bar
that satisfy this are A/4 x (2,4, 6,8...) corresponding to a 0,1,2,3... “bar” mode wave,
respectively. Similar to the step wave in case 2, when the phase speed approaches
V/gPvar, in order to maintain a finite cross-shore wavelength on the bar, both k£ and
frequency must tend to infinity as C(= o/k) = \/ghpar. Along each of the C —
v/ghbar asymptotes the bar mode (or shape over the bar) is approximately constant,
but the actual or total mode changes, because the total mode combines the mode
number over the step and the mode number over the bar. In these bar-trapped modes
the relevance of defining an overall modal number when the wave exists separately
on the bar is questionable. Along the \/ghsa, asymptote on Figure 2.4, the actual
modal lines touch but do not cross (technically called kissing modes). When the wave
exists over the bar and over the step but not over the trough, the amplitude of the
wave over the bar can become large relative to the amplitude of the wave over the
step, as it is governed by the size of the exponential in the trough. In Figure 2.4 the
relative amplification becomes larger at higher frequencies and also for phase speeds
closer to /ghbar. As the trough becomes wider, the exponential growth from the
shore toward the bar (or decay from the bar toward the shore) becomes indefinitely
large. The amplification becomes extreme. In practice, this implies that the edge
wave is effectively trapped on the bar and shoreline behavior is negligible. The edge
wave is not necessarily large in any absolute sense.

4. When the phase speed is greater than m and still less than /ghsea,
oscillating solutions exist in the trough, step, and bar regions. The magnitude of
the wave on the bar is controlled by the magnitude of the wave in the trough and
therefore does not become particularly amplified relative to the shore, as in case 3.

5. Finally, when the phase speed is greater than \/ghses, an oscillating solution
exists in all regions. This final case is no longer an edge wave with energy trapped at
the shoreline but, rather, a leaky wave, as the energy can “leak” out to sea.

These cases are summarized in a schematic in Figure 2.5. In Figure 2.5, Case 1 is



18

Phase Speed (nvs)
[+
1

0.3

1 10 100 1000 10000

Figure 2.4: Same as in Figure 2.3, except with phase speed plotted against frequency.
The leaky wave cutoff is marked with a dashed curve; the limits C = (ghgeep)?/?,
C = (ghvar)'/?, and C = (ghirougn)!/? are marked with labeled lines. Again, each
point is a solution to the dispersion relation. The intensity of the point refers to
the amplitude of the wave over the bar relative to the shoreline and is defined by
computing the cross-shore shape of the edge wave corresponding to that frequency
and that wavenumber. For clarity, arrows point to directions of greater amplification.
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exponential everywhere, Case 2 shows a mode 3 wave on the step only, Case 3 shows
a mode 3 wave which is a combination of a mode 1 wave on the bar and a mode 2
wave on the step, Case 4 is a mode 9 wave, and case 5 is a leaky wave. In Case 3, the
solution shown corresponds a position on the second bar-trapped asymptote in Figure
2.4, and is a wave of which one multiple of cross-shore wave length fits on the bar.
The first asymptote would correspond to a mode zero bar-trapped wave, or no zero
crossings on the bar. Case 3 outlines the physical basis of bar-trapping: the relative
amplification on the bar occurs when the phase speed approaches \/ghp,, from above.

The possibility of edge wave amplification over the bar has been noted by Kirby
et al. (1981) and also by Schonfeldt (1991). Schonfeldt (1991) also stressed that
amplification occurred at the location of the bar when the phase speed was \/ghpac.
In general, the number of modes that exist at frequencies below the leaky wave
cutoff frequency and also the degree of relative amplification depend on the cross-
shore dimensions of the depth profile. Thus a wide trough allows for large relative
amplification (or very effective trapping), and a wide bar allows for longer wavelengths
and, consequently, modes at lower frequencies. The frequency asymptotes in the
dispersion diagram (when the phase speed approaches V/9Pbar) are inherent with edge
wave profiles containing bars (they are absent on plane beach dispersion diagrams
(Figure 2.1)) and correspond to dispersion of the waves travelling separately on the
bar. Along this asymptote the modes again only touch, though they appear to cross.
In the broader sense, this asymptote occurs anytime there is a local minimum in
depth where a wave solution can exist somewhat independently on the minimum
from the conditions at the shoreline. Schonfeldt (1991, 1995) only show amplification
on the outer bar or their two-barred profile, but these results show that amplification
could occur on either bar. Buchwald (1968) made similar calculations for the case of
a submarine ridge. The wave is trapped on the ridge when exponentially decaying
solutions exist on each side of the ridge, and the ridge then acts as a waveguide. The

asymptote of frequency and wavenumber to infinity occurs when the phase speed
approaches /ghigge from above and the group speed 0o /0k approaches v/ GPridge
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Figure 2.5: A simple schematic of the cases outlined in Section 2.1.2. In each panel
shows a cross sectional view of the wave, and a plan view of the wave rays.
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from below; the waves are non-dispersive in this limit. The asymptote as the phase
speed approaches v/ghpa, in Figure 2.4 also appears to correspond to the group speed
approaching v/ghpa: from below.

The analytic solution for this simple topography identifies the parameters that in-
dicate the possibility of trapping and amplification over bars. In summary, a trough
allows a wave-like solution to exist separately on the bar and an exponential solu-
tion to exist in the trough, when \/ghua, < C < m, Case 3. The degree of
relative amplification then depends on the width of the trough. These solutions are
very different from solutions of edge waves on plane beaches, in which the amplitude
generally decays with distance from the beach. The waves that exist somewhat sep-
arately on the bar can have a number of different shapes, regardless of the shape of
the wave on the step. The simplest shape corresponds to solutions which asymptote
closely to the \/ghpa, line in Figure 2.4. Higher order shapes correspond to higher
asymptotes. The actual mode number changes along the \/ghva: asymptote, so that
the modal lines never actually cross, only touch.

2.2 Properties of bar trapped edge waves

2.2.1 The kissing modes

When the modal lines appear to cross, the dispersion lines which asymptote to the
V/ghvar line appear to cross with the dispersion lines which asymptote to the \/M.
The latter lines are large over the step and very small over the bar. At the kiss-
ing point, the wave that is large over the step has essentially the same frequency
and longshore wavenumber as the wave which is large over the bar. The frequency-
wavenumber combinations at which this occurs depend on the dimensions of the step
and the bar (2.10), and so the spacing of the kissing points depends on the cross-
shore dimensions of the bar and step. The degree to which the lines touch depends
on the degree to which the wave decays in the trough region. At low frequencies the

wave decays minimally in the trough region, and the lines are far apart at the kissing
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point. At higher frequencies, the waves decay strongly in the trough region, and the
dispersion curves come very close to touching. The degree to which the dispersion
curves touch, depends on the degree to which the step wave and the bar wave are

coupled or connected in the trough region.

2.2.2 The non-dispersive property

When the phase speed approaches the constant \/ghuqy, the edge waves are quasi-non
dispersive. This property of bar-trapped waves, means that the longshore component
of orbital velocity is not significantly diminished at high frequencies and high mode
numbers relative to the cross-shore component of orbital velocity, as in the case for the
plane beach solutions. For plane beach solutions, it was reasoned that high mode edge
waves would be less evident than low mode edge waves in the longshore component of
orbital velocity data because of the edge wave dispersion properties, (2.6). Replacing
(2.6) into (2.3) and (2.4), the components of orbital velocity for plane beaches are
—i0
*(2n + Ltang ™ %)
o
@n + Deanp ")

The longshore component decreases with decreasing frequency and, particularly, with

u(z) = (2.11)

v(z) = (2.12)

increasing mode number. This is not the case for bar trapped edge waves. In the
limit of C' = \/ghpar, the components of orbital velocity from (2.3) and (2.4) are

uW(z) = ——L n(a), (2.13)

kV g]ibu‘n:
- 9 .
‘U(.‘t) - \/35;;77( )

So for a given modal shape, the longshore component of orbital velocity will not

decrease with increasing phase speed, but remain simply proportional to the sea
surface elevation. The relatively large longshore component of velocity may allow the
detection of edge waves at higher frequencies than edge waves have traditionally been

observed.
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2.3 Numerical solutions for more complex topogra-
phies

It is desirable to investigate more realistic topographies to test the robustness of the
conclusions drawn from the analytic solutions in Section 2.1.2. We proceeded using
the numerical model outlined by Howd et al. (1992) to calculate numerical solutions
for the idealized and observed beach profiles in Figure 2.6. The model employs a
Runge-Kutta scheme to calculate the edge wave shape on a particular topography. A
search scheme is used to find the o and k values for which solutions do not diverge as
T gets large. These solutions define a set of edge wave modes for this topography.

Model calculations for a topography similar to that used in the analytical solution
(Figure 2.6a) again show relative amplification of sea surface elevation occurring when
the phase speed approaches /ghpa, (Figure 2.7). Again, to find the amplification, the
sea surface elevation has been calculated for each combination of wavenumber and
frequency which lie on the dispersion curve. Differences between the solutions for
idealized topography and those for more realistic topography occur in the scale and
definition of the bar and the trough. The profile in Figure 2.6a has very wide bar and
trough, allowing for very extreme amplification. The analytic solution indicates that
the edge wave exists separately on the bar when the phase speed is between \/ghpar
and \/ghtTgh, where in the corresponding numeric case, Ptrough is the deepest part
of the trough and A, is the shallowest part of the bar; therefore the effective length
scale of the bar is large, as it includes all the inclined area on either side of the bar.
Consequently, at any given phase speed the wider bar in the numeric case will allow
larger cross-shore wavelengths, and therefore longshore wavenumber and frequency
must be smaller (from (2.10)) than in the analytic case. At any particular phase speed,
edge waves on wider bars will exist at lower frequencies. A direct consequence is that
more solutions are represented in Figure 2.7, and more of the V/Ghbar asymptotes
corresponding to higher order bar-trapped modes are shown.

Figures 2.8 and 2.9 show that similar conclusions can be drawn from numerical
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barred beach system (Figure 2.6¢c). The extreme amplification caused by this topog-
raphy makes it difficult to calculate the cross-shore shapes of edge waves that have
solutions on the dispersion curves which cross the bar trapped line. Closer exam-
ination of these solutions show them to be very small over the bar relative to the
shoreline, which is not evident in this figure, but is evident in Figure 2.8, and 2.4.
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results over topographies widely different in nature. Two extremes are represented
by Duck, North Carolina (Figure 2.6b), which has a small-scale, single-barred topog-
raphy, and Stanhope Beach, Prince Edward Island (Figure 2.6c), which has complex
topography with three large scale bars. On Stanhope Beach, edge waves become
amplified over a bar when the phase speed approaches \/ghpar on that bar. As the
phase speed approaches \/ghpar1, the wave will exist on the inside bar and will decay
seaward over the outer two bars. As the phase speed approaches VgPhbar2, the wave
will exist on the first and second bars, then decay in the trough between the first and
second bar and seaward of the second bar over the third bar. The same will be true
of the third bar when the phase speed approaches v/ghpas. It would be possible for
waves to exist separately on two or more bars at once, if the outer bar is shallower and
the outer troughs are of equal depth or shallower than the inner troughs. Stanhope
Beach has wider troughs and bars than Duck beach, and, consequently, has greater
amplification, the modes existing at comparatively lower frequencies than at Duck.
Again, differences from the analytical solutions occur due to the definition of what
constitutes a bar.

The numerical calculations illustrate well the conclusions drawn from the analytic
solutions: all edge waves on beaches with bars (where obviously the trough must
be deeper than the bar) have their greatest maxima over the location of the bar,
when the phase speed approaches \/ghpar. When this occurs on a particular bar, a
separate wave exists on the bar with an exponential solution on the inshore trough.
The flattening out of the dispersion diagram at \/ghee occurs when the cross-shore
wavelength on the bar is restricted to decaying on either side of the bar, as noted in
the discussion of the analytical solution (Section 2.1.2). Beaches with large length
scales such as Stanhope will have larger amplifications and modes of lower frequency
than beaches of smaller cross-shore length scales such as Duck.
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Figure 2.10: Center panel: the same dispersion diagram as given in Figure 2.8. Each
of the surrounding panels: sea surface elevation (m), cross shore velocity (m/s) and
longshore velocity (m/s) and depth (m) profiles corresponding to each of the solution
ranges marked in the center dispersion diagram, assuming 7(0) = 1. Darker grey lines
corresponds to higher frequency.
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2.4 Cross-shore shapes of bar-trapped edge waves

Each frequency-wavenumber pair defines the coordinates on the dispersion diagram
corresponding to one particular edge wave shape, unique to that specific pair. The
pair lying along the asymptotes where C — \/ghpa, are bar trapped edge waves:
the lowest asymptote corresponds to the simplest shapes over the bar, the higher
asymptotes to more complex shapes, as discussed in Section 2.1.2, Case 3. Though
the discussion in Section 2.1.2 and dispersion diagram in Figure 2.4 summarize the
fundamentals of the bar trapping mechanism, examining the cross-shore shapes over
one of the more realistic topographies, for example the topography in Figure 2.6B, in
more detail will prove useful when comparing theoretical solutions to data, in Chapter
3.

Figure 2.10 shows examples from different regions in the dispersion digram from
Duck, N.C., plotted in Figure 2.8 (here, and from now, on the dispersion diagram will
be plotted as a function of wavenumber, in preparation for data analysis in Chapter
3). The shapes that are amplified (Figure 2.10, surrounding panels) correspond to
the frequency and wavenumber which have phase speeds along the asymptotes C —
V/ghbar (Figure 2.10, Center Panel), or the solutions discussed in Case 3 in Section
2.1.2. The greyscale in surrounding panels in Figure 2.10 corresponds to increasing
frequency. Along the first (lowest) asymptote, the trapping is minimal for mode 0
waves, where only the lowest frequency waves lie along the C — /ghpa., and are
affected by the bar (Figure 2.10, mode 0). Similarly, low frequency mode 1 waves
have phase speeds which are too high to be affected by the bar, but as the frequency
increases, edge wave amplification occurs over the bar (Figure 2.10, mode 1A). As the
frequency continues to increase (Figure 2.10, mode 1B), the amplification diminishes,
until the phase speed drops below \/ghpar, in which case the wave exists primarily
in the shallow regions in-shore of the bar, Case 2 in Section 2.1.2. The cross-shore
component also has zero crossing at the top of the bar corresponding to maxima
in v and 7. Continuing along the same asymptote, Mode 2A and B have the same
shapes over the bar as mode 1A and B (Figure 2.10), but the amplification relative
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to the shore is greater; the wave on the bar is more effectively trapped at higher
frequencies. Similarly, the trapped mode 3A and B waves have the same shape over
the bar as modes 1 and 2; in the absence of a beach, all these shapes correspond
to a bar trapped wave of mode 0, or a wave lacking zero crossings in v and 5 over
the bar. This simple bar trapped mode shape becomes more defined for increasingly
high modes along the lowest C — \/ghpa, asymptote. Solutions corresponding to the
second asymptote have shapes over the bar with one zero crossing (Figure 2.10, mode
3C), (corresponding to bar-trapped mode 1 in Section 2.1.2, Case 3). Again, this
more complex mode becomes more pronounced, as the the frequency increases along

this second asymptote (Figure 2.10, mode 4 and mode 5).

2.5 Bar trapping and longshore currents

Longshore currents affect the edge wave as though they were a change in the bottom
topography (Howd et al., 1991b, 1992). Edge waves travelling with the longshore
current have the same effect as a deeper depth profile and edge waves travelling against
the current have the same effect as a shallower depth profile, with the magnitude of
the change proportional to the current at that location. It can be seen immediately,
that if the effect of the longshore current shear was strong enough, it might change
the depth profile to which the edge wave responds, to the point of having the same
effect as a bar.

Edge wave behaviour over topography and longshore currents which are variable
in the cross-shore direction, but constant in the longshore direction, can be examined
mathematically by assuming the cross-shore velocity u and the sea surface elevation
1 are wave-like in the longshore direction (as in (2.1)), and the longshore velocity v
is a combination of a wave-like solution and a mean current V(z) in the longshore
direction (Howd et al., 1992)

n = n(z)ev-ot)

u = uy(z)eFv-ot) (2.14)
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v = v(z)e'™ ) L V().

Substituting (2.14) into the irrotational, inviscid shallow water equations of momen-
tum and continuity and retaining only the terms which are linear in u, v and n gives

2
e Ral = B (219)

9Nz
(o +EkV)’

~kgn + iuV;
(= +EkV)

v

where the variables are now solely dependent on z. In the case of V = 0, (2.15)
reduces to the classic edge wave equation, (2.2). Howd et al. (1992) defined a new
“effective” depth by substituting

h
s 2.16
(i-VJey (219
where C is the edge wave phase velocity, o /k, which gives
gh'nz k>gh'
[02 ] +n[1— —| =0 (2.17)

which is the classic edge wave (2.2). This substitution shows that the effect of a
longshore current on the edge wave shape is mathematically analogous to a change
in the bottom topography.

When a local minimum in A’ occurs (other then at the shoreline), the edge wave
can be trapped and amplified relative to the shore at the location of the minimum
in the same way as edge waves are trapped on bars. This introduces the possibility
of edge waves which are trapped on longshore currents on plane beaches. On barred
beaches, the longshore current can act to enhance or diminish the amplification which
already exists due to the effect of bars (Schonfeldt, 1995).
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2.5.1 The longshore current waveguide on plane beaches

To discuss the interaction of topography and longshore current in (2.17) in more
detail, it is useful to look at the simple case of a longshore current on a plane beach.
A local minimum in A’ will occur on a plane beach when there is a negative slope
somewhere in the effective depth profile, #’, i.e. when the derivative of the effective

depth is negative. Taking the derivative of (2.16) gives
dh’ 1 dh 2h dav

& = (I-V/Cfd T CU-VICPdz
So the criterion for the existence of an effective bar is

dh 2h dV

dz + (C__‘-}-)-Fz- 0. (2.18)

Here we define A and therefore dh/dz to be positive on a plane beach. Since dh/dz
and 22/(C — V) are always positive on a plane beach (for edge waves, V << C;
solutions for V' = C are shear waves), dV/dz must be negative to satisfy (2.18). The
existence of an effective bar will depend on the relative magnitudes of dh/dz and
dV/dz, the depth at which they occur, and the phase speed. The combination of a
strong current shear and a gentle bottom slope is then likely to produce an effective
bar, especially if the current is in deeper water.

The longshore current profiles which might realistically occur on plane beaches are
determined by the gradient of the radiation stress caused by incident wave breaking
(Bowen, 1969; Thornton and Guza, 1986). Radiation stress is conserved outside the
surf zone, where the incident waves have not yet broken, and the gradient is maximal
where the incident waves break intensively. The distance over which the radiation
stress gradient changes from zero to maximal depends on the incident wave height
variability (Thornton and Guza, 1986), and can be quite small; this can create a
strong shear seaward of the longshore current maximum. Inside the initial breaking
zone, the radiation stress diminishes approximately linearly as the saturation wave
height diminishes (Thornton and Guza, 1986). Therefore the current shear seaward

of the maximum current is generally much larger than the current shear landward
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of the current maximum (Figure 2.11A). With these restrictions, a strong longshore
current (for example V5o, = 1.2m/s at 120m, on a beach with aspect ratio 0.02) will
have a landward shear which is insufficient to generate an effective trough when the
longshore current is negative, in opposition to the direction of edge wave propagation
(Figure 2.11B). In this case, the strong seaward shear is positive and creates an
positive slope in effective depth, the seaward face of an terrace in A’ (F igure 2.11B).
Note the terrace is most extreme at low phase speeds. The cross-shore shapes of
the edge wave solutions will be affected by the terrace, but the solutions will not be
amplified relative to their shoreline values, as could occur over barred topography
(Figure 2.11C). The top of the terrace in Figure 2.11B corresponds to the location of
Vimaz-

When the same current is flowing in the positive direction (when the edge waves
are travelling with the longshore current), the current will create an effective bar
(Figure 2.12A and B). In this case, the stronger seaward current shear allows dh’ /dz <
0 and an effective trough exists. The size of the trough decreases with Increasing phase
speed, but for the strong longshore current shown here, still exists at a phase speed
> M When the phase speed approaches \/gh':, the solutions are amplified
over the effective bar, relative to the shoreline, in exactly the same way as edge waves
are amplified over real bars (Figure 2.12C). Amplification relative to the shoreline is
mild in the case of the longshore current in Figure 2.12A.

In both Figures 2.11 and 2.12, the phase speed of the edge wave determines both
whether an effective bar occurs and whether the edge wave is trapped on that effective
bar (i.e. trapping only occurs when C — m ). For example, though small phase
speeds are more likely to make effective bars, if C < \/gh'Tm , the edge wave is
exponentially decaying over the bar and will not be trapped and amplified relative to
the shoreline. Including the dependence of the effective depth (2.16) on phase speed,
the bar trapping limit C — m can be written as

C = /gh(zmin) + V(Zmin) (2.19)

where Zmiais the location at which A/ ;. occurs. The trapping limit is greater for
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Figure 2.11: A. Idealized longshore current profile on a plane beach (plan view). B.
Effective depth profiles for waves travelling against the longshore current for various
phase speeds. Shading corresponds to the area for which the edge wave solution
is sinusoidal for each phase speed given. C. Calculated edge wave cross-shore and
longshore current profiles for f=0.192Hz, C=3.57Tm/s, mode 14.



waves travelling with the current than against.

The effect of the local minimum in A’ is exactly the same as the effect of the local
minimum discussed in Section 2.1.2. So the dispersion properties of these longshore
current-trapped edge waves are different than those of edge waves on plane beaches,
because they are limited to travelling at C — \/g_h; . As a result, the dispersion
diagram for a beach with an effective bar is very different from that for a plane
beach (Figure 2.1); the effective bar trapped modes occur along a diagonal line in
frequency-wavenumber space corresponding to a near constant phase speed (Figure
2.13).

This simple case on a plane beach shows that is possible to qualitatively examine
the effect of the longshore current on the trapping of edge waves, without solving
(2.15), but calculating the effective depth profile (2.16). These examples are for a
longshore current profile which has a steep seaward shear, but the principle applies to
cases with less extreme seaward shear, expected on days with very variable incident
wave height. Trapping and amplification of edge waves will occur if the current shear

is strong relative to the slope of the bottom.

2.5.2 The combined effect of longshore currents and bars

When bars and longshore currents coexist on a beach, the resulting edge wave shape
will depend on some combination of bar effect and the longshore current effect.
Schénfeldt (1995) shows an example of a current on a beach with two bars in which
the current covers the entire region inshore of the outer bar (Figure 2.14). Such a
strong longshore current localized over the trough, causes enhanced trapping of edge
waves when waves travel with the longshore current, but no trapping when waves
travel against the longshore current. This is a specific example of one of many dif-
ferent cases, which depend, in general, on the position of the minimum in effective
depth, Af;,, which, in turn, will depend (as in the plane beach case) on the strength
and location of the longshore current shear relative to the varying bottom slope, as
indicated by (2.16) and (2.18).
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Figure 2.12: A. Idealized longshore current profile on a plane beach (plan view). B.
Effective depth profiles for waves travelling with the longshore current for various
phase speeds. Shading corresponds to the area for which the edge wave solution
is sinusoidal for each phase speed given. C. Calculated edge wave cross-shore and
longshore current profiles for f=0.192Hz, C=5.Tm/s, mode 14.
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Figure 2.14: Longshore current profile (top), sea surface elevation of a mode 2 edge
wave (middle), and bottom profile (bottom) after Schonfeldt (1995). The sea surface
elevation was calculated numerically with and without the longshore current. Added
to the depth profile, are our calculations of the effective depth for this current profile.
Thickest lines are for the edge wave propagating with the longshore current, thinnest
lines are for edge waves propagating against the longshore current.
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When the longshore current or longshore current shear is weak relative to the
bottom slope, the trapping which already occurs due to the bar, will be relatively
uneffected by the longshore current. With weak shear, the longshore current peak
may cover the bar and the trough, resulting in an overall effective profile which
is deeper when waves travel with the longshore current and shallower when waves
travel against the longshore current. In this case, the cross-shore location of the
effective bar will be similar to the actual bar and the trapping criterion from (2.19)
is C = V/ghsar + V(2bar) (2 Taylor expansion of (2.16) around \/ghs,, will give this
result to the first order if (Zoar — Tmin) is small). When the current is very weak, the
bar trapping effect is unaffected and C — V/Ghbar, as on a beach with no current.
These type of effective depth profiles are dominated by the effect of the bar or “bar-
dominated”.

Conversely, if the longshore current has a narrow peak (with a strong shear relative
to the bottom slope), the longshore current can determine if and where an effective
bar exists on a barred profile. For example, a hypothetical longshore current with a
narrow, large, suitably-located peak (Figure 2.15A and B), can completely change the
character of the depth profile, at least for edge waves travelling in particular direction:
a trough current can remove the effect of the bar when waves travel against the
longshore current (Figure 2.15B) and a bar current can completely remove the effect of
the bar when waves travel with the longshore current (Figure 2.15A). In Schénfeldt’s
(1995) trough current (Figure 2.14), the effect of the outer trough is eliminated for
edge waves travelling against the longshore current (the result is a profile where
amplification can only occur on the inner bar), and the trough is enhanced when edge
waves travel with the longshore current. If the longshore current shear is very strong
relative to the topography, it could make a new effective bar at a different location
or create an effective bar such as on a plane beach (Figure 2.12). In these cases the
current is equally or more important than the bar, a “current-dominated” situation.

In this extreme current dominated case, the pattern of drift velocities may no

longer enhance the bar, but might move material to a new location dictated by the
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Figure 2.15: A. Idealized longshore current profile for a current over a bar, actual
depth profile (solid line), effective depth profile, for waves moving with (long dash)
and against (short dash) the longshore current. B. Idealized longshore current profile
for a current in the trough, and associated effective and actual depth profiles.
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longshore current profile. In reality, longshore bars have frequently been observed to
move seaward during storms (Wright and Short, 1983; Sallenger et al., 1985; Howd
and Birkemeier, 1987). Howd et al. (1991b) showed some preliminary evidence
suggesting that during a storm on a barred beach, the bar moved seaward to a location
determined by the longshore current profile. The trapping effect of the longshore
current could be a mechanism for bar movement. This would depend on whether
the effect of the longshore current profile on the edge wave in real beach situations
substantially modifies the effect of the bar. In reality the longshore current profiles
are not independent of the depth profiles. The current profiles which actually occur
are limited by the character of incident wave breaking over the bar. For example,
modeling studies show currents on barred beaches should have two maxima: one at,
or slightly shoreward, of the bar and one near the shoreline, caused by incident wave
breaking patterns (Larson and Kraus, 1991). Field data suggest that the longshore
current maximum is often more evenly distributed across the trough (Smith et al.,
1993). Though these studies give a general indication of the longshore current profiles
one might expect, only detailed examination of the location and strength of naturally
occuring current shear relative to real depth profiles, will show whether these current-
modified effective depth profiles occur, and consequently whether longshore currents
do play a significant role in determining edge wave shape on barred beaches as well

as on plane beaches.

2.6 Summary

The results presented in this Chapter generalize the numerical observations made
by Schonfeldt (1991, 1995) and Falques and Iranzo (1992) on specific beach profiles.
Analytic and numerical solutions show that when VGhbar < C < m, edge
waves exist on the bar separately from edge waves at the shoreline. When the phase
speed and the group speed approach \/gha, the bar-trapped modes are amplified

relative to waves at the shoreline, with the size of the amplification related to the width



of the trough. On beaches with multiple bars, edge waves can be amplified on each
bar when the phase speed approaches +/ghea for that bar. Extreme amplifications
indicate mainly that shoreline edge waves are negligible, not that sea surface elevation
is large over the bar. On a particular profile, amplification is most extreme for high
frequencies and wavenumbers.

The non-dispersive behaviour of these bar-trapped solutions allows the longshore
component of orbital velocity to be directly proportional to the sea surface elevation.
This is in sharp contrast to plane beaches, where the longshore orbital velocity dimin-
ishes with increased frequency and mode number. This property may allow detection
and identification of bar trapped edge waves in longshore component of orbital ve-
locity data of higher mode and frequency than in other edge wave field studies (for
example, Oltman-Shay and Guza (1987)).

Longshore currents have the potential to seriously modify the effect of the bar on
theoretical solutions of bar-trapped edge waves. The effective depth profile provides a
convenient way to assess this effect. Longshore currents can cause edge wave trapping,
if they cause the effective depth profile (2.16) to have a local minimum or an effective
bar. On a plane beach, this is most likely to occur when edge waves travel with
the longshore current, in which case trapping occurs at C — \/g—h_(m + V(Zmin)-
When bars and currents coexist, trapping will depend on whether the two effects
act to enhance or diminish each other. For example, a trough (bar) current would
diminish (enhance) the trough (bar) if edge waves propagated against the longshore
current. The longshore current will have greatest affect in changing the effective
depth profile when the shear is strong relative to the bottom slope. In extreme cases,
it is possible for a longshore current to totally remove the effect of a bar or trough,
at least for waves travelling in one direction.

The implications of bar trapping for the design of instrument arrays to observe
edge waves are numerous. Shoreline values of edge waves can no longer be seen as
indicative of the general edge wave climate, but only of the edge waves that are

relatively unaffected by the bar. Edge wave solutions on or close to the bar may be
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dominated by the bar trapped waves (but are still affected by nodal structure). Edge
waves observed in deep water may not be trapped at the shoreline, but may originate
at some deeper bar or bump, previously unconsidered. The edge waves observed
at any one location will depend on their distance from the bar crest. Overall, bar
trapped edge waves add an increasing level of complexity in the interpretation of edge
wave signals. However, the trapped wave on the bar will be limited to travelling at a
minimum phase speed governed by the depth of the bar. Significant energy travelling
at or close to this speed in data could be attributed to bar-trapped edge waves.
Frequency-wavenumber spectra of the measured longshore component of velocity
from alongshore arrays of electro-magnetic current meters have proved useful in iden-
tifying edge waves in field data in the past (Oltman-Shay and Guza, 1987). Using
such frequency-wavenumber spectra we can assess the dominance and directionality
of bar trapped edge waves and also their sensitivity to changes in the longshore cur-
rent and depth profiles. Observations made during the DELILAH experiment, Duck,
N.C., October 1990, are used in the next Chapter to show that bar trapped edge
waves are almost always present and frequently dominate edge wave spectra of the
longshore component of orbital velocity obtained by instruments located on top of
and close to a longshore bar, though they vary in intensity and bandwidth with the

incident wave conditions.



Chapter 3

Field Observations of Bar-Trapped
Edge Waves

The apparent distribution of energy between edge wave modes in observations of the
longshore component of orbital velocity from the nearshore environment depends on
the off-shore location at which the observations are taken (Huntley, 1976; Huntley et
al., 1981; Holman, 1981; Holman and Sallenger, 1993). Low mode edge waves are
relatively more important at, or close to, the shore line (Huntley et al., 1981; Holman,
1981; Oltman-Shay and Guza, 1987; Aagaard, 1990; Bauer and Greenwood, 1990 and
many others) and high mode edge waves tend to dominate in deeper (8-13m) water
(Okihiro et al., 1992; Elgar et al. 1992; Herbers et al., 1995b), where the lower modes
have decayed. In observations from shallow water, the nodal structure may make
the edge wave spectra appear peaky (Wright et al.,1986), and provide an incomplete
picture of the edge wave field (Holman, 1981). Researchers have tried to correct for
this by extrapolating the values obtained at an instrument array to their theoretical
value at the shoreline, using the plane beach solutions (Holman, 1981). Shoreline
run-up observations should not have this problem, and have been considered ideal for
investigating the edge wave field (on plane beaches, edge waves decay with increasing
distance from the shoreline). Observations in deeper water are more representative of

the overall energy distribution of the edge waves as it is possible to ignore the higher

46



47

mode edge wave nodal structure as the anti-nodes are closely spaced and observations
can be averaged over a frequency bandwidth to remove this nodal structure (Herbers
et al., 1995b). In general, observations of edge waves have assumed that the solutions
decay from the shoreline, with the slope of the beach, the frequency and the mode
number dictating the rate of decay, and the topography affecting the shape of the
solutions in a minor way. This gives a simple model in which higher frequency modes
are trapped more closely to the shore than lower frequencies and lower modes are
trapped more closely to the shore than higher modes.

However, the analysis in Chapter 2 has shown that edge waves can be strongly
modified by surf zone morphology (also see Kirby et al., 1981; Wright et al, 1986;
Schonfeldt, 1991; Falques and Iranzo, 1992; Schonfeldt, 1995). These solutions were
shown to be very different from the plane beach solutions. Interpretations of field ob-
servations of edge waves have suggested that longshore bars do trap edge wave energy
in the surf zone (Huntley et.al., 1980; Schonfeldt, 1994). Preferential bar-trapping
of the higher frequency edge wave antinodes has been used to explain general differ-
ences between the ranges of infragravity frequencies excited on bar-trough beaches
and ranges of those excited on plane beaches (Wright et al., 1986). These isolated
studies suggest that the effect of the bar on the edge wave might be important, but
in general, previous analyses have ignored the possibility of strongly bar-trapped
modes, resulting in an incomplete description of the edge wave climate. The obser-
vations presented in this Chapter, from the DELILAH experiment, Duck, N.C., show
how significant and persistent bar trapping of edge wave energy may be, at least at
Duck, N.C.

Diagonal lines of variance in frequency-wavenumber spectra of the longshore com-
ponent of orbital velocity have been observed (i.e. Howd et al. 1991a) in the
DELILAH data (and also in data from the Superduck experiment at Duck, 1986),
however people were puzzled as to their origin. The analysis presented here clearly
shows that these lines lie exactly on the dispersion line for bar-trapped edge waves.

Moreover, Chapter 2 gives the theoretical basis needed to predict of existence of these
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lines and their slopes. The identification of this new type of edge wave is the most
significant finding of this thesis. The convincing evidence presented in this Chapter
will demonstrate that the effect of bar-trapping on edge waves cannot be ignored in
field studies.

Specifically, the objective of Chapter 3 is to clearly demonstrate that the frequency-
wavenumber coordinates of diagonal lines of variance in DELILAH frequency- wavenum-
ber spectra correspond to calculated solutions for bar-trapped edge waves, to examine
the frequency with which these modes dominate the longshore component of current
spectra and to discuss the cause of variability in the diagonal lines of variance. Follow-
ing a discussion on the experimental conditions, methods used and problems encoun-
tered in analyzing the data, the Chapter is divided into two large sections and one
small section. The first large section is a general discussion of the bar-trapped edge
waves which were observed in the data and their dependence on instrument location
and incident wave conditions. The second large section discusses the role of effective
depth profiles in bar-trapped variability, and the final small section deals with the
directional preference of bar-trapped edge waves. It is difficult, in some places, to
separate issues related to the data into specific sections. For example the effect of

incident wave variability and instrument location are mentioned in several places.

3.1 Experimental conditions

DELILAH was a large experiment at the US Army Corps of Engineers Field Research
Facility (FRF) in Duck, N.C. in October, 1990. Details of the experiment are reported
by Birkemeier (1991) and details of the longshore current profiles are described in
Smith et al. (1993) and Thornton and Kim (1993). Two longshore arrays (one in
the trough, one seaward of the bar) and one cross-shore array of electro-magnetic
current meters and pressure gauges (Figure 3.1) make the data good for investigating
edge waves (an ideal location for bar-trapped edge waves would be on top of the

bar). Frequency-wavenumber spectra were calculated using the iterative maximum
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Figure 3.1: A simple schematic of the geometry of the array of current meters and
pressure sensors during DELILAH. The depth contours are in metres, and approxi-
mately representative of the bottom profile toward the end of the experiment.
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likelihood estimator developed by Pawka (1983), tested by Oltman-Shay (1985), and
previously applied to nearshore data (Oltman-Shay and Guza, 1987; Oltman-Shay
et al. 1989; Howd et al., 1991a; Howd et.al., 1991b (for the same data set used
in this paper); Oltman-Shay and Howd, 1993, among others). A discussion of the
spectral estimator is offered in the Appendix. Data from the outer array were prob-
lematic because the current meters with which they were observed were of different
design, which was more susceptible to biofouling. The phase relationships between
the waves should be useful, but the amplitudes are somewhat doubtful (Birkemeier,
1991). Therefore we will mainly concentrate on data from the inner array for detailed
discussion.

Incident wave conditions during DELILAH were measured by the FRF with an
array of pressure sensors in eight meters of water and are summarized in Figure 3.2.
The incident wave direction was mainly from the southeast, with three northeast
events, one at the beginning, and two toward the end of the experiment. In general,
the southeast waves were mostly swell and the northeast waves were mostly locally
generated sea. Two main events occured in the incident wave field: a storm on
October 10, and waves from hurricane Lili on October 12. These generated low
frequency waves with large significant wave heights.

In order to identify the energy in the observed edge wave regime, it was necessary
to calculate the theoretical frequency-wavenumber coordinates for which there are
edge wave solutions and also the cross-shore and longshore velocity components cor-
responding to these solutions. A key data set for calculating these solutions, was the
longshore sequence of the daily depth profiles provided by the FRF (Figure 3.3). The
profiles used were averages of the six or seven profiles contained within the confines
of the longshore array (unless indicated). Profiles during the storm were incomplete,
and were estimated from adjacent days when needed. Though the beginning of the
experiment had less than ideal conditions for bar-trapped edge waves (no well defined
bar), the inner instrument array was ideally located on top of the bar. At the end of

the experiment when the bar was well developed, the crest had moved offshore and
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Figure 3.2: Environmental conditions during DELILAH. The mean longshore current
was the mean of the longshore component of all the working current meters in the
cross-shore array. The longshore current is mostly negative. Incident wave height,
direction and frequency were measured at the FRF 8 meter array (courtesy of the
FRF). Times at which the data presented in Chapter 3 are taken, are marked.
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Figure 3.3: Representative depth profiles during the DELILAH experiment (courtesy
of the FRF). The black line is the average of the grey lines which are all the profiles
taken within the limits of the longshore array. Arrows mark the location of both

longshore arrays. Conditions range from an ill-defined bar with the inner array on
top of the bar, to a well defined bar, with the inner array in the trough.



the inner array was in the trough.

The cross-shore current meter array was needed to define the cross-shore structure
of the mean longshore current, to correctly estimate the longshore current profiles
and hence the effective depth profiles (equation 2.16). The mean longshore currents
were calculated from three hours of longshore current data at high and low tide; the
mean using all the cross-shore current meters is shown in Figure 3.2. Changes in
the direction of the longshore current, from northward to southward, occured when
the incident waves changed their direction of approach from southeast to northeast.
The longshore current speed increased dramatically during the two high wave events.
With an estimate of the depth profile and a longshore current profile, solutions for the
edge wave modes could then be obtained numerically using the methods in Section
2.3 (Holman and Bowen, 1979; Howd et al., 1992).

3.2 Evidence of bar-trapped edge waves during

DELILAH

Field observations of longshore component of current from sixteen data sets (marked
on Figure 3.2) taken during DELILAH, are selected for discussion in this Chapter.
They are chosen in order to represent the varying incident wave and depth profile con-
ditions (Figures 3.2 and 3.3). The most notable feature of nearly all of the frequency-
wavenumber spectra of the longshore component of velocity from DELILAH, was the
persistent diagonal lines of variance below the leaky wave cut off and moving at phase
speeds too great for shear waves. These lines existed in every spectrum during the
experiment which had a barred effective depth profile. Moreover, the slopes of these
lines had phase speeds approaching ‘/E, a convincing indication that they must be
caused by bar-trapped edge waves. (The exact slope of the lines of variance depends
both on the magnitude of the bar-trapped waves and the location of the instrument
array relative to the bar). These diagonal lines of variance are evident also in long-

shore array data from other experiments (for example Howd et al.,1991a), but until



now, their origin has not been identified.

The diagonal lines of variance were only obviously present in the longshore com-
ponent of orbital velocity frequency-wavenumber spectra. Model calculations for the
Duck geometry show that, in general, the longshore component of orbital velocity
at the location of the arrays is much larger than the cross-shore component (Figure
3.4 shows the ratio of longshore and cross-shore orbital velocity for the inner array
along the bar-trapped line, as a function of frequency). There are a few isolated
exceptions, at frequencies where there is a node in the longshore component, but in
general it would be unlikely to find evidence of bar-trapped edge waves in cross-shore

component of velocity spectra.

3.2.1 Observations from near the bar crest

The frequency-wavenumber spectrum from October 5 (Figure 3.5), calculated from
three hours of longshore component of current data over high tide, shows examples of
this diagonal line of variance (the dashed line in Figure 3.5 is the leaky wave cut-off,
above which two broad peaks of incident wave energy are evident). In Figure 3.5 the
diagonal line of variance dominates in the positive direction, in the same direction
as the longshore current. Theory shows that the largest anti-node for the simplest
bar-trapped wave is expected at the top of the bar (Figure 2.10). Therefore the ideal
place to measure n and v is on top of the bar. F igure 3.5 is a good introduction to
these diagonal lines of variance, because on October 5, the instrument array is on
top of the bar, so the problem of solutions decaying on either side of the bar can be
temporarily ignored.

Bar-trapped waves with one zero crossing over the bar (corresponding to solutions
along the second asymptote in Figure 2.10, modes 3(C), 4 and 35) should be less
evident in Figure 3.5, as they have a node in v velocity on top of the bar. Though the
ridges of variance in Figure 3.5 are centered around the simplest bar trapped mode
line, the width of the peaks in the frequency-wavenumber spectra are greater than

the separation of the solutions of simple and more complex bar-trapped modes in
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frequency-wavenumber space (Figure 2.10). Neither the resolution of the frequency-
wavenumber spectra nor the resolution of the calculated solutions is sufficient to
determine how energetic the more complex bar-trapped modes are compared to the
simplest bar-trapped modes; minor deviations from the true locations of peaks are
caused by the statistical uncertainties inherent in the frequency-wavenumber plots
(Oltman-Shay, 1985, and the Appendix). In addition, deviations of the calculated bar
trapped solutions from the actual location the line, C — V/ghbac, are expected, due to
the many possible sources of error, such the position of the bar crest, the form of the
longshore current, and the particular assumed distribution of the modal energy and
the longshore inhomogeneity of the profiles. Despite these details, dominant ridges
of variance in the spectrum below the leaky wave cut-off, have the same signature
frequency-wavenumber pairs as bar-trapped waves. This clearly shows that on top
of the bar, bar-trapped edge waves are the dominant edge waves in the longshore
component of velocity spectra. The spectrum shows little energy in the region of
frequency wavenumber space below (C < Vghbar), where the edge waves are likely to
have decayed by the time they reach the bar. The low level energy spread in the space
between the bar-trapped modes and the leaky wave cutoff, suggests that higher mode
edge waves would only be dominant far from the bar, where the bar-trapped edge
waves have decayed. On October 5, the energy along the bar-trapped line is limited
to lower frequencies: less than 0.12 Hz for waves travelling against the longshore
current, and below 0.18 Hz for waves travelling with the current.

Figure 3.6A shows the smoothed variance density along the theoretical bar-trapped
line projected on to the wavenumber plane (for convenience). Four distinct peaks oc-
cur above the mean variance level. Figure 2.10 shows that one might expect valleys or
nodes in the spectrum along the /ghuay asymptote, where the solutions pass through
the kissing points in the dispersion diagram.

On first glance the pattern of peaks and valleys does not line up well with the
locations of the nodes. The depth profile on October 5 (Figure 3.3) had some long-

shore variability. Sensitivity of the calculated solutions to variations in the bottom
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topography was tested using four variations, Figure 3.6D, (i) whole profile deeper by
10 cm, (ii) whole profile shallower by 10 cm, (iii) trough deeper by 5 cm and bar
shallower by 5 cm (iv) trough shallower by 5 cm and bar deeper by 5 cm (which was
most similar to the variability on October 5). Though the slope of the amplification
line varies minimally (Figure 3.6C), the location of the modes along the amplification
line varies considerably, Figure 3.6B. Using an over-all-deeper or shallower profile
makes little difference, but changing the relative depths of the trough and the bar
changes the distribution of modes along the line. The distribution of modes occurs
over a wider range of wavenumbers, when the trough is deeper and bar shallower;
the region encompassing the bar is then larger, allowing bar-trapped waves of greater
wavelength to exist. Likewise, when the bar is deeper, and the trough is shallower, the
horizontal region defined by the bar is smaller and the spread of modes along the line
is diminished. The difference between the calculated location of peaks and the actual
location of peaks is within the variability caused by the longshore inhomogeneity, but
establishing the direct effect of longshore inhomogeneity cannot by addressed with
our one-dimensional model.

The peakiness of the modal structure along the line does not show that the edge
wave climate is peaky in any general sense. If there is edge wave energy at frequencies
given by the valleys between the peaks, the theoretical calculations (i.e. Figure 2.10)
show that, due to the nodal structure and the offshore decay scale, energy will not

be evident at that particular array location.

3.2.2 Observations from the outer array

The changing magnitudes of different modes with cross-shore distance shown in Figure
2.10, underlines the fact that the relative dominance of particular edge waves modes
is a function of the location at which edge waves are observed. An instrument array
seaward of the bar will be located in the region of seaward decay of the bar-trapped
waves; in general the magnitude of observations of bar-trapped waves is strongly

dependent on the distance to the bar crest. Observations from array in the trough
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will depend on how much the wave has decayed toward a node in the trough. The
dispersion diagrams in Figures 2.4, 2.7, 2.8 and 2.9, on which the greyscale represents
the greatest amplification anywhere in the profile, will be significantly modified if
plotted from a perspective of an instrument array located in a trough (Figure 3.7A)
or an array located outside the bar (Figure 3.7B). (These Figures are calculated
using the depth profile on October 16 during the DELILAH experiment, Duck, N.C.,
including the effect of the appropriate longshore current). The amplification still
is strongly evident in the inner array, but some of the waves which are strongly
amplified over the bar have decayed at the location of the outer array. In Figure 3.7,
the longshore component of orbital velocity squared is plotted to allow comparison
with current data, but the pattern of amplification is the same as would be observed
from plotting sea surface elevation, because the longshore component of current and
the sea surface elevation have the same shape, equation 2.13.

Dominant ridges of variance are evident in the spectra of the longshore compo-
nent of current from the outer array (Figure 3.8) on October 5. In this case, the
dominant ridge of variance corresponds to more complex bar-trapped modes, which
have greater phase speeds than the simplest bar-trapped shapes (Figure 2.10). The
outer instrument array is seaward of the bar, and the simplest bar-trapped waves
(corresponding to the asymptote which is closest to C' — V/ghbar in Figure 2.10) have
decayed somewhat. Even including this effect, the diagonal lines of variance have a
somewhat greater phase speed then expected from the model results. This is possi-
bly an artifact of normalizing the calculated solutions to the shoreline. These higher
modes are more closely spaced, and do not show the structure of maxima and minima

associated with the inner array (Figure 3.6).

3.2.3 Significance levels of spectra estimators

In Figures 3.5, 3.8 and in subsequent spectra, a noise floor is identified arbitrarily
as the mean variance over the domain (f = 0 — 0.3Hz, k = —0.05 — 0.05m™!).
In synthetic tests, Oltman-Shay (1985) noted the existence of a number of low level
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of the most amplified modes has occurred
the difference between positive and neg

current, discussed in more detail in the Chapter 2, Section 2.5.
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Figure 3.8: Variance density plotted as a function of frequency and wavenumber of
the longshore component of current data from the outer array taken on October 5,
when the array is far from the top of the bar. The slope of the diagonal line of data
corresponds to higher mode bar-trapped waves, as the most amplified ones seen in
Figure 3.5 have decayed at this distance. Calculated bar-trapped solutions for this
location are plotted with white dots (using the bar-normalization scheme, Section
3.2.5), the leaky wave cut-off is shown by with a black dashed line.
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peaks which cannot be confidently identified as real, resulting from energy leakage
from more energetic peaks. Oltman-Shay uses a different definition of noise floor.
She arbitrarily takes the mean of all the peaks, and then a second mean of all the
peaks below the first mean, and then defines the noise floor as one standard deviation
above this second mean. (The justification is that if the primary peaks are large, more
energy will leak into secondary peaks). We feel that our noise floor is simpler, though
peaks close to large incident wave peaks should be regarded with caution. Even with
the noise floor, Figure 3.5 has a number of such peaks. However, we are confident that
the main peaks are real, based on our own synthetic tests of the DELILAH longshore
array geometry, and on the successful use of the estimator with data from DELILAH
(Howd et al., 1991; Howd et al., 1992) and other nearshore experiments (Oltman-
Shay and Guza, 1987; Oltman-Shay et al., 1989; Howd et al., 1991; Oltman-Shay and
Howd, 1993). Further discussion of the the problems associated with the estimator
are given in the Appendix. Moreover the conclusions we draw are based on general
observations common to most of the spectra, such as the existence of diagonal lines

of variance, and the slopes of these lines.

3.2.4 Variability of diagonal lines of variance, and edge wave

forcing

Dominant lines of variance are seen, to different degrees, in all of the days for which
data exist (Figure 3.9 shows selected examples). This suggests that most incident
wave conditions excite these bar-trapped modes, and the density and the band width
of the observed energy vary with incident wave conditions. Frequency-directional
spectra from the eight meter array (courtesy of Chuck Long, FRF) reveal variations
in the range of frequencies and directions over which the incident wave energy is
spread, not evident in Figure 3.2.

Though edge waves are obviously related to the incident wave field, the mecha-
nism which forces edge waves has not been clearly demonstrated, despite considerable

effort. In general, edge waves will grow when their shape corresponds to the shape
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Figure 3.9: Variance density plots of v-component current data taken from the inner
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18, 6:25 E. October 20, 6:40 F. October 9, 9:19. The leaky wave cut-off is plotted
with a black dashed line.
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of the forcing function (Bowen and Guza 1978; Holman, 1981). Edge waves can-
not be directly resonantly excited by incident waves because the frequencies and
wavenumbers of the incident waves must be the same as the edge wave, and the
leaky-wave cut-off (equation 2.7) clearly precludes this. So most mechanisms for edge
wave forcing involve non-linear interactions between incident waves which result in
frequency-wavenumber combinations which are the same as those of an edge wave for
that particular topography. Exact correspondences drive resonant responses, but off
resonant responses can be driven if the coordinates are nearly correct. If the correct
frequency and wavenumbers can be generated, then the response will depend (at least
in the one dimensional case treated here) on how well the cross-shore shape of the
edge wave corresponds to the cross-shore shape of the forcing and how strong the
effect of friction is.

Suggested forcing functions can be categorized into those derived from modula-
tions in radiation stress occuring from the groupiness in the incident wave amplitude
(Longuet-Higgins and Stewart, 1962; Gallagher, 1971; Bowen and Guza 1978) and
those generated from modulations in the momentum flux caused by variation in the
incident wave break point (Symonds et al, 1982; Symonds and Bowen, 1984). Recent
studies have included both sources (Foda and Mei, 1981; Schaffer, 1993 and Lipp-
mann et al, in press). The variable radiation stress forcing occurs outside the surf
zone, but can also occur inside the surf zone if the wave amplitude variations are not
completely removed by saturation (i.e. if all the waves do not break). It is also pos-
sible for edge waves to non-linearly combine together to force other edge waves. This
could be relevant to bar-trapped edge waves which have similar shape over the bar,
which may facilitate energy transfer between edge waves, and may explain the broad
forcing of bar-trapped edge waves, even in cases where the incident wave spectrum is
very narrow such as on October 13, Figure 3.9B. The break point mechanism obvi-
ously only occurs inside the surf zone. As suggestion in Chapters 1 and 2, the break
point mechanism might be particularly relevant to bar-trapped edge waves, as both

the forcing and response are large over the bar. Moreover, Lippmann et al. (in press)
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found the found the forcing close to the break point to be much more significant in
generating edge waves on a plane beach then forcing off-shore.

Mathematically, the forcing problem is addressed in Lippmann et al. (in press)
by starting with the forced linearized shallow water equations

Ou dn 1 98z | 85z
5% T = [‘E 9z +w] A,
v O _ [ 105, 85,
Eﬂ’ay - [ ph Oz + ay] Av,

0 —
Sij =~ P/hmj+5ij772

where p is density, A is a friction coefficient and u = (tine, Vine) are the incident wave
orbital velocities. Sj; is the excess momentum flux due to waves, or the radiation stress
assuming shallow water and 77 ~ 0 (Longuet-Higgins and Stewart, 1962). Combining

these with continuity (and ignoring friction) gives an equation in n

9*n 9 (on 0 (adn
32 95 (E ~955\3y) =F
where F is the forcing dependent on the S;;. For an edge wave
Tln(z, Y, t) = an]\[’_l (z)ef(ky—ot)

where NV,(z) represents the cross-shore shape of the wave. Allowing a,, to vary with
time, but ignoring the acceleration of growth in a,, multiplying both sides by N, (z)
and integrating in the cross-shore, gives an expression for the initial edge wave growth

rate (Lippmann et al., in press)
da,. - o )
. n _i(ky—at) 2 =
207 e /0 N*(z)ndz /0 FN,(z)dz.

This shows how the response depends on how well the forcing is coupled with the edge
wave shape. Resonant forcing will occur when o = 0, — 0, and k = k; — k,, where the
subscripts refer to any two incident wave trains. The incident wave orbital velocities

will change with cross-shore distance due to shoaling, but will also be completely
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different inside and outside of the breaker zone. The breaker zone also oscillates with
the longshore groupiness of the incident wave field, so the integral must be evaluated
separately inside and outside the break point.

Though a detailed examination of forcing is beyond the scope of this thesis, some
particular points about the forcing of edge waves by non-linear interactions between
incident waves are useful to the interpretation of field data. Given two incident
waves with longshore wavenumbers and frequencies (k1,01), (k2,02) and with oy > o,

(0 > 0), then the edge wave will have a wavenumber of

1 . .
Ak =k; — k; = k15ina; — kysina, = 5(0’? sina; — oZsin ay) (3.1)

where o, a; are the angles of approach of the two incident waves in deep water, « is
the wavenumber and the longshore wavenumber is conserved when the incident waves
shoal. Suppose k;, and therefore a,, is positive, if one were to consider a range of
values of @, and a3, (3.1) will give a positive Ak for most cases, in particular when «;
is large (because o, is greater than o,). (In order for Ak to be negative, a, must be
significantly larger). For a more comprehensive discussion see Bowen and Guza (1978)
or Herbers et al. (1994). It follows a) that there should be a tendency for edge waves
to propagate preferentially in the same longshore direction as incident waves, and b)
that increasing the directional spread of the incident waves will increase the range of
possible edge wave wavenumbers (k; — ;). Herbers et al. (1995a,b) have observed
the directional spread of infra-gravity waves is correlated to the directional spread
of swell, Herbers et al. (1995a) show this observation is consistent with nonlinear
forcing theory.

The first storm, on October 10 and 11, had a low frequency peak (0.12Hz) on
the bar-trapped line with many multiple peaks trailing off at higher frequencies, all
coming from the southeast (negative wave angles). Bar-trapped edge waves travelling
with the longshore current (in the same direction as the incident waves) are excited
(Figure 3.9A). These conditions are very similar to conditions with similar frequency
ranges of bar-trapping near the end of the experiment, on October 18 (Figure 3.9D),
except that the main incident peak on October 18 was higher (0.19Hz). Both these
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days have bar-trapped edge waves excited over a broad range of frequencies and
negative wavenumbers, which is consistent with incident wave forcing from a broad
range of frequencies and negative wave directions. During the second storm, on
October 13, the incident wave conditions had one very narrow low frequency peak
(0.083 Hz, maximum directional spread 0 to -30°). Despite this, bar-trapped waves
are forced (Figure 3.9B), again in the same direction as the incident waves. (Note the
estimator has difficulty in resolving the bar-trapped edge waves from incident waves
in the 0.083Hz frequency band, as expected from the discussion in the Appendix).
Later this day, the directional spread increased to include waves coming from positive
directions (a directional spread of -30° to 30°). This resulted in more edge waves
forced at positive wavenumbers (Figure 3.9C). The strongly bi-modal conditions on
October 20, with higher frequency waves coming from positive wavenumbers and low
frequency waves coming from negative wavenumbers, forced bar-trapped waves in the
same directions as the higher frequency incident waves (Figure 3.9E).

Most interesting in Figures 3.9 B and C, is the spread of energy into frequencies
greater than the well-contained low frequency incident wave band. (These high fre-
quency peaks are small, but significant using the Oltman-Shay noise floor definition).
This cannot be explained in terms of the simple non-linear interaction of incident
waves, which results in frequencies which are lower than the two incident frequencies
(Bowen and Guza, 1978). Low frequency (swell) waves, such as encountered on Octo-
ber 13 and 14, have been observed to be more effective at exciting infragravity waves
than high frequency (sea waves) (Elgar et al., 1992), consistent with forcing theory
predictions (Herbers et al., 1995a). Perhaps this low frequency swell transfers energy
to higher edge wave frequencies more efficiently than the higher frequency incident
waves in Figure 3.5, where the edge waves do not extend to very high frequencies.
There is also the possibility of secondary transfer of energy from edge wave to edge
wave, mentioned earlier. Bar-trapped edge waves are even evident in F igure 3.9F,
data from October 9, when there is no real bar, only an effective bar due to the

presence of a mean longshore current, though the variance in the bar-trapped region
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does not dominate to the extent that is does on other days.

3.2.5 The normalization problem

Calculating the numerical solutions for the profiles in Figure 3.9, many of which were
observed when the instrument array was not located on top of the bar, showed that
some of the diagonal lines had slightly higher phase speeds than predicted using the
simple scheme of normalizing all the solutions to the shoreline introduced in Chapter
2.

The shoreline normalization used in Figures 2.4, 2.7-2.9 and 3.7 is not necessarily
the most appropriate scheme to use when comparing these theoretical solutions to
data. The basic difficulty is that edge wave solutions, calculated for a given beach
profile, are merely the shapes which that topography will support. Without a full
calculation of the theoretical forcing patterns, energy transfer and dissipation for
each run, there is no realistic way to theoretically estimate the expected relative
amplitudes of the various possible modes. Some previous studies have made the
simple assumption that the shoreline amplitudes of these modes are equal (Oltman-
Shay and Guza, 1987; Oltman-Shay and Howd, 1993), or that they decrease in some
regular fashion with increasing mode number. This has proved useful in illustrating
specific points, such as the location of the edge wave nodes in surf zone measurements.
Normalization of the edge wave solutions at the shoreline (“shoreline normalization
scheme”) may be useful on plane beaches where the shoreline amplitudes are greatest,
but makes little sense when the waves are strongly amplified over the bar; the strongly
amplified modes completely dominate the predicted spectrum (for example Figure 2.7
or 2.9). Amplification is really only an indication of trapping efficiency over the bar;
the more amplified modes decay more rapidly on either side of the bar, and therefore
are more efficiently trapped. For example, a mode 3 bar trapped wave in Figure 2.10
has a steeper decay on either side of the bar than a mode 1 bar-trapped wave from
Figure 2.10. Normalizing the solutions to the shore causes the longshore component

of mode 3 wave to be larger than the mode 1 wave, when observed on either side of
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Figure 3.10: The cross-shore structure of the longshore component of orbital velocity,

A. a strongly amplified wave (mode 3 from Figure 2.10) versus a less amplified wave
(mode 1 from Figure 2.10), normalized so the sea surface elevation is one centimetre at
the shoreline. B. The same waves, only the mode 3 wave which was strongly amplified
relative to its shoreline value has been renormalized to a sea surface elevation of 1
centimetre at the bar. C. The shore normalized mode 3 wave (a simple bar-trapped
shape) versus the less amplified mode 4 wave (a more complex bar-trapped shape).
D. The same waves, renormalized to a sea surface elevation of one centimetre at the

bar. The more complex bar-trapped mode will be more evident at the location of
arrays in the trough or seaward of the bar.
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Figure 3.11: The dispersion diagram given in Figure 3.7 renormalized so the amplified
waves have a maximum sea surface elevation of one unit anywhere in the cross-shore
profile, A. is from the instrument array in the trough B. is from the instrument array
seaward of the bar. Note that the amplified line has a greater slope than in Figure
3.7, because the most amplified modes have decayed at the location of the instrument
array. Arrows mark the location of the line of most amplified waves.
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the bar (Figure 3.10A). However, normalizing the solution to the bar causes the mode
3 wave to appear smaller than the mode 1 wave. Similarly, on plane beaches, higher
frequency solutions will decay more rapidly than lower frequency solutions; the higher
frequency solutions appear smaller than lower frequency solutions, when observed at
a distance from the shoreline, but only if they are normalized at the location of their
maximum amplitude (the shoreline).

The same observation can be made of solutions corresponding to the higher
C — V/ghpa: asymptote discussed in Section 2.1.2, where the asymptote closest to
the C — \/ghpa, corresponds the simplest bar trapped shapes, and higher asymptotes
correspond to more complex bar-trapped shapes (Figure 2.10). With a shore normal-
ization scheme, bar trapped solutions along the simplest bar-trapped asymptote (for
example mode 3) are larger than bar-trapped solutions for higher bar trapped asymp-
totes with the same frequency (for example mode 4), Figure 3.10C. If these waves
are renormalized to have a unit sea surface elevation over the bar, the most amplified
wave will be smaller at the location of instrument arrays both in the trough, and
outside the bar (Figure 3.10D). The choice of normalization scheme changes the ap-
pearance of the predicted spectrum, as the most amplified waves with the simplest
shapes over the bar decay more quickly on either side of the bar.

Normalizing the most amplified waves to their values at the location of the bar
rather than at the shore, is useful because it deals more realistically with the rapid
decay of the most amplified modes on either side of the bar, relative to their less
amplified counterparts. However, normalization of all the solutions on top of the bar
is problematic as some solutions decay or have nodes on top of the bar. Therefore
we choose a scheme in which only the solutions which are exactly larger over the
bar than at the shoreline are normalized to the bar, the remaining solutions are
normalized to the shoreline as before (“bar normalization scheme™). So this objective
normalization criterion limits the maximum amplitude of any solution. The result
is the bar-trapped line (C — /ghpar) in Figure 3.7 appears to have a higher slope
(Figure 3.11) as the most strongly amplified modes have decayed before reaching the
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instruments in the trough (Figure 3.11A) and seaward of the bar (Figure 3.11B). The
slope of the variance ridges, found repeatedly in the frequency-wavenumber spectra
of current data from DELILAH, will determine whether either of these schemes is
appropriate and how large the most amplified modes become on top of the bar.
During most of the experiment, when the arrays were not located at the top of
the bar, diagonal lines of variance corresponded better to solutions calculated using
the bar normalization scheme, rather than the shore normalization scheme. The bar
normalization scheme essentially emphasizes that the simplest bar-trapped shapes
(the most amplified shapes (Figure 2.10)), decay faster on either side of the bar and
thus may not be energetic at array locations on either side of the bar. In which case,
only the higher bar-trapped waves may be evident in much of the data. With the
introduction of the bar-normalization scheme to Figure 3.8, the data and diagonal
lines of variance correspond well. It must be emphasized that the bar normalization
scheme and the shore normalization scheme are two limits depicting the size of the
waves over the bar. In practice, unless the instrument array is very far from the bar
(i.e. Figure 3.8), the resulting lines are not very different. If the resolution of the
peaks were better, it may have been possible to determine exactly the size of the
waves over the bar, and design a proper normalization scheme, but for the broad
conclusions drawn here, it is sufficient to note that their may be some variability in

the slope of the line due to this effect.

3.2.6 Remarks on optimal observing conditions

There were some incident wave conditions that appeared to excite particularly dis-
tinct diagonal lines of variance, extending up to high frequencies. These conditions
consisted of two incident wave peaks, at different frequencies coming from different
directions. A spectrum, where these favourable conditions occur, October 16 (Figure
3.12), is discussed in some detail in this Section because it will be used to normalize
the drift velocity calculations in Chapter 4.

The theoretical solutions plotted in Figure 3.12, are not the solutions calculated
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Figure 3.12: Variance density of the longshore component of orbital velocity from
the inner array taken when the array is in the trough, on October 16. Though the
array is not ideally located, the slope of the line of variance is for the lowest mode
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using the bar normalization scheme, as was appropriate for the other spectra observed
in the trough (for example, Figure 3.9), but the shore normalization scheme. The bar-
trapped line generated using this constraint fits the slope of the variance ridges in data
better than the bar normalization scheme: the diagonal line of variance corresponds
to the simplest shape for bar-trapped modes (with no zero crossings over the bar).
Extrapolating the solutions to the top of the bar, implies that the bar-trapped edge
waves with the simplest shapes are in fact considerably larger than more complex
bar-trapped modes on top of the bar (if the simple shapes were the same size, they
would have decayed by the location of the inner array and the line of variance would
correspond to the bar normalization scheme, Figure 3.12). Figure 3.12 also shows
that the incident wave field was strongly bi-modal, with high and low frequency
peaks coming from different directions. Theoretically, a broad directional range of
the incident waves is needed to generate edge waves at high wavenumbers by simple
non-linear interactions. When incident waves arrive from different directions, the
higher frequency peak dictates the direction of edge wave propagation (Herbers et.al.,
1995a), which is true in this case. (The concentration of variance at high wavenumbers
and very low frequencies moving in the direction of the longshore current, is probably
evidence of shear waves.)

The diagonal line of variance from the outer array on October 16 is slightly above
the bar-trapped line corresponding to the simplest bar-trapped modes; if there were
any simplest bar-trapped waves, they have decayed (Figure 3.13). If one could be
sure of the data quality collected by open frame current meters on the outer array,
one could in principle match the solutions on either side of the bar, and estimate
the energy on top of the bar as a function of frequency and longshore wavenumber.
Rough calculations of the variance contained in a peak corresponding to a mode two
wave, with the simplest bar-trapped shape, (using spectra averaged over a frequency
band width of 0.0137Hz, and a half power wavenumber band width of the peak),
show this small part of the spectrum to have an average, root mean squared velocity

of 2.5 cm/s. Assuming all this energy were attributable to the mean shape (of the
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same frequency wavenumber range) of a mode two wave which is trapped over the bar
(with the simplest shape), this wave would have a longshore velocity of 5.5 cm/s on
top of the bar (with a wave height of 3 cm). This is small, but is only a small portion
of the total variance along the diagonal line of variance, attributable to bar-trapped
waves.

In data from a longshore array of 8 wave gauges on top of a bar on a beach in the
Baltic Sea, Schonfeldt (1994) observed that a significant proportion of variance of sea
surface elevation appeared to propagate alongshore at phase speeds of about v/gRuq,.
Though the energy contributed from each mode may be small, the sum of variance
from all the modes may contribute a significant portion of the sea surface elevation
variance on top of the bar. The quasi non-dispersive nature of the bar-trapped modes
shows that for a given amplitude, the longshore component of velocity is large relative
to the solutions for edge waves not effected by the bar. So a large longshore component
velocity signal may not necessarily mean that the sea surface elevation is large, as it
might in the case of edge waves on a plane beach. Further observations of sea surface
elevation such as Schonfeldt’s (1994) results are needed to determine how frequently
bar-trapped waves are dominant in an absolute sense (i-e. in terms of elevation). The
problem is complex, as always with these model solutions, in that only the simplest
bar-trapped waves and the higher even numbered modes, have maxima at the bar
crest. Higher odd-numbered modes have nodes at the crest (Figure 2.10) and and
will not be evident in sea surface elevation measurements from on top of the bar.

Although there is strong signal which appears to be bar-trapped waves in the long-
shore velocity component data, the cross-shore velocity (Figure 3.14) does not show
a similarly strong signal; it is instead dominated by energy from other sources such
as incident waves, leaky waves etc., as previous edge wave studies have also noted
(Huntley et.al., 1981; Oltman-Shay and Guza, 1987; Howd et al., 1991b, among oth-
ers). This is sensible, as the model calculation show that the cross-shore component
of velocity should not be large compared to the longshore component of velocity (Fig-

ure 3.4). Also the longshore component of velocity is less likely to be dominated by
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in the cross-shore component of velocity. Shear waves are present at low frequencies,
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incident waves, which tend to have small longshore components. Both the longshore
component and the cross-shore component spectrum show evidence of shear waves at
phase speeds less than the maximum longshore current (positive on this day), Figures
3.12, 3.13 and 3.14.

The diagonal ridge of variance density in the inner array on October 16, corre-
sponds to the line of bar-trapped waves of the simplest shape. Mode zero, one and
two peaks in variance density along this bar-trapped line for the inner array on Octo-
ber 16, are clearly present (and significant using the Oltman-Shay noise floor), with
locations corresponding to the expected nodal structure of a bar-trapped edge waves
(Figure 3.15), calculated assuming shore normalization. This does not imply that
edge waves do not exist at the frequency-wavenumber coordinates between the peaks;
calculated solutions corresponding approximately to these valleys show that these
edge waves might be energetic close to the shore, but not at the bar. The calculated
solutions match the peaks more exactly than in Figure 3.6, perhaps because of the
longshore homogeneity in depth profiles from the latter part of the experiment. Mode
3 seems to be lower and mode 4 is only just significant using the Oltman-Shay noise
floor (variations on the spectrum represented by multiple lines are to indicate possible
uncertainties in the exact depth of the bar; these do not affect the significance of the
fourth mode, just the location). In this case, the Oltman-Shay noise floor is large,
because mode 4 lies in the same frequency band as a strong incident wave peak. The
frequency of the mode 2 peak (at about 0.08Hz), which is larger than the others,
is close to that of the lower frequency incident wave peak (at about 0.09 Hz), and
the mode four peak (at about 0.18Hz) is near the higher frequency incident peak (at
about 0.17 Hz); these are edge wave modes at incident frequencies.

The excellent agreement between the calculated dispersion curves and the observed
distribution in frequency-wavenumber space of longshore component of edge wave
velocity allows conclusive identification of bar-trapped energy. When the array was
located in the trough or seaward of the bar, the simplest bar-trapped waves may

bave decayed, and only higher modes may be evident. The signature of this type of
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Figure 3.15: Variance density along the positive bar-trapped line in Figure 3.12.
Variations correspond to changes in the slope of the line caused by a change in phase
speed associated with a 20 cm change in the depth of the bar. The peak mode
locations and the breadth of these peaks is marked. The mean variance density of
the whole spectrum within the ranges of Figure 3.12 is marked with a dashed line
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edge wave energy was persistent throughout the experiment, with energy extending
from very low frequencies, to frequencies higher than incident. Higher frequency bar-
trapped edge waves are evident because the longshore component of orbital velocity
does not diminish with frequency as for plane beach solutions. The bandwidth of
the energy along the bar-trapped line depends somewhat on the directional spread
of the incident waves. Bar trapped edge waves were very clearly defined when the
incident waves had two separate peaks of different frequency arriving from opposite
directions. The bar-trapped waves that are generated seemed to travel preferentially
in the same direction as the incident wave peak, and in the same direction as the
higher frequency peak when more than one existed. Clear identification of these lines
allows for a more detailed examination of edge wave response to different depth and

longshore current profiles in the following section.

3.3 Bar-trapped edge waves and effective depth
profiles during DELILAH

In Section 3.2.4 the importance of variable incident wave conditions in determining
variability in the diagonal lines of variance was briefly discussed. However changes in
the diagonal line of variance will also be a function of the effective depth profile which
changes with the longshore current and depth profiles (Section 2.5). In fact, there
were cases at the beginning of the DELILAH experiment where the incident wave
conditions remained nearly constant, but the diagonal line of variance appeared and
disappeared. The variety of effective depth profiles experienced during DELILAH can
be reconstructed from the beach surveys and the longshore current profiles collected
during the experiment. These profiles are a function of the bottom topography and
the mean longshore current, and consequently vary with the tide as well as the incident

wave conditions.
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Figure 3.16: A.(i) Longshore current profiles at high tide (grey) and low tide (black)
from October 7-9. (ii) Effective depth profile for the same times for edge waves
travelling against the longshore current and (iii) for waves with the longshore current.
(iv) Actual depth profile. B.(i) Eight of the larger longshore current profiles at high
tide (grey) and low tide (black) from October 14-20. (ii) Effective depth profiles
for edge waves travelling against the longshore current and (iii) with the longshore
current. (iv) Actual depth profile.
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3.3.1 Effective depth profiles during DELILAH

The cross-shore shape of the mean longshore current during DELILAH were charac-
terized by a broad peak over the trough (Smith et al., 1993), which was modulated
both in size and location by the tide (Thornton and Kim, 1993). At low tide the
current increased, and the current peak moved seaward with the increase in incident
wave breaking over the bar, conversely at high tide the profiles moved shoreward
and the current strength diminished. Some examples of longshore current profiles
at high tide (grey line) and low tide (black line), for the beginning and the end of
the experiment, when the bottom profiles were relatively stable, are shown in Figure
3.16A(i) and 3.16B(i) respectively. In general, when the bottom profile was gently
sloping with a small bar or terrace, the longshore current had a small well defined
peak, exemplified in Figure 3.16A(i). Numerical simulations of this current show it
to be similar to the longshore current expected on a plane beach, with disturbances
in the profile shape caused by the non-planar part of the topography (Thornton and
Kim, 1993). When the bar was well defined, the longshore current had a very broad
peak (Figure 3.16B (i))

The longshore current profiles and depth profiles during DELILAH combined to
give examples of both current dominated, and depth dominated effective depth pro-
files. (Chapter 2, Section 2.5.2). The poorly defined bar, with gentle bottom slope.
characteristic of the beginning of the experiment combined with a longshore cur-
rent with a narrow peak to make a current-dominated effective depth profile (Figure
3.16A). In these cases, when the current was located over the bar at low tide, the
effective depth was near planar, the current effect essentially eliminating the bar
(Figure 3.16A(iii)) for waves travelling with the longshore current. When the current
was located in the trough at high tide, the bar was enhanced (Figure 3.16A(iii)) for
waves travelling with the longshore current (or in the case where there was a terrace,
the terrace became a bar). Toward the end of the experiment, the longshore current
profile was too weak and broad relative to the well defined bar, to significantly alter
the effective depth profile (Figure 3.16B). The effective depth profiles both with and
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against the longshore current, both had a well defined bar similar to the bar in ac-
tual depth (Figure 3.16B(ii) and 3.16B(iii)). Minor differences exist in the depths of
the bar and trough, which affect the degree of edge wave amplification over the bar.
Trapping occurs at Zsa,, when C — /ghpar + Vior (Figures 3.17(B,C), 3.19(B,C) and
3.24(B,C), show the effective depth profiles from selected bar-dominated examples
toward the end of the experiment).

During the high wave events, the longshore current profiles were broader than in
the early part of the experiment, but stronger than in the latter part of the experiment.
The current profiles were not narrow enough to completely change the character of
the effective depth profile, but the existence of a strong longshore current peak in the
trough made a large difference between the effective depth profiles for waves travelling
with the longshore current and those travelling against, which strongly affected both
the degree of trapping and the slope of the \/gh’Tm line, for example Figure 3.18B,C.
The shoreward increase of the longshore current over the bar resulted in the creation
of a consistently seaward effective depth profile for waves travelling with the longshore
current and an effective bar slightly landward of the actual bar for waves travel against
the longshore current. Howd et al.(1991) calculated the effective depth profiles during
the first storm at DELILAH, and showed the effective bar for waves travelling with
the longshore current to be consistently seaward of the actual bar. The same was

probably true of the second storm, though the depth records were incomplete.

3.3.2 Edge wave response to effective depth profiles.

In Section 3.2, the diagonal lines of variance were shown to be present, to varying
degrees, in spectra of the longshore component of current from most days during
DELILAH, and the lines of variance corresponded well to calculated solutions for
bar-trapped edge waves. In Section 3.3.1 it was shown that the effective depth profiles
could vary considerably not only with the changing bottom, but also with the changing
longshore current, suggesting that some of the variability in the diagonal lines of
variance could be explained by variability in the effective depth profiles.
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Figure 3.17: A. Frequency-wavenumber spectra of the longshore component of orbital
velocity from the inner array for three hours over high tide on October 19, starting
at 17:36. The dashed line is the leaky wave cut off, dotted lines are numerically
calculated solutions for the most amplified bar trapped modes. Variance is normalized
by frequency, as is usual. B. The mean longshore current profile over this same time
period. C. The actual depth (solid line) and effective depth profiles both with (small
dashes), and against (large dashes) the longshore current. Shaded areas are the depth
below which the edge wave is sinusoidal for the phase speed chosen for each effective
depth profile.
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Figure 3.18: Same as Figure 3.17, but for October 13, starting at 13:57
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The slope of the diagonal lines of variance corresponded well to predictions made
using equation 2.19 and the effective depth profiles, particularly if one considers that
the instrument array is fixed, and not usually located near z,.;,. The diagonal line
of variance corresponds well to the frequency-wavenumber coordinates of edge waves
trapped over the effective depth profiles measured at the same time (Figure 3.17 B
and C). In this case, the bar is well defined and the longshore current has a broad
peak, resulting in an effective depth profile which is dominated by the bar; the diag-
onal line of variance occurs at a phase speed approaching \/gT:n;, or \/ghsar + Viar.
For example, frequency-wavenumber spectra from October 13 (Figure 3.18), during
the second storm, show a diagonal line of variance corresponding to solutions which
are bar trapped (but these are not the solutions which approach \/gh'Tm the most
closely, as those have decayed at the location of the instrument array (Section 3.5.2)).
The two diagonal lines of variance in Figure 3.18 have strongly asymmetric slopes,
corresponding to the strong difference in the depth of effective bars for waves trav-
elling with and against the current (Figure 3.18C). (Depth profiles from October 14
are used in Figure 3.18C). Conversely, on days with little current, the two diagonal
lines of variance are almost completely symmetric (Figure 3.19).

3.3.3 The sensitivity of bar-trapped waves to current domi-

nated profiles

When the effective depth profile is current dominated, the effective bar, and changes in
the effective bar, are often quite small (Figure 3.16A), and it is questionable whether
the bar is large enough to cause substantial trapping of edge wave rays.

Numerical experiments using idealized effective depth profiles show the sensitivity
of the longshore component of orbital velocity at the bar crest, to six different profiles
with a bar or terrace of varying intensity (Figure 3.20). These profiles are chosen to
mimic the subtle changes in the effective depth profile occuring early in the experi-
ment. The calculated edge wave solutions are amplified over the bar relative to their

shoreline values, only in the last three cases (Figures 3.20 D-F) when a bar exists.
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However, in the first three cases, the existence of even a slight terrace, will cause the
velocity of edge waves travelling at a phase speed similar to the depth of the terrace,
to be slightly larger than surrounding modes (Figures 3.20 A-C). Theoretically, a
small bar or even a terrace (effective or not), representative of the conditions early
in the experiment, will cause an edge wave anti-node to get mildly trapped on the
terrace or bar, at phase speeds approaching v/ghle race-

Frequency-wavenumber spectra from the early part of the experiment show that
edge waves shapes are affected by a very small bar, and also by small changes induced
by tidal variability in the longshore current, as suggested by the theoretical examples
in Figure 3.20. When the effective bar is small, frequency-wavenumber spectra still
show the diagonal lines of variance characteristic of bar-trapped edge waves (Figure
3.21B, 3.22A). Generally, during the early part of the experiment, these diagonal
lines of variance are observed to respond to the changes predicted in effective depth,
disappearing at low tide, when the effective bar disappears, and reappearing at high
tide, when the effective bar reappears (for waves travelling with the longshore current).
For example, on October 7, the actual depth profile has a small bar, the effective depth
profile at low tide has a terrace, and the effective profile at high tide has an enhanced
bar (Figure 3.21 C and D). The frequency-wavenumber spectrum at high tide has a
clearly observable diagonal line (Figure 3.21B, where as the spectrum from low tide
is diffuse with little evidence of a line (Figure 3.21A). Similarly, a few days later, the
actual profile has a terrace, the effective profile at high tide has a bar and at low tide
it is almost a plane beach (Figure 3.22 C and D). The spectrum at high tide has a
diagonal line of variance (Figure 3.22A), but six hours later at low tide the dominance
of this diagonal line is clearly diminished (Figure 3.22B). These conditions continued,
until the storm began on October 9, when a more distinct bar formed and migrated
seaward.

Though the bars are small in these two examples, they show the ability of the long-
shore current to change the effective depth from barred to non-barred and vice versa,

and consequently to noticeably modify the character of the edge wave solutions. In
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Figure 3.21: A. Frequency-wavenumber spectrum of the v-component of velocity
from the inner array on October 7, over low tide, starting at 14:04. B. Frequency-
wavenumber spectrum at high tide on the same day (starting at 19:54). C. The
mean longshore current profiles for low tide (black line) and high tide (grey line).
D. The actual depth profile (black line) and the effective depth profile at low tide
(black dashed line) and at high tide (grey dashed line), for waves travelling with the

longshore current. The depth at which the cross-shore solution goes from sinusoidal to
exponential is marked, using the same phase speed as for the effective depth profiles.
The water line for high tide and low tide are marked.
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from the inner array on October 9, over high tide, starting at 9:19. B. Frequency-
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longshore current. The depth at which the cross-shore solution goes from sinusoidal to

exponential is marked, using the same phase speed as for the effective depth profiles.
The water line for high tide and low tide are marked.
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these current-dominated effective depth profiles, the longshore current dictates where
the effective bar occurs, as on plane beaches. For example, in F igure 3.21, the trapping
criterion is governed approximately by the location and depth at which the seaward
longshore current shear occurs as is the case in Figure 2.12. Figure 3.23 shows the
location of the actual bar (black line), the location of the effective bar for edge waves
travelling both with (black bullet) and against (grey bullet) the longshore current,
with the mean longshore current from Figure 3.2 plotted for reference. Though the
exact location of the effective bar will depend on the accuracy and resolution of the
longshore current measurements, Figure 3.23 shows a general trend in the variability
of the location of the effective bar relative to the location of the actual bar during
the experiment. For most of the early part of the experiment, the location of the
effective bar is determined by the location of the seaward longshore current shear,
and therefore modulates with the tide. This is in sharp contrast to the latter part of
the experiment when the weak current shear (relative to the bottom slope) has little
effect on the location of the effective bar.

The high and low tide effective depth profiles in Figure 3.21, 3.22 and 3.23 are
end points. The effective profile would in reality move continuously from its high tide
shape to its low tide shape, with the modulation in sea level. Clearly, the effective bar
created by the longshore current would move shoreward and seaward with the tide
on plane beaches. Consequently, when the effective depth profile is strongly current
dominated, the net effect on the beach is some complex average over the tidal period.
When Howd et al. (1992) introduced the idea of effective depth, they hypothesized
that this could be a mechanism for bar growth on a plane beach. However, they
add that this will occur if the effective bar is stationary. As with all models for
bar generation, the fluctuating tidal elevation considerably complicates any simple

prediction.
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3.4 Directionality of bar-trapped edge waves dur-
ing DELILAH

In general, during the DELILAH experiment, the edge waves travelling with the
mean longshore current had greater variance than edge waves travelling against the
current, as assumed by Howd et al. (1992) and Schonfeldt (1995). Directionality is
particularly significant when the profile is current-dominated. For example, on plane
beaches, edge wave trapping is only likely to occur when waves travel with the long-
shore current (Figure 2.12). The effect of current in equation 2.18, dV/dz, is greatest
when V' and C are the same sign. During DELILAH, when the current dominates
the effective depth profile, radical changes such as from a barred profile to an near-
planar effective depth profile (Figures 3.16, 3.21, and 3.22) only occur when waves
travel with the longshore current. On days when the bar is more important (and
the current can have a strong effect in both directions), the dominance of edge waves
travelling with the current suggests that the net effect of current is to enhance ampli-
fication. For example, in Schénfeldt’s case (Figure 2.14), the trough is significantly
deepened for waves travelling with the longshore current. Similarly, on October 13,
a stormy day with a strong longshore current in the trough (Figure 3.18C), the effec-
tive depth profile is more extreme when edge waves travel with the longshore current.
In addition the effective bar is very slightly seaward of the actual bar (Howd et al.,
1991). Obviously, toward the end of the experiment, when the effective depth is bar
dominated, directionality makes relatively little difference (Figure 3.16B).

Edge waves may tend to travel in the same direction as the longshore current
because generation theories for both longshore currents and edge waves depend on
the directionality of the incident wave field. The longshore current is forced mainly by
the longshore momentum flux, or radiation stress, associated with the incident waves
and (assuming longshore homogeneity) the longshore current direction is necessarily
that of the longshore component of mean incident wave approach. For an edge wave

where k = k; — k;, equation 3.1 shows that for a range of angles of incident wave
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approach, it is more likely for edge waves to be forced in the same direction as the
incident wave direction. The expectation is then for most, but not necessarily all, of
the edge wave energy to be in the direction of the longshore component of the incident
waves. In most cases during DELILAH, combinations of incident waves preferentially
forced edge waves in the same direction as the longshore current. For example, around
October 13, the incident waves were characterized by low frequency, uni-directional
swell from hurricane Lili. The edge waves were predominantly in the same direction
as the incident waves, and the longshore current (Figure 3.18).

The marked difference between the effective depth profile for edge waves travel-
ling with the longshore current and waves travelling against the current shown in
Figure 3.18, suggests the possibility that edge waves could be preferentially forced
over one bottom shape rather than another. Since the mean longshore current at
Duck quite often has a peak in the trough (Smith et al., 1993) or a peak on the bar
which increases toward the trough, the effective bar for edge waves travelling with
the longshore current is often more extreme than those travelling against the long-
shore current, which results in more extreme amplification. Some theories suggests
that strong edge wave forcing occurs over the bar (Symonds et al., 1982), so that
coupling between the forcing and response might be superior for the most amplified
bar-trapped modes. However, there is a marked dominance in edge waves travelling
with the longshore current in the spectra shown in Figure 3.17, even though the di-
mensions of the effective bar and trough are not dependent on the longshore current
in this case. The asymmetry in the edge wave variance seems to be associated with
the incident wave forcing. Figure 3.17 shows two incident wave peaks above the leaky
wave cut-off, one broad higher frequency peak in the positive (southeast) direction
and a smaller, lower frequency peak at negative wavenumber. Again, in this case, the
longshore current is in the same direction as the high frequency incident wave peak,
and the observed bar-trapped edge waves are dominant in that direction. Six hours
earlier at low tide, the edge waves travelling with the longshore current are less dom-

inant than in Figure 3.17, but the effective depth profiles are similar (Figure 3.24).
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This change in edge wave dominance seems to be related to the increased directional
spread of the incident waves. Finally, on days when the longshore current is so small,
as to have almost no effect on the effective depth profiles, there is still a dominance of
edge waves travelling with the longshore current (Figure 3.19). Again, this seems to
be related to the direction of the incident waves, which in this case have a broad high
frequency incident wave peak in the same direction as the longshore current (which
is not evident on Figure 3.19, but is evident in the frequency-wavenumber spectrum
measured with the eight-metre array).

Though the enhanced effective depth profile, which increases amplification for
wave propagating in a particular direction, may result in increased coupling between
forcing and edge wave response, the dominant process determining the directionality
of the edge wave response seems to be the directionality of the incident wave forcing.
Though edge waves are dominant in the direction of the longshore current, this is
only because both their respective forcing mechanisms depend on the incident wave

directionality.

3.5 Summary

Diagonal lines of variance in the longshore component of orbital velocity spectra
existed when an effective bar existed throughout the DELILAH experiment. Though
these diagonal lines have been observed in past experiments, their likely cause has
never been identified. The correspondence of these lines to predicted frequency-
wavenumber coordinates, conclusively shows these lines to be bar-trapped edge waves.
These bar-trapped waves were persistently energetic over a wide range of incident
wave conditions throughout the experiment. Conditions ranged from low frequency
uni-modal peaks (both narrow and broad in directional spread), to high and low
frequency bi-modal peaks (again narrow and broad in directional spread), to multiple
peaks spread out over a large range of frequencies and wavenumbers. Despite the

variability in forcing conditions, bar-trapped waves are continually excited at all the
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frequencies and wavenumbers obeying the bar-trapped phase speed, C — Vghbar.

Theoretically, the forcing should be enhanced when the cross-shore shape of the
forcing function and the shape of the response function are well coupled. Bar trapped
edge waves have their greatest maxima at the location of the bar, and some theo-
ries predict maximal edge wave forcing on the seaward face of the bar (Symonds
and Bowen, 1984). This potential coupling could preferentially force bar-trapped
waves, and explain why they are so dominant in these observations. The frequency-
wavenumber spectra during DELILAH also showed a clear dominance of edge waves
travelling with the longshore current over edge waves travelling against the longshore
current, an effect probably due to the dependence of the directions of both edge wave
forcing and longshore current forcing on the incident wave direction. Though there
were days when the effective depth profile remained constant and the incident wave
conditions changed, there were no days where the converse was true; therefore there
is insufficient evidence to determine the exact cause of edge wave variability.

Edge waves have traditionally been observed at low frequencies (f < 1/60 Hz)
(Huntley and Bowen, 1975) or sub harmonic frequencies. These are some of the few
observations of edge waves at incident wave frequencies. It has always been assumed
that edge waves exist at incident wave frequencies, though without a longshore array,
these high frequency edge waves are difficult to discern among the incident wave
noise. These bar-trapped edge waves are clearly not incident waves, because they
exist below the leaky wave cutoff. The non-dispersive nature of bar-trapped edge
waves partially causes this dominance of bar-trapped edge waves in the longshore
component of orbital velocity at higher frequencies. Previously, it was assumed that
the higher mode edge waves would not be evident in longshore component of velocity
data, as the longshore component of orbital velocity diminishes strongly with mode
number on plane beaches.

Since it is possible to attribute much of the observed variance to bar-trapped
edge waves, the DELILAH data set provided a variety of different conditions with

which to test the importance of realistic longshore current profiles in determining
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the location, depth and shape of effective bars, and also the degree to which edge
waves in field data, respond to the longshore current. The character of the effective
depth profile toward the end of the experiment, when the bar was well developed,
was rarely significantly altered by the longshore current; in these cases, the current
merely enhanced the bar trapping mechanism. Conversely, when a small bar or terrace
exists, or on a plane beach, the longshore current can significantly alter the effective
depth profile and change the the theoretical edge wave solutions, for example Figures
3.21,3.22. Modulations in the longshore current cause subtle changes in the effective
depth profile which can determine the existence of an effective bar, and the existence
of dominant lines of variance in frequency-wavenumber spectra. When a profile is
current dominated (and when an effective bar exists) it can occur at a significantly
different location than the actual bar. However, tidal modulations in the longshore
current make it difficult to predict the effect that edge waves trapped on such an
effective bar might have on the bottom morphology.

When a well defined bar and a strong current co-exist, the current could, if con-
tained in the trough, remove the effect of that trough, as Schonfeldt (1995) shows
with his numerical experiments with idealized longshore currents. However the obser-
vations made during DELILAH show that the broad longshore current peaks covered
not only the trough but also the bar, diminishing the depth of both the bar and the
trough when waves travel against the longshore current. The increase of the long-
shore current over the bar toward a peak in the trough caused an effective bar which
is slightly shoreward (seaward) of the actual bar when waves travel against (with) the
longshore current leading to a current-dominated situation, but not to the extent of
Schonfeldt’s rather artificial example.

The identification and predictability of persistent bar-trapped energy at Duck
strongly suggests that studies of any barred beach, or plane beach with a longshore
current, should not neglect the contribution of these bar-trapped modes to the overall
hydrodynamic response. On beaches with bars and minimal longshore current, the

diagonal line of variance will reflect edge waves amplified over the location of the bar.
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On beaches with strong longshore currents, the situation is more complicated and the

amplified edge waves may shift position or disappear with changes in the tide.



Chapter 4

Mass Transport by Bar-Trapped
Edge Waves

4.1 Introduction

In addition to the time varying orbital velocities, waves possess a time-invariant
second order velocity, called a drift velocity or mass transport velocity. A single
progressive wave train in shallow water generates a drift in the bottom boundary
layer, in the direction of wave propagation, which has no variation in the longshore
direction (Longuet-Higgins, 1953). The combination of two or more wave trains, such
as in a standing wave, may have a spatial pattern of drift convergences and divergences
above the sea bed, if the two wave trains are phase locked. For example, a simple
two dimensional standing wave has convergences at sea surface elevation nodes at the
bottom of the boundary layer and at sea surface elevation antinodes at the top of the
boundary layer (Longuet-Higgins, 1953). Particles rolling or saltating on the bottom
(bed load) may be transported to nodes, and particles in suspension (suspended
load) at the top of the boundary layer may move toward antinodes. Deposition
under standing waves could theoretically occur under either nodes or anti-nodes.
The question of whether deposition occurs under nodes or antinodes has been the

source of much discussion (Short, 1975); some laboratory evidence shows deposition
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under antinodes. For example, Carter et al. (1973) show, that when there is a large
degree of reflectivity sediment accumulates at the peak of a wave envelope, suggesting
that deposition may occur at antinodes.

On a beach, the overall pattern of second order steady flow will depend on the
types of wave that are present. The progressive incident waves will move sand shore-
ward against the gravitational effect of the sloping beach. When a wave reflects on
the beach, the cross-shore spatial pattern of convergences and divergences causes a
mass transport velocity which is, in places, opposite to the progressive incident wave
drift; deposition may occur at half wave wavelength intervals in longshore bars (Short,
1975). Progressive edge waves, which are standing in the on-offshore direction may
cause accumulation in a similar way to reflected waves (Bowen, 1980), and stand-
ing edge waves may generate both a longshore and a cross-shore repeating pattern
(Bowen and Inman, 1971). Phase locking of two or more progressive edge waves will
produce various sorts of both irregular and regular longshore patterns which may lead
to, for example, welded bars (Holman and Bowen, 1982).

The standing wave drift theory provides an interesting hypothesis to account for
the existence of bars on beaches (Bowen and Inman, 1971; Carter et al, 1973; Short,
1975; Bowen, 1980; Schonfeldt, 1989; Howd et al., 1991b, 1992; Aagaard, 1990, 1991,
among others). In order for a bar to evolve, a standing wave of the correct longshore
scale must dominate for sufficiently long time for the bar to evolve. Though there are
some isolated examples of edge waves with the “correct” length scales dominating the
spectrum (Aagaard, 1988), in general edge waves occupy a broad range of frequencies
(Holman, 1981). Though the convergence of drift under standing waves could cause
longshore bars, it is difficult to show that drift patterns of appropriate scales dominate
on a particular beach.

In Chapters 2 and 3, I have hypothesized, in a similar way, that the drift velocities
associated with bar-trapped edge waves may cause bars to grow, based on the ob-
servation that the simplest bar-trapped edge waves of various frequencies should all

have similar shapes over the bar. The objective of this chapter, is to investigate these
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links more thoroughly by calculating the sum of drift velocities of a whole spectrum
of edge waves, using data from Chapter 3 to determine the modes that should be
included, and the relative magnitude of these modes. Though the results can only
be a order-of-magnitude estimate, because of the assumptions and approximations
involved, such an estimate is a significant advance on past work. These calculations
will determine whether the net effect of bar-trapped edge wave drift around the bar
is to enhance the bar, and will also determine the speed at which a parcel of water,
moving with the drift, could move from the side of the bar to the top of the bar.
The transport of sand particles by a mean drift is a complicated, poorly understood
process, involving not only the actual transport of the sand, but the suspension and
settling of sediment into and out of the water column. Extending these calculations to
the movement of sand particles is beyond the scope of this thesis, however examining
the direction and magnitude of drift should provide insights into the possible nature
of sediment transport.

The chapter begins with a discussion of the derivation of drift velocities in the
whole water column, with calculations of drift of a mode 1 edge wave provided as an
example. Then the drift velocities at the top of the boundary layer for edge waves
on general topography are calculated, from which the direction of cross-shore drift
on the bar is demonstrated. The amplitudes of the cross-shore and longshore com-
ponents of velocity are calculated for peaks in the frequency-wavenumber spectrum
from DELILAH corresponding to bar-trapped edge waves. These velocities are used
to normalize calculated edge wave velocity profiles. Finally drift velocities are cal-
culated for each frequency band and summed over the whole spectrum, neglecting

interactions between different modes.

4.2 Mass transport in a mode 1 edge wave

The total (Lagrangian) mass transport is comprised of the Stokes drift, or the drift

resulting from following a water parcel through the wave orbit, which does not quite
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close, and a second order Eulerian streaming, induced by the Reynolds stresses of the
first order flow. Mass transport can be calculated directly in Lagrangian coordinates
(i.e. Unliiata and Mei, 1970; Jenkins, 1986) or the Eulerian drift can be calculated and
added to the Stokes drift to get the total drift (i.e. Longuet-Higgins 1953; Iskandarani
and Liu, 1991; Xu and Bowen, 1994). Here, the Eulerian approach is used.

To calculate the Eulerian drift, the viscid first order solutions are used to calculate
the wave induced Reynolds stresses, which are then used to derive the second order
drift, with the wave induced surface stress as the top boundary condition and a no-slip
bottom boundary condition. To close the last calculation, a second order pressure
gradient must be imposed (Longuet-Higgins, 1953).

To simplify the mass transport calculations, it is assumed that the velocity u
can be expanded into an asymptotic series around the small parameter ka (Longuet-
Higgins 1953; Stuart 1966; Dore 1976; Iskandarani and Liu, 1991), were a is the wave
amplitude. As a result the first order flow can be resolved separately from the second

order flow and so on.
u=u; +u;+.. (4.1)

where u; is of order ka and u, is of order (ka)2. The Eulerian streaming velocity
is the time average of the second order flow. The Lagrangian velocity urz can then
be calculated by adding the Eulerian streaming W; to the Stokes drift u, (i.e. Mei,
1989).

ur =Uz +u,, (42)
u, = uldt' -Vu;. (4.3)

Other assumptions made in calculating drift under waves are that the time average of
the first order flow is zero and that the first order flow is irrotational in the interior.
Top and bottom boundaries, of thickness \/m, exist where the flow is viscid, since
the no slip conditions must be accommodated at the bottom boundary and the shear

stress must be continuous at the surface.
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The vorticity generated by the shear in these boundaries provides a driving mech-
anism for the steady Eulerian drift in the core region. Another way of thinking about
this is the viscous boundary layer effects cause the wave velocities to no longer be
in quadrature, so the wave induced Reynolds stresses have a mean component when
time-averaged. The boundary layer affects the entire fluid eventually, regardless of the
magnitude of the viscosity (Longuet-Higgins, 1953). This vorticity is transported into
the interior flow either by diffusion or by vortex advection and stretching (Longuet-
Higgins, 1953; Dore 1967). The dominance of diffusion over advection will depend on
the ratio of the boundary layer thickness to the amplitude of the waves. When the
ratio is small, vorticity diffuses into the core region, and if the ratio is large, vorticity
advects into the region. In the latter case, advection in a second boundary layer
may be set up to counteract the vorticity gradient, and the result is elimination of
Eulerian streaming in the core region. This second boundary layer is called Stuart
Layer (Stuart,1966; Riley, 1965), and is larger than the wave bottom boundary layer.
The calculations of drift velocity caused by advecting vorticity from the boundary are
complicated (Mei, 1989). So, in the case of small amplitude edge waves, to simplify
the calculations, the Stuart boundary layers are assumed to be relatively unimportant
and vorticity diffusion dominates the core region flow. This assumption is valid if the
amplitude of the edge waves is small compared to the size of the boundary layer.

Other assumptions made are the neglect of Coriolis force (which has been shown
to be important in deeper water by Hasselmann (1970) and Xu and Bowen (1994))
and the use of an eddy viscosity which is constant in space and in time. The neglect
of Coriolis force (for example Longuet-Higgins, 1953), should give a reasonable result,
when a steady state is reached in which a return flow is superimposed to insure no
net mass transport (Unliiata and Mei, 1970). Moreover, Xu and Bowen (1994) show
that the bottom streaming terms are relatively unaffected by the Coriolis force. The
assumption of constant eddy viscosity is necessary to simplify the calculations; it
is only recently that a time and space varying eddy viscosity has been included in
drift calculations (Trowbridge and Madsen, 1984a,b; Jenkins 1987). Time varying
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eddy viscosity can change the direction of drift. However, for these calculations, the
temporal changes in the eddy viscosity are assumed to be associated with the larger
incident waves, and do not vary on edge wave time scales. Spatial variations in the
eddy viscosity will only change the size of the boundary layer.

In this section, the mass transport throughout the water column of a mode 1 edge
wave is examined. A mode 1 edge wave on a plane beach is used for these calculations,
to simplify the solutions, while still examining the interesting behavior around a node.
Extension to higher order modes is straight forward. The first order solutions to the

inviscid shallow water equations of motion for a mode 1 edge wave are

Uiny = ﬂ(—3 + 2kz)e~** sin ¢, (4.4)
akg =

Vinw = (1 — 2kz)e™* cos ¢, (4.5)

n =a(l — 2kz)e™* cos ¢ (4.6)

where ¢ = ky — ot. For a wave travelling in the opposite direction, ¢ = —ky — ot,
and the sign of the v velocity changes.

4.2.1 Free surface boundary layer

The free surface boundary condition is that the tangential stress must equal zero at
the boundary (see Batchelor, 1967). The free surface boundary layer is problematic
because the direction of normal and tangential stresses changes with the moving sea
surface. To solve the problem, curvilinear (Longuet-Higgins, 1953), or Lagrangian
(i.e. Unliata and Mei, 1970) coordinates are used, but these methods are hard to
follow. Xu and Bowen (1994) derived the tangential stress (virtual wave stress) of a
surface gravity wave with a more transparent method, which is used here to calculate
the tangential stress at the bottom of the top boundary layer, of a mode 1 edge wave
on a plane beach.
The free surface S of a mode 1 edge wave from (4.6) is

S=2z-a(l -2kz)e*cosgp = 0. (4.7)
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The surface boundary condition (assuming surface tension is small, and the overlying
medium is a vacuum) is zero tangential stress. According to Batchelor [1967], this

condition gives

&ijtinj =0,
€ijSin; = 0, (4'8)
au, au,-

—( 25z, ¥ 32,

where € is the stress temsor, #;,s; and n; are the unit vectors which are tangent
(in both directions) and normal to the free surface respectively, and u; jr = u,v,w;

Zijk = T,Y, z are used interchangeably. The normal and tangential vectors are given

by

D= (e 50 52
t = “t”( S:,0, ;) (4.9)
= (0 Sz’Sy)

where the subscripts z, y, z are the pa.rtla.l derivatives of the surface in the X,y and z

direction respectively

Se = (3 — 2kz)ake™** cos ®,

= (1 — 2kz)ake " sin ¢, (4.10)
S:=1.
Expanding (4.8) for the tangential stress in the cross-shore direction gives
u0u Ow
5 [az + az] (4.11)

— p(ak)e™*= [(3 2kz) [a_w - S—Z] cos ¢ — w [g—: + g—:] sin ¢J

+ O(ak) =
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and for the tangential stress in the longshore direction

[a" + a—"’] (4.12)

0z Oy
ovl| . 3—-2kz) [0 0
— p(ak)e ™ [(1—2k )[a—w-—a—:] m¢—£Tz)-[aZ+auJ cos ]

+ O(ak)* =

These two equations can be separated into their first and second order components

according to (4.1). To the first order the tangential stresses are

au1 awl _
6v1 3w1 _
" [a—z + E] =0 (4.14)

and the second order stresses are (where the horizontal change of w, in the boundary

layer has been considered small enough to be ignored (Xu and Bowen, 1994))
6u2

5 (4.15)
0 0 1-—-2kz) [0 5} .
= u(ak)2e** [(3 — 2kz) [% - —a%] cos ¢ — ( 5 z) [at;l + BZIJ sin J
3vg
S (4.16)
= p(ak)2e*= [(1 2%kz) [% - aa—';;] singy — _22’") [‘Z’;‘ + %’;‘J cos ¢} :

These are very similar results to Xu and Bowen(1994). The term Jv,/8z corresponds
to the tangential stress in the direction of wave propagation, which, if the horizontal
decay part and the term caused by the three dimensional nature of the wave,(9v,/9z+
du,/0y), are ignored, reduces to Xu and Bowen’s results for a wave propagating in
the y direction.

Assuming the first order inviscid solution is much larger than the viscid solution
(Unliiata and Mei, 1970; Xu and Bowen, 1994), so that the viscid solution can be
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ignored, and using continuity and (4.4) and (4.5) gives

ow, Ou, _ S0u; Oy _ k@ g
B "o = 2as gy = (0 M)e T Leing,
Ow, Oun, Ovy  Ou, —kzak%g
——_——— =t 1 __ 4,
5 "5 =2 3y o = (T3~ 2ke)e—=sing, (4.17)
6u1 8

ak’g
—— dkz)e*=2 .
ay+6:c = (—6 + 4kz)e . cos ¢
Replacing these in the equations for tangential stress (4.11) and (4.12) and time
averaging to find the steady second order tangential stress results in (where the stress

is given in terms of the dynamic kinematic v rather than the viscosity viscosity u)

0u2
— -— .1
1 %4 62 011 (4 8)
213
%zj: — (6—Skot skzzz)e-zk:”“Tkg =, (4.19)

The second order tangential shear in the cross-shore direction is always zero because
the first order shear is always in quadrature with the surface in this direction. How-

ever, there is a second order shear stress in the direction of edge wave propagation.

4.2.2 The interior flow and the bottom boundary layer

Longuet-Higgins (1953) showed that no matter how small the the viscosity is, the
effect of the boundary still diffuses into the inviscid core to cause steady streaming.
For shallow water waves this can be illustrated simply: u; and v; in shallow water
waves have no vertical dependence. However, the vertical velocity must equal zero
at the bottom, but still satisfy continuity with u; and v; simultaneously. Without
allowing for a small boundary layer, these two conditions are impossible to satisfy.
Allowing for a small boundary layer below u; and v; generates a small phase shift in
w; which extends well into the inviscid core. With this phase shift, u; and v, are no
longer in quadrature with w; in the core for plane waves (for edge waves u, and w, are

no longer completely in phase). The result is that the @7wy and the viw; Reynolds
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stress terms are both non zero and can drive the second order viscous streaming in
the core. In an edge wave there will also be a Reynolds stress component in the
cross-shore due to the %yuy stress term.

To derive the first order velocity in the boundary layer the inviscid velocity is
opposed by a viscous velocity, so the total velocity is u; = u;ny + 2ys,. This first order

viscous velocity must satisfy

2
% - V-—%;ﬂ (4.20)
v _  &u
ot V322

with boundary conditions
(Uvis) Vvis) — 0 25> 1,
(um‘n Uuis) - (_uimn _virw) = 07

where § = (2v/0)'/? is a natural scale for the size of the boundary layer, and since the
2 coordinate is defined as zero at the surface, 2/ = z + h. The total solution for the
first order velocity (including the inviscid solution) is (by extension from Mei, 1989)

u, = 9?(—3 + 2kz) [e"“" sin(@) — k=% sin(¢ + %I)] , (4.21)
n = aaﬁ(l — 2kz) [e"" cos(9) — e~ F cos(¢ + %I)} ~ (4.22)

These expressions are only valid when the depth of the water (h = ztan 8) is much
greater than the size of the boundary layer é. Using (4.21) and (4.22) in the continuity

equation gives the desired expression for w,

4akzg —kz = . —z 2/ ’
w, = —— e /; [smqb — e~ T cos(p+ ?)dz J (4.23)
2ak%g o 2 z
= —Te"""’ [22 sin ¢ + de” ¥ (cos(¢ + E) + sin(¢ + -3-)) —dcosp —§sin ¢] .

Away from the shoreline w; is approximately dn/0t at the sea surface, but close to

the shoreline, the bottom boundary gets closer to the surface, and causes a phase
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shift so that w; # 9n/8t at the surface. w is a sine function, so is in phase with u

and in quadrature with v, (but recall the effect of the bottom boundary layer causes

a slight shift in the phases, so that » and w are no longer completely in quadrature).
From the expressions for u;,v; and w;, the wave driven Reynolds stresses are

akg\? 1
L = (_g) e""‘(—3+2kz)2§A(z’),

g

akg\? 1
TOT = (_g) e"zk‘(l—2k:z:)2§A(z'),

o
nmu; = 0, (424)
akg\>
oy = —k -a—g e~%*=(2kz — 3) B(2'),
akg\?
Twr = —k (_a'g> e~*=(1 — 2kz)C(2")

where

’ o !
A(Z) = (1 +e73F —2e7 cos %) ,

B(Z")

’ :I /
(22' —8~ 67T +2(6 — 2')e” 7 cos %) ,

C(Z) = (2z'e"§" sin%l + 266 cos %, o Je'zé) .

The gradient of the Reynolds stress drives the second order flow in the momentum
equations. The cross-shore derivative of the first term exists, so it can contribute
to driving a second order flow in the cross-shore direction. The second term has no
longshore dependence, and therefore will not contribute to longshore second order
drift. The longshore and cross-shore velocities are in quadrature, and therefore the
third term does not cause a Reynolds stress. The fifth term adds to the Reynolds
stress because the bottom boundary causes v; and w; to be slightly in phase.

Assuming that the main changes in acceleration due to viscosity are in the vertical,



113

not the horizontal, the second order mean equations of motion are

0*a, 10p, Ouwur Ouor  Ourwr

=1 , 4.25
322 T 50z T oz T oy T oz (4.25)
%, _ 10p, + Jurv; + Ovior + 5v1w1‘

g p Oy Oz dy 0z
With the boundary conditions
7%
0z
9%
0z

U2, T2 = 0 z=—h=—ztanp

= Ty z =0, (4.26)

where 7, is the surface stress defined in Section 4.2.1 Replacing (4.24) in (4.25) gives

62-172 _ 1 3112 akg —2kz
vz = >0z +k ( (=3 + 2kz) [(5 2kz)2e™ " A(Z') — B(z 1
3%, _ 10dp, akg\® _as d ,
v 622 = ;% - (7 e (1 - 2k$)$C(Z ). (4.27)

Integrating these equations with respect to z, from 2z’ = 0 to 2’ = 2’ and applying the

surface boundary condition gives second order shear in the core of the wave.

662 _ 6p2 P akg ~2kzx
3, = Uzeonse +p 32 +k( . ) (=3 + 2kz)e (4.28)

’ é -2:'/6 -z'/§ z P R é ’
[(5 2kz)(z 5¢ + de cos — de sin 2)—B(z) ,

672 _ lap2 ’ akg 2 ~2kx ’
v = V,m,,+payz—k(a) e~2*%(1 — 2kz)C(2").

Ucconses Vieonse are chosen in order to satisfy the surface boundary conditions (which

also will allow freedom in the choice of second order pressure gradient).

U, = _.;.%h k (“'“g) (—3 + 2kz)e~ 2= [(3 — 2kz)(h — g)} o (4.29)

Zeonat

_ 10p, akg 2k
Vzcm.: = pa—h +k ( pe ) (1 — 2]57.'3)5 + 7.
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And finally, integrating (4.28) with respect to z gives the second order Eulerian

streaming in the core of the wave.

1 1 8p,; 2" kg)?
T = Ui + o2 4 (2D

29z 3 (=3 + 2kz)e~ %= (4.30)

2! 2 ’ ’
Loos  o-vps. 2 1 2
[(5 2k:z:)(( ) + 2e + 2e sin 373 6)

s

2 2 , , ’ ’ , ’ 9
-2 (J) 6'2"5+26"/5008%+2%e"/“(cos%—sin %) — 1452,
1 k
B = Vi + 222G g (4.31)
x(e—Zz'/5 _ 2_’ Z/J(COS + sin _) — 4e~* ) COS il + 2e=* /JSID. _I +3— g.:‘.’,)
é ) ) é é

where 4 = vp. Above the bottom boundary layer, these reduce to

— _ 1ldp, 3_2 (akg) ~2kz
U = ;6—17 2 2) ——(—3 + 2kz)e
[(3 2kz) = (2 —hz)——(7 2kz)]
~ _ T, 1 ng 2 R (k) een
o= o (T 5 ke - 2ka), (4.32)

To solve (4.32), a second order pressure gradient is needed. Longuet-Higgins (1953)
stipulates that the mass flux integrated throughout the water column must be zero.
Integrating (4.32) from z = —A to z = 0 and solving for the pressure gradient gives
(using 62 = 2v/0)

10p, _ (akg) —Zkz( 2 )

2oz = e (—3 +2kz)* — , (4.33)
lap2 _ V(akg)2 —2kz 3

2By Fpgs o 1-2ka)+ g

The expressions derived here for Uz U2 are similar to those derived by Hunt and
Johns (1963) and Carter et al. (1973). They derive the first order flow in the boundary
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Figure 4.1: A. Depth profile at the location of the v; antinode (z = 43m) of the
longshore drift velocity of a mode 1 edge wave (positive is the direction of wave
propagation), f = 0.018Hz, slope= 0.015, assuming the net mass flux through the
water column is zero. B. The same depth profile of drift, assuming no net second order
pressure gradient, note scale difference. C. Cross-shore distribution of longshore drift
(assuming no net mass flux) at the surface (z1), at half the total depth (z2) and at
the top of the boundary layer (23). Dashed line is Stokes drift in the inviscid core.
D. Cross-shore distribution of the first order cross-shore and longshore component of
orbital velocity.
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Figure 4.2: A. Cross-shore distribution of the first order cross-shore and longshore
component of orbital velocity of a mode 1 edge wave, f = 0.018Hz, tan 8 = 0.015.
B. Cross-shore distribution of cross-shore drift at two thirds of the depth (z1) and

one third of the depth (22). C. Stream function of the cross-shore drift, z1 and 22 are
marked.
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layer in the same way as (4.30) and (4.31) were derived, (but assuming the shear stress
disappears away from the boundary layer or 7, = 0) and then use the second order
pressure gradient induced by the first order flow in the irrotational core to drive the
second order flow in the boundary layer. The second order pressure in the boundary
layer is assumed to be hydrostatic, in which case its value in the boundary layer is not
significantly different from its value in the inviscid flow just above the boundary layer.
Therefore the second order pressure field in the boundary layer can be approximated

by the second order pressure in the inviscid region above the boundary layer.

1 aﬁ auinu auil'w

_——F = iny — iny ] 4.34
p Oz inv 52 +ov dy ( )
1 ap—2 avinv avirw

P ay = uinv—_az + Viny ay

Hunt and Johns can make these assumptions because they are only interested in the
flow in and near the bottom boundary layer. If we also make these assumptions,
(4.31) are exactly the same as those derived by Hunt and Johns (1963) and Carter et
al. (1973).

The cross-shore and longshore drift above the boundary layer (4.31 and 4.32)
are shown in Figures 4.2 and 4.1. The longshore drift is in the direction of wave
propagation at both the surface and the bottom boundary layer. In the interior
region, a return flow in the opposite direction is a result of insisting upon no net mass
flux (Figure 4.1A). These results, without the cross-shore decay, are similar to the
Longuet-Higgins (1953) solution. If the pressure gradient is assumed to be zero there
is a flow in the direction of the wave throughout the water column (Figure 4.1B).
The value of the drift at the top of the bottom boundary layer is independent of the
assumption for dp,/dy. The bottom drift, and the drift in the core region is greatest
underneath the sea surface elevation antinode; conversely the surface drift is greatest
under the cross-shore velocity antinode.

The cross-shore drift at the surface is in the opposite direction to the top of the
bottom boundary layer, also a result of insisting upon no net mass flux (Figure 4.2C).

There is a cross-shore pattern of convergences and divergences, where the bottom
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boundary layer convergence corresponds to the antinode in sea surface elevation as
predicted by Longuet-Higgins (1953). The locations where the flow changes directions
are marked in Figure 4.2C. The overall cross-shore drift pattern has three circulation
cells, each in opposition to its neighbour (the one closest to the shore is anti-clockwise
on Figure 4.2C). Obviously the drift patterns shown in Figures 4.2 and 4.1 are violated
at the shore line, when the water is shallow. Moreover, the drift velocities were
calculated assuming the bottom slope was negligible at the bottom boundary (but
with depth changing as on a beach).

4.2.3 Stokes drift

To obtain the Lagrangian drift from (4.30) and (4.31), the Stokes drift must be
superimposed. Stokes drift is the time averaged velocity following a particle of water,
(4.3). See Mei (1989) for a derivation.

Uy = ( /‘uldt’) %’: " ( /t vldtl) 6;-;1 + ( / ldt’) aaz;l (0.35)
o) B o) B o)

For example, in the center core region of the wave, where du; /0z =0 and dv,/8z = 0,
where the first order velocity is irrotational, replacing (4.4) and (4.5) in (4.35), the

Stokes drift for a mode 1 edge wave is simply
u, = 0, (4.36)
o

akg\’ k
v, = (__g) ;(5 — 8kz + 4k z?)e~ %=,

This can also be obtained from the Stokes drift for arbitrary two dimensional flow
which is harmonic in time given in Mei (1989). Not surprisingly, there is only a
component of Stokes’ drift in the direction of wave propagation (Figure 4.1).
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4.3 Mass transport at the top of the boundary
layer in bar trapped edge waves

The equations governing mass transport in the bottom boundary layer caused by an
arbitrary two dimensional flow which is oscillatory in time, u;,, = U, (z,y)e ", Viny, =
Vo(z,y)e™*, have been derived by Hunt and Johns (1963) and subsequently by
Carter, et al. (1973). Replacing (4.34) in (4.25) and integrating with respect to
z, with the boundary conditions that there is no flow through the bottom, and no
stress at the outer edge of the boundary, gives equations for the second order Eule-
rian flow in the boundary layer (Hunt and Johns, 1963), in a similar fashion to the
derivation in Section 4.2.2, only without the wave-induced surface stress. At the top

of the boundary layer these equations can be simplified considerably to

. 0Us , [, 0Us | g0 O
T o= — §R[(3 UG + Vot + (2= 30 J (4.37)
%G = ——§R [(3 3z)VaV'+U%V' aU‘J

where * is the complex conjugate. For an edge wave, u;ny, Vin, must have the form
—iU,(z)e*v=1) Y (z)e*¥=o%) 5o that the Eulerian drift due to an edge wave at the
top of the boundary layer is

1 au,

U = —E,: 8:1: o o] (4'38)
S | . au,

=t [3’“‘” 63:]

The terms in 77 are due only to the Tywy Reynolds stress terms. The %3 term is due to
the wWiw1 and the u7@T Reynolds stresses. The %oy term does not contribute in either
velocity component in an edge wave. For waves traveling in the opposite direction,
the cross-shore drift is the same, but the longshore is negative.

This solution is completely analogous to the solution derived for the flow at the

top of the boundary layer of a mode 1 edge wave. To confirm this, using (4.4) and



(4.5) in (4.38), the drift for a mode 1 edge wave is
k (kag)? ~
U = —5%(—3 + 2kz)(7 — 2kz), (4.39)

2
5 = _@3(1-2@)

which is exactly the same result as would be obtained by setting the pressure gradient
in (4.33) to (4.34), and having no longshore wave stress.

The Stokes’ drift in the boundary layer for a general two dimension flow can be
calculated using (4.35). The result at the top of the boundary layer is (Hunt and
Johns, 1963)

aU,

o = ER% [U.,E + m%—?] , (4.40)
% o= R [m%—‘;’ +ug2|.
For a general edge wave solution, this reduces to
% = 0 (4.41)
77 = % [ka + Uo%‘ﬂ

There is only a Stokes drift in the longshore direction, or in the direction of wave
propagation, as was shown to be true for a mode one edge wave. When the mode
1 edge wave solutions are substituted into (4.41), the same result is obtained as in
(4.36).

Adding the Stokes drift term to the Eulerian streaming term, will give the total
mass transport at the top of the boundary layer

— 1 ou,
1 [ a. . 3V, . 08U
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These equations are generally used to provide the link between edge wave shape and
the direction of the sediment transport they may induce. For example, Bowen and
Inman (1971) used Hunt and Johns (1963) to theoretically calculate the drift induced
by a standing edge wave on a plane beach, as did Holman and Bowen (1982), to
theoretically calculate the drift due to phase locked edge waves. Howd et al. (1992)
used (4.42) to calculate the cross-shore drift velocity for an edge wave on a plane
beach with a longshore current. In this manner, (4.42) can be used to calculate the
drift velocity induced by bar-trapped edge waves.

4.4 Boundary layer drift during DELILAH

The ultimate goal of studying the drift velocity patterns of bar-trapped edge waves,
is to estimate the magnitude and direction of the drift velocities that occur on a
real beach with bar-trapped edge waves such as during DELILAH. The direction of
edge wave drift for individual modes can be calculated using (4.42). To calculate the
direction of a spectrum of edge wave modes, the relative magnitudes of edge wave
modes are needed. The magnitude of edge wave variance, relative to other sources
of nearshore variance (i.e. incident waves, shear waves) has been estimated using
frequency-wavenumber spectra, such as Figure 3.12 in Chapter 3, by Howd et al
(1991a) and also by Oltman-Shay and Guza (1987).

Howd et al. partitioned the total variance over the whole spectral domain (in this
case k = —0.05 — 0.05~! and f =0 — 0.25H z) between incident waves (including
high frequency edge waves and leaky waves), infragravity waves, and shear waves,
summed the energy contained in the significant peaks in each area, and calculated the
percent energy contained in each respective area. In the infragravity wave category
they include all waves below 0.05Hz and above the theoretical mode 0 edge wave
dispersion curve. Conversely Oltman-Shay and Guza were more interested in the total
energy which could be identified as edge wave energy of a particular type (either low
mode or high mode), and added up only the peaks which existed on the edge wave
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dispersion curves.

In both cases, only peaks which were considered significant by the Oltman-Shay
criterion (see Chapter 3) and only the energy contained within the half-power wavenum-
ber bandwidth were considered. Since the spectral estimator calculates wavenumber
spectra separately for each frequency, the peaks are identified based on their half
power bandwidth in wavenumber space. Oltman-Shay and Guza point out that the
result of this is a conservative estimate of edge wave bandwidth because the average
effect (or the effect of smoothing) of a true spectral peak which follows the edge wave
dispersion curve almost diagonally through a frequency-wavenumber region (or pixel)
will result in artificially wide peak.

In most cases during DELILAH, it is possible to identify specific peaks, in the
longshore component of velocity spectra, which lie on the dispersion line for bar
trapped edge waves, with the same definition of a peak as used in Oltman-Shay and
Guza (1987) and Howd et al. (1991). Fortunately, in the cases we use for drift velocity
calculations (October 16, 1990) the variance due to bar trapped edge waves is distinct
because very little energy exists in regions of the spectrum above and below the line
of bar-trapped edge waves (this is evident in Figure 3.12). In fact, October 16 was
chosen because the diagonal line of variance due to bar trapped edge waves was very
distinct. Assuming that all the energy lying on the bar-trapped dispersion line is
attributable to bar-trapped edge waves, the variance contained in each of these peaks
can be used to estimate the magnitude of induced boundary layer drift, at the location
of the instrument array. Each pixel in the frequency-wavenumber plot represents the
average variance density of a wave train with frequency and wavenumber values of

that pixel. The a.mplitude of the waves in that pixel is then
k+Ak pf+AS
—a =/ /, h(f,k)dfdk. (4.43)
We use the term variance density rather than power spectrum to emphasize the
assumptions made when estimating energy at a particular frequency (see Appendix).
Using the peaks lying along one line, as Oltman-Shay and Guza have done, rather

than attempting to sum energy in the whole region where edge waves exist (similar
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to Howd et al), will minimize the energy from other sources mistakenly included in
the bar-trapped total.

In order to use (4.42), the cross-shore shear is needed, which is clearly unavailable
from data collected at only one cross-shore location. To solve this problem, the
shear is numerically calculated using the correct topography and longshore current for
October 16, and the frequency-wavenumber coordinate in the dispersion line which is
closest in frequency-wavenumber space to the center of the spectral peak (for a peak
to be acceptable as bar trapped variance, one part of that peak must contain the
frequency-wavenumber coordinate within its half power band width). The implicit
assumption is that the edge wave shape of that coordinate is representative of the
entire peak. The assumption is to some extent unavoidable when associating model
results (which are for a point in frequency-wavenumber space with infinitesimally
small frequency-wavenumber area) and spectral estimates, where the peak has a finite
width in frequency-wavenumber space (naturally occuring, or due to smoothing and
uncertainties in the spectral techniques). This assumption is problematic when the
dispersion curves of more than one mode exist close to, or within this peak. Though
the dispersion curves are relatively more separated at bar-trapped mode frequencies
and wavenumbers than at higher modes (Figure 3.7, in Chapter 2), confusion in
identifying modes is not ruled out. To overcome this problem somewhat, three edge
wave solutions are averaged, evenly spaced throughout each frequency band. The
theoretical cross-shore shape of a mode can also change considerably within the the
confines of a particular peak, though bar-trapped modes with the sim;;lest shapes
have similar shapes, at least over the bar. If variance in a pixel in reality represents
two peaks in close proximity, the result is obviously the average amplitude of the
group. To obtain the average amplitude for a whole region, the variance must be
summed first and then (4.43) used.

The outcome of numerically calculating a representative shape for each bar-trapped
edge wave, is that the model results can be used to extrapolate the variance measured

at the instrument location not only to make a prediction of variance over the bar, as
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was roughly made in Chapter 3, but also to make a prediction of the drift velocities
over the bar, and on either side of the bar. The estimate of drift velocity can only be
a rough approximation due to the uncertainties inherent in the spectral estimators
(the results early in the experiment have less errors than late in the experiment, as all
the instruments were operational). However, given that these drift velocities may be
a key link between edge waves and topographical features, some order of magnitude

estimates are badly needed.

4.4.1 Patterns of boundary layer drift due to bar-trapped

edge waves

Using the numerical calculations for an edge wave on depth and longshore current
profiles observed during the DELILAH experiment, October 16, 1990, (4.42) are used
to calculate the drift velocities associated with an edge wave trapped on a bar from
the latter part of the experiment. Figure 4.3 shows the cross-shore profiles of cross-
shore and longshore drift of five edge wave shapes (mode 0 to 4), all with phase
speed approaching /ghj,,. Since the drift velocity calculations are made assuming
the boundary layer is small compared with the depth of the water, the solutions are
unreliable near the shoreline.

For all the modes, except mode 0 (where the wave is not strongly affected by the
bar), the longshore drift velocity is relatively large over the bar and in the direction
of wave propagation. In most cases the drift was less than a millimetre per second.
The cross-shore velocity was off-shore inside of the bar and on-shore on the seaward
face of the bar, converging on top of the bar. In this case the drift was relatively
large close to the shore, but the magnitude over the bar was very small (on the order
of 10™5m/s). The mode 0 drift velocity was the only velocity which did not have a
convergence on top of the bar, and was nearly always seaward.

In Figure 4.4 the drift velocities for the second asymptote approaching the C —
V/GRiar limit (for example modes 4 and 5 in Figure 2.10 are plotted). The cross-shore
drift converges on either side of the bar, but diverges strongly on top of the bar. The
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DELILAH (October 16) depth and longshore current profiles. All values are calcu-
lated considering a maximum sea surface elevation of 10 cm. These modes lie along
the first bar trapped asymptote.
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u and v (dashed) com-

ponents of orbital velocity at the middle top, u and v (dashed) drift at the bottom
middle, depth at the bottom, for a mode 2,3,4,5,6 edge wave calculated with the
DELILAH (October 16) depth and longshore current profiles. All values are calcu-

lated considering a maximum sea surface elevation of 10 cm.

the second bar trapped asymptote.

These modes lie along
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longshore drift is large on either flank of the bar. Though the drift pattern is more
complicated than that for the simplest bar-trapped shapes, there is still a general
convergence near the bar (though not on top). If some of the more complex modes
were part of the source of the bar-trapped variance in data, the estimates of drift
would probably be over-predicted, but the drift would still converge in the general
vicinity of the bar.

Though these drift velocities are very small, the modes in F igure 4.3 were selected
as examples of the different shapes that exist on October 14. If the whole spectrum
of bar-trapped edge wave drift is integrated, these waves may still cause a significant
drift.

4.4.2 Magnitude of boundary layer drift during DELILAH

The strong diagonal line of variance in the frequency-wavenumber spectrum of Octo-
ber 16, 1990, is a good example of variance attributable to bar-trapped edge waves,
which can be used to estimate the real size of the calculated solutions of edge waves.
The amplitude derived from the longshore component of velocity variance peak (us-
ing (4.43)) is used to estimate the real size the calculated solutions for the longshore
orbital velocity at the location of the instrument array.

Calculating the variance of peaks in the spectrum lying along the C — \/ghs,
line from October 14, 1990 shows that the v component of variance of edge waves
travelling from the north, contributes 16% of the total variance of the spectrum.
Conversely the cross-shore variance contributes only 2% of the total variance over the
whole spectrum. Some of the very low frequency peaks in the cross-shore spectrum
are questionable, as they were wide enough to incorporate leaky wave energy. Only
5% of the total variance from the longshore component of velocity was due to waves
travelling in the negative direction. There was no significant cross-shore variance
travelling in the negative direction.

Figure 4.5 shows the distribution of variance with the frequency of bar trapped

waves travelling both in the positive and negative directions. Note there are two
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Figure 4.6: A: ratio of u amplitude to v amplitude (from model results) B-E: Values
of cross-shore and longshore orbital velocities projected to locations at the shoreline
and over the bar using from model results, which were normalized at the location
of the array using the variances in Figure 4.5, from October 16, 4 am, high tide.
Modes that are not amplified over the bar are theoretically extremely small at the
location of the instrument array, so despite the averaging of several modes together,
extrapolation to the shoreline of these modes will cause unrealistically high shoreline
orbital velocities.
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peaks in the distribution of variance of the longshore component of velocity, which
correspond to principal incident wave frequencies. As mentioned in Chapter 3, these
peaks may be real, but also may be scmewhat a result of leakage from the very
energetic, incident wave frequencies.

Note in Figure 4.5, that the cross-shore component is significantly smaller than the
longshore component. Model calculations show, that unless one is in close proximity
to a node in the longshore component, the cross-shore component in bar-trapped
edge waves is significantly smaller than the longshore component (Figure 4.6A), a
property of bar-trapped edge waves which was introduced in Chapter 3. The smaller
the secondary peak is relative to the incident waves, the more likely the signal is to
be swamped by energy leaking from the more energetic peaks. Considering this and
the problems in identifying lower frequency cross-shore peaks mentioned earlier, only
the longshore spectra will be used to normalize the drift calculations.

Normalized model calculations can be used to extrapolate velocities to other parts
of the beach profile. For example, Figure 4.6 B-E shows the projected magnitudes
of the cross-shore and longshore orbital velocities over the bar and at the shoreline
as a function of frequency (summed over each frequency band). The magnitude
of longshore orbital velocity of the most amplified bar trapped waves, may reach
a magnitude of 20cm/s over the bar, conversely the cross-shore component at high
frequencies is very small over the bar, on the order of lcm/s. However the opposite
trend is expected at the shoreline. The v velocities are generally less than half a
centimetre per second, where as the cross-shore velocities can be on the order of 5cm /s.
The extreme velocities shown at the shoreline are the product of extrapolating when
the solution is close to a node at the instrument array. Despite averaging together
several solutions within the frequency band, the variance attributed to these solutions
is probably much too high. The higher frequency waves appear to be much larger over
the bar relative to their value at the instrument array. Since the instrument array is
at a location where calculations show that these high frequency waves should have

decayed considerably, a small amount of noise at the instrument array will extrapolate
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to cause a large signal over the bar. Therefore the values obtained at high frequencies
should be viewed with caution.

Using the variance of the longshore component of velocity from Figure 4.5 to nor-
malize the drift velocity calculations, the cross-shore and longshore drift velocities for
waves travelling in the positive and negative directions are shown in Figure 4.7. At
the location of the array, the longshore velocity is of the order of a half a millimetre
per second, the cross-shore velocity is at least an order of magnitude less. Projecting
the drift velocities to a location on top of the bar, the longshore drift for the most
amplified waves could reach a magnitude of 3 cm/s. The cross-shore drift is sym-
metrical on either side of the bar as expected from Figure 4.3, with a maximum for
the most amplified modes of around Imm/s. Again, the higher frequency extrapo-
lations are very sensitive to noise and should be viewed with caution. Though the
projections depend on correctly identifying the mode of the bar trapped edge wave,
the calculations of drift at the location of the instrument array only depend on model
results for estimates of the cross-shore shear.

Though these drifts seem small, the combined effect of the normalized drift ve-
locities for all the modes (not including interactions between modes,) calculated by
summing the contribution from all frequency bands, gives a maximum drift near the
bar which is on the order of 40cm/s in the longshore and 1-2cm/s in the cross-shore.
This is clearly too large, probably because of the amplification of noise when extrap-
olating in the higher frequency bands, mentioned earlier. Summing the contribution
of drift at the instrument array location, which should be less sensitive to noise, gives
a total cross-shore drift of approximately 0.2mm/s and a total longshore drift of ap-
proximately 2mm/s. Clearly the drift over the bar should be larger and converge on
top of the bar in the cross-shore, but the magnitude is difficult to determine from an
instrument array located in the trough.

A cross-shore drift of 0.2mm/s may appear small, but if a parcel of water were to
start at the velocity maximum on the side of the bar, it could travel to the center of

the bar in a day or two. Considering that the frequency-wavenumber spectrum show
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Figure 4.7: Drift velocities calculated using (4.42). The cross-shore shear and the
projections of the longshore and cross-shore component of orbital velocity are calcu-
lated numerically, and all the first order velocities are normalized at the location of
the array by the variance of the longshore component of orbital velocity in Figure 4.5,
from October 16, 1990, 4am, high tide. A-B: at the instrument array. C-H: velocities
projected to locations on either side of the bar, and on top of the bar.
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bar-trapped waves existing for weeks at a time, the duration of the edge wave would
probably leave enough time for sediment to accumulate at the node, if a significant
portion of the sediment is in suspension at the top of the boundary layer. Determining
the fate of a water parcel on the flank of a bar on a real beach is a far more difficult,
since the bar-trapped edge wave drift is just one of many mean flows on the beach, for
examples, the progressive incident wave causes a shoreward drift, there is a seaward
drift due to undertow inside the surf zone and higher mode non-bar-trapped edge
waves and leaky waves cause a drift which may not converge on the bar.

The actual response of sediment to the presence of a mean drift or a combination
of mean drifts, is again even more complicated. The movement of sediment depends
not only on the direction of transport (which depends on whether the sediment is
transported as bedload or suspended load), but also on the erosion and deposition
process. The laboratory evidence shown in Carter et al (1973) does give us confidence
that depositions may occur under the anti-node of the standing wave, but to what
degree the standing wave must dominate over the many other sources of mean flow

to allow sediment to move to the antinode, remains to be studied.

4.5 Conclusions

Example calculations of the second order drift associated with a mode one edge wave,
show that the longshore drift is similar to that of a progressive wave, but decays in the
cross-shore direction. This Eulerian drift is partially induced by the bottom boundary
layer, and partially by the surface virtual wave stress. In addition to the Eulerian
contribution to the drift, there is Stokes’ drift, related to the asymmetry in the wave
orbital motion. The cross-shore drift, on the other hand, has no Stokes component,
and no virtual stress. The drift is entirely induced by the bottom boundary layer.
Though these calculations are for a mode 1 edge wave, calculations for higher modes
can be done with the same method, as the general behaviour is dependent not on the

cross-shore exponential structure of the wave, but on the phase relationships between
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u,v, and w and how they are affected by the boundary layers. Clearly the results are
not valid in very shallow water, where the boundary layer approaches the depth of
the water.

Extending these results for a plane beach solution, using Hunt and Johns’ 1963
formulation, to an edge wave on arbitrary topography and longshore currents, the
observations from DELILAH shows that the amplification of the edge wave over the
bar causes a strong longshore drift in the direction of edge wave propagation, and a
cross-shore drift which is toward the bar, strong on either side of the bar and converges
at the crest, at least for the bar-trapped waves with the simplest shapes.

Isolated peaks in frequency-wavenumber spectra of the longshore component of
current measured at Duck, N.C. on October 14, have the same frequency-wavenumber
coordinates as bar trapped edge waves, and can be used to estimate the real mag-
nitude of theoretically calculated edge wave shapes. These calculations show that
bar trapped edge waves may make up approximately 18 percent of the total variance
of the longshore component of current measured at the location of the instrument
array. Projections using calculated shapes show that the longshore component of
orbital velocity due to bar trapped waves may be considerably larger over the bar.
Conversely theoretical calculations suggest that the cross-shore component of orbital
velocity due to bar trapped waves may be insignificant relative to the incident wave
signal, except perhaps at the shoreline.

Normalized drift velocity calculations show that though the contribution to drift of
each individual frequency band may be small, the integrated drift may be significant
over the bar. A cross-shore drift of the magnitude predicted could cause movement
of particles within the time frame of the duration of the edge wave. Unfortunately
the predicted magnitudes over the bar are strongly influenced by extrapolating noise
at high frequencies from the location of the instrument array. The only definite
conclusion that can be drawn, is that the drift over the bar is likely to be significantly
more than the drift at the instrument array. On days when the effective depth profile

was strongly dominated by current, the location of the convergence underneath the
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bar-trapped antinode would modulate with the tide. It is unclear where sediment
would deposit on such a day.

A spectrum from October 16 was chosen to normalize calculations of drift velocity
because the diagonal line of variance attributable to bar trapped edge waves was
well defined and extended into higher frequencies. Choosing a particularly good day
for bar trapped edge waves was necessary to minimize error in attributing spectral
peaks to particular modes. Though the spectra in Chapter 3 show many days with
diagonal lines of variance which were nearly as well defined as on October 16, these
calculations should still be viewed as a best case scenario. The strong convergence
behaviour of the cross-shore drift is less likely on days when the diagonal line of
variance in spectra does not extend to high frequencies such as in Figure 3.12. Days
with evidence of considerable energy from higher edge wave modes will have a more
complicated pattern of drift, though the solutions which correspond to higher bar-
trapped edge waves will still have convergences in the vicinity of the bar (Figure 4.4),
(but divergences on the top of the bar).

Though these calculations are based on extrapolations from data which is from less
than an ideal location, the results strongly suggest that the drift velocities associated

with bar trapped edge waves may play an important role in maintaining the bar.



Chapter 5

Conclusions

5.1 Summary of ideas

Both the cross-shore shapes and dispersion relationships of edge waves which are
affected by longshore currents and bars can significantly differ from those on plane
beaches. The bars and longshore currents act as wave guides, and the edge wave
solutions may be strongly amplified over the location of the bar, relative to their
shoreline values. Field measurements of the longshore component of orbital velocity
show that these bar-trapped solutions clearly exist, and may be the dominant edge
wave shape near the bar.

Specific conclusions are:

1. Edge waves are trapped and amplified, relative to the shoreline, on longshore
bars when the phase speed is between \/ghpar and \/st_hs with the extreme
amplification occuring when phase speed approaches \/ghps.. The cross-shore
shapes of edge waves change from sinusoidal to exponential when the water
depth is greater than C?/g; amplification occurs when the cross-shore shape is
sinusoidal close to the shore and on the bar and exponential in the trough and
out to sea. Amplification is greater at higher frequencies, when the wave tends

to exist separately on the bar. Beaches with large-scale, multiple bars, such
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as Stanhope Beach, P.E.L, will have more amplified edge wave solutions than
beaches with smaller scale bars such as Duck, N.C. and solutions will exist for
each bar in turn, as the phase speed approaches \/ghpa, on each bar. These bar-
trapped modes are quasi-non dispersive, a property which allows the longshore

component of orbital velocity to be larger for higher modes and frequencies than

on plane beaches.

- On a beach with both longshore currents and bars, the degree of edge wave
amplification depends on the strength and location of the longshore current
shear relative to the steepness of the bottom slope, and also on the direction of
edge wave propagation relative to the current. Weak longshore current shear,
in particular over well developed bars, does not alter edge wave trapping over
bars significantly, simply enhancing or reducing the existing bar-trapping ef-
fect. Conversely, strong current shears over gentle topography can govern the
existence and location of edge wave trapping, the extreme example being edge
wave trapping on plane beaches where the amplification is entirely due to the

existence of mean longshore currents.

. The most significant result presented here is the observation of bar-trapped edge
waves. Spectral analysis of field data from two longshore instrument arrays, one
in the trough, and one seaward of the bar, showed continuous, distinct, diago-
nal lines of variance, extending into incident wave frequencies. These lines of
variance have the same frequency-wavenumber coordinates as theoretical calcu-
lations of bar-trapped edge waves, and changes in these lines can be predicted

from the longshore current and depth profiles.

- Instrument location, and detailed pictures of edge wave calculated solutions are
extremely important when interpreting spectra. When the instrument array
is on the top of the bar, the bar-trapped waves with the simplest shape are
dominant, however when the array is further from the bar, more complex bar-

trapped waves may dominate. In the latter case, the simplest bar trapped edge
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waves will exist on top of the bar, but not be observed, if they have decayed to an
insignificant size at the instrument location. Spectra measured at the shoreline

and far seaward of the bar may show very little evidence of bar-trapping.

- In cases where the effect of current shear is strong relative to the effect of bottom
slope, the location of edge wave trapping changes as the the longshore current
profile changes with the tide. When the bar is well defined, the longshore current
shear is rarely strong enough to influence the existence or location of edge wave
trapping, but could have an enhancing effect, at least at Duck, N.C.. While
past work has suggested that edge waves, trapped and amplified on longshore
currents, may cause bars to form on plane beaches, and bars to move on barred
beaches, the DELILAH observations suggest that under most conditions, edge
wave trapping on longshore currents is a subtle effect, modulated by sea level
changes, and is unlikely to produce significant morphological change unless the

current is very strong.

. Though bar-trapped edge waves are unlikely to move bars or create bars, they
may play a strong role in the growth or maintance of bars. The cross-shore drift
velocity converges at or near the bar crest. Using variance data from DELILAH
to estimate the real size of the drift velocity, shows this effect (not even including
the between-mode contributions) is a minimum of a few millimetres per second
on either side of the bar, and probably much larger. These bar-trapped modes
can provide the spatially and temporally coherent flow patterns necessary to

maintain an existing bar.

- These results are also the first clear identification in field measurements of edge
wave energy at incident wave frequencies. Edge waves at incident frequencies
have always been theoretically plausible, but field studies have focused on edge
waves at infra-gravity frequencies (Oltman-Shay and Guza, 1987; Howd et al.,
1991). As a consequence, there is minimal evidence of edge wave energy at

periods below about 30s, at frequencies other than the subharmonic.
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It is clear from these findings that the plane beach solutions are not even remotely
adequate for modeling edge wave behaviour on barred beaches, except perhaps at
low and high phase speeds. The DELILAH data shows that, at least near the bar,
the dominant edge wave modes are bar-trapped. The potential contribution of bar-
trapped edge waves to nearshore hydrodynamics needs to be addressed in all future
studies of barred beaches.

5.2 Related research possibilities

The variability in the dominance of bar-trapped edge waves on different days during
DELILAH, shows that the incident wave forcing plays an important role. Edge wave
forcing theories have been studied sufficiently, that introducing bar-trapped edge wave
solutions may not be too difficult. The existence of incident wave spectra during the
DELILAH experiment and the possibility of identifying, to some degree, bar-trapped
edge wave peaks in spectra, allows for the possibility of investigating the transfer of
energy between incident wave and bar-trapped shapes in much more detail. There are
many unanswered questions that can be addressed with such a model. For example,
do bar-trapped edge waves have shapes which are optimal for transferring energy
between incident waves and edge waves, as was suggested in Chapters 2 and 3? In
view of their similarity of shape, phase and group speed, do bar-trapped edge modes
exchange energy efficiently between themselves? For example, do the kissing points
connecting bar-trapped solutions of different mode have any special properties (i.e.
do they facilitate the transfer of energy between bar-trapped modes?). Finally there
is also the unresolved issue of how edge waves are forced at incident wave frequencies,
when traditional edge wave forcing theories are for edge waves at lower frequencies.
During the early part of DELILAH, the bar had some longshore variability. The
calculated solutions for edge waves used a mean depth profile, which seemed adequate
in identifying diagonal lines of variance, though there was some variability on the

degree to which diagonal lines of variance matched calculated solutions. Though the



142

variability in fit may be partially an effect due to the instrument not being located on
top of the bar, it may also be due to longshore variability. A potential project is the
effect of longshore variability on edge wave solutions, both horizontal variability (for
example crescentic bars), and vertical variability. It would seem reasonable that lower
wavenumber solutions may respond to an average of the depth profile, because of their
large cross-shore scales, where as higher wavenumber, higher frequency solutions may
follow the topography. Again, one would expect a \/ghuar dependence as in the case
of the one dimensional model.

There are numerous other possibilities: some examples are looking at the duration
of different edge wave regimes versus the duration of incident wave conditions, looking
at the edge wave drift in more detail by including between-mode interaction, also
looking at the temporal variability in edge wave drift, especially the magnitude of
drift during storms when the bar was observed to move seaward. Though bar-trapped
waves have been clearly identified, longshore current-trapped waves have not been
demonstrated to exist on plane beaches. The observations of edge waves on plane
beaches in Oltman-Shay and Guza ( 1987) are at frequencies below 0.05H z, and some
of the frequency-wavenumber spectra from their experiments, show evidence of what
might be the lower part of a diagonal line of variance. Perhaps re-examination of
some of these spectra in light of longshore current-trapped edge waves is in order.

Bar-trapping of edge wave has been demonstrated to be one of the dominant
hydrodynamic processes in the neighbourhood of a bar on a barred beach, and since

this is a new consideration, many interesting questions arise.



Appendix A

A.1 The maximum likelihood spectral estimator
for a longshore array

Spectral estimators are needed to examine the directional distribution of wave energy,
because the wave field is generally inadequately sampled in the spatial dimension.
For example, during the DELILAH experiment the velocity is only sampled at six
locations in the longshore direction. There are many ways to estimate the directional
distribution of energy depending not only on the type, number and distribution of
instruments, but also on the type of wave field that is being measured. To identify bar-
trapped edge waves, the estimator must be able to distinguish edge wave energy from
incident wave energy which can occur at the same frequency. The MLE (Maximum
Likelihood Estimator) spectral estimator used in Chapter 3 is one of many kinds
of spectral estimators. It has been chosen to examine the DELILAH data for bar-
trapped edge waves, because past work has shown that it is very good at estimating
wave energy in complex environments that have many waves, all of different spectral
signatures (Huntley et al., 1981; Oltman-Shay and Guza, 1984; Pawka 1983).

In general, spectral estimators work by modeling the frequency-wavenumber spec-
trum; they assume the spectrum at a given frequency (o) is some weighted sum of
cross spectra of the velocity time series (or sea surface elevation) between each in-

strument location in the longshore array. An example of the velocity time series from

143



144

each of the instruments is given in Figure A.1. This is the same as viewing the true
spectrum through a window, which depends on the weighting and on the instrument
spatial separation. The estimator assumes that some of the measured cross spectrum
is due to energy of the wavenumber of interest (k,), and some is due to random or
statistical noise, and energy at wavenumbers other than the one of interest (Kother)-
The weighting function is then derived by minimizing the amount of noise and other
energy included, and imposing the constraint that if there are no other contributions,
the true spectrum must equal the estimated spectrum. An ideal window would be like
a Dirac d-function, which would only let energy through of the desired wavenumber.
The result is an estimate of the energy distribution at a given frequency as a function
of wavenumber. The estimate will have a strong peak at the true wavenumber(s), but
also may have a number of low level peaks which are a result of energy leakage from
the main peak. These occur because the window has a limited ability to remove the
effect of energy at other wavenumbers. These low level peaks cannot be interpreted
as real.

The MLE differs from other estimators because it uses the data to construct
the window. This gives added information and consequently better estimates, but
it makes the statistical properties (for example the error) difficult to characterize
because they depend on the data. Thus, there is no way to determine the estimator
behaviour for a particular instrument array, other than to perform numerous tests
with synthetic spectra. This is an essential step in using this estimator with particular
data sets. Since the estimator will create more peaks than exist in the data, the
probability that a particular peak is real should be assessed in order to be confident
in the results. Another problem of the MLE, the original version of the estimator, is
that it flattens out the original peak. The IMLE is a recent addition which recovers
some of the variance lost when the peak is flattened out by the MLE in a predictable
manner.

In this appendix, the necessity of employing a such complex spectral estimator

is demonstrated, the derivation of the estimator is briefly discussed, and finally the
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results of a series of tests using synthetic spectra are summarized. The estimator
has been tested with the DELILAH instrument array (since some of the resulting
spectral estimates are published in Howd et al. (1991)); to judge the limitations of

my conclusions, I have performed some of my own tests.

A.2 Some simple statistical properties of longshore
array data

Before resorting to a complex spectral estimator, it is possible to derive information
about the waves travelling in the along shore direction by examining the way in
which the time series decorrelates between instruments in the alongshore array. The
cross-correlation between instruments from the array at DELILAH on October 16,
from Figure 3.12, shows several peaks that increase in lag as the spatial separation
between instruments increases (Figure A.2). These peaks are consistent with the two
incident wave peaks which travel at about 10m/s for the high frequency peak, and 20
m/s for the low frequency peak (marked on Figure A.2 with asterisks) and two bar-
trapped edge wave peaks travelling at 5.9 m/s in the positive direction and 4.4m/s
in the negative direction (marked on A.2 with bullets). These peaks are evidence of
bar-trapped edge waves, but the distribution of bar-trapped energy with frequency
is impossible to discern from the correlation coefficients. Note the low correlations
between instruments.

It is also possible to examine the time series in the frequency domain. Calculating
the coherence between instruments, shows some coherent energy at the expected inci-
dent wave frequencies (around 0.09Hz and 0.16Hz) but only at very small separations
or spatial lags (Figure A.3). At low frequencies there are a number of low level peaks.
Some of the nodes in the coherency suggest that longshore standing edge waves may
exist. This is consistent with the frequency-wavenumber spectra, Figure 3.12, which
would show a standing wave as two progressive edge waves going in the opposite

directions. The phases between the instruments generally show a progressive trend
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Figure A.1: Time series of the longshore component of orbital velocity from each

sensor location on October 16, 1990, 4:00am
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(in which phase changes linearly with frequency), with energy at higher frequencies
progressing alongshore in one direction, and some energy at about 0.1 Hz progressing
alongshore in the other direction (Figure A.4). In this case only the phases above the
significance level are plotted. The progressive signal at high frequencies disappears
quickly with spatial lag. At lower frequencies, the energy is again progressing along-
shore in the same direction as the higher frequency energy. This energy could be edge
wave energy. The phase relations at 0.1Hz are confused, possibly because there are
edge waves and incident waves both at this frequency.

These approaches allow the main incident peaks to be identified, and the phase
speed, and frequency measured. Unfortunately the secondary peaks (which are of
interest here) are identifiable, but information about wavenumber is difficult to obtain
because waves of several different wavenumbers exist at the same frequency. The

necessity of resorting to a more complex spectral estimators, is evident.

A.3 The relationship between the frequency-

wavenumber spectrum and the covariance.

A.3.1 Frequency-wavenumber spectrum

The frequency-wavenumber spectrum can be derived assuming that the wave is ad-
equately sampled both in time and in space. In this case, a spectrum of one spatial
dimension is derived (the longshore direction), because we will eventually use it to
estimate the variance due to waves travelling in the longshore direction. However,
extension to two or more dimensions is straight forward (Davis and Regier, 1977). A
time-space series of a stochastic process can be represented as the inverse Fourier-
Stieltjes integral of that series (by direct analogy to the representation of a times
series given in Priestley (1981))

2 p4o0 |
X(y,t) = /0 /_ M4z, o) (A.1)
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where the magnitude of dZ(k,o) is the roughly the amplitude of the component
at frequency o and longshore wavenumber k. Multiplying the space-time series, by
the space-times series at time lag T and space lag Y and taking expectations, gives
the covariance function R(Y,T) as a function of the frequency-wavenumber power

spectrum, h(k, o),
27 p+400 |
R(Y,T) = E[X(y,t), X(y+ Y, t +T)] = /0 / ¥+ p (& 5)dkdo (A.2)
where
h(k,c)dkdo = E[dZ(k,c),dZ"(k,o)] (A.3)

where * is the complex conjugate. The inverse Fourier transform of (A.2) will give

the frequency-wavenumber spectrum

1 400 p+o0 | o
(k) = 753 /_ ) /_ D R(Y, T)dTdY. (A.4)

For random, white noise the frequency-wavenumber spectrum can be found by direct

analogy to the frequency spectrum derived in Priestley (1981, p234)
1 too ptoo Lo s3 .
h(k,0) = / —f SRSV )(T)shdtdY = S (A.5)

where s% is the variance of the noise, and § is the Kronecker-delta function. For the
case where the signal is a deterministic harmonic process X (y,t) = awcos(kyy —out),
there is a problem because the covariance function does not disappear for infinite lag,
and the integral in (A.4) is infinite. This follows from h(k,c) in (A.2) being the power
spectral density, or the power per unit wavenumber, per unit frequency, so if the unit
of wavenumber tends to zero then the power tends to infinity. Priestley (1981, p242)
shows that if one assumes that the measurements have a finite maximum spatial lag,
we can represent the spectrum of a wave as the amplitude times a delta function in the
same way as the covariance of random noise was represented (A.5). By direct analogy
to the frequency spectrum given in Priestley, the frequency-wavenumber spectrum of

a harmonic process is

h(kw, o) = “—23'-5(0 — 0b)5(k — k) (A.6)
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so that a2,/2 is the variance of the wave. For practical purposes, we can define the
total amplitude of waves with wavenumber and frequency between o, + Ao, k,, + Ak
as the total power contained in a small bandwidth Ao, Ak over which the power
spectral density does not change appreciably

02

2 % h(ku, 70)Ac.AR (A.7)

A.3.2 Cross-spectral matrix

In practice, we cannot calculate the inverse Fourier transform to get the frequency-
wavenumber spectrum in (A.4), because we have inadequate spatial lags. What we
can get is the cross-spectrum between different instrument locations which can be
defined from (A.2) as

MY0) = [ ;°° e~*Y h(k, o) dk (A.8)

SO
2 .
RY,T) = /0 M(Y,0)e"Tdo.

The cross spectrum can also be defined as the inverse Fourier transform of the co-

variance function
1 +oo ~icT
M(Y0) = = /_ _ e TR(Y,T)dT.

M(Y,0) can be roughly interpreted as the spatially-lagged covariance function at a
particular frequency. So if one had a very large number of closely spaced lags, one
could sum all the components of the estimated cross-spectral matrix at a particular
frequency o, weighted by e®*+Y¥i to get the estimate of the frequency-wavenumber

spectrum at a particular frequency o,, and wavenumber k,,.
. 1 . . .
h(0ur ko) = 5= [M(0w, Vi)e*Y + M(o,, Yy)e*=¥2 4 M(oy,Y3)e*=% 4

However, since you have very few lags in practice, you would get a very bad estimate.

This is where a spectral estimator is needed.
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A.4 Derivation of the maximum likelihood estima-
tor

When deriving the estimator, the spectrum is assumed to have so much better res-
olution in the frequency dimension, than in the wavenumber dimension, as to have
nearly perfect frequency resolution. The derivation here follows the derivation given
in Davis and Regier (1977), but for an array in one dimension only. I have also put
their derivation of the MLE in matrix notation.

Let us assume there are N spatial lags available in the instrument array. This will
result in IV estimates of the cross spectral matrix. At any one frequency o, these
must be made up of the energy at the desired wavenumber k, plus the energy from

other wavenumbers and some noise
M(Y,00) = M(Y,0u)+an(Y;0u), (4.9)
= Mu(Y,00) + Mother (Y, 00) + qn (Y, 0)
where " means estimate. We assume that the estimate is unbiased, in that
Elgv(Y,ou)] =0,  E[M(Y,0,)] = M(Y,0.). (A.10)

Since M is like a covariance function, there are some combinations of spatial lag
that give greater percentages of our desired wavenumber, k,, and though we do not
know the contribution from other wavenumbers, koher, We do know the lags which
the contribution from the desired wavenumber will be largest. Therefore is sensible
that the estimator be constructed by adding up the cross spectral matrices unevenly,
or by taking the weighted average

a N a

h(ow, kw) = }_;wy,.(kw,aw)M(Y,-, Ow)- (A.11)
For simplicity, the notation will be changed to represent the spatial lag as subscript
mn, rather than (¥;) = (yn — ym), where n and m are the indices of the each instru-

ment, and dropping the reference to o, as the estimate is done on a frequency by
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frequency basis. In this case (A.11) will be

hka) = 3" wnn(ke) V. (A.12)
mn=1

My interpretation of My from (A.12), considering (A.6), is that it is roughly equal

to

2 2 i
IVImu - a2_wel'kw],mn + _aOtzﬁelkctheern + J(Ymn)slzv (A.13)

from which one can directly see that some lags will have greater proportions of a2,
than other lags (but this assumes that all the energy is due to plane waves and that

all the noise is uncorrelated between instruments).

On average, since the estimates are assumed to be unbiased, A.12 becomes

N

Elh(ks)] = 3 Wmn(kw)Mpn. (A.14)
mn=1
Substituting A.8 into A.14
. N +00 )
Efhk)] = 3 wn(ka) / h(k)e~*¥am dk. (A.15)
mn=1 —o°
+oo
= / W (kw, k)h(K)dE, (A.16)
N .
W(ko k) = 3 whn(ky)e=*¥mn. (A.17)
mn=1

W is the window with which we look at our real spectrum. Ideally, our window should
look like a Dirac é-function and only let energy pass from the true spectrum to the
estimated spectrum when k = k,,. Though we may not quite be able to accomplish
this with our choice of weights Wmn, We can minimize W sub ject to the constraint
that it must equal 1 at k = k,. This is the same as minimizing the contribution
of energy from all other wavenumbers. This is one of the main forms of estimator
commonly used, and it deals only with creating a suitable window W. It is called and

a priort estimator, because the window can be designed before the data is collected.



To illustrate this, Figure A.5 shows a schematic of the types of window that would
results from three array geometries and a window constructed by minimizing

k=nr
W?(ky, k + ky)dk (A.18)
k=—m
subject to constraint
Wk, kw) =1 (A.19)

according to Davis and Regier (1977). The different windows shown in F igure A.3,
which correspond to different array geometries, let some energy in at the wrong
wavenumbers Ko¢her, with the amount dependent on the geometry of the array.

Another way of estimating iz(k‘w) in (A.16) is to minimize the cross spectrum and
the weights at the same time. Conceptually, this is logical, because what is the sense
in having a window which takes out the effect of energy from the wrong wavenumber
kother, when there is no energy at that particular wavenumber? This method is called
data adaptive, because it uses the data to design the window, in that it attempts
to minimize the weights only at the wavenumbers where the spectrum is significant.
The constraint is then that the measured spectrum multiplied by the weights should
equal the true spectrum at k = k,,. It is an & posteriori method, because in order
to calculate the weights, the cross spectrum must already be measured. Minimizing
the noise and the signal simultaneously assumes that the magnitude of the noise is
proportional and distributed in the same way as the signal.

In order to design an estimator of this type, some assumptions are made (Davis
and Regier, 1977). First of all, assume that the measured spectrum is a single plane

wave embedded in noise and signal from other waves
h(kw) = 6(k — kw)E(ky) + hn(k) (A.20)

where E(k,) is the variance of the plane wave, and is equal to a2 /2. Though the
notation gives the representation of both the plane wave and the noise as continuous

spectra, this is in essence the problem discussed in Priestley, Chapter 8, of a mixed
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Figure A.5: Schematic of the windows that would be derived from several different
array geometries of the same number of windows, after Davis and Regier (1977)



spectrum, or a discrete spectrum (the signal) embedded in a continuous spectrum
(the noise). My interpretation of hn(k) is that it equals 5"‘2““25(1:: — Kkother). The
assumption is that the estimated spectrum iz(kw) will be the variance of a plane wave

of wavenumber k,,, so that

h(ky) = E(ky)(k — k) = i Wnen (Kw) Mim, (A.21)

nm=1
where M., is the measured cross-spectrum between instruments.
Since the estimate is an amplitude squared, then the weights must be factorable
(Davis and Regier, 1977). (The amplitude is then a linear combination of the Fourier

transforms from each instrument location). Factoring these weights gives

N M M M M
z; Wam(kw) = z—:l Z_: W (kw)wy, (ky) = 2_:1 W (kw) Z w, (kw) (A.22)

where M is the total number of instruments in the array, and w~ is the complex
conjugate of w, and |wn(kw)| = |wk (ky)|. The estimated spectrum is then

. M M
E [h(ko)] = 3 3" (k)] (k) Mam. (A.23)

n=1 m=1

Incorporating (A.20) in (A.23) gives

E[h(ks)] = E(ku)d(k = k)W (ku ku) + /_“;” W (ku, k)hn(k)dk, (A.24)

2

M
Z Wn(ky )e*¥n

n=1

Wk, k) = (A.25)

The essence of this type of estimator is that both the window and the measurement are
minimized (A.23), subject to the constraint that if there are no other waves present,
then the estimated amplitude should equal the true amplitude, or that W(ky, ky) = 1.
This is equivalent to saying
M M
> W (ky)ekovm = > wi(ky)eHevm =1, (A.26)
m=1 n=1
To minimize (A.23) with a constraint, the method of Lagrange multipliers is used
(see Arfkin, 1985). The method combines the constraint (A.26) and the function to be
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minimized (A.23) using the Lagrange multiplier ), as follows (dropping the reference
to wavenumber, as (A.27) and (A.28) deal only with k,,)

N
A [1 -> w,,e"‘“’”“] =0, (A.27)
n=1

R N N N )
Elh(ks)] = 3 wathyMum + A [1 -y wne‘k"’y"] =0. (A.28)

n=1 m=1 n=0
This function is minimized by setting the derivative with respect to all the weights
to zero, and solving for the estimated spectrum. Moving to matrix notation, and

dropping the expectation, for simplicity (A.28) becomes
h(ko) = w™MTw" + A [1 - w7G] = 0 (A.29)

where w! = (wl, w2, wd...), M = (My,, M3y, ...) (M is a matrix) where n = 1,2,3...

and GT = (e'*wvr e*wv2 ) The minimization takes the form

Oh(kw)
W 0, (A.30)
Ohlks) _
owr
where
W = WR + tW]. (A.31)
So that
wiMw" = WRTMWR_ + WITMWI + iWRTMWI - iW[TMWR. (A.32)
Performing the derivatives in (A.30)
k(K.
9 ( ) = Mwg + MTWR + :Mw; — iMTWI -G = g, (A.33)
6wR
Oh(ky,
—(—)- = Mw + MTwy — iMwg + iMTwg —iAG = 0. (A.34)

6w[
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Using (A.31) to write these more succinctly
Mw + MTw" = \G, (A.35)

Mw — MTw" = —\G. (A.36)

These can be combined in one equation by subtracting (A.36) from (A.35) and divid-
ing by two, which gives

MTw" = AG. (A.37)
Multiplying this results by w7’ gives
wIMTw" = wTAG, (A.38)
= AwlG.

From our original equations and constraint respectively, we know the left hand side
of this equation is iz(kw) and the right hand side of this equation is just A, so if we

solve for A, we have our minimized estimate of the spectrum.
MTw" = AG,
M"M™w* = aMTG.
Multiplying by G*T
GTw" = AGTMTG,
wiG" = AGTM'G,
= wiG=1.

where the rule (AB)T = (BTAT) has been used. So finally

1

= h(ks) = [G™™MIGT] 7. (A.39)
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The estimator performance is strongly a function of G or the instrument lag ™Y
Since the data is needed to derive the estimator, it is impossible to determine the
capability of the estimator in any general sense.

Since the estimator does not conserve the total variance in the spectrum (therefore
in practice you cannot retrieve the coherence between sensors from the final estimate),
it is necessary to use the Iterative Maximum Likelihood Estimator (IMLE). The IMLE
has been proven by Pawka (1983), and Oltman-Shay (1985) to be an improvement
on the MLE, because it more closely approximates the total theoretical variance.

Davis and Regier (1977) discuss the fundamental problem with maximum likeli-
hood estimators, which is that they are approximating a continuous spectrum with
discrete values of variance. In practice, the variance is smoothed over the whole
frequency-wavenumber domain, to give a reasonable approximation of the continuous
spectrum, but conceptually this is problematic. For this reason, the power spectra are
normally referred to as variance density plots in the literature. Attempts have been
made to address this problem, by using a constraint which consists of the integral of
the weight over a small wavenumber bandwidth being equal to one, in which case the

spectrum is the sum variance of waves contained in a small band width around ky.

A.5 The iterative maximum likelihood estimator

Every time the true spectrum is passed through the spectral window A.39 to get the
" estimated spectrum, some of the total variance is lost. Pawka (1983) hypothesized
that adding some adjustment term e on the the first estimate izo(kw) of the true
spectrum k and re-passing it through the spectral window will give a new estimate
Ty (ko). If T, (kw) =~ To(kw), this must mean that we can retrieve the true spectrum
by adding the adjustment (f‘o(kw) ~ h). Of course it takes many tries or iterations
to get the adjustment right; in each case, i, the new iz.-(kw) is set equal to ﬁ_l(kw)
and re-passed through the window. The adjustment used each time will depend on if
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f’;(kw) is greater or smaller than iza(kw) so
cilka) = f [holku)/Tims(ka), hics (k)] (A.40)

Pawka [1983] derived a suitable form for e(a).

[AIB+ By ()
A v

A = 1.0 — (Timy (k) /ho(kw)) (A.42)

(A.41)

€i(ky) =

To analyses the DELILAH data, 8§ =1, 7 = 5 and 50 iterations were used, according
to Pawka’s (1983) suggestions.

A.6 Limitations of the iterative maximum likeli-
hood estimator

Tests on the spectral estimator with the array geometry used at DELILAH reveal
some limitations. These tests were performed on five sensors, as one sensor broke
during the storm halfway through the experiment. Using the sixth sensor improves
the results shown here considerably. Also the synthetic spectral peaks used in these
tests, have small wavenumber bandwidths. So these synthetic tests should be viewed
as worst-case scenarios. The estimator was tested using i) noise ii) unimodal signal
at different wavenumbers and frequencies iii) bimodal sigma a) the same wavenumber
and different frequencies b) at the same frequency and different wavenumbers iv)
the signal of October 16, 1990 in which the phases have been randomized, but the

amplitudes are the same.

A.6.1 Uni-modal peak

At most frequencies and wavenumbers the estimator reproduced the peak well. Some
multiple secondary peaks, spread out over wavenumber space, were produced at the

same frequency. These secondary peaks were much smaller and clearly discernible



162

o
o

.1

o
(zH) Aouenbaiy

0 0.02 0.04

-0.02

Wavenumber (m™)

Log of Variance Density, (crr?/s)

Figure A.6: The spectral estimate of random noise at each instrument location.
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Figure A.7: All combinations of wavenumber with which the spectral estimator was
tested for its ability to reproduce a bimodal wavenumber spectrum, for the case when
only five out of six sensors are working, on October 16, 1990, 4:00am. Grey bullets
are combinations in which unrealistic secondary peaks existed which were as big as or
larger than the actual peaks. Black bullets are combinations in which the estimator
correctly reproduced the peaks.
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from the main wavenumber peak, but they were slightly larger than the peaks due to
background noise. The actual noise is suppressed by the estimator in the frequency
band where the signal occurs. The secondary peaks (or ’side-lobes’) are not random,
but were a result of energy leaking from the main peak. The only case where the
estimator had problems, was at frequencies lower than 0.005 Hz, when the estimator
reproduced the wavenumber correctly, but could not resolve the direction of wave
propagation, similar to the findings of Oltman-Shay (1985). This sets the minimum
resolvable frequency at about 0.005Hz.

A.6.2 Bi-modal peak

Multiple peaks proved to be more of a problem. The estimator correctly reproduced
peaks that were at different frequencies and the same wavenumber, in exactly the
same fashion as uni-modal peaks were reproduced. When two peaks at different
wavenumbers, but the same frequency were estimated, in some cases, the secondary
peaks were very large. In a few cases the secondary peaks were larger than the signal.
This occured when the secondary peaks or side lobes of the two main peaks coincided.
Figure A.7 shows the success rate of estimating all the combinations of peaks between
-0.045 and +0.045 at a resolution of 0.005m=". Of all the peaks estimated, 30% were
incorrectly estimated. It must be emphasized that these secondary peaks are not
random, they are a function of an inadequately sampled spatial dimension. The tests
do not say the primary peaks are not reproduced, just that large secondary peaks are
also created. Also noted, though, was some shifting of the true peaks when they were
close to each other in wavenumber space. Though Oltman-Shay (1985) did different
types of synthetic spectral tests, her results yielded similar success with the array
geometries she used. In general, these tests explain the number of large peaks which
seem random, and are at locations which are not particularly consistent with theory.
As a result of these tests, when the spectrum is strongly bimodal, the results must
be interpreted with caution. Luckily, in the case of bar-trapped modes which have

separations which are symmetric or close to symmetric in wavenumber space, the



estimator success is not unusually bad.

A.6.3 Random phase

Finally the estimator was tested using the data from October 16 in which the phases
had been randomized (Figure A.8). The frequency of the two incident wave peaks is
evident, but all detail about the wavenumber distribution is lost, as would be expected
if there were no phase relationships between sensors.

Despite these shortcomings, the results are a considerable improvement on the
cross-spectra between instruments at different lags (Figure A.3), with which it would
be impossible to identify bar trapped edge waves, particularly at incident wave fre-
quencies. Though as a precaution, these conclusions should be based on general ob-
servations from the frequency-wavenumber spectra, not on observations of the energy

contained within specific peaks.
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