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Abstract

“The main question of the thesis is the following: given a C*-algebra Q
which elements of G can be factored as, or approximated by, finite products of
positive operators, with each factor also from @ ? We begin by extending
Ballantine's theorem for matrices to the class of n-normal operators. This introduces
measure theory, while in another direction we obtain approximation theorems for AF-
algebras. Combining AF-algebras with n-normal operators we obtain Approximately
Poly-Normal Algebras (APN) and give a characterization of those APN-algebras for
which the set of products of four positive operators is dense. We conclude with
partial results on the "direct integral” and the "compact direct integral”, two algebras

which arise in a natural way from a "measurable field of C*-algebras”.
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Introduction and Basic Definitions

Introduction

One approach in trying to understand the structure of operators is to focus on
particular families of or.erators; and distinguished here is the family of positive operators.
Through classical theory and the Spectral Theorem their structure is reasonably well
understood. Considering pairs of positive operators A and B, one easily finds that
their product is again positive exactly when A and B commute. Itis this very fact
which helps make the question of factorization and approximation, by products of
positive operators, an interesting one. For, on the one hand, there is the possibility that
since positive operators themselves are understood, so too might finite products be. On
the other hand, because forming products does not in general preserve positivity, we
would obtain a significantly larger yet, we hope, tractable class of operators.

To determine the extent of this new class of operators, the question is naturally
twofold, regarding exact factorization as well as approximation by these products. So far
in the theory, pertinent factorization and approximation theorems have relied heavily on
the fact that the factors can be chosen from the relatively large and well-structured C*-
algebra of all bounded operators on the underlying Hilbert space. (Of particular
importance is Herrero's work [especially vol. I, 1988] and the theorems of Fong and
Sourour [1984, 1986).) Therefore, with positivity essentially an operator theoretic
notion, the question properly belongs to the category of C*-algebras, and should be
rephrased as follows: Letting @ be any C*-algebra, which elements of @ can be
factored as, or approximated by, finite products of positive operators, with each factor

also from @ ? In this framework, it is seen that Ballantine (1970) and Wu (1988) were
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considering factorization in the special C*-algebra B(#), for H respectively finite
and infinite dimensional.

As it turns out, the question sheds light on both properties of the algebra and the
elements therein. Thus, the question is fundamcatal, concretely intertwining single
operator theory with the theory of operator algebras, and ultimately concerns decp
structure theorems for both. Moreover, although not considered in this thests, work so
far suggests the possibility of obtaining a new invariant for C*-algebras.

For references on the primary question of factorization, two good expository
papers are [Wu, 1] and [Halmos, 2]. For approximation theorems, our {irst results were
inspired by [KLMR].

To give an outline of our paper we need some notation. Solet G bea C*-
algebraand ke N. Weset

Pr(@)={Ae @: A=P..Pc,Pie @ positive and invertible}

1<k <oo
with
Pol@) = RQI Pr(@)
and
Pk(Q) = the norm closure of P(@) .
Similarly
Q@) ={Ae Q:A=0Q..Q«, Q20 (not necessarily invertible) }
1€k<oo
Qx@ = U Q@
and

Bk (@) = the norm closure of @Qk(QR).

We open the thesis by extending the work of Ballantine on nxn matrices [B] to
the case of n-normal operators. We prove, among other things, that in the algebra of

matrices of (equivalence classes of) bounded measurable functions, an invertible operator



T is a product of some finite number of positive operators if and only if x = det T(x)
is greater than zero a.e. (almost everywhere), and that five factors will suffice. So
P ool M T=X))) = Ps(Ma(T=(X,1)))
=(T:38>0 s.t.detT(x)26>0ae.}.

In Chapter 2 we characterize those AF-algebras @ for which @4(@)=Q. We
give two equivalent conditions which corcern in turn (1) the ideal structure and so also
(2) Bratteli diagrams. A consequence is i theorem on tensor products of AF-algebras.

In Chapter 3 we define APN-algebras (Approximately Poly-Normal), direct
limits of direct integrals of finite dimensional C*-algebras. For an example, form the
C*-algebra tensor product co(fN) ® X, X being the compact operators.

In Chapter 4 we characterize those APN-algebras @ for which Q4@ =G.

In Chapter 5 we introduce the notion of a m=asurable field of C*-algebras (as
opposed to the usu! fields of von Neumann algebras). We use this to define a direct
integral of AF-algebras which is itself interesting and acts as an ambient space for the
APN-algebras as well as for our so-called "compact direct integrals”. Examples of these
are £=(N,X) and the C*-tensor product £=°(IN) ® X respectively. We have partial
results on the compact direct integrals, which seem to be algebras which behave very
nicely with respect to the sets @y . Our conjecture is basically that Q4 of such an
algebra is dense if and only if Q4 of almost every integrand is dense. Note that this is
not the case for APN-algebras (see Examples at the beginning of Chapter 4).

Basic_Definiti

One preliminary result which is implicitly used several times through the thesis is

the following:

Proposition 0.1: Let G be a unital C*-algebra. (a) Then P2x(Q) is similarity
invariant, (b)) Px(@) = Qx(@), 1Sk Seo.



Proof: (a) First recall that for an operator T ina C*-algebra Q
Te P2(Q) < T is similar to some Pe P 1(Q).
To see why this is true, just consider the following factorizations involving an invertible

X and positive invertibles P1,P2:

L R S §
PP, = P2 (P?P,P?)P, 2

and
X-1p1 X = X 1(X-1)*1[X*P1X] .
Now, if Te Pu(G)
T =P1...P2k
and X isinvertible, then

k
XX =] X7'PyiyPyiX)

1=1

k
=H (X'lYi'ISiYiX) for some invertible Y; and Sie P1(Q)

i=]
X
=TT (X 8:(YiX))
i=1
which is again in Paxk.

(b) This follows from the spectral theorem for commutative C*-algebras.

Note: It might eventually be of use to know that similar calculations give
X-1Pos1X € Poysn, forall ke N .

(See Concluding Remarks.)

With that done we now proceed to establish the rest of our basic terminology and
in doing so give a quick review of direct integral theory. The main source is {Tak], but

we occasionally refer to [Nielsen].



Di I Is of Hilt S
We start with an example.

Let X =[0,11, n = Lebesgue measure on X and # be any fixed separable

(finite or infinite dimensional) Hilbert space. Then we can construct the familiar Hilbert
space tensor product L2(X,u) ® ¥ . This space can be identified with a Hilbert space
of equivalence classes of ¥-valued L2-functions (See [Nielsen], Chapter 2). For
consider functions & : (X,u) = # which are measurable with respect to the Borel

structure on ¥ generated by the strong (or weak) topology, and for which

jx HEX)IP dyL < oo .

Then, modulo those & which satisfy

jx HEGOIZdp = 0

we obtain a Hilbert space with inner product

&= J, Eemc)dn .
This Hilbert space is canonically isomorphic to L2(x,1t) ® H , associating to an
elementary tensor E®f the class determined by the #-valued function x +> E(x)-f,
where x + £(x) is a representative function for £ e L2(X,1) . We can therefore think

of L2(x,u) ® H as a kind of direct sum of Hilbert spaces, where the index set [0,1]

is no longer discrete. For this interpretation we use the notation

e

and say that L2(x,1) ® H is the direct integral of ¥ (over X,®)).
For the general direct integral, we allow the summands of the "continuous direct

sum” to vary. Here the notation will be

j:’ R(x)du .



In the case (X,1t) is N with discrete measure, this will reduce to the usual direct sum

® H(n). The elements of the new Hilbert space will be equivalence classes of certain
n

L2-functions. These functions & will have the property that &(x) e H(x) almost

everywhere. Since these functions must be measurable in some appropriate sense and the
spaces #0(x) may vary with the index x € X, we have to specify how spaces sitting on
distinct points of the measure space (X,) are bound together. So we now require some

definitions.

Definition 0.2: (a) A Borel structure on a set X is a o-field of subsets of X.

(b) A Borel space (X,8) is a pair consisting of a2 set X and a Borel
structure & on X ; for convenience we often write X in place of (X,3).

(c) A topological space is called Polish if it is separable and if its
topology is generated by a complete metric.

(d) A Borel space X is cailed standard if there is a Polish space Z and
a Borel subset Y of Z such that X is Borel isomorphic to the "Borel subspace of Z
basedon Y" (i.e. Y endowed with the relative Borel structure as a subset of Z) .
Another way of saying this is that X is Borel isomorphic to the Borel space of a Polish
space generated by the topology.

(e) A Borel measure on a Borel space X is a countably additive
measure defined on the Borel sets of X and taking values in {0,ee] . A subset A ofa
Borel space X is called y-measurable, where L is some Borel measure on X, if there
are Borelsets B and C in X suchthat BC A ¢ C and p(C\B) =0.

(f) A Borel measure i on a Borel space X is called stapdard if there is
a standard Borel set A in X with L(XN\A)=0.

For several of the definitions and concepts to follow, it is enough to have only a

Borel space. However, several of the structure theorems on direct integrals (of von



Neumann algebras) require that the Borel space (X,1) = (X,3.1) be standard and o-
finite. Therefore, we assume from here on that unless otherwise stated (X,[) is such a

space (standard and c-finite).

Definition 0.3: A measurable field of Hilbert spaces over (X,1t) is a family
{H(x): xe X} of Hilbert spaces indexed by X together with a subspace 3 of the

product space l'[X H(x) with the following properties:
p{3

(i) Forany £e & the function x +* [|E(x)|| is p-measurable.

(i) Forany me Hx H(x) , if the function x > (x)nx)) € C is u-measurable for
XE

every Ee B ,then ne 3.

(i) There exists a "fundamental sequence", i.e. a countable subset {£1,€2,...} of B
such that for almost every x€ X, the set {En(x):ne N} istotalin H(x).

Note: By (iii) #(x) is separable a.e.

'Terminology: Members of 3 are called measurable vector fields.

Lemma04: Supposethat {&y:ne N} ¢ Hx H(x) is a countable subset of the
XE

product space satisfying:
@) x — (En(X),Em(X)) is p-measurable forall myne N
and (i) theset {Ex(x):ne N} istotalin ¥H(x)a.e.
Then the set
A=(te xle'[x Hx) : x = EXx),En(X)) is p-measurable forall ne N}

satisfies the conditions of the previous defiition.

Proof: [Tak], page 270.

Now let H' be the collection .8 of measurable vector fields & such that



N2 = [, NEGOIRdR < oo
With respect to the natural point-wise linear operations, ' is a vector space and the

sesqui-linear form

Em2 = [ €M) de
gives a Hilbert space in the usual way, that is, by identifying two fields Ene H'if
E(x) =n(x) ae.

Definition 0.5: We call this Hilbert space # the direct integral of the measurable field
of Hilbert spaces {H(x) : xeX)} and denote it by
®
®=[, Hoodu.

Each vector £ € ¥ is written as

€= L? E(x)dp
or sometimes just

x = E(X)
where it is understood that this is a representative for the equivalence class & . Note that
when H(x) = o for some fixed Hilbert space ¥ then the field {H(x):xe ¥} is
called the gonstant field and we have an isomorphism

&
J¢ Hodu=L2Xm ® Ho -
In working with direct integral constructions it is often conceptually useful to
stress the geometric character of these objects. Notice that the construction giving

®
Jx Hodp is really a fibre-bundle construction. In geometry one usually constructs a

vector bundle so that the fibre spaces fit together topologically, and then one considers
cross-sections which are continuous. For direct integrals, we want the fibre spaces to fit

together measurably so that we can talk about measurable cross-sections. As indicated by



Lemma 0.4, a good way to get at this question of measurability is to select a sequence of
cross-sections which behave measurably with respect to each other and span point-wise;

then consider all cross sections which are measurable with respect to this sequence.

Di I Is of O Field
We can now define operators which are compatible with the direct integral

(fibre-bundle) structure.

Definition 0.6: Given two measurable fields of Hilbert spaces ({#1(x) : xe X1,31
and ({ #a(x) : xe X},82) an operator field
T:x — T(x) e B(H1(x),H2(x))
is called measurable if for ary measurable vector field § € 3 , the vector field
x > T(x)E(x) € Ha(x) is measurable, i.e. belongsto 33.
If a measurable operator field is essentially bounded (in the sense that the function

x +» |IT(x)|| is essentially bounded) then for each
_ I@ d J-@ 7
=], Exdue |, Hitodn ,

23] D
Te = [, TeEMme [y Ratdn .
We write this operator as
2]
T=[, Txdu

and call it the direct integral of the (essentially bounded) measurable operator field

x = T(x).

finition 0.7: (a) We call operators of this form decompgsable.
(b) If T(x) is scalara.e.then T is called a diagonal gperator.
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(c) The algebra of all diagonal operators is called the diggonal algebra
and is denoted L .

Example: Let (X,1t) be a standard o-finite measure space, and fix ne N. Let
L(X,11) be the von Neumann algebra of equivalence classes of essentially bounded
measurable functions, and JM(L=(X 1)) be the algebra of nxn matrices over

®
Lo(X,11) . This algebra acts naturally on the Hilbert space ¥ = J.x Cndp and is seen

to constitute the set of all decomposable operators on # , while its commutant is exactly

& , the algebra of diagonal operators. So, in matrices,

é1 - G
MaEoK) ={| : :ge LX)}
¢n1 ¢nn
o} 0
L=Mulecwy={| " |:6eTxw}.
o ¢

The algebra M (L°°(X,0)) is often called the algebra of n-normal operators.
(See [R&R], section 7.5).

Since we have now defined the algebra L°°(X,it) , we take this opportunity
to introduce some notation which will be used regularly through the thesis. For
¢ e LX), with representative x > ¢(x) , we say that ¢ is essentially bounded
away from zero if there exists & >0 such that [¢(x)| 28>0 a.e., and denote this by

9] >>0.

A basic fact about decomposable operators concerns their norm, that is

o
Il [, Tdull = ess suplI TG0 -
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By considering the algebra of n-normal operators, one migh* anticipate the next

proposition.

D
Proposition 0.8: Let #= [, H(x)du. A bounded operator T on ¥ is

decomposable if and only if it comrautes with the algebra L of diagonal operators.
Proofs can be found in [Tak] AV, 7.10) or [Nielsen] (6.2). They both rest on the

same idea that is used to prove L°(X,1L) is a maximal abelian subalgebra of

B(L2AX,w). When u(X) <eo and T commutes with &, thenlet M be the

diagonal operator determined by the function x ~> 1 and use the fact TMj =M1T

to define x > T(x). Then use that TMgy =M,T forall ¢ € L=(X,p) to show

x > T(x) is essentially bounded. If W(X) is not finite, let h be some fixed L2-

function whose essential range isin (0,1).

Other facts we will be needing are that if x = T(x) is a measurable field of

operators, then
x > ker T(x)
x > [rg T(x)] (= closure)

are both measurable fields of Hilbert spaces; and that if
x + W) ¢ Hix)

defines a measurable field of subspaces, then

x > Pqg(x) = the orthogonal projection onto W (x)

is a measurable field of operators such that, with

e}
W= [, Wedp
we have

&
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Direct Integrals of von Neumann Algebras

Definition 0.9: Let x = #(x) be a measurable field of Hilbert spaces and
x = (M (x)H(x)) be a family of von Neumann algebras JL(x) actingon H(x). The
field of von Neumann algebras
x = (L), {x))
is then said to be measurable if there exists a countable family
x P Th(x) ,ne N
of measurable fields of operators such that  JIL(x) is generated by
{Ta(x):ne N}
foralmostall xe X.

Note: Itis the Effros-Borel structure which imposes the countability condition. This
structure is a certain "standard Borel"” structure on the set of all von Neumann algebras
acting on a Hilbert space ¥ . A good reference is [Nielsen], Chapter 17.

A result of fundamental importance is that if x = (JL(x),#(x)) is a measurable
field of von Neumann algebras and JIL(x)' is the commutant of JIl(x), then sois
x P (M (x),H(x)) a measurable field of von Neumann algebras. The next theorem
concems those decomposable operators determined by the field (T(x),#(x)) and

relates this measurable field to the field of commutants.

Theorem 0.10: Let JIl be the set of decomposable operators
® ®
T=[, Tx)du on X =], Roodu

such that
Tx) e &) ae.

and write
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®
M=, Meade .
Then TN isa von Neumann algebra ¥, ,and JIL' is given by
®
M=, Meods .

Moreover, the center  $(JIL) contains the diagonal algebra L.

Definition Q.11: The von Neumann algebra JIl in the preceding theorem is called the
direct integral of the measurable field x > (JN(x),#t(x)) .

Corollary 0,12: Let (MM, H)= (LT M (x)dy , Le: H(x)d) be adirect integral of von

Naumann algebras. Then the center of JIL is also a direct integral,

Q= Jf 3 (x)dp
with
Sx)y=Te) N ) ae.
In particular, @ coincides with the diagonal algebra & if and only if M (x) is a factor

a.c.

On Morphi | Di I
Suppose that @ is a C*-algebraand {#(x):xeX]) isa measurable field of

Hilbert spaces over the standard c-finite Borel space (X,t) . Suppose that for almost

every xeX there is a representation n(x) of @ on #(x) such thatforeach Ae Q,
the operator field x F— m(x)(A) is measurable. The field {n(x):xe X} of
representations is said to be measurable. We set

< &
(A= [, nxAMp on H=[ HEdu.

Clearly m is arepresentationof G .
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Definition 0.13: The representation 7 is called th direct integral of the field

{m(x) : xe X} and is written as

153
t= f, moodu .

Theorem 0.14: Let G be a separable C*-algebra and let
@
K = jx Hx)dy .

If T isarepresentationof @ on ¥ such that n(@) commutes with the diagonal

algebra, then there exists a measurable field {n(x): xe X} of representations, essentially

unique, such that

&
= -[x (x)dp .

Thegrem 0.15: Let @ be a separable C*-algebraand (X,|t) be a standard o-finite
measure space. For j=1,2 let {(m;(x),H;(x)) : xe X} be measurable fields of
representations of G (respectively let (J11;(x), Hj(x)) be measurable fields of von

Neumann algebras) such that
@ @
1) = (J, meodn L [, Rieodw)

Gesp. (MR = (o Myeodu . [ Hicodw)
If () is unitarily equivalent to 72(x) (resp. (JM1(x),H1(x)) is unitarily equivalent
to (Max), Ha(x)) a.e., then there exists a measurable field x = U(x) of unitary
operators such that

U (AU =1a(x)(A) , Ae @
(resp. UE) M1 QUXY* = TNax)) ae.

Hence the unitary operator

2
U= [, Utodp
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implements the unitary equivalence of mj and %2 (resp. My and TMy).

Definition 0.16: In this case we say that 1 and w2 (resp. M, and TN,) are direct
integral unitarily equivalent. Sometimes we write 7 g no (resp. M1 g Mma.

Proposition 0.17: Suppose that we have two direct integrals

@
My = [, Micdu

&
M2 Ix M ax)dp

of von Neumann algebras. If Jll1(x) is isoinorphic to M4(x) a.e. then there exists a
measurable field of isomorphisms 7(x) such that w(x)TN1(x) = M2(x) a.e.; hence the
direct integral
)
T = -[x r(x)du

is an isomorphismof TNj and TM2.

Corollary 0.18: Suppose that
®
M = [ Mede
is a direct integral of von Neumann algebras. If each JIL(x) is isomorphictoa fixed
Mo, then
N is isomorphic to L=,u) ® Mo,

the von Neumanr: algebra tensor product.
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The Class of n-normal Operators

Section 1.1

We begin by considering operators which are defined by matrices of bounded
measurable functions. More precisely, let (X,it) be a standard Borel space with positive
measure {1, and TMA(C) be the nxn matrices over the complex numbers, € . Then
Ma(L=X,w) denotes the algebra LX) ® My(C) and may be identified with the
algebra of nxn matrices over the von Neumann algebra L=o(X,n) . Operators of this
class are often called n-normal operators, and alternatively the algebra can be realized as
the commutant of &°CX,w)® (the n-fold inflation) acting on the Hilbert space

L2(X,)® (see [R&R], Ch. 7). In terms of direct integrals, JMa(L=(X,W)) =
I}e: Ma(C)dp (see def. 0.11).

Our first result generalizes a theorem of Ballantine ([B]) and characterizes
products of five positive operators in M (LX) . The proof is partly based on
some ideas of A.R. Sourour found in his 1986 paper ({S1). There he gave an elementary
and short proof of a certain factorization theorem for matrices. Correspondingly short
proofs of various known results followed as corollaries. These included Ballantine’s
theorem on products of five positive definite matrices, as well as the commutator theorem
of Shoda-Thompson for fields with sufficiently many elements. Our main technical
theorem is an extension of Sourour's factorization theorem to the class of n-normal
operators. One way of saying this is that Sourour's theorem is measurable (in an
appropriate sense). For completeness, we include in section 1.2 the "n-normal

analogues"” to the corollaries mentioned.

16
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To move into the more technical details, let & = L(TM4(C)) be the algebra of
scalar multiples of the identity. For any matrix M in M,(C), define the distance from
M totheclosed set & in the usual way.

dM,L)=inf(IM-DIl: De L},

where Il 1l is the operator normin J,(C).
@
Now, the algebra TN (L=(X,1)) is naturally identified with Jx M (C)du , so given

A in M (L=X,) , we choose a measurable map from X to JNy(C) whichisa
representative for A (see def. ). This allows us to define the "essential range” of A,
ess rg A = {Me My(C): ui{x: IAx)-Mil<g} >0 forall >0} .

For the first lemma we give an alternate characterization of essrg A .

Lemma 1.1. Let A be an n-normal operator. Then
essrg A = N{clos A(Y): Y is measurable and W(X\Y)=0}.

Proof: Suppose M e esstg A andlet Y be a measurable set with u(X\Y)=0. Then
(Y N {x: IT(x)-Mit <€}) >0 forevery £>0,sothat M€ clos T(Y).

If M e esstg A, then there exists £9> 0 such that pu{x: llIA(x)-Mli<gp) =0.
Therefore M ¢ clos(X\{x: IT(x)-MIl < gg) , which implies that M & N{clos A(Y): Y is
measurable and u(X\Y) =0} .

Some notation of which we will occasionally make use is the following: for a set

of matrices Il
c(M)y=VU{ecM):Me M}.

In particular, we have

Lemma 1.2. Let A be an n-normal operator.
(2) If Y is a measurable subset of X, then

o(clos A(Y)) = clos 6(A(Y)) .
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(b) Suppose that A€ € and €>0. If d(c(A(x)).A)<e ae. and M€ essTg A,
then d(c(M),A) <E€.

Proof: (a) Suppose that A€ o(M) , M = li‘rlnA(yn) ,yn€ Y. Then by finite
dimensionality, o(M) = lixrlno(A(yn)). Therefore A € clos o(A(Y)).

If A e clos o(A(Y)), then there exists a sequence A(Yn),Yn € Y such that
d(A,c(A(yn))) — 0. Choose a convergent subsequence A(yn;) withlimit M say.
Then again, by continuity of ¢ in finite dimensions, A € 6(M) and M€ clos A(Y).

®) Let Y = {x: d(c(A(x),A) <€} . Then p(X\Y)=0. By Lemma 1.1,
M e clos A(Y), so there exists yae Y ,n=1,23,... such that M =1lmA(yn).
n

Because o is continuous, d(c(M),A) <€, as claimed.

Lemma_1.3. Anoperator A in I, (L=(X,u)) is invertible if and only if

Idet Ax)) 2 €>0 ae., forsome £>0.

Proof: Lemma 1.1 follows easily from Theorem 7.20 of [R&R], which says that n-

normal operators may be "triangularized”. For a triangular matrix of L°°-functions is

invertible if and only if the diagonal entries are invertible.

We can now state our technical result. As above, & is the diagonal algebra of

M ().

Theorem 1.4. Let A be invertible in M (L =(X,1)) and Bi,....Bn s Y1oeew¥n be

bounded measurable functions such that

n

[T By =detAx) a.e.

=1
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Suppose also that
esstgA NL =0 . (1
Then there are operators B, C and Q in TMp(L*(X,u)), with Q invertibleand B,

C of the form
(B ) (11 )

\ Bn, \ Yn,

so that

A=QlBOQ=(QBQEQICQ.

Proof: (by induction on n). Thecase n=1 is obvious.

The case n=2: By Theorem 7.20 of [R&R], n-normal operators may be triangularized

(unitarily), so there is no loss of generality in assuming that

a a
A=( 11 12) L ajje DX, .
0 ann

It will be shown that A is similar to an operator of the form

(51‘/1 YJ
z 1)

From here the determinant condition uniquely determines the coefficient r, and the

required factorization

(Bm }'Jz(ﬁx 0)(71 BTIYJ
zZ T yl'lz B2/10 v,

is established. So for the case n =2, it remains to prove that

A 1s similar to
Z T

Bim Y] .



To this end, write

¢
A-Bin =(01 ;ij

where ®; =aj; - B1y1, 1=1,2,and y=aja. Observe that ¢1-d2=211-2a22.
Also, by standard arguments we assume (X,J) is finite, and p(X) < oo implies that
LoX,w) € L2X,u) . So all that we need is
@) e1e ToXp) ®@L=(X.p) € L2X.p) © LAX.p
such that for
e2={(A-Bi) &1
(ii) the operator G given by the matrix-valued function
x = (e1(x),e2(x))
is invertble in  JMa(L=(X,1)) . For then the required similarity would follow from the

computation

G1AG = Bivi y
1 r)

How do we produce the vector ep ? Itis enough to choose ej sothat ej(x) is almost
everywhere not an iegenvector (see [S]). To accomplish this we partition the measure
space into two measurable subsets, namely,

D = {xeX : la11(x) - app(x)l 2 -g-}
and

De = {xeX :laj(x) - app(x)l < %} ,
where &: =d(esstg A,L)>0.

Clearly D and D¢ are both measurable, and we have D¢ ND =¢, DcUD =X.

The idea behind the partition is thaton D, the operator A - B1y1 is similar to an
"essentially non-scalar" diagonal matrix, while over D¢, condition (1) forces y, the

north-east comer of A - 171, to be "essentially away from zero”. Each of these
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situations can be dealt with and then, since the sets & and D¢ are measurable we can

put the pieces together to obtain our solution, We make this rigorous.

Over the set D define H in JMo(Le(D,u)) by
. A
H= o1-92 | .
0 1

Notice that, restricted to D G X, H is invertible. This is because, for almost all x in

D,i61(x)- 62128 >0. Hence H isin TMa(L(D,u) and Lemma 1.3 applies.

Also, it is easy to see that

HlAH = (a” 0 J .
0 322

This suggests that a good candidate for the vector e is

!

And a calculation shows that, for xe D ,

det(e1(x),e2(x)) = det(e1(x),(A-Brye1(x))

]
= dct(H(x)(J , H(x)[::;((z))n

= det H(x)- (¢2(x) - 1(x))

= (az2(x) - a11(x)) .

Therefore, Idet(e1(x), e2(x))! 2% , and by Lemma 1.3 again, (e1,e2) defines an
invertible operator in JM2(L(D,W)) .
So we are half-way there. We must still obtain e; defined over the set D°.

For this situation, a good example to keep in mind is the matrix of complex numbers

a ¢
M=( ) a=0,e=0.
0 a
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Over D€,

o V¥
A-Bim =(01 ¢2}

has 1¢1(x) - 621 <3 .

Therefore, modulo -g— and the entry ¥ , A - Byy1 is diagonal. But as mentioned

earlier, condition (1) in the statement of the theorem forces hyi to be essentially bounded

above zero. So, taking our matrix M as a cue, we define

0 v
€1 =[ ] so that e; =(A-PB1Ye; =( ) .
1 92
Clearly (e1,e2) defines an elementof Jo(L(D,uw)). Also, det(e,e2) =-y.

So to complete the proof it just remains to show that iyl is "essentially bounded
above zero", thatis, Je >0 suchthat hy(x)l2€e>0 ae. Butif this were not the case,

by the measurability of the functions concerned, there would exist a set PC X of

positive measure with the property that for x in P

[0 Wy(x) 3 B
II(A—Q)])(x)H-II(O ¢2(x)—¢l(x)) < —4—5 , d=d(essrg A, L),

which would yield a contradiction to (1). To finish the case n =2, simply define G to
be the invertible operator given by

G(x) = (e1(x), e2(x)) .
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The induction: (n23)

Because of its length, we first give an outline of the proof.

Assume that n 23 and that we have the theorem for n- 1. Invoking theorem
7.20 of [R&R] again, we suppose, without loss of generality, that A is "upper-

triangular”,

(a“ e e e a]n\

A= ' ) , 3jj € LeoX,w) .

L 4nn )

The main thing is to show that A is similar to an operator of the form

Biyr u
(z SJ @)

where u = (uy,...,un.1)
z=(ZenZn-D)b 5 Upzi€ L(XH)

and the operator
S———a'

satisfies condition (1) of the Theorem for M ;.;1(L=X,WL)) .
For then we use the induction hypothesis on S together with some algebra to get

the result for A.

Remark: The motivation for considering the operator S — BLzu' is the following
111
factorization, a special case of which is to be found in {GPR]: In general, given ¥ in

C\{0} , we have the matrix equation



g}g’rﬂ-?p',"‘.'(!:w-.-t-v:r:n.
T N B H

Y C) _ (¥ 0 1yl
B D B D-y'BC/lo 1 |

Applying this to the matrix at (2), we get

([31“1’1 u') _ (51 0 ) 1 @y
z S z S-Biv1 )—1 zu'j \ 0 I '

which yields to algebraic manipulations.

The similarity at (2) is obtained in two steps. We first show that there is some R in

Ma(SeX,w) suchthat A is similar to

(BiY: A
1
A1= 0 Ri. (3)
L 0 y

The second step is then showing that A1 is similar to the special operator
Piyy v
z S

This is all accomplished in the same spirit as the case n =2, but the division of

given in (2).

the measure space X must be done with somewhat more care.

We now begin the rigorous proof of the induction. Consider

(01 W12 - - - Wn )
A—'BIYI= 0 s

Yn-1,n

\ on )/



where  ¢; = aj;-B1y1 , 1=12..n

and Yik =ajk , 1<ksSn .

Step 1:

(A issimilarto A; — see equation (3).) Let

D = {xeX : 19i(x) - 0jx) 2 & for some i)
and
De = {xe X : 19i(x) - oj(x)I < & forall 1,j) ,
where & =d(essrg A, L) .

Asinthecase n=2, we deal with A definedover D and D¢ separately.

Over Dc: Let

(i)

be L°°-column vectors, so that the n-normal operator matrix
(0,¥2,¥3,...,%¥n)
is the strictly "upper-triangular” part of A - B1vy: .
Let 8;={xe D¢: IF;x)ll 2 ¥, j=2,...n} , where -l is the standard
Euclidean norm. It now follows that restricted to ; , [¥;(x)li is essentially bounded

away from zero. For otherwise, since [i¥j(x)l dominates the other columns, we would

obtain a set of positive measure over which A - B1y; iscloseto L relativeto §,

contradicting our hypothesis, conditton (1). Since

n
U R&i =X
=2

i



we may define new measurable sets T by
Tar =282
T3 =383\232

‘J-n =¢8n\(182 U-..U lgn-l)
so that

UTi=U R but TiN T;=¢ for i=j.
We now require even a finer partition, and to do this we need to consider the “essentially

best lower bounds"

i = ess inf {II¥;(xM : xe T3} .

The new partition is obtained by setting

n
—
2

Tk = (xe Ti: (xR 2 nfhs-1)) , k=121, *)

and defining measurable sets T ik so that

Tin € Tk

Tix N Tig=0 for k=t
and

i-1 -1

UTik= U Tk =T

k=1 k=1

On Tk define

(0

e1 —i~ place .
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Hence
(Wi ) (0
Vi 0
ep=(A-Brmler=| & | = %i+|¢| ~i" place.
0) 0
\ 0 y, \0/

We will now define column vectors of & °°-functions e3,...,en SO that
Gik = (€15--€n)

will be invertible in- M (L(T ik.1)) . For e3 choose any r=k,i and let

f 0

e3 =| ki -~ place .

For e4, Lo
0

€4 =

witha "1" pot in the it kth or ith place. Define es,...en similarly. It follows by

(*) that
ldet(et, e = ()2 2 n¥/n-1) , k= 1,.0-1.



Finally, let 11 =min{nj:i=2,...,n} and define
G(x) = Gi(x) for xe Tix .

n i-1
Since D¢ is equal to the disjoint union U U Tik » G givesus an element of
i=2 k=1
M (L =(DC,u)) . Moreover,
Idet G(x)! 21%/(n-1) .

Hence G isinvertible.

But by definition, 2 = (A-B1v1) €1, therefore, restricted to D¢

(Biyr * = %)
1 * *

G laG=| 0
\ 0 * *)

So we have the required similarity over D¢, and to complete Step 1 of the case n23

we must turn our attention to the set & .

Qver D : By definition
D = {xeX : 10i(x)-¢;(x)| 2 —g- for some i#j},
d =ess d(A, L) .
Let  Djj={xeD: 0ix)-0j)1 23} , ij=12,..0,i%j,
so that
D =] Dj
i<j

Now choose pairwise disjoint measurable sets T3 & Djj such that
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|J Eij=D. We will define €1 on Ejj. Foreach ij,i<j,let Pjj bethe
1.j
orthogona!l projection onto the space Rij generated by the vectors

(0 {0
0 0
1| -i" place , |1 -j‘h place .
0 0
\0, \0
Thus
/0 0 N
d; Vi
Pij(A _BIYI)Pij =(0 0 0
®;
\0 0 0/

Invoking the case n=2,we find e; suchthat e; and ez : = Py(A-Byy1)Pjeq define
an element of IM(L°(F,1)) satisfying
Idetat, (e1(x), e2x)1 2 16icx) - 4jxN = 3 .

Define
0\
0
e3=| 1 — place , r=i,j , etc.
0

\ 0
Then a calculation shows that

Idet(e1(x),....en(x)) 2 10i(x) - 05N = 5,
and it follows that for xe Ej ,

Gij(x) = (1(x),-..en(x))
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defines an invertible operator in - TNy (L=(F 1)) .
Forming the disjoint union U Eij we retrieve D . Therefore, the operator
G(x) =Gjj(x) for xe Ej
G = (31:32:---scn)
yields an invertible element of JMp(L>(D,u)) such that
e2=(A-BryDer .
Combining this with the operator already defined over ¢ we obtain an invertible G in

M (L= W) for which

(Biv1 ¥y
1
GlAG=| 0 Ri:= A
L 0 J

as required.

This completes Step 1 of the proof.

Step2. (A; issimilarto (B 171 :J - see equation (3).)
2

This part of the proof consists in showing that

1

Brvi ¥ 0

Al ;=[ z R , Z= .
0

1s similar to an operator of the form

P v
z S
with S- —L—zu' satisfying condition (1) in M1 (T=(X,1) . If R-1—zy'

Bim Bim

already satisfies (1) then there is nothing to prove. Otherwise write y¥={171 and
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Yy
Ay = .
In this case we claim that we can find w' = (w1,...,Wn-1) SO that the similarity is

implemented by an operator of the form

1 w
=P .
o 1)

To focus our search for w', suppose such a vector exists and consider
vy —{w',2) (y = (W', z))w'+y'-w'R
PlAP =
z zw'+R

where (f,g}(x)=Z £(x)gi(x) , f,g in C1(Z2(X,W)). So it would be enough to
find w' for which

@) (w',2)=0
and (b) (zw'+R) - %z(yw‘+y'-w'R) satisfies (1),
that is, for which

(@ (w,z)=0

and (b) R -%zy'+ %zw'R satisfies (1) .

Let us digress a moment.
Roughly speaking we need w' which is perpendicular to z and such that the almost

everywhere rank-one operator %zw'R keeps (R - %zy') + —;-zw'R away from the

scalars. It is helpful at this point to have the matrices in mind:

1 Y1 Yn-1
0 0 .- 0



(ziw1 = W)
0 0

zw'=s| i : = (W1Z,..., W_12)
\ 0 0 )

zwR = (W ,R") z,..{w' ,R*1) 2) ,

R=(R!,.. R | Ri=ih columnof R,

R = (tijij=1....n -
In the case where X is a singleton, all operators are just matrices of complex numbers.
The matrix A being invertible implies that not all columns of R are muitiplesof z.
Hence there exists a column of R (R! say) suchthat z and R! are linearly
independent. So with w' a sufficiently large positive multiple of the component of Rl

which is perpendicular to z, it is ensured both that (R - %—zy' +zw'R) is non-scalar and

that (w',z) =0. The object in what follows is to do this measurably, while keeping the
norm of w'(x) bounded.

We require two lemmas aiid some notation.

Lemma 1,5, Let z bein Cr-3(Z2(X,1)). Then there exists an orthogonal projection
E in TMp(E=X,un) such that

rg E(x) = span{z(x)} a.e.

Proof. Let zg(x) = z(x)/llz(x)ll . Then just define E by

(EN(x) = {f(x).z0(x)) zo(x)

which proves the lemma.

Now recall that
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A1=(7 y}; z=| . { , R=®...R"™
z R :

0
with R1,.,R™! and z in CM-I(L=(X,W).

By Lemma 1.5 there is a projection E in  TMp.1(5>(X,1)) such that

rg E(x) = span{z(x)} ae. Soforany ve Cr-1(Lo=(X,))) it makes sense to write

vy=Ev , vpx)=EX)v(x)

vi=EL , vi(x)=Eix)v(x) , EL=I-E.
In particular, for i=1,...,n-1

Rij = ELRi |

Lemma 1.6. The essential range of the function

n-1 )
x> 3 IRY (X

i=1

does not contain zero.

Proof: (By contradiction) Suppose

n-1
Oeess gy, IRY Il .
i=1
Write A1(x) as

YON [ 31) 0 Yn-1(X) 0
A0 = [ 200 {4 | Rj00 | + | RLG) | o | RITT) |+ | RITGO

Since n-12 2, it follows by multi-linear expansion that

0 e essrg(det Ay)



which is a contradiction since A1 is an invertible n-normal operator. This proves the
lemma.
Now, let 7 be the essential infimum of the function in Lemma 1.6. Thus

n-l1 .
ess inf 3, IR} lI=1>0 .

i=1

It follows that the measure space X is the union of the sets

Xi={xeX IR N2 p/m-1}) , i=12,..0-1 .
By the now-familiar "partitioning”, we obtain

n-1
Yi € Xi suchthat |J Yi=X

i=1
and YiN Yj=¢ for i#j .
At last, we are in a position to produce the vector w' which will satisfy conditions (a)

and (b) from the beginning of Step 2. In fact, w' is defined piece-wise, according to the

partition given by {Yi}irl_._ll . More precisely, we claim that there exists a measurable
function o:X - C such that
wix) = a)RL GO . xeY; , i=12,..0-1

satisfies our requirements. To prove this, suppose i22. For x in Yj define

()l yi(x)
a(x) =ess sup[m[lku(x)lﬂml%-p/ n-— IJ] .

Thus,if e € and w'=oa-(R))' ,then

-1 1,wR -
(R Y2+ YZWR Byl
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{ 0 w
y1(x) IRE (x)I2 8
- 0
> IRY(x) - ! . +a(x) 0 - B (Hl (iIh column)
v{x)| Y{(x) : 0
\ 0 0 X
\ 0/

which, by the way a(x) is defined, turns out to be greater than or equal to p/n-1 . If

i=1,define ax)=0 for x in Yy. Then,for Be C and w'=0,

(R - ;ly-zy + ;]{-zw'R - Byl

y1{x)
) f’)
> IRy - | O |- . | T (¥ column)
0 0
1
1 1 . 0
2 IR'(x)l  (Recall R is orthogonal to z=| ., |)
0

2 p/n-1
The claim follows and we may now finish the proof of the theorem.

By construction, with

1 w
P= R
o )

_ Yy u
PlAP=A, = ,
1 2 (z S)

where S-—;;zu’ satisfies condition (1) in TMp.1 (LX) and y=B1y1 . But

now, as pointed out in the Remark przceding Step 1
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—
cu

Bim 0

D P
z S BT zu' |10 1

and we can apply our induction hypothesis to

S
S - mzu
Since
det As(x) = det A(x)
we have that

n-1
det[S——l—zu'}x) =TT By .
Pim =2

By induction, there exist Bg, Co and Qo in TMa.(T(X,w)), with Qo invertible,

such that
( B, 0
By :=QgBQ=!| " |,
* By
Y2 *
C; :=Qp'BIQp = ,
0 Yn
It follows that with
0= ( 1 0 J
0 Qo
By 0Y (M *
- B2 Y2
Q'AQ= .
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Since A is similarto Az, the theorem is now established.

Taking Sourour's example, we offer a corollary on "unipotent" operators.

Definition: An n-normal operator A is called unipotent if it is of the form I+N, for

some n-normal nilpotent operator N .

Corollary 1.7:
(i) If A isn-normal, d(essrg A,L)>0 and det A(x)=+1 ae. then A isa

product of two unipotent operators.
) If A=a-l, ae LX) ,isaproduct of two unipotent operators
I+N1, I+N2 then
a=1 and Nj;+Na=-NjN2 =-NoNj .

Proof:
(i) This is a special case of Theorem 1.4 with Bj=v=1,1<j<n.
(i) If we have

A= o] = (1+N))(I+Np)

and
Ni=0, Nj7'20,re N
then
o(I+Np)-1 = (I+Ny)
so that
@=DI-N; +Nj—..+(-D)"INITT= N, .
It follows that

NoNj = NiNg
making (0-1) nilpotent. We conclude that

=1 and Nj+Nz=-NjNs =-NoNj .
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Remark: An easy extension of (i) is the following: If d(A(x),&)>0 and
det A(x) =+1 almost everywhere then for each € >0 there exists Xe ¢ X such that
L(X\Xe) < € and restricted to Xg, A is a product of two unipotent operators.

Amongst the theorems to follow, similar extensions are possible but will not be stated.

Section 1.2
The next theorem includes a characterization of T s(TM (LX), the set of

products of five positive invertible n-normal operators, as well as results on 4.

Theorem 1.8: Let A be an n-normal operator, and .Cnp be the subset of

L = LM 4(C)) consisting of non-positive scalar multiples of the identity.

(a) If there exists € >0 such that det A(x)2¢>0 ae. and d(essrg A,Cnp) >0,
then A e P4. (Note that dlessrg A,L) =d(essrg A, Lnp) )

(b) A isin Ps if and only if there exists € >0 such that det A(x)2€>0 ae.
As a partial converse to (a), we have

) If Aec Ps,Ae C and A-Je esstg A, then A>0.

Definition 1.9. Bounded measurable functions ¢ ,A € A are said to be gssentially
distinet if there exists € >0 such that Idy,(x) - ¢, (x)| 2 €>0 forall A=A, ae. .

Proof of Theorem: a) By hypothesis, A is invertible. Choose positive bounded
measurable functions PBis....Bn,Y1»--¥n such that the Bi's are essentially distinct and
the yi's are essentially distinct and satisfy

n

T Givixx)=det A(x) ae..

i=1
Now,in TNn(C), Lnp isdensein L. So d(essrg A,L) >0, and by Theorem 1.4

and the fact that the Bi's, Yi's are essentially distinct there exist n-normal operators B
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and C suchthat A =BC with B and C similar (separately) within the algebra of
n-normal operators to diagonal operators B; and C;, with entries B1s.--Bn and
Yl...Yn respectively. Considering B first, we have that for some invertible n-normal
operator R,

B =R-IBIR = [(R")(R-)*J[R*BR]
sothat B isa product of two positive invertible operators. A similar calculation works
for C, and (a) is proven.
(b) One way is clear. We prove the converse. Thatis, if e>0and det Ax)2e>0
ae. then Ae Ps. To see this, assume, without loss of generality, that A is of the
form

fan e e e e aln\

\ 4nn )

Since A isinvertible,
n =essinflajil>0 .
Let
D = {xeX : d(AXX), L) 2n/4} .
From part (a), we conclude that, restricted to D , we may factor A into four positive

invertible operators.

For D¢,
De = {xe X : d(AX),L) <N/4)

consider the n-normal operator
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(1o . . 01
010 - 00
P=

1
\'i‘.-..lj

The operator P is positive and invertible. Moreover

1
oo ¥ A +a
* vee * *
AP =
s 00 1

Hence, for xe D¢ and AcC

I(APY(x) = Al 2 I3a1)(x)+app (X)!
2 Zlay (x)i-lag, (x)!
1,_10
2 70"%
=1
7 -
Therefore, restricted to D¢
d(AP,L)21/4>0.
So APe P4 and A =(AP)P-le Ps asrequired.

(c) Suppose P1,P2,P3,Ps are positive invertible n-normal operators such that

A =P1PyP3Ps4, and that Ae C,A-I e esstg A. Then there exists a sequence {x,}n=)

in X such thatin TMNy(C)

8] A(xp) convergesto Al

2) Pi(xy) convergesto Q;,1=1,234

3) Pij(xp) and Q; are positive invertible matrices, i=1,2,3,4,n=123,....

It follows that

QiQ=2Q3'Q3" .
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Since Q1Q2 and Qlegl are both similar to positive matrices, it must be that A >0.

Remark: Part (c) (ii) of the theorem means that Ps is the optimal set. Forlet n=4
and A =il. Then det A(x)=1>0. But i is not positive, so A isnotin Py. Of

course, by part (b), A isin Ps.

We now consider products of a specified number of positive n-normal operators

and so determine the sets '—@-2 , ?54 , 5;( , -@_.k ,4<k<oo,

Lemma 1.10: Let T be n-normal. Then
o(M= U{c(S):SeessrgT}=o(essrg T) .

Proof: To begin, we assume (by Theorem 7.20 [RR]) that the operator is of the form

(¢1 3

T'=

\ On
Suppose now that A € S(essrg T) . So there exists M € esstg T such that
A e oM). Therefore
detM-A)=0
which, because "det" is continuous, implies that
0 € essrg det(T-1) .
Therefore, by Lemma 1.3, A€ o(T).
On the other hand, if A ¢ o(essrg T), then we claim that there exists >0
such that Ii(x) - Al 23 a.e. To see why this is so, suppose not. Then foreach §>0,
there exist both i and aset Y of positive measure over which 19j(x) - Al <. Letting

1 . . o
dm = — ,m=1,2,3,..., aad using the fact there there are only fiitely many indices
m



i=1,2,..,n,weobtain ip, ! £ig<n, together with a sequence Ym J of sets of

positive measure such that for x € Yy, ;e 16;,(x) - A< mLJ ,forall j. Because (M j}j‘;1
is a bounded sequence of nxn matrices, we may choose a convergent suusequence M;
with limit Me essrg T. But now continuity of ¢ in finite dimensions gives that
d(oc(M),A) =0, thatis, A € o(M) . This is the required contradiction.
Thus, our claim is true. It follows that
0 g essrg det(T-A)
and this implies that
Ae o(T).
This finishes the proof.

Remarks: 1) One consequence of the lemma is that o(ess rg T) is a closed subsetof C.
This, however, can be proven directly, using finite dimensionality and continuity of ©.

2) Forresults on the spectrum of more general types of direct integrals, see [Chow].

Lemma 1.11: Let Q@ bea C*-algebra. Then Te Po(Q) & T is similar, within @,

to a positive n-normal operator.

Proof: If T=AB,A,B positive invertible, then T = AV2(AIZBAV2)A-12 so T is
similar to AY2BAY2 which is positive invertible; and all operators involved in the

factorization are from Q.
If T =X1PX,X,P invertible, P positive, then T = [X‘I(X'l)*][X*PX] .

This proves the lemma.

Lemma 1,12: Suppose that ¢1,...,0n € L°(X,L) are invertible and €> 0. Then
there exist 6, 0<d <&, and yy,...Wp € L=(X,1t) such that

@ 1600 - Wil <e ae. forall j
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(i) ;) 20 a.e. forall j
(i)  yix) - \pj(x)IZS ae. forall i=j .
Moreover, if q)j(x)ZO then yj(x)20 ae. forall j.

Proof. (By induction): Suppose n=2. Since ¢1, ¢ are invertible, there exists
80> 0 such that [01(x)!, I02()| 2 50 >0 ac. Let 8= min(% ,870) and

D = (x: [01(x)], [92(x)| 2 8) . On D weset y1(x) = ¢1(x) and ya(x) = d2(x) .
On D¢ we set y)(x) = ¢1(x) and Wa(x) = ¢1(x) + §. Then

W2 = 10160 + 81280+ 5 = 20 > 5.

ly2(x) - w1 =83 yi(x) - p2(x)| =0 <¢ ;
and w200 - 02601 = 10160) + 8- 0200 S =+ 8 < .

Now suppose that the result is true for n-1. Therefore we may assume that
®1,-.,0n-1 already satisfy (a.e.) [9j(x) - ¢;(x)]28>0,i<j<n-1 and
[0i(x)|28p >0 forall i=1,2,..,n

Let
8= min{} ess infloi-0jl , § :i <j)
and set
D = {x: [¢n(x) - $i(x)] 23, i=1,..,n-1} .
n—1
On D define Wn(x) = dn(x). The set DC partitions in the usual way into U Ai
i=1

Bi € {x:10n(x) - 0ix)| <8} ,i=1,..,n-1.

On 3; define yn(x) = ¢;(x) + 8. The result follows.

Corollary 1.13: The same result holds even if the ¢),...,0y are not necessarily

invertible,



Proof: Let n>0. Foreach i, let
D= ({x:0ix)=0).

On D; define ¢'i(x) = ¢;(x) +7 % . On D¢ define ¢'i(x) =7 . Inthis way
i X

we replace the elements ¢; by elements ¢'; which are invertible and for which
l6i(x) - ¢i(x)| <M ae. forall i.

Since 1 >0 was arbitrary, the result follows.

Proposition 1.14: Let Te G = My(Le(X, 1)) . Then
Te PrQ) = oM 20.

Proof: Suppose T =lim PyQn, Pp,Qn posttive invertible,
n
then T = lim PyQ, in the strong operator topology,
n
SO T(x) = lim Pp(x)Qn(x) SOT, ae.
n

([Nielsen], Theorem 7.1). But T(x) € T (C) a.e. therefore

T(x) = lim Pp(x)Qn(x) in the operator norm a.e.
n

and since the spectrum is continuous on finite dimensional algebras, it follows that
o(T(x))20,and o(S) 20 forall S e essrgT. By Lemma 1.10 we conclude that
c(M=20.

Conversely, suppose o(T)20. By Theorem 7.20 [R&R], T is unitarily

equivalent to an operator of the form
( (o3} 3\

T'

\ ¢n
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n
And, viat he determinant condition, o(T) = U essrg ¢; , which implies that essrg ¢; =0
i=1

for i=1,..,n. Let £>0 be small enough so thac we may replace each ¢; by Wi such

that
O vz % ae.
@ i) - gl < % ae.

£ . .
i)  |yitx) - wixo] 2 Z ,i#] a.e.
By applying Corollary 0.15 [R&R] (of Rosenblum's Corollary) to the operator

(yy )

\ WYn/
(where the off-diagonals are the same as for T') we find that S¢ is similarto a

“diagonal” positive invertible operator, namely,

f\pl 3

\ Y,

So by Lemma 1.11, Sge P2(Q). But lISe-T'l <€ and € >0 was arbitrary, so the

result follows.

Proposition 1.15: Let G = Mp(S=(X,1)). Then
Pa(@) ={T:det Tx) 20 ae.}.
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Proof: If T=1il?1Tn.TnG Ps

then T= li!rln Tn (SOT) , which ([N]. Theorem 7.1) implies
T(x) = 1i't'n Ta(x) (SOT) a.e.

Hence TX) = Ii;n Tn(xj (operator norm) a.e.

and so det Tx) = lirrln Tax)20 a.e.

For the reverse inclusion, we may assume T is of the form

(& 3\
»
1=
0 .
\ On
so that
det T(x) = ¢1(x) ... dp(x) 20 a.e.
Let €>0.

We use the usual trick. Replace the ¢;'s by wi's in such a way that for some
d >0 the following conditions are satisfied:
() Yix) .. Ypx) 28>0 ae.
i@ |y - yix) 28>0 ae. for i#]

()  |yix) - ¢ix) <€ a.e.
Then let

(W1 )

*
Te =
0

\ Wn J

1t follows that

IT-Telf <€
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and by Theorem 1.8
Tg € p4 .

Corollary 1.16: As in the case of matrices, we have
Ps=Ps=Qy=Qs5= Poo = Qoo

We now return to the question of exact factorization (as opposed to
arproximation). When the measure space (X,pt) is a singleton, Theorem 1.8 determines
exactly which operators are in P4(Jo(C) . This is Ballantine's theorem for matrices
and can be stated as follows:

Let A be areal or complex nxn matrix.

(1) A isaproduct of four positive-definite matrices if and only if det A>0 and A is
not a scalar «-I, o not positive.
(2) A isaproduct of five positive definite matrices if and only if detA>0.

Moreover, if A=a-I,det A>0 and o is not positive, then five factors is the
smallest number possible.

Ideally, we would like to fully extend Ballantine's result to our setting of n-
normal operators and give a complete characterization of P4(TMp(L=X 1)) , as
distinguished from 5. What we have so far are sufficient conditions from part (a)
of Theorem 1.8 and necessary conditions from part (¢). What is missing? If
A =P1P2P3P4 then A(x) = P1(x)P2(x)P3(x)P4(x) a.e., and so by Ballantine's theorem,
A(X) is (a.e.) not a non-positive scalar. So what remains are precisely those operators A
for which
@) d(essrg A, Lnp) =0 =d(essrg A, L) (L = fnp)

() esssgAN Lpp=9¢

(i) detAx)2€e>0 a.e., forsome £€>0.
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In other words, it remains to characterize those operators of essentially positive
determinant which provide the link between essentially non-scalar elements of Pk and

those of the form oI, a(x)>0 a.e. And itis easy to show by example that this set is

non-empty.
Examples: 1. Let X=N,u{n} =7Ln ,and suppose £: N — C issuch that

e(n)>0 and €(n) 2 0. Define

A-I+i8 0
Lo 1-ig}

2. Let X and € beasin 1. Define

A_le
Lo 1)

3. Again X, & areasin 1. Let ye 2(X). Define
1+ie vy
A= .
( 0 1~ie)

As we will show, every one of the operators above belongs to P4 . Forthe

general case we have the following conjecture.

Conjecture: Let (X,u) be a standard o-finite measure space. Then

A e Pa (Mg (T=X ) < det A(x) is essentially bounded away from

aeroand essrg AN Lnp=9¢.

We have partial results, including a discussion of the case n=2.

Proposition 1.17: Let X =N , i be counting measure and suppose that
A e TNa(=(N)) is of the form
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1+ie Yy
A‘(o l—is)

where €,y e 22(N),e(m)#0,y(n) =0 forall n, &), y(n) both converge to
zero and &(n) is real-valued. Then A e Pa(T2(8=(N))) .

Proof: Let Xi={n:|y(n)|22lem)}
X2 = {n:lym)] < 2lem)l} .
Then X; and X2 are measurable and partition N . We consider each of these sets in

wrn. If X; is finite, then by Ballantine's theorem, Alx,€ P4(TM28=X1)) . I X

is not finite, then

X1 = {k1,k2.,k3,...} , where k, <k, for all £.

In this case we claim that there is a sequence of unitary matrices U(2) so that, restricted

®
to X1, Ll U(&)dp implements a unitary equivalence between A and an operator B

1+e 2z
B=
)

where y, z are real-valued and converge to zero. And we will show that B is then in

P4 over X .

of the form

To see why the claim is true we use the fact that for 2x2 matrices, unitary
equivalence is determind completely by the trace, the determinant and the Hilbert-Schmidt
norm. (To see this, assume that the operator is upper-triangular. Then choose an
orthonormal basis so that the off-diagonal becomes non-negative.) We are therefore
reduced to solving the equations:

1)) yz = -2€2
) R+R=IP .
Substituting equation 2) into equation 1) we obtain

e lyi2 /Ly -16€*
= : _

-
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Since |w(n)| 2 2le(n)} forall ne X1, we obtain a solution so that the claim is

established. But now

(1+s z]_ 1 0 (1+e zJ
y l-¢ 'f,):lg% 0 pv

which, by Rosenblum's corollary and Lemma 1.11,isin P2 P2=P4 for p>0 a
sufficiently large constantand w, v invertible positive 2*°-functions appropriately
chosen.

For the set X2 we have 0 <|y(n)] <2le(n)| . If X2 is finite, then as before,

Alx, € %4 over Xz. Suppose then that X is infinite. Observe that the operator

1+ie O (< milart 1 ¢ 2 th Q 1 - q 1 ¢
m t = 5
0 1—ie 1S sumilar to - 1 via the constant 1 i an - 1

isin P4 via Ballantine's theorem.

This suggests that we try to solve the similarity

R | N [ e

We obtain the equations

aie + cy = -be , Q=(2 Z] ,idet Q] >>0.
ic=d
If there exists a solution, |c|=|d|>>0. Sowetry ¢=1,d=1. The equations
become
(al+b)E = -y
subject to [ai-b] >> 0 .

Therefore it is enough to solve

; S
ai+b=-—

ai-b=2e®

for © a measurable real-valued function, e.g. 6 =0. We obtain solutions
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|-

i(—%”)
)

which are indeed @°°-functions, since

a=

N

y(n)
£(n)

We now can put the solutions from X1 and X2 together to conclude that

<2 for ne X3.

A € P4(TN,(8%)) . This finishes the proof of the proposition.

Remark: It might eventually be of use (see Concluding Remarks) to consider the

I+ie vy

0 1 '8) . From the proof of the proposition, there
=1

qualitative behaviourof A= (

are two cases.

Case 1. Iyl 22lel>0.

Here A is "asymptotic” to I+Rp, where R; is an upper triangular nilpotent converging
to zero.

Case 2. |yl <2Jg] .

Here A is "asymptotic”to I.

Similar calculations will prove the conjecture for the general 2-normal operator
over (X,u) . The additional measure-theoretic details shed little new light on bow to
obtain the factorization in its full generality regarding n-normal operators. We therefore
do not include a proof. However, we do present the reduction to a canonical 2-normal

operator, like the one considered in the proposition above.

Reduction for the case n=2: We will show that the prohiem can be reduced to

considering an operator
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1+1¢e
S
0 o —ice

which <atsfies the following;:
@) the set Zp= {x:0<d(A(x),L) < l} has positive measure forerch ne N.
n
@ ez, 1= 0L lyz, = 0 e e R ae.
@) o>>0 and |(a-D|z I~ 0.
From the start we assume, without loss of generality, that
A= (‘1’1 \ifj
0 ¢

and suppose that A satisfies the conditions stated in the conjecture, that is

det A>>0 and essrgAN Tpp=9¢.

If A=a-l or essd(A,L)>0, then by Theorem 1.8 we are done, with A e P4 as
required. Otherwise, A must satisfy condition (i) above.

Now, for each n
1
[$1(x) - $2(x)| < — ae on Zn -
For if not, there is some ng and aset Ppy C Zy, of positive measure over which

[01(%) - ¢2(x)| > L ae. Let 8=0¢1-¢2. Then there is some 8p>< ,

n
B & esstg 8lp, - Let Yk = {xePp, [ 18(x) - 8gll < +} . Then foreach k, Yi has
positive measure. Let Ag € essrg ¢2|Yk . The sequence (A, )x-; has a convergent
subsequence Ay, with limit A. But, by considering A(x)-A , we obtain a
contradiction to condition (i).

Now write ¢; =0 +ifj. For n sufficiently large «;| >>0. For otherwise

there exists a non-positive A € essrg det A , where

det A(x) = (ci(x)a(x) - B1(x)B2(x)) .
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Similarly {1B|z, 11> 0, j =12, forif not, then thereisa A & Lnp such

that A € essrg A . We therfore have

_(mrurib v
0 a2+iﬁ2

where “’lZn (x)20 ae. for n large enough. Dividing A by the invertible positive
Le-function o+ L , we obtain the reduction.

Further 12l Ca
1) If

k ¢’n)
with ¢;>>0, i=1,..,n, then there exists a large positive constant p >0 so that the

factorization

o [V :
Ae N ( Vo2

- . ]
0 p" o LO pi=T On

shows A isin Pg4.

2) If
1+ i81 A

(W3j)icj

L 1+ig,
and

Iwij(x)] < cij fij({ €k - €)(x)
for suitable functions fjj and constants cj; >0, then by induction we obtain that A is

direct integral unitarily equivalent to the operator
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(1+ig \

\ 1+1g,
thereby reducing the problem in this situation to the case of a diagonal operator.
3) A last observation is that when

yijm 20 i>]

zjj(m) - 0 i<j

define real-valued functions IN— R, then

(1 3
(Zu)
(y;;)
\ 1
is equal to

/1 \ (1 )

p-oy 0 B (v

(vij)

0
_ 1

. pn Ian—lj \ pn_l Bn-—l J

whichisin Ps(TMp(£>)) for suitably chosen positive invertible &>-functions oy, B
and large positive constant p>0.
Some Applications:

We now give the "n-normal analogues" to the corollaries from Sourour’s 1986
paper. The first of these concerns commutators and extends the Shoda-Thompson
Theorem (5, 6 of [Sourour]). For the classical theorem, F is a field not of characteristic

2 and n isa positive integer not equal to 2. It v-as shown that the set of commutators
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of invertible matrices over F coincides with the matrices of determinant equal to 1, that
is

{BCB-I1C-1:B,Ce GL(n,F)) =SL(n,F).
For our theorem we replace the field F by the commutative von Neumann algebra

Leo(X,t) and so find ourselves in the setting of n-normal operators. Our notation here

will be
G = [Ae Mp(L=(X,W)) : A isinvertible}

B = {Ae Mp(L=(X 1) : det A(x) = +1 ae.}.

We can now state the result.

Theorem 1,18: Let A 3.

(a) If A=o-I,then A is a commutator of operatorsin & .
(b) If d(essrg A,&)>0 then A is a commutator of operators in 3.
(c) If d(essrg A,L)>0 then A is a commutator of operatorsin G with arbitrarily

prescribed determinant inveriible in eoXK,) .

Proof: (a) If A =a-I,then a®(x)=1 a.e. Let B =diag(c,?,...,a") and
D = diag(1,0),...,o™*1) . Then there exists Ce @ such that D = CB-1C-1.
Therefore A =BD =BCB-IC1.

(b) Since essd(A,L) >0, by Theorem 1.8 we can write A as a product B-D

where B has essentially distinct "eigenvalues” B1,...,8n and D has "eigenvalues”

Brl.....B:! . Therefore D is similarto B!, thatis, there exists Ce @ such that
D =CB-I1C-1, which makes A =BCB-1C-1.

But let us be more careful in our choice of {B;} . If n is odd,let B; =1 and
take -‘-12;1 essentially distinct pairs of the form {B,31} . If n is even take % pairs

{B.B-1} . Inthis way detB(x)=1 ae.
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Now observe that the operator C in the first paragraph may be replaced by CD
for any invertible D commuting with B. Since B can be "diagonalized” (use
Theorem 7.20 of [R&R] together with Rosenblum's Corollary) there exists a
"diagonalizable” D which commutes with B and has arbitrary invertible determinant in
LoX,1) . Soin particular, we can replace C by an operator in 3.

(¢) The proof is similar to (b).

The next theorem of this section deals with products of involutions. An
involutjon is an operator whose square is the identity. (In forthcoming research we
consider involutions in the algebra of decomposable operators, where the integrand
Hilbert spaces are a.e. separable and infinite dimensional. This is in contrast to our
present setting where the underlying space is a direct integral of n-dimensional spaces
Ch, n <oo.) The relevant matrix result, proven by Gustafson, Halmos and Radjavi
[GHRY], is that over an arbitrary field, every nxn matrix with determinant 1 is the

product of at most four involutions. Again, it is possible to replace the field F by the

algebra £°°(X,u) to obtain analogous results.

Theorem 1.19: Let A e TN (L=X,w)) with det A(x)=%1 a.e. Ifeither

d(essrg A,L)>0 or A=a-I,then A is the product of at most four involutions.

Proof: Since x +> det A(x) is a measurable function, the measure space X partitions
measurably into

X=X,UX_
where

X, = {x:det A(x) =+1}
and X.={x:detA(x)=-1}.
So first consider the case where d(essrg A,L)>0 and det A(x) =+1 a.e. Asinthe
proof of the last theorem, we may write A asa product BD where eachof B and D

has distinct "eigenvalues” of the form  (B;,B7,....8m.Bm} or {1,By BB}
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according as n isevenorodd. Sinceeachof B and D is diagonalizable and being an

e 0.
involution is similarity invariant, it suffices to show that the operator (O gl isa

product of two involutions, but as in [Sourour] this follows easily since

B 0Y) (0 1\fo B!
o 7)1 oJip 0"
Assume now that d(essrg A,&) >0 and det A(x)=-1 ae. If n isodduse

-A. If n iseven writt A=BD with B and D as above except that $; and B!, in

the list of "eigenvalues” for B are replaced by 1 and -1 (leave D asitwas). This

0 1) which is itself an involution.

contributes a direct summand (

For the scalar case we require a separate proof. As above, suppose
det A(x)=+1 ae., A=c-l and a(x)?=1 ae. If n=2k+1 is odd then
A = diag(ct,...,00) = diag(c,a2,...,02k+1)e(1,2°1,..,02K) .
Each factor is similar to diag(l,0,0:1,...,aK,cK) which, as explained in the non-scalar
case, is a product of two involutions, from which it follows that A is a product of four.
If n=2k iseven then a similar calculation gives
A = diag(c.,...,0)) = diag(ct,...,a2k)-diag(1, o 1,...,02k+1)
and each factor is similar to
diag(l,ak,02,02,...,0k 1 - (k-1))
which equals
diag(1,0K) & diag(o2,02,...,ak1oC1) |
The first summand is already an involution while the second is a product of two.
The next case to consideris a(x)"=-1 a.e. If n isodd, use -A . Forthe
case when n is even we draw on the original proof of the matrix theorem in [GHR]. We

have
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A= =J-R .
01 0 o

1 0 o 0
Consider the permutation p =(12)(34)...(n-1n). Let B=(23)... (n-2n-1) sothat
Bp=(13..n-3n-1nn-2n-4..42)=c and p=Bc , where B is an involution and
G is cyclic with no fixed points. The operator J is an involution, so we focuson R.
We have R =BS, where B is the permutation matrix corresponding to 3 and S isthe
"weighted permutation matrix” corresponding to ©.
Now the weights in S(x) are a(x), but the permutation ¢ is independent of

x . Therefore there exists a fundamental sequence eg,e1,...,€p-1 for
®
L2(X,u) ® Ca= [ Cdy , such that

S(x)ei(x) = ax)ei+1(x) a.e.

sothat S is similar (within the algebra of n-normal operators) to

(0 0 0 o)
o 0 0
. 0 o
S'= 0 :
.o 0
0 0 a 0)

Butnow S' is similar to the operator

(0 0 0 1)
-1 0 0
L_lo 1
S'= o .
.ol 0 .
lo o 1 0

For we can replace e1 by ey, €2 by 02¢9,...,en-1 by oMlen; and eg by
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aPeg=-ep and the associated change of basis operator is n-normal and invertible. And
S" is the product of two involutions C, D as is seen by defining C(x)ei(x) = e1.i(x)

forall i ,
D(x)ei(x) = e.i(x) for i#0

and
D(x)ep(x) = -ep(x) .

Since being the product of two involutions is similarity invariant, and S" is similarto S,
it follows that A =JBS is a product of four involutions.

This completes the proof,



Chapter 2

AF-Algebras

An AF-algebra, or approximately finite dimensional C*-algebra, is an inductive
limit of a sequence of finite dimensional C*-algebras. A first comprehensive treatment of
such algebras is to be found in [Br]. Other good references are [Eff] and [Bl]. We give a
quick review of the basic facts and definitions.

To start with we need a sequence of C*-algebras @, together with a “"coherent”
family of *-homomorphisms ¢mn: G@m—Qp for m<n (50 Gmp =Pnp © Pmn When
m <n <p). Now consider the algebraic direct limit which is obtained as a quotient of

the algebraic direct sum @@y . The defining equivalence relation is generated by
n

Omm+1(A) ~ A for A in Qp . We endow this with a semi-norm [||-|l| defined by

AL = limnSUP||¢mn(A)ll .

Each ¢mn is bounded in norm by 1, so this quantity is finite. It can be shown that we
lose no generality by assuming that each émn is injective, and for *-homomorphisms of
C*-algebras, this means isometric. Therefore our semi-norm is actually a norm.

Completing in this norm we obtain the C*-algebra direct limit, denoted  im(Qm,¢mn)
-

Since the maps Omn are isometric, we may think of the algebraic direct limit as the union

UGQG, , while the C*-algebra direct limit is the completion of this.
n

For an example, let Gn=C(1,..,n}, the continuous complex-valued functions
on the set {1,...n} . Define o&npn41 (D(G)=1() for 1<j<n and O for

j=n+1. Then UQ; is the set of functions mapping N to C with finite support,
n

while Lm(Qm,9mn) = co(N) .
-.)

60
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Another example, as important as it is fundamental, is the non-conmutative

version of the algebra just given. Let X be the C*-algebra of compact operators and

@, be the nxn matrices of complex numbers. Define Onns1: Gn= Gn.1 by

A O
Ar> ( J . Then ]lm(Gm,¢mn) =K.
0 O -

Note that in general, if @ =limQp and the symbol "~" denotes unitization,
—>

then @~ =1imQy under unital maps.
—p

In our present setting where the morphisms Omp are all injective, we obtain

naturally defined injective *-homomorphisms ¢g: Gy = @, @ =1im(Qn,¢mn) such
_)

that the following diagram commutes:

Smn
Gm > Qn

fi

Om On
Q

In fact, the direct limit @ = lim(Qq,0mn) enjoys a universal property: if B is any
_)

C*-algebra and , is a sequence of *-homomorphisms, W, : Qn — B, such that for

all m<$n, Yn°®mn = Ym . then there exists a unique *-homomorphism y: G —~ B

such that Yooy =y forall n. There is a concise diagram for this.

®mn
G > Gn

S

wn.

Wn

3ty

Q
|
l
l
¥

B



This universal property characterizes the direct limit up to isomorphism.

Lemma2.l: Let Q=1m(Gn0mn) withunital maps, andlet A be invertible in Q.
_)

Then for each € >0, and for all sufficiently large n, there is an invertible B in Qq

with [[¢a(B)-All <E.
Proof. See [Bl], Prop. 3.3.3, p. 22.

Definition: An AF-algebra is a direct limit of a sequence of firite dimensional C*-

algebras.

To understand AF-algebras it is necessary to know the structure of the morphisms
¢mn . Recall that a finite dimensional C*-algebra is a direct sum of matrix algebras over
the complex numbers. So if mj,...,mr, ny,...,ns are positive integers,

Q= fmmle-..ea:mm, , B=M,®..&My, and ¢: Q@ -+ B isa*-
homomorphism, then ¢ is unitarily equivalent to a unique “canonical homomorphism"”
v: @ - B (implemented by = unitary in B). The canonical map y may be
described as follows: write W as (Y1,....Ws) , where foreach 1=1....,s,

yi: @ = Iy, . Foreach i let mjy,...mjr be non-negative integers. Given

A =(Al,..,Ar) in Q,define y; by
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Wy 2 (Al,...,Ar) = T

We call the matrix  (mjj)i=y,..s the multiplicity matrix. This is because mj; is the
=Lt

multiplicity of the embedding of Jlm ; into My . (See also [Eff], p. 8) The relevant

theorem can be found in [Tak]}, ChapterI:

Proposition 22: Let ¢: @ = B be a *-homomorphism of finite dimensional C*-
algebras. Then ¢ is characterized up to unitary equivalence by the matrix (m;;) of
multiplicities. Thatis,if ¢,y : Q3 — B with (mjj) = (mfj) then there exists a

unitary U in B such that y(A) = U§(A)U* forall A in Q.

To study AF-algebras, we may in fact restrict our attention to "canonical systems”
(Gn.9mn) , that is, those for which each @nn+1 is canonical in the sense just described.

To sketch the proof of this we require some definitions and lemmas. (See [Eff].)

Definition: Let @ be a unital C*-algebraand a: @ — G be an automorphism. Then
o is called an inner automorphism if there exists a unitary U in G such that
a(A) =UAU* forall A in Q.



Definition: Let ¢,y : 3 = B be *-homomorphisms of unital C*-algebras @ and

B . Wesay that ¢ and v are jnner equivalent if there exist inner automorphisms

v:Q@ - @ and §: B — B for which the diagram

¢
Q » B
; la
- B

v

o

commutes.

Lemma: Given coherent systems (Qp,0mn) 2nd (Qn.Wmn} such that, for each n,

Onn+1 and Wpns) are inner equivalent, it follows that  lim(Qn,0mn) is *-isomorphic
-)

to im(Cn,Wmn) .
am)

Corollarv: Let G bean AF-algebra, G = lim(Qp,0mn) . Then there exists a
.—)

canonical system (GnWmn) such that for each n, ¢pn+1 and Wan+1 are inner
equivalent, and therefore such that

im(Gn.9mn) = 1im(Qn,Wmn)
- e

Here are some examples.

012 023
(N M, » T2 Mm, > e
where
0
A A :
. [ ard
¢nn+] 0
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As we mentioned earlier, the limit is isomorphic to the C*-algebra of compact

operators.

¢01 ®12
(2) My memn,—— MeneM @M — ..
where

Onn+l : (Als.sA20) = (A1,A1LA2,A2,..,A2MAZY) .

The limit here is isomorphic to the continuous functions on the Cantor set K.

The next example combines (1) and (2).

901 612

3) My Mr@Mo— M3@M3@M3@TM3——— ...

where

‘ A A Ag Ay Ay Ay
s stonl(Y 0 7 L

The limit is isomorphic to C(K)®X , norm continuous functions from the
Cantorset K tothe algebra K of compact operators.

From now on, all morphisms and systems are canonical. Bratteli introduced a
convenient notation for describing such systems [Br]. To each system (Gn,Omn) with
limit @, we associate a diagram (a graph) denoted D(Q@) , and called the Brateli
gdiagram for the system. It contains the key features of the system, namely the sizes of
the matrix summands together with the multiplicity numbers. Avoiding general notation

we give instead the diagrams for the three examples above.

() 1—2—3—.. X = compact operators.
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1
1
pd \1
) 1 - C(K) = continuous functions
AN 1 on the Cantor set.
1

3
2"
N3
3) 1 e C(K)®X = compact operator-valued
N 3 continuous functions on K.
2

A fourth example yields the famous CAR algebra, or Fermion algebra, of mathematical
physics.

2 2
4) 2 4 8

Each Gp is Jlan, while dan+1: Qn = Qp+1 is given by

Now that we have our terms defined and some notation established, we may
return to our question of approximation by products of positive operators. In the last
chapter we quoted Ballantine's theorem for matrix algebras which gives necessary and
sufficient conditions for an operator A in Jll, to be a product of four or five positive
invertibles. A consequence is that Q4(Mp)= Quo(Mp) = {Ac Mp: det A20).

Our question is: 1o what extent can Ballantine's theorem be used for the analysis of
products of non-negative operators in an AF-algebra? The first example to consider s the

algebra X of compact operators.
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Clhaim: @Q4(X)=X.

Proof: Corollary 2 of [KLMR] gives thatevery A in X may be approximated by

products of four positive invertible operators. Thus the corollary states that

K € P4(B(H)). But their proof of the corollary actually gives more. For by
Theorem 6 of [FS], every compact operator is a product of two quasi-nilpotent operators,
both of which may also be chosen to be compact. So, we can avoid Herrero's deep
approximation theorem [H1, Theorem 5.1] by using the special structure of X . Thatis,
given a quasi-nilpotent compact operator B, we can show that B is a limit of products
of two non-negative compact operators. For since B is quasi-nilpotent and restricted to
X the spectrum is norm continuous, each of its canonical approximants may be assumed
to be nilpotent and of finite rank (hence algebraic). But arguing as in Proposition 1 of
[KLMR] we find that every such nilpotent is a }imit of products of two non-negative
finite rank operators. The claim follows.

We therefore have that for compact operators, Q4(X) is densein X , whereas
for any of the finite dimensional subalgebras Jll,, @4(JMly) is a rather thin subset of
M, . What is it that gives rise to this phenomenon? Corollary 2 of [KLMR] relieson a
non-trivial result of Fong and Sourour [FS], whose own proof makes use of the structure
of B(H) as well as a theorer: of Anderson and Stampfli [AS]. We hope for an
elementary approach which uses only that X is an AF-algebra. And since our proof
given above (that 54(3() =X) also depends on Fong and Sourour's result, it is not
yet clear what role the finite dimensional subalgebras might play in the analysis; nor that
this line of thinking should extend to other AF-algebras.

Actually it is Theorem 2 of [KLMR] which points us in the right direction and we
find that the determinant function is the right tool. To get a first clue into how this
couples with the nest of finite dimensional subalgebras, consider the following compact

operator:



Fix Ain C ,A#0,andlet

o>

w)>

0

Let £€>0 and choose n such that

IT-Tall <€/2
with
(A
2 0
A
T, = n
n 0
0 0
0
\

Choose m in N and z in € sothat Anzm>0Q, |

and [21< < . Let
2

n+1l

E
_Zl<_'
2

A

.
n+m

68
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28 3

>

and observe that
€
T-Slj<—.
IiT-Si| >

Now we use the determinant function on the (n+m)t canonical approximantto S, so
that by Ballantine's theorem there exist pesiiive invertible (n+m)x(n+m) matrices

Pi,....Ps such that

f;\' \

>

e
o
[
s>

\ Z)

But Q4(Masem) = P5(Mpem) . Thus, we may approximate P1...Ps by Qi...Qs in

Q4(Mpem) ensuring that

3
IP1...Ps - Q1...Q4ll < 3
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Identifying Qy...Qa with its canonical inclusion into X , we obtain

IQ:...Qs - Tl <

+—=E£.

to|m
o m

Note that since the inclusion is 2 *-homomorphism, it follows that Qy...Q4 belongs to
Q4(X) . Itfollows that T isin Qa(X).

What makes this work is that not only can we approximate T in X by operators
S chosen from canonically embedded subalgebras, but there is "enough room” to insist
that det S >0. A loose way of saying this is that the algebra of compact operators is
"large enough"” but not "too large”. (Compare this to the algebra B(H) , where despite
the extra flexibility engendered by its intrinsic “largeness”, it seems that it is this very trait
which forces us to increase the number of positive factors required in our approximation
theorems (see [Wu]z). In fact, working with these ideas and using various approximation
arguments we are able to completely characterize which AF-algebras have the property that
Q4(Q) = G . Note that for any AF-algebra @, B4Q) = R.(Q),
so it is enough to consider Q4 (see Lemma 2.4).

Our main result here is in terms of the ideal structure of @ . We have that
54(@) =@ ifand onlyif QG has neither finite dimensional ideals nor finite
dimensional quotients. Because of Bratteli's work [Br] this translates into a statement
about diagrams. The condition on the Bratteli diagrams requires some definitions and
notation, as does the proof of the theorem. So let us tend to that next.

Suppose D is a Bratteli diagram for @ and that D’ is a "subdiagram” of D .

(We only use some of the matrix summands and all lines joining them: if we have part of

D which looks like

km>0£

and k isapartof D'thensois £.) We get an ideal by taking (UG,) = %, where
n
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@', is the subalgebra of G, with zero in all of the components rotin D'. Note that

D' alone is adiagram for §. Infact every ideal arises in this way. Furthermore, the

quotient Q/% is also an AF-algebra with diagram D\D'.

Example:

D:|1—2—3—4—....D
/[ L/
VANV
l— 111 -

(D is the diagram for the unitization X~ of the compact operators X . D' is the
diagram for the ideal X < X~.)

The claim now is that the exisi.nce of either finite dimensional ideals or finite
d:mensional quotients corresponds to the existence of what we call "constant edges” in
the Bratteli diagram. A copstant edge is any infinite path through the diagram such that
cach vertex along this path is simple and of the same dimension, and so the connecting

edges are non-zero and of multiplicity 1.

Example:
3—3—3—3—--nu-
1 —2—3—4—ne.-.
1{ 151{1 ——eea

This is a diagram for X~ @® JTll3. The constant edges correspond to the ideal I3 and

the quotient JN; .

Proposition 23. Let @ be an AF-algebraand D be a Bratteli diagram for G . Then

@ has a finite dimensional quotient if and only if there exists a constant edge in D .



Proof: Suppose there is a constant edge E in D, and that the dimension of each
vertex in E is n% . By considering multiplicity we find that G =G ® :m,,o and

that D must eventually look like

no ng np

D'n — D'n+1 -_— -D'n+2 D’n+3 ’

where D' corresponds to D\E. In this way we see that D' determines an ideal §
in @ such that G/ = M'y, . Observe that G/} is a direct summand (i.e. a finite
dimensional unital ideal) if and only if the diagonal lines in the above scheme are
eventually zero.

For the converse, suppose g is a Bratteli diagram for some AF-algebra B
which has no constant edges. Then along every edge of Do, the dimensions of the
vertices are eventually increasing, making the dimension of B infinite. Assume now
that D is a Bratteli diagram for our given AF-algebra @, with no constant edge, and
that ¢ is an ideal with diagram D'. Then QD\D' and D' have no constant edges,
so that by the above remarks, § and @/% are both infinite dimensional. This

completes the proof of the proposition.

Lemma2.4: Let @ bean AF-algebra, @=(UQ,) . Then
@ Q@)= LnJQ1(Gn) , and

i Q@)= Q) .



73

Proof: (i) Let A bein Qi(Q@),s0 A20,and suppose Ap; convergesto A, Ag; in

Qnj. Then (A¥p Anj)m convergesto A as well, so that Q1(@) € UQ1(Gp) .
n

The other inclusion is obvious.
(i) Since foreach n Qoe(@n) = Peoo(Gr) = Pa(CQp) = Qa(@yp) =Q4(Cn) , we

therefore have the following chain of inclusions:

Qeo(@) C %JQW(Gn) (by ()

= UQ4(Gyp) (by Ballantine's Theorem)
n

C Q@)

¢ Q@) .

The result follows.

We L.ow state our main theorem on AF-algebras.

Theorem 2,5: Let 3 be an AF-algebra with diagram D . Then the following are
equivalent:

@ Qa@=a

(i) D has no constant edges

(iii) Q@ has no finite dimensional quotients.

At this peint we require a series of lemmas.

Lemma 2.6: Suppose ¢ is a finite dimensional C*-algebra. Then 54(}) is properly

contained in  § .

Proof: Because § is finite dimensional,
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m
% =0 mn 3
et
From Ballantine's theorem

Qud ={ é‘al Aj:detA;20} .
J:

m
Since the the determinant function is continuous, and we can construct X =& X;j in
=1

$ such that det Xj=-1 for j=1,..,m, it follows that X isnotin 54(%).

Lemma27. Suppose @ isan AF-algebraand § isan ideal suchthat @/} is finite

dimensional. Then &4(Q) is properly contained in @ .

Proof: Consider the canonical surjection w.
n: @G- Q/%.
If @Q4(@) =G ,then because m is a *-epimorphism of C*-algebras,

@/% = Q@) € By(@/$) ¢ G/Y,
that is
Q4(G/$) =G/ .

This is a contradiction since G/% is finite dimensional.

Lemma2.8. Let Af,...,Ap be non-zero complex numbers. Then for eack €>0 there
exists N=N(&) in N such that the following is true:

If my,...,mMp,Mp4] are non-negative integers such that myp +...+ My + Mps1 2 N
then there exist complex numbers Wj,....Htn,p with [Hj-Ajl <€,[pl <€ and

p{nl.“ugln pmn+1 >0.
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Remark: This generalizes the fact that for %0 and £>0 thereexists ng in N and

.

p in T suchthat [u-Al<e and pho>0.

Proof: Let 8 be a branch of the argument function with 8(;) € [027) . j=1,...n,
and suppose €3> 0. Choose &> 0 small enough so that 0 <8< % , and if both

|A;l = 1l and 1B(A;) - 8(u) < 3, then juj-Ajl<e. Choose npe N sothat
ng+28 > 2w, and let Sy,...,.Sp+1 be intervals defined by Sj=(8(A;) - 31,8k +9),

j=1,..n and Sp+1=(-3,8). Then the length of each interval ng-S; is greater than

2r forall j=1,.,n+1. Now, if m] +..+ mp41 2 (n+1)ng, then there isa jo,1<jo

Sn+l for which mj, 2ng. It follows that the interval m1S] +...+ Mp+1Sn+1 has

length greater than 27 . Therefore, there exist ;€ S; satisfying
m10] +...+ Mp4+16p41 =0 mod 21 . To finish the proof just let N = (n+1)ng. Then

with pj= lljlc'ej ,j=1.,n and p= ecief‘*l, uf“l u?" pmn+1 >0,

Ipl <€ and |y;-Ajl <€ as required.

Remark: If mp.1 >0 then there is always a solution to A-pMne1> 0, Ae C\{0)

arbitrary, |p| < €. What the proof shows is that p may be chosen from within an
arbitrarily small prescribed arc centered at any 6 -- in particular 89 =0.

From Lemma 2.8 we obtain a usefu! corollary.

Corollary 29. Suppose Aj,....Ap are non-zero complex numbers and that we have a

sequence of upper-triangular matrices {Ayj, Ak in Mm, ,
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(nlkl ) ll *

(m ka ) An

If my =mg, +...+ mg_ +2 is an unbounded sequence of positive integers, then for cach
£> 0, there exists k =k(g) and By in Jllp, such that

Bk e Q4(fm.mk) and ||Ax-Bill<e.

Proof: Let ¢>0. By Lemma 2.8 we may choose k large enough to allow us to

perturb the diagonals of Ay so that the resulting matrix B’k has positive determinant

and |1Ak-B'k|1<§. Since detBY >0, By isin Ps(Mm,). Bu Qa(Mmp) =

ﬁs(ﬂ'ﬂ.mk) , hence there exists Bi in Q4(TMlpy,) satisfying [iBx - B'k|]<§ It

follows that [|Ayx - Bkl < &, as required.

Proof of Theorem 2.5: By Lemmas 2.6 and 2.7, (i) implies (iii). By Proposition 2.3,
(iii) is equivalent to (if). Therefore it remains tc prove that (ii) implies (1). (It's a good
idea to keep our example of the diagonal compact operator in mind.)

Let A bein Q. Then by definition,
A=lmA, , Ay=0,(A).
n
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where ¢, : G, ~ @ isthe canonical *-monomorphism. Moreover, for each n, the
invertibles of @,, are dense in Q. So to prove that Q4(3) = Q@ we show thatif A
in @, isinvertible and £> 0, then there exists £2n and B in Q4(Gj) such that

lldne(A) - Bl <.
To do this first note that there is a unitary U in @, such that A'=U*AU is of the

form

(}Sk) A

a(k)
\ oy

with A28 %0 for k=12,.r.
What we do now is follow A' through the system. Foreach £2n, ¢y is of
the form

One = (WiWs), s€ N
For the moment consider only one component of ¢y, and denote this by y. Then A’
is mapped via the canonical morphisms, to an element C, which is itself unitarily
equivalent, via W say, to an element C' which is upper triangular and whose diagonal

is of the form
: 1 1
diag(A{,... A, A28 ,0,0,...,0)
Suppose that l'j appears with multiplicity m}‘ and that O appears with multiplicity z;.
By the hypothesis on D

:E: n&? +-Zj
k.j

is unbounded as £ — oo . By Corollary 2.9 we choose N in N such that

Zm}‘ +z; 2N implies the existence of B' in Q4 with {|C'- B'f <& . Therefore
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e>||C" - Bl
= [[W*CW - B'|
= |IC - WB'W*||
=[Iy(A) - WB'WH||
= [lW(U*AU) - WB'W¥|
= WUy (AW(U) - WB'WX| .

But U is unitary so that w(U) is a partial isometry that extends to a unitary V which

satisfies W(U)*W(A)y(U) = V*y(A)V . Hence this last quantity equals
[IV*y (A - WB'WH|| = [[y(A) - (VWIB(VW)¥],

and since VW is unitary and B’ isin Q4 , (VW)B'(VW)* isalso in Q4 . Butthere

exists £>n such that every component of &nz(A) satisfies
k..
Y mi+zj2N ,
for otherwise we could deduce the existence of a constant edge. Therefore the distance

from ¢ng(A) to Qa(Qj) islessthan & . Since £>0 was arbitrary, we conclude that

64(&5) = @, as claimed.

This finishes our proof of Theorem 2.5.

Examples:

1. Let X be the compact operators. A diagrarifor X is
1—2—-3—4—..

which has no constant edges. So 54(3() =X .

2. Let X~ Ye the unitization of the compact operators. A diagram for X~ is

l1—2—3—4—...

l—1—1=1—..
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which has a constant edge (of I's). So  Qa(X™) & X~ .

Corollary 2.10: Let Q oean AF-algebraand § be anideal. If Q4(Q/9) =Qr%
and @Q4(3) =¢ then Q4Q)=G.

Proof: Let D be adiagram for Q. ‘Then use condition (ii) of the theorem together

with the correspondence in AF-algebras between ideals and subdiagrams.

Remarks: Throughout this thesis our concern is not only factorization and
approximation, but doing so within a prescribed algebra, or even class, of operators.
Theorem 2.5 as well as Theorem 2 of [KLMR] are definite results along these lines.
And, as mentioned earlier, the proof for Theorem 2.5 was motivated in part by the result
of [KLMR] together with a consideration of the (AF) algebra of compact operators. So
these theorems are not independent of each other. Itis with this in mind that three related

points seem worth mentioning.

1. The proof of Theorem 2 [KLMR] actually gives a sharper result than the
statement of the theorem, which says thatif A is algebraic then A isin 54(3(}1)) .
(Note that by "algebraic” we mean an operator which satisfies a polynomial equation over
C in the single variable z.) Leuing +ALg denote the set of all algebraic operators, we
in fact have the inclusion

Alg ¢ P4(Ai3)
that is, the factors in approximation may themselves be chosen to be algebraic.
To see why this is so requires only a small observation in their proof. but also

brings us to the second point. We therefore review the main steps of the argument.
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If A isalgebraic, then using the primary decomposition thcorem,

a; Ap o A
A= S , a; eC
Ay ik )
0 o.k

with respect to some decomposition of the Hilbert space #,
H=H19 .. @ Hy.

Approximate A by an operator B

Bi Ap - Ak
Axo1x
0 Bx
obtained from A by perturbing the scalars ¢ so thatthe [Bj's are all distinct. By a

corollary to Rosenblum’s Corollary (see Chapter 0 of |[R&R}), B is similar, via R say,

to the diagonal eperator
(81 )

B'=R7IBR=

\ Bk,

But now, using the fact that # s infinite dimensional, it is possible to use the
determinant function to construct a finite number of diagonal (scalar) matrices Dj such
that Dj is not a multiple of the identity, det Dj >0 and the operator D buil: out of
inflations of the Dj's approximates B'. It is then an application of Ballantine’s theorem
to see that D, which is of the form

D= Z’e Dgzj)
J
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belongs to P4(B(H)). But P4(B(H)}) is similarity invariant. Hence RDR-! at
once approximates A and is a product of four positive invertible operators.

The observation to be made is that D actually factors as a product of four
(positive invertible) algebraic operators, for we are just applying Ballantine's theorem to a
finite number of matrices (inflations) and therefore obtaining matrices (inflations) as
factors, each of which is of course algebraic. And any operator similar to an algebraic
operator is also algebraic (the set #ALg is similarity invariant). Soif

D = P1P2P3Ps , P; algebraic,
then

RDR-! = (RP1R-1)RP2R-1)(RP3R-1)(RP4R-1) , RP;R-1 algebraic
is a member of T4(ALg) , as claimed.

2. The second point is really a question, namely, what is the relation between the

fact that

Alg ¢ Pa(Alg) = Q4(ALg)

and that for certain AF-algebras G we have
Q@ ¢ Qud) ?
Some light is shed on this by defining "AF-operators”: Let Te B(¥). Then T isan

AF-operator if and only if there exists a sequence of finite dimensional C*-subalgebras
G, € B(H) together with Ay € G, such that

T =limA, (operator norm) .
n
Let @F denote the union of all AF-algebras in B(#£) we have

T is an AF-operator & Te QF .



Now let {Ajlj=1,..x be any fiiite sequence of njxn; matrices of complex
numbers, Cj be cardinal numbers, 1l Scjsoe and Agcj) be the c_i-fold inflation of Aj.
Consider the operator T in B(H) (dim # =) givenby

k
D, (e
T= z{ A
J:

Then T is clearly an AF-operator. For just let

G= émnj

j=1

and define ©:Q — B(H) by

K ® _ (¢3)
T (MM Y My
i=1

Then =(QR) is a fin'te dimensional subalgebra of B(¥) and T isin n(Q@).

It now follows from the first remark that if A is an algebraic operator, then

A=]limA
n
is a limit of operators Ay , each of which is similar to an operator B, from a finite
dimensional algebra @ such that

Bhne P4(Qp) € P4u(QF).

This now accounts for why the proof of our Theorem 2.5 and that of Theorem 2
of [KLLMR] have some bearing on each other,

To think of this more set-theoretically, define
Aima(@F) = {X-1AX : X invertible in B(¥), A belongsto

Qa(QF}.

and for completeness
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Bim(QF) = (X-1AX : X invertiblein B(H),A in GF}.

Then we've shown that

Alg ¢ 8imyQF) ¢ Bim@QF) .

On the other hand, if T is any AF-operator then T is a limit of algebraic operators, so

QFC QF ¢ Alg .
Thus, the question we started with raises the inore precise question of whether or not the

chain of inclusions

QF ¢ Alg ¢ Bimy(AF) ¢ Bim(GF) .
is actually an equality. By returning to the proof of Theorem 2 [KLMR] we find that a

first step towards resolving this would be deciding whether or not operators of the form

1 XY
0 2 2
0 0 3

arein @ F . We emphasize that X, Y, Z are arbitrary; also that every AF-operator T

is a limit of operators Ap such that for each n, Ay is a finite complex matrix relative to

some orthogonal decomposition of H .

3) We therefore come to another question. If it happens that Q7 is properly
contained in :Q_[; , how can we measure the difference? What function or invariant
would be sensitive to the finite dimensionality of AF-operators? This could be related to
"points of spectral continuity" and the Remarks at the end of this chapter. See also
Theorem 6.15 of [H1] .

For completeness we make one last remark.
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4) George Elliott proved that for AF-algebras @ , the scaled ordered group
Ko(@) is a complete isomorphism invariant. So what is Kg(Q) for an AF-algebra G
such that Q4(@)=Q?

Our next proposition deals with C*-tensor products of AF-algebras. A C*-

algebra @ is said to be nuclear if for every C*-algebra B, there is only one C*-norm

on the algebraic tensor product. By Proposition 11.3.12 of [KR]2, every AF-algebra is
nuclear. Thus, given two AF-algebras G and B, the C*-tensor product G®B is
well-defined.

Proposition 2.11: Suppose G and B are AF-algebras. Then Q4(G®B)=00B
if and only if Q4(@)=Q or Q(B)=B.

To prove this we require some notation and some preliminary results.

For any AF-algebra G = 1im(Qp,9mn) , a Bratteli diagram for @, D(@),
-

naturally decomposes into

Eq Ep
D@)=D1@)— DAQ@) — D3@)— ™,

where Dy(Q) is the set of weighted vertices corresponding to the nth algebra and Ej
denotes the connecting edges, with multiplicity numbers, between Dn(@) and
Dpi(@). If @ and B are AF-algebras with diagrams D(Q) and D(B), is there
an easy way to obtain a diagram for D(G@®B) ? Indeed, all we have to do is form a

"vertex-wise" tensor product of the diagrams:

Lemma 2.12: Let @=1im(Gn,0mn) and B = lim(Bp,¥mn) be two AF-algebras.
- -

Then
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G®:B = ﬁm(Gn@Sn s ¢mn®wmn) .

Proof: Firstl, note that (Gn®Bp, Tmn = 6mn®Ymn) is a coherent system.
Therefore the direct limit T exists, with canonical monomorphisms
Tp: Gn® By~ Ch.

Secondly, if ¢n: Gn = @ with yn: By — B are the canonical
monomorphisms for @ and B, then we obtain *.homomorphisms ¢n®yy :
Q,®B,—~ @®B . Moreover, for m<n

0n®Yn)° (Oma®W¥mn) = On®WYn .
Therefore, by the universal property of direct limits, we obtain a unique *-
homomorphism

®:C -G®B.
By considering the algebraic tensor product G®agB whichis densein G®B , we
find that @ is one-one and onto and therefore an isomorphism. The usual kind of

diagram for this proof is below.

Tmn = Oma®WYmn

Gm®8m > Gn®:8ﬂ
\ Tn
C
|
1
Om&Ym 3! | o on®yy
[
|
l
¥
G®3B

It now follows that a diagram for G@®3 can be obtained from the sequence
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Q@,®9 B, _.9129_“’_1.2_) R.® B> _on%®vxn | G3;®B3 — -

Therefore, our next lemma is:

Lemma2.13: Let ¢: M= Ty and y: Mg - Jll; be *-homomorphisms
with multiplicities m(¢) and m(y) respectively. Then 0@y : TN, @My —
M @My has multiplicity

m(¢®y) = m(¢)-m(y) .

Proof: Use canonical homomorphisms.

Corollary 2.14: Suppose 31, Gz, By, B are finite dimensional C*-algebras and
6:Q; -~ @z, y: By —~ By are *-homomorphisms . Let M = (mj;) and
N = (ngy) be the multiplicity matrices for ¢ and y . Then the multiplicity matrix for

o®y is given by M®N .

Now let @ and B be two AF-algebras, with diagrams

Ey Ep
D2(@)

D(@) = D1(@) D3@) ——,

E; Ez
D2(B)

D(B) = Di(B) D3(B)— ™ .

Then foreach n, Dp(Q) ® Dp(B) is the diagram for the tensor product of the two'
finite dimensional algebras Qp, By, while E; @ F s the set of weighted edges
corresponding to 9n®Wn: Gn ® By —~ Gpe1 ® Byt . It now follows from
Lemma 2.12 and Corollary 2.14 that we obtain a diagram for G®B , namely,
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E1®F] E2Q8F2
D)@ D2(B)

D(@®B) = D1(Q)@D1(B) D3(@)®D3(B)

Moreover, the multiplicity matrices are rclated by

M($n®yn) = M(6n) @ M(yy) .
This fact, together with Theorem 2.5, allows us to analyze 54((3@ B) via the Bratteli

diagrams for @ and B . In other words, we can now establish Proposition 2.11.

Proof of Proposition 2.11: Let D(Q) and D(B) be diagrams for @ and B

respectively. If Qu4(@®) is properly contained in @ and Q4(B) is properly
contained in B, then by Theorem 2.5 D(Q) has a constant edge of weight j say, and
D(B) has a constant edge of weight k. Now form the "vertex-wise" tensor product of
the diagrams, and use the fact that the tensor product is distributive over direct sums, to
conclude that D(Q) ® D(B) = D(Q®B) has a constant edge of weight j-k.
Hence, by Theorem 2.5 again, @4(Q®B) is properly contained in G®B .
Conversely, it is a finite counting argument to show that any constant edge in
D(R) ® D(B) must occur in this way. Soif Qs(A®B) is properly contained in

R® B, then the same must be rue of @ and B.

Examples:
1) D@ =1—1—1—-"-- Q@ Ea
D(B) =1—2—3—--- uB)=B



D(@E®B) =1
3
2/
\3

3) 1—2—3—

D@) =
l—1—1—

D(B)=1—2—3—--

1 —8—9—

D(@E®B) =
( ) 1{243_

88

Q@ sa

Q4(B)=B

Q4Q®B) =GB

[API(c) ¢!

Q4uB)=B

C4(G®B)=G®B

For our final result of this chapter we consider @2(@) foran AF-algebra Q. By
Proposition 3 of [KLMR], if A is a Riesz operator, then A isin Po(B(H)) if and
only if (A) is contained in the non-negative real axis. Andif A is compact (algebraic)
then it is not hard to see that their proof gives information about the factors involved, that
is,

Aisin  Q2X)(P2Ag)) = o(A) 20.
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Is there an analogous result for AF-algebras? 1£ Q is an AF-algebra, is it true that
Q@) = {AcQ: 6(A) 20} ?

As a partial answer we have the following proposition.

Proposition 2.15: Let @ be an AF-algebra. If A isin @ and o(A)20,then A is

in @(Q®), thatis, we have the inclusion

{AcQ:0(A)20) € QxQ).

Note: Regarding the reverse inclusion, see Remarks below.

Proof: Wesuppose that @ =1imQ@,, foreach n, @, is a direct sum of r atrix
—
algebras and that A belongs to G with non-ncgative spectrum, i.e. 6(A)20.

Let €>0 and Ngu(o(A)) be an —3- neighbourhood of G(A) in €, thatis,

Ne/a(G(A) = (ze € : |z-A] < % for some A in G(A)} .
Suppose also that A, convergesto A, Ay from Q. Since the set-valued function
spectrum is upper semicontinuous (see {Halmos}, Problem 103), there exists ng such
that for n2ng

g
[IA-AnII<Z

and
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G(Ap) C Ngu(c(A)) .

Foreach n2ng, Ay is unitarily equivalent, via Uy in @, to a direct sum of upper-

triangular matrices, so U*pAgUy is of the form

j1

with o(Ap) = {Aj : j=1,...T, k=1,...1j} . Now form a new operator B'; obtained

from A'p by replacing the diagonals Ajx by positive numbers pjx for which

Hijls-.,Hjn, are distinct, j=1,...,r

and

£
k= Akl <— .
[k = Akl 2

Then B', isin T2(Qp). Soletting B, = UpB'p!I*, we have that B, isin Pa(Qp)

and that

A - Ball = [[U*a(An - Ba)Unl]
= [lA'y - Byl

£
<= .
4
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Therefore

IA - Ball  <II(A - An)l] + [I{An - Ba)ll

€ €
<= +=
4 2
<g ,

and it follows that A isin @»>(Q@). This finishes the proof.

Remarks: An operator T is called a point of spectral continuity if when Sq = T in
norm it follows that 6{Sp) — o(T) in the Hausdorff topology (see [Halmos], Problems
102-105). It is known that compact operators are such points (see [Aup], Corollary
3.4.5). Suppose that @ is an AF-algebra, Q = UG, Ae Q@) and that A isa

point of spectral continuity. Then, without loss of generality, A =1imPy JQn ), where
J

nj

Pn, , Qn, are positive invertible in Gy, . Thus A:li}np,‘,f(p”anjp“z P'jm $0

that G(A) = limo(Py *Qu;Pal) 20 .
J

Sois it true thatif T belongs to an AF-algebra then T is a "relative point of
spectral continuity”, in the sense that if Sp = T and Spe @ then o(Sy) — o). Is
a stronger condition true, that is, are operators in @ F  points of spectral continuity?

And would this be a discriminant, distinguishing Afg from QF ?
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Suppose @ isaC*-algebra, Te @ and = is a faithful unital representation of
G . If ®(T) is a point of spectral continuity then so is T. So one place to begin might
be the analysis of the representation theory of a particular AF-algebra, e.g. the CAR-

algebra (see [KR]2, Example 10.4.19).
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Approximately Poly-Normal Algebras

The next family of algebras we wish to consider are direct limits of direct integrals
of finite dimensional C*-algebras. These generalize both AF-algebras and algebras of n-
normal operators, and for an example which is neither "AF" nor "n-normal” consider the
tensor product of C*-algebras L=(X,u) ® X, where X is the algebra of compact
operators and X =[(0,1] is endowed with Lebesgue measure. In general, for (X,1)
standard, what makes the algebra L=(X,1t) ® X manageable in regard to questions of
factorization, is that it can be realized as a particularly nice direct limit of almost

everywhere finite dimensional subalgebras. Holding on precise definitions for now, we

have that K is an AF-algebra,
K = lim(m n,¢mn)
-

where

o A A

nn+l ¢

Therefore, by the universal property for direct limits we obtain a C*-algebra monomorphism

Hm(S =) @M, I®0mn) = To(X,0) @K

where J is the identity map on  L*°(X,1t) ; and in fact this map is onto.

Using our results on n-normal operators in conjunction with "measurable

versions" of our techniques developed for AF-algebras, we find that 54(5”()(,;1)
®K)=L~X,n @K .
So our next concern is to define these direct limit algebras in general. As a special

case we will obtain the tensor product L>(X,u) ®Q , where G is any AF-algebra.

93
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The system maps for the direct limits will be "canonical” in an appropriate sense,
analogous to the canonical maps for AF-algebras. In the next chapter necessary and

sufficient conditions will be obtained for @4 to be the whole al gebra. This will include
a statement in terms of "measurable fields" of Pratteli diagrams.
For a first definition of our objects, let (Xp,in) be a sequence of Borel spaces,

each equipped with a positive o-finite measure iy, and let
@
Gn ='[xn Gn(x)dun » = 17293”"

be a direct integral of finite dimensional von Neumann algebras (Qp(x), #a(x)) , Hn(x)

a finite dimensional Hilbert space for almost all x in X,. So Qp acts on
¢
Hn ='[xn Hp(x)dpn -

Let
Onn+1 ¢ Gn - Gn+l

be a *-monomorphism, and set

Omn =¢n-tn ° ** ° dmm+1 -

Now define

Q= li_f)n(en » Omn)

Our first step is to show that, modulo null-spaces (in the sense of representation
theory), each @ is just a direct sum of n-normal operator algebras (the matrix sizes may
vary). For notation recall that 2(Q) is the center of a C*-algebra @, while for

positive integers r, @) is the r-fold inflation of Q.
Lemma 3.1: Let @ be adirect integral of finite dimensional von Neumnann algebras

Q= Jf Q(x)du actingon H = jf Hx)du , dim H(x) <o a.e.
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Then there is a measurable function x = m(x)e€ N and a sequence of measurable

fie'ds of minimal central projections Px(x) € $(Qy) a.e. such that

o m(x)
GEJX (sz(x)Gx]du )
k=1

Proof: By Corollary 0.12, the center of Q is given by
®
@ = [, $@udu .

Since (@) is a direct integral, there exists a countable family {Qx} in $(Q) which
generate 2{Q3) and such that {Q(x)} generates $(Qx) almost everywhere. And
since (@) is a von Neumann algebra we may assume Qy is a projection for each k.
Using this sequence, we inductively define a new sequence of projections Pk which
satisfy the following:

@ Prx) &+ Pg(x) k=€ ae.

m{x)

(i) 1Iy= ZPk(x) a.e., and x — m(x) € N isa measurable function
k=1

® ® ")

(iif) 1=jxlxdu = jx kz_l Pi(x)dp

(iv)  {Px} generates 2(Q) and

{Px(xy} generates 2(Qy) ae.

It follows that Pp(x)Q(x) has trivial center a.e. and

m(x)
Q= J':f { ZPk(x)Gx] dy .

k=1
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Lemma 3.2: If n is fixed and x — Q is a measurable field of simple finite dimensional
von Neumann algebras, each actingon CP, then the following maps are measurable:

(1) x — dim[QxC"] = r(x)

(ii} x — dim Gy

(iii) x — m(x), where m(x) = the multiplicity of the identity representation of Qx

on Cn,

Proof: (i) The quantity dim[@xCP"]=r(x) is equal to the rank of 1x. But x — Gy
is 2 measurable field of von Neumann algebras, and as in the proof of Lemma 3.1
x = 1, defines a measurable field of operators. ‘Chis implies that x — [rg 14] isa
measurable field of Hilbert spaces and hence x — dim[rg 1] is a measurable function,
thatis, x — r(x) is measurable.
(iii) From the classical theory (e.g. See [Tak}, sec I.11)
m(x) = dim 2(Qy),
and we saw in the proof of the lasc lemma that this was a measurable function.
(if) Again from the classical theory
m(x)-(dim Q)2 =r(x) ae.

from which (i1) follows.

Theorem 3.3: Let @ be a direct integral of finite dimensional von Neumann algebras,
® _ ®
Q= JX Qydu acting on _[x Hydy , n(x) =dim ¥y <o aee.
Assume also that the identity representation of Qx on ¥y is faithful a.e. Then there

exist measurable functions
[’jl?"ﬂjlvr] ,....I'l M X - N

s0 that we have a direct integral unitary equivalence:
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e {1} (re (X)) 1) o
® k - ]
Q= Jx (3—1 mjkm ) du ¢ -l’x Maydp acting on -[x Cn(dy .

Remark: To help understand the notation, consider the example where t(x) =t =
constant, 1x(x) =1 =constant, ji(x) = £ =constant and n(x) =n = constant. The

algebra @ is then

(A,
o)
: <> A
P M=) ={ 0 e Ma(L=Xp):
k=1
0 .
\ 0)

Axe Ty(L=Xu))} .

Proof of Theorem 3.3: By Lemma 3.1 we may assume that the center of Gy ts trivial,
Since Qy is finite dimensional this means that as a C*-algebra @y is simple. Also, by

Theorem IV 8.14 [T] we may assume that ¥, = CnX) . Since n(x) is a measurable
function, we assume that n{x) =n a.e. (Otherwise X = U Xn, Xp={x:n(x)=nj}).
n

Let s(x) =rank(1x), m(x) = the multiplicity of Gy and j(x) = (dim Q)/%. From
Lemma 3.2 these are all measurable functions, and from the classical theory of matrix
algebras, w= -, foralmost each x in X, a unitary equivalence between the two

algebras

mn
)
R
kg..-
"

Qx Bx

0 )
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and
m(x)j(x) =s(x) €n  ae.
Since j and m are measurable functions, we obtain a well-defined direct integral
B =_|f Bydu
with the property that
Gx = Bx (unitarily equivalent) ae.
We now invoke Theorem IV 8.28 [Tak] to conclude that we have a direct-integral unitary
equivalence
Gz=8B.

The Theorem now follows.

Recall that our object of study is a direct limit of a system (Qn,9mn) where for
each n=12,3,.., Gn is adirect integral of finite dimensional von Neumann algebras
acting on a direct integral of finite dimensional Hilbert spaces. We wish to characterize
the maps Onpn+1 : Gn = Qn+1. and in view of Theorem 3.3, it is enough to consider *-
monomorphisms ¢

¢: My (LY ) = My (B=(X,W) -
As mentioned earlier, we are looking for a "canonical” map. Thinking of ¢ asa
*_homomorphism into the bounded operators on (L2(X,1)(") , established theorems
from representation theory would give us a canonical decomposition (see €.g. [Arv]
Theorem 2.1.8). The problem with that approach is that the direct integral structure is not
necessarily respected. We require a "canonical decomposition” which is both compatible
with and reveals the fibre structure of the direct integrals. To accomphish this we need

three lemmas.
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Lemma 3.4: Let (Y,n) and (X,u) be standard o-finite measure spaces and suppose
that

¢ : Loy m) = LX)
is a *-isomorphism of von Neumann algebras. Then there exist Borel null sets N C Y,
M ¢ X and a Borel isomorphism @ of X\M onto Y\N such that ®(u) and 1y are
equivalent in the sense of absolute continuity and, forevery B in (Y1)

(B)(x) = B(D(x))
foralmost all x in X\N.

Proof: See [Tak] Lemma IV 8.22.

Lemma 3.5: Let (Y,n) and (X,t) be as in the previous lemma and suppose that
o Loy, ) = Teo(X,u)

is a *-monomorphism of von Neumann algebras. Then there exists a Borel set

X1 € X such that
¢: Le=(Ym) ~ L=(X1,u)

1s a *-isomorphism of von Neumann algebras.

Proof: Let 1y be the identity of L>°(Y,n). Theset X is then obtained from the
projection ¢(ly) in L>(Y,u).

Lemma 3.6: Suppose ¢g 1s a *-monomorphism of von Neumann algebras
60 : Mi(C) = Mp(L=(X,W) .

Then there exists an essentially bounded measurable map
m:X— N, mx)k<n

such that ¢q is direct integral unitarily equivalent to the map g defined by
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Yo(Ag)x) = 0

foralmostall x in X.

Proof: By Theorem IV 8.25 of [Tak], there is a measurable field of *-homomorphisms
$o(x) : My(C) = TMp(C)
essentially unique such that
e
0 = [, Go(x)dt .
As in the proof of Lemma 3.1,
x > dim B (rg ¢o(x)) = m(x)

is a measurable function; and by the classical theory (see [Tak}], Sec. 1.11),. ¢op(x) is

unitarily equivalent to the map

(A (m(x))

A
YolX): A

\ 0/

Butnow x - yo(x) defines a measurable field of *-homomorphisms. So by Theorem
IV 8.28 [Tak], there exists a measurable field of unitary operators

xU)e TN(C) ae.

which implements the required equivalence, that is,
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e o .
ol =Jx 00(x)duzfx yo(x)dyw via U =jx U(x)dp .

This completes the proof.

The next theorem is the decomposition theorem we've been heading for, and tells
us thatif ¢ is a *-monomorphism between operator algebras Tl y( L=(Y,m)) and
M (LY, 1)) , then except for "missing parts of X", and certain Borel isomorphisms
of the underlying measure spaces, ¢ looks just like a canonical monomorphism of

matrix algebras.

Theorem 37: Let (Y,n) and (X.ut) be as before and

¢: Mm(LT=(Y,m) = Ma(LeX, 1)
be a *-monomorphism of von Neumann algebras. Then there exists a measurable
function m:X — N suchthatforeach k,1<k<n and Xx={x:m(x) =k} there

exist (not necessarily distinct) Borel subsets

xk LXE X,

and Borel isomorphisms

<1>}S : (Xk,,u)-—> (Y,n), as in Lemma 3.5,
such that if x;‘ is the characteristic function for X}‘ ,then ¢ is direct integral unitarily

equivalent to the map 7 defined by

(xk A (x)) 0 )

K e
X(AXX) = Ly (A(DL (X))

0

foralmostall x in Xk, k=1,..,n.
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Proof: Let ¢g be the restriction of ¢ to the subalgebra of matrices with constant

entries. Then by Lemma 3.6 there exists a measurable function m: X — N such that

0o isdirect integral unitarily equivalent to the map given by

(Ao (m(x)) 0 )

Xo(AgXx) =

\ 0,

Therefore without loss of generality we assume that ¢g is already of this form. Also

n
since m:X — N is measurable, X = kUIXk , Xx = {x :m(x) =k} is a disjoint union

of measurable sets; so we assume that m(x) =k = constant.

Now consider ¢, , the rustriction of ¢ to the center Sy which, as a von
Neumann algebra, is *-isomorphic to L=(Y,n). (In fact, by Proposition IV 8.29
[Tak], this is a direct integral isomorphism.) We then have the inclusions:

H(Zy) C Sgd) C g do) € Muy(L=X.u).
From the preceeding paragraph, it follows that

k
o3y € 22 LeX,w)

=1
and that
k
¢ = ze% y

j=1
where
¢j: By = LoXp

is a *-monomorphism.
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From Lemmas 3.4 and 3.5 we obtain Borel sets
X1, Xk € X,

and Borel isomorphisms
D XjWw) — (YY)

for each ¢j,j=1..k.

Therefore,. with x; = the characteristic function for Xj,
(%1 (XD (x))+ 1 VA

o (F-I(x) = X (KD (%)) 1 0

\ 0 0)

where I=the mxm identity matrix, fe L™(Y,n). But now the result follows. For if

{Ets)rs=1,.,m is the canonical system of matrix units, then given A in Mm(L=(YM))

m
A=Y, (frsDErs, frse T=(YM)

1,5=1

so that

O(A) = O, 01(frs*DO0(Ers) .

r,s=1

We now turn our attention back to the directed sequences (Qp,®mn)
Gn= je Qn(x)din , n=123,..
Xn yhey’ y

as defined at the beginning of this chapter. We impose certain conditions:
(i) The measure spaces (Xp,ln) are all the same (X 1) ;
(it) With the notation of Theorem 3.3, the multiplicities rx(x) = 1 = constant;

(ili) Foreach n, the measurable function x + dim Gp(x) is essentially bounded; and
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(iv) For each of the system maps Opn+1: @n = Qpe1 , all of the associated Borel
isomorphisms (Theorem 3.7) are the identity. So there is no "shuffling” of the measure

space as we pass from one algebra in the system to the next. More precisely, each Onn+1

: @~ Q41 preserves fibres and is a direct integral *-monomorphism. So

¢}
Ppp+1 = -[X Gon1 (X)L

where

Snn+1(x) : Anx)— CGps1(x) .

Now note that it is straightforward to check that the lemma on inner equivalence
(quoted from [Eff]) behaves well with respect to direct integrals (the proof is algebraic).
We therefore may assume that our system (Gp,0mp) is "canonical” in the sense given
by Theorem 3.3 and Theorem 3.7. And since we have an at most countable sequence of

morphisms Onn+] , We obtain an almost everywhere defined family of canonical directed

systems (Qn(x),0mn(x)) of finite dimensional C*-algebras, and so a field of Bratteli

diagrams D(x) = D(Q(x)) , where Q(x) = lim (Gn(x),¢mn(x)) . The weights of the

edges are given by measurable multiplicity functions as in Theorem 3.2. (See also

Definitions 4.6 and 4.7.)

Nomenclature:
We call a direct limit C*-algebra satisfying condidons (i) - (iv) an approximately
poly-normal C*-algebra, and abbreviate this by APN algebra.

m
A poly-normal algebra is one of the form k@ M; (T=(X.1)) ; and elements in
=1

such an algebra are called poly-normal operators.

Remark: Condition (iii} is very important at this stage. For in studying @4 of an APN

algebra we will use our "Ballantine-type” factorization theorem for polynomial operators
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(Theorem 1.4). As it stands this theorem clearly requires that the poly-normal operators
be of (almost everywhere) bounded rank. The problem encountered, if this is not so, is
drawn out in the following example:

Let X= N, p becounting measure, 2(n) = M ,(C) and
Ae j;f Qmydp =@ .

(In this case the direct integral corresponds to the usual direct sum of operators.)
Suppose now that A 1is as "nice"” as possible, i.e.

inf{JJA() - Anlpll:ne N,Ape C}=e>0
and

det An)>0 forall n.
Then by Theorem 1.8, for each n there exist positive invertible matrices Pj(n),...,P4(n)
such that

A(n) = P1(n)P2(n)P3(n)P4(n) .
To obtain the factorization

A=PP2P3Ps
within the direct integral algebra @ , we wculd need ||Pj(n)]| to be bounded, for
1=1,2,3,4. But this question takes us out of the category of measurable fields of
algebras and into that of continuous fields of algebras. This is part of upcoming research
(see Chapter 5 and Concluding Remarks).

Going back to our example at the beginning of the section, we find that

LoX,1) ® X is an algebra of the kind just defined. To see this, let

Qn = Ma(Le(X,1))
and

Onn+1: Gn = Gpsl

by
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Onn+1 A P e Mo (S=X,1) .

0 . O
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Here the multiplicity function m(x) is almost everywhere 1. So the “Bratteli

diagrams” for this part of the system are

n =1 n+1 .

For another example let X =N and p be the counting measure. We give the

field of diagrams below. Note that the rews are indexed by x in X = N and that each

is a Bratteli diagram corresponding to that index.

x=1: 1—2—3—4—-
x=2: ]—1—2—3—=
x=3: 1—1—1—2—-
etc. etc. etc.

Observe that for each x,

Q)= li_I;n(Gn(X),Q)mn(x)) =K.
But @ =1m(GQ,,0mpn) is notisomorphic to LX) @ K
-

QLW @ X) = =X, ® X
whereas for G

Q@) Sa.

Q)
Q)
Q@3)

. For as we will show
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Factorization in APN-algebras

This chapter is devoted to the characterization of those APN-algebras

G =@ = 1im(Qn,0mn) for which &4(Q)= Q. Note that because of condition (iii) in
—_

the defiition of APN-algebras (which follows the proof of Theorem 3.7), Theorem 1.8
can be applied to the subalgebras Qj of the directed system. Consequently,

Q4(Qn) = Pa(Qn) = Poo(@n) .n=123,.
and therefore

Q4(Q) = (@)
as in the proof of Lemma 2.4

Before proceeding with the general theory, we present four examples which help

illustrate typical behaviour in these algebras. We number them and will refer to them

later,

Examples: For each example X = N and p is counting measure. The diagrams are

the associated fields of Bratteli diagrams (see the paragraph preceeding the definition of

APN-algebras, in the last chapter).

Example 1: n=1 n=2 n=3
=1 1 — 2 — 3 —- A =X
x=2 1 — 2 — 3 —- QR)=X
=3 1 — 2 — 3 —. a3)=X
A4Q)=Q

Here Q=¢~(N)® K.

107
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Example 2: n=1 n=2 n=3

k=l 0 — 2 — 3 —- am =X

x=2 0 — 0 — 3 —- Q) =X

x=3 0 — 0 — 0 —- A3 =X
Q4@ =Q

This is an example of what will be called a diagram which is atiracted to zero (see
Definition 4.11). In this particularcase Q=cg(N)® K.

Example 3: n=1 n=2 n=3

1 1 1
x=l N\ ~. - Q) =X~
1 2 3

1 1 1
=2 N N Q@) =X~
1 2 3

1 1 1
x=3 \ \ . 8(3) =K~
1 2 3

Qa(B) Sa.

Here @ = ¢£°(N) ® X~ and has anideal § suchthat G/$ =£=(N) .

Example 4: n=l n=2 n=3
x=1 1 — 2 — 3 —- e =X
x=2 1 — 1 — 2 —- =X
x=3 1 — 1 — 1 —- a3 =X
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Here @ hasanideal § suchthat @/ = £<(N)/co(N). Theideal ¢ =U $n .
n

where ¥, is the ideal of @, obtained by replacing the 1's in the diagram by 0's.
(See Corollary 4.18.)

In order to make this rigorous, the first thing we do is obtain a new definition of
constant edges in an AF-algebra, one which will lend itself more easily to our new

setting. We require a definition in terms of "measurable" quantities.

Definition 4.1: Let G be a separable non-zero unital C*-algebra and $(Q) be its
center. For each non-zero projection Pe (Q) ,PQ € @ is a C*-algebra and

therefore the dimension of PQ is well-defined, denoted dim PQ . The minimal central

dimension of @, denoted mcd(Q) , is defined to be

med(@) = inf dim{PQ : Pe 2(Q), a non-zero projection} .

r
Note: When Q= _@1 My ; 1s a direct sum of matrix algebras, then
J:

med(@) = (minn;)® .
J

Note: For von Neumann algebras it might be tempting to define a similar quantity in
terms of ranks of projections. This however would depend on the action on the Hilbert

space. We require that mcd(@) be independent of representation.
Now suppose B ¢ @ are two C*-algebras, G separable and unital.

Definition 4.2: The C*-central supportof B in @, denoted [ Blq , is defined 10 be
[Blg =n{PQ:Pe (@),PG D B} .

Note: When B isadirect summand, B isunitaland [Blg=B.
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When Q has trivial center, [Blg=QG.

Now, for an AF-zlgebra G = lim (Qp,0mn) with disgiam D(@), D(Gm) has
—

an obvious meaning, namely it is the diagram of weighted vertices corresponding to the
mi algebra Q. For n2m, D(Qn), is defined by
D@m= D([¢mn(em)]Gn) -

Since @ is a finite dimensional C*-algebra, [¢mn(Gm)]Gn consists exactly of those

summands of @y which have a "non-zero intersection” with ®mn(Gm) .

Example: Define
0: MMz— Mg@Ms@ My=QG

oo [* R R )

[D(MD)g=TMsD MsDO.

by
Then

Note: To stress the rdle of the Bratteli diagram we often write med D(Gp)q for the

quantity med(Gp)n .

Definition 43: Let @ =1im(Gn.®mn) be an AF-algebra with diagram D(Q) .
=)

@) D(Q) is said to be gventually increasing from if for each
N e N there exists n2m such that med D(Qp)n 2 N.

i) D(Q) is said to be gventually increas ing if it is eventually increasing from
D(@Gm) for m=1273,...
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Lemma 4.4: A diagram D(Q) for an AF-algebra @ is eventually increasing if and

only if there exist no constant edges.

Proof: Suppose D(Q@) has a constant edge E , emanating from Gmo . Then clearly
D(@) is not eventually increasing. Conversely, suppose D(Q) is not eventually
increasing. Then there exists mg such that D(Q@) is not eventually increasing from

D(Qm,) . Therefore there exists Ng such that med .D(Gmo)n <Np forall n>mp.
Hence, we obtain an infinite edge each of whose vertices has weight
wn, 1 £ wy <N-1. The weights must therefore "stabilize” (for they are non-

decreasing). We get an infinite constant edge. This proves the lemma.

Example: This diagram is eventually increasing:

1—2—3—4—5—6—7—8—9— 10—~

avd
11 1 =11 ..

Here the limit @ is isomorphicto ¥ ,so @4(@) =G . So for a single AF-algebra
we're allowed to have "long constant edges" without disturbing Q) =Q -as long
as they are eventually "absorbed” by the system. This can be a subtle point for APN-
algebras. (See Example 4 and Theorem 2.3). Of course by Theorem 2.5 we have an

immediate corollary.

Corollary 4.5: If @ is an AF-algebra with diagram D(Q), then

Q4(Q) =Q & D(Q) is eventually increasing.
To deal with fields of AF-algebras we introduce the following definition.

Definition 4,6: Let (X,}t) be a standard o-finite measure space, and
x = (Qa(x), Hn(x))
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X — Omn(x) m<n
be a sequence of fields of von Neumann algebras and a double sequence of WOT
continuous *-monomorphisms respectively.
Then (Gn(x), émn(X)) is called a measurable field of coherent systems (of von
Neumann algebras) if foreach m<n

x = (Qp(x). Hn(x))
is a measurable field of von Neumann algebras,
X~ ¢ma(x): Qux) — Qpx)
is a measurable field of *-monomorphisms and with
D <]
Gn= [, Qu(dn and Gmn=[; Gma(x)dn

(Gn,0mn) is a coherent system of C*-algebras.

Note: If conditions (i) and (ii1) in the definition of APN-algebras are satisfied then we

retrieve the measurable field of systems for an APN-algebra.

Definition 4.7: A measurable field of Brarteli diagrams D(x) is the field of diagrams

associated to a canonical measurable field of coherent systems (Qn(x),0mn(x)) of

essentially bounded (in dimension) finite dimensional von Neumann algebras.

For a measurable field of Bratteli diagrams JD(x) , we form the direct integral
diagram
®
D= Dxydy.

This is just the disjoint union of all the diagrams D(x) .

Definition 4.8: Let @ =1im(Qpn.Omn) be an APN-algebra and D(Q) be the

associated direct integral of Bratteli diagrams, so
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S
Q(x) = lim(Qn(x).0ma(x)) and D@ = [, D@edn -

Then we say that D(Q) is eventually uniformly increasing from D(Gr) , where
®
D@m= [y DCmx»dn
if foreach N there exists n2m such that

med D(Gm(X))n 2N
for almostall xin X.

Lemma 4.9: The function defined by
x = med DCmx)a m<n
is measurable. In particular,
x = mecd D{(Cm(x)m = med Qrp(x)

is measurable.

Proof: Let B and @ be two canonical polynormal algebras and suppose that
¢$: B — Q@ isadirect integral *-monomorphism. By Theorems 3.3 and 3.7, we have

that B, @ and ¢ are of the following form:
S 1

(b = (4)1 '""¢l)

and
¢i: B = Mp(T=(X,u)
by
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g )

(ris)
o; : (Byy....Bg) BT

where
x = 1j(x)
is a measurable function for each i=1,..t, j=1,..,s. Foreach 5j consider the
measurable set
Rijj= [x:1jj(x) = 0}
and let
nj, € {n1,...n¢} .
Then

S
Ro =J Ripy)
=1

= {x :rjpj(x) # 0 for some j}
is a measurable set. It follows that
{x : med[9(x)B(X)lage) = n?, )
is a measurable set and hence that
x — mcd[¢(x)BX)]Q(x)
is a measurable function. Since every system map
Omn: Gm - Gn

is of the form just considered, the lemma is proven.

Lemma 4,10: Suppose dp: (X,1t) ~ N is a sequence of measurable functions for
which

dix) Sda(x) €d3(x) <... ae.
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Suppose also that there exists Ne N such that
1<€dp(x) €N-1 forall n, ae.
Then the functions f, ¢ defined respectively by
x— supdp(x)=f(x) SN-1
n
x — min{n:dpx) =f(x)} = £(X) <

are measurable.

Proof: That f is measurable is a basic fact about sequences of measurable functions.

For the function £,let ne N . Then
{x:2(x)=n})={x:dpx) =)} N {x:dp. 1) <f(x)}.

Therefore £ is also measurable.

Definition 4.11: Let (Qq(x), Omn(x)) be a measurable field of coherent systems of von

Neumann algebras.

We say that the field is attracted to zero if there exists a partition of X into

measurable sets {X;};Z; , each of positive measure, and an increasing sequence of

positive integers nj <np <n3<... such that for almost all x € X;

Gnx)=0<=1<n<n;.

Example: X =N, | =discrete measure. The following field is attracted to zero.

n=1 n=2 n=3

x=<1 0 — 1 — 2 —- Gn=X
x=2 0 — 0 — 1 —-- GR)=X

=3 0 — 0 — 0 —- G3)=X

Here X;={i} and nj=1i.
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We say that the field of systems (Qp(x), Oma(x)) is attracted to infinity if it is

eventually uniformly increasing.
We say that the field of systems is of infinite type if there exists a partition of X

into a countably infinite sequence of measurable subsets {Xj} each of positive measure

such that restricted to X; (see Definition 4.13) Qlx, is eventually uniformly increasing,
i=123,.. .
Finally, we say that the field is jointly auracted to zero and of infinite type if the

partitions for each of these properties can be chosen to coincide (at least up to measure

Zero).
Note: The previous example is jointly attracted to zero and of infinite type.

Example: X = N, u = discrete measure. The system is of infinite type, but not attracted
to zero.

n=l n=2 n=3

x=1 1 — 2 — 3 —. AN =X
x=2 1 — 1 — 2 —- aR)=X
x=3 1 — 1 — 1 —- A3 =X

We can now state our main characterization theorem.

Theorem 4.12: Let @ be an APN-algebra with measurable field of systems
(Gn(x),0mn(x)) . Then 54(8) = @ if and only if one of the following three
conditions is satisfied:

(i) The field of systems is attracted to infinity.

(i) The field of systems is jointly attracted to zero and of infinite type.

(iti) The underlying measure space (X,|) is partitioned into the disjoint union of two
measurable subsets Z and Y, each of positive measure, such thatover Y (i)is

satisfied and over Z (ii) is satisfied.
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We will present the proof in two parts. The first part will be concerned with

showing that if none of the three conditions are satisfied we obtain Q4(Q) S Q. Once

this is ~stablished, we will then show that each of the conditions implies that Qi@ =G

Before this, however, we require some lemimas.
Example: Let (X,1) be standard and K be the algebra of compact operators. Then
QuE=Xw ® K)= T=xXm @ X .

See Example 1 at the beginning of this chapter.

Definition 4.13: Let G be an APN-algebra with the field of systems (Qp(X),Omn(x)) .

Suppose Y ¢ X is a measurable subset of X . Then

®
Q(Y)=Qly = li_r)n(.l-y Gn(X)d!J.,Q)mn (x))

1s the APN-algebra obtained by restricting the ficld o Y .

Lemma 4.14: In the situation of Definition 4.13,
GrY) = G(Y) @ GCAY).

Proof: Obvious.

Lemmad4.15: Let Q1€ Q2 ¢ A3 C ...C Q bean ascending chain of C*-algebras

and

@=1m@, =U G,
- n

be the direct limit of the sequence.

Q) If $ isanidealin @ and $,=QGp N §,then %, isanidealin G, and

$§=Ulxn.
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(i1) If $, is aclosed two-sided idealin Qq,n=1,23,.. and

$1C $2C $3C ... and $n=¢ns1 N @y then

|

§ =%

s C

is a closed two-sided idealin Q.

(i) If  isasin (ii)then @/% isisomorphic to the direct limit imQpn/ ¥y .
—_

Proof: See Lemma 3.1 of [Brl.

For (iii) we use the usual universal property of direct limits.

The key fact for (i) and (i) is that if B and G are C*-algebras with ideals
$(B) and (@), andif B iscontzinedin @ with $(B) =B N Q) , then the

canonical map
B/ ¢(B) - G/ §(@)

is one-one, hence isometric.

Definition 4.16: Let B(1), B(2),B(3),... be a sequence of C*-algebras. We define

the cp-direct sum by
co~ & BG) = (B 1B 110}

thatis, co— @ B(i) is the C*algebra of sequences which converge to zero.

Note: If B(1)= B@2) = B@B)=..= 38, then

co —§lf8(i) =c,(N®B.
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Note: This construction can be generalized to apply to "continuous” fields of C*-

algebras. See [Dix] Chapter 10.

Note: Letting EB1 B(i) denote the usual direct sum, then ¢g — 5 B(i) is a norm
i= i=1

closed two-sided ideal in @1 B(1) ; and the ideal is non-trivial if infinitely many of the
1=

algebras B(i) are non-zero.

Lemma 4.17: Let JL@) and $n(i),i,n=1,2,3,... be sequences of C*-algebras.

Consider the following (discrete) field of coherent systems:

n=1 =n] n=ns
) - L - - L)

x=1 \ N N \ Oy B
¢1(1) ~ f2(1) - = (1) = dnp(l) - o

ne - ne) — = Q)
X= \ \ v\ A7) B(2)
He) ~» L@~ - $0,2) = $n,41(2) = -

where for 1=1,2,3,...

6)) JLE)~ TL@E) is the identity
i) @~ $ns1() is one-one

() &i: JL@— n+1() is one-one and not onto

and n) <np <n3<.. isan increasing sequence.

(Note: It may be that  ¢1(i),....dn(i) are zero.)

Set
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no e ﬁ'n(i) , 1€n<n
:Bn(i) =

n(@) n>nj
and
By = _§I Badi)

By using the maps in the diagram we obtain a coherent system of C*-algebras

(Bn,Wmn) . It then follows that the direct limit

B =1im(B,, ¥n,)
-
has a non-trivial closed two-sided ideal ¢ such that

B/§ = _é'jl‘.n(i)/co . .%ﬂ(i) =3.
1= 1=

Proof: Let

9p = é%nm

which is an ideal in B;.
Observe that for all n
¢n C &n+1
and for the subsequence defined by nj<np<n3z<...

i-1

B/ G = (k?10)®(§iﬂ(k) ): R; .

The induced natural map

B/ ¢ni — ‘Bn;ﬂ/%nm
is given by

Tiiel 0 Ri = R

Rii+1 © (0,0.....,0N;,Nis1,..) = (0,0,...,0,0,Ni41,Nis2 ,..)



From Lemma 4.15

B/§ = lim(Rimp) .

But now we may use the universal property for direct limits. The argument is

summarized by the following commutative diagram:

Ttlj
Rl g Rj 15_]
lim (R, 7ij)
-
3!: n

!
v
P
Indeed, for each i,1; is the natural quotient map, and forall i<j,n;mij=1;.

Therefore there exists a unique M : imR; = & satisfying Nrj="n; forall i. Itis
ﬁ

easy to see that 1| is onto (each M; is onto). We show that 7 is one-one.

Let R =lim (R}, Ri = (0,..,0,N},Ni,;) € R; bein limR;, and suppose
1 -

NR) =0. Then Nni(R;) converges to zero and so M;(Rj) converges to zero as well.
Thus, for each € >0 there exists ig such that i 21ig implies MRl <€. Hence
[IN§[|<6 for all j sufficiently large, j2jp say. Butthen [Imijo(R;)|| < €, which gives
that

ITipijo (RN = lImi(R)Il < £ .

Therefore mj(R;) converges to zero and M is one-one. This completes the proof.

Corollary 4.18: Let G be an APN-algebra with measurable field of systems

(Qn(x),9mn(x)) . Fix r9pe N ,rp>0. Suppose that X is partitioned by a sequence of
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measurable sets L;, each of positive measure, and that the ensuing partition of the field

of systems is of the form given in Lemma 4.17, where the i row corresponds to GILi

and TL() = Mry(Loo(Li)) . Then @ has a non-trivial ideal ¢ such that

G/t = & Meg(E=(Lib)/co- ® T (E(Lik) -
1= 1=

Now let (w;)i~; be asequence of non-zero multiplicative linear functionals,
w; : £°(Li,u) = C. This gives rise to a *-epimorphism @

©: G/ - é Myy(C)/ co - é My (C) ;
and the range algebra is isomorphic to

£=(N)@M,, £(N)

= ml’o
co( NI, co(N)

Proof: The first claim is a simple application of the lemma. The second part is

straightforward, relying on the fact thatif J is an ideal in a C*-algebra B, then

BN,
——— =B/ ® Mx
$®M

Corollary 4,19: Foran algebra Q@ asin Corollary 4.18 ,
64((3) ca.
Proof: First, G has a quotient isomorphic to

ew([N) ® mro_’ mfo
co(N)

()
cg(N)

But

is a commutative C*-algebra and is isomorphic to C(BIN\N), where BN

is the Stone-Cech compactficaton of N . Therefore we obtain 2 map
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£

® Mrg—- M
o ™ o o

by evaluation at a point. By composing this with the quotient map of Q , we geta
*-epimorphism of G onto T, . From Ballantne's theorem for matrices the result

follows.

Note: For an instance of this behaviour see Example 4 at the beginning of the chapter.

We now begin our proof of the theorem (Theorem 4.12). Suppose then that @ is
«n APN-algebra which does not satisfy the conditions in the statement of Theorem 4.12.
We first show that we can reduce to the generic case ¢f a ficld of systems
(Gn(x),9mn(x)) such that Q1(x)#0 a.e. and the system is not attracted to infinity. Let
Y ={x:Q1(x) =0}
Z ={x:31(x)=0}
Zn={x:CGnx)=0} , n=123,..
By our structure theorem (Theorem 3.3) each of these sets is measurable. Suppose
wY)y>0.
If Gly is not attracted to infinity then the reduction is accomplished, for by Lemma
4.14
G=Qly@ Gz

and Qa(Qly) S Qly implies Q@) S Q.
If QJy is attracted to infinity (or if p(Y) =0), then by hypothesis, u(Z) >0, and
G|z is not jointly attracted to zero and of infinite type. So now consider G|z . Notice

that since for almost all x in X, ¢mp(x) is one-one forall m < n, we have the
inclusions (up to measure z€ro)

Z12Z222Z232 ... .
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Case 1: Suppose the sequence stabilizes and let ng be the first integer satisfying

Zno = Zn0+] = aee
Case 1(2): M(Zng-1) >0, W(Zno) =0. Then Qpy(x)= 0 a.e. and im(Qp,Omn) is

isomorphicto  lim (@p,0mn) . Letting
é
n2ngp

B, = Gno , Ba= Gn0-+-1 yoee
we obtain a new directed system which is not attracted to infinity and for which

Bi1x) =0 ae.

Case 1(b): W(Zny)>0. Thenfor x in Zpn,, Q(x)=0. Therefore

a, = GlZ\Zno and W(Z\Z,,)>0.
Let B be the system obtained from Glz\z by starting at n=ng, as in 1(2) . Then
no

B=Qz, Bijx)#0 (xe Z)
and

B is not attracted to infinity.

Case 2: We obtain a "best” subsequence of measurably distinct sets
Z1=Zny 220, 3 Zng 2 -
l-l(zn;\zniﬂ) >0 .

(where by "best" we mean Gj(x) #0 e j>n; foralmostall x e Zni) .

Then (Rlz1 is attracted to zero and by hypothesis cannot be jointly of infinite type.

Therefore there exists i such that Glz is not attracted to infinity and
nj

Mnj

Qp,,(x)#0 forall x i3 Zn\Zy,,, .
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Hence, invoking Lemma 4.14 again, we are reduced in all cases to the situation

where

Q1(x)=0 ae.
and

Qn(x) is not atracted to infinity.
Let D be the field of diagrams for the systems, and suppose then that D is not
eventually uniformly increasing. Then there exists mp such that D is not eventually
uniformly increasing from D(Gmo). Therefore there exists N e N such that for each
n 2 mg, mcd ;D(Gmo(x))n < N-1 on ameasurable set J, of positive measure. For by
Lemma 4.9 x ~— mcd D(Gmo(x))n is a measurable function which means that
Jn={x:mcd .D(Gmo(x))n < N-1} is a measurable set. Without loss of generality
mg = 1. Note also that since G;(x) # 0 a.e., 0 <mecd(G@i(x))y a.e. for n=1,23,... .
Furthermore we have the following includions:

Jizlh2J32..

Case 1: The sequence of sets stabilizes (up to measure zero).

Let np be the first integer such that J, =Jn 41 =... and let J=J,, . Then for
almost all x in J med(@1(x))n £ N-1,n=ng. Observe that by defiition 4.8,
1Qng) > 0. Now, let
dn(x) = med D(Q1(x))n .
By Lemma 4.10
f(x) = sup dn(x)

and

£(x) = min {n : dp(x) = f(x)}

are measurable functions. Let

Fr={x:f(x)=1) , 1 Sr<N-1.
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At least one of the sets Fr has positive measure, r =rg say. Let
Ly=({xe& Fry: &x)=s}.
Since £ is measurable there exists so such that p(Ls,) >0. So for almostall x in

Lg, . &(x)=sp, f(x) =rp. It follows that, restricted to Ly, , the field of systems has the

form (starting from sg + 1)

mro(r'w(LSOv l»l)) - mro(zw(l-'so, IJ-)) _— .

.

- 3so+2 E— P

g'so+1

where the maps

Mo (B(Lsg, 1)) = My (T=(Lsy, 1))

are of multiplicity 1,a.e. Therefore, Q(Lsy) hasanideal § = lim §so4n and
_’

@/% = M (E=(Log 1)) -
We conclude that
QB SG .

Case 2: We obtain a best subsequence of measurably distinct sets
Jay 2 Iny 2 Iy 3 -
H(JaNn, ) > 0.
Let
Kp; = JnNn,, -
Since x — mcd(Q1(x))n is measurable foreach n, and for each n;
1 < med @1(x)1 £... Smed @1(x)p, = f(x) S N-1
foralmost all x in Kp,,
there exists g, 1 Srg < N-1 and (by passing to a subsequence of the Ky, 's if

necessary) a sequence of measurable sets L;,



127

uLp>0

so thatrestricted to L =U L, the system for G(L) is of the form given in Corollary
1

4.18. Therefore
Q4(GL) S QL)

from which it follows that

QB SG .
This completes the proof of the necessity of the conditions in Theorem 4.12.

To prove the sufficiency of each of the cond'tions, we prepare the way with a

general proposition on certain direct limits,

Proposition 420: Let X = N and p be the counting measureon X . Let Qp(i) bea

double sequence of C*-algebras such that
@16) € G2() € ... € Q) = limQ, (1) =UG,3) .

Let 1<nj<np<n3<.. beanincreasing sequence of positive integers and consider

the field of systems given by the following diagram:

x=1 0= cev Q= Gni(l)" ‘*an(l) — ... _.an(l)_. o= G(D

x=2 O — ceorieneiiiiiaiiinie, -~ (- G_nz(z)_. _.Gn3(2)_. ver - Q(g)
X= O “ih eeeresesesseserencsorreseannransaenan o —_ 0 —oen3(3)—’ res = G(3)
Then with

Q= Iim( jj Gn(i)d}.iJ
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QuG)=G o Q4(QG) =QG) foreach i=123,.. .

Example: Q@)= B, a fixed algebra. Then
Qz=cy(N)® B

and
Qu@)=Q o Q4B =B .

See also Example 2 from the beginning of the chapter.

Proof: First notice that for each 1, Q) is a direct summand of Q. This follows
from Lemma 4.14 and the fact that N = (IN\{1}) U {i}.
Suppose Q4(@) =@, let Al e Q@) and suppose £>0. Choose
Ag e Q4(Q) such that
lAe -0 ® AQ)l<e
Ae = Ae(IN\{i}) © Ag(i) .
It follows that Ag(i) € @4(Q(1)) and
fAe(D) - AQll <€ .
Therefore
Qi@ = QW)
Conversely, suppose that
Q@) = Q) , i=1.23,... .
Let Ae @ and €>0. Choose Ape (3, suchthat
lJAq- Al <e/2 .

By definition,

@
Q, = jN EMOLIEL IO
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From the condition on the sequence {n;}, as a member of the cdirect sum @ @, (i) . Ay
1

has only finitely many non-zero components. Push Ap through the direct system so that
each of these is approximated within €2 by an element of Q4 - this is possible since
Q4(G@E) = Q) forall i. We obtain an element

Aene Q4 (@)
such that

lAgs2 - Anll <€/2.
But then

IA - Agpli <€
and we conclude that

UG =a,
as claimed.
Because of the last Proposition, to complete the proof of Theorem 4.12, it is

enough to show thatif @ is an APN-algebra which is attracted to infinity, then

64((3) =@ . To deal with such an algebra we require a generalization of Lemma 2.8.

Lemma 4,21: Suppose that ¢1,...,0n are bounded measurable functions such that

n

_1'Il¢i is essentially invertible. Then for each £ >0 there exists N=N(g) e N such
1=

that the following is true:
If mj,...,mpz are non-negative integers such that my + ... + mp+z 2N . Then
there exist measurable functions 1i,...,1n , §{ with
@ [Mix) - ¢i(x)] <€ ae., forall i
@ 5slx)N<e ae., and
() pit..ppnlz>>0 .
Fundamental to our proof of this Lemma is the notion of "measurable selection”.

Endow the set T of compact subsets of € with the Hausdorff metric and so obtain the
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Borel structure subordinate to this topology (sometimes called the finite topology). In

this way, we can talk about measurable functions F: (x,u) = C. We call such

functions multi-functions, and in keeping with convention we often write F: X = C.

A function ¢: X = C isa selection for a mult-function F if ¢(x) € F(x) for all

xe X.

Lemma 4,22: Suppose that x — I(x) defines a measurable multi-function of closed

real intervals. Then there exists a measurable function ¢ : X -+ C such that

ox) € I(x) a.e.

Proof: In this simple case where I(x) C R, we need only define ¢(x) =min{A: A e

I(x)} . Or we may invoke Aumann's theorem (Theorem 5.2 in [Hi]).

Lemma 4.23: Suppose that x — G{x) and x — K(x) define measurable multi-
functions with values closed intervalsin R, and that x — o(x) € G(x) + K(x) a.e.
determines a measurable selection of the measurable multi-function x — G(x) + K(x) .
Then there are measurable functions

x — y(x)e G(x) ae.

X = x(x) € K{x) a.e.
such that

o(x) = ¥(x) + xX(x) a..

Proof: Let Sg(x)={ge GXx): g+ k=0(x) forsome ke K(x)}
=Gx) N [o(x) - K(x)] .
By Theorem 4.1 [Hi] x = Sg(x) is 2 measurable multi-function. So by Theorem 5.2
of [Hi] there exists a measurable function
X — ¥(x) € Sg(x) ae.

Now let x(x)=0o(x) - y(x).



131

Lemmad4.24: Let Z beaclosed subsetof R and suppose that x — I(x) isa
measurable multi-function of intervals. Then
x— Ixx)=Ix) N Z

is a measurable multi-function.

Proof: This is just a special case of Proposition 2.4 in [Hi].

Proof of Lemma 4.21: Since each ¢; is essentially bounded, there exists R >0 such
that |§;(x)| €R ae.,rorall j. Let §:C — [0,2r) be the principal branch of the
argument function. Since [$j(x)] is uniformly bounded, there exists 8,0<8 <¢,
5 <%, such that when [E|=[n| SR and |8() - 6(n)| <5 mod 2 then [E-n|<€.
(Just find the 8 which works on the circle {A:|A|=R}). ™
Since 8 is a measurable function, so is 80¢; for j = l,...,n. Therefore, we get

n measurable multi-functions

$ix) = [8(65(x)) - 5, 8(¢j(x)) + £] mod 27 .
Define

Sns1(X) = [-—-g-,%] mod 27 .
There exists nge N such that ng-8>2x. Let N=(n+1)ng. Then
mj + ...+ mp+ 2z 2 (n+1)ng = N implies there exists jg such that mj,2ng or z2ng.
Therefore, the measurable field

[ = I(x) =mS1(X) + ... + mpSp(x) + 28p4+1(x)
of intervals is almost everywhere of length greater than 2n . By letting

Z={2rn:ne Z} € R
we obtain a measurable multi-function

x Izx)=Ix)NZ=x0 ae.
By Theorem 5.2 [Hi] we obtain a measurable map

x — ox) e Iz(x) ae.
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But

Iz(x) € I(x) = mS1(x) + ... + muSp(x) + 2z8p41(x) -
Therefore, by induction applied to Lemma 4.23 we obtain measurable functions

x > oj(x) € ijj(x) a.e. j=1,..n
and

x = B(x) € zSp+1(x) ae.
such that

o(x) = a1(X) + ... + Ap(X) + B(x) a.e.

To complete the proof, let

1
"n'qaj, mj>0
0 ’ mJ=O

6j=

andset  pj=I¢jlel® , j=1..n

and {=2%enm .

From (*) we have |lu;- ¢jll <€ and by construction

HEl Lopgtpt>>0.

This completes the proof of Lemma 4.21.

Finally, using Lemma 4.21, the proof that @4(@) =@ (for an APN-algebra
attracted to infinity) is formally the same as the proof of Theorem 2.5, the case of AF-

algebras, and our result is established.
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Remarks: 1) Onginally, our proof of Lemma 4.21 was more elementary, constructing
explicit measurable selection functions. But selection theorems touch deep into the heart
of Direct Integral Theory, so employing Himmelberg's results seemed appropriate (as
well as convenient). Furthermore, one of our interests is to develop a factorization theory
for the topological case, e.g.  Mp(C(T)) (see Concluding Remarks) and our use of the
selection theorems is therefore suggestive. For by doing so the possible requirement of
“continuous selection” theorems is brought to attention as are the kind of difficulties we
could expect.

2) It would seem that using Lemma 4.15 it would not be too difficult to
obtain a characterization of the ideal structure of APN-algebras, including a statement in
terms of diagrams. One significant difference between APN-algebras and AF-algebras is
exhibited in the existence of ideals arising from attraction of the algebra to zero.

3) The proof of Theorem 4.12 depended on Lemma 4.17. While the exact

result required the structure of certain polynormal subalgebras involved, one of the key

features of the direct limit algebra @ =U @, (for which Q4(Q@) was pot dense in Q)
n

was the existence of an ideal § =L5F .. =Gy N § suchthat 54(8,1/3“) <
@n/$n . Can this be generalized nicely? Soif @ is a direct limit of not necessarily
polynormal subalgebras, when does this condition imply that Q@) < Q. In
addition, could this approach be used to find examples of algebras for which '@_4(8) E
[a¢c)) < @ forsome k,5<k<o? On this question see also Chapter 5.

4) Note that an APN-algebra is a direct limit of nuclear C*-algebras and so is

itself nuclear ([KR], Proposition 11.3.12). Therefore, as for AF-algebras, we obtain a

unique C*-algebra tensor product Q®B , for APN-algebras G and B . We wish
to obtain a generalization of Proposition 2.11. As it turns out, there are some subtleties

not prsent in the case of AF-algebras. And to realize this tensor product in 2 way which
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is compatible wih the measurable fibre-structures, we show that (in a sense to be made

precise) every APN-algebra G = 1imQ; is naturally a subalgebra of the "direct integral
-~

of canonically represented C*-algebras”
[°acody . G =1im@,x).

We will treat these matters in detail in Chapter 5 where we introduce various direct
integral constructions for fields of C*-algebras.
Our last result of this chapter is a straightforward generalization of Proposition

2.15, which we include for completeness.

Proposition 4,25: Let @ bean APN-algebra. If A€ @ and o(A)20 then
Ae 62(6) .

Proof: The proof is essentially the same as that of Proposition 2.15. Use the fact that an

n-normal operator may be unitarily triangularized ((R&R], Theorem 7.20) and that for

¢n *
A= in Ma(T=Xp) ,

0 On

o(A) =-01 ess 18 O .
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hapter

Direct Integral Constructions

As we have discussed in Chapter Three, to a measurable field of coherent systems

(Gn(x), dmn(x)) of von Neumann algebras we can associate the direct limit C*-algebra

@=lim; G,(x)du -

When certain additional conditions are satisfied we obtain our so-called APN-algebras
(see Chapter 3). There are in fact two other algebras which in a natural way may be
constructed from the field of systems. One of these we call the compact direct integral,

and is denoted

nge(x)du,where G(x) =1imQ,(x) .

The second of these which contains both the direct limit algebra and the compact direct

integral, and can be thought of as the ambient space, is called simply the direct integral
(of the "measurable field of C*-algebras Q(x) ") and is denoted by
®
jx Q)de .

Precise definitions will be given later in the chapter. To relate these alagebras, note that

we usually have the following inclusions
. (® ® ®
Il_fo Gn(x)dr & § Glx)dp g [ Qlx)dn

where in general the inclusions can be proper all at once. Although, relaxing condition
(111) in the definition of APN-algebras gives examples of the first inclusion on the left

being broken.

135
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Using the notion of compact direct integral we obtain a definition of
. R 2]
L=X,W)RQ as a certain subalgebra of the direct integral Jx G di . Asa consequence
we have a new proof that Qg(T=X,1)®K) = T=(X,w)®XK . Furthermore, the

concepts promise to generalize to yield a characterization of those compact direct integrals

Q for which Q4(Q) is dense.

For an example of a field of systems where we have proper inclusions between

our three algebras, let X = N, i be a counting measure and consider the following field

of Bratteli diagrams:
n=1l n=2 n=3
x=1 ] —2 — 3 —- =X
x=2 0 —1 — 2 —-- GR)=K
X= 0 —0 — 1 —-- GB)=X
In this case

®
lim [ @, (x)dp = co(MSK
= IN
®
§x Qx)dp = £2(N)®XK
®
and [ Qe = £=(N,X)
That the first algebra is properly contained in the second is ciear. The second algebra, we
will show, can be identified with the C*-algebra of functions N - ¥ with compact
essential range (compact as a subset of the Banach space X ). The third algebra is the
C*-algebra of all bounded measurable maps N— X . Soitis clear that we have the
second inclusion proper as well.

We begin by addressing the question of "measurable fields of C*-algebras”, and

defining the direct integral of such a field.
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Definition 5,1. Let (X,)) be a standard o-finite measure space and suppose that
x+— Qx) € B(HE)

defines a field of separable C*-algebras of operators. The field is called megsurable if

(i) the field of Hilbert spaces x — ¥(x) is measurable, and
(i1) there exists a countable sequence of measurable fields of operators
x — Ap(x) , n=123,.
such that
C*{Ap(x):n=123,.}=Q(x) ae.
We call the sequence (A, ),—; afundamental sequence (of p-measurabl r
fields). By considering the new field x— Aj(x)|Ap(x)|l if necessary, we may assume
that each Ap is a bounded decomposable operator.
Now it is immediate that if @(x) is the WOT closure of Q(x), then the field
x = (), K (x)
of von Neumann algebras is measurable (see Definition IV 8.17 [Tak]). Therefore the

direct integral

I:: % de on J‘f H(x)dp

is well-defined.

Definition 5.2: We now define the direct integral of the measurable field of C*-algebras
x +— Q(x) tobe

{A € LT m du @ A(x) e Q(x) a.c.}
and denote this set by

jj Q(x)dy .

This direct integral is actually a C*-algebra. The proof of this we leave to the reader.
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Definition 5.3: A field of *-homomorphisms 7(x) : @(x) = B(x) is said to be
measurable if for every measurable field x — A(x) € G(x), the field x = w(x)A(x)

is also measurable. Such a field induces a *-homomorphism

n= jf n(x)dy : jf G(x)dp — j: Bx)dy .

The map = is said to be a direct integral homomorphism. We also say that & is a direct
integral isomorphism if m(x) is an isomorphism a.e. Finally, two direct integral
algebras are direct integral unitarily equivalent if there exists a measurable field of unitary

operators which implements a direct integral isomorphism.

Examples: 1) Let n be a finite positive integer and let G(x) be the C*-algebra of

nxn matrices acting on ¥(x) = C® in the canonical way. Then G(x)=G() and

[ Goode = [ o) = Mo(Zoxm)

2) Let G(x) = X, the C*-algebra of compact operators acting on H(x) = £2(N) .
Then

®
J N Xdp = =X, X) = decomposable operators which are
almost everywhere compact,

while

o —
-[x Xdu = L=(X, B(H)) = all decomposable operators.

3) Let Q=Mp(LeX,u) and B = My(L=X,1)), and suppose that = : G~ B
is a "canonical *-homomorphism”, as defined in Chapter 3. Then = is a direct integral
homomorphism.

We now claim thatif G is an APN-algebra,



Q= 1imjfen(x)dp

then there exists a canonical measurable field of Hilbert spaces x — H(x) on which we

may canonically represent each AF-algebra

Qx) =1im Q,(x)

in such a way that the field
x = Q(x)

of C*-algebras is measurable. So we will make sense of

jf Q(x)du

and by this make possible the definition of the direct limit and the compact direct integral
as subalgebras of the direct integral.

For an indication of how we obtain the canonical Hilbert spaces and consequently
the direct integral of algebras, consider the case where X is a singleton and our (single)
AF-algebra is the algebra of compact operators

X=UM,.
Each subalgebra Tl in the generating nest acts naturally on the Hilbert space CP.
Moreover, defining a partial isometry

Vmn: Cm — Cn

and letting
Omn: Mm = My

be the usual inclusion

A
¢mn1A""( OJ
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we obtain a system of commuting diagrams

an

Cm Cr

A ¢mn(A)

Ccm Cn forall Ae My, .
an

In other words the action of Jlly on €N carries forward through the system in a way

which respects the direct limit structure. We therefore obtain a unique operator Tm(A) ,

A € Ty, , acting on the "direct limit of the Hilbert spaces”: assuming for now the

existence of the Hilbert space lim (TN, Vny) , we have for each m €£n adiagram
-

vmn
Cm Cn
%ﬁ limCn “/Vn
A : dmn(A)
L S!l Tm(A) !
Ccm | Cn
Yo I[ /f
d
limCn

which commutes and thererfore by the universal property a unique bounded operator

Tm(A) . Of course in this example HmC? = £2(N) and
-

A0
nm(A)=(0 OJ.

For the general case, we require a sequence of preliminary results.
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e
Lemma 5.4: Let Hy= jx Ha(x)di be a direct integral of separable Hilbert spaces

(finite or infinite dimensional) and suppose that for m<n

an : Rm_' Rn
¢]
Van =JX Vin(x)dp

is a decomposable partial 1sometry satsfying
VnpVmn=Vmp forall m<n<p.
Then the direct limit
H =1im(H o, Vo)
-

exists. Moreover

&
Ho= [ ima0),Vantdp -

Proof: For the existence of # , see [KR] Ex. 11.5.26. That ¥ is the direct integral
of the individual direct limits follows from the fact that for each n, H, is naturally
identified with a subspace of ¥ and that if {ci“)}};l is a fundamental sequence for

.y then {cg‘) : n,k=12,3,...} isafundamental sequence for ¥ .

Note: Each canoilical
Vn: Rn - H

is a decomposable operator,
®
Va= [ VaGdi, Va(x) : Halo) = HE) -
This is because the set {ci") : n,k=12,3,...} isafundamental sequence and
X (Vmeg“),eg“) >(x)

is measurable for all k, £ and m<n.
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Note: Within the category of direct integrals, # is unique up to direct integral unitary

equivalence.

Lemma5.5: Let ¥,= Jf Ho)d , Vi : g = Hy, Vi #Ey—~ H,
# = li_r)n Hn be as in the previous lemma. Suppose that we have a bounded sequence
(sgpliAnlk ) of decomposable operators

Ag:Hy ~ Ry, A= j;f ApGdp

such that foreach m<n the following diagram is commutative:

an
Rm Rn
Am An
Rm Hn
an

Then there exists a unique decomposable operator
A:H - H

such that
AVh=VhA;,

forall n=1,23,... .

The operator A is called the inductive imit of the bounded family {An} of operators.

Proof: Foreach m<n
VmAm = VnAann

that is, the diagram
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an
Rm Rn
m Hm¥, * Vq
-

Am 1 An
| 51!'i A !
N

l
lim ¥,
-

commutes. Therefore, by the universal property for direct limits, there is a unique
operator A satisfying the required properties. Since AV, = VyA, and {Vneg‘) :

nke N} isafundamental set for ¥, it follows that A is decomposable as claimed.

Note: Let A(x) be the direct limit of the family {Ap(x)} . Then by uniqueness

@
A= JX A(x)dp , since x = A(x) is easily shown to be a measurable field of operators.

Note: Here are two alternate proofs that A is decomposable:

1) Via the partial isometries Vi : ¥y — ¥, each Ay determinesa
decoinposable operator A'm on ¥ . The operator A is the norm limit of the sequence
A'p , and the decomposable operators are norm closed.

2) We show that A commutes with the diagonal algebra L : Let Ag=A
restricted to the linear space o= an VnHn. Then Ag is 2 bounded linear map on Hg

and extends uniquely to A on ¥ . Moreover, foreach Le L and fe Ho,

ApLf=LAqf , since AVp=VyA, and Ay is decomposable. Therefore Ag commutes
with I, hence A commutes with & and A is decomposable ([Tak], Corollary

IV.8.16).



144

Proposition 5.6: Foreach mpne N let Vg, Vi, ¥, and H be as in the previous

lemma, and

®
G, = jx Q, (x)dp
be the direct integral of a measurable field of von Neumann algebras on Hp(x) which is

also measurable as a field of separable C*-algebras. Foreach m<n let

®
Omn = [ Gmn ()L
be the direct integral of a measurable field of faithful WOT continuous *-homomotphisms
Omn(x) : Qm(x) = Qa(x).
Suppose also that the C*-algebras Q; together with the *-monomorphisms
Omn: AQm — Qn form a coherent system, with direct limit C*-algebra @ and
canonical injections ¢n: Gy —~ Q. Finally, suppose that for each Ap € G the

following diagram commutes:

an
Hm Hn
Am Omn(Am)
Hm Ha
vmn

Then the following are true:

i) There exists a unique (faithful) representation

n: @ - BH)

whose range consists of decomposable operators and such that for each Ay € G

T(®m(Am)) = VmAm . *)
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(i) i3
Gx) = li_rfl(en(X),«bmn(X)) ,
then there exists an almost everywhere unique field of faithful representations
rx): Q) = B(HE)
such that for each Ap(x) € Gm(x)
T OmX)AmXNVm(X) = Vin(x)Am(x)  ae. **)
(iif)  The field of C*-algebras
x — 1(x)0(x) € BHEX)
is measurable.

(iv) Foreach Ap e Gm

ROmA) = [ 1) Om)AmG))d

and Todn, is WOT continuous.

We conclude that there is a natural inclusion

Q@ =rQ)C j;f T(x)Q(x)dy .

Proof: (i) Thedirectlimit Q@ isequalto U¢,(Q,) . Foreach Ay in Gn we
n

obtain a unique (decomposable) operator T(dm(Am)) satisfying (*) (Lemma 5.5).
Moreover T is a *-homomorphism on 0m(Gy) . Therefore T extends uniquely to a
representation of G . The map = is faithful because restricted to ¢m(Qm) it is faithful.
(i) Foralmostall x we have a well-defined coherent system (Gp(x), ®mn(x)) -
Therefore the same proof as for (i) applies.

(i) Foreach n
Gn= J’j Qp(x)du

is a measurable field of C*-algebras and therefore has a fundamental sequence Aflk),
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k € N . This makes the double sequence [nq)nAg‘): k.ne N) afundamental sequence

for the field of C*-algebras
x — t(x)Q(x) .

Gv) Let Ap= J’f Am()dp e Qp -

Then n(dm(Am)) is decomposable and satisfies (*). Therefore “(dm(Am))(x) satisfies

(**) a.e. But m(x)(Om(X)Am(x)) satisfies (**) a.e. The result follows.

Note: Implicit in (iv) is the fact that for each m, x > n(x)°o¢m(x) definesa

measurable field of WOT continuous *-homomorphisms.

Lemma 5.7: Let @ be an APN-algebra with canonical measurable field of systems
@
(@n(x).0mn(x) , Hn= [ CH®ay .

Then there exist decomposable partial isometries
Vin: #€m —~ Hp
which satisfy the following two conditions:
(i) rg Vmn =12 O0mn(lm) . 1lm =identity of G

and (i) the conditions in Proposition 5.6.

Proof: We first consider a special case. Let my,...,mg,I1,....fk,1 be fixed positive

integers, and suppose
k
¢: Sl M (T=(Xw)) = Mp(B=X,m)

is defined by
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(A§‘1) A

k
6 : A=(Ap.nAp) P z‘%grx) = k .
i=1

Define the partial isonetry

k
V: @ L2X,)®Cm - L2(X,)®Cn

by
Vi f=(fpenfi) o (—}#%%}—ioo) .
r; imes I times
Then

O(AYVE=VAS
forall A and f. Because of the structure theorems 3.3 and 3.7 the general case

follows.

Corollary 5.8: Every APN-algebra has a canonical faithful representation as a
subalgebra of a direct integral of a measurable field of represented AF-algebras such that
all of the conditions of Proposition 5.6 are satisfied. Also, by standard direct integral
theory, we may assume that there is a fixed separable Hilbert space, g say, such that

we have the inclusions

4] S — D
jx Qeodn € [ Boodu € [, Btodu, R € Ho ae.

Proof: This follows immediately from Lemma 5.7.
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As the examples on page 136 illustrate, the APN-algebra @ is in general

properly contained in the canonical direct integral algebra associated to the systems. In

fact, let B be a single represented AF-algebra,

B = lim(Bn,Wmn) .
-
Let (X,u) be standard and define
S
Gn= [, Bndp

and
Omn : Grn = Gn
by

@
Omn = J-X WmndK .

Then the APN-algebra obtained is isomorphic to
LoX,weB
while the direct integral algebra is

J: Bdu

which by definition can be identified with (X, B). Therefore
@
limQ@, %J. N Bdy & B is not finite dimensional.
—’

More generally, if @ is an APN-algebra, then G consists of (equivalence classes of)

measurable functions A : X = U @(x) such that
X

@) x — JJA(X)|| is essentially bounded

(i) A(x) e GQ(x) a.e.,and
2]
(iii) jx A(x)dp satisfies whatever conditions are imposed by the generating nest of

subalgebras, thatis A= Ap, limApe G,. On the other hand, operators in the direct
n

integral algebra need only satisfy the first two conditions.
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Now that we have defined the direct integral algebras, our questions of
factorization can be asked. One of the features of these algebras is a structure which is
less stringent than that of the APN-algebras. So, there is an APN-algebra @ isomorphic
to £°(IN)®X whose associated direct integral algebra is therefore £°(IN,X) .
Contrary to our original expectations, we now suspect that the algebra £2(N,X) is
spatious enough to yield interesting operators but restricted enough to make the behaviour
of the sets  Qx(£>°(N,X)) non-trivial. (See the discussion preceeding Proposition
5.14.) However, before pursuing these matters, we attend to some unfinished work of
the last chapter. There we posed the following question: Is there a theorem for tensor
products of APN-algebras which is analogous to Proposition 2.11 and which can be
expressed in a way which respects the underlying fibre structure? As it happens we can
answer this in the affirmative. QOur formulation of the theorem (on APN-algebras)
requires the concept of spatial tensor product, along with the canonical representation just
established. We therefore take a detour to settle this question. Once this is done we will

take up the direct integral algebras again, and in more detail.

Tensor Products of APN-algebras
Let Q and B be two represented C*-algebras actingon H and W (see

[KR] 11.1). We can then form the (represented C*-algebra) tensor product, which we
denote G® B,

If @ and w3 happen to be von Neumann algebras, the categorically appropriate
object is the (von Neumann algebra) tensor product denoted @®B . It is defined to be
the weak operator topology closure of @G® B and so is again a von Neumann algebra.

Suppose now that @ and B are APN-algebras with systems (@,(x),9mn(x))
and (Bn(X),Wmn(x)) . So foreach n

Gn= [, Ga0idy and Bn=[° Bytxdu
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are von Neumann algebras and we may form the tensor product G, ®Bn.- By

Theorem 11.2.9 [KR] we obtain a coherent sequence of von Neumann algebras
(GngiBn ’ ¢mn§‘4"mn) .
In fact, we obtain another APN-algebra T, defined by

C= li-r’n(en gﬁBn » Omn §Wmn) .

Moreover, letting © be canonically represented (as in Corollary 5.8) we obtain a (direct
integral) C*-isomorphism between T and the spatial tensor productof G and B. It
is via this isomorphism that we are able to obtain our theorem (Theorem 5.13) on Q4
for tensor products of APN-algebras. But we have made several claims which require

proof, and these we now provide.

LemmasS9: Let
® ®
Mm = jx M(x)de and :n.=jx TL(x)dp
be direct integrals of von Neumann algebras acting on
®
Jf HE)dp and Jx W(x)dye respectively.
Then

MeN = J': (ME)®T(x))de on jf (X)W x)du .

Example: T = Moy(B=X,p) =N
M BN = Ma(LoX.w) .
In this particular example we can "see” that we get equality by considering
elementary tensors. Let
o1 ¢12) (Wu %2)
S= , T= , O, vije LX) .
[¢21 622 L 23R 5% % Vi :

Then S®T has representation



151

(¢11T ¢12TJ
0217 0T
Alternately letting S and T be the identity, we obtain all elements of the form
[T 0) (49111 ¢121J
and
0 T Ol G2l

and hence all elements of the form

[Tll T12

T, Tﬁ] » Tije Ma(LeoX,p)),

and therefore all of JM4(L=(X,u) ).

Proof of Lemma 5.9: Let {Ag:ke N} be a fundamental sequence for Tl and

{ B¢ : e N} be a fundamental sequence for JL. Then it is straightforward to verify

that
[¢:]
HRW = _[x Hx)QW (x)dp

and that Ay®B, is adecomposable operator on H®W with (Ax®Bj)(x) =

Ax(x) ® By(x) a.e. Furthermore, by paragraph 3, page 812 of [KR]), the set
{Ak(X) ® Bg(x) : k,£ € N} generates TM(x) ® Tl(x) a.e. Therefore

x — Jl(x) ® JL(x) defines a measurable field of von Neumann algebras, and since

M =M IL we have that
MESN ¢ j’f (M )& Ny -

To obtain equality we call on von Neumann's double commutant theorem. We

therefore show that
(M& Iy ¢ ( jf M x) & T(x)dp)'

To see this let Ce (FL® JL)'. Then since the diagonal algebra for
HOW = [ H() ® Woodp

is contained in TN ® JL, we have that C is decomposable. If
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® -_—
T= j:’ Todue [, M) Neodu

then since
Cx)(Ak(x) @ By(x)) = (Ak(x) ® B(x))C(x) ae.
it follows that
C(x)T(x) = T(x)C(x) a.e.
from which we obtain
CT=TC .
Therefore
Ce ( _[f ME)® N(x)dp)' .
The commutant theorem now reverses the inclusion in question and equality of the

algebras is established.

Corollary 5.10: If (Gn,0mn), (Bn,Wmn) are coherent systems corresponding to the
APN-algebras @ and B, then the new system (Gn®Bn , dmn® Ymn) also

corresponds to an APN-algebra.

Proof: By hypothesis, we have direct integrals of von Neumann algebras
® ®
Gm= [, Gm()dt . Bm=[ Bm(x)du
and
®
®mn = J-x Omn(x)dL  , Ymn =_|f: Ymn(X)dp .
From the preceeding lemma, foreach me N
— ® —
Gn® Bm= [, An()® Bm(x)dn

and by theorems 11.2.9 and 11.2.10 [KR], for each m <n there is a unique WOT

continuous (*-monomorphism)
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Omn ® Ymn: Gm ® By = G, ® B,
which respects elementary tensors. But the measurable field of WOT continuous *-
monomorphisms
X — Omn ‘g\lfmn(x)
determines such a map Tmn
ton = J; G0 ® YamaGOdl -
Therefore by uniqueness
Tmn = Pmn ® Ymn

and the corollary follows.

Proposition 5,11. Let G, B, Qpx), Bax), dmnl(X) , Ymn(x) be as in the above
corollary. Then the spatial tensor product of the canonical representations m(Q@) , p(B)

is C*-isomorphic to the APN-algebra

@ o~ —_
C= tim( [ Gat)® Ba(x)dit, dmn® Yinn) .

Note: By canonically representing C we could make sense of the correspondence as a

direct integral isomorphism, but don't require this here.
Prmf: Let Tmn =¢mn g\ymn .

By Theorems 11.2.9 and 11.2.10 of [KR]}, there exists a unique weak operator
topology continuous *-monomorphism
(To0m)® (PoYm): Gm ® Bm ~ ©Q@) ® p(B)
where ;r@ , p(B) are the closures of n(Q@), p(B) in the weak operator topology.

We simplify the notation by setting

Tm = oGy and pm=poyy,me N .
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Then it is easy to check that for m<n
(7tn ® Pn)e(dmn ® Ymn) =Ty 5 Pm
and that the range of T ® prm is contained in Q) ® p(B) (spatial tensor product).

We therefore obtain the following commutative diagram:

Tmn

Gn® Bn » @,® B,

Q) ® p(B)

where Nm is definedtobe 7 ® Pm: Cm® Bn = (@) ® p(B). Bythe
universal property for direct limits of C*-algebras there exists a unique *-homomorphism
n: C—~ n(Q) ® p(B) which completes the commutative diagram. The map 7 is
onto because n(@) ® p(B) is the norm completion of the algebraic tensor product and
every elementary tensor Tm(Am) ® pm(Bm) € Tm(Cm) ® pm(Bm) belongs to the

range of 1. To show that 1} is one-one, suppose that T = limTy , Tm € Cm ngm
m
and N(T) =0. Then UmMn(Tm)=0. Buteach My is a one-one *-homomorphism.
m

Therefore lim[[Tmli=0 and T=0.
m

Corollary 5,12: Let @, B, T be the APN-algebras in Proposition 5.11, and
G®3B the unique C*-tensor product of @ and B . Then
Q4(Q®B)=A88B = QyC)=C.



Proof: Since G and B are nuclear we have
@G®B=r@)®p(B)=C.

This corollary generalizes Lemma 2.12 and makes possible the following result which

partially extends Proposition 2.11.

Theorem 5.13: Let @ and B be APN-algebras and suppose there exist measurable
set Xg,Xg € X suchthat X=Xg U Xg

Ta@lxg)=Clxg and Qal(Blxg)) = Blxg -

Then
Q4R®B)=0B .

Remark: Itis not necessary that p(X@ N Xg) =0. For an easy example, let
X ={1,2,3} with u discrete measure. Let @ and B have the following fields of

Bratteli diagrams:

n=l n=2 n=3

x=l 1 — 2 — 3 —. Ay =X
Q: x= 1 — 2 — 3 —. G2)y=X
X= ] — 1 — 1 —-- Q=M

n=1 n=2 n=3

=1 1 — 1 — 1 —- B(1)=M,
B:x=2 1 — 2 — 3 —- BR)=X
X= ] — 2 — 3 — BR)=X .

Then
Q(Q((1,2)) = G({1,2))
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and

Qa(B({1,2}) = B({1,2})

So Xg=1{12},XB=(23} and QuCE®B)=G®B .

Proof: Without loss of generality Q(x)#0 a.e. and Bxx)#0 ae.
Suppose @4(Q) = and consider G®B.

Zng = {x: Bpy(x) =0} .
If there exists ng such that p(Zy,) =0, then by considering the new system obtained by
starting at the ng' algebra, we may assume B1(x)= 0 a.e. This situation we call
Case I, Case II is where we obtain a properly decreasing (up to measure zero) chain of
measurable subsets

21220 2 Ty 2 Zog 2

such that u(Zn\Zn,, ) > 0. Note that throughout the proof we rely on Theorem 4.12.

Case I(a): The field of systems (Qn(x),0mn(X)) is attracted to infinity. Then the field
(CGm(x)® Bn(x).0ma(x)® Wmn(X)) is clearly attracted to infinity as well.

Case I(b): The field (Qn(x),0mn(X)) is jointly attracted to zero and of infinite type. Let
{an }j=1 be the corresponding partition for X so that

) G(an) is attracted to infiniiy, and

(i) an-k(x) =0 for O0<k<n;1 ae. on an .

Therefore by I(a)
@) G(an) ® iB(XnJ) = C(an) 1s attracted to infinity, and
(i) an-k(x) =0 for O<k<nj1 ae. on Xj.

Hence Ci(x) =(@®B)n(x) is jointly attracted to zero and of infinite type.
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Case I(¢): The measure space decomposes into a disjoint union
X=X_.UXy
where Q(X.) is atracted to infinity and Q(Xg) is jointly attracted to zero and of
infinite type. But now
Q8B = [A(Xx) @ B(X.)] @ [G(X0) ® B(Xp)]
to which cases I(a) and I(b) apply.

Case II: Here X is partitioned into (X\Zn,) U Zy, , where fB(X\Zn,) is an algebra
of the kind considered in case 1. Therefore, suppose X =Z; =Z,, .

Case TI(a): Suppose that the field (Gp(x),dmn(X)) is attracted to infinity and without
loss of generality @1(x)#0 ae. Then G(an) ® B(Z, )) is attracted to zero and of

infinite type.

Case TI(b): Suppose that (Gp(X),Omn(x)) is jointly attracted to zero and of infinite
type. Let (X :}iZ; be the corresponding partition for X . Now, for each j

Znj= Xmy N Znp U Kim; N Zpp) Y -
But since m; is a strictly increasing sequence, this disjoint union is actually finite (since
H&Xm N an)=0 for mj>n;) and of length k(j). For 1 <i<k() and
x€ Xm N Zp;, (@®B)n(x) # 0 < n 2 max(my,nj} : = (m;j,n;) . Let
We =Um; N Zn;: (mj,n;) = £} . Since both sequences m; and n; are strictly
increasing W, is a finite union. Therefore (Q®B) (W, ) is attracted to infinity and

since X =léJW£ it follows that  Q4(@®B)=G®B .

Case II(c): Here X is adisjoint union of measurable sets Xoo, Xg , as in case I(c).

But now II(a) and 1I(b) apply to each part and the result follows.
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Concemning the sufficienty of the conditions in Theorem 5.13, we were atle to find
counter-examples, only when we dropped the condition on the field of systems that for
each n,

x + dim Gp(x)
is essentially bounded (Condition (iii), following Theorem 3.7) . We therefore have the

following:

Conjecture: The conditions in Theorem 5.13 are necessary and sufficient to yield
Q4(Q®B)=3®B .
This finishes our discussion of tensor products and we now return to direct

integrals of measurable fields of AF-algebras. We begin by considering the algebra

®
Q= Jx X dp, where as usual X is the C*-algebra of compac: operators on £2(IN).

We will show how this algebra, and so others of this kind, seem to be in a fundamental
way out of reach of the techniques developed so far in our present work. The reason for
this difficulty is the large size of the algebra (which is "very much" non-finite
dimensional). By the same token we obtain the motivation for the definition of the
"compact direct integral”, which may yield to our techniques and would appear to be the
largest algebra which would do so (at least amongst those obtained from the various
constructions so far encountered in this thesis, that is, within the direct integral ambient
space.)

To be more precise, it Te @ with measurablemap x — T(x) e X ae,,
o
T= -[x T(x) du . For certain operators and questions of approximation one strategy

might be to obtain an "upper-triangular” form for T, as in the case of n-normal operators
(see Theorem 7.20 in [R&R]). Supposing, for example, that T is even self-adjoint,
then we can mimick the proof (in [Con]) of the spectral theorem for compact operators.

Being just a little careful about the measure theory, we obtain a sequence (A,)y-; of
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measurable real-valued functions and a sequence En(x) of measurable fields of finite
dimensional Hilbert spaces satsfying the following conditions almost cverywhere:

(1) Anp(x) is aneigenvalue for T(x)

i A2 A2x)] = ...

(i) Enlx) = ker(TEMAn(X)); Ans1()| = lIT | (E1(x)D...@E(x) =l

(iv) Ap(x) —~ 0.

In the classical setting, X = a singleton = {xg} . So with

P, = the orthogonal projection onto Eqn(xp)

IT-3, AP;l1=Ran(xe)l 0

j=l

from which we conclude that

In our setting, however, there is an obstruction to this formula. It certainly is true that
with
P, (x) = the orthogonal projection onto  En(x)

T(x) =Y, A;(x)Pj(x) ae. .
=1

But with

Pj= Jf Pj(x)du and En= j:f En(x)dp

n
NT-Y, A;P;ll=esssupih, |
i=1

and it may happen that |[An4+ill does not converge to zero.

For an example let X =(0,1) , it = Lebesgue measure, and
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T(x) = 4

\ /
Then T(x) is compact a.e. and x +* T(x) is measurable.

What happens for the general self-adjoint operatorin @ is that for each €>0
there exists n(e) and a measurable subset Xp € X such that X is a disjoint union

WX, =X, and restricted to each X,
C 3
NT-3 APil<s .
i=l

Therefore on each X, we can use the approximation techniques of [KLMR] to obtain the

sequence of operators

@
Sne Qal [ Kdw

Sp= 0,1 Qn2 Qn3 Qna
satisfying

1S, - S APII<S .
=1 =

But now the problem becomes evident. The hoped-for approximant would be S,
defined by
S(x) =Su(x) for xe X,
where
Sn(x) = Qn,1(x) Qn.2(x) Qn,3(x) Qna(x) .
We might then define
Qj(x) = Qnj(x) for xe Xp,j=1234.
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This produces a measurable field of operators, to be sure, but we have no guarantee that

the field is essentially bounded, with
sup(ess_supl|Qq; (Ol <ee, j=12,3,4.
n Xn

This is really a question of continuity. If T(x) is a bounded field of operators such

that T(x) € Q4(QA(x)) a.e. then can we obtain the factors Q;(x) € Q1(Q(x)) in such a

way that we control the norms JQ;(x)|l as functions of [|[T(x)|| ? (See also Chapter 1

where we discuss Q4 for the algebra of n-normal operators. And this seems to be the

generic obstruction to our techniques developed so far. In regards to the algebra
Q= Jf X diL, two possibilities come to mind. The first is that for suitable (X,p)
(e.g. X =[N, u discrete)
Q@S S.. SALDSA .
The second is that  Q4(Q) is indeed equal to @, and that for the general direct integral
of separable C*-algebras G = j:? Qx)du ,
@) =Q o Q) =G ae. , ke N .

But if this second relation is true we conjecture that the proof would require sophisticated

selection theorems beyond the scope of this paper.
® ) & — ® ) )
Note that Jx X du is a subalgebra of -[x Xdu= Jx B(H)de=B; andin

forthcoming work we have characterized 600(58) = -51 7(B) . Dependent on our

generalization of Wu's theorem [Wu], this extends ¢ result of [KLMR] (Theorem 3) and

shows that in this more spatious environment Q@ ¢ Q17(B). Also, we at least have

the following partial result which seems to be worth including.

Proposition 5.14: Let x +* Q(x) be a measurable field of C*-algebras and

D
Q= jx @(x)dp . Then
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Q4G) =Q = Q4QK) =G ae. .

Proof: By definition, there is a fundamental sequence of measurable ficlds of operators
(Ap)n=; such that

C*{Apx):ne N} =Q(x) ae. .
By considering polynomials of several variables with coefficients of the form r+1is,r,

s rational, we find that we may assume {Ap(x):n e N} isactually dense a.e. Now,

since 54(&) =@, it follows that for each Ap and for each z-:(n,m):-ini—m there

exists S(n,m) e Q4(Q@) such that ||S(n,m) - Apl| < . Hence

2n+m

IS(LM)(X) - ApGOll < —— and S(m)(x) € Q@) ae. Let

2n+m

Y(n,m) = {x: ||S(n,m) - Ap(x)|| < L and S(n,m)(x) € Q4(G(x)}

2n+m

and
Y={NYnm.
nm

Now let N=X\Y, pu(Y) = (X)) , u(N) = 0. It now follows that foreach xe Y,
Q4(Q(x)) = Q(x). Forlet xpe Y,Tpe Q(xq) andlet £>0. Choose n so that

. . ]
IAn(x0) - Toll < % . Go to the direct integral algebra and consider Ay = IX Ap(x)du .
There exists S(n,m) € Q4(Q@) sausfying {|S(n,m)(x) - Apx)|| < % for all

x € Y =X\N. Therefore ||S(n,m)(xg) - An(Xo)ll < % and we conclude that

IS(n,m)(x0) - Toll <€. Hence Q4(Q(xq)) = G(xq), as claimed.
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Remark: Notice how the separability of the C*-algebras was needed. The W*-algebras
ff(x) are not in general separable, so that this argument would fail. See however

Remark 2 at the end of this chapter.

We have given evidence to suggest that our techniques have definite limitations,
with an "upper-bound", as it were, being direct integrals of measurable fields of
C*-algebras. Is there a "least upper bound"? Can we extend our results and methods to
algebras larger than APN-algebras, and in doing so will we observe new phenomena?
Implicit in our Conjecture at the end of this chapter is that the answer to the second
question is "Yes". We in fact produce a family of algebras which are between the APN-
algebras and the direct integral algebras and which appear to be tractable. In response to
the first question, as mentioned earlier, these algebras seem to be optimal with respect to
inclusion in the direct integrals.

We now give the motivating result, which we will prove shortly.

Proposition 5.15: For a separable C*-subalgebra @ € B(#), the spatial tensor
product S(X,1) ® @ can be identified with (equivalence classes of) bounded
measurable functions F: X — @ for which the essential range, essrg F, is

sequentially compact.

With this proposition in mind, let x = Q(x) be a measurable field of canonically

represented AF-algebras, so that

f: Gx)du < Jf B(Ho)du, Hx) ¢ Ho ae.

We then define the compact direct integral to be

©
§f Gx)dp = {Fe Jx Q(x)du :essrg F is sequentially compact in B(Hq)} .
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Our conjecture is that the set Q4 of such an algebra is dense if and only if
Q4(G(x)) is dense almost everywhere. Note that if G(x) = Qg, a fixed AF-algebra,
then the conjecture holds by Propositio:: 5.15 and Theorem 4.12. Soif A(x)=X ae.
then

§;° X du= LX) ® G
for which we already know that @4(@) = G . Using the alternate characterization of
@ , as afforded by Proposition 5.15, we give a new proof of this fact (Corullary 5.20).

It is this proof which we hope will extend to the general compact direct integral of

AF-algebras. To present our results, we begin by establishing Proposition 5.15.

Lemma 5.16: Let Aj,...,Ape B(¥), ¢1,...0n€ L=X,t) and £>0. Suppose
there exists Te B(H) such that
®
61 ® Al + oo+ G ® A,,-jx T duf] <€

Then there exists Aj,....Aq € C such that

IA1A] + ... +ApA - Tl <e .

Proof: The conditions holds if and only if
[o1(x)A1 + ... + On(x)An - Tl <& ace.
Let V' be the linear span of {A],..,Ap},and F:(Xu) =V by

n
F(x) = z 0i(x)Aj. Wethenhave essrgFC 1 andforall Be essrgF,
1=1

[IB-T|[ < €. The result follows.

.. . &
Proof of Proposition 5.15: First, suppose Fe Lo(X,3) = -[x Gdu with essrgF

sequentially compact in G . Without loss of generality, |F(x)|<1 a.e., hence
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esstgF C ball@. Let €>0 and O = {Bg(Ap) :ne N} where {Ap:ne N} isa
countable dense subset of ball @. The family O is a countable open cover for ball @
and hence for essrg F C ball G. Therefore, there exists ni,...,nk such that

essTg F Q Be(An) U ... U Be(Ap) -
Therefore

F(x) € BE(Anl) U..uU Be(Ank) a.e.
But F is measurable, therefore F'l(BE(Ani)) is measurablein X ,1=1,...,k. Let
Yi=F1(Bg(Ap)) and define Fe by

Fe(x)=A1 , xeY)

Fe(x)=A2 , xe Ya\Y; .

i-1
Let %; be the characteristic function for Y; \ (.Ul Yi) . Then
J:

Fe=%1A] + ...+ XnAne LX) 0 @,
the algebraic tensor product, and by construction

[IFe - Fll <€ .
&
Therefore the set {F e [x Qdu:essrgF issequentially compact} is contained in

LoX,1) @ @, the spatial tensor product.

To prove the reverse inclusion is a little more complicated. Suppose
Fe D=X,n) ® @ and let € > 0. Then, by definition, there exists Fe =01 ® A +...
+0np® A, suchthat [[F-Fg]l<e. If Te essrgF then the measurable set
{x :|IF(x) - T|| <€} has positive measure. Therefore, {x :||[Fe(x) - T]| <2€} also has
positive measure. By the previous lemma, there exists Aj,...,Ap € € such that
[R1At + ... + AnAn - Tll <2¢ . Butsince € >0 was arbitrary, it follows that for each
£> 0 there exists a finite dimensional linear subspace V¢ € @ such that

d(T,Ve) <€ forall TeessrgF.
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Now, let {T,:ne [} beasequence in the essential range of F, and let g = % .

From the above discussion, for each k € N there is a finite-dimensional linear subspace

Vi € @ and ascquence AF,A% AX.. in Uy such that

”Ai‘ 'Tn Il(l—l(- , n=123,... *)

By forming the linear join of successive spaces, we assume that V1 € V2 €

V3 ¢ ... . Now consider the following diagram:

Al A} A} L. e v
A} Al A ... eV,
A} A3 A ... « V3

where for each k, the column AX —k>Tn uniformly (see (*)).

Since the sequence Ai,A'z,A;I;,... is contained in the finite-dimensional vector

space Vj, it must have a convergent subsequence ALI,ALZ,ALS,... . Similarly, the

sequence Agl,Aﬁz,Aﬁy... has a convergent subsequence A,zljl,Aﬁjz,Aﬁjy... .

Iterating this process, we obtain a sequence of convergent subsequences
AX L ske Uy .
tele e
We claim that the sequence  {SK:ke N} isconvergent. To prove the claimlet £>0.
Then by (*) there exists m such that

1 ¢ '
—< = and k.EZm:IIA:—Af,I]«g- forall n .
m

But
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[1Sk st =18* ~ Ak + Ak - Al £ AL 8¢
SISk~ ARI+IIAY - ALp1+11AL -8
si|sk-A§1|+§+||A§—s‘1| .
But n can be freely chosen. Choose n such that
;|S“-A‘,§||<§ and ||S¢- ALl <§.

(This is possible because of how the convergent subsequences have nested indices.)
Hence, the sequence {SK:k e N} is Cauchy and therefore convergent, with limit S .

Taking the diagonal terms it follows that

k
Ar. . — S
nj.dk-1k  k
and hence that

T,. . — S .
Ajl.jk-1k K

So the sequence {Tp:ne€ N} hasaconvergent subsequence and essrgF s

sequentially compact. The claim is proved and the theorem established.

Corollary 5 17: (This is really a corollary to the proof.) Let @ be any Banach space.
Then 8 C ball @ is sequentially compact if and only if for each € >0 there exists a
finite dimensiozal linear subspace V¢ € Q@ such that

d(T, ballV¢) <e forall Te &.

Corgllary 5.18: Thealgebra L>=(x) ® X can be identified with the (equivalence
classes of) bounded measurable functions F: X — X such that for each £€>0 there
exists ng(e) sothat n2ng implies [|PoF(x)P, - F(x)|| <€ ae., where Py is the

canonical corner projection.
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Proof: If F:X ~ X is measurable and has the given property then by the proposition,

Fe L~(X)® X . Ontheother hand, if Fe L°(X) ® X then essrgF is
sequentially compact. Let € >0 and Oy ={Te K :[|PyTP,-T|[ <€} . Then

U On = X . Therefore there exists ng such that essrg F ¢ Op, and the result
n

follows.
rollary 5.19: Assets, L°x) ® T, = L=(x) ® Mm,.

Corollary 5.20: Let X be the algebra of compact operators. Then QuL=X) ® K)
=LeX)®X.

Proof: Let Fe LX) ® X and £>0. Choose n such that
IPaF(x)Pn - F(Q)Il < 5 aee.

and set
G = pnFPn .
By Theorem 7.20 [R&R] there exists a unitary Uy in Po(L2(X) ® X)P, such that

/¢l *’ 3\

G'=U,GU, =

Perturb the diagonals ¢;.1=1,...n , toobtain G" such that
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@ G" =

() G" isinvertible in Pa(L=(X) @ X)P,
and i) IIG'-G"l<3%
Now choose me N and a measurable function { satisfying £ <{{(x)|<% a.. and

Wn(X)eo e Wn(X)Cx)™ > 0 a.e. Thenlet

fwl * | 3\

0 0

0 Wn
G
g = 0 ._'(m) 0
g

0 0 0

\ /

so that by Theorem 1.8
@ H'e QaPrsm (5=x) ® K)Prem) € Qa(L=(x) ® X)
and (i) JH"-G"[<3
But now UpH"U*pe Qu(L=(X) ® X) and
IIF - UnH"U*qll <[IF - GIl + ]IG - UgH"U*pll
< % +JU*,GUp - HY|
+ |G’ - H"||

3

<§+IG - Gl +1IG" - H'l
£
3

A

+ £ +

W
(PO

=€ .
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We conclude that GQg(L2x) @ X)=L=x)® X .
We conclude Chapter S with the formal statement of our conjecture on compact
direct integrals. A special case of this is when the measurable field of AF-algebras comes

from a field of coherent systems, or an APN-algebra.

Conjecture: Let (X,u) be a standard o-finitc measure space and suppose that
x > (Q(x),#(x)) defines a measurable field of represented AF-algebras. Then with

Q- §f Qx)du
Q@) =0 o QuEx)=Qx) ae.

Remarks: (1) Suppose that x +» Q(x) arises from a measurable field of coherent
systems. Then there is a fundamental sequence (A j)}‘,’__l such that Aje 355 Gx)du ,

forall j. This is because the sequence can be chosen “rom the polynormal subalgebras.
But now the same proof as for Proposition 5.14 shows that if 54(@) =Q then
QR = AK) ae.

(2) Another proof tha: Q4(®) =G = Qu(Qx) = Q(x) ae. is based on
the theory of lifting:

Let (X,n) be standard and H be a separable Hilbert space. Let L*(X,11) be the
bounded measurable functions on (X,j1) and L*(X,4) be the canonical quotient space.
By Theorem 3 (Chapter 4) of [I] there exists a lifting p : Do 1) = LX), a *-
isomorphism such that ¢ ~ y = p($) = p(y) .

Now recall that in regards to decomposable operators, amap T: X,u) = B(H)
is a measurable field of operators if the map x = (T(x)E,n) is a measurable map of
(Xp) = C forall Ene H. In[I},amap T: X,u) ~ B(H) is said to be weaxly
measurable if for each continuous function h: B(H) = C, heT:X - C is
measurable. Since forcach Ene H themap B(H) — C defined by S — (SEn)
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is continuous, and for a measurable field of operators, x + |[T(x)|| is measurable, it

follows that these two notions coincide here. Furthermore, in the norm topology

B(H) is a completely regular metric space. Therefore, with
<]
C={ -[X T(x)du less rg T is compact]

and
LA, BHE) = {T: (Xn) = B(H)IT is measurable and
rg T iscompact)
we obtain, by Theorem 7 of [1], a unique lifting p': C — L2 X,B(H)) associated
with p. Using the field of a.e. defined *-homomorphisms C N LE(X, B(H))
ev(x)

——~— B(#H) rogether with the fundamental sequence (A );-; we can now show

that Qa(@)=Q = Q4QK)=CRK) ae.



oncluding Remarks

In this thesis we have been primarily concerned with C*-algebras built from finite
dimensional C*-algebras. The constructions have included tensor products, direct

integrals and direct limits. There is a convenient diagram which relates the various

algebras:
_[:f M ,dp ﬁeﬁ(x)du
:m,,/ \APN/ j}f G (X)WOTdy
\ e / \jf _

In fact we did not concern ourselves with the last algebra in the diagram
@ ———
(-[x Q (X)WOTdp) , for it is intrinsically infinite dimensional whenever Q(x) is not

finite dimensional. For instance when Q(x) = X, @ (X)WOT is the non-separable
space B(H) and we obtain the decomposable operatorson L2X,u) @ € (H
separable and infinite dimensional). What about these "larger” algebras, where “"atoms”
suchas B(H) are permitted? In the case where X is a singleton, we obtain just
B(H), for which Wu characterized Qo(B(H)) = Q18(B(H)) and showed that if
G is the group of invertible operators then Qo= G . (See [Wu,2]). In [KLMR] we
find a proof that @' = P, where it is also shown that .. coincides with -'55 .
Extending these results to decomposable operators and larger classes of algebras is the
content of our forthcoming research. Some of the algebras under consideration can be

represented by a diagram much as for the present thesis:
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5 Batw e arod
/ \ / & —
B(H) ACIN jx G (X)VOTdp
ACD — \j‘f G(x)du/

Definition: (a) We call a type I von Neumann algebra centrally discrete (CD) if it is
n
isomorphic to a (possibly infinite) direct sum ? B(H),1€n<eo,

(b) We call atype I von Neumann algebra centrally 1-nommal (CIN) if itis

®
isomorphic to a (possibly infinite) direct sum ® [ B, 1Snse.
1

Note: Iz the diagram above, the "A" in the acronyms stands for "approximately”. So an
ACD algebrz is a direct limit of CD algebras, etc.

In this context, where H is infinite dimensional, we observe new phenomena,
and the proofs usually require different techniques. For example, to gencralize Wu's
theorem and so obtain a characterization of P.. for the decomposable operators we
consider measurable fields of unbounded operators. Our proof yiclds spectral
information for measurable fields of unitary operators and is related to the rcsuits of
Fillmore [F] and Azoff and Clancey [AC]. (Fillmore extended the Halmos-Kakutani
factorization theorem to properly infinite von Neumann algebras, while Azoff and

Clancey dealt with direct integrals of normal operators in the algebra B(H) )

o0
Note that in considering infinite direct sums, such as @ B(#), certain
)

subtleties arise, such as how a given operator relates to the Calkin algebra of

B( z@ ). To deal with these algebras and to obtain generalizations of Theorem 3 in
1

[KLMR] to other C*-algebras, we suggest a generalized index map will be relevant.
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In view of our results so far, further algebras for study would be von Neumann
algebras of types Il and 1II. However, important C*-algebras noticeably absent from our
paper are those of the form TN (C(X)), e.g. My(CESN) or My(C[0,1]). As already
pointed out in several remarks, there are crucial features of continuity which require
attention. For these questions we have begun to sketch out possible (geometric)
techniques which could be interesting in their own right. As well, we are on the way 10
obtaining some continuous selection theorems, of which one application would be a
topological explanation of Sourour's factorization theorem [S].

We are hoping that the geometric approach will allow precise formulation of a
new invariant for C*-algebras. For a unital C*-algebra @ , this will involve a length
function for the multiplicative group Po(@). (Recall that P (M= Py,
Poo(Tp)= Ps,n22 and P(B(H))= P17, although "17" may not be optimal.
The K-groups give Kg(IMM)=Ko(Mp)=Z, Ky(Mp=Ki(Mpy =0,

Ko(B(H)) =K (B(#H)) =0.) Basically, since products of positive invertible
operators form a normal subgroup of the connected component of the identity, the theory
of Lie groups and Lie algebras will be appropriate when the algebra (or dense subalgebra)

is sufficiently smooth. We hope that this will be a rich line of enquiry.
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