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Abstract

In order to be used effectively by managers, decision support systems (DSS’s) which
use complex models require the assistance of human intermediaries in formulating,
applying and managing models and in explaining and interpreting their output.
Expert systems techniques offer ways of incorporating intermediary functions into
DSS’s so that they can be used directly by managers who are not modelling experts.

This dissertation reports on a project to integrate expert system and financial
modelling techniques in a DSS for corporate debt planning. The system, called
MIDAS (Manager’s Intelligent Debt Advisory System), supports hierarchical plan-
ning in which a stochastic linear optimization model suggests a borrowing plan
based on the user’s problem description, the plan is modified using heuristics in-
corporated into the system, and stochastic simulation and (deterministic) cash flow
projection are used to test the detailed implications of the resulting plan alterna-
tives. The system is designed to assist the user in task selection and execution;
model formulation, solution and modification; result analysis; and result explana-
tion and interpretation.

MIDAS’ design is based on five guiding principles: frame-based knowledge rep-
resentation, object-oriented modelling, spreadsheet-oriented financial model struc-
tures, separation of knowledge and control or reasoning, and integration of models
and heuristics through an underlying domain representation. A prototype system
has been implemented which incorporates these principles for simulation, user assis-
tance in task selection, and output management. Detailed design descriptions and
documentation are presented in the dissertation. The research demonstrates the
feasiblity of (a) hierarchical debt planning supported by multiple complex models
and heuristics and (b) knowledge-based decision support for debt management. It
also suggests a number of further research questions related to intelligent model

management and explanation.
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1

Introduction

The ideal decision support system (DSS) provides integrated, multifunctional
support to decision-makers in situations in which the decision process is not prede-
fined or ‘structured’. Its data and modelling components are integrated through a
friendly user interface to form a user-directed, flexible environment within which the
decision-maker can easily define many potential problem formulations and solutions
and explore their implications.

Decision support systems for financial planning rely heavily on mathematical
models for calculation and measurement of the profitability and risk of identified
alternatives under uncertain future conditions. These systems, along with other
model-based DSSs, would be most useful if they could provide flexible, easy-to-
use facilities for selecting, setting up, running, modifying and interpreting auy of
a number of models relevant to the problem areas under consideration. In real-
ity, however, financial DSSs often consist of single models, usually deterministic
simulations, written in equation-oriented modelling languages or spreadsheets and
databases linked through file transfers. More complex models, rarely used, are han-
dled by human intermediaries who must set up, run and interpret the models before
they are useful as decision support tools. The technology has not yet matched the
vision.

A number of researchers have recognized the potential for expansion of D3S
capabilities using expert systems techniques (Turban and Watkins 1986; Elam and
Konsynski 1987; Kowalik 1987). By capturing human knowledge and reasoning,
these techniques allow us to begin to incorporate a greater degrec of human expertise

in DSSs. In complex modelling situations, we should be able to begin to model

1



2

the intermediary who stands between the user and the DSS, allowing the domain
professional but system and model novice user to directly model problem situations
and interpret the results,

This dissertation reports on a project exploring these possibilities for a domain-
specific financial decision support system. The resulting system design supports
direct operation by a novice user of deterministic and probabilistic optimization
and simulation models. The proposed system reduces and in some cases eliminates
the need for a human intermediary in complex financial modelling by combining
symbolic and numeric processing tc integrate domain and modelling knowledge,
configure and manipulate models, integrate multiple complex models and rule-based
reasoning, manage large volumes of output data, assist the user in deciding the se-
quence of task analysis steps, perform parametric and key factor impact analyses
and interpret model results. Major sections of the proposed system have been pro-
totyped, showing the feasibility of the proposed design. The research is important
because it demonstrates integrated knowledge- and model-based debt management
decision support, illustrates the complementary roles played by domain knowledge,
models and heuristic knowledge in a system of this type, provides specific solutions
to key model management issues in this domain and gives us some insights into

general requirements and design principles for intelligent decision support systems.

1. Methodology

The research was carried out as a case study in which a design and proof-of-concept
prototype system were developed for a specific decision situation within a coop-
erating corporation (‘the Corporation’). The project followed the major steps in
the generic systems development life cycle (Whitten et al. 1989, p. 89) modified
to allow for (a) modular, evolutionary development of the system, beginning with
the simplest and most user-demanded features, and (b) the use of prototyping for
detailed design and system construction. These modifications were made to allow

for the unexplored nature of the problem and of the development tool's capabilities



as applied to problems of the type being studied.
Project steps were as follows:

1. Scope and feasibility survey. Initial discussions with Corporation staff and Dal-
housie faculty led to a high-level problem description, project scoping and deter-
mination that the problem could be investigated on the Explorer/KEE hardware
and software available in the Dalhousie School of Business Administration. Re-
sults of this step were presented in a project proposal (Ireland 1987).

2. Analysis of current system. The present system of debt planning was described
and analyzed following detailed discussions with Corporation staff and their
financial advisors. Results are presented as part of Chapter 3 of this dissertation.

3. Requirements definition. Detailed discussions with Corporation staff, their finan-
cial advisors and Dalhousie modelling experts led to development of a detailed
problem description and functional requirements for the desired DSS, presented
in Chapter 4.

4. Identification of development priorities. In order to narrow the scope of the
prototype to fit time and resource limits, priorities for system development were
identified based on Corporation needs, availability of expertise and apparent
ease of implementation. These priorities are listed in Chapter 4.

5. Iterative system prototyping. In an experimental mode, prototypes of system
modules were developed, tested and modified based on feedback from users and
advisors and on experience with the development tools. The sequence of proto-
type development and experience gained is described in Chapter 9.

6. Analysis of ezperience and results. Based on our development experience and
feedback from Corporation staff, key design and performance factors were iden-
tified and described; these form the basis for some suggested design principles
for complex model-based DSSs for novice users discussed in Chapter 4. The
appropriateness of the hardware and software used for the project was analyzed

and is discussed in Chapter 9.



2. Problem domain

The problem domain under consideration is corporate debt planning for the Cor-
poration, a Canadian Crown-owned electric utility. The Corporation is entirely
debt-financed, so improved borrowing decisions will potentially result in significant
dollar savings to the Corporation and taxpayers. The research system was devel-
oped to support the formation of long-, medium- and short-range borrowing plans
and to assist in making individual borrowing decisions on short notice. The primary
users of the system are the Corporation’s Treasurer and Treasury staff, who are not
trained in financial modelling and who have not previously undertaken extensive

model-based analysis prior to making borrowing decisions.

3. Research contributions

Overall, this research demonstrates the feasibility of using expert systems represen-
tation and reasoning techniques to add human expertise to a complex model-based
DSS. Its specific contributions are:

1. Articulation of a hierarchical approach to corporate debt planning applying
stochastic programming, heuristic reasoning, simulation modelling and cash flow
projection in a complementary manner.

2. Development of detailed designs for integrated frame- and rule-based modelling
and system support, including task selection; model formulation, solution and
modificaticn; and output data management.

3. Development of a technique for integration of multiple model types and heuristic
reasoning through a common, object-oriented representation of domain objects.

4. Development of a design approach for user modelling assistance, including para-
metric and key factor impact analysis and explanation of the results of cash flow
projections and financial simulations.

5. Articulation of design principles for dynamic stochastic portfolio management

decision support systems for users who are not modelling experts.



4. Chapter organization

The body of this dissertation begins in Chapter 2 with a review of relevant litera-
ture in decision support systems, expert systems and model management. Chapter
3 describes the problem domain in detail and presents analytical approaches to
debt management. Chapter 4 gives an overview of the system architecture and is
followed by model specifications and detailed descriptions of major system compo-
nents in Chapters 5 through 8. Chapter 9 presents a system assessment, including
development experiences, performance characteristics and user feedback; Chapter
10 gives a sample planning session using the system. We close in Chapter 11 with
a summary of conclusions and insights gained from the work, as well as suggestions

for extending the research.



2

Background and Literature Review

This project addresses several issues in the application of artificial inielligence
(Al) to modelling and model management in decision support systems. In this
chapter we review the relevant DSS and Al literature, beginning with an overview of
the performance goals and current status of modelling and decision support systems
in general and in financial planning. We continue with a brief description of Al
techniques and their potential for application to DSS and close with reviews of the
needs for and research to date on the specific functions considered in this research.
A detailed description of the problem domain and appropriate modelling techniques

for the project is deferred until Chapter 3.

1. Decision support system concepts and goals

Decision support systems were first identified as a distinct class of computerized
systems by Scott Morton under the name ‘management decision systems’ (Scott
Morton 1971). He described them as ‘interactive computer-based systems which
help decision makers utilize data and models to solve unstructured problems’. Today
a universally accepted definition of DSSs does not exist, but they are generally
agreed to have the following goals and characteristics (Keen and Scott Morton
1978):

« incorporation of data and models

« assistance in decision-making in semistructured tasks

« support for, rather than replacement of, managerial judgment

« improvement of the effectiveness of the decision process, rather than its effi-

ciency
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« operation under manager control, without automating the decision process

or imposing solutions.

In his classic paper, Sprague (1980) lists performance objectives for the ideal
DSS as:
« support for making semistructured and unstructured decisions
« support for managers at all levels
« support for interdependent as well as independent decisions
« support for a variety of decision making processes
« support for all phases (intelligence, design and choice) of the decision process
as described by Simon (1877)

» ease of use.

However, no one system has all these characteristics, and the performance crite-
ria for a given system depend wholly on the task, organizational environment and
decision maker(s) involved.

Sprague also describes the DSS architecture that has come to be generally ac-
cepted. A DSS consists of the following components:

« a data subsystem for storing, managing and reporting data and data relation-
ships

« a modelling subsystem for creating and managing models that are linked to
the database and used for analyzing problem situations

« a dialogue management subsysiem for linking the user in a flexible and usable

manner to the other subsystems.

In practice, the design, functions and relative importance of the data and mod-
elling components in a particular DSS vary with the requirements of the system.

Alter (1980) categorizes DSSs as data based or model based, depending on the
relative degree to which the system supports data analysis or modelling. The top

priority for model based DSSs is to provide an accessible, flexible, user-controlled
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modelling environment, linked to databases to smoothly handle modelling and sup-

porting data retrieval.

2. Use and limitations of financial models

Financial DSSs described in the literature are usually model-based. Financial man-
agement decisions are often, although not exclusively, concerned with acquiring or
employing resources so as to maximize wealth; examples include capital budget-
ing, capital structure decisions, security valuation, lease versus buy decisions, bond
refunding, cash budgeting and credit analysis, investment portfolio management,
capital debt management and tax management (Heymann and Bloom 1988, pp.
108 and 118). An extremely common application is formulation of short- and long-
term operating plans (Mclnnes and Carleton 1982). Financial models are used in
these DSSs to calculate the profit, risk or financial statement implications of pro-
posed problem solutions or to suggest optimal problem solutions based on such
measurements.

A review by Shim and McGlade (1984) summarizes a number of surveys on the
use of financial planning models in the U.S. and U.K. The use of financial models
began with large-scale simulations in major corporations in the early 1960’s (Naylor
1983); by 1982, 86% of Fortune 500 companies were using some type of financial
planning model (Klein 1982). (The subsequent impact of microcomputers has un-
doubtedly expanded model use even further.) The most common applications found
al surveyed companies were financial forecasting/planning and pro forma financial
statement preparation; models were useful for testing decision alternatives, ‘what-
if” analysis, sensitivity analysis, analyzing best/worst case scenarios, goal seeking,
optimization, simulation and report preparation. Financial models are commonly
categorized as simulation or optimization models and as probabilistic or determinis-
tic (Hammeond 1974, Power 1975, Grinyer and Wooller 1975, McInnes and Carleton
1982). Although many types of models can be applied to financial problems, most

corporate models found in the surveys were deterministic simulations (cash flow
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or profit projections). Probabilistic considerations were generally not incorporated
into models and optimization was rarely used (Naylor 1983, McInnes and Carleton
1982).

Model use in DSS has presented many commonly recognized difficulties. These
arise from two sources: organizational factors associated with model development
and implementation and technical limitations of traditional modelling techniques.
Examples of organizational factors are lack of the manager’s involvement in model
development (Power 1975, Naylor 1976, Klein 1982) and his/her fear of loss of
control over decisions (McInnes and Carleton 1982); these are addressed in part
through a participative, evolutionary DSS development process (Sprague 1980).
Technical factors include:

o model limitations: simplification of reality, lack of flexibility, inability to
quantify important variables or relationships, inability to cope with discon-
tinuities; poor documentation (Naylor 1976, Brennan and Elam 19864, Hey-
mann and Bloom 1988)

« input limitations: data unavailability, excessive requirements, inability to
explicitly articulate goals and goal weightings (Naylor 1976, Mclnnes and
Carleton 1982, Brennan and Elam 19864)

o output and interpretation limitations: difficulty interpreting probability dis-
tribution output from simulations; inability to communicate results in a way
most likely to be understood by the user or to explain why results arc ob-

tained as they are (Brennan and Elam 1986a, Bryant 1987).

DSS design goals directly address these technical difficulties. DSSs are intended
to make models directly available to and controlled by managerial users (Keen 1980).
Ideally, a DSS uses multiple models so that deficiencies in one are compensated for
by strengths in others. Input is obtained directly from the DSS database, reducing
onerous user input activities. An easy-to-use interface increases the user’s control

over analysis and reporting. And results are to be reported in a choice of formats
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that are easier for managers to interpret.

However, significant gaps exist between the ideal DSS and the reality. Empirical
evidence suggests that although DSSs do provide a more congenial modelling en-
vironment, they are often not used directly by managers, but are instead operated
by staff intermediaries who carry out analyses and present the results to managers
for use in ‘off line’ decision making (Keen 1976, Andriole 1982, Hogue and Watson
1984). Some researchers believe that a trained intermediary who understands the
capabilities and limitations of a specific DSS is necessary for its successful use (Keen
1976, Alter 1980). However, Elam and Konsynski (1987) argue that the use of inter-
mediaries limits the benefits of DSS use by reducing the manager’s control over the
decision making process; limiting the manager’s involvement in and commitment to
modelling; encouraging overdependence on modelling and insufficient attention to
exploration, interpretation of results and implementation; and restricting DSS use
to companies with the resources to support specialized technical staff. In their view,
the full potential of DSSs cannot be demonstrated until the need for intermediaries

is eliminated.

Because many are proprietary, detailed descriptions of innovative financial mod-
els and financial DSSs are not widely found in the literature. We therefore have little
direct evidence of the extent to which companies are overcoming the limitations of
financial modelling and DSSs identified above. However, there is overwhelming evi-
dence in journals and the popular media of the popularity of microcomputer-based
spreadsheet software, which principally allows users to directly develop determinis-
tic projections through a worksheet interface; the other major type of financial DSS
tool in common use is the financial modelling language, which allows more complex
simulations to be built using English-like statements (Turban 1988, pp. 183-186).
From this evidence we can guess that the prevalence of deterministic projections
in financial modelling has not changed significantly since the most recent reported

surveys. Spreadsheets and modelling languages provide flexible user interfaces for
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model development, so the need for intermediaries may be reduced for these types
of models; however, optimization and probabilistic models appear to be poorly ac-
cepted and to need human assistance if and when they are used. Financial DSSs,
therefore, must incorporate intermediary functions if more powerful models are to

be accepted as standard management tools.

3. Overview of artificial intelligence and expert systems

Because they require human expertise for a variety of specific tasks, intermediary
functions have been suggested as promising applications of artificial intelligence
techniquesin DSS (Turban and Watkins 1986, Henderson 1987, Elam and Konsynski
1987).

Artificial intelligence involves the study of human thought processes and their
emulation by machine (Turban 1988, p. 312). Ezpert systems (ES) is a branch of ap-
plied Al in which computer programs use the knowledge and reasoning processes of
human experts to solve specific types of problems (Turban 1988, p. 321); expert sys-
tems techniques appear particularly useful for building more ‘human’ functionality
into decision support systems (Turban and Watkins 1986). The following overview
of expert systems is based largely on Turban (1988) and Barr and Feigenbaum
(1981).

Current expert systems can solve limited-scope problems and provide simple
explanations. Examples of large-scale commercial expert system successes include
XCON, which configures DEC VAX computer systems (Waterman 1986) and a
system for handling unusual credit requests for American Express (Davis 1987).

Expert sytems differ from conventional programs in several ways. First, they
use symbolic rather than numeric processing. In common with other Al systems,
they store and manipulate lists of characters which may be numbers but also may
be words, names, or sentences expressing concrete or abstract ideas. Based on the
Newell-Simon model of human information processing (Newell and Simon 1972),

symbolic processing allows Al systems to reproduce human reasoning such as, ‘If a
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company’s liabilities are greater in value than its assets, then it is bankrupt.’

Second, expert systems and other Al systems rely on heuristic rather than al-
gorithmic reasoning. Human experts routinely use heuristics, or ‘rules of thumb’,
to solve problems with which they are familiar; heuristic reasoning applies these
rules when they are useful in a situation, rather than on a predefined step-by-step
algorithm or routine which is independent of the characteristics of the particular
problem.

Third, expert systems separate knowledge from reasoning. Knowledge in an ES
includes facts about the problem of domain, procedures to be followed given certain
conditions, and rules about conclusions to be reached in certain circumstances;
this knowledge is stored using any of several knowledge representation techniques.
Generalized reasoning routines select appropriate knowledge and apply it to specific
problems. The types of knowledge representation and reasoning relevant to this

project are briefly described below.

3.1 Rules and rule-based reasoning

The most common form of knowledge representation in expert systems is that of
production rules, developed as part of the Newell-Simon theory of cognition. A
rule is an ‘If-then’ structure with condition and consequence components, e.g. ‘If
X is a full-time student, then X pays fees of $1800.” A rule is applied, or ‘fired’,
in solving a problem when its condition is satisfied by the facts of the situation;
in this example, the fact ‘Janet is a full-time student’ leads to the inference that
‘Janet pays fees of $§1800." A rule’s consequence can be a conclusion (fact), as in
this example or an action (procedure), as in ‘If X is a full-time student, then send
X registration information.’

A rule-based expert system solves a problem by applying a number of rules in
sequence; each rule modifies the problem’s facts until a solution is found or until no
more rules apply. Rule-based inference is done through either forward chaining or

backward chaining. Forwand chaining, the data driven approach, begins with a fact
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and applies all relevant rules to infer all possible conclusions; backward chaining,
referred to as goal driven reasoning, begins with a desired goal (consequence) and
searches through rules to attempt to support the goal through known or inferred
facts. Complex expert systems control rule-based inference through rule subgroups,
combined forwar¢ and backward chaining and meta-rules, which specify which

groups of rules to apply at given times.

3.2 Semantic networks

A semantic network represents factual knowledge about a problem through nodes
and links (Quillian 1968). Nodes and links are named; nodes represent objects or
concepts, and links represent relationships between pairs of nodes. Nodes can be
arranged in hierarchies of classes representing increasingly specialized object types.
The HAS-A link attaches facts to objects in the network, e.g. Bird HAS Feathers;
the IS-A link relates specific objects to classes of objects, e.g. Bismarck IS-A Cat.
IS-A links establish inkeritance for semantic networks, whereby nodes represent-
ing subclasses or individuals acquire the properties of their parent classes. Inher-
itance allows classification of unknown objects based on their observed properties
and subsequence inference of previously unknown object properties based on class

characteristics.

3.3. Frames and object-oriented programming

Frames are an extension of semantic networks in which nodes are rich data structures
using both declarative (factual) and procedural knowledge to represent potentially
complex objects or behaviours (Minsky 1975). A frame is a data structure repre-
senting a prototypical object, concept or situation; each frame consists of a group
of named slols or attributes. Each slot, in turn, has a name, value and several
facets which may include value constraints, default values, demons (procedures or
rules that fire automatically if the value is accessed or changed), procedures for

calculating slot values or other knowledge about the slot (Fikes and Kehler 1985).
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Frames represent object classes and instances (individual class members) through
inheritance networks. Objects are described as successively more specialized classes
which inherit the properties of their parent classes unless specifically overridden.
Instances inherit all the properties of their parent classes and also inherit default
values for attributes ihat are not specifically known. Reasoning with frames takes
place either through inheritance or expectation-driven processing, in which slot val-
ues are filled in to classify objects or situations and confirm expectations about
them. Frames are useful for modelling (see below) and for organizing knowledge in
complex problem domains; for example, CENTAUR (Aikens 1983) uses frames to
explicitly represent control knowledge for prototyrical situations to be diagnosed

and to focus the application of production rule sets.

Object-oriented programming (OOP) is an extension of frame representation
which uses frames to combine data and procedures in objects for modular system
organization and implementation (Stefik and Bobrow 1986, Tello 1989). Objects
have attribute slots which contain descriptive values and method slots which specify
behaviours or functions the object can perform on request. Like frames, objects are
defined in inheritance networks which pass both attributes and methods to child
subclasses and instances. In strict QOP, objects are entirely self-contained and their
data can only be accessed by their own methods. OOP originated with Xerox re-
search on graphic interfaces and provides techniques for building models and other

software using reusable, modifiable classes of program code.

Access-orienled programming is an extension of frames in which accessing or
changing data in slots causes demons to fire, performing procedures (Stefik et al.
1986). It is often used for simulations in which behaviours are automatically per-
formed based on monitored conditions. Object-oriented and access-oriented pro-
gramming are useful tools for model-based ezpert systems, which allow reasoning

from first principles about problems for which expert heuristics are not known.

Worlds (Filman 1988) represent sets of related facts such as the assumptions and



15

conditions that characterize a solution alternative for a planning problem. In an
object-oriented system, a world is essentially a copy of the knowledge base in which
all objects and attribute values are inherited unless overridden; it thus represents
a unique problem state which may be a variation of the original state. Worlds are
often used in conjunction with a truth maintenance system {TMS) which maintains
the chains of reasoning which justify facts found to be true in each world under
consideration. Worlds are useful for incremental construction of solutions for con-
figuration problems, hypothetical reasoning, exploring the implications of multiple

scenarios and reasoning with alternate sets of beliefs.

3.4 Problems addressed by expert systems

Ezpert systems are currently successful at solving complex problems in narrow do-
mains, often in situations in which either the required volume of knowledge exceeds
the scope of one individual or available time is too short for a person to effectively
solve the problem. Common ES task types include interpretation, diagnosis, moni-
toring, prediction, planning and design. Many model management and intermediary
functions fall into these categories; examples include diagnosing the type of model
to use in a given situation (Binbasioglu and Jarke 1986, 1987), designing a problem-
solving strategy (Sivasankaran and Jarke 1985), formulating a linear programming
model (Murphy and Stohr 1986, Lee et al. 1989} and interpreting model output
(Bouwman 1983; Kosy and Wise 1986; Wise and Kosy 1986).

4. Expert systems applications to intermediary tasks

The intermediary tasks which appear to lend themselves to implementation through
expert systems techniques can be broadly classified as either model management
tasks (Sprague and Carlson 1982) or user-model interaction tasks (Elam and Kon-
synski 1987).

Model management tasks are those which allow users to build, store, access and

use models within a computerized system, and to integrate multiple models where
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problems cannot be fully analyzed using single models. Sprague and Carlson (1982)
list the following model management functions as key for a successful DSS:
« the ability to create new models quickly and easily
« the ability to access and integrate model ‘building blocks’
« the ability to interrelate these models with appropriate linkages through the
data base
o the ability to catalogue and maintain a wide range of models, supporting all
levels of users
o the ability to manage the model base with functions analogous to data base
management (i.e. mechanisms for storing, cataloguing, linking and accessing

models).

The first three of these functions allow model formulation, modification and
integration regardless of the size and diversity of the ‘model base’ or its users; the
importance of the last two functions increases with the number of models to be
managed and the degree to which the DSS is a general support facility for many
members of an organization. All functions deal with technical aspects of model
building, storage, manipulation and solution within computerized systems rather
than with the application of models to problems.

User-model inleraction tasks are those which are required in order to effectively
apply models to real problems. These tasks, identified by Elam and Konsynski
(1987), are those which establish and describe relationships among problems, mod-
els and model results; examples are (a) deciding when and how to use particular
models to analyze problems, (b) evaluating model results to see how closely they
correspond to expectations, and (c) interpreting model results in problem-domain
terms. Human intermediaries accomplish these tasks using modelling knowledge
and meta-modelling knowledge; that is, knowledge about how to formulate, use or
interpret the models being used (Bonczek et el 1984). A full list of vser-model

interaction tasks is given in Figure 2.1.



17

This dissertation research focuses on two groups of tasks from the above cat-
egories: (a) model formulation, synthesis and integration, and (b) result analysis,
interpretation and causal explanation. These tasks were selected because they were
especially important to successful system use in the case study situation. The fol-

lowing sections of this chapter review current research on these tasks.

5. Model formulation

Model formulation involves both model specification (definition of the objective
function (if applicable), variables, coefficients and constraints and other mathemat-
ical relationships for a given problem) and instantiation (assignment of numerical
values for the precise problem being analyzed). As discussed in Chapter 3, the
problem domain and decision process for this research are limited to hierarchical
planning for long-term debt management using two types of mathematical mod-
elling (optimization and simulation). Each model type is highly complex overall;
moreover, both models must often be respecified and re-instantiaied in response to
changing problem requirements and assumptions. Model formulation for this sys-
tem must therefore provide great flexibility in handling complex models; it must
also provide extensive novice-user assistance because the intended system users are

not modelling experts.

5.1 Modular model specification

Model modularization and synthesis from reusable submodels are widely regarded
as promising means to achieve model flexibility and to leverage modelling efforts so
that modelling does not have to be continually carried out ‘from scratch’ (Sprague
and Carlson 1982, Henderson 1987, Elam and Konsynski 1987). Modularization
has long been used in the form of model subroutines in FORTRAN and other pro-
cedural languages and is now common as the basis for higher-level user-controlled
modelling. Page-Jones (1988) lists the following guidelines for system modulariza-

tion: top-down design, mazimum module cohesion (task singularity within modules)
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Formulation tasks

Formulate — Formulate a new decision model if an appropriate one
does not exist in the model base.

Explore - Explore ideas and analyze issues.

Choose - Choose an existing model from the model base.

Analysis tasks

Match - Ildentify and test (from a base of existing model structures)
the applicability of a model and its associated solution
approach to a particular problem.

Expect —  Detect, explain and suggest solutions for abnormal behaviour
based on user-supplied expectations about model behavior
and/or the history of the model’s utility.

Plan — Determine ways to perform analyses to reach predetermined
goals.

Cause - Identify causal relationships between model entities.

Recommend - Identify, evaluate and choose among potential courses of action.

Synthesize — Synthesize new models from model fragments that prove

locally successful.

Interpretation tasks

Explain — Generate explanatory models that provide intuitively reasonable
explanations for the model's results.

Interpret ~ Interpret the analysis solution or results in the context of the
problem semantics.

Present - Select appropriate report formats for requested information.

Figure 2.1 User-model interaction tasks: Opportunities for Al application.
Source: Elam and Konsynski (1987).
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and minimum coupling (data and function:l dependence between modules), adapted

from DeMarco (1978).

The four main design issues which must be solved in model modularization and
synthesis are module definition (including cohesion), module selection where a mod-
ule library already exists, communication (coupling) and control. Models requiring
sequential calculations are likely to define modules according to calculation task.
One example is the ACS system (Sivasankaran and Jarke 1985), which represents
individual actuarial formulas in a knowledge-based system for building and execut-
ing actuarial subroutines in response to a user’s problem statement. The WHIMS
system (Miller and Katz 1986) for discrete event simulation model building relies on

the user to define modulesin the form of procedural code for simulation calculations.

Because linear optimization models are defined by integrated matrices, they can-
not be decomposed into sequentially executed subroutines. Linear program (LP)
model building is therefore a complex process involving specification and linking
of matrix ‘building blocks’ expressing processes and constraints in the underlying
problem (Murphy and Stohr 1986); formulation from an underlying representation
of domain entities (Binbasioglu and Jarke 1986, 1987); or formulation from a com-
bination of structural and domain representations (Lee et al. 1989). The resulting

matrix is subsequently solved by an external solver program.

Systems which build models by selecting relevant modules from a submodule li-
brary use a variety of selection criteria which reflect the design goals of the systems.
Examples include execution cost (Sivasankaran and Jarke 1985) and mixed qualita-
tive and quantitative constraints (Dhar and Pople 1987, Dhar and Croker 1988). In
the LP formulators previously cited, problem descriptions in a knowledge base are
linked to equation specifications or matrix blocks; identification or construction of
the relevant problem description triggers selection of the appropriate mathematical

components.

For sequentially executed modules, communications must be specified so that
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correct data values and control parameters arc passed from one step to the next.
Communications usually take place either through common memory or database
access; links are usually defined through consistent input/output or attribute names,
either user-defined as in WHIMS or within the system’s module descriptions as in
ACS or Dhar and Pople’s PLANET. Binbasioglu and Jarke’s system links LP models
in sequence through common decision variables.

Module control requires mechanisms for choosing a feasible order and for calling
modules in the chosen order. Execution order is user-specified in WHIMS, and
control is handled through evaluation of templates. ACS chains calculations to
produce the least-cost derivation of desired output; solution plans are represented as
lists of formulas which are evaluated in sequence. More complex control mechanisms
utilize Al inference techniques such as forward and backwaerd chaining, connection

graphs, demons and scripts (Fedorowicz and Williams 1986, Dhar and Pople 1987).

5.2 Mode! instantiation

Model instantiation is the task of translating the model specification for a problem
into a complete model with all required data values. In the above systems, coefficient
and parameter values are retrieved through file reads (WHIMS) or database access
(ACS); where files or databases are used, external links or read mechanisms must be
established. Where object-oriented representations are used, necessary data is either
encapsulated within the knowledge base as object attribute values (Binbasioglu and
Jarke 1986, 1987; Dhar and Croker 1988) or eztracted from a separate database

using procedural code in methods or demons (Lee et al. 1989).

5.3 Current system limitations

The model formulation systems cited above demonstrate the power of modulariza-
tion for specific domains and problem types; however, each is limited in certain
ways. For example, the simulations referred to all appear to be deterministic; at

least, no mention is made of stochastic simulations in the reports. They therefore
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require less user-assistance expertise than do models which require sampling from
random-variable distributions.

Also, each system handles only 2 single model type of limited complexity. WHIMS
and ACS handle sequentially-organized formulas or simulation modules, the linear
program formulators cited construct only this type of model, and PLAN ET and its
extensions model production simulations. None addresses the issue of consistency of
assumptions, internal relationships and objective functions across multiple models.

As mentioned earlier, one goal of this research is to extend model formulation
capabilities beyond the limitations just described. Specifically, our goal is to con-
sistently and flexibly formulate (a) larger and more complex stochastic models and
(b) multiple model types in a single system while retaining the user-responsiveness

provided by these single-model systems.

6. Integration of multiple models and heuristic reasoning

DSS researchers have long recognized that management problems can rarely be
completely solved or even completely analyzed with a single model. For financial
management we have available many models with different strengths and weak-
nesses; the categorization into optimization and simulation model types gives us
two broad classes of tools.

Optimization models are tools for quickly considering all alternative solutions to
a circumscribed problem and identifying the optimal choice, in terms of a mathe-
matically defined objective; as documented earlier in this chapter, their complexity,
simplification of reality and ‘black box’ approach have limited their use among fi-
nancial managers even though they attempt to provide strong support for rational
decision-making through consideration of all factors. (Lane and Hutchinson (1980)
provide an interesting illustration of these difficulties for a bank portfolio man-
agement model; in this case, managers reacted negatively to ‘prescriptive’ decision
variable values but readily used the cost information in dual variable values to guide

investment decisions.)
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Stochastic simulations and deterministic projection models complement opti-
mization models; they can capture the interactions and relationships of a situation
in detail and in terms users can understand, and they support ‘satisficing’ (Simon
1977) or finding an adequate solution rather than the best one. As we have seen,
deterministic projections are by far the most commonly used corporate financial

models.

Because DSSs are intended to provide a rich, flexible problem-solving environ-
ment, support for and integration of multiple model types is an important DSS func-
tion. Multiple-model integration extends model synthesis considerations to larger
cooperating ‘modules’ in the form of full-scale models with varying objectives and
solution techniques. Consistency and communication are key design goals. Like
smaller model fragments, well-integrated models must be consistent in their as-
sumptions, parameter definitions and mathematical relationships and must remain
consistent when modified in response to changing problem requirements. Each
model must also be able to communicate its results to other models and to use their

results as appropriate.

Generalized techniques for integration of multiple models have only begun to be
addressed by researchers; a significant effort in this direction is the structured mod-
elling approach taken by Geoffrion (1987), Dolk (1990) and Dolk and Kottemann
(1990). However, working examples of multiple model integration are found in the
DSS literature. PROJECTOR (Meador and Ness 1974), for example, provides mul-
tiple regression, exponential smoothing, goal programming and optimization linked
through a common database. Another approach uses forecasting or statistical tech-
niques to generate parameters for optimization or simulation models (Dyer and
Mulvey 1983, Turban 1988). In a comprehensive financial planning system, Hamil-
ton and Moses (1973, 1974) integrate mixed-integer programming, deterministic
projection, econometric forecasting routines and risk analysis linked through a set

of eight databases maintained through an information management subsystem.
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Model consistency and communication (for example, ensuring that one model’s
output meets another model’s input requirements) are left to the user in these
systems. Users must therefore become familiar with modelling techniques and as-
sumptions or must use intermediaries, as we have seen previously.

Even with the use of several mathematical models, most management problems
cannot be fully captured and analyzed. Qualitative, judgmental and political factors
are not neatly expressed in mathematical algorithms yet are critical to successful
solution of management problems.

Because they usually encode rules and carry out heuristic reasoning, expert
systems techniques have been suggested as ways to augment models {or more com-
prehensive problem analysis. Turban and Watkins (1986) suggest the use of expert
systems as separate components in a DSS, sharing in or independently handling
specific steps in the decision process. One example is Lee’s Post-Model Analysis
Approach (Lee and Kang 1988, Lee and Lee 1987, Lec and Hurst 1988, Lee 1989, Lee
and Kim 1989), which uses rule-based reasoning to modify linear program results
to meet qualitative objectives. Other examples of such expert systems components
are found in a system for strategy formulation (Meador, Keen and Guyote 1984)
and the PLANPOWER expert system for financial planning, which combines pro-
jection with rule-based reasoning in producing personal financial plans (Stansfield
and Greenfeld 1987).

This research extends these results to demonstrate the integration of stochastic
as well as deterministic optimization modelling, simulation modelling, projection
and rule-based reasoning with consistency maintained by the system rather than
the user, allowing a novice user to operate all parts of the system without detailed

knowledge of their technical requirements.

7. Analysis of model results

Parametric analysis for optimization models and sensitivity and key factor impact

analysis for simulations and projections require knowledge about identifying key
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assumptions and appropriately modifying and re-executing models. Although these
analyses are often user-constrained, automatic parametric analysis (solving 2 model
with a series of values for a key constraint right-hand side) is an accepted feature
of many optimization systems (Turban 1988). An interesting example of sensitivity
analysis assistance in a DSS is found in a generalized business modelling system,
which not only varies parameter values on request but revises a plan automatically

when the variation causes a constraint to be violated (Dhar and Croker 1988).

8. Model explanation and output interpretation

Research cited earlier in this chapter suggests that a model is more likely to influ-
ence decisions if the decision maker understands the significance and limitations of
model output in domain terms. Two of the major tasks facing human intermedi-
aries are therefore (a) to explain the concepts, calculations, causal relationship and
limitations of models in terms understood by decision makers, and (b) to interpret
model output by translating results into the semantics of the domain (Brennan and
Elam 1986b).

Explanation and interpretation of financial models have been approached in
two ways in recent research, as described below: through qualitative (symbolic)
reasoning and through quentitative calculation tracing using r¢ presentation of the
specific equations comprising a simple model.

Ezplanation of model relationships and results for simple financial models in the
form of financial statements is demonstrated by Bouwman (1983). This system rea-
sons qualitatively with verbal descriptions of changes in financial figures over time;
its main goal is to develop a causal description for a company’s present condition.
The ROME system (Kosy and Wise 1986; Wise and Kosy 1986) explains resource
allocation plans quantitatively, using underlying mathematical equations describ-
ing known relationships in the plans; their system successfully identifies the most
important causal factors in a result and develops causal path descriptions for chains

of simple calculations.
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Both systems concentrate on relatively simple models in which relationships
can be causally traced in sequence. For the more complex models considered in this
research, the detailed tracing used in ROME may not be practical and a higher-level
description is needed which highlights key points and relationships. Brennan and
Elam (1986) point out the need to cut through excessive output detail in presenting
model results to managers; Bouwman'’s approach provides a useful starting point
in that it ‘chunks’ together complex relationships underlying financial reports and
uses the chunks as the basis for diagnosing and describing report changes.

Interpretation and explanation of more complex models has been addressed by
Greenberg (1987a,b, 1988; Greenberg and Lundgren 1989; Greenberg and Murphy
1989) in the ANALYZE system, which provides qualitative explanations of deter-
ministic linear program output for energy models. This system analyses an output
matrix by first referring to a syntax file of templates for translating row (constraint)
and column (activity) names into natural language; a semantic model then uses rules
to produce full descriptions of rows or columns and, in addition, analyzes patterns
within the matrix to identify infeasibility conditions.

Several proprietary expert systems explain rule- and model-generated financial
results for the purposes of financial planning or strategic planning. One publicized
example is PLANPOWER (Stansfield and Greenfeld 1987), although the design
principles and details used in this system are not available. Another example is PMS
(Lee and Kim 1989), which uses ‘because’ clauses in rules to generate explanations
for its rule-based modification of input and output for a quadratic programming

portfolio model.

9. The role of domain knowledge

One of the issues being addressed in this project is the degree to which domain
or problem knowledge can provide an underlying integrating structure for multi-
ple models and other forms of reasoning about a single problem. Al researchers

have realized the importance of specific domain knowledge in providing the ‘exper-
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tise’, manipulated with a generalized reasoning facility, for expert systems (Davis
1984). Similarly, the inclusion of domain knowledge in a DSS allows the system to
‘understand’ problem descriptions and map between them and appropriate mod-
els, results or explanations. Examples of domain-specific DSSs include ACS, an
actuarial modelling system which is able to formulate and execute problem-solving
plans using multiple models sequenced according to varying problem descriptions
(Sivasankaran and Jarke 1985); a production planning system which formulates lin-
ear programs based on object-oriented domain entity descriptions (Binbasioglu and
Jarke 1986); UNIK-OPT, which uses frame representations of domain and model
structure knowledge to formulate linear programming models for production plan-
ning and portfolio management (Lee et al. 1989); and the ANALYZE system men-
tioned earlier, which explains large linear programming models for energy policy
formulation.

This research investigates the use of domain knowledge for formulation and inte-
gration of multiple complex models—models more difficult than those so far found
in the literature. Geoffrion’s (1987) structured modelling approach is a generalized
modelling specification framework which proposes the use of operators to create
multiple models from a single object and relationship specification; this research

takes a similar approach, limited to a single domain.

10. Summary

Financial models provide information for managerial decisions, but they require
extensive modelling expertise to be effectively used. This conceptual and heuristic
knowledge has traditionally been found either in the manager or in intermediaries
who advise on model application, thus limiting the use of the techniques to situa-
tions where managers have advanced training or consultants are readily available.
This suggests that modelling expertise is 2 useful application of expert systems,
which provide knowledge representation and reasoning ability and serve to extend

expertise to locations where it is in short supply. A review of current research
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on the specific modelling assistance tasks of formulation, synthesis, integration, re-
sult analysis, interpretation and causal explanation suggests that while significant
progress has been made in providing these within DSSs, they have not yet been
made available for multiple types of complex models.

This research applies expert systems techniques to model formulation, integra-
tion, heuristic extension, manipulation, explanation and interpretation in a domain-
specific decision support system. In the next chapter we describe the problem do-

main and the types and extent of modelling support available for it.
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Domain Description

Debt is one of the two main sources (the other is equity) of funding for business
organizations in the capitalist economic system. Debts transfer funds from lenders
to borrowers in exchange for interest payments at stated rates and times, repayment
of principal (the amount borrowed) according to a specified schedule and other
provisions as explained below.

The corporate debt manager is responsible for choosing the amounts, types and
sources of debt utilized by the firm according to various corporate objectives. Coast
minimizalion within an acceptable risk level is usually the top concern, consistent
with profit maximization and stabilization for the firm (Brealey et al. 1986). Because
cost and risk are determined by future economic conditions as reflected in interest
rate movements, debt management is carried on in a highly uncertain environment
and relies on expert judgment as well as analysis.

This chapter first surveys the debt management environment, including debt
types and covenants, financial markets, cost and risk determinants and risk man-
agement techniques. I{ then summarizes the finance theorists’ view of the problem
and describes analytical approaches to assist in debt planning decisions. Finally,
the borrowing process at the Corporation is outlined and the roles desired for a
decision support system for the process identified.

The following descriptions of debt types, borrowing costs and risks are based on
material in Fabozzi and Pollack (1983) and Hunter (1986) and on personal discus-
sions with staff at the Toronto office of Scotia McLeod Limited.

28
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1. Debt types and covenants

The corporate debt manager can choose from a number of types of debt which vary
in their interest provisions, repayment terms, cost characteristics and restrictions
or privileges for the borrowing corporation. In any debt transaction, both the bor-
rower and lender face certain risks (variability of costs or returns); individual debt
provisions often shift risks from lender to borrower or vice versa with a correspond-
ing movement in expected cost or return. Borrowing risks will be discussed in more

detail later in this chapter; major debt types used in Canada are described below.

1.1 Short-term debt

Short-term debt instruments are generally defined as loans which mature (are re-
payable) in one year or less. (This definition may vary, however; for example, the
Scotia McLeod short-term bond index measures returns on bonds having one- to
five-year maturities.) Short-term securities with low risk of default are traded in
what is referred to as the money market; the two common corporate money mar-
ket instruments are commercial paper (unsecured short-term notes from the most
credit-worthy corporations) and bankers’ acceptances (short-term notes guarantieed
by banks). The money market has no formal organization but operates through
dealers and brokers who specialize in particular types of instruments; its operation
allows firms to adjust their liquidity positions by investing surplus cash and borrow-
ing to cover short-term cash deficits. Commercial paper and bankers’ acceptances
are issued at a discount from face value, with interest effectively paid when the full
face value is repaid at maturity.

Outside the money market, corporations also obtain short-term debt through
bank credit and trade (supplier) credit; these credit arrangements are often secured
by receivables or inventory and usually require periodic interest payments at either

fixed or floating rates.



30

1.2 Intermediate and long-term debt

Intermediate-term debt generally includes debt with maturity of between one and
ten years, although this definition, like that of short-term debt, varies. (The Scotia
McLeod mid-term bond index, for example, measures returns for five to ten-year
bonds.) Long-term debt is generally considered to include maturities greater than
ten years.

Intermediate and long-term debt instruments are traded in capital markets and
have numerous contractual forms. Publicly issued corporate bonds are initially sold
in units of $1,000 (referred to as par value) by dealers acting as underwriters and
are traded in secondary markets. Each bond issue is overseen by a trustee (bank
or trust company) who supervises the initial sales and then acts as a watchdog
for the bondholders to ensure that all provisions of the bond indenture (contract
between issuer and investors) are carried out. Bonds are often secured by liens on
all property of the issuer. Unsecured bonds are called debentures. Bonds are issued
with term (time to maturity) of from one to thirty years. Most bond issues provide
for semiannual or annual interest payments at a rate (the coupon rate) fixed in the
bond indenture; the actual price at which each bond unit is sold is higher or lower
than face value to adjust the bond’s return to the investor to the current market rate
at the sale date. Zero-coupon bonds (also known as original issue discount bonds)
pay no interest and are issued at discounts reflecting the market interest rate at
the time of issue; because accrued income on these bonds is taxable to holders even
though no cash flow is generated, the market rate for zero-coupon bonds is higher

than for a comparable coupon bond.

Corporate bond indentures include numerous provisions for repayment and re-
funding. Call and sinking fund provisions are most common. A call provision allows
the borrower (bond issuer) to repay part or all of the outstanding amount at pre-
specified dates at stated premiums over par value. Call provisions sometimes state

that bonds may not be called in order to refund at a lower interest rate, although
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they can be called for repayment from surplus cash. A call provision which docs
not resirict refunding lowers risk to the issuer, since it allows the issuer to take ad-
vantage of future lower interest rates; it increases risk to the lender since the bond
contract may be terminated before maturity. Bonds with call provisions the-efore
generally have higher coupon rates than comparable noncallable bonds. Call provi-
sions are often deferred so that a call cannot take place during the first five or ten
years following the issue date.

A redemption or relraction provision allows early retirement, at stated dates and
at stated discounts, of the bond at the option of the bondholder (lender). It enables
the bondholder to reinvest should interest rates rise and results in lower cost but
greater risk to the issuer.

A sinking fund provision requires the issuing corporation to either accumulate
funds for repayment at maturity or to periodically redeem bonds before maturity.
This reduces default risk and lowers the coupon rate.

A mortgage is a type of long-term debt secured by specific assets, obtained
through private placements, suppliers or banks. Generally mortgages are repaid in
blended peyments which amortize principal and interest over the term of the loan.

Recently new types of debt have been designed to fill market gaps; one example is
the consumer savings bond with a guaranteed minimum interest rate and guaranteed
repurchase price, both of which reduce the risk of the investment compared to other
alternatives available to individuals.

With minor variations, these types of debt may be found in both domestic and
foreign countries, in foreign currencies or in domestic-currency debt traded in foreign

markets (Euro-Canadian debt).

2. Borrowing costs

Debt financing incurs costs for interest, transaction costs and, if applicable, foreign
ezchange, each of which varies with market conditions and administrative and legal

requirements.
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2.1 Interest costs

Interest costs for a given time period are calculated as an interest rate for that period
times outstanding debt principal. Interest-rate theories explain the general level of
interest rates in terms of the supply and demand of loanable funds, a liquidity
premium and the inflation rate; in practice, general rate levels are also affected
by market expectations about economic, political and social conditions that affect
dealer and investor action and consequently interest rates.

The interest rate for a debt may be thought of as having two main components:
the risk-free rate for that maturity and the spread between the risk-free rate and the
rate for the debt. The risk-free rate for a given debt term is the rate for a govern-
ment debt security with that term. Risk-free rates vary with maturity (repayment
horizon), giving a relationship referred to as the term structure of interest rates or,
at a given time, the current yield curve. Interest rates most frequently increase
with increasing term (referred to as an upward-sloping yield curve), although the
yield curve may also be flat, humped or downward-sloping. Empirically supported
hypotheses which attempt to explain the term structure include the ezpectations
hypothesis (that the relationship between short- and long-term rates reflects expec-
tations about future rate movements) and the liguidity-preference hypothesis (that
investors need greater compensation for investing for longer terms and assuming

greater risk).

The spread between the risk-free rate and the rate for a particular debt security
reflects the credit risk of the security, in addition to depending on the debt’s features
as described above. Credit risk is a measure of the likelihood that the borrower
will default on interest or principal payments when due. Relative credit risks for
bonds and commercial paper are assessed by rating agencies (Standard & Poor and
Moody’s in the U.S. and Canada; the Canadian and Dominion bond rating services
for Canada alone) and reflected in borrower credit ratings. Interest rates increase

with credit risk in order to compensate lenders for the additional risk. Investment
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dealers use additive rate spreads whose values vary over time, tending to increase

when rate levels are high and to decrease when rate levels arc low.

2.2 Bond discount and premium; price volatility

As mentioned above, the price actually paid for a corporate bond, on initial sale or
subsequent trading, differs from its par value according to the market interest rate
for that debt at the time of the sale. The market price for a bond is calculated as the
present value of its future cash flows (coupon payments and principal repayment)
discounted at the current market rate; prices therefore rise when rates fall and
fall when rates rise. The longer the maturity of a bond (holding the coupon rate
constant) the greater is its price change for a given interest-rate change. Price
volatility due to changes in the general rate level is called market risk.

Bond market prices after initial issue are of interest to borrowers primarily be-
cause (a) a corporation can sometimes purchase its own bonds on the open market
for early retirement or sinking fund purposes, (b) market prices can be used to value
debts at any time, as for giving a surrogate retirement cost for all outstanding debt
at the end of a planning period; and (c) they reflect the evaluation given by the

market to management for performance of its ongoing responsibilities.

2.3 Transaction costs

Transaction costs for issuing debt include the discount or premium on issue as well
as an underwriting commission (fee paid to the investment dealers who market the
debt) and legal and administrative fees. These costs vary according to the legal
requirements and business conditions in the market in which the debt is issued; for
example, markets may or may not require the filing of a formal prospectus (statement
of the borrower’s financial condition, debt structure and projected future operating

results) before approval of a long-term public bond issue.
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2.4 Foreign exchange costs

Foreign ezchange costs are incurred when exchange rates change during the term
of a debt issued in foreign currency. When this happens, debt transactions such as
interest payments, principal payments and sinking fund payments are made in the
foreign currency at a different exchange rate than was in effect when the debt was
issued, resulling in a gain or loss to the borrower.

Foreign exchange rates are determined by the supply and demand of currencies,
which in turn vary with international and country-specific economic and political
conditions. The theory of interest rate parily states that if markets are efficient,
foreign exchange and internal interest rates cancel out over time so that borrowing
in a country with lower interest rates should result in compensating losses through
exchange rate changes. This is because a higher or lower expected relative interest
rate in each country is reflected in (compensating) lower or higher expected exchange

rates (Viscione and Roberts 1987).

3. Uncertainty and risk in borrowing

Borrowing decisions are made in an uncertain environment, in which future interest
and exchange rate movements can only be predicted with educated guesses. If these
rate movements were known, long-term borrowing could be undertaken to guarantee
Jow rates before they increase, while short-term debt could be relied on when rates
are high and decreasing. In practice, however, maturity and timing decisions are

made without this information.

3.1 Types of risk

For the purposes of this discussion, we define borrowing risk as variability in bor-
rowing costs, either upward or downward, over the period during which debt is
outstanding. (In practice, corporate borrowers are likely to be more concerned

with downside risk, or the unfavourable (upward) variability of borrowing costs.)
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Three main types of risk arise from the uncertain future market conditions described
above.

Interest rate risk is the risk that borrowing costs will change along with interest
rate levels. The component of interest rate risk associated with interest payments
is lower the longer the average debt term and the lower the proportion of floating-
rate debt used by a firm, but the market price component (primarily considered
in valuing debts at the end of a planning period) shows greater risk the longer the
average debt term, as noted above.

Rollover risk is the risk that funds may not be available to the corporation in
the future when needed; it also decreases with longer debt terms. Rollover risk
increases as the general credit rating of the borrower decreases and as borrowing is
concentrated in amounts too large for markets at a given time.

Ezchange rate risk arises from movements in foreign currency exchange rates and
increases with the proportion of the debt portfolio in foreign currencies, assuming
that all cash flows to the company are in the home currency.

Since all borrowing decisions imply acceptance of less or more risk of some or
all of these types, the debt manager in borrowing explicitly or implicitly chooses
the risk as well as cost behaviour of the corporation’s debt. As in all reasonably
efficient markets, there is a tradeoff between cost and risk so that lower-cost debt

generally carries with it higher risk features.

3.2 Risk management techniques

Borrowing costs or risks can be lowered in certain circumstances by hedging or swap
transactions. Hedging involves buying forward or futures contracts (contracts to buy
or sell specified currencies at future dates at specified prices) which lock in interest
or foreign exchange rates for part or all of the term of a debt; swap transections
are more complex arrangements in which corporate debts in two different markets
are traded for lowered cost on one side and lowered risk on the other. Financial

institutions can also attempt to match the duration, or average time before future
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cash flows are received, weighted by size of cash flows (Bierwag 1987), of their
financial assets and liabilities so that any change in value on one side is offset by
an equal change on the other (Grove 1974).

As with investing, borrowing strategies can be active or passive with regard to
treatment of risk exposure. An active stralegy will attempt to forecast future rates
and to speculate on them by allowing transactions to take place at future spot rates
when they are believed to be more favourable than current futures rates. A passive
strategy will always attempt to hedge or otherwise minimize risk on the assumption
that the rates available through hedging or swap transactions ace the best available
forecast of future rates.

To summarize, the corporate debt manager is responsible for making decisions
involving selection from available debt instruments, terms and sources so as to
satisfy cash requirements, minimize cost, manage risk and meet other requirements
related to market conditions and corporate priorities. Actual cost is determined by
future interest and exchange rate movements, market capacity and borrower credit
rating; hedging or other techniques may be used to reduce interest and exchange
risks by locking in known costs. The complexity of these decisions has made debt
management a natural application area for modelling and decision support, both
for suggesting acceptable borrowing decisions and for exploring the implications of

borrowing alternatives.

4. Debt management theory and practice

If efficient financial markets are assumed, then the timing, source or other aspects of
borrowing decisions should be irrelevant to a corporation’s borrowing cost over the
long run (Brealey et al. 1986). This is so because in efficient markets, individual-
firm forecasts of rate movements will be no better over the long run than the market
forecast, embodied in current rates; corporate borrowing cost will be determined
by the underlying risk in its business operations and will reflect all market and

borrower risk preferences.
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Research into the theoretical aspects of corporate borrowing has concentrated
on developing and analytically proving or empirically testing models explaining
borrowing behaviour. Major aspects considered in this work include capital struc-
ture (debt/equity mix) (Modigliani and Miller 1958, 1963); debt maturity structure
(mix among various debt terms, once the capital structure is fixed) (Brick and
Ravid 1985); the effects of agency costs (costs due to managers acting in their own
rather than the corporation’s interests) (Bodie and Taggart 1978, Barnea et al. 1980,
1981a,b); and duration (Grove 1974, Morris 19764,5). Because these studies rely
on various limiting assumptions about market efficiencies and corporate conditious,
they have little normative application to actual borrowing decisions. Portfolio anal-
ysis techniques have been theoretically applied to borrowing by Agmon et al. (1981)
and Kalotay (1980), but difficulties in measurement of the covariances needed for

their models limit their application to practical problems.

In efficient capital markets, borrowing decisions should be irrelevant to a firm’s
financial results as noted above. In such markets, over the long term all borrowing
decisions should result in expected net present values (NPV’s) of cash flows (cash
flows discounted at the borrower’s cost of debt) equal to zero. However, empirical
evidence indicates (a) that corporate bond markets may be inefficient (Fabozzi and
Fabozzi 1989), and (b) that firms assume either that they have superior forecast-
ing ability or that market inefficiencies exist (Boot ~nd Frankfurter 1972, White
1974). Borrowers therefore attempt to time their debt issues so that short-term
debt is used more when rates are high and long-term when rates are low relative
to long-run averages. Another commonly-accepted rule of thumb recommends that
debt maturities be matched with asset lives in order to minimize risks of financing
associated with particular projects (Viscione and Roberts 1987); however, Handorf{
(1974) found increasing use of short-term debt to finance longer term investments
as rates increased during the 1970s. Some research has investigated debt covenants;

for example, Thatcher (1985) linked the use of call provisions to certain agency
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costs. Taken together, these studies suggest that debt managers do act as though
borrowing decisions are capable of improving firms’ profitability and value and that

they may be justified in doing so.

5 Analytical techniques for debt management decision support
5.1 Problem formulation

In the absence of a comprehensive theory of debt management, we follow the
empirically-verified practice of assuming that market imperfections do indeed exist,
so that positive cash flows can be generated from debt decisions and these decisions
are relevant to the value of the firm. (For our analyses, we also assume that capital
structure is fixed, which is realistic in the case of the Corporation since it is set
by government legislation.) Because existing analytical models do not provide full
normative solutions to debt problems, we incorporate known management science
approaches.

Given these assumptions, the borrowing decision becomes a capital budgeting
exercise (Brealey et al. 1986). Issuing a debt security, calling a debt issue and
any other such decision is evaluated by computing the NPV of the decision’s cash
flows. A borrowing decision will increase the value of the firm if it leads to a positive
NPV. Because in general the first cash flow is positive while the remaining cash flows
(interest and principal repayments) are negative, a borrowing decision presents a
reverse situation from an investment decision, in which the initial cash flows are
outgoing and later returns are realized as positive cash flows.

In this analysis, interest, transaction and foreign exchange costs are reflected in
the sizes of cash outflows, so that higher-cost alternatives have lower NPVs. Risk
is reflected in the variation in NPVs with changing future rate assumptions.

The appropriate discount rate for debt NPV calculations is generally taken to be
the firm’s everage before-taz cost of debt (Brealey et al. 1986). Because borrowing

decisions affect the average debt cost, which is used to evaluate borrowing decisions,
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this approach is circular; evaluation using the decision’s internal rate of return (IRR)
(the discount rate at which the NPV of future cash flows equals zero) avoids the

problem, but the latter has multiple solutions if cumulative discounted cash flows

change sign during the evaluation period.

5.2 Analytical approaches

Borrowing takes place over time, and the total cost and risk of a corporation’s
debt depends on the combination of debts and hedges used over time, not solely
on individual decisions or decisions at one time. (For example, the cost and risk
of a single ten-year, 12% bond issue vary from the cost and risk of a series of
one-year floating-rate notes.) Borrowing can therefore be viewed as a portfolio
management problem, in which the objective is to choose a combination of debts
meeting cash requirements at minimum cost and within other constraints. A range
of modelling techniques has been successfully applied to debt or investment portfolio

management decision support, each with its own strengths and limitations.

5.2.1 Linear and integer programming

Linear and integer programming techniques have been widely used to suggest op-
timal portfolios given borrower and market constraints. The following examples

illustrate the range of these approaches:

1. Lee (1985) applies deterministic linear and integer programming to the invest-
ment decision with capital rationing, which corresponds to the borrowing prob-
lem with signs of variables and inequalities reversed. His model maximizes the
net present value of a combination of potential capital projects over multiple
periods, subject to cash availability constraints. The shadow prices resulting

from the solution express the cost of capital rationing limitations in each period.

2. Crane (1971) uses a two-stage stochastic linear program to optimize a bank

bond portfolio under uncertain future interest rates and cash flows. Uncertainty
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is handled through scenarios in which random events with a finite number of
outcomes determine values for each period. The model’s decision variables are
the amounts of several bond maturities bought, held and sold in each period;
the model maximizes expected total profits subject to limits on downside risk

(maximum loss in any period).

. Bradley and Crane (1972, 1973, 1975, 1980) extend the Crane model to a multi-
period stochastic program using a decomposition technique to reduce solution
time for large problems. Their model uses any finite number of time periods,
a finite number of possible yield curves realized through random events, and
a finite number of security classes; buy, hold and sell decisions are made to
maximize the expected future value of the portfolio at the planning horizon.
Constraints in addition to the usual nonegativity conditions specify inventory
balancing (linking 2inounts bought, held and sold from period to period); cash
flows available for investment; and limits on net capital losses which express
management’s aversion to downside risk. Their decomposition technique enabled

solution of models with 190 constraints in 213 seconds on an IBM 360/65.

. Crane et al. (1977) used a similar but deterministic model to manage bank bor-
rowing over eight quarters by selecting from various maturities to meet stated
cash requirements. This model minimizes the net present value of average inter-
est costs plus terminal debt market value; the latter term is included as a proxy
for debt costs occurring after the end of the planning period. Decision variables
are amounts of each maturity sold in each period; constraints include limits
on amounts of specific maturities and limits on amounts maturing in specific

periods.

. Lane and Hutchinson (1980) describe a stochastic programming model for de-
termining the pattern of purchases and sales of securities which maximizes the
expected return for a bank portfolio of certificates of deposit. It is similar in ap-

proach and structure to the models outlined above; in addition, it incorporates
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recourse through penalty borrowing. Future rates are specified as branching

trees of significant events which correspond to financial managers’ scenario de-

scriptions.

. Booth and Koveos (1986) use a two-stage stochastic programming model to
suggest hedging strategies for bank asset-liability management. It selects from
short- term securities, long-term securities and futures contracts. Its objective
is to maximize the expected ending balance sheet value of shareholders’ equity,

equivalent in the model to maximizing expected profit.

. Shapiro (1988) applies stochastic programming with recourse to manage dedi-
cated bond porifolios, in which cash flows from assets are structured to match
forecast future liabilities. This model minimizes the present cost required to
meet future cash requirements; a number of constraints such as limits on issue
sizes may be used to describe market conditions or portfolio managers’ operating

policies.

. Mulvey and Vladimirov (1988; 1989a,b) express multiperiod financial portfolio
management (asset allocation) problems as dynamic stochastic network models
which maximize a utility function subject to inventory, cash availability and

other constraints.

. Deterministic linear programming based on scenarios is becoming popular as a
tool for commercial firms advising clients on investment portfolic management.
Adamidou et al. (1989) and Dembo (1989) describe portfolio optimization ap-
proaches in which a deterministic problem is solved over a specified planning
horizon for each of a number of future interest rate scenarios; a subsequent
(proprietary) optimization technique is used to produce a portfolio that meets
specified risk-return tradoffs such as minimizing downside deviations from target

returns on all scenarios.
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5.2.2 Dynamic programming

Dynamic programming has also been applied to debt management; in particular,
it has been used to model bond refunding decisions by Elton and Gruber (1971),
Kalymon (1971) and Boyce and Kalotay (1979). The last model, for example,
chooses the optimal timing of a call decision for a long-term bond issue based on

stochastic future interest rates.

5.2.3 Simulation and projection

Simulation and projection are widely recognized as techniques for evaluating com-
plex investment portfolios in more detail than is generally included in optimization

models, as illustrated in the following examples.

1. Bradley and Crane (1975) describe the use of simulation in initial attempts to
manage bank bond porifolios. Their model tested specified portfolio strategies,
expressed as maturity mixes such as ‘equal proportions of short-term and long-
term bonds’. A number of future economic scenarios are then generated; for each
simulation pass, one such scenario is randomly selected, an aggregate portfolio of
maturity categories is created and its results (final market value, interest income
and unrealized gains and losses) computed. Distributions for these indicators
thus describe both the performance of the strategy and variation in performance

under varying future conditions.

2. Frank and Schnabel (1983) project the net present cost of borrowing alternatives
based on future interest rate projections which simulate past rate movements.
The system also produces the interest rate increase equating two alternatives.
This system is used to assist a financial manager in ckoosing the timing of new

borrowing.

3. Howard (1986) uses stochastic simulation of cash flows to evaluate individual

borrowing and hedging decisions and strategies. Interest rates are generated
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through a random walk procedure. Cash flows are measured using net present
values or internal rates of return; suggested risk measures include NPV or IRR
standard deviations and the probability that these measure rise above specified

values. This paper also illustrates presentation of results for managers in a

variety of graphic and tabular formats.

4. Several sources describe the use of Monte Carlo simulation for valuations of in-
dividual securities or options for which cash flows vary with interest rates. Ex-
amples of these are mortgage-backed securities in the U.S. (Zenios 1989), which
are subject to repayment risk if interest rates rise; single-premium deferred an-
nuities, which contain certain options sensitive to interest rates (Asay et al
1989); and any securities with options such as calls (Prisco 1989). For these
applications, large samples of future rates are generated, cash flows generated
and theoretical option-adjusted spreads calculated. Differences between these

spreads and actual market prices indicate profitable investment opportunities.

As noted earlier in this chapter, simulation and projection techniques allow
detailed calculation of the expected consequences and risks of alternative decisions,
but they do not provide decision criteria. Instead, alternatives must be eliminated
or selected using management’s subjective criteria or analytical techniques such as
Markowitz portfolio analysis (Markowitz 1959), which develops an efficient frontier

of portfolios with equivalent risk/return characteristics.

5.2.4 Multiple-model combinations

The combined use of optimization, simulation and projection models is not found
in the portfolio management modelling literature, although it is clear that they of-
fer complementary advantages. In another problem domain, Hamilton and Moses
(1973, 1974) demonstrated this approachin a decision support system for high-level
corporate planning in which a deterministic integer program with approximately

1,000 decision variables and 750 constraints was supplemented by a detailed cash
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flow projection model as well as econometric forecasting capabilities. Their opti-
mization model maximized a linear approximation of earnings per share and ran in
15-30 CPU minutes on a Univac 1108 system. The projection and simulation mod-
els generated detailed profit projections and probability distributions which were

used to support constraint setting in the optimization.

6. Debt management at the Corporation

The Corporation is a Canadian provincially owned electric utility. Its 1990 annual
report (Nova Scotia Power Corporation 1990), reports its total assets as at March
31, 1990 as $1.716 billion and total debt net of sinking funds as $1.673 billion.
(As a Crown Corporation, it is 100% debt financed; the difference between assets
and net liabilities is accounted for by sinking funds and small equity balances.)
Its only revenue source, apart from miscellaneous short-term investments and other
minor activities, is payment for electric power service from individual and corporate
customers; power rates are regulated by a provincial Public Utilities Board. It is
ezemp! from all income taxes.

Borrowing is a major concern for the Corporation since it is the sole source of
financing for capital projects and operating deficits. Interest costs in fiscal 1990
were $152 million — 26.1% of total expenses and the second highest expense after
fuel costs. Figure 3.1 gives a profile of the Corporation’s long-term debt as at March
31, 1990.

Interest cost to the Corporation is determined by (a) risk-free market rates as
reflected in Government of Canada securities, and (b) the perceived risk of Cor-
poration debt, measured by the Corporation’s credit ratings and reflected in the
spreads between Corporation and government debt. Because all the Corporation’s
debt is guaranteed by the Province of Nova Scotia, its credit rating is the same as
that of the Province (A- at this writing). Should market concern for the Province’s
economic performance and heavy debt load lead to a reduced rating, interest cost

for all new debt would immediately increase.
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The Corporation’s Treasurer is responsible for management of the Corporation’s
debt. Cask requirements are determined outside the Treasury by management
and regulatory board decisions about power rates, operating expenses and capi-
tal projects. The Treasurer must determine the miz of debt used to satisfy these
financing requirements at minimum long-term interest cost net of investment income
from sinking funds and temporary cash surpluses (Nova Scotia Power Corporation
1985). He also tries to maintain stable cash flows by distributing debt maturities
and interest payments over time wherever possible.

The Treasurer and his staff manage the Corporation’s debt with the help of a
financial advisory firm which also acts as lead underwriting manager for long-term
bond issues. This company provides economic data and market commentaries in a
variety of newsletters, general and company-specific rate forecasts, and advice on

specific issues as requested by the Corporation.

6.1 Debt sources

The majority (74.5% in 1988-89) of the corporation’s debt is in the form of public
bond issues in the Canadian and US markets. These bonds finance the Corporation’s
capital projects; they typically have sinking fund and call features and are issued
in terms of from 15 to 25 years. In 1988-89, sinking fund balances equalled $353.8
million or 19.5% of the Corporation’s long-term debt outstanding. Other long-term
financing (7.8% in 1988-89) is obtained through long-term goverment notes. Long-
term financing for equipment (.07% of long-term debt in 1988-89) is often obtained
through supplier notes or mortgages, arranged as part of the equipment purchase.
In 1986 through 1989, the Corporation issued series of savings bonds. These were
intended to tap the small investor market and sold in multiples of $100 for a 5-year
term, transferrable at any time and redeemable at par at each anniversary of issue;
they require an ongoing sinking fund to finance their retirement. Interest at a rate
slightly higher than the 1 year GIC rate is payable annually. In 1988-89, 17.6% of

the Corporation's long-term debt or $321 million was in the form of savings bonds.
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There was no savings bond issue in 1990.

Short-term funds other than trade accounts payable are obtained from a line of
credit arranged with five Chartered banks, at the prime rate or slightly less, and
from unlimited credit with the Province of Nova Scotia, at about 1% below prime.
Use of the bank line is minimized due to its higher cost, and a ceiling amount of

$50-100 million is maintained, after which long-term debt is issued.

6.2 The borrowing decision process

The decision process within the Corporation prior to 2 bond issue emphasizes mon-
itoring rate movements and spreads and attempting to time debt issues to coincide
with the availability of favourable rates. Little formal long-term debt planning is
done, although the Treasury department has developed heuristic guidelines for op-
erational borrowing decisions such as generally attempting to lengthen the average
term of their debt. Within these guidelines, the Treasurer decides on the timing,
amount, currency, market and features of each new bond issue and each possible
refinancing as it is needed. Limited use of forward contracts to hedge US dollar
interest payments was begun in 1990.

Before bonds are issued, the Corporation’s financial advisors are consulted for
assessments of market conditions, future interest and exchange rates and recom-
mendations as to the ‘best’ financing alternative for present conditions. These as-
sessments identify short-lived opportunities [or maturities and currencies in which
spreads are less than expected. Costs fo- aiternatives under consideration are com-
piled and summarized by staff for the Treasurer using spreadsheets; aliernatives
may be compared using cash flows discounted at rate used for evaluating capital
projects, which is an estimate f tlie current average cost of financing. A recom-
mendation is decided on by the Treasurer, based on these supporting analyses, his
knowledge of current market conditions and his experience. The final decision is
made through a series of discussions and approvals by the Chief Financial Officer,

President and Chairman in consultation with the financial advisors and Provincial

v
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representatives. Long-term borrowing and refinancing decisions must be formally
approved by the Board of Directors and the Province. The entire process for a new
long-term issue could in theory be completed in just a day, although it is longer in
foreign markets with additional administrative requirements. In practice, the deci-
sion and approval process generally takes several weeks, making it difficult for the
Corporation to take advantage of windows of opportunity for favourable borrowing.

Once a bond issue is approved, the marketing and sale of the issue is carried
out by four underwriting managers and an 18-member banking group with little
day-to-day involvement by the Corporation. Subsequent administration activities
including debtholder registration (recording debt owners to receive future payments)
and payment of interest are handled directly by the Corporation.

For a savings bond issue, the key decisions to be made are (a) its interest rate
and (b) the amount to be offered in a given year, both of which are set by weighing
anticipated savings bond costs against those of other alternatives and considering
other factors such as the minimum amount to be issued to maintain subsequent
tradability for investors in the savings bond market.

The main activity associated with short-term borrowing is monitoring cash flows

to minimize use of short-term credit; little analysis is required.

7. The role of a decision support system

As can be seen from the above description, borrowing decisions at the Corporation
are analyzed on an ‘as needed’ basis with heavy reliance on experience, heuristics,
outside advice and informed estimates of future interest rates. Formal analysis
consists mainly of cost projections for individual decision alternatives; no attempt
is made to formulate long-term plans or borrowing strategies, and no effort is made
either to analyze borrowing as a portfolio problem or to incorporate uncertainty in
future rates into the analysis that is done.

The frequency of new long-term debt issues depends largely on the Corporation’s

capital projects but has varied from one to four new savings or corporate bond issues
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per year during the late 1980s. (In periods of falling interest rates such as the mid-
1980s, one or two call and refinancing transactions are also considered each year.)
These transactions typically vary in size from $50 to $150 million, giving a high
potential benefit even though the number of transactions is small, if interest costs
and risks are reduced by improved decision support.

As outlined in a previous section of this chapter, models have been developed
which could handle the portfolio and contingency aspects of the borrowing prob-
lem. Two types which are particularly suitable for application at the Corpora-
tion are (a) stochastic linear programming models for determinimg the optimal
term/market/features mix and (b) simulation and projection models for predict-
ing the cost/risk behaviour of individual debts or groups of debts. Use of these
model types in an integrated manner within a domain-specific decision support sys-
tem would improve the borrowing decision process for the Treasurer in three major

ways:

1. It would facilitate the development, analysis and refinement of portfolio-oriented
contingent borrowing plans over a rolling planning horizon such as the five years

used for detailed budgeting within the Corporation.

2. It would incorporate uncertainty into the analysis of both borrowing plans and
individual borrowing alternatives, so that the range of possible results borrowing

decisions could be readily appreciated.

3. The use of cash flow projection raodelling with deterministic future rate assump-
tions would provide the detailed analysis of individual borrowing alternatives that
is carried on now, without the need for developing individual spreadsheets for

each decision.

These models cannot, however, be easily implemented within the Corporation
Treasury since Treasury staff are not trained or experienced in their use or inter-

pretation. Extensive assistance (human or machine-based) is needed for them to be
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used productively. Providing (a) a comprehensive modelling facility for debt plan-
ning and (b) at least some of the assistance needed for its use by financial managers

are the overall goals of this research.
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System Overview

The system designed and prototyped for this research project is called MIDAS,
an acronym for Manager’s Intelligent Debt Advisory System. MIDAS is designed to
provide a variety of modelling functions in support of borrowing decisions made by
the Corporation Treasurer. It expands on his current modelling facilities in three
ways: first, by modelling full-scale long-term contingent borrowing plans as well as
single debt decisions; second, by including explicit consideration of risk as well as
borrowing cost; and third, by providing intermediary assistance allowing him or
his staff to directly set up, use and interpret the results of analytical processcs.
Overall, it is designed to improve his decision making by allowing him to generate
and test more and better decision alternatives and to develop greater insight into the
implications of possible choices both from a short-term and a long-term perspective.

While these goals are not unusual for a DSS, MIDAS is unique in that it delivers
these capabilities using an integrated collection of object-oriented, rule-based and
standard FORTRAN modules which allows much greater flexibility, cconomy of
representation and ‘intelligence’ than are incorporated into most existing financial
DSSs. This chapter first describes the conceptual debt planning approach supported
by the system, continues with the major functional goals guiding system design
and concludes with a description of the system’s architecture, the roles of its key

components and the hardware/software configuration used in its implementation.

1. The decision process: model-based debt portfolio planning

As noted in Chapter 3, a portfolio management approach to debt planning captures

the interactions and dependencies among debts which determine total debt cost

51
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and risk over a given time period. Using this approach, the debt planner builds
a (hypothetical) future debt contingency plan and associated portfolio which meet
corporate objectives. This type of problem is referred to as configuration in ex-
pert systems terms and as (contingent) allocation in optimization; in either case,
a combination of debts is specified to satisfy desired constraints in all contingen-
cics, the main constraint being meeting cash requirements over future time periods.
The problem can be solved heuristically, as illustrated for other domains by XCON
(Waterman 1986) or PLANET (Dhar and Pople 1987); alternatively, it can be done

algorithmically using the optimization approaches described in Chapter 3.

For this project, the decision was made a priori to incorporate proven mod-
elling (optimization, simulation and projection) techniques where appropriate, us-
ing heuristics to enhance rather than replace modelling. The models and heuristics
are used to carry out steps in a hierarchical planning process which, under user con-
trol, progresses in stages from simplified to more realistic borrowing plans {Figure
4.1). Following the initial description of a planning problem, a contingency plan in-
corporating major decisions is developed using a dynamic stochastic programming
model. Second, the resulting optimal but incomplete plan is refined heuristically
by adding details not considered in the first stage, which may make the plan no
longer optimal but which must be included in a complete contingency plan. This
stage may result in several alternative plans which must be tested further. Third,
simulation and projection models are used to compute the future cost and risk be-
haviour of alternative contingency plans; the plans are then evaluated according to
corporate objectives and a set of preferred plans selected for further consideration

and possible implementation.

Broadly, this process uses a generate-and-test approach in which the optimiza-
tion model is used to prune the initial search space to one plan before alternatives
are gencrated heuristically, tested and evaluated. Although analysis progresses se-

quentially, each step results in feedback which may result in modification of inputs
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and reexecution of a modelling procedure; the order of process execution, while
suggested, is always under the control of the Treasurer. This process is a significant
extension of the short-term, single-decision, heuristically oriented one now used in
the Corporation.

Figure 4.2 presents a logical dataflow diagram for this model-based planning
process. This diagram identifies individual data sources, sources of expertise, pro-
cessing steps and data and knowledge movements without regard for whether they
are implemented within or outside a computerized system. The process’ goal is to
develop a borrowing plan which meets problem requirements in all contingencies,
where a borrowing plan is defined as a set of contingent borrowing actions over the
planning period; each borrowing action specifies the type, source, ‘erm, borrowing
date, features, amount and, if applicable, call date for a debt to be initiated during
the planning period in a specific contingency. The full borrowing contingency plan
must obtain sufficient cash through borrowing to meet stated cash requirements
during the planning period in every set of future conditions; it must also satisfy
other contingent requirements reflecting current market conditions, future rate as-
sumptions, debt availability, cost constraints, risk constraints and other conditions
specified by the borrower.

This planning process involves the following steps:

Process HDP1. Describe the current problem

The first stage in the process is to precisely describe the current problem under
investigation. From a domain viewpoint, this consists of accurately and completely
determining and describing the borrower requirements, market conditions, future
rate assumptions, existing debts and other domain conditions that guide and con-
strain the current plan. From a modelling and reasoning viewpoint, these translate
into the assumptions, constraints and initial conditions to be incorporated into
models and rule-based reasoning.

In this step the types of debt are enumerated from which the future contingent
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portfolio can be built. The set of debt types available in all time periods forms a
choice set of borrowing alternatives from which the contingent debt portfolio will
eventually be constructed.

Debt types are specified by the Treasurer within the limitations of current market
and modelling conditions. Each debt type translates into a set of decision variables

for optimization modelling purposes.

Process HDP2: Create an optimal plan

Using the current borrowing alternatives, assumptions and constraints, a contin-
gency plan is generated which meets defined requirements while minimizing the
expected ending value of the debt portfolio. (The rationale for this objective func-
tion is discussed in Chapter 5). Because of size and complexity limitations in the
optimization process, the resulting contingency plan will not be detailed or realistic
enough to be implemented without modification; however, it provides a starting

point from which to construct more practical plans.

Process HDP3: Do parametric analysis on the optimal plan

Following the optimization process, parametric analysis is carried out on the initial
contingency plan to analyze the plan’s behaviour as key assumptions vary. Para-
metric analysis results are summarized and interpreted qualitatively to give some

insight into plan strengths and weaknesses.

Process HDP4: Refine the plan

Using the initial plan specification, parametric analysis results and plan refinement
rules, the initial contingency plan is modified to be more realistic and robust. The
refinement process generates multiple plan alternatives which may no longer satisfy
problem requirements (for example, a plan may not generate sufficient cash in some

time periods) and for which performance results are not yet known.
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Process HDP5: Test plan alternatives

Future cash flows, costs, risks and behaviour with respect to constraints are simu-
lated stochastically and projected deterministically for each plan alternative under

current market conditions and rate assumptions.

Process HDP6: Do key factor impact analysis on simulation results.

In this step, critical factors and time periods determining simulation and prajection
results for each contingency in each plan alternative are identificd; plan results are

then tested to assess their sensitivity to variations in these factors.

Process HDP7: Evaluate plan alterratives and choose the preferred plan or plans.

Based on simulation results, sensitivities and evaluation criteria as defined in the
problem description and by the Treasurer during system use, alternative contingency
plans are rated and compared. The preferred plan or plans are chosen for further

consideration.

2. Decision support system functional requirements

Complete functional requirements for MIDAS include comprehensive support for
both the spreadsheet analysis now used in the Corporation and the model-based
planning process outlined above. They extend beyond the scope of this project and
are intended to be developed over several years on an evolutionary basis. The initial
prototype design and implementation cover key functions which were identified
relative to immediate Corporation needs, research priorities, availability of needed
expertise and the estimated difficulty (translating into time and cost) of design and
implementation.

The system is designed to support decisions by a user who is a financial expert
but not an expert in the construction, manipulation or interpretation of models

other than simple spreadsheets. It therefore hides these model management details



58

from the user while allowing hi:n great flexibility in defining and modifying problems
to be analyzed.

Major system requirements are listed in Figures 4.3 and 4.4 along two dimen-
sions: functions and problem scope. An initial set of requirements is given, with
notations as to which are included in the initial design and in the initial prototype
system.

At its highest level, MIDAS is designed to assist in developing acceptable con-
tingent borrowing plans as described above. At lower levels, partial portfolios or
individual debts can be simulated and compared with randomly generated or de-
terministic future rates. This provides support for individual decisions similar in
functionality to the individual-spreadsheet approach already in place but with the

addition of random-rate simulation.

3. Design principles

MIDAS is designed using four principles derived from known business system and
expert system development principles, functional requirements, domain characteris-
tics and experience gained during the design and prototyping prccess. (See Chapter
9 for a description of the evolution of the system during prototyping.) These prin-

ciples are:

1. Frame-based knowledge representation. Because of the diversity of functions it
is designed to support, ‘knowledge’ in MIDAS refers to a diverse collection of
facts, rules and modelling procedures. MIDAS represents these using various
representation and reasoning/control techniques but relies primarily on frames
and object-oriented programming. MIDAS objects are defined in inheritance hi-
erarchies in which generic object classes are defined, specialized and instantiated
as classes, subclasses and instances. Objects contain attributes describing their
properties and relationships; attributes and their values are inherited downward

through the hierarchy unless overridden. The frames may also contain meth-
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Notation:

* included in design outlined in this dissertation
¥** included in system prototype

1. Problem specification

** _ form-based input for all problem description data
— comprehensive input error and consistency checking
— automated interface to Corporation debt database to maintain a current description
within the system of the existing debt portfolio

2. Borrowing alternative generation

~ automated borrowing alternative generation based on minimal form-based user
input
— heuristic consistency checks against market availability conditions

3. Optimization

* — model formulation and instantiation: automated generation of optimization input

matrix from problem description
— automated solver call and matrix submission
— solver solution of stochastic linear program
** _ automated retrieval of solver output
* _ integration of solver output into the system’s problem state description
* — integration of optimization results into pian refinement and simulation/projection
components

*k
*%

4. Parametric analysis

- heuristic identification of key result factors

— heuristic generation of suggestions for parametric analysis

- automated parametric analysis on user request

- automated summary and storage of parametric analysis results

* ¥ * ®

5. Heuristic plan refinement

*

— heuristic generation of alternative plan refinements from optimization model output
*k

— integration of plan refinement results into the optimization and simulation/projection
modelling components

6. Simulation and cash flow projection

** _ for deterministic cash flow projection: calculation of cash flows, NPVs, IRR (if

appropriate} and other performance indicators for individual financial instruments
and portfolios given mean rate forecasts

— for stochastic simulation of cash flows: output of distributions for NPVs, iRR,
?nd other performance indicators from randomized future rates based on mean rate
orecasts

— for stochastic simulation: distributions for operating cash flows period-by-period

*%
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** _ model formulation and instantiation: automated generation of simulation and
projection models from problem and plan descriptions
** _ automated model execution on user request
** _ automated summary and representation of model results
* — seamless integration of results into sensitivity analysis and evaluation components

7. Key factor impact analysis

* — heuristic identification of key result factors

* — heuristic generation of suggestions for key factor analyses

* — automated key factor analysis on user request

* — automated summary and storage of key factor analysis results

8. Plan evaluation and choice

- application of selected multiple-criteria decision models to simulation results
- heuristic plan evaluation and choice suggestion

9. Result explanation and interpretation

* — Heuristic identification of key factors determining optimization results

* — Heuristic identification of key factors determining simulation and projection results
- In:egration of the ANALYZE program for qualitative explanation of optimization
results

* — Qualitative explanation and interpretation of overall simulation and projection
results for individual borrowing plans
~ Qualitative explanation and interpretation of differences in simulation and projec-
tion results for pairs of borrowing plans
- Qualitative explanation and interpretation of parametric analysis results
- Qualitative explanation and interpretation of sensitivity analysis results
- Model calculation trace on user request

10. Overal! system control and support

** — pop-up menu task selection
** _ heuristic user guidance on task execution order
** _ tabular output
** — graphic output
* — text output for explanations
— context-sensitive help facilities

Figure 4.8. MIDAS Functional Requirements
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Notation:

* included in design outlined in this dissertation
** included in system prototype

1. Planning period:

** _ up to thirty years

** _ quarterly periods

** - yearly periods
~ a combination of both quarters and years, e.g. a planning period of four quarters
and four years

2. Markets

** _ Canadian
>~ U5
— Eurn-Canadian
- UK
~ Swiss
— German
~ Japanese

3. Rate scenarios

** — single paths
* — branching probability trees

4. Financial instrument types

** — Corporate bonds, no special features or covenants
** _ callable bonds
** _ bonds with sinking fund provisions
- redeemable bonds
— extendable bonds
— consumer savings bonds
- long-term notes
— mortgages
** — bank credit lines
** _ provincial credit lines
~ new debt types created from components
~ short-term and long-term investments

7. Hedging capabilities

— interest rate hedges
— exchange rate hedges
— swap contracts

Figure 4.4. MIDAS Problem Scope



62
ods (LISP procedures) specifying object operations; like attributes, these are
inherited unless modified or overridden. This representation allows a modular,
non-redundant specification of entities, relationships and behaviours which is

especially useful for portfolio management problems since portfolios are, in fact,

combinations of diverse objects.

. Object-orienied modelling. Object-oriented programming allows models to be
defined as collections of submodels which carry out operations specified by object
class and which interact by sending messages to LISP methods in other objects.
Because methods can be defined with the same name but unique behaviours for
each object class, extremely flexible dynamic portfolio models can be developed
as varying collections of specific-purpose objects, linked together by generalized

control methods.

. Spreadsheet-oriented financial model structure. Individual coefficient, cash flow
and performance indicator calculations are orgamzed conceptually as ‘cells’ in a
spreadsheet, where each cell handles a single calculation for a single time period.
In MIDAS'’ object-oriented programming context, each cell calculation is a single
method. This approach adds modularity to the method structure, simplifying
maintenance of the large numbers of LISP methods involved in the system.

. Separation of knowledge and control/reasoning. This is widely regarded as one
of the defining characteristics of expert systems and is the means by which com-
plex rule-based knowledge is able to be modularized and maintained. Here the
principle is extended to include generalized factual and conceptual knowledge
represented in frames and manipulated either by rules or by procedural code;
advantages of this approach include ease of documentation, understanding, de-

velopment and system maintenance.

. Integration through an underlying domain representution. Domain knowledge is
required in order for a specific DSS to represent problem descriptions and map

them into appropriate model instances, as noted in Chapter 2. MIDAS’ design
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uses a common domain representation based on the user’s problem description
to organize both domain and modelling knowledge and to represent all mode!
and rule results in a common set of domain objects. This approach simplifies
system development by providing a representation common to both the user
and the developer, and it provides a dynamic natural correspondence between

problems and model instantiations which allows straaightforward reconfiguration

of multiple models.

MIDAS is described here as a system which uses two distinct model types to
analyze common debt portfolio problems. An aliernative view is that of a single
underlying model (set of mathematical and domain relationships) which is analyzed
using multiple solution techniques (optimization and simulation). This view follows
that of structured modelling, which attempts to build abstract model descriptions
solved by various operators; conceptual and technical difficultics must be solved
before it is successfully implemented on model types other than optimization { Dolk

1990; Dolk and Kottemann 1990).

4. System architecture
4.1 Functional view

Viewed from a functional perspective as in Figure 4.5, the system’s proposed archi-
tecture reflects the hierarchical model-based decision process previously outlined,
incorporating modelling or heuristic subsystems for each hierarchical planning step.
All modules operate under the control of a menu-driven interface and access a com-
mon system knowledge base of conceptual knowledge and control rules. An initial-
ization module requests corporate goals, operating parameters and assumptions in-
cluding future rate scenarios, guiding the user in entering input and commenting on
input consistency and reasonableness based on modelling and economic knowledge
in the knowledge base. The stochastic programming modelis then instantiated with

variables, constraints and coefficients calculated from the current parameters and
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solved to produce an initial borrowing plan. A stochastic modelling assistant formu-
lates the model, reviews model output, responds to user requests for explanations,
comments on results, identifies and tests appropriate sensitivities, recommends and
makes model modifications and reruns the model on user approval. When stochas-
tic modelling is completed, rules expressing plan refinement heuristics arc used to
construct alternate borrowing contingency plans. Thesc are then simulated stochas-
tically using rates generated randomly from distributions consistent with the scenar-
jos used initially and projected deterministically using the mean-rate scenarios. A
simulation assistant then repeats the explanation/analysis/suggestion/refinement
loop with the simulation and projection model results. The resulting alternative
plans are evaluated with respect to corporate goals and certain plans are retained
for consideration by the debt manager.

With the exception of the optimization solver, all functional subsystems are de-
signed for integrated object-oriented and rule-based implementation within a com-
mon knowledge base (memory-resident object, method and rule representation) on
a single hardware platform. For solution efficiency, the solver may be a distributed
component on separate hardware, in direct communication and under the control

of the knowledge base (see further discussion later in this chapter).

4.2 Object-oriented view

Figure 4.6 gives a diagram of the system viewed as a collection of cooperating
objects. (Section 2 of Appendix C describes the object diagram conventions used
in this dissertaijon.) Within this diagram and the more detailed object diagrams in
subsequent chapters, rounded rectangles represent object groups, squares represent
system components outside the knowledge base, solid arrows represent data flows
and dashed arrows represent messages between object groups.

Viewed in this manner, MIDAS consists of three subsystems grouped by their
knowledge types and functional roles within the system. Its modelling subayastem

represents both the problem domain knowledge and modelling expertise necessary
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to describe entities in the problem domain, model the problem domain using opti-
mization, simulation or projection, and store the common problem states referred
to in all system operations. Its user support subsystem stores model management
knowledge and performs the intermediary functions which guide the novice user in
operating, manipulating and interpreting the system’s models; its objects comprise
the optimization and simulation assistants previously referred to. Finally, its system
support subsystem organizes the knowledge and procedures necessary for generalized
system control and support functions such as windowing, menu generation, output
management and presentation, system housekeeping and management of task order
and execution.

The three groups of objects generally work in a relationship in which users inter-
act with system support objects, which in turn request modelling in optimization,
simulation or projection mode from the modelling subsystem. On completion of a
modelling operation, results are presented by system support objects; user support
objects monitor results and suggest further actions to the user, who may accept,
reject or modify the suggestions and carry out further analysis. Overall control is
handled by a top-level system control rule set and frame representations of sug-
gested task sequences. Detailed descriptions of the structures and functions of the
three subsystems are given in Chapters 6 through 8 of this dissertation, following

detailed specification of the system’s models in Chapter 5.

5. Hardware/software configurations

MIDAS software is implemented primarily in the KEE expert systems environment,
which provides integrated frame-based knowledge representation, object-oriented
programming and rule-based reasoning (Intellicorp 1988a). Financial calculations
for coefficient generation and simulation are written in LISP, stored as methods
in frames and executed within KEE. The stochastic programming model standard
input generator is also a collection of LISP methods; the model solver is the FOR-

TRAN program MSLiP {Gassmann 19895) which runs on either the MicroExplorer
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or the MicroVAX 1I at the request of MIDAS methods within KEE objects. Commu-
nications between the Explorer or MicroExplorer and the MicroVAX II are handled
by DECNet communications software on both systems.

The prototype system is implemented on the following hardware configurations:

1. A Texas Instruments Explorer with 4 megabytes (mb) of RAM and 200mb of
hard disk storage capacity, running the Explorer operating system, DECNet,
Common LISP, KEE and the MIDAS knowledge base and Ethernetted to a Mi-
croVAX II running DECNet, FORTRAN and MSLiP under the Ultrix operating

system.

2. An Apple MicroExplorer with 8mb of RAM and two 80mb hard disks and run-
ning the Maclntosh operating system, the MultiFinder multitasking environ-
ment, the Explorer operating system (on a separate Explorer board), DECNet,
Common LISP, KEE and MIDAS. The MicroExplorer is also Ethernetted to the
MicroVAX II.

3. For smaller optimization problems, it may be possible to run the system entirely
on the MicroExplorer, using MacIntosh FORTRAN; however, this has not so far

been tested.
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Model Specification

As outlined in Chapter 4, MIDAS’ modelling subsystem carrics out stochastic
optimization, heuristic plan refinement and stochastic simulation of debt portfolios,
integrated through a common underlying representation of domain and modelling
knowledge. This chapter provides formal specifications for MIDAS' models and
plan refinement rules; Chapter 6 will discuss their implementation and integration

in the KEE knowledge base. Model validation is discussed in Chapter 9.

1. Rate event trees

As outlined in Chapter 3, future interest and exchange rates are the primary
determinants of borrowing plan risk and return. Assumptions about these future
rates are fundamental to all analysis and incorporated into the system as proba-
bility trees of significant rate movements over time (Figure 5.1}, specified by the
user. (In principle, any other uncertain parameters of the basic models, such as
cash requirements, could also be included.) Each probability tree begins with rates
at time ¢ = 1 and branches when a significant economic or political event occurs
which results in rate changes. At a branch, the conditional probability of the event’s
occurrence given prior events in the path is given by the user, together with new
rates for each market affected by the event. (This is consistent in form with the
data provided by external financial advisors.) Such rate eveni trecs might incorpo-
rate either expert rate forecasts or subjective assessment. of expected future rate
movements; in either case, scenarios are specified as deviations from a base rate
path as in Raiffa (1968) and Lane and Hutchinson (1980).

Each event sequence, denoted by (e;) in the model specifications in this disser-

tation, may be thought of as a path thr%%gh the rate event tree; the probability of
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o-u QO Scenario 1
(p = 1.0) p(S1) = .25
(p =.5)>O0——( Scenario 2
p(S52) = .25
O a QO Scenario 3
a (O Scenario 4
p(54) = .12
(p =.4)>0O——0O Scenario 5
p(§5) = .08
Notes
(O  denotes a rate event.
(] denotes a set of decisions. There are no decisions in the final period;
see Figure 5.3 for details.
P denotes the conditional probability of a rate event given prior events.

p(Sn)m =1,...,5 denotes the scenario (path) probability.
Figure 5.1. Branching Rate Event Probability Tree

any single scenario is computed as the product of the conditional probabilities of
the events on the path, and a degencrate rate event tree consisting of a single path

gives the deterministic formulation of the borrowing problem.

The generic model is designed to be used over a rolling time horizon. When the
planning period is advanced one time period, unrealized first period branches are
pruned from the tree, realized beginning rates are stored and any necessary changes

to subsequent events are made before the model is rerun for the new period.
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1.1 Rates in the optimization model

Each decision variable and stochastic coefficient in MIDAS’ optimization model is
specified with respect to a rate event sequence (e;) with probability ple;). Each
(e;) corresponds to a scenario in the user-specified rate event tree which specifies
a sequence of future expected (mean) rates by time period based on the events in
the scenario. As described in detail below, the model optimizes over the entire tree,

given the probability of each event sequence (e;).

1.2 Rates in the simulation and projection models

For MIDAS' simulation modelling, random future interest and exchange rates are
generated from distributions consistent with the underlying rale event trees.

Interest rates for debts, sinking funds and short-term investments specified in
the borrowing plan are determined from randomly-generated yield curves (equa-
tions expressing yield to maturity as a function of term) in each financial market in
which new debts are issued. A base yield curve is first generated for each financial
market for each interval over the planning horizon. This is done by (a) randomly
generating enough points to determine a curve and (b) connecting the points with
a function approximating a yield curve shape. Because historical rate data is most
readily available for government securities, MIDAS’ base yield curves reflect gov-
ernment rates. Yields for specific debt and investment types for the borrower are
estimated by adding spreads to the rate taken from the base yield curve. Spreads
may be estimated from historical averages or generated randomly based on histor-
ical distributions; in the current implementation, a single mean spread estimate is
used in all time periods for each debt type.

At preseni MIDAS uses a simple logarithmic curve form based on two points—
a long-term rate (25 or 30 years, depending on the availability of historic data
on which to base the distributions) and a short-term rate (3 months or 1 year).

Following Howard (1986), rate changes are assumed to follow a random walk within
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specified lower and upper bounds.
New rates in a given market are generated as follows: at any time t and given
a prior event sequence (e;), j = 1,...,% — 1, the long-term rate at time t, denoted

by li(e;), is generated according to:
(5.1) Ali(e;) :=Li(e;) — li-1(e;) = re(e;)

where r(e;) is a random variable with a normal distribution (Ayers and Barry
1979) with mean, specified earlier through the rate event tree, depending on ¢ and

(ej). The short-term rate at time ¢, for the event sequence {e;), is given by
(5.2) Asq(e;) 1= s(ej) — 5e-1(e;) = wre(e;) + v

where w is a constant and v is a random variable with a normal distribution with
mean 0 and variance based on historic rates in the relevant financial market. The

yield curve connecting the short- and long-term rates at time ¢ has the form
(5.3) y=a+bln(r)

where y is the yield and 7 is the term (time to maturity) of the debt. The exact
curve is, of course, determined once the two points are generated, and the current
rate scenario or event sequence (e;) for 7 = 1,...,T is determined by the long-term
and short-term rate movements realized through this random rate generation.
The yield curve form used here, based on Bradley and Crane (1975), was chosen
as a useful first approximation of yield curve shape. More complex forms, based
on three or more points, have been established to give better fits to past data; for
example, Bradley and Crane (1975) use a three-point exponential specification and
Fooladi and Roberts (1990) use a polynomial of fifth degree or less. Current simula-
tion models used for option pricing (Adamidou et al. 1989, Asay et al. 1989, Zenios
1989) suggest several other rate generation and curve- fitting methods (Vasicek and
Fong 1982, Black et al. 1987). Inclusion of one or more of these techniques would

be a natural extension to improve the precision of MIDAS’ simulation.
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Foreign exchange rates in each market are generated by a separate random-walk
model. Due to lack of data, interest and exchange rates are simulated independently
at this time; simulation realism would be improved by models which incorporate
some form of interest rate parity partially linking movements in the iwo rates.

For cash flow projection, yield-curve sequences are calculated using (5.3) with
the mean short- and long-term rates found in the rate event tree. Foreign exchange
rates are taken directly from the rate event tree.

Full specification for the system’s interest and exchange rate generation models

is given in Appendix A.

2. The optimization model

The optimization feature in MIDAS applies scenario-based dynamic stochastic linear
programming to long-term borrowing with a variety of debt markets and features.
The debt portfolio model used in MIDAS extends the deterministic and stochastic
portfolio models of Bradley and Crane (1972, 1973, 1975, 1980); Crane e al (1977);
Lane and Hutchinson (1980) and Shapiro (1987). These models have several com-
mon characteristics. First, each of them builds an optimal portfolio from a set of
predefined available debt or investment alternatives. Second, all except Crane et al.
(1977) directly incorporate uncertainty through branching probabilistic rate scenar-
ios. Third, all produce borrowing or investment plans stated as serics of decisions
to borrow, hold or repay debt (or buy, hold or sell investments); in the stochastic
models, these decisions are contingent on prior rate movements and, of course, on
prior decisions.

As noted in Chapter 3, objective functions and constraints vary among models.
Bradley and Crane maximize expected ending portfolio valuc subject to cash avail-
ability and maximum loss constraints; Lane and Hutchinson maximize expected to-
tal return subject to various probabilistic constraints which limit risk; and Shapiro
minimizes discounted total purchase cost subject 1) constraints on portfolio at-

tributes and maximum future required contributions. Crane et al. (1977) consider
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a short-term debt portfolio using deterministic linear programming; they minimize
discounted total costs including ending discount or premium, subject to maturity
mix and market constraints.

The specification of the generic MIDAS optimization model, formally presented
in Figure 5.2, draws some features from each of these models and extends the
approach to long-term borrowing over planning periods of arbitrary length (within
solvability limitations). Each instantiation of the model produces a set of contingent
borrowing decisions, based on user-specified available debt types, which minimize
the expected ending value of the resulting debt portfolio at the user’s planning
horizon, given borrowing requirements, operating and marketing constraints and
probability trees of future rate movements. The following chapter subsections de-

scribe the model in detail.

2.1 Subscripts and superscripts

Subscripts s and ¢ refer to time periods, quarterly or annual at the option of the
user; T is the total number of time periods in the planning period.

Superscript k identifies debt types available to the borrower, distinguished by
market of issue (domestic or foreign, public, private or consumer), term, the presence
or absence of a call option, the presence or absence of a sinking +: nd provision,
and the presence or absence of a redemption provision, to model consumer savings
bonds. Each debt outstanding at the start of the modelling period is represented
by an individual debt type, and the set of debt types to be considered for new
borrowing in a single model instantiation is determined by the user, selecting from

the debt classes and features represented in the system’s knowledge base.

2.2 Decision variables

The model’s decision variables are the amounts of each debt type borrowed, outstand-
ing and retired in each time period and the amount of surplus cash held throughout

each time period. The surplus cash and short-term borrowing variables aliow for
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Notation
3,t =0,...,T denote time periods
T is the length of planning period or horizon
k=1,...,K denotes an available debt type
€j i= €j1,€j25+ -+ €T 7 =1,...,J denotes a sequence of (rate) events.

(e;) indicates that a variable or parameter is contingenl on the event
sequence €;.

Decision variables
B," (ej) dollar amount at par of debt type k borrowed at the beginning of period {.

Of ,(e;) dollar amount at par of debt type k borrowed in period s and oulstending
at the beginning of period &.

Rf,,(e,’) dollar amount at par of debt type i borrowed in period s and retired at
the beginning of period 2.

Si(e;)  dollar value of surplus cash held throughout period {.
Parameters

rﬁ,,_l(ej) interest paid in period ¢ per dollar of debt type k borrowed in
period s and ouistanding at the beginning of period .

4t sinking fund contributions in period ¢ per dollar of debt type k borrowed
in period 8 and outstanding at the beginning of period {.
fk issue costs (excluding premium or discount) per dollar of debt type k

borrowed in period f.

gk (ej) cash outflows per dollar for debt type k borrowed in period 3, if retired at
the beginning of period ¢. (These parameters arc used to define call
options, handle sinking fund withdrawals and value the debt portfolio at
the end of the planning period.)

1e(e;) interest rate per dollar applicable to surplus cash held throughout period ¢.

pf(ej) ezchange rate of foreign currency per unit of base currency appropriate
to debt type k in period £.

plej) probabiliy of event sequence €;, 7 =1,...,J. { ZJ'-I:_I ple;) =1.)

C: cash requirement for period t. If negative, C; indicates an operating
surplus.
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M, mazimum allowable cash outflows for debt service in period .
N, mazimum total borrowing over all debt types in period .
gk minimum borrowing of debt type k in period .

Q* mazimum borrowing of debt type & in period {.
Li(e;)  minimum dollar amount of debt (at par) retired in period ¢.

Ui(e;)  mazimum dollar amount of debt (at par) retired in period .

06"1 dollar amount of debt type k outstanding at the beginning of period 1.
So snitial cash surplus.
Objective

min E(D7)

= Z}’=1 P(%’){Zfﬂ P§‘+1(e.i) 2;1;0 95,T+1(e.i)0ﬁ,1‘+1(e.i)

-1+ iT(ej)]ST(ej)} (expected cash outflows required to retire
outstanding debt at the end of period T').

Constraints
Cash Requirements

Forj=1,...,J and t=1,...,T

Ce= Zf:n"f(ej) {(1 - ftk)Bf(ej) (net new borrowing)

- Ei;; [(r:"t_l(ej) + c{,",(ej))off't(e,-) (cash outflows to service
outstanding debt)

+ gf',(e ; )Rflt(ej)]} (cash outflows on retirement)

+ Si-1(ej) (surplus cash at the
end of the previous period)

+ ii-1(ej)St-1(ej) (interest earned on surplus cash)

— Si(ej) (surplus cash at the end of current period).



Debt inventory by type
Forj=1,...,J, 8=0,...,t-2, t=2,...,T+land k=1,..., K
OF (e5) — Of s_1(ej)+ RE_1(ej) =0
Of_1,4(e5) — B ,(ej) =0.

Maximum cash outflows for debt service

Forj=1,...,Jandt=1,...,T

Tie1P5(e5) T emo (7F ma(e5) + ¢k o(€5)) 0% o(e5) — ir-1(e;)S1-1(e5) < My
Maximum total borrowing

Forj=1,...,Jandt=1,...,T

Ti1pk(e;)BE(e5) < Ne.

Maximum debt issue size

Forj=1,...,J,t=1,...,Tand k=1,..., K

Bf(e;) < QF .

Minimum debt issue size

Forj=1,...,J,t=1,...,Tand k=1,...,K

either BF(e;) =0 or BF(e;) > ¢f (= 0).

Maturity smoothing

Forj=1,...,Jand t=1,...,T

Li(e;) € Timy Taco Rk () < Uile;).

Nonnegativity

Forj=1,...,J,8s=0,...,t-1,t=1,...,Tand k=1,..., K

Bf(ej)>0  Offe;)>0  RE(e;)>20  Si(ej)20.
Forj=1,...,J,5=0,...,Tand k =1,...,K

OfnT'I’l’ (eJ) 2 0 .

7

Figure 5.2. Optimization Model Specification
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L
Dt
p— 4
i

(a) (b) (c)

Notes
(a) Opening debt balances are as at ¢ = 0, immediately before ¢t = 1.

(b) All debt transactions (issue, repayment, interest payment, calls, etc.) take place
att=1,2,...,T.

Interest paid at each time ¢ is calculated on principal outstanding after all trans-
actions at time ¢ — 1.

(c) Outstanding debts are valued at ¢ = T + 1, immediately after all transactions
att="T.

Figure 5.8. Debt Planning Time Line

simple recourse through overborrowing and holding cash (invested at current short-
term earnings rates) in some periods. Because interest and exchange rates determine
costs for new and retiring debt, the decision variables and many of the parameters
of the model are dependent on the prior rate movements (e;) which, of course,
determine current rates in any time period.

The model assumes discrete time periods (Figure 5.3) in which rates change
instaneously at the beginning of each period (for period 1, rates are known) and all
decisions for the period are then made instantaneously, again at the beginning of the
period. Balances forward are calculated based on decisions in the previous period,
and interest cost or earnings calculations are based on rates in effect in the previous
period. Initial debt (Of ;) and cash surplus (So) balances are outstanding at the
start of the planning period. Note that these are initial fixed parameters shown in
the constraints of Figure 5.2 as decision variables and therefore the maximum cash

outflows in period one are predetermined. The final valuation of the debt portfolio
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takes place at the beginning of period T + 1, following the last rate change. No

decisions are made in period T + 1.

2.3 Objective function

The model’s objective function expresses the expected value of cash required to
retire the total debt outstanding at market prices at the planning horizon (the end
of the planning period). This approach eliminates the need to specify a corporate
discount rate for measuring discounted costs, which would present a problem since
the borrower’s cost of new debt is determined by the solution to the model rather
than exogenously.

The per-dollar ending value of each outstanding debt at the end of the mod-
elling period is its theoretical market value, calculated as the net present value of
future cash flows for the debt discounted at final-period market rates resulting from
the rate event sequence. Consistent with market practices, callable bornds are val-
ued using cash flows and market rates which assume that they are called at the
first opportunity after the planning period ends; short-term debt, investments and
sinking funds are valued at their principal outstanding at the planning horizon. For
bonds issued during the planning period, coupon rates are assumed equal to market
rates so that there is no premium or discount on issue. (Bond premium or discount
values could be included as part of issue costs if rate models included parameters
to separately estimate coupon rates and market rates; however, these have been
eliminated to reduce complexity.) Interest rates for existing fixed-rate long-term

debts are known at the start of the planning period.

2.4 Constraints
2.4.1 Cash requirements

The cash requirements constraint assumes that net requirements for new cash are

exogenously specified from forecast operating and capital surpluses or deficits before
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interest payments and debt transaction costs. This is consistent with current oper-
ating practices at the Corporation, as noted in Chapter 3. Cash requirements can
be negative in any time period, indicating a surplus available for debt repayment or
investment. The constraint states that borrowing (net of issue co:t.} in each time
period must equal the sum of the exogenously determined cash requirement for that
period, interest payments on all outstanding debt in that period, sinking fund pay-
ments where required, cash outflows on debt repayment in that period (including
retirements and calls) and surplus cash held in that period, net of the prior period’s
surplus cash and interest earned on that cash. All cash inflows and outflows for
foreign-currency denominated debt are adjusted by current foreign exchange rates.

This constraint requires that all interest payments and transaction costs be fi-
nanced by debt or by cash surpluses, so that the ending portfolio value reflects
the cumulative impact of all cash requirements and borrowing decisions during the

planning period.

2.4.2 Debt inventory constraints

An inventory constraint for each debt type in each period maintains consistency
among amounts issued, outstanding and retired. Debt cannot be issued and retired
in the same period. The inventory constraints therefore state that the outstanding
amount in a period ¢ of debt issued in period ¢ — 1 equals the amount issued in
period ¢ — 1; the outstanding amount in a period ¢ of debt issued in a period prior
to period ¢ — 1 equals the amount of that debt outstanding in period ¢ — 1 less the
amount of that debt retired in period ¢ — 1.

2.4.3 Maximum cash outflows for debt service

Cash outflows for debt service include interest and sinking fund payments required

while debt is outstanding.
These constraints place a dollar limit on debt service cash outflows in each period

regardless of rate scenario. The restriction incorporates into the model an expression
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of aversion to downside risk which remains computationally tractable, partially
compensates for the risk-neutral objective function and appears to correspond to

the behaviour of corporate debt managers (Bradley and Crane 1975).

2.4.4 Maximum total borrowing

These constraints limit total borrowing in any single time period, preventing run-
away borrowing in periods with very low interest rates. The constraints reflect
market ability to absorb only a limited amount of debt at one time and also incor-
porate aversion to the risk inherent in satisfying all cash requirements by borrowing

in a single period or a few time periods.

2.4.5 Maximum and minimum debt issue size

Constraints on maximum and minimum amounts to be borrowed from individual
sources in any one period can be determined within or outside the borrowing firm.
Market limitations on the amount of debt that can be absorbed at one time or on
the minimum practical size of an issue are externally-determined constraints of this
type; internally-determined maxima and minima arise from the user’s operating
policies.

Short-term debt such as bank credit is retired and refinanced in the model at
the beginning of each time period. For these debts, the amount borrowed in a
period equals the amount outstanding in the period, so that the maximum issue

size constraints also represent limits on total credit.

2.4.6 Maturity smoothing

These constraints reflect borrower policies limiting the amount of retired debt in

any one period.

2.4.7 Nonnegativity

These constraints limit the decision variables to nonnegative values, with the results
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that all cash deficits are covered by borrowing and all cash surpluses show in the

cash surplus variable.

2.5 Optimization model structure

This formulation of the strategic debt planning problem is technically a scenario-
based dynamic stochastic recourse model. Dempster (1988) surveys the theoretical
aspects of such models based on general discrete time stochastic processes of data
evolution. A standard input format for these problems has been specified by Birge et
al. (1987). (MIDAS’s stochastic programming model input is implemented to this
FORTRAN standard, so that the data defining a model instance is input to the
solver from the MIDAS knowledge base in this format, and translated by internal
FORTRAN subroutines to a data structure appropriate for the solver used. Details
are given in Chapter 6.)

The problem’s matrix structure can best be understood by first considering
a single-scenario model and subsequently extending it to a two-period stochastic
model and then to an arbitrary number of additional periods. A single-scenario

(deterministic), three-period model has the form
Aizy + Agzy + Aszs = b,

where A;, A; and A; are the structured, i.e. largely sparse, constraint matrices
for decisions z; in period 1, @ in period 2 and z; in period 3 respectively. More
precisely, this model possesses staircase structure in which the constraints have the
lower bidiagonal structure of discrete time control models. (The cash requirements
and inventory constraints include data and decision variables from adjacent periods,
while all other constraints in a given period are instantaneous, i.e. depend only on

data and decision variables in that period.) This model’s matrix structure is shown
in Figure 5.4.

The stochastic form of this model is

Aizy + Agez + Azz3 = b,
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Figure 5.4. Three-period Deterministic Qptimization Model Structure
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where the cash requirement and inventory constraint portions of the matrices Az
and A3 and possibly some of the values in b are stochastic, i.e. rate scenario de-
pendent. For the three-scenario tree shown in Figure 5.1, this matrix structure
appears as in Figure 5.5. The matrix is constructed by scenario, working downward
through the rate tree; the upper left-hand corner of the matrix specifies the first
scenario, the structure of which duplicates that of the deterministic three-period
example. Subsequent scenarios are added in path number order, each linked via its
constraints to the decisions in the previous time period in the scenario from which

it branches.

2.6 Solution technique

The stochastic nature of the recourse coefficients in this model reduces the efficiency
of certain linear programming decomposition techniques, since each single-period,

single-scenario subproblem can be unique in both its coefficients and its right-hand-
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side vector. Nested Benders decomposition (Benders 1962, Van Slyke and Wets
1969, Birge 1985, Gassmann 1989¢) is the technique incorporated into the MSLiP
code used in MIDAS for the solution of debt portfolio stochastic programming mod-
els. For this technique, the original problem is partitioned into a set of smaller lincar
programs, each of which represents only a single time period in a single scenario.
The period one subproblem is solved first and its optimal solution passed to the next
period; the process is repeated for each subproblem along each scenario. Conditions
which lead to infeasibility or suboptimality in subproblems are noted and passed
back along the scenarios as additional constraints (cuts), and the subproblems are
re-solved. The entire process is iterated until no new information is generated. This

technique has been shown to converge rapidly to an optimal solution (Birge 1985;
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Gassmann 1987, 1989¢,5). Gassmann has developed an efficient implementation of
nested Benders decomposition which is used in the MSLiP program as the MIDAS

stochastic programming model solver.

2.7 Model sizes and solution times

Individual optimization model size varies greatly with the formulation of the prob-
lem under consideration, specifically with (2) the number of markets, (b) the number
of debt types, (c) the number of time periods, (d) the ‘bushiness’ of the rate event
tree and (e) the types of constraint which are included in the problem statement.
For example, a relatively cmall problem consisting of four scenarios branching at
period 2, one market, five debt types and five time periods would have 1,599 de-
cision variables and 826 constraints; expanding this problem to five markets and
20 periods would give over 150,000 decision variables and over 77,000 constraints.
Test problems now being used with the solver have eight periods, two markets and
with five debt types each and two credit lines, with four scenarios branching once at
period 2; these have on the order of 1,900 decision variables and 1,600 constraints
after elimination of irrelevant variables and constraints. These models are solved by
MINOS on a MicroVAX Il in 12 seconds. MSLiP is used for more ‘bushy’ problems;
it solves problems with 20,000 decision variables and constraints in tens of seconds

on a DEC 5000 Workstation.

2.8 Parametric analysis and EVPI| analysis

Following the initial solution of an optimization model, it is desirable to rerun it
a number of times in order to carry out parametric analysis on the key maximum
cost constraint (and, if desired by the user, on other constraints). Such parametric
analysis produces a curve relating changing constraint values to resulting new ob-
jective values for the optimal portfolio; for the maximum debt service constraint,
this curve describes the relationship between debt service requirements (downside

risk for the problem) and expected ending debt value.
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In cases where the injtial optimization model is too large to be easily rerun many

times, analysis of the ezpecied value of perfect information (EVPI) is used to prune

the rate event tree to produce a smaller problem without reducing the analytical

effectiveness of the model. For each node in the rate event tree, EVPI analysis

measures the value of explicit foreknowledge of each branch from that node and

collapses branches for which such foreknowledge would contribute little to changing

the model’s expected overall solution value. The analysis proceeds as follows:

1.

For a given node (branch point) in the rate event tree, the optimization model
is explicitly solved for each rate event path from that node to the end of the
planning period. This produces the objective function value and decision variable
values which would result if rates along this path were known to hold with

certainty.

The EVPI for that node is computed as the expected value of the remaining
dynamic stochastic optimization problem from the node, i.e. the optimal value
of the objective function value produced by solving the stochastic problem (the
problem considering all rate event tree branches) from that node to the end

of the planning period, minus the probability-weighted sum of these objective

function values.

If the difference between the EVPI is less than some prespecified cutoff value,
the rate event tree branches from the node in question are collapsed into their

probability-weighted average rate path, producing a smaller problem for further

consideration.

The resulting smaller rate event tree is then used for reruns of the problem for

parametric analysis purposes.

2.9 Optimization modelling’s decision support role

Even after parametric analysis, optimization modelling does not completely solve

the debt planning problem. It does produce an initial borrowing plan which is
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optimal, given assumed future rate scenarios, probabilities and specified available
debt alternatives. However, these plans are not complete practical solutions to
the problem because (a) they are oversimplified and (b) managers who do not
have mathematical backgrounds tend nct to trust complex optimization models
to dictate decisions, as noted in Chapter 2. Thus the system allows for iterative
reconfiguration of the models by interactively changing available debt types and
parameters. The final optimization solution nevertheless only suggests a plan for

further consideration.

3. Heuristic plan refinement

The task of converting optimization output into practical plans is a heuristic process
which, in a strictly model-based system, would be carried out by a modelling expert.
This expert would review optimization results with the Treasurer and modify them
to produce practical recommendations.

This process is captured within MIDAS by a rule-based process which reviews
optimization model output and modifies it using knowledge which would otherwise
come from the (human) modelling expert and the Treasurer. Two types of modifi-
cations have initially been identified as necessary within MIDAS, although more are
likely to be identified as the system is put into practical use; they are (a) couversion
of minimum issue size constraints to integer values and (b) conversion of individual

borrowing decisions to integer values.

3.1 Minimum issue size

The minimum issue size constraints stated in Figure 5.2 are not fully mathematically
spccified in the optimization model. They may be correctly handled using standard
mixed integer linear programming techniques (see, for example, Shapiro 1987) with
the following constraints for j = 1,...,J,k=1,...,K and t =1,...,T:
Bi(e;) — 6¢(ej)at 20, (5.4)
Bf(e;) - 6(e;)Q¢ <0,
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where §%(e;) = 0 or 1. To avoid computationally costly solution techniques in-
cluding the heuristic tree search solution procedure used by Shapiro, MIDAS uses

a relaxation of this last requirement to:

(5.5) 0<é¥e;) <1

The constraint can then be handled by a linear program solver, but the decision
values 6¥(e;) must subsequently be set to 0 or 1 for a realistic plan. Plan refinement
heuristics are used to check each issue against the market minimum and modify the

constraint (5.5) to equal either 0 or 1. The optimization is then rerun to generate

corresponding adjustments in other decisions.

3.2 Integer-valued borrowing decisions

The optimization medel’s formulation as a linear program enables the solution of
large problems; however, it results in long-term borrowing decisions that are not
practical because they are not in amounts that can in fact be issued in the markets
specified. For example, a market in which bonds are generally issued in multiples of
$10 million will not easily accept a decision to float a 25-year bond issue for $329.2
million. A second set of plan modification heuristics is used to check long-term
borrowing decisions against market issue multiples and to modify the borrowing
plan decisions for further testing through simulation and projection. (Modification
of constraints would result in a fully specified solution for the optimization model
prior to running the optimization solver.)

The representations and reasoning used for both types of plan refinement are
described in Chapter 6. These heuristics are quite simple as they now stand, but
they do perform key plan refinement functions. Additional modification needs will

be identified as the system is used and plan refinement requirements are observed.

4. Simulation and projection modeiling

MIDAS?’ simulation and cash flow projection facility performs the final analytical

steps in the debt planning process. It carries out cash flow projections or stochastic
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simulation of full borrowing plans, parts of plans or individual debt alternatives,
providing detailed information on the performance of alternative plans. This facility
can be used either as a follow-up to the optimization and refinement processes just
described, or it can be used alone to analyze debt plans or individual borrowing

decisions proposed outside the system.

4.1 Simulation and projection applications to debt and portfolio management

Cash flow and profit projection is a widely-used approach to financial planning by
corporate managers, as noted in Chapter 2; its extent has undoubtedly increased
drarna’’cally with the introduction of spreadsheet software. As seen in Chapter 3,
stochastic (Monte Carlo) simulation has so far been less popular among managers
but is somewhat developed as a portfolio management tool.

Researchers have applied simulation and projection to both individual debts
and to portfolios, as previously noted. For a single debt or a few debts the general
approach is to define the debt(s) to be simulated, assume a future interest (and, if
applicable, exchange) rate path over the planning horizon and calculate cash flows or
costs for the debts for discrete time intervals up to that horizon, summarizing them
in a measure such as net present cost or internal rate of return. For projection,
the process is usually repeated with varying assumptions to test the sensitivity
of the result to certain conditions and to provide insight into the behaviour of the
simulated debts as rates change. Simulation automatically repeats the process many
times with pseudo-randomly generated future rates until a distribution of results is
produced (Howard 1986). The distributions of these random rates about specified
mean rates in each period represent the probability structure of intraperiod rate
fluctuations.

Portfolio simulations are generally aggregate models used to test predefined port-
folio management strategies on fixed-income investment portfolios. These models
take as input the proportions of the portfolio value in selected maturity categories

and calculate the return (or cost, for debts) for assumed or pseudo-randomly gen-
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erated future interest rates over the desired planning horizon.

The MIDAS simulation and projection facility (for simplicity, referred to here-
after as simulated modelling) models both individual debts and portfolios, building
portfolio models as collections of individually-defined debt models. This gives sig-
nificantly increased flexibility in that it allows testing of a number of debt features
in addition to maturity, and it is computationally tractable because of advances in

computing power since the time of the portfolio models cited.

4.2 Simulation model specification

MIDAS?’ simulation is a discrete interval oriented process. Given a planning horizon,
contingent borrowing plan, existing debt portfolio (if applicable) and assumptions
about future interest and exchange rate scenarios, it produces cash flows and costs
for quarterly or yearly time intervals over the planning horizon as well as summary
measures of performance such as net present cost. Used in the deterministic (pro-
jection) mode, it produces detailed projections of cash flows and debt performance;
in the stochastic mode, it provides probability distributions for key performance
indicators which can be used to assess plan cost and risk. It uses parameters and
relationships consistent with those in the optimization and models in detail the debt
types included in the optimization model.

Figures 5.6 and 5.7 summarize simulation inputs and outputs; a full formal
specification of the model is given in Appendix B. With the exception of randomly
generated interest and exchange rates, provided by the system according to the
scheme outlined earlier, inputs are specified by the user.

Cash flow calculations are specific to each debt or investment type. For debts
and sinking funds they include principal borrowed and retired; issue costs; interest;
retirement costs and sinking fund contributions, earnings and withdrawals. All
cash flows for foreign debts and investments are calculated in both foreign currency
and in Canadian dollars at current exchange rates. Portfolio cash flows are simply

line-by-line sums of the relevant individual debts.
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SIMULATION MODEL INPUTS

A. Planning period specification (number of time periods, time period length, starting
and ending dates).

B. Borrower parameters {cash requirements, desired maximum debt service require-
ments per time period, desired maximum total borrowing per time period, desired
maturity smoothing).

C. Market parameters (for each market and rate scenario)
e rate model parameters as listed in Appendix A
e minimum and maximum issue sizes by debt type
e issue cost rate by debt type

D. Future rate assumptions
e rate event tree covering the planning period, specifying mean short-term and
long-term government rates and foreign exchange rates
¢ mean or pseudo-random market rates by debt type and time period, generated
from the rate event tree by rate models in each market.

E. Descriptions of available debt types (debt class, market, term and features).
F. Descriptions of existing debts as at the start of the planning period.

G. A borrowing plan consisting of a set of borrowing, outstanding and retirement actions
(specifying action date, amount and type of debt) to be carried out during the
planning periocd.

Figure 5.6. Simulation Inputs

Portfolio performance indicators include the ending portfolio market value which
is used as the objective function in the optimization, as well as period-by-period
operating cash flows, the cash flow internal rate of return (where defined) and other

measures identified as useful by Corporation staff.

4.3 Simulation modelling’s decision support role

The simulation modelling facility can be used in a number of ways within the overall
decision support framework. As a stand-alone facility, it models deterministically or
stochastically the future performance of individual debt alternatives. This extension

of the Corporation’s existing spreadsheet modelling was a user priority, as noted in
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SIMULATION MODEL OUTPUTS

A. A portfolio of debts, sinking funds and cash surplus reflecting the specified existing
debts and results of borrowing plan actions.

B. Borrowing actions to cover cash deficits through penalty borrowing and to invest
cash surpluses in short-term bank deposits

C. For cash flow projections based on single mean-rate scenarios:

cash flows by time period for single debts and the tested portfolio {principal
borrowed, issue costs, interest paid, sinking fund contributions, sinking fund
withdrawals, principal retired, retirement costs, total cash flows, total operating
cash flows)

memorandum items by time period for single debts and the tested portfolio,
as applicable (debt status (new, active, callable, mature or inactive}, principal
outstanding, accrued interest, sinking fund earnings, sinking fund balance)
ending value of single debts and the tested portfolio

the internal rate of return (if defined) for total cash flows for single debts and
the tested portfolio

the net present value of total cash flows, discounted at the user-specified corpo-
rate discount rate

constraint violation warnings identifying time periods in which market or borrower
constraints are violated by the borrowing plan.

D. For cash flow projections based on branching mean-rate event trees:

all of the items listed in (B) for each rate scenario in the rate event tree
expected values for all of the above over all scenarios in the rate event tree.

E. For intra-period stochastic simulation for a single rate scenario:

frequency distributions for the ending values of single debts and the tested port-
folio

frequency distributions for the internal rate of return of total cash flows for single
debts and the tested portfolio

frequency distributions for the net present values of total cash flows and of
operating cash flows for single debts and the tested portfolio.

F. For intra-period stochastic simulation for a branching rate event tree:

frequency distributions for expected values over the full rate event tree, for the
results listed in (D).

Figure 5.7. Simulation Outputs
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Chapter 3.

When used for hierarchical planning, simulation complements optimization mod-
elling by permitting further in-depth analysis of borrowing plans resulting from the
optimization and refinement planning steps. As a result, the system’s user can study
detailed cash flows and risk measures for planning alternatives, developing insight
into the implications of alternatives. This overcomes two of the main limitations of
optimization for practical planning—the oversimplification of optimization results

and the inability of managers to study in detail the reasons for optimization results.

5. Research contributions to debt modelling

Both the optimization and simulation model specifications presented here extend
known model types to handle more complex and realistic situations than was pre-
viously possible. In addition, their complementary use is a new approach to model-
based debt planning which exploits the strengths and minimizes the weaknesses
of both modelling techniques. The hierarchical planning approach defined for this
project appears to extend readily to other problem domains; this is a promising

area for further work.
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Modelling Subsystem Design

MIDAS’ modelling flexibility and power arise in large part from the comple-
mentary use of several techniques to represent and manipulate domain knowledge,
problem descriptions and modelling knowledge. This chapter describes the design of
the modelling subsystem, explaining its ability to formulate and integrate optimiza-
tion, simulation and projection models of a problem as well as to integrate multiple
models and heuristic planning components. The description covers the design for
some modelling features which have not been implemented; current implementation

status is presented after the design details.

In this chapter and the next two chapters, system design is presented by sub-
system or subtask in a top-down manner, progressing from requirements to the
knowledge representation and control techniques used to carry out the required
functions. First, detailed functional specifications are listed for the subsystem;
second, knowledge requirements are identified; third, the representation of each re-
quired knowledge category is presented; fourth, control and reasoning strategies are
described; fifth, the implementation status of the design is outlined; and finally,
the research contributions, strengths and weaknesses of the design are discussed.
Selected examples, together with object diagrams, inheritance hierarchy charts and
method structure charts produced using the Excelerator CASE tool (Index Tech-
nology Corporation 1989), are used to illustrate the system description. A com-
prehensive illustration of system operation is presented in Chapter 10, and detailed

system documentation is found in Appendices C and D.
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Task and knowledge requirements

MIDAS’ modelling subsystem performs all tasks required for the optimization,

plan refinement, simulation and projection processes shown in Figures 4.1 and 4.2.

Specifically, the subsystem carries out the following functions:

For an individual model (optimization, simulation, or projection):

1.
2.

5.

Specify the model from a problem description.
Instantiate the model by determining all required parameter values.
Solve the model.

Represent its results in a way interpretable by other models and by other sub-

systems.

Perform multiple runs of the model in response to further analysis requests.

For heuristic plan refinement:

1.
2.

3.

Apply the appropriate rules to plan representations.
Represent modified plans so that they can be further analyzed.

Reinstantiate and re-solve either model in response to requests from the refine-

ment rules.

For all models and rule applications:

L.

Integrate models and heuristics by representing output from each operation so

that it can be readily used as input to others.

. Maintain consistent model formulations for both models as a problem description

changes.

These functions require the following categories of knowledge:

. Domain concepts, facts and relationships, forming a problem description.

Specifications and procedures for mapping a problem description into either an

optimization or simulation/projection model structure.
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3. Specifications and procedures for mapping domain facts into model parameter

values.
4, Calculations required for each model.

5. Model control requirements, or the sequence of calculations and operations

needed to formulate, solve and represent the results of each model.
6. Heuristic plan refinement knowledge.
7. Correspondence between model or rule output and the problem description.

8. Correspondence between model and rule outputs and inputs for integration pur-

poses.

Each category may contain numeric, symbolic, algorithmic and heuristic knowledge.

2. Knowledge representation

The above knowledge categories are represented and manipulated using a combina-
tion of frames, object-oriented programming and rules. Frames are used to represent
and describe domain entities in terms of their attributes, while object-oriented pro-
gramming methods implemented in LISP carry out necessary modelling operations
and calculations once the problem description is known; the frames and LISP meth-
ods together thus provide the mappings between domain facts and model parameters
needed to formulate and modify models as problem descriptions change. Rules en-
code the heuristic reasoning used for the intermediary function of inspecting and
modifying plan output.

A common domain model organizes all knowledge in the modelling subsystem.
Figure 6.1 shows the subsystem’s major object categories, message flows and data
flows. Three categories of objects are used. Model objects represent the domain
objects—financial instruments and portfolios—which result from borrowing actions
and which directly produce the financial results for which borrowing is carried out.
Model support objects represent domain entities in the debt planning environment;

they provide assumptions, constraints and descriptions of current conditions which
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affect the development of future plans. LP support objects contain the conceptual
and procedural knowledge needed to formulate appropriate stochastic programming
models from domain descriptions and to translate optimization output into borrow-
ing actions. Each object category consists of one or more KEE classes defined in
terms of its attributes and procedures (methods); problems are described as collec-

tions of instances (individual members) of the classes.

2.1 Model objects

Figure 6.2 shows individual model object classes within MIDAS’ modelling subsys-
tem, together with their major data and message flows. Model objects are classified
as either basic or composite objects, reflecting the system’s portfolio-management
view of the debt planning problem. Basic model objects describe and model indi-
vidual debts and investments in a problem statement, functioning as building blocks
for the system’s models; composite model objects combine basic model objects into
portfolios which control model processing and combine results for individual port-
folio members.

Model objects are defined within the system using an inheritance hierarchy of
portfolio, debt and investment classes (Figure 6.3). For financial instruments, the
hierarchy follows the standard asset/liability classification scheme used by accoun-
tants and financial managers. The inheritance hierarchy streamlines model object
definitions in several ways. First, attributes and their default values are defined
at the highest possible level and inherited by subclasses and instances. Second,
inheritance provides common method name: such as ‘do.cash.flows’ for all model
objects. Third, calculations associated with financial instrument classes are de-
scribed by numerical algorithms, again defined at the highest possible level and
inherited downward. And fourth, multiple inheritance is used to create instances of
debts having features of more than one subclass, as when bonds with collections of
features such as a call feature together with a sinking fund are required.

Financial instruments (basic model objects) include both debt and investment
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NAME: JJ
SUBCLASS.OF: NIL
INSTANCE.OF: CALLABLE.BONDS, SINKING.FUND.BONDS
ATTRIBUTE.SLOTS:
accrued.interest 0.0
cf.table JJ.TABLE
class BOND
currency i C$
market CANADA
orincipal.cutstanding  50.0
term 25
original.principal 50.0
coupon.rate 10.5
interest.pmts.per.year 2
issue.date 6/30/1990
issue.total.costs 1.0
maturity.date 6/30/2015

quarters.interest.paid 2, 4

call.first.call.premium .05

call.first.call.year 2010

call.part? NiL

call.prices (105.0 104.0 103.0 162.0 101.0 100.0)
sf.name SF.JJ

EXTERNAL-USE METHODS:
add
change
delete
do.cfs
project
simulate

Figure 6.4. A Basic Model Object

types which are relevant for debt planning. (The need for investments arises in debt
planning when sinking funds are used and when surplus cash is invested for short
periods.) Each financial instrument encapsulates descriptive attributes (interest
rate, principal amount, issue date, term, maturity date, etc.) and their values.

Each also contains LISP methods for model calculations and control (see further
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discussion below).
Figure 6.4 illustrates a typical debt object which has been formed using multiple
inheritance. (This example and the others in this text show only definitional slots

and top-level methods; the object as implemented contains additional slots and

methods used in system operation. See Appendix C for full object definitions.)

NAME: PF1
SUBCLASS.OF: NIL
INSTANCE.OF: PORTFOLIOS
ATTRIBUTE.SLOTS:

class PORTFOLIO

cf.table PF1.TABLE

pf.markets (CANADA US)

pf.members (AA BB JJ X1 X2)
EXTERNAL-USE METHODS:

add

change

delete

do.cfs

optimize

project

simulate

Figure 6.5. A Composite Model Object

Portfolios (see Figure 6.5 for an example) are composite model objects which
group individual debts and investments. Portfolio performance is modelled as the
combined performance of the individual instruments in the group, so that financial
instrument objects form submodels of comprehensive portfolio models.

Portfolios supervise optimization, simulation and projection for portfolios, han-
dle interactions among objects and summarize portfolio results. It is these composite
objects which provide the flexibility needed to configure models for debt portfolios

reflecting alternative borrowing plans.
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2.2 Model support objects

Model support objects include the problem specifier, borrower, financial markets
(domestic and foreign), rate events, debt types and borrowing actions. Figure 6.6
shows model support object details in the context of the modelling subsystem.
The problem specifier holds overall problem parameters such as the length of
the planning period, its starting and ending dates, the length of individual time
periods (quarterly or yearly) and the knowledge base date (the starting date reflected
in financial instrument balances, market conditions and rate assumptions in the
knowledge base, which is used to check consistency among the starting date and

opening rates and balances used in the models).

NAME: NSPC
SUBCLASS.OF: NIL
INSTANCE.OF: BORROWERS
OWN SLOTS:
cash.needs.actual.percent .90
cash.needs.budget ((1990 1 50) (1990 3 25) (1991 2 100))
discount.rate 10.0
maximum.annual.borrowing 150.0
maximum.annual.debt.service  100.0
maximum.annual.retirement 100.0
minimum.annual.retirement 0.0
EXTERNAL-USE METHODS:
add
change
delete

cf.cash.needs

Figure 6.7. A Borrower Object

The borrower handles financial goals, cash requirements and constraint param-
eters arising from borrower policies and preferences. A borrower example is shown

in Figure 6.7.
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NAME:

SUBCLASS.OF:

INSTANCE.OF:

ATTRIBUTE.SLOTS:
cf.current.a.coeffs
cf.current.b.coeffs
cf.current.rates.fx
cf.mean.rates.fx
cf.mean.rates.It
cf.mean.rates.st
cf.rate.changes.fx
cf.rate.changes.it
cf.rate.changes.st
currency
default.call.part?
default.int.pmts.per.year
default.issue.cost.rate
default.bond.features
default.call.wait.period
default.call.first.premium
default.sf.contribution.rate
default.sf.wait.period
issue.multiple
maximum.issue.size
minimum.issue.size
quarter.alpha
quarter.sd.fx
quarter.sd.lt
quarter.sd.st
quarter.sd.st.random.part
rate.event.slot
spread.bank.deposit
spread.basic.bond
spread.call
spread.penalty.credit
spread.prov.credit
spread.sf
spread.sf.earnings
spread.yield.to.call
term.lt
term.st
year.alpha
year.sd.fx
year.sd.|t
year.sd.st
year.sd.st.random.part

EXTERNAL-USE METHODS:
add
change
delete
fx.rate
interest.rate
generate.mean.rates
generate.random.rates

U.s.
NIL
FOREIGN.MARKETS

10.0 10.0 10.0 9.25 9.25
.588 588 .588 .367 .367
1.25 1.251.21.2
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Figure 8.8. A Financial Market Object
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Financial markets (an example is shown in Figure 6.8) specify default debt char-
acteristics for borrowing in various markets, hold market-related constraint values
such as maximum allowable borrowing in a period and provide market interest and
exchange rates (deterministic or stochastic) consistent with existing rate scenarios
as required by mathematical models or rule sets.

The random interest and exchange rate generators described in Chapter 5 and
Appendix A are implemented as methods in firancial market objects. The general
rate-generation algorithms, based on (pseudo) random number generation, are de-
fined in the top-level market class and inherited by each market instance; equation
coefficients and paramneters, which customize each rate generator based on historical

performance iz its market, are stored as attribute values in the market instance.

NAME: RET1.2
SUBCLASS.OF: NiL
INSTANCE.OF: RET

OWN SLOTS:
event.description Meech Lake rejected
event.probability 9
event.quarter 2
event.year 1990
rates.canada ((ST 14.5)(LT 12.25)(FX 1.00))
rates.us ((ST 10.0)(LT 9.0)(FX 1.25))
tree.name RET1
EXTERNAL-USE METHODS:
add
change
delete

set.up.scenarios

Figure 6.9. A Rate Event

Uncertainty is handled in MIDAS through rate event lrees, which represent
branching, probabilistic rate movements over the planning horizon, as described

in Chapter 5. An individual rate event (Figure 6.9) contains a set of interest and
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exchange rate realizations at a specified date, along with the event probability
(conditional on past events) and an optional description of event causes. Rate
event trees are formed by linking individual events into KEE inheritance hierarchies
through subclass relationships as in Figure 6.10; a path through the tree defines a
single scenario, and additional scenarios are formed by branching from higher paths
as described in Birge et al (1987). (For an initial naming convention, rate events are
named using event numbers following path numbers in the format TTP.E, where
T is the tree identifier, P is the path identifier and E is the event number.) Each
rate path is translated into a set of rate lists in financial markets at the start of
problem analysis; these rate lists are the assumptions used for (a) generation of
optimization coefficients, (b) mean-rate cash flow projections and (c) distribution

means for random rate generation during simulation.

NAME: C1
SUBCLASS.OF: NIL
INSTANCE.OF: DEBT.TYPES
OWN SLOTS:
class BOND
description:  10-year Canada bond, noncallable.
market CANADA
term 10
features NiL
Ip.name C1

EXTERNAL-USE METHODS:
create.hypothetical.portfolio
select

Figure 8.11. A Debt Type

Debt types define the types of debt to be considered in developing a borrowing
plan. A debt type is defined as a combination of debt class, such as bond, savings

bond or short-term loan; market; term and debt features such as call option or
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sinking fund requirement. In addition to these defining parameters, each debt type
contains methods for creating a portfolio of hypothetical debt objects corresponding
to debts of the type issued in all type periods in a specified planning period. A debt

type example is given in Figure 6.11.

NAME: BC1.91
SUBCLASS.OF: NIL
INSTANCE.OF: BORROW.ACTIONS

ATTRIBUTE.SLOTS:

action.date 2/1/1991

action.quarter 1

action.source LP

action.status DONE

action.year 1991

amount 25.0

debt.type C1

fi.name C1.91

Ip.name BC191

constraints (CR1 CR2 IV2 MB1)
EXTERNAL-USE METHODS:

add

change

create, portfolio

delete

Figure 8.12. A Borrowing Action

Borrowing actions specify the activities of borrowing, holding, and retiring debt
and holding cash surplus to be carried out over the planning horizon. These actions
are created to represent decision variables during the optimization modelling pro-
cess. They are modified to reflect decision variable values following optimization
and by plan refinement heuristics. Borrowing actions are also created and modified
by the user to directly specify a plan for simulation or projection testing.

A borrowing action contains action specifications, its corresponding variable
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name in the optimization model, a list of optimization constraints in which it ap-
pears, and methods for creating and modifying a debt portfolio and individual debts.

A borrowing action is shown in Figure 6.12.

2.3 Object maintenance

In addition to attribute values and model operators, all model objects and model
support objects incorporate methods for handling their own maintenance through
form-based input, consistency checks and attribute value displays. This allows
system control methods to remain general, jgnoring the maintenance details for

individual submodels and support objects.

9.4 LP support objects

MIDAS® LP support objects and their interactions with the rest of the modelling
subsystem are shown in Figure 6.13. These objects contain specifications and proce-
dures for formulating, building input files for, solving and interpreting output from
a stochastic programming model based on a given problem description stated as a
Jdomain model in the knowledge base, relying on explicit knowledge of stochastic
model structure, input requirements, input sources, output structure and output
destinations within the knowledge base.

LP structure specifiers (for decision variables, constraints and the objective func-
tion) are abstractions of model components which contain parameters and general-
ized methods for instantiating the components {from & problem description. Decision
variable specifiers are defined in a class hierarchy (Figure 6.14); each class contains
specifications for a type of decision variable (borrowing action) to be created cor-
responding to existing and hypothetical future debts in a given problem. These
objects use heuristics and knowledge of debts and market conditions to formulate
hypothetical borrowing plan as a customized minimal set of required decision vari-
ables for any problem description. Figure 6.15 shows a decision variable specifier

example.
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Figure 8.13. Modelling Subsystem Showing LP Support Object Detail
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NAME: BORROW.LT.DECISION.SPECIFIER
SUBCLASS.OF: BORROW.DECISION.SPECIFIERS
INSTANCE.OF:
ATTRIBUTE SLOTS:
decision.type B
decision.period.maximum  (time period T')
name.format (B + 2-digit.debt.type + 2-digit.decision.period)
description.format (Borrow + decision.amount + ‘of’ + debt.type -+
‘in period’ + decision.period)
object.classes LONG-TERM DEBTS
decision.period.values ISSUE.PERIOD

issue.period.source.slot ISSUE.PERIOD
EXTERNAL-USE METHODS:

create.plan

Figure 8.15. A Decision Variable Specifier

Constraint specifiers and the objective specifier contain parameters and meth-
ods for data-driven constraint and objective function construction which are used
to produce specific rows in the standard input files. (Constraints and the objec-
tive function are not explicitly represented as individual objects because within the
present system design there is no need to refer to them except during input con-
struction.) Constraint specifiers are defined in the class hierarchy shown in Figure
6.16. These specifiers state which decision variables are included in each input row
together with sources or values for coefficients for each in the knowledge base and

right-hand side sources or values. Figure 6.17 shows a constraint specifier object.

Input file builders contain specifications and procedures for constructing stan-
dard input files according to the format specified in (Birge et al. 1987) once model
structure is known. There is an input builder for each of the standard input files,
called the core, time and stoch files; using a detailed file outline and generalized
methods, each input builder produces a file of FORTRAN card images to be read

by the solver program.
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NAME: MAX.ISSUE.SIZE
SUBCLASS.OF: LP.CONSTRAINTS
INSTANCE.OF:
DESCRIPTION:
ATTRIBUTE SLOTS:
constraint.type MX
translation.format (‘Maximum issue size for’ + debt.type)
decision.period.range (1 through T')
issue.period.ra:ige (1 through T)

sum.over.debt.types?  NIL
sum.over.issue.periods? NIL

borrow.decisions T

decision.period t

coeff.value +1.0
hold.decisions NIL
retire.decisions NiL
delta.decisions NIL
surplus.decisions NIL
equation.type L
rhs.source.object.class FINANCIAL.MARKETS
rhs.source.slots MAX.ISSUE.SIZE
rhs.source.index NIL
rhs.value NIL

Figure 6.17. A Constraint Specifier

A communications manager contains parameters and methods to send the re-
quired input files to the solver, request problem solution and receive solver output.
Communications parameters include pathnames for input and output files on both
the Explorer and the solver machine, a solver machine login sequence, and a com-
mand sequence for executing a batch file to start the solver; methods are defined
which log in and out of the solver, copy files in both directions, start the solver
(which runs in either foreground or background, depending on user specification)
and check for completion of the solver run. The solver works under the control

of the communications manager, solving problems only at its request and return-
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ing FORTRAN-format output files containing values for all decision variables and
objective and EVPI values for each node in the rate event tree.
Finally, an output translator reads the solver output file and updates borrowing

plans and history records in the knowledge base to reflect relevant output values.

2.5 Rate scenarios and KEEWorids

Branching rate scenarios are incorporated into both the optimization and simula-
tion/projection modelling processes through KEEWorlds, which are the KEE im-
plementation of worlds as described in Chapter 2 (Filman 1988). A KEEWorld
can be thought of as a copy of the knowledge base in which all objects, inheritance
hierarchies, attributes and attribute values are duplicated but in which slot values
may be overridden. Each world thus has a unique set of facts which describe it, and
a set of KEEWorlds for a given problem forms an inheritance hierarchy of worlds.

To implement branching rate scenarios in MIDAS, each full path in a rate event
tree corresponds to a unique KEEWorld. This world consists of copies of all ob-
jects in the base world, giving an inherited problem description; however, portfolio
members, future rate lists, corresponding borrowing actions and projected debt
portfolio performance vary according to rate path. Expected values are computed
in the top-level world, in which special objects and methods summarize results for
all scenarios.

KEEWorlds are also used to represent multiple versions of a model during EVPI-
based model modifications and reruns as explained in Chapter 5. The revised rate
event tree resulting from EVPI analysis is represented as a new tree of rate event
objects, which become the basis for a new set of worlds reflecting the new scenarios.
The modelling process proceeds as for the initial model, with the exception that

initial results can be compared to new results because both are available for analysis

in their respective worlds.
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MIS RULE 1:

If 7D is a delta.action
And ?V is the value of 7D
And 0 < 7V < .5
Then 7V =0 is a new constraint on ?D.

MIS RULE 2:

If 7D is a delta.action
And ?V is the value of 7D
And 5<?7V < 1.0
Then ?V = 1.0 is a new constraint on 7D,

Figure 6.18. Minimum Issue Size Rules

IVB RULE 1:

If ?B is a borrow.action
And 7D is the debt object corresponding to ? B
And ?M is the market for ?D
And ?IM is the issue.multiple for 7M
And ? 4 is the amount for ? B
Then ?A =7IM times the next integer greater than ?A/?IM.

Figure 6.19. Integer-valued Borrowing Decision Rule
2.6 Refinement heuristics

Initial specifications for heuristic plan refinement are presented in Chapter 5. Each
of the two types of heuristics can be expressed as one or two rules, as shown in
Figures 6.18 and 6.19. Although they could easily be coded as LISP procedures, they
have been implemented using the KEE rule-based reasoning facility to illustrate its
application for plan refinement and to incorporate a facility which can be expanded

when additional refinement rules are identified.

The refinement rules access individual slot values in borrowing plan actions and
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financial markets; modifications are made by LISP expressions within the rules.

3. Reasoning and control

Using the knowledge representation just described, MIDAS is able to formulate,
solve and modify both optimization and simulation/projection models. Each model
is formulated by first building 2 model-object representation of the problem situ-
ation, including a borrowing plan, borrower and market conditions, rate scenarios
and a hypothetical debt portfolio; this dynamic domain representation reflects the
current state of problem analysis at any time and is referred to and modified by all
modelling processes. For modelling, the representation’s current attribute and cash
flow values are translated into particular model formats and ‘solved’ using model

operators (methods) specific to each model type.

3.1 Optimization modelling control

Figures 6.20 and 6.21 show the control structure for optimization modelling. (See
Section 5 of Appendix C for a description of model structure chart conventions.)

This processing takes place in the following steps:

1. Initialization

a. The user enters a problem description including a specified planning period,
borrower cash requirements and constraints, market conditions, assumed future
rate scenarios, existing debts and a set of possible debt types which can be used

to meet the projected cash requirements.

b. A KEEWorld is created for each path in the assumed rate tree. (This step and
those which follow are controlled by the ‘optimize’ method in the PORTFOLIOS

class.)

c. A hypothetical debt portfolio is constructed which consists of all possible debts
with principal amounts set at $1. This portfolio is inherited by all worlds.
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. Model configuration

. Based on general model specifications in LP support objects together with knowl-
edge of the characteristics of the individual debts in the hypothetical portfolio, a
hypothetical borrowing action is created for each decision variable. Constraints
and the objective function (matrix rows) are then explicitly named according to
the MIDAS naming convention (Gassmann and Ireland 1990) and listed in the
knowledge base for use by input file builders. At this stage, knowledge of debt
characteristics and market conditions is used to eliminate unnecessary decision

variables and constraints.

. In each world, each debt in the hypothetical portfolio calculates its own (per-
dollar) optimization coefficients using the methods for rate-list generation and

cash flow projection which are also used to produce simulation results.

. Using the names and specifications for decision variables, the objective and con-
straints in LP support objects, the debt object coefficients are reformatted to

build the required standard input files for the optimization solver.

. Model solution

. The portfolio control method directs the communications manager to send the
input files to the solver and request solution for the model by running a batch

file in the solver machine.

. This file is executed to solve the model and return the solver output file to the

knowledge base.

. Termination

. The output file is read, decition variable results are stored as borrowing action
amount values in the appropriate worlds, unused debts in each scenario are
deleted from their portfolios and debt principal amounts are adjusted to reflect

the output values of the optimization decision variables.
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b. The complete borrowing plan resulting from the optimization step is displayed,

under the control of a presentation manager (see Chapter 7).

For optimization model modifications and reruns, model changes such as con-
straint revisions are stored and used to alter model input as required. Steps 3 and

4 are then repeated.

3.2 Stochastic simulation control

Figure 6.22 outlines the control structure for stochastic portfolio simulation. Each
financial instrument simulates its own financial performance, given future interest
and exchange rates; the results of individual borrowing alternatives are modelled
using individual financial instrument objects. Portfolios simulate entire borrowing
plans by modelling individual financial instruments and combining their results.
Simulation model control is handled through methods in financial instruments and
portfolios. Detailed simulation output is stored in output tables (see Chapter 7) for
presentation and further analysis.

Processing for the simulation model proceeds as follows:

1. Initialization

If the simulation follows optimization and heuristic plan refinement, this step is not
necessary. If the simulation is being carried out separately, then model objects,
model support objects and worlds are created from user input to fully describe the
current problem.

The user may specify the portfolio to be tested by either entering a borrowing
plan, which will create a portfolio and its debts, or by directly creating existing and

future debt objects and the portfolio.

2. Simulation passes

a. For each market, a sequence of yield curves is randomly generated, as described

in Chapter 5, for the planning period from distributions consistent with the event
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sequences assumed in the stochastic programming model. The rate path on the
scenario tree that corresponds to the generated rates is then identified; it is called
the current scenario and corresponds to the world in which the simulation pass

will take place. (This step and those which follow are under the control of the
‘simulate’ method in the PORTFOLIOS class.)

b. The portfolio corresponding to the current scenario (the set of debt objects active

under this scenario) is identified and called the current portfolio.

c. Cash flows are projected for the current portfolio. To do this, the portfolio’s
output table is first initialized. Cash flows are then calculated according to the
defining characteristics and features of the debt (Figure 6.23) and totalled for
each member of the portfolio. (The given interest rate curves affect cash inflows
and outflows by determining (a) the coupon rate of the new debt, (b) sinking
fund earnings rates, (c) short-term debt and cash surplus earnings rates, and
(d) the market price of each debt at the end of the simulation period, when it is
assumed that all debt is retired.) Any cash deficit or surplus with respect to the
stated cash requirements is then calculated and set up as additional borrowing
or investment. (High-cost penalty borrowing is used to fund deficits.) Portfolio
totals and performance indicators, including the ending portfolio value, are then

computed.

d. The performance indicator values for the portfolio for the simulation pass are

stored as a single observation in the list of simulation results.

The process is repeated as many times as desired to obtain the full performance
indicator distributions. Following all passes, cash flow projections are done using
mean rates for the entire rate tree to provide details on mean-rate performance for
analysis. Finally, results are presented to the user as distribution statistics and

graphs, with detailed mean-rate projection results available on request.
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3.3 Plan refinement reasoning

Because plan refinement is a data-driven rather than goal-driven process of gen-
erating all implications from a given plan and rule set, heuristic rule refinement
uses forward chaining to inspect and modify optimization output as represented in
output tables. Forward chaining begins with the assertion that a given rule set is to
be applied to a borrowing plan; the rule or rules in the set are then applied as many

times as necessary until all possible conclusions (plan modifications) are made.

4. lmplementation status

As indicated in Chapter 4, the implemented system prototype handles heuristic plan
refinement and simulation modelling with system support as outlined in Chapter 7.
The prototype includes limited debt types, single-path rather than branching rate
scenarios and no ability for user creation of new debt types. The prototype is able
to carry out full simulation and projection of financial instruments and portfolios,
but the model objects (including future debts) must be created directly; debts and
portfolios cannot be automatically created by entering borrowing actions. With
regard to optimization modelling, coefficients can be generated and the communi-
cations interface linking the knowledge base with the optimization solver has been
implemented; work is now progressing on LP input file construction and output

interpretation.

5. Model performance

Systems implemented in KEE operate entirely in memory (real and virtual); hence
their processing speed depends on amount of memory and page space. Optimiza-
tion performance also depends on the external FORTRAN solver and Ethernet
communication if the Explorer rather than the MicroExplorer is used.

Solver performance is discussed in Chapter 5, and optimization formulation has

not yet been implemented. Simulation times for 8-debt portfolios with 50 passes are
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in the range of 15 minutes; simulations of 50 debts, approximating the Corporation's

present portfolio, run in approximately one hour.

6. Contributions, strengths and weaknesses of this design

6.1 Research contributions

Both the simulation and optimization models used in MIDAS are highly complex
in terms of the number of parameters, algorithms and output values involved and
their variations among the numerous financial instruments modelled. Additional
complexity arises from the treatment of uncertainty through branching scenarios
and stochastic simulation.

As noted in Chapter 2, flexible formulation of complex models such as these has
not been demonstrated in decision support systems to date. In addition, object-
oriented design and programming have not been applied to complex financial simu-
lation or optimization modelling. This design is therefore innovative for its ability to
handle complexity, its use of frame-based, object-oriented techniques in modelling
and its ability to achieve formulation of the required optimization and simulation
models in a straightforward manner based on a clearly defined domain representa-
tion.

Similarly, DSSs have not previously been developed which integrate two major
types of complex models as well as rule-based components. As we have seen, MI-
DAS’ use of a common domain representation gives common assumptions, param-
eter values and low-level calculations such as coefficients for all models, extending

integration to include access to common algorithms as well as common data values.

6.2 Overall functionality

As described in this chapter, MIDAS’ modelling subsystem is designed to perform
all functions outlined at the start of this chapter by maintaining and manipulating
its common object-oriented domain/problem representation. Model formulation is

automatic once the appropriate model objects are created and described; model
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solution is controlled by methods within objects; and model resulls alter the do-
main representation to maintain the common model structure and current problem
description, thereby integrating models and heuristic components. Although the
modelling components are specifically crafted for a single domain and problem type,
within these constraints the system is flexible in its handling of numerous types of
financial instruments, deterministic or stochastic rate forecasts, mean-rate or ran-
domized rate assumptions based on these forecasts, and single- or multiple-debt
modelling.

This design makes model and rule integration especially simple and straightfor-
ward in MIDAS, despite the complexity of the models involved. The use of domain
objects as common underlying conceptual and operational submodels ensures nrodel

consistency and communication in several ways:

1. Both types of models are configured or reconfigured simultaneously when a port-

folio is created.

2. The different models have common parameter values for coefficient and simula-
tion/projection calculations, arising from their definition and storage in common

model and support objects.

3. The models use the same methods for common calculations even though results

are used for different purposes in the modelling process.

4. All model communication, including communication with rule-based rcasoning
modules, is based on facts in the common objects. Input to and results from each

model or rule set are stored as attribute values available to the entire system.

5. Because underlying objects store intermediate domain states, the optimization,
refinement and simulation subprocesses are linked to carry out the staged plan-
ning process supported by the system. Each has a well-defined, complementary
function to perform in adding to or modifying the knowledge base domain de-

scription.
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Overall, the four model modularization design problems identified in Chapter 5
(module definition, selection, communication and control) are solved in a straight-
forward manner by the choice of domain objects as basic submodels and by the use
of object-oriented programming to implement the models. Definition and selection
mimic the creation of an actual debt plan from possible debts; communication is
for the most part limited to the passing of data items that would be obtained from
the institutions supporting the debt planning process; and control is done through
generalized methods which do not have to consider the calculation specifics within

objects.

6.3 Other advantages

A domain-specific system organization provides at least two other significant ad-
vantages from the developer’s and user’s viewpoints. First, it provides a clear
semantic starting point for communication between system users and developers,
since the objects, terms and methods used in the system clearly correspond to those
used in the system'’s real-world domain. Second, the well-documented advantages
of object-oriented programming allow the developer to easily build, test and reuse
debt submodel definitions and to combine debt objects into portfolio models without

specific consideration of modelling details within each portfolio member.

6.4 Design limitations

As now designed, the system’s main modelling limitation from a user’s viewpoint
is its inability to formulate new classes of debt, incorporating innovative interest
features or other provisions, under user control. This capability could be provided
by redefining all debts or new types as collections of single-feature objects such as
basic bonds, call features and sinking fund features, combined under user direction
(see Dhar and Pople 1987) for a similar effort for manufacturing simulation); how-
ever, this was not added to the initial system design because it created extensive

additional overhead for linking debt components into coherent models.
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The system’s main weaknesses from the developer’s perspective are those of
object-oriented programming and LISP: poor performance, the need for extensive
computing resources and difficulties in managing the knowledge base. These are dis-
cussed in more detail in Chapter 9. In addition, the many methods which implement
the modelling algorithms illustrated in this chapter are highly interdependent as to
their order of execution and dependent for correct results on the knowledge base
conditions required at any point during modelling, so that method mainicnance
is relatively difficult. (Inheritance does, of course, reduce the need for method
changes.) Further work on ways to improve error-checking and reduce this interde-

pendence would improve the maintainability of the model.
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System Support Design

MIDAS’ system support subsystem handles the functions necessary for the 5ys-
tem to be able to interact with its users and to control its operations. Significant
portions of this subsystem illustrate a data-driven control approach which adds great
power and flexibility to functions which would otherwise be quite cumbersome and
resource-intensive to implement. This chapter describes the three functional compo-
nents comprising the system support subsystem: the user interface, including win-
dowing, screen layout and user request processing; output manaegement; and overall
system controlincluding task scheduling. Figure 7.1 presents an object diagram for

the entire system support subsystem; each component is discussed separately below.

1. The user interface

1.1 Functional requirements

The system’s user interaction utilizes the mouse-menu interface provided by KEE
and the Explorer, expanded to include the form-based input style expected by
business users such as Corporation management and staff. The user interface is

designed to provide the following functional support for user-system interaction:

1. Production of display screens, including a constant background and various

prompt and output windows.

2. Menu-based handling of user requests through icons, menus and mouse-activated

method or rule calls.

3. Form-based object maintenance and problem description input.

131
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Because these items are provided by KEE and Explorer software functions, they

are described only Lriefly with examples below.

1.2 Display screen, window, icon and menu production

Figure 7.2 shows user interface objects in the context of the system support subsys-
tem. KBEE and the Explorer operating system provide LISP functions for screen,
window and icon generation. Screens, windows and icons (represented generically in
Figure 7.2 as ‘MIDAS windows’ are defined as KEE objects using the KEEPictures
facility (Intellicorp 1988c¢), Common Windows (Intellicorp 19885) and Explorer win-
dows functions (Texas Instruments 1987). Mouse-click responses are specified when
icons are created, and screen and window displays are handled by windows func-
tions in methods in the I.0.unit, a single object which organizes menu and window-
related slots and methods. Menus are produced from specification lists in slots in
the 1.O.unit, which enumerate the method calls to be used in response to mouse
activated menu selections.

The system’s main display screen is illustrated in Figure 7.3. Interaction is begun
by clicking on the MIDAS icon in the top left corner. This produces a cascading
menu in which succeeding levels of functions appear when the mouse is dragged

through menu lines; another mouse click selects the appropriate function choice.

1.3 Form-based input

Problem description input, which results in the creation of object instances and the
filling in of their slot values, is done through choose-variable value forms defined
in the Explorer window system (for an example see Figure 7.4). The forms are
controlled by LISP add, change and delete methods in each object class; with these
methods, each class of model object is able to create instances of its class, fill in

slot values, modify instances and delete them.
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Figure 7.8. MIDAS Main Display Screen Showing Menu Options



136

.........................................................................
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Original principal ($m}: ... 100.9

Principal outstanding ($m):. 180.8
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Issue date mn/dd/yys ---eeoeeeeeneeee 81 Aug 78 ©8:08:008
Term of bond issue (years):. 28

1Interest payments per year: - 1
jQuarters when interest paid: 1234
1Total issue costs ($m): - 1.5
40R ¢

IPrice to public: ---ooereeeriinnnn. 106.0
1Commission rate (Z): --cooeeeeeeees 8.8
fﬁdministratiue costs ($m):---- 8.8

Ca1]ab]e?: .................................... Yes No
Sinking fund?: «cooeeeeeeriiiiiie. Yes No

400 It [

Figure 7.4. Choose-Variable-Values Input Form
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1.4 System housekeeping

Necessary housekeeping tasks such as saving current problem states and moving
between the user interface and the development system are requested through a
utilities menu item and are handled by KEE or LISP functions in various objects

as appropriate.

2. Qutput management

Both the optimization and simulation models used in MIDAS produce large quan-
tities of numerical output which must be organized, stored, manipulated and pre-
sented efficiently. The Explorer and KEE do not provide built-in functions for
these output management functions, so the MIDAS design includes specifications

for object-oriented output management.

2.1 Functional and knowledge requirements

MIDAS’ extensive model results form a primarily numeric database which requires
extensive manipulation in the course of modelling, analyzing results and presenting

them to the user. Specific output management functions include:

1. Representation and organization of multi-line time series data such as cash flow

details over any given planning period.

2. Commonly-used numeric manipulation and calculation operations (initialization,
totalling, foreign exchange translation, net present value, internal rate of return

and statistical analysis).

3. Cross-referencing of result data to and from its sources (financial instruments

and portfolios).

4. Table, graphic and text-oriented result presentation.
Knowledge and processing requirements for these functions are relatively simple;

with the exception of the specific display and reporting functions for the Explorer
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system, all are routinely handled in business data processing and financial modelling
systems. However, the diversity and large volumes of data to be handled in MIDAS

make efficient, easily-maintainable output handling important to the overall system

design.

2.2 Knowledge representation and control approach

Because they are similar across large and diverse groups of data, these functions
can be managed most efficiently using an approach similar to that of database
management systems which manage data based on descriptive metladata (data about
the data in the object) and generalized operations. Such an approach guides MIDAS’
output management component, shown in Figure 7.5 in the context of the system
support subsystem. Within this component, all model output data is stored and
manipulated in generic output table objects; presentation managers use data in the

output tables to produce specific output displays, reports and graphs.

2.3 Output tables

Output tables store time-dependent cash flow projection output, used for optimiza-
tion coefficients and simulation results, by line item in LISP lists. (Because KEE
does not explicitly support arrays, the lists are used to mimic arrays with each
indexed position corresponding to a time period (quarter or year) between period
1 and the end of the planning horizon.)

Output tables are defined in classes for single financial instruments and for port-
folios and are instantiated for each portfolio and basic model object in a problem;
each foreign debt has separate tables for foreign and domestic-currency results. Fi-
nancial instrument tables hold and manipulate results for an individual basic model
object, while portfolio tables hold and manipulate line-by-line portfolio result totals
across objects in the portfolio as well as performance indicators for the portfolio as

a whole. In addition to holding result lists, output tables contain generic methods
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and specifications for manipulating list contents in commonly required ways such
as summation, statistical analysis and foreign exchange translation.

Output tables are large objects which contain a number of types of slots which
have specific output manipulation roles. Each slot type has associated facets (slot
attributes) which drive general output manipulation methods for that slot type.
Slot types include the following:

1. Cash flow slots. For basic model objects, these slots hold lists of cash flow
projection results by time period produced by calculation methods within the
model objects. For portfolios, cash flow slots hold totals by time period for
slots of the same name across all members of the portfolio. Examples of cash
flow slots include principal borrowed, principal retired, principal outstanding,
interest paid, sinking fund balance and sinking fund contributions. Each cash
flow slot has an active facet which contains a flag indicating whether the slot
is used by the particular model object which generates results for that table.

Figure 7.6 gives an example of a cash flow slot in an output table.

Slot name cf.principal.outstanding
Value (0 250 250 275 225 200)
Facets:

active T

initial.element 0.0

title “Principal Outstanding”

Figure 7.8. A Cash Flow Siot in an Output Table

2. Memo alots. These slots hold time-dependent non-cash flow data which is either
needed during cash flow projection or helps to explain projection results. Exam-
ples are a status slot which indicates whether a debt is issued, active, callable
or mature in each time period; and lists of market interest rates and foreign

exchange rates applicable to a particular cash flow projection.
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. Total slots. Total slot values in an output table are sums by time period of
values in other slots in the table. Each total slot has a sum.of facet containing
names of the slots to be summed by an associated general method to give the
slot value. Total cash flows and total operating cash flows are examples of total

slots. Figure 7.7 shows a total slot.

Slot name cf.total.cash.flows
Value (500 550 700 -500 -500 -1000)
Facets:

title “Total Cash Flows"

active T

initial.element 0.0

sum.of (cf.principal.borrowed, cf.issue.costs,

cf.interest.paid, cf.retirement.costs,
cf.principal.retired, sf.contributions,
sf.withdrawals)

Figure 7.7. A Total Slot in an Output Table

. FX alots. These are slots whose values are to be translated from foreign currency

to Canadian dollar values.

. NPV slots contain the net present values of lists elsewhere in a table. Each

NPV slot contains a base alot facet which names the slot to be discounted by
the general NPV method.

. IRR slots contain the internal rates of return of lists elsewhere in a table. Each
IRR slot contains a base slot facet which names the slot to be analyzed by the
general IRR method. The IRR is calculated iteratively and a value of NIL placed
in the slot if the IRR is multiple-valued.

. Performance indicator slots. These slots, found only in portfolio tables, hold
lists by time period of portfolio performance indicators such as average debt

term, percent of long-term debt, percent of foreign-currency debt, and percent of
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variable-rate debt. Performance indicators are averages, percentages or ratios of

selected values elsewhere in the table; the general performance indicator method

is driven by the following facets:

a. The numerator facet, which names a slot to be accumulated across portfolio
members for the numerator of the performance indicator.

b. The denominatorfacet, which names a slot to be accumulated across portfolio
members for the denominator of the performance indicator.

¢. The multiplier facet, which names a slot whose values multiply numerator
values, for performance indicators that are weighted averages.

d. The percent facet, which has a value of T if the indicator is a percentage
(requiring multiplication by 100) and NIL if the indicator is not a percentage.

e. The condition facet, which contains conditions (in the form of LISP expres-
sions to be evaluted) which must be met for a portfolio member to be included

in the numerator of the performance indicator.

Figure 7.8 gives an example of a performance indicator slot and outlines the

performance indicator calculation method.

. Constraint warning slots, which contain lists of differences between constraint

values and list values produced by the simulation. These are calculated by a
general method which gives a list of differences between a base.slot value and a

constraint value in the knowledge base.

. Simulation result slots. These slots contain lists of simulation results, such as

ending portfolio value, for multiple simulation passes. Each simulation result
slot also has facets for holding statistics (mazimum, minimum, mean, standard
deviation and quariiles) calculated from the slot’s values by a general result

analysis method. Figure 7.9 illustrates a simulation result slot.

Name list slots. Each of these slots contains a list of names of slots in one of

the above categories. For each slot category, the list is used as an argument to
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S

Slot name cf .percent.st

Value 33.0

Facets:
title “¢ Short-Term Debt”
initial.element 0.0
numerator.siot cf.principal.outstanding
multiplier.slot nil
denominator.slot cf.principal.outstanding
condition (£ term 1.0)
percent T

Method name: mth.perf.indicators

Method value:

FOR EACH SPECIFIED PERFORMANCE INDICATOR
GET FACET VALUES FOR INDICATOR SLoT

IF MULTlPLiER.SLOT NIL

SET MULTiPLlER.SLOT VALUE TO 1.0

FOR EACH MEMBER OF pORTFOLIO

{F CONDITION TRUE FOR MEMBER

GET VALUES FOR NUMERATOR.SLOT.
DENOMINATOR.SLOT. MULT\PL\ER.SLOT (IF NOT NIL)

DT
ADD NUMERATOR VALUE TIMES MULTIPLIER
VALUE TO NUMERATOR TOTALAT T
ADD DENOMINATOR VALUE TO DENOM\NATOR

TOTALAT T
SET PERFORMANCE INDICATOR EQUAL TO NUMERATOR VALUE /

DENOM\NATOR VALUE
{F PERCENT, MULTIPLY PERFORMANCE INDICATOR VALUE BY 100

-

Yigure 7.8. A Performance Indicator Slot and Method in an Output Table



144

Slot name sim.end.value
Value (15 15.2 15.5 20 29 22 16 19)
Facets:

title “Ending Value”

base.slot pf.end.value

high 29

low 15

mean 18.96

std.dev 35

quartile.1 15.2

quartile.2 16

quartile.3 20

Figure 7.9. A Simulation Result Slot in an Qutput Table

the associated general output manipulation method resulting in its application
to all slots in the list. For example, the total.slots value lists all slots in the table
for which values are to be calculated using the toials method.

In addition to the facets described above, slots in all of the above categorics
except the last have a title facet which contains its title for display and reporting
purposes and an initial.element facet which contains the symbol (C.9, 0 or NIL) to
be used to initialize the list at the start of a modelling operation.

The data manipulation methods provided in output tables do not operate as
part of a single task but are called as required by model solution and output analy-
sis methods. During simulation, for example, each table initializes itself on request
from the portfolio or debt; initialization involves zeroing all lists and setting facet
values (depending on debt type) indicating which lists are active during the current
simulation. The tables serve as references for the model objects during the simula-
tion; each simulation pass fills in the tables with cash flow details, and totals are
calculated by the tables when the details have been calculated. Foreign exchange
translation is then done to convert each foreign-currency table to a Canadian-dollar

set of results. Portfolio totals are accumulated by the portfolio table based on the
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currently active cash flow slots in the portfolio. The table also calculates NPVs,
IRRs and performance indicators at the end of each pass and statistically analyzes

result distributions after all passes are completed.

2.4 LP history objects

LP history objects maintain records of user or system-generated modifications and
reruns of a model, for use in heuristic plan refinement, EVPI-based model modifi-
cation, parametric analysis and key factor impact analysis. Each object contains
before-and-after records of all objects and slot values changed from the last version
of the model, including rate events; the date and time of the resulting run; and the
objective value (for optimization) or main performance indicator values (for simu-
lation) resulting from that run. For parametric or key-factor impact analysis, only

one object records the results of the sequence of parameter changes and reruns.

2.5 Presentation management

Output presentation is handled by presentation manager objects. Presentation man-
agers have their own class hierarchy, which takes advantages of inheritance to min-
imize code required to produce variations in output displays. Separate classes of
presentation managers handle table displays of result lists, displays of attributes
for individual model objects, graphs, text output and printed reports, taking data
values from output tables or other objects as necessary. Generic presentation meth-
ods using Explorer and KEE windowing and graphics functions format and display
output; a manager instance defined for each display inherits these methods and
contains additional slots specifying display contents and source. Qutput specifica-
tions such as data sources and destination window names are explicitly stored as
slot values rather than being included in procedural code.

Output presentation methods follow relatively simple control structures pre-

scribed by KEE and the Explorer windowing system. Table scrolling, necessary to



TORMIAT
DISPLAY
COXTENTS

DISPLAY
TASLE

FOMIAT
TITLE

FORAT
| DATA

Nave:

aLL NETHODS 4XC CARALLID OUT
£Y TABLL DISPLAY TAMACERS

Figure 7.10. Table Presentation Control Structure

SET uP
VINDOW AND
XPOSE

~

aLsrLay
TALLE

146

pisSrLay
TiTLes

0t SPLAY
baTa




147

show tables larger than will fit into windows, is handled by window repaint func-

tions. A table presentation method structure chart is shown in Figure 7.10.

2.6 Contributions, strengths and weaknesses of this design

This general-purpose management scheme for model output demonstratesa straight-
forward form of object-oriented data management by explicitly representing data
management knowledge in objects and manipulating the tables with generic pro-
cedures defined by object class. The approach has several advantages. First, it
simplifies the structure of model objects by limiting them to definitional, attributes,
maintenance methods and unique calculation methods; their results are stored sepa-
rately in dedicated tables. Second, it significantly reduces the code required to carry
out the extensive, generic calculations required of the models. Third, it provides
much self-documentation of the system, since operation specifications are clearly
detailed in slot and facet values. Finally, it allows straightforward maintenance and
extension of many table operations through simple slot value changes rather than
procedural code alterations.

The main weakness of this design is wasted space within tables. A single table
definition is used for all types of financial instruments and many slots are left
empty by some types of debt. This could be corrected by defining new output
table subclasses corresponding to individual debt types and containing only the
necessary slots for each type.

Another weakness of the representation scheme which may or may not prove
significant as the system is expanded is the use of lists within single slots to represent
time-dependent data sequences. This representation creates some data redundancy
when worlds are implemented, since it requires a complete copy of a list to be stored
in a new world if any element in the list varies between that world and its parent
world. Alternative representations, including pointers to values within a relational
database either within the Explorer or on distributed hardware, will therefore be

investigated as part of the implementation of scenarios and worlds in the system.

e e e - B D I IR e SR S S I L
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For report generation, the explicit representation and generic manipulation of
knowledge about display types provides significant advantages over explicitly cod-
ing individual display procedures. Although the Explorer and KEE do not provide
high-level business reporting and graphics capabilities, this approach has enabled
the construction of some generic business table and graphics functions. Because
new display types are created as specializations of existing types, inheritance min-
imizes the new coding required. Furthermore, understanding and maintenance are
relatively straightforward due to the data-driven and self-documenting nature of

the representation.

3. System control and task management

3.1 Functional and knowledge requirements

MIDAS’ overall task execution sequence is designed either to be controlled by the
user through menu requests or to be system-suggested with user confirmation. In
the latter operating mode, the system is intended to mimic a human advisor, leading
the user through the complete planning process, suggesting and explaining steps and

executing them on user approval.

Specifically, the task management component should accomplish the following:

1. Suggest the next task at any point in a planning session, based on the current
stage of problem analysis and whether or not all prerequisites for a task have

been met.
2. Explain to the user the purpose of the task and why it is suggested.
3. Ask for user approval or modification of the task sequence.
4. Carry out the specified task.

These functions require the following types of knowledge:

1. Knowledge of required or suggested task execution order.
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2. Preconditions for each task.
3. Task descriptions and explanations of purpose.
4. Prompts to ask for user responses.
5. Planning procedures for deciding when to execute tasks.

6. Procedures for carrying out each task.

3.2 Knowledge representation

The task management component is designed as a rule-based agenda management
system in which (a) objects explicitly represent tasks and task conditions, and (b)
generalized rules dynamically maintain a list of planned tasks and execute current
tasks based on the knowledge base state and analysis history. This design is a modifi-
cation of an approach suggested by Winkelbauer (1988) in which model descriptions
and requirements are explicitly represented in objects to support rule-based model
management.

Figure 7.11 shows object relationships for the MIDAS task management compo-
nent within the context of the system support subsystem. Objects in the subsystem
include task objects, which contain task requirements, purposes, conditions, prompts
and execution procedures; task condition objects, which organize condition descrip-
tions, checking procedures and correction procedures; and a task controller, which
holds the agenda, identifies the current task and executes it when requested or

confirmed by the user.

3.3 Task objects

A task object example is shown is Figure 7.12. Each task contains names of con-
ditions to verify before a task is executed, a task description (for explanation pur-
poses), two levels of prompts for user confirmation that the task should be executed,

subtasks to be checked and added to the agenda if the task is to be executed, a
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NAME:
SUBCLASS.OF
INSTANCE.OF

OWN SLOTS:
alternate.task
conditions
subtasks

next.task
long.prompt

short.prompt
confirm?
required?
schedule.status
condition.status
confirmed.status
performed.status
subtask.status
why.perform?

METHODS:
check.conditions
confirm
perform.task

BUILD.LP.INPUT
NIL
TASKS

SAVE.PROBLEM.SPACE
(LP.STRUCTURE.EXISTS LP.PF.EXISTS)
(BUILD.CORE.FILE BUILD.TIME.FILE
BUILD.STOCH.FILE)

SOLVE.LP

“We now must build input files for the
optimization model solver. The process
may take several minutes. OK to proceed
(Y/N)?"

“Build LP input (Y/N)?"

T

T

CURRENT

T

UNKNOWN

DONE

UNKNOWN

“The optimization model requires input
in three specific files containing

(a) coefficients and decision variables
for the ‘base’ rate scenario, (b) data

on the time structure of the model and
(c) coefficients that vary from the base
scenario in other scenarios. This task
builds those input files for use by the
optimization solver.”

Figure 7.12. A Task Object
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suggested alternative task to be executed if the task is rejected, the name of the
task to be executed following this task, and several status indicators used by the
task control rules. It also contains methods for confirming the task with the user

and for executing the task by sending an appropriate message.

1.0 (Initialize.problem
1.1 Load/create.problem.space
1.2 Change.problem.specification
1.3 Set.prompt.type
1.4 Set.analysis.type (full.plan.creation,
plan.simulation, pf.simulation, fi.simulation)
2.0 Review.background.knowledge
2.1 Review.markets
2.2 Review.debt.types
2.3 Review.existing.debts
2.4 Check.opening.balances
3.0 Describe.current.problem
3.1 Enter.borrower.requirements
3.2 Enter.future.rates
3.3 Select.debt.types
3.4 Enter.new.debts
3.5 Enter.borrowing.actions
3.6 Build.portfolio
4.0 Optimize.plan
5.0 Do.EVPl.analysis
6.0 Do.parametric.analysis
7.0 Do.heuristic.refinement
8.0 Do.simulation.or.projection
8.0 Do.key.factor.analysis
10.0 Explain.resuits
11.0 Save.problem.space
12.0 End.analysis

Figure 7.13. MIDAS Task Tree

3.4 Task controller

The task controller contains the current task agenda as a list in which the first
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clement is the current task. Suggested task order for the entire system (Figure 7.13)
‘s maintained in a tree structure by the nezt task and subiasks slots in task objects.
A task is added to the agenda when: (a) it is the next task following an executed
task; (b) it is a subtask of a task approved for execution; (c) it is a task required
to correct a condition for execution of a task already on the agenda; or (d) it is
requested by the user. A task is removed from the agenda when it is finished or
rejected by the user. A task is omitted when it is not appropriate for a particular

type of analysis.

3.5 Task conditions

A task is only executed if it is on the agenda and satisfies the following: (a) all
necessary input is present in the knowledge base; (b) the problem description is
internally consistent; (c) no other conditions are present which indicate that it
should not be performed; and (d) it is either a required task or is confirmed by the
user if it is a task that should be confirmed. Confirmation is handled directly using
task prompts; other conditions are explicitly represented in task condition objects
and checked using generalized methods and rules.

Task conditions are defined in a class hierarchy (Figure 7.14). Input conditions
check whether categories of input are present, listing relevant objects and confirming
them with the user. Consistency conditions check relationships among knowledge
base parameters for consistency (e.g. the same date for opening debt balances and
the start of the modelling period). Contra conditions check for miscellaneous con-
ditions indicating that the task should not be done (e.g. model size will be large
and user is not willing to wait for the time required). If a condition is not satisfied
and cannot be confirmed by the user, a task to correct it is added to the agenda.
Condition status remains as set once checked unless reset by specified changes made

to the knowledge base. Figure 7.15 shows a task condition object.
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TASK
CONDITIO0NS

CONTRA
COMDITIONS

INPUT
CONDITIONS

COXDITEONS

Figure 7.14. Task Condition Class Hierarchy

NAME: LP.STRUCTURE.EXISTS
SUBCI ASS.OF NIL
INSTANCE.OF INPUT.CONDITIONS
OWN SLOTS
status T
prompt “Have LP decision variables and

constraints been defined in the
knowledge base for this problem?”
correction.task DO.LP.STRUCTURE

METHODS:
check.condition
confirm.condition

Figure 7.15. A Task Condition Object

3.6 Reasoning/control

Task control rules, called by methods in task and condition objects, use forward
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TASK CONTROL RULES:

TCR1: IF THE CURRENT TASK IS UNKNOWN
THEN THE CURRENT TASK OF TASK.CONTROLLER IS THE
FIRST VALUE IN THE AGENDA LIST IN THE
TASK.CONTROLLER

TCR2: IF ?T IS THE CURRENT.TASK
AND THE CONFIRMED.STATUS OF ?T IS UNKNOWN
THEN CONFIRM ?T

TCR3: IF 7T IS THE CURRENT TASK
AND THE CONFIRMED.STATUS OF ?T IS T
AND THE CONDITION.STATUS OF 7T IS UNKNOWN
THEN CHECK THE CONDITIONS OF ?T

TCR4: IF ?T IS THE CURRENT.TASK
AND THE CONDITION.STATUSOF ?T IS T
AND THE CONFIRMED.STATUSOF ?T IS T
AND THERE ARE SUBTASKS OF 7T
THEN ADD THE SUBTASKS OF ?T TO THE AGENDA
AND THE CURRENT TASK IS THE FIRST SUBTASK

TCR5: IF ?T IS THE CURRENT TASK
AND THE CONDITION.STATUS OF ?T IS T
AND THE CONFIRMED.STATUSOF ?T IS T
AND THERE ARE NO SUBTASKS OF 7T
THEN EXECUTE 7T

TCR6: IF ?T IS THE CURRENT TASK
AND THE CONDITION.STATUS OF ?T IS T
AND THE CONFIRMED.STATUSOF 7T IS T
AND ?T HAS SUBTASKS
AND THE PERFORMED.STATUS OF ALL SUBTASKS
OF ?T IS DONE
THEN EXECUTE ?T

Figure 7.18. Task Control Rules
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chaining to identify the current task at each pause in the debt planning process,
based on the candidate task agenda, user approval and satisfaction of prerequisite
conditions. Upon selection, the current task is executed and the task identification
process repeated. This scheduling/sclection/execution loop can be stopped and
restarted at any time as long as the agenda, current task and status variables are
stored in the knowledge base. Because the detailed knowledge driving the reasoning
process is represented in objects rather than in many rules, the process can be
handled by a small rule set; Figure 7.16 paraphrases these rules.

Task conditions can be checked by either methods or rule sets called by mes-
sages in condition objects. Task condition rules operate by backward chaining to

determine the condition status based on knowledge base conditions.

3.7 Contributions of this design

This approach allows significant flexibility in the sysiem control component as well
as its eventual extension into a more active planning assistant. As it now stands,
it is designed to suggest the appropriate task, explain the reason for the task,
check that preconditions are satisfied and execute the task; extensions might include
modification of task order based on modelling results (which occurs in & limited way
in the parametric and sensitivity analysis subsystem) and active questioning of user
requests when they do not seem to fit accepted conventions. Further requirements

in this area will be identified by observation and analysis of actual system use.

4, System support imnplementation status

For the initial system prototype, the following system support functions have been
implemented: the user interface (main display screen, menus, object maintenance
including form-based input); output tables; output presentation in table and graph
format and task management for simulation modelling and projection. Their oper-

ation is included in the illustrative planning session in Chapter 10.
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User Support Design

Although human intermediaries perform a wide variety of tasks to assist man-
agers in using models, this research focussed on four user assistance tasks: (a) op-
timization model simplification based on the ezpecied value of perfect information
(EVPI), as explained in Chapter 5; (b) parametric analysis of optimization model
results; (c) qualitative explanation of the causes of simulation and cash flow projec-
tion results and (d) analysis of the impact on simulation and cash flow projection
results of varying the key factors identified as causes of these results. (Many other
such tasks should, of course, be added to the system for it to begin to truly replacea
human intermediary; one example which is a promising candidate is explanation of
optimization model results by linking the ANALYZE program (Greenberg 19874,5,
1988, 1989; Greenberg and Lundgren 1989, Greenberg and Murphy 1989) to MI-
DAS.) This chapter discusses the initially chosen tasks, presenting the rationale
for choosing each as important for this decision situation and then presenting its
functional requirements. A common design approach is then proposed to handle all
four tasks as well as possible future extensions to MIDAS user support capabilities.
The chapter concludes with comments on the research and practical significance of
the proposed design and suggests ongoing research in the largely unexplored area

of complex financial result analysis and explanation.

1. Task descriptions and functional requirements
1.1 EVPi-based model modification

As noted in Chapter 5, MIDAS debt portiolio models are often too large to be easily
manipulated and rerun many times. This difficulty is partly handled by ‘intelligent’

157
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reduction in model size after it is first solved, based on expected values of perfect
information returned by the model solver for each node in the underlying rate tree.

This model simplification process must accomplish the following functions:

1. Identification of rate tree branches to be aggregated without significantly chang-

ing model results.

2. Aggregation of identified branches in the rate tree by replacing them with single

branches containing probability-weighted average rates.

3. Modification of the problem description to reflect the new set of rate scenarios

in the altered rate event tree.
4. Modification of the optimization model to reflect the new problem description.

5. Re-solution of the optimization model and storage of new results in the knowl-

edge base.

These functions require knowledge of the impact of EVPI analysis on rate event
trees, the underlying problem representation in the knowledge base and procedures

for model modification and reruns.

1.2 Parametric analysis

Parametric analysis helps users of an optimization model better understand model
behaviour by systematically varying key constraint parameter values, rerunning the
model and plotting corresponding variations in the model’s objective function value.
As noted in Chapter 2, parametric analysis of model results is a standard feature
of DSSs which rely on optimization models.

Within MIDAS, parametric analysis must be applied to the constraint on maxi-
mum cash outflows for debt service per period. This constraint, as noted in Chapter
5, serves to limit downside risk in a problem situation which theoretically should
be solved with an objective containing both a (linear) return and a (quadratic or

higher order) risk term. Varying the maximum debt service constraint value and
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plotting the resulting objective (ending debt portfolio} value gives a curve showing
the risk/ending debt value tradeoff for a particular problem.

Parametric analysis might also be used at the user’s request to investigate the
influence of other constraints on the debt portfolio endiag value.

Functional requirements for parametric analysis include the following:

1. Suggestion to the user for further analysis based on varying the maximum debt

service constraint.
2. Acceptance of user-initiated parametric analysis requests.

3. Model manipulation (varying of parameter values, rerunning the optimization

and storing results) on user request or approval of suggested analysis.

These functions require knowledze of each key factor (including the maximum
debt service .onstraint right hand side) which may be varied at system or user
request, together with procedures for varying the factor, modifying end rerunning

the model and storing and reporting analysis results.

1.3 Explanation of simulation and cash flow projection results

Model and result explanation and interpretation are identified as key intermediary
functions by DSS researchers, as noted in Chapter 2. Explanation can take a number

of forms, notably:

definition of domain or model concepts

qualitative description of variable requirements and impact on model results

¢

qualitative description of model relationships and calculations

detailed quantitative tracing of model calculations

qualitative interpretation of model results in domain terms or other terms

understandable to users

qualitative causal explanations (partial traces) of model results.
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Several of the above types of explanation were eliminated from the initial system
design for either practical or research-oriented reasons. First, the intended system
users were domain experts and did not appear to require detailed definitions of
domain concepts such as ‘callable bond’ or ‘minimum issue size’ which are embedded
in the system. Second, detailed calculation tracing of simulation and cash flow
projection results was found to require significant system overhead and development
time; users are satisfied in the short run with the calculation trail provided by
detailed output tables. Third, explanation of optimization processes and results
is undoubtedly needed for unassisted use of these complex models, but it is the
subject of extensive research elsewhere (Greenberg 19874,b, 1988, 1989; Greenberg
and Lundgren 1989, Greenberg and Murphy 1989); work of this type could be
incorporated into MIDAS in the longer term.

MIDAS’ explanation capability as initially designed is intended to provide sim-
ple, high-level, predefined descriptions to aid user understanding of analysis pur-
poses and results. (More complex explanations based on a dynamically-determined
qualitative model of the analysis process as in Bouwman (1983) would be a natural
extension of the system but are beyond the scope of this project for reasons dis-
cussed later in this chapter.) The following explanations are provided for simulation

and cash flow projection models:

1. A qualitative description of model and sensitivity analysis steps and results in

terms that are readily understandable by sysiem users.

2. A high-level causal explanation of these results in terms of major determining

factors and their impacts.

These two types of explanation are intended to provide some insight into borrow-
ing plan performance as demonstrated by the simulation and cash flow projection
models. They are also meant to help the user understand the significance of par-
ticular complex model resuits and to begin to trust the models that produce them

to a greater degree than would be probable with no result explanation.
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Explanation content varies with the particular model producing the results to be
explained, the characteristics of the particular problem being modelled and patterns
in model and sensitivity analysis results. Producing these explanations therefore

requires knowledge of the following types:

1. Major result types, such as stochastic portfolio optimization and multi-scenario
simulation, single-scenario simulation and single-scenario cash flow projection

for porifolios and individual debts.
2. A qualitative description of the model determining each result type.
3. The specific contents of each result type.
4. Qualitative interpretations of these contents.

5. Potential key factors for each result type, such as the single largest debt, long-
term high-rate debts, and high-rate time periods.

6. Procedures for determining relevant key factors for a set of specific model results.
7. Qualitative explanations of key factor impact.

This knowledge is both factual and procedural, involving in-depth knowledge of
the composition and underlying causes of types of model results, and knowledge
of procedures for analyzing results to determine which causes apply in particular

cases.

1.4 Analysis of key-factor variation on simulation and cash flow projection results

The sensitivity of a2 borrowing plan to movements in future rates is measured by
the results of the plan simulation process, which projects plan results repeatedly
with random rate variations. To complement these, however, the user often wishes
to test the impact on simulation results of other assumptions or plan moaifications
such as a change in the timing, term or market for a major proposed debt. "he

key-factor impact analysis feature is designed to manipulate a simulation or cash
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flow projection model to determine the sensitivity of its results to the key plan
factors identified as part of the explanation process. Specifically, it is designed to

accomplish the following functions, once key causal factors have been identified:

1. Identification and suggestion to the user of further analysis steps based on the

identified key factors.
2. Acceptance of user-initiated analysis requests.

3. Model manipulation (varying of Plan specifications or parameter values, rerun-
ning the model and storing results) on user request or approval of suggested

analyses.

These functions require knowledge of the further analysis tasks that are appro-
priate once key factors have been identified, as well as knowledge of procedures for
carrying out the analysis tasks. As for explanation, this knowledge has both factual

and procedural components.

2. Proposed knowledge representation

Although the four tasks described above appear at first to be quite diverse, they have
two common underlying elements. First, all tasks are based on certain key model
results; ‘or EVPI analysis and parametric analysis of maximum debt service, these
factors (the EVPI for each rate event tree node and the maximum debt service
constraint) are known in advance, while for other analyses and explanations the
factors are dynamically identified by the system or the user. Second, each task

requires ‘lte execution of one or more system operations based on the key model
results known or identified for the result type.

These similarities among user support functions allow them to be handled by
& single design approach, which is used for the proposed user support subsystem,
shown in Figure 8.1. Within the subsystem, user support functions follow the data-

driven, frame-based approach already seen in system support (Chapter 7). Each
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NAME: BRANCHING.RATE.DEBT.SVC.ANALYZER

SUBCLASS.OF: NIL
INSTANCE.OF: BRANCHING.SCENARIOS.PAR.ANALYZERS

ATTRIBUTE SLOTS:

result.type BRANCHING.RATE.OPTIMIZATION

result.description “This set of results comes from the execution of a stochastic
optimization model which selects from available debt
types to produce an optimal borrowing plan and debt
portfolio for meeting cash requirements over the defined
planning period. The plan hedges against future rate
uncertainty and produces a contingent plan which varies
according to future rate scenario.”

result.source PF23.TABLE

keyfactors.list ~ (MAX.COST.CONSTRAINT)

analysis.tasks (DO.PA.MAX.COST)

EXTERNAL-USE METHODS:
check.key.factors
plan.analysis

Figure 8.3. A Result Analyzer Example

function is driven by knowledge in result analyzer objects, which contain knowledge
about result types, including result type descriptions, names of possible or known
key factors for explaining the results, names of related analysis tasks and generalized
methods for checking key factors and setting up analysis tasks on the task agenda.
Each key factor is, in turn, represented by a separate key factor object, which
contains rule initiators or procedures for determining whether the factor is relevant
and important for a particular set of results. The key factor objects also contain
explanations and analysis task knowledge for building analysis task sequences once
key factors are known.

Analyzer objects are defined by function and result type in a class hierarchy
(Figure 8.2), and appropriate analyzers are instantiated when a set of results is to be

analyzed. Figure 8.3 shows a result analyzer for a portfolio within a problem defined
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with a branching probabilistic rate event tree. This analyzer handles parametric
analysis based on the maximum cost constraint for the optimization model; the
check.key.factors method is a generalized one which requests a checking operation
for each key factor in the key.factors.list, and the plan.analysis method adds the
analysis task slot value to the current agenda.

Key factor objects are defined in a class hierarchy for potential key factors in
each type of results; an appropriate set of key factor objects is instantiated when
a particular set of results is to be analyzed. Figure 8.4 illustrates a key factor
object which supports the result analyzer for maximum cost parametric analysis
for optimization models. In this case the relevance (status) of the factor is known
beforehand; if it is not, it is checked by the check.status method, which may request
LISP procedures or rule-based reasoning, in the object. The analysis.task name is
added to the list of the same name in the result analyzer during analysis planning.

Explanations generated by these objects are either result descriptions, stored by
result type in the analyzer objects, or key factor ezplanations, which depend on the
result type and on the key factors applicable to particular result sets. The key factor
explanations shown in these examples are produced dynamically for individual result

sets by the methods or rules that identify key factors and check their status.

3. Reasoning and control

For a given set of model results, the analysis process involves (a) identifying the key
factors accounting for the results, and (b) carrying out selected analyses related to
these factors. Because exiensive research must be done before comprehensive sets
of factors and analysis procedures can be defined, specific procedures and rules have
not been given for this process. However, outlines are given here for several major
types of analysis that are likely to be required. Each process might be handled

through LISP procedures or rules, depending on its particular requircments.
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NAME: PF23.MAX.COST.SVC.CONSTRAINT

SUBCLASS.OF: NIL

INSTANCE.OF: MAX.COST.CONSTRAINT.KFS

ATTRIBUTE SLOTS:

result.source PF23.TABLE

factor.status T

status.explanation “The maximum cost constraint replaces the borrower’s
downside risk objective in creating a borrowing plan.
It is always a key factor in determining optimization results.

impact.explanation”The ending value of a portfolio determined by
a borrowing plan normally increases the lower the cost
constraint and decreases the higher the cost constraint.
This is because a looser constraint allows the borrower
to take greater advantages of short-term lower rates
while it increases the risk that refinancing will have to

take place at higher rates later.”
analysis.tasks (DO.PA.MAX.COST)

1

EXTERNAL-USE METHODS:
check.status
analyze

Figure 8.4. A Key Factor Object Example
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3.1 EVPl-based optimization model simplification

The EVPI-based model modification process begins with simplification of the rate
event tree by averaging low-value branches and collapsing them within a copy of
the tree; a new set of worlds is then created reflecting the new scenarios and the
model recreated and re-solved as described in Chapter 6. Res 'ts are stored in the

new world set and reported as for the original model.

3.2 Parametric analysis

For parametric analysis of optimization model results, the factor to be varied is
the maximum cost constraint right-hand side value unless specified otherwise by
the user. Once this factor is known, the process consists of: (a) identifying the
upper and lower limits of variation for the factor; (b) identifying specific values for
the varied factor within this range, such as two values above and two below the
value in the original model; (c) for each new value, modifying only relevant model
input items; (d) rerunning the model with modified input and storing the resulting
objective end value; and (e) presenting the parametric analysis results as a line plot.

A structure chart for this process is shown in Figure 8.5.

3.3 Key factor identification

For the simulation model, key factors must be identified prior to explaining or
further analyzing results. Reasoning for the key factor identification process is done
by a method which (a) identifies and instantiates the appropriate analysis object,
(b) calls factor-specific methods to check all candidate factors for relevance and
importance, and (c) builds a task list based on factor status and estimated impact.
Once the task list is built, the list is placed at the top of the task agenda and

executed consecutively by the system control subsystem.

3.4 Key-factor impact analysis

This analysis proceeds by holding all factors except the identified one constant,
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varying it in prespecified intervals and re-simulating only the affected debt or debts
in the affected time periods, and re-totalling the portfolio, in a new KEEWorld.
For a portfolio, any changes in the portfolio amount relative to cash requirements
are handled simply by increases or decreases in the cash deficit or surplus balance—
parameters in the portfolio other than the deficit or surplus and the factor being

varied are not adjusted.

3.5 Result descriptions and explanations

Descriptions and explanations are presented by tezi disploy managers in MIDAS’
system support component (Chapter 7). These use LISP mathods to retrieve ex-

planations, format them into text and present them in exps . .. vindows.

4. Contributions and limitations of this design

As for other MIDAS components, the proposed result analysis design illustrates the
advantages of explicit knowledge representation and generalized reasoning. It also
presents an approach toward building intermediary assistance into the system in a
way which integrates in a straightforward manner with other system components.
In addition, the proposed design appears extendable to other analyses that would
be required in a full system, such as identification of infeasibi’ity conditions for op-
timization, analysis plan comparison, plan evaluation and choice among competing
plans.

The explanation design is based on a simple diagnosis model which, once the
appropriate result type and key factors are identified, has explanation text passages
ready for use. For any one result type and its associated analysis frame, its flexibility
is limited to including or excluding possible key factors from an explanation based
on their ideniidcation as relevant or important. However, the scheme does provide
the most basic explanations needed by system users. Moreover, 1t could be expanded

by (=) adding rule-based reasoning for more flexible key factor evaluation, and (b)



171

adding analysis {rames that distinguish among result types on a finer basis than

simply by model type in a CENTA UR-like (Aikens 1983) diagnosis process.

The greatest benefit of this aspect of the project from a research viewpoint is its
ideutification of issues which could benefit from further research. First, understand-
ing these complex simulation and cash flow models undoubtedly requires many types
of explanations of varying degrees of detail. However, researchers do not appear to
have identified the content or scope of these explanations apart from detailed calcu-
Jation traces or rudimentary qualitative models, and they were not obvious during
the limited use MIDAS received during this project. Additional research observing
and analyzing the explanations requested by users and given by human intermedi-
aries would be a first step in defining detailed explanation requirements for complex

models of the type used in MIDAS.

Second, explaining the significance of simulation and cash flow model results in
domain terms appears to require some assessment of result importance relative to
either borrower norms or industry standards. (For examnle, one way «f deciding
which output results to highlight would relate performance measures to borrower
expectations, market performar -e or the performance of other actual or hypothet-
ical debt plans.) The Corporation norms or standards for debt portfolio planning
can be better articulated after they have gained some experience and expertise with
this planning approach, which requires use of the system for some time. Market
and industry standards may exist but would need to be further investigated before

incorporation into the system.

Finally, qualitative model and output explanations are likely to require more
knowledge than that provided by a diagnose-and-explain process mapping a prede-
termined set of result patierns into predefined explanation templates. Rather, they
are likely to require qualitative representations of model relationships which can be
instantiated more flexibly for particular models and sets of results, as illustrated in

Bouwman (1983) and in research on the qualitative modelling of physical systems
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(Bobrow 1984). Construction of dynamic ‘models of the models’ in MIDAS appears
to be significantly more difficult than for the simple financial statements Bouwman
investigated, and further work is needed to identify the concepts and knowledge
structures needed to build simplified but meaningful descriptions and to identify
ways of implementing them that do not add unacceptable overhead to the system.

In summary, MIDAS’ simulation explanation component illustrates a straight-
forward way to incorporate rudimentary explanation facilities into model result
representations. Further research will be required to build truly ‘intelligent’ ex-
planation capable of responding to the full range of explanation content, domain
conditions and model relationships which should be taken into account; however,

this area is a fertile one for future research.
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Development History and Experience

Many aspects of this project, including the system concept, modelling approach,
user assistance requirements, design approach and implementation techniques were
unexplored by previous management science, DSS and Al researchers. The ex-
perience gained in attempting to conceptualize, design and implement the system
therefore suggests many lessons about successful approaches to solving the problems
involved. This chapter outlines MIDAS’ development history, identifying and ex-
plaining key design and development decisions; it also discusses successes achieved,
strengths and weaknesses of the development tools, difficulties encountered and sig-

nificant unexplored research and technical issues identified as the project progressed.

1. Problem and system scope

The MIDAS project was motivated initially by a combination of research and practi-
cal goals. Research motivations included (a) the desire io explore certain capabilities
of Al for modelling and other forms of decision support, and (b) the desire to test
on corporate problems the stochastic optimization tools now being devcloped at
ihe Dalhousie School of Business Administration. The practical motivation was the
need to improve Corporation borrowing decisions, ultimately saving significant debt
cost for the company; the Corporation viewed the project as a way of adding to
their expertise rather than encoding their present expertise into a system. Corpora-
tion staff also expressed a need for rate forecasting assistance, and initial interviews
with debt underwriters and advisors indicated that much of the actual borrowing
decision process was based on heuristics which could be embodied in a rule-based

system.

Final project scope was based on a clc%lbina.tion of Corporation needs, research
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interests and the availability of expertise. The central system functions were deter-
mined to be modelling and modelling support rather than heuristic planning; rate
forecasting was eliminated as already available from Corporation financial advisors.
(Planning heuristics and forecasting assistance could, however, be added as later
system extensions.) The project’s model base and planning approach were devel-
oped to provide the simulation required by the Corporation and to guide and extend
it with stochastic optimization; consideration of the complementary roles of the two
types of models led to the hierarchical debt planning approach using optimization,
heuristic plan refinement and simulation as described in Chapter 4. User assistance
selected for immediate study included task scheduling, parametric and sensitivity
analysis and simulation explanation; these were chosen based on prior experience of
the principal researchers acting as modelling experts and advising clients in similar

situations.

2. Tool selection

The variety of functions envisioned for MIDAS indicated a need for several types
of knowledge representation and control/ reasoning approaches. Powerful hardware
was also needed to handle the anticipated size of the domain representation and
the stochastic portfolio models, ruling out the PC-based systems available in early
1986 when the project was first considered. The Explorer hardware with KEE
software met these basic requirements as well as or better than other tools avail-
able at the time. The Explorer offered 4mb of RAM, 200mb of hard disk storage,
virtual memory and a full-scale LISP development and debugging environment.
KEE included frames and object-oriented programming, KEEWorlds for represent-
ing multiple problem states, demons to automatically maintain slot values, rules
with multiple control strategies, and many other features giving great flexibility in
system design. The development system was made available to Dalhousie as a re-
search grant; it was therefore selected in spite of certain weaknesses, to be discussed

later.
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3. Development approach and prototype history

As mentioned in the introduction to this dissertation, an experimental, evolution-
ary prototyping approach to development was used. This allowed the researchers
to begin with relatively simple problems, gain experience with the design method-
ology and development tools, and progress to more complex system functions. This
approach turned out to be valid, and major discoveries at each prototype stage
influenced and changed the design as it progressed.

The project extended over four years and directly involved, as designers and
developers, nine people, primarily on a part-time basis. Athough detailed time
records were not kept, total development (system learning time, detailed design,
coding, testing and debugging, excluding work on the LP solver) is estimated to
have taken between three and four person-years.

Prototype stages were as follows:

1. Single-debt simulation prototype. Prototype 1 produced a simple financial in-
strument hierarchy and single-debt deterministic (spreadsheet-like) simulation.
Only basic model objects were included. These contained all definitional slots,
object maintenance methods, simulation calculation methods, output slots and
output presentation methods. Cash flow calculation was done line-by-line, the
simplest approach for single debts. The initial prototype, covering bonds only,
was begun in January 1987, and completed in approximately two months; it was

extended to cover additional debt types between April and October 1987.

2. Portfolio simulation protoiype. This extension of the first protytpe included a
full debt hierarchy including all debt types currently used by the Corporation,
simulated either individually or in portfolios. It used the original financial in-
strument object structure and added portfolios (composite model objects). Cash
flow calculations were changed to operate period-by-period in order to allow for
dynamic decisions within the simulation based on current portfolio status. This

prototype was developed between April and December 1987.
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3. Stochastic porifolio simulation. Prototype 3 extended Prototype 2 to include
simulation with random rate generation around a single rate path, more exten-
sive output displays and graphic display of yield curves. This was completed in
the spring of 1988 and was extensively tested and verified by Corporation staff.

Prototype 3 was used and approved by Corporation staff; however, it could only
be run on the Explorer at Dalhousie University. The less costly MicroExplorer
had recently been announced and efforts to obtain one for implementation in the
Corporation offices began in mid-1988. A MicroExplorer was acquired at Dal-
housie in October 1988, and the system needed only modifications in file path
names and window size specifications to be ported to it. After long administra-
tive delays not related to the project, hardware was acquired by the Corporation

and the system was tested and installed on it in the summer of 1989.

4. Development of the communications interface and optimization solver. During
the fall of 1989, LISP methods were developed for connecting with the optimiza-
tion solver via Ethernet. Between January and June of 1990, the optimization
solver was run on typical test problems and extended to produce EVPI data as

output.

5. Eztended simulation prololype. Between August 1989 and June 1990, a new
prototype was constructed to illustrate further MIDAS design concepts. This
system incorporated greatly extended expertise through the use of frame-based
representation of abstract concepts with generalized methods and rules; as de-
scribed in several chapters of this dissertation, the technique was applied to
output management and task management. This system excluded certain debt
types found in previous versions in order to reduce the complexity of the pro-
totype for testing the newly-implemented functions. This system was tested on
the test data provided on microfiche with this dissertation. It produced the
planning session in Chapter 10.

6. On-going work. During the summer of 1990, work is progressing on graphic result



177

presentation and on the LP support component of the modelling subsystem.

4. Knowledge base evolution

Knowledge representation structures and control strategies used in MIDAS evolved
as experience was gained with KEE and as problem and model structures became
more clearly apparent. The overall evolution was one of greater use of abstract
knowledge and more generalized, data-driven reasoning and control with each pro-

totype.

4.1 Model object structure

Initially the guiding concept defining model objects (debts, investments and portfo-
lios) was that of objects that maintain, model and report on themselves. Standard
protocols (method names and parameters) were to be used regardless of model ob-
ject class, and generic high-level control methods were to determine maintenance,
modelling or output method execution sequence.

Object maintenance and modelling functions were retained in model objects in
the final prototype, although they were streamlined by the use of generic methods
attached to multiple slots in several situations such as add, change and delete.
(Input form generation and processing were specific to each object class.) Output
storage and presentation were, however, removed from model objects and handied
separately by system support objects for reasons cited above and in Chapter 6.

Model support objects were defined from client and financial advisor descriptions
of the domain. They were retained through all prototypes and continue to provide
an intuitively clear domain model as a base for both model organization and user

communication about the system.

4.2 LP support

The first outline for generating optimization input from the knowledge base an-

ticipated coding all coefficient sources and input formats directly into the LISP
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methods which build the standard input files. Changes in the model’s structure or
specification would therefore require (relatively difficult) changes in method code
rather than in (less complex) objects and slot values, 2 need that had largely been
avoided for other parts of the system that were likely to require modification in
the future. The current data-driven approach captures knowledge of optimization
model structure in specifier objects and their slot values, so that the structure
is more easily understood and maintained through modifications to explicit data
values in the knowledge base. The current design also allows more flexible and
automatic reformulation of optimization models in response to problem statement

changes.

4.3 User interface and system support

The user interface is designed for clear interaction and multiple presentation modes;
however, it turned out to be the most difficult aspect of the system to implement
due to the low level of business presentation support in KEE and the Explorer. In
all prototypes but the last, output presentations were handcrafted to fit individual
display requirements.

Output table and presentation manager design came about after analysis of the
fundamental structure of the repetitive code being used through the system for out-
put management and presentation. This led to the data-driven approach described
in Chapter 7. It is estimated that implementation of these techniques reduced total
system size by approximately 30% and also made possible the relatively straight-

forward implementation of graphic output presentation.

4.4 Task control and user support

The data-driven approach is also the basis for the task control and user support
component designs, which are intended to provide frameworks for implementing a
variety of types of assistance to novice users of the system. As noted in earlier

chapters, the task control component operates successfully, and indications are that
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success is likely with the user assistance subsystem in view of the success of the
approach for other functions. These designs will undoubtedly evolve as they are
implemented and used and as user requirements are better understood.

As discussed in Chapter 8, the attempt to design result analysis and explanation
capabilities for the MIDAS models has led to identification of several major issues

for further research.

5. The choice of rules versus methods

Of the many knowledge representation and reasoning tools provided by KEE, object-
oriented programming and integrated rule-based reasoning were clearly the most
useful for this project. Object-oriented programming, or the incorporation of pro-
cedures and reasoning into methods rather than rules, was used more extensively
than rule-based reasoning for two reasons. First, many functions related to mod-
elling and data handling involved well-defined algorithms and did not vary greatly
with the data under consideration; variations due to financial instrument type or
output type were handled by varying method definitions by object class. Second,
some generalized reasoning sequences and procedures such as optimization model
construction could have been represented as rule sets; however, the additional over-
head and complexity involved was judged to be unacceptable at this stage in the
system’s development. {Rule-based linear program formulation has been illusirated
in other systems, however, as noted in Chaptex 2.) In the present design, then, rules
are used in situations which involve primarily symbolic reasoning, which require rel-
atively little knowiedge-base object manipulation or calculation, and which clearly
emulate human-expert functions for model management and assistance. The ad-
dition of facilities for error-checking and knowledge base consistency maintenance,
both of which are necessary for commercial use of the system, should offer additional

opportunities for the efficient use of rules.
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6. Hardware/software advantages and difficulties

The Explorer/KEE development system was discovered to have both advantages
and disadvantages for a project of this type. Its major advantages include the
overall flexibility and modularity provided by object-oriented software design and
construction; the extensive LISP editing and debugging environment on the Ex-
plorer, and the flexibility of KEE’s integrated multiple knowledge representation
tools. Also, LISP itself eliminates the need to consider memory management, data
types and many other low-level details in designing software.

KEE’s object-oriented programming facility proved quite flexible and able to
handle any function in the design. KEE’s Rulesystem also proved adequate for the
areas in which it was used. KEEWorlds were not used in the implementation, but
this facility is designed to handle multiple plans and scenarios and so will be used
for stochastic modelling and multiple-plan analysis in future system versions.

Two KEE tools were tried and found to create difficulties within the system.
First, demons (called active values in KEE) were initially used to automatically
muintain consistent slot values within debts, but they were largely eliminated from
later prototypes because they greatly complicated knowledge base changes and
method debugging. They were replaced by consistency calculations within input
methods. Second, multiple method inheritance was tried as a way of building cal-
culations for bonds with multiple parents (for example, callable bonds with sinking
funds); however, KEE’s way of building single methods out of inherited code from
multiple parents turned out to be quite cumbersome. It was avoided by checking
debt parent classes within calculation methods and altering calculations accordingly.

Several more general characteristics of the development environment made sys-
tem implementation more difficult than originally anticipated. The first of these
was the extremely steep and long learning curve for KEE and the Explorer, which
made it especially difficult to productively use student programming assistants. A

second difficulty was the lack of tools for easily constructing the user interface;
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KEE is oriented mainly toward industrial applications and does not provide eas-
ily defined forms, reports or business graphics. Third, the system was not ideal
for development of financial models since calculations had to be written in LISP
messages with lengthy procedural syntax and high data retrieval overhead; a more
suitable tool would include a higher-level language for model definition that would
lead to more rapid prototype development than was able to be accomplished with
this project. Fourth, its specialized operating system and incompatibility with other
systems make both communications among systems and long-term support difficult
and costly. Finally, system performance may be a problem on the current hardware
when LP support and worlds are implemented and realistic problems attempted,
since the large knowledge base and extensive computations which will be required
may strain the processing power and virtual memory of the current machines. In the
long run, however, new and more powerful hardware and software should address

this question.

7. Documentation

One major issue arising during MIDAS design and development was the need for
new techniques to document object-oriented systems. Existing structured analysis
and design techniques perform well in systems in which data and procedures are
logically separated; they do not apply, however, when the two are integrated as in
KEE objects. Ideally, what is needed are techniques for clear documentation of high-
level design, object structures and method control paths. Object diagrams that are
common in the literature (for examples, see Pressman (1987)) do not appear capable
of clearly describing a complex system suchas MIDAS; Coad and Yourdon (1990)
outline a multi-level approach to documenting object-oriented system requirements
which may prove useful in the future, but it was published near the end of this
project and is not supported by currently-available CASE tools. The diagrams and
system documentation in this dissertation use modifications of dataflow diagrams

and structure charts produced by the Excelerator CASE tool (Index Technologies
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1989).
An udditional facility that would be invaluable in a tool such as KEE is an
automatic documentation generator; as part of this project, a method-call trace

was developed which begins to solve that particular problem.

8. Corporation involvement with the system

From the Corporation’s viewpoint, this project has had little impact in the short
run. Two major reasons for this are () the difficulty of producing comprehensive,
supportable code in reasonable time, and (b) the untimely death of its original
champion, the then Director of Management Information Systems, in mid-1986.
However, the Corporation did provide full-time development participation from a
senior expert systems staff member for approximately six months. Subsequent wa-
vering MIS support, administrative delays, development delays, lack of technical
support for converting prototypes into reliable system versions, and numerous per-
sonnel and organizational changes within the Corporation, have kept the system
from being regularly used by the Treasury staff.

However, indications are that the project is still viewed as important by the
Corporation. Treasury and MIS staff have recently confirmed their support for the
project, committed a temporary staff member to full-time support and development
of a production version for several months beginning in June 1990, and named a
permanent member of the MIS department to handle long-term support for the sys-
tem. Future research plans are to obtain feedback from Treasury staff members and
to carry out experiments observing system use in order to help identify appropriate
extensions on which to focus further research.

From a research perspective, the project has suggested both design principles
and implementation techniques that should extend present financial DSS capabil-
ities. These have been identified in previous chapters and are summarized in the

concluding chapter of this dissertation.
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An lllustrative MIDAS Session

The system prototype developed as part of this research implements most as-
pects of simulation modelling and cash flow projection for financial instruments
and portfolios for a single rate scenario, together with the system support compo-
nents (the user interface, task management and output management) described in
Chapter 7. Although borrowing actions are not yet able to build debt objects for
simulation and projection, future borrowing plans can be tested by directly creat-
ing portfolios of debt objects with issue dates during the planning period. Heuristic
plan refinement has been implemented to operate on user-defined borrowing actions.
Major functions yet to be implemented include optimization modelling (although
the required communications links, the solver and EVPI analysis are in operation),
multiple branching scenarios using KEEWorlds, and user support as outlined in
Chapter 8.

In terms of the task sequence in Figure 7.13, tasks numbering 1 through 3
(problem description), 7 (plan refinement), 8 (simulation or cash flow projection),
11 and 12 (save problem and end session) can be carried out by the prototype
with only minor omissions; tasks 4 through 6, related to optimization and 9 and 10
(result analysis and explanation) are not included.

This chapter describes a session using the system prototype for simulation and
cash flow projection for a small portfolio. It generally follows the task sequence in
Figure 7.13, showing and explaining ihe system’s dialogue with the user through
screen images and text. It illustrates the system’s approach to the simulation aspect
of debt management decision support; the tasks not included in the prototype are

designed to operate and interact with the user in a similar manner.
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The following conventions are used in the session description:
1. Prompts and comments produced by the system are shown in typewriter font.
2. Typed user replies are shown in CAPITALS.

3. The main user interface, input forms and output displays are shown through

screen dumps.

4. Comments in italics clarify the description as necessary.

1. Problem space initialization

The assisted analysis process is started by left-clicking on the BEGIN ASSISTED

ANALYSIS option in the main menu.

First you need to choose a problem to work on and set some over-

all work session parameters. UK to begin (Y/N)?
Y

Enter the name of the current problem. Use ‘NEW’ %o begin a new

problem.
DEMO

The '‘DEMO’ problem space, which contains a partially specified problen: including
future rate scenarios and debts, is loaded. If ‘NEW' is chosen, a knowledge base
containing only financial markets, a borrower and the borrower’s existing debts
is loaded; this problem space is then renamed and modified to represent a new
problem. If a name is entered for which there is no knowledge base, an empty

knowledge base is created which must be fully specified by the user.
Problem space DEMO has been successfully loaded/created.

Do you wish to change the problem specification data for this

problem (Y/N)?
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WHY

This will allow you to change analysis parameters including the

starting date, ending date, time interval, rate forecast

name and number of simulation passes. Do you wish to do so

(Y/N)?

fame Of borrouer for uhlch problem 1S to be analyzed:: NSPC
Year to begin cash flou proJections: oo 1991
Quarter to begin cash flow ProJections: -« 1

Time interval for cash flow projections: o YEAR QUARTER
Assumed discount rate FOr NPUP Sz rerevrerencesensenrimnrinii e 12.96
JRALE BUEBNAL LFEBE: ---orerressiimieiiar sttt senn s en s SC1
iNumber of S1MUTALLION PASSES S «ereerrerrrrrrarmsrerecentessrniinniannnnriiaeees 512
qbo 1t L _1

st

What type of prompts would you prefer (LONG or SHORT) (use LONG
if you are not familiar with the analysis process and would like

help as you go along)?

Long prompts guide a less experienced user, while short prompts give quick orien-

tation messages to a user who is familiar with system operations.

LONG

What type of analysis do you wish to do: (1) simulate a poxt-
folio; (2) project cash flows for a portfolio; (3) simulate a

debt; (4) project cash flows for a debt?

The type of analysis to be done affects knowledge and parameter requirements for
the problem. Simulation or projection for a portfolio requires that all debts in the
portfolio be defined and that borrowing actions be specified for calls and planned
short-term borrowing and investment; simulation or pro jection of an individual debt

requires only that the debt be defined in the problem space. The full MIDAS system
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as designed will also contain options to BUILD A BORROWING PLAN using
the full optimization/heuristic refinement/simulation process, and SIMULATE or
PROJECT CASH FLOWS for a BORROWING PLAN, in which modelling will be

based on a full set of borrowing actions rather than on user-defined debt objects.

1

2. Review of background knowledge

Before the problem can be described, you should
review the specificationrs of financial markets,
borrower requirements and future rates for the
problem. DK (Y tc confirm, S to skip, N to select

an alternate task)?

If N, the system displays for user choice names of appropriate alternative tasks
which vary wiih the current task but generally include returning to the previous

task, returning to the session start, exiting and saving the problem space and exiting

without saving.

Y

2.1 Market knowledge

The following markets are defined for the problem:
CANADA, US. Do you wish to review them (Y to

confirm, S to skip, N to select an alternate task)?

Y

Choose a market to review (CANADA/ US).

CANADA
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Please check that the parameters for CANADA are

correct and change them if necessaxy.

urrencg: ..............................................................................................
Default bond parameters:
[SSUE COSt FALE {Z) 15 crovresmimmrinseninera st 1.8
First call pl"Bl"IiUPl:: ........................................................................ 8.03
Waiting period before callable (Years):: e 18
Ca]] part Of bond issue?: .............................................................. Yaes No
Sinking fund CONtribution rate (@) iz e, 1.8
Waiting period before sinking fund contributions start:: 1
Average interest rate spreads (- indicates under, + over):
Basic bond spread urt. basic government bond:: e 8.8
Callable bond spread urt. basic borrouer bonds: oo 8.25
Spread for yield to call urt.basic callable bondss .---eeeeee -8.25
Sinking fund bond spread urt. basic borrouer bond:: - =8.95
Sinking fund earnings urt. basic government bond:: ------------ 0.0
Bank credit spread urt. govt St rate: e 1.8
Prov. credit spread urt. gout St rate: - -1.8
Penalty borrouing spread urt. gout St rates - 2.0
Bank deposit earnings spread urt. gout st rate: - -1.8
i{1ininum annual borrouing to remain in this market:: .- 58
‘IMaximum annual borrouing possible in this narket:: ... 258
Minimum BOND 1SSUE SL@z: toreereinrrrrmemreiiiinmrrrreenttssessans i 25
Maximum DONd 1SSUB SI1EB 11 veeercemmmenmiriisimiiisrii e 1@
[SSUE MUILIPTE BROUNL: & -orrvrrereeueeniirnnraimsesenestrsns sty 18.8
Do It (]
S

tere for Market CRHADA

er‘m o $ cecenn
Term of Short Rate: - 1.9
For yearly changes in bond rates:
Sp, Long Rate:: - 0.25

S0, Short Rate::-.---- 8.5

Alpha, Short Rate:: 9.5

For quarterly changes in bond rates:

Sp, Long Rate:: ..-.--- 9.8625
SD, Short Rate:: ----- 8.125
Alpha, Short Rate:: 8.5
Do It [ i

The process is repeated until no more markets are selected.
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Do you need any new financial markets for your

anzlysis (Y/N)?

If Y, a message is sent to add a new market. The process is repeated as many times

as required.

N
Is the problem’s market knowledge complete and

correct (Y/N)?
If N, the system returns to the beginning of the market-checking sequence.

Y

2.2 Borrower requirements

Next, you need to review the current borrower and
cash requirements. OK (Y to confirm, S to skip,

select an alternate task)?
Y

The borrower NSPC is defined for this problem.

Please check that the parameters and cash

requirements for NSPC are correct.

ENTEFR, DHATA FOR HSRC:

ercent of budgeted cash needs used::
Maximum annual portfolio cost:: --ccoeeeeeee 500
Do It [_3J
S —




b roier HEFC:

Quarters: .- 1234
ARmount ($m): 156.0
Year: .............. 1992
Quarters -.-.-... 1234
Amount ($m): -25
Year: .............. 1993
Quarters: .- 1234

Amount ($m): 56

YEaAr s «reererresees 1994
Quarter:-------- 1234
Amount ($m): -25

nore? S eresreesanen Yes No

ds for borroper HEFC: S
Quarter: - 1
Amount ($m): -

Y RAM S wveorrrererense )
Quarter: -------
Amount ($m):

YAy eererrrerenrs 7]
Quarters ...
Amount ($m):

Year: .............. a
Quarters: ... 1234
Amount ($m): ©.9

MOPrE?: coorennrenee Yes No
Do It [

189
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These forms change the borrower, if desired. If no borrower were defined in the

problem space, one would be added instead.

Is the problem’s borrower knowledge complete and correct?

Y

2.3 Future rates

Next, you should review the future rate scenarios
your analysis. OK (Y to confirm, S to skip, N to

select an alternate task)?

If no rate scenarios were defined, the prompt would suggest adding them instead.

Y

Rate scenarios SC1 and SC2 are defined for this
problem. Do you wish to review them (Y to confirm

S to skip, N to select an alternate task)?

Y

Choose a rate scenario to review (SCi/ SC2).

5C1

ATE PATH DISPLAY FOA RATE.EVENTS

R C1

EVENT DETRILS:

YERR 1991 1992 1993 1994 1995
JAQURRTER 1 1 1 1 1
PROBABILITY 1.088 1.000 1.6008 1.0600 1.000
DESCRIPYTION
CANRDA RATES:
1) 13.000 12.758 11.258 11.250 12.250
LY 13.5@0 13.0688 12.0600 12.5008 12.750
US RATES:
) 12.250 12.000 18.080 10.680 16.500
LY 12.500 12.258 11.6008 10.750 11.500
FX 1.150 1.200 1.250 1.330 1.275
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Do you wish to change SC1 (Y/N)?

CHARNGE THFORMATION FOR EVWENT TREE SC1, EVENT SO1:

..............................

Event quarter: teerresatecrraecaatannes 1.
Conditional probability:..-- 1.8
Event descriptions: -ccocceeeeeene NIL
More events in this path?: Yes No
Do 1t [ _

The form is repeated for each event in scenario SC1. The process is repeated until

no more scenarios are selected.

Do you need any new rate scenarios for your

analysis (Y/N)?

If Y, & message is sent to add a new rate scenario. The process is repeated as many

times as required.
N

Is the problem’s future rate knowledge complete

and correct (Y/N)?

Y

3. Description of the current problem

3.1 Existing and new debts

The debts now defined for the problem are CANBB1,
CANCBi, CANSFBi, CANCSFBi, USBB1, USCB1, USSFB1,
USCSFB1, CANBANKL and CANPROVI.

Do you wish to review them (Y to confirm
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S to skip, N to select an alternate task)?

Y

Choose a debt to review (CANBB1, CANCB!, CANSFB1,
USBB1, USSFB1 and CANBANK1).

CANCB1

----------

Principal outstanding ($m): -
Accrued 1nterest: oo 8.8
Issue date mm/gdryys -ceeeeeennnnes @1 Mar 83 00:08:88
Term of bond issue (years): . 20

Interest payments per gear:-~2

Quarters uwhen interest paid: 1234

Total issue costs ($m): ...-eecee 8.0

OR:

Price to public: ~coreerverininianiiians 99.5

Commission rate (2): -weererereee. 6.95
Administrative costs ($m):---- 0.6

CAl1ADIRT 2 reerererrrtcantcincnnintsenseorsanns Yes No
Sinking fund?: ............................ Yes No

Do It (]

Enter 1nformation for-call r-;:-t1r-n for CHMHCED

First call pren1u5, .............. Q. 95
Is issue partly callable?: Yes No

Do It (] I
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Choose a debt to review (CANBB1, CANCB1, CANSFB1,
USBB1, USSFB1 and CANBANKi.?

USSFB1

EHIEF DATA FOR ULSFEL:

COUPON [ALRSE weeverramermrasrirensennanssens 7.75
Original principal ($m): ... 166.8
Principal ocutstanding ($m):. 160.8
Accrued interests e, 7.75
Issue date nm/adrsyys «eeeeeeessenns 91 Aug 78 ©0:86:06

Tern of bond issue (years):
Interest payments per gear: - 1
Quarters when interest paid: 1234

Total issue costs ($m):---ceoeoer 1.5
OR:
Price to pubTliCs sseeeseccnsmnierenn 108.6
Commission rate (Z): - 8.8
fidninistrative costs ($m):- 6.8
CAl1aDT1ET: corrrrrerrormmmnrnninnsiiiicannes Yes No
Sinking fund?: ............................ Yes No
Do It [

— A

Enter information for sinkbing fund tor USSFEL:
Jear sinking rund contributions starts ... 13589

Financial market: resecesnenecseavatsrrersasrasesesnrsiasees ..."CANADA US
Annual contribution AMOUNL: «esceeerrmsrneeeeees 1.5
Annual contribution as a Z of principal: 1.5
Sinking fund maximum DATANCE: «rorrereeemeeeeeenees 1849.8
Sinking fUNG DATANRCE: «orrreerrersvssmmmrrmscennss 50.8
Accrued earnings: rre q

Do It (]

The process is repeated until no more debts are selected.

Do you need any new debts for your analysis (Y/N)?

If Y, a message is scnt to add a new debt. The process is repeated as many times

as required.
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3.2 Debt portfolios

The debt portfolios now defined for the problem are
PF.PLAN1, PF.PLAN2. Do you wish to review them
(Y to confirm, S to skip, N to select an alternate

task)?

Y

Choose a portfolio to review (PF.PLANi, PF.PLAN2).

PF.PLAN2.

PROMPTS AND MESSAGES: )

THE MEMBERS OF PORTFOLIO PF,PLAN2 ARE:
NEWUSCSFB2 NEWCANCB2 CANBANK1 USCSFB
1 USBB1 CANSFB1 CANGCB1 CANBSB1
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Do you wish to change PF.PLAN2 (Y/N)?

Y

A menu appears for re-selection of portfolio numbers. The process is repeated until

no more portfolios are selected.

Do you need any new portfolios for your analysis

(x/n)z
N

Are the problem’s debt portfolios complete and
correct (Y/N)?

Y

3.3 Borrowing actions

For jortfolio simulation and cash flow projection,
you need to specify the debt calls, short-term
borrowing and shoxt-term debt repayments planned
during the planning period. There are no borrowing
actions currently specified for this problem. Do
you wish to create some borrowing actions (Y to

confirm, S to skip, N to select an alternate task)?
Y

Enter the name of a new borrowing action:

CALL.CANCB1



196

® graee
o v

........
.......

Debt type to which action AppPlILeS:s e NIL

Issue date for debt type (for HOLD or RETIRE actions):: 31 Dec 99 18:08:00
OR:
Name of specific debl, 1f KnNoun:: i CANCB1

ACL 10N AROUNT 2 - cotrneiitrieeiirttiseetaeritstanresesierastsnssessiarnerosssasrnensnasnste
Do It E;I

This form adds a borrowing action and is repeated as many times as necessary. If
there were borrowing actions in the problem space, they would be reviewed prior

to adding new ones. The process is repeated as many times as required.

Are the problem’s borrowing actions complete and

correct (Y/N)7?

Y

3.4 Final problem confirmation

The problem is now completely described. Do you

wish to change anything before starting an analysis

(Y/N)?

If Y, a list is displayed for selection of an item to be changed. This is repeated as

many times as necessary.

N

4. Portfolio simulation

You are now ready to do the analysis. OK (Y/N)?

Y
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A message is sent to PORTFOLIOS: MTH.SIMULATE, resulting in a menu for selection
of the portfolio to be analyzed. During simulation, the pass count is displayed to

indicate the progression of the simulation. On completion, the following output is

displayed:

Mums m St l\
0RROHER- NSPc

ROM: 199171 TO: 199571 BY: YERRS
RATE EVENTTREE. 801

\Ir.‘llll ATI[JN lll \llL I‘s Hlll l'(lllll (ll 10 l l HAN?
Ri RSUR

FTRT ISTICS:
NERN
STD.DEV.

Lo

HIGH

157 QUARTILE

2ND QUARTILE .
3RD QUARRTILE . . -449.145

R - sean vt B otAe bt AR T I AR (] () WA - et RS A, t
N A ety st e et AP 02l kb b

e A et e S ST i
K’ERFDDMANCE {(NOICATORS FOR "ONH‘OLIO PF.PLANZ (CASM INFLOV/S o, CASH QUTFLOWS =)

N 99 99 1994

EC. PR, OUTETRNDING 296.25@ 500.80@ 453.758 439.75@8 634.625 634.64

EG. INV. BALANCE 8.008 0.060 Q.008 0.060 0.000 :

E0. 6F BALANCE 40.600 41.750 @.0e0 9.808 Q.0ea 0.984

LANNED CASH FLOWS 170,550  -6@.768 -76.147 173.454 -17.731 -441.64
. SHORT-TERN 37.131 65.755 57.630 24.746 1.767 1.8
. HEDIUN-TERN 62.869 409.301 42.370 75.254 110.388 113.3
2 LONG-TERN 8.ee0 a.eea a.908 8.a808 0.080 0.0
2 VARIRBLE-RATE 0.800 90.0ee 0.089 9.900 a.u8e 8.8g
2 FOREIGK 29.114 19.090 20.502 17.673 52.952 S4.39
MTD. AVERAGE COST 1.000 1.861 1.0800 1.800 1.122 1.15
MTD. RVERAGE TERN 9.089 5.738 5.686 7.728 8.a9%e 7.1§
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If you wish to see more details, use the DISPLAY
by middle-clicking on the MIDAS icon. Enter Y

to resume the assisted analysis process.

A number of detailed output displays are available through the display menu, in-
cluding the following:

LASH ELINS UG PURTEOUILEE FLANZ  (CASH INELUVYS o, CASH QUTELOWS =)

212.808 . 9.89

@.080 8.088 +~0.688 -5.653 a.8eo8 8.06

-20.280 -55.868 ~-50.888 -19.185 -25.463 -25.59

-1.258 -1.25@ 9.988 0.089 g.ede 0.8

9.008 -50.886 -2508.800 e.gea 0.8088 -634.64

R 8.e00 8.6880 -08.810 ©.806 0.808 2088.8§

S5F WITHIRAHALS 8.0888 41.7s@ g.geq a.aee a.80e G.86
PRINCIPAL [NVESTED 9.880 g8.0eg 8.808 g.080 @.aeo a.
ARNINGS RECEIVED 8.80e 08.880 0.680 0.0088 g.608 a.
PRINCIPAL. HITHDRAUN 0.808 @.088 0.080 .00 8.e0e Q.

ASH DEF. INTEREST 9.808 ©.a8e -8.458 -14.588 8.0888
ASH SURPLUS ERRN. g.eee 3,712 -0.880 8.800 7.738 1

PLARKED CASH FLOWS 178,558 -6B8.788 ~76.147 173.45¢ -17.731

BEG. PR. OUTSTANDING 295.258 506.008 453 758 434.750 634.625 634.63
B INV. BRALRNCE qg'ggg Q. 888 BBG 9.0808 Q.08 g.

- 00

et e At

CALCULATION: ’
PLANNED CASH FLOWS 178.55¢ ~68.788 ~76.147 173.454 -17.731 -441.89
CASH REQUIREMENTS i59.088 ~-25.880 58.880 -25.908 -25.000

CASH DEFICIT/SURPLUS 28.558 -35.788 -126.197 196.454 7.269
EFICIT COVERED 8Y:
RINCIPAL WITHDRRUN @.0e@  32.262 p.ees 9.898 0.0e8
R. BORROWED 6.888 3.527 126.147 2.880 @.9ea
SURPLUS USED FOR:

PR. RETIRED 9.08e 9.90@ 9.098 -129.674 8.608

PRINCIPRL INVESTED -268.558 g.8e9 -0.888 -68.780 -7.269
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R. OUTSETANDING:

EG. PR. OUTSTANDING 295.25¢ 560.008 4S3.75@ 434.750 634.625  634.69
R. BORROMED 200.088 @.g88 225.888 212.60@ @.0a8 o.8d3
R. RETIRED 2.008 -50.000 -250.008 0.8a8 0.800 -634.6%f

[N PR OUTSTANDIKG 496.258  450.098  420.756 647.558 634.625 e.a
F BRLANCE: ¢
EG. SF BALANCE 49.000  41.750 0.600 @.208 ©.000 g0
F CONTRIBUTIONS -1.25a  -1.258 8.eea 0.800 .90a 8.ed:
F EARNINGS RECEIVED 0.580 5.427 0.0a0 6.0808 .890 a.ed
F WITHDRAKALS @.0e@  41.75@ 9.208 2.008 @.008 o.ad

[ERD 6 BALANCE a1.758  ©.200 ©.000 a.000 a.000 2.od

lUNllNllIlY llf CASH Slllll‘lUS AN[] lJiFICll fﬂll I‘l’]ﬂlfULI

Q

(J PF .i'LANZ (CASH INILU;‘IS ., CI\SII UUH lO\l's L
4 Q 'l

ASH SURPLUS:

EG. INV. BRLRNCE 9.800 20.550 ~g.0ea 0.800 68.7680
RINCIPAL INVESTED -28.550 @.ga8 -0.008 -69.788 ~7.269
ARNINGS RECEIVED 0.000 3.712 -8.0880 9.080 7.738
RINCIPAL WITHDRAWN 8.ece 32.262 0.008 8.09e@ @.0008
END 14U. BRLANCE 28.550 -8.000 8.600 68.70@ 83.787
CASH DEFICIT:

BEG. PR. DUTSTANDING 6.0880 8.000 9.527 129.674 8.009
PR. BORROWED 8.808 3.527 126.147 8.6e8 @.000
PR. RETIRED e.0ee 0.060 8.008 -129.674 ©6.8e0
END PR. OUTSTRNDING 8.ece 3.527 129.674 @.08e8 9.0800

i o g4 8 2o A bt 0 7 = SRS S
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ATTRIBUTES:

ORIGINAL .PRINCIPAL 180.80@ 25.000 5@.088 75.0800 60.880
PRINCIPAL .OUTSTANDING 100,008 25.000 50.0006 75.000 6@e.988 35.89
RRKET CANRDA CANADA CANADA us us CANAL
ENCY Cs C$ Cs uss uss g

2{ SSUE . YERR 1985 1983 1972 1980 1994

41 SSUE .QUARTER 4 4 4 i 3

2@ 28 20 25 2e

2885 2083 1992 20895 2014

. 4 q 4 1 3

PON.RATE 10.008 10.508 9.250 8.0e@9 8.750

ALL.FIRST .CALL . YEAR 1994 1999

RLL . FIRST .CALL. . PRERIUF 8.8S 8.15

INVESTHENT .BRLANCE 40.8 8.8

ISF . GTART . YEAR 1978 2804

.CONTRIBUT I ON. RHOUNT 1.25 1.1999999

.CONTRIBUT 10N .PERCENT 1.0 2.e

50.0 60.9

EMBER:

HEWUSCEFB2 8.888 ©.080 e.aee g.068 127.508 127.5
HEWCANCB2 e.eae 0.8e8d @.g88 225.68@ 225.88@ 225. Q
CAHBANK1 3s.ee@ 235.08@ 235.ee8 18.080 10.060 10.0
USCSFBI 0.000 0.808 9.6e8 09.08¢ 76.508 6.5
usesi 86.250 90,600 93.758 93.756 95.625 95.6
CANSFB1 S6.886 58,800 0.00d Q.9ead ©.ea¢ e8.a
CRNCB1 25.088 25.400 25.000 a.aae 9.0ee e.e
CANBSL lea.ge@ 100.668 100.e@d 160.000 10@8.0@8 1@8.8
EG. PR. OUTSTANDING 396.250 508.868 453.750 431.750 634.625 634.6
Y

Do you wish to do other analyses now (Y/N)?

N

Do you wish to save your problem (Y/N)?

Y
Problem space DEMO successfully saved.

This is the end of the planning session.
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Findings and Conclusions

The MIDAS project has produced a number of observations and conclusions
about various aspects of the broad, multidisciplinary problem under investigation.
This chapter closes the dissertation, summarizing the project’s contributions and
suggests several areas for extensions of this work, both to broaden the capabilities

of systems such as MIDAS and to study related decision support issues.

1. Research contributions

As outlined in the introduction to this dissertation, the broad purpose of this re-
search has been to demonstrate the integration of multiple modelling and expert
systems techniques to extend the capabilities of a domain-specific decision support
system beyond the range available with commonly-used financial DSS tools. Specif-

ically, the project addressed the following issues:

1. The feasibility of a hierarchical planning approach applying stochastic program-
ming, simulation modelling and cash flow projection in a complementary manner

to corporate debt planning.

2. The feasibility of integrated frame- and rule-based modelling and system sup-
port, including task selection; model formulation, solution and modification; and

output data management.

3. The feasibility of integrating multiple model types and heuristic reasoning through

a common, object-oriented domain representation.

4. A design approach for user modelling assistance, including parametric and key
factor impact analysis and explanation of the results of cash flow projections

and financial simulations.
201
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5. Identification of design principles for dynamic stochastic portfolio management

decision support systems for users who are not modelling experts.

Overall, this project has demonstrated the feasibility of knowledge-based decision
support for debt management. The object-oricnted design approach functions well
for the selected domain and should extend well to other problems exhibiting such
a modular problem structure. The prototype system developed as part of this
project requires only the addition of limited, clearly defined error-checking features

to become a fully-functional system usable in a corporate setting.

Consideration of the specific research questions has led to a number of findings

and conclusions, as follows:

1. A hierarchical planning approach applying stochastic programming, simulation
modelling and cash flow projection to corporate debt planning underlies the
design of the entire MIDAS system and its technical feasibility has been demon-
strated in the prototype. While its practical utility remains to be empirically
verified through longer-term corporate use, initial reaction from corporate and

financial professionals is extremely promising.

2. Proposed designs for integrated frame- and rule-based modelling and system
support have been presented in Chapters 6 and 7, and demonstrated in the

prototype system.

3. As discussed in Chapters 3 and 6, the domain model provides a natural orga-
nization for modelling components and knowledge, formulating and integrating
multiple complex model types and maintaining their consistency in a manner
which mimics the operation of the physical system being modelled. This ap-
proach can also be viewed as one of manipulating the single underlying domain
model with multiple operators or solution techniques, including optimization,
simulation and heuristic reasoning. This view presents some practical and con-
ceptual difficulties because definitions of ‘model’ vary among researchers and

because solution of simulation models is difficult to separate from their specifi-
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cation (Dolk 1990); to the extent that it does describe MIDAS' approach to an
integrated modelling environment, it indicates the feasibility of the separation

of models and operators in a practical setting.

An additional benefit of the underlying domain representation is that it provides
a clear semantic starting point for communication between system users and
developers, eliminating some of the ‘language barriers’ that face these two groups

during the development of a complex system such as MIDAS.

The domain representation also provides the problem description used by rules
for refining initial borrowing plans, assisting users in choosing task sequences, re-
ducing optimization problem sizes, analyzing results and maintaining knowledge
base consistency. These integrated heuristics add more ‘human’ expertise to

the modelling environment than would be practical with algorithmic procedures

alone.

4. A design approach for user assistance has been presented in Chapter 8. This
feature, together with the task management component of the system support
subsystem, adds human intermediary behaviour to the system by incorporating
abstract tasks and modelling, manipulated by generalized reasoning or control
processes. This approach allows extension of system capabilities declaratively
through the addition of more knowledge frames and it appears readily applicable

to additional intermediary functions.

5. Design principles for dynamic stochastic portfolio management decision support
systems were identified in Chapter 4. They include:
a. Frame-based knowledge representation
b. Object-oriented modelling
c. Spreadsheet-oriented financial model structure
d. Separation of knowledge and control/reasoning

e. Model and rule integration through an underlying domain representation.
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These design principles reflect an integrated object- , procedure- and rule-based
approach to portfolio management DSS design and construction, both for complex
modelling and for user assistance in modelling. The utility of this approach has
been demonstrated in the design and prototype, where it is seen to apply to a
variety of functions requiring different levels of abstraction and reasoning. For the
complex situations analyzed by a debt management decision support system, such
a combination of tools has been shown to provide more flexibility and power than
does any one tool individually, just as a human analyst must employ a variety of
skills.

These design principles and, indeed, the MIDAS architecture, should extend
directly to planning and portfolic management problems in a wide range of addi-
tional domains. Examples include financial institution asset/liability management,
personal or corporate investment portfolio management, corporate management of
capital project portfolios, research and development planning and configuration of
waste management facilities to meet environmental constraints. All these domains
require construction of portfolios of domain objects (investments, debts, projects,
equipment components, processes) to meet future requirements under uncertainty;
while they vary in the description of specific domain objects and in the degree of in-
teraction among portfolio members, the essential analytical techniques and system

design are likely to be applicable with only minor changes.

2. Possible system improvements and extensions

MIDAS requires implementation of the designed LP support and user assistance

components in order to fully support hierarchical debt planning. Other extensions

which would make it more functional in a practical situation are:

1. Rule- and/or method-based data entry edits and consistency checks to ensure
the continuing quality of the underlying domain representation.

2. Improvement of the system’s pseudo-random rate generation models based on

financial analyst expertise. This would provide more realism in the rate gen-
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eration models, including yield curves which better reflect actual curve shapes,
realistic model parameters, more realistic rate spreads, some linking of interest
and foreign exchange rates, and possibly the inclusion of rollover risk through

rate variations based on future changes in the Corporation’s credit rating.

3. A more flexible interface fo: rate event tree input which would allow users to

graphically display and manipulate & tree during problem specification.

4. Extension of the cash flow projection facility to produce projected financial state-
ment results according to generally accepted accounting principles. These would
include discount and premium amortization, amortization of foreign exchange
gains and losses, allocaton of interest costs to time periods independent of pay-
ment dates, and other adjustments which determine the Corporation financial

results on which rate levels are based.
5. Inclusion of all debt types now used by the Corporation, as listed in Chapter 4.

6. Inclusion of the ability to create new debt types as combinations of components,

as outlined in Chapter 6.

7. Inclusion of 2 mechanism to diagnose and handle infeasibility conditions for the
optimization model. This may come about through work with the ANALYZE

system.
8. Design and implementation of the other requirements listed in Chapter 4.

The overall modular design of the system would appear to allow such extensions
without changing its basic architecture.

In the longer run, modifications of the system to run in a more fully distributed
environment, taking advantage of software outside KEE for simulation and output
management, is a possible area of further work, as will application of the system’s
design approach to other domains including bank asset/liability management and

corporate financial planning.
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3. Suggested further research
This project has suggested a number of areas for further research, as follows:

1. The nature of problems for which the object-oriented DSS design approach is
appropriate. Can problem dimensions or characteristics be identified which are
associated with probable success of an ob ject-oriented DSS in the way that ‘good’

expert systems projects have come to be identified?

2. The feasibility of and design for a user-controlled, object-oriented financial mod-
elling shell. The modelling subsystem designed and prototyped for this project
is apparently the first published application of object-oriented programming to
large-scale financial modelling. This approach would appear to offer significant
additional power if enhanced by a graphic, spreadsheet or equation-oriented user
modelling interface, since reusable model objects could then be easily created
and maintained by users. The resulting integrated modelling environment could
greatly simplify the direct construction and manipulation of financial models by

end-users.

3. User needs for complex model explanation. Empirical explanation research to
date has not considered complex financial models. What types of explanations
of these models do various users require? What knowledge is required for these
explanations, and what reasoning processes are used by experts to build the

explanations?

4. The feasibility of integrating into systems such as MIDAS the existing linear pro-
gramming model explanation capabilities of systems such as ANALYZE (Green-
berg 1987a,b, 1988, 1989; Greenberg and Lundgren 1989; Greenberg and Murphy
1989).

5. Identification of an improved design approach for explanation of complex fi-
nancial simulations and projections, in particular by developing self-explaining

models. Is it possible to build a system for complex financial simulation and
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projection which integrates quantitive and qualitative modelling knowledge and
so generates human-like explanations without a complete duplicate qualitative

model representation?

6. Improved techniques for controlling and documenting the interdependence of

individual methods within complex models such as those in MIDAS.

7. Improved documentation techniques for object-oriented analysis and design,
preferably building on the structured analysis and design techniques already

in common corporate use.

8. Empirical investigation of the degree to which ‘intelligence’ in DSS’s promotes
the use by managers of complex models over more simple ones. Chapter 2 out-
lined extensive research identifying barriers to corporate use of complex financial
models. As ‘smarter’ DSS’s are developed and put into use, follow-up research to
determine their effectiveness will help to further identify the real factors which

inhibit or promote their use for corporate decision support.

In conclusion, this project has integrated two techniques—management science
modelling and artificial intelligence—to provide a decision support tool with greater
capabilities than currently exists for financial planning. It has also demonstrated
a hierarchical planning approach to debt planning which overcomes the limitations
of using any single modelling or heuristic approach. In so doing, it moves the
capabilities of financial decision support systems closer to the ideal in which models

can be readily used and understood by non-experts without human intervention.



Appendix A
MIDAS Rate Model Specification

Notation and comments
st=0,...,T + 1 denote time periods.
0 indicates time immediately prior to the start of the planning period.
T is the length of the planning period.
T+1 indicates time immediately after the end of the planning period.
m=1,...,M denotes a financial market.

k=1,...,K denotes an available debt type, distinguished by market,
term, debt class (bond, short-term credit etc.) and features
(call option, sinking fund etc.)

j=1,...,J denotes a future (rate) scenario

ej = ej1,...,¢;7 denotes a sequence of (rate) events specifying mean
interest and exchange rates in time periods t for scenario j = 1,... o

(e;) indicates that a variable or parameter is contingent on the event
sequence €;

All rates are annual unless otherwise noted.

1. Random number generation

1.1 Input parameter

afyyy (fori=1,...,n) realization of a random variable with uniform
distribution between 0 (inclusive) and 1 (exclusive)

1.2 Output

z(y,1) realization of a random variable with a normal distribution with mean 0
and standard deviation 1

z(o,1) = 1/—21n;1:[10,1) cos(21r::[20'1))

208
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2. interest rate model

Forj=1,...,J,8=0,...,T, t=1,....,T+1,m=1,....M and k =1,...

where k denotes a type of debt:

2.1 Input parameters
rim term in years of ‘long-term’ debt in market m
8™ term in years of ‘short-term’ debt in market m

#li(e;) mean long-term government interest rate in market m at the
beginning of time period ¢

7a*(e;) mean short-term government interest rate in market m at the
beginning of time period ¢

sp* mean spread between the market rate for debt type k and the rate
for government debt of the same remaining term (time outstanding)
spy* mean spread between the market rate for debt type k, assuming k

is called at its first call date, and the rate for government debt
of the same remaining term, where k is a callable bond

spsf™ mean spread between the government short-term interest rate
and the sinking fund earnings rate in market m

oal™ standard deviation of the annual change in the government
long-term rate in market m

oql™ standard deviation of the quarterly change in the government
long-term rate in market m

aa

in market m

proportion of the quarterly change in the government long-term
rate included in the quarterly change in the government
short-term rate in market m

aq

oas standard deviation of the random component of the annual

change in the government short-term rate in market m

ogs™  standard deviation of the random component of the quarterly
change in the government short-term rate in market m

proportion of the annual change in the government long-term rate
included in the annual change in the government short-term rate
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5, remaining term in years at the beginning of time period ¢ for
debt type k issued in period s
'ryf', remaining time in years from the beginning of period ¢ to the first
* call date for debt type k issued in period s, where k is a callable bond

rli" =7l =7l long-term government interest rate in market m
immediately prior to time period 1

re™ = 73" = 73™ short-term government interest rate in market m
0 o )
immediately prior to time period 1.

2.2 Output

Arl*(e;) change in the mean long-term government interest rate in
market m between time period ¢t — 1 and time period ¢

AT (e;) = 7l (e5) — FI 1 (e5)

Arsi(e;) change in the mean short-term government interest rate in
market m between time period t — 1 and time period ¢

A7s(e) =T (e5) —Tsia(e))
A7pl*(e;) random part of the change in the long-term government

interest rate in market m between time period ¢ ~ 1 and
time period ¢

oal™z;
_ for annual time periods ¢
Arpli*(e;) =
oql™zy
for quarterly time periods ¢

71}*(e;)  random long-term government interest rate in market m
at the beginning of time period ¢

17 (e;) = Tli~1(e;) -+ ATpl (e;) + AT (e;)

for annual time periods ¢

A7ps}(e;) random part of the change in the short-term government
interest rate in market m between time period ¢ — 1 and
time period ¢

oas™zp 1

— for annual time periods ¢
Arpsy’(e;) = m
ggs " 2g1
for quarterly time periods ¢
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random snori-term government interest rate in market m
at the beginning of time period ¢

Tsy(e;) + ATs}(e;) + aa™ AP () + ATpsy(e))
for annual time periods ¢

Tsg (ej) =

a;*(e;)

b (e;)

2 (e;)

"ﬁ,t(e.i)

7ol i (ej) + AFs(e;) + ag™ ATPl (ej) + ATpsy" (e))
for quarterly time periods ¢

a-coefficient of the yield curve for government securities in
market m at the beginning of time period ¢, based on mean rates

737 (e;)In(7i™) — 7li*(e;) In(7s™)
In(rim) —In(Ts™)

a;'(ej) =

b-coefficient of the yield curve for government securities in
market m at the beginning of time period ¢, based on mean rates
7oy (e;) — Tl (e5)

In(rs™) — In(7i™)

b (e5) =

a-coefficient of the yield curve for government securities in market m,
at the beginning of time period ¢, based on randomly generated rates

73 (e;) In(ri™) — FlIP*(e;) In(7s™)
In(rim) — In(7s™)

ag'(e;) =
b-coefficient of the yield curve for government securities in market m,
at the beginning of time period #, based on randomly generated rates

7si"(e;) — 7l (e;)

In(Ts™) — In(7i™)

B (ej) =

market interest rate at the beginning of period ¢ for debt type k
issued in period s

al(e;) +b; (ej)In(rf,) + sp* if based on mean yield curve

k — -~
U CHES @ (e;) + b (ej)In(k,) + sp*  if based on randomly generated

yield curve

for k not a callable bond and m is the market in which debt type &
is issued
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a(e;) + E:n(ej)ln(rﬁt) + spy* if based on mean yield curve

palej) = am(e;) + b (e5) In(7,) + spy* if based on randomly generated

yield curve

for y a callable bond and m is the market in which debt type &
is issued

3fei*(e;) earnings rate in period ¢ for sinking funds in market m,
based on mean rates

sfei(e;) = Tsi*(e;) + spsf™.

3fel*(e;) earnings rate in period t for sinking funds in market m, based on
randomly-generated rates

sfef*(e;) = 77 (e;) + spsf™.

3. Foreign exchange rate model
Forj=1,...,J,t=1,...,T+1,m=1,...,Mand k=1,...,K:

3.1 Input parameters

Pt (ej) mean foreign exchange rate with respect to the Canadian dollar
for market m at the beginning of time period ¢

oap™ standard deviation of the annual foreign exchange rate change
for market m

ogp™ standard deviation of the quarterly foreign exchange rate change
for market m

pi* = Py’ = py° foreign exchange rate in market m immediately prior
to time period 1

3.2 Output

Apy*(e;)  mean change in the foreign exchange rate for market m
between time period ¢ — 1 and time period ¢

APt (e;) = pr (e5) — Pe=1(ej)

pv'(e;) randomly-generated foreign exchange rate for market m
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at the beginning of time period t

Piz1(ej) + oap™zy1 + Ap}(e;)
for annual time periods t

pr(es)=4 _ o
Pisi(ej) + ogp™ 20,1 + AP} (e5)
for quarterly time periods t
P (e;) foreign exchange rate in period ¢ for debt type k

P (e;) if based on mean rates
P =1 P(e;) if based on randomly generated
rates

where m is the market in which debt type & is issued

4. Cash surplus and deficit rates
Forj=1,...,J,t=1,...,T+1l,m=1,....Mand k=1,...,K:

4.1 Input parameters

i)

spi mean spread between the short-term government securities rate

and the short-term deposit earnings rate in market m

spd™ mean spread between the short-term government securities rate
and the interest rate for short-term penalty borrowing in market m

4.2 Output

i*(e;) short-term deposit earnings rate in market m for period {

7si*(e;) + spi™ if based on mean rates

ST Y — ~ . R

ii"(ej) = 787" (e;) + spi™  if based on randomly generated
rates

rd{®  short-term interest rate for penalty borrowing in market m

7s]*(e;) + spd™ if based on mean rates
rdy"(ej) = 78]*(ej) + spd™ if based on randomly generated
rates




Appendix B

MIDAS Simulation Model Specification

Notation and comments
st=0,...,7 + 1 denote time periods.

0 indicates the time period immediately prior to the start of the
planning period.

T is the planning horizon or the length of the planning period.
T + 1 indicates time immediately after the end of the planning period.
m=1,...,M denotes a financial market.

k=1,...,K denotes an available debt type, distinguished by market,
term, debt class (bond, short-term credit etc.) and features (call
option, sinking fund etc.). This specification covers bonds, call
options, sinking funds and short-term credit in foreign and domestic
markets.

e; = €j1,...,€;7 denotes a sequence of (rate) events specifying mean
interest and exchange rates in time periods ¢ for scenario j =1,..., J

(c;) indicates that a variable or parameter is contingent on the event
sequence €;.

Interest, earnings and constraint satisfaction indicator calculations
are given for yearly time period #: amounts are prorated for quarterly
time periods.

All cash surplus investment and penalty borrowing is done in domestic
currency.
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1. Single-debt model

Forj=1,...,J,8=0,...,t-1,t=1,...,T,m= l,...,M,and k =1,...,K,
unless otherwise noted:

1.1 Input parameters

p(e;) probability of the event sequence e;.

Bf(e;) dollar amount at par of debt type & issued at the beginning
of period t.

Rf,",(e i) dollar amount at par of debt type k issued at the beginning
of period s and rctired at the beginning of period {.

O(',"l(e ;) dollar amount at par of debt type k issued prior to the start of
the planning period and outstanding at the beginning of period 1.

SF§, dollar balance of the sinking fund for debt type k issued prior to
the start of the planning period and outstanding at the beginning
of period 1.

6 o(e;) interest rate in period ¢ for debt type k outstanding at the
beginning of period 1, where k denotes a type of bond.

TAE (e; accrued interest at the beginning of period 1 for debt type k

0,1\&j 8 g

outstanding at the start of the planning period.

f* issue cost per dollar borrowed for debt type k.

gf',(e ;) retirement cost per dollar for debt type k issued in period s
and retired at the beginning of period .

s fcf', sinking fund contribution in period t per dollar of principal
outstanding, for debt type k issued in period s.

d borrower discount rate to be used for net present value
calculations.

¥ (e5) mean or randomly-generated market interest rate in period ¢

for debt type k issued in period s.

rsfk,(e;) mean or randomly-generated sinking fund earnings rate in
period ¢ for debt type k issued in period a.

Tot remaining term in years at the beginning of period ¢ for debt
type k issued in period s.
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216

remaining time in years from the beginning of period ¢ to the
first call date for debt type k issued in period s, where k
denotes a callable bond.

mean or randomly-generated foreign exchange rate in period ¢
for debt type k.

1.2.1 Cash flows and balances for a single event sequence (e;)

In currency of issue:

Ft*(e}')

Of,:(ej)

IAf‘,(ej)

IP:.:(ej)

RCf,t(ej)

issue costs for debt type k issued in period ¢
Ff(e;) = —f*B{(e;)-

(for t =2,...,T +1) principal outstanding at the beginning of time
period t of debt type k issued in period s
Of’t(e,‘) = {

Bf . (e;) fors=t-1
Of,,-l(ej) - Rf,t-q(ei) fors #t—1.

(for t =2,...,T +1) interest accrued at beginning of period ¢
for debt type k issued in period s:

for k a type of bond

T4 \(e;) = TAY, i(ej) + IP,_y(e;) + ¥ (€05 (e5)
for k a type of short-term debt

IAﬁ',(ej) = IAf,t-1(eJ‘) + Ipf,tq(ej) + r:c,t-l(e.i)ot,t(ej)'

interest paid at beginning of period ¢ for debt type k issued in
period 3

—IAk(e;) if k pays interest in period ¢

1P (e;) = {0 t(e3)

otherwise.

retirement costs in period ¢ for debt type k issued in period 8
and retired in period ¢

RC:‘,t(e.i) = —gf’t(ej)Rf',(ej).



EV,’ST +1(e;) market value at the end of the planning period for debt type k
issued in period s:

for k a callable bond
?:‘,a(ei)oﬁ,Ti-l(eJ') [1 _ ,ryk ]
o S ) (1 + rasa(es)) 7"

Of,:r+1(ej)
(14 ro,74+1(e;

for k a noncallable bond

EVAIST+1(35) =

)k)"yf.t + IA’:.T+1(81')

¥ (e;)0% 1,1(€5) 1
EVk e:) = Mt J/Y 8, T+1\"] [1 - 'r:‘ ]
or+1(€) ™ rea(e) (14 ro7e1(e;)) "7+
Of T+1(ej) k k
o+ r,,7+1(8j)")7‘"i + 1A, 741(¢;)

for k a type of short-term credit

EVu’fTﬂ(eJ') = O:.T+1 + IA’:.T+1(‘31')-

SFC¥,(e;) sinking fund contributions at the beginning of period ¢ for debt
type k issued in period s

SFCE (&) = —sfc; 05 4(es)-

ASFE} (e;) accrued sinking fund earnings in period ¢ for debt type k
issued in period s

ASFEf,t(ej) =ASFE§,:-1(¢J‘)
+ rafk(e;) SFE(e;) — SFEL,_i(ej).

SFEf (e;) sinking fund earnings received in period ¢ for debt type k
issued in period s

SFE? (e;) = ASFE; (e;)-

SFWE(e;) sinking fund withdrawals in period ¢ for debt type k issued
in period s

SFWE,(e;) =[SF¥(e;) + SFC¥ (e;) + SFE; ((e;)]
Rf,:(ej)/of,t(ej)-
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SF¥(ej) (for t =2,...,T +1) sinking fund balance at the beginning
of period ¢ for debt type k issued in period s

SFWE (e;) =SF¥,_,(e;) + SFC,_1(e;)
+ SFEf,t—l(eJ') - SFW:!—I(EJ')’

NO¥ (e;) net principal outstanding at the beginning of period ¢ for debt
type k issued in period s:

for k a type of sinking fund bond

NOf‘,(ej) = Of,,(ej) - SF:t(eJ')

for k not a type of sinking fund bond
Nof,t(‘-’j) = Of,,(ej).

EVSF¥; ., (e;) market value at the end of the planning period for the
sinking fund for debt type k issued in period s

EVSFfr.(ej) = SFipi(e;)-

NEV}r, (e;) net market value at the end of the planning period for
debt type k issued in period s:

for k a type of sinking fund bond:

NEVa’:T+1(ej) = EV,’:TH(ej) - EVSF:,T-H(CJ')

for k£ not a type of sinking fund bond:
NEV/r1(ej) = EViraa(es)-

TCFk (e;) (for t=1,...,T +1) total cash flows in period ¢ for
debt type k issued in period s

Bk(e;) + FX(e;) for s = 1
TCF* (e;) = IPf,t(ej) + RCf,,(e,-) + Rf',(ej) for s # ¢ and
s \%j +SFC£¢(CJ') + SFW:‘,t(eJ-) t<T+1

EV}i(e;) fort=T+1.
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TOCF ,ﬁt(ej) total operating cash outflows in period ¢ for debt type k
issued in period s

TOCF* (e;) = {Ipak,t(ej) + SFCk (e;) fors#1

for s = 1.

In Canadian dollars:

C$OP} ,(e;) For each output OP},(e;) above, the Canadian dollar equivalent:

C8OPk, = ptOP,.

1.2.2 Performance indicators for a single event sequence (e;)

NPVk(e;) net present value of cash flows at time ¢ =1 for debt type k
issued in period s, discounted at the borrower’s discount rate

T+1
NPVKe;) =D TCF;(e;)/(1+ d)t .

t=1

IRR¥(e;) internal rate of return for debt type k issued in period s

IRR¥(e;) = discount rate irr such that
T+1
NPV}He;) = TCFf(e;)/(1 +irr) ™" =0.

=1

1.2.3 Expected values

E(OP},)  For each output OP}(e;) above, the expected value over all
event sequences

J
E(OPG",!) = ZP(CJ‘)OP:‘.:(CJ')'

i=1
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2. Borrowing plan/portfolio model

Forj=1,....J,8=0,...,t—-1,t= ,...,T,m=1,...,M,and k= 1,...,K,
unless otherwise noted, where k is a debt in the portfolio:

2.1 Input parameters

Various

Ci

M

N,
Qk

qk

cL*

U

L

51
EAS,

i

Dy
IAD,
ng

NOTE:

for each member, all individual debt inputs and outputs listed above

borrower’s cash requirement for period ¢. If negative, indicates an
operating surplus.

maximum annual cash outflows for debt service during the
planning period

maximum total borrowing over all debt types in period ¢
maximum issue size of debt type k
minimum issue size of debt type k

maximum principal outstanding for debt type k, where k is a type
of short-term debt

maximum dollar amount of debt (at par) retired annually
minimum dollar amount of debt (at par) retired annually
cash surplus balance at the beginning of period 1

accrued earnings on the cash surplus balance at the beginning of
period 1

mean or randomly-generated cash surplus earnings rate
in period ¢

cash deficit (penalty borrowing) balance at the beginning of period 1
accrued interest on the cash deficit balance at the beginning of period 1

mean or randomly-generated penalty borrowing rate in
period ¢

All sums are of Canadian dollar equivalent amounts.



2.2 Output
2.2.1 Cash flows
CSDy(e;)  cash flow surplus or deficit for period ¢

t—1

K
CSDy(ej) =YD _ TCF,ue;) — Cilej),

k=1 a=1
where k denotes a debt in the portfolio.
SDy(e;) cash surplus deposits for period ¢

§Diy(e;) = {r;ax(osm(ej) — DRy(e;),0) if CSDy(e;) >0

otherwise.

SWi(e;) cash surplus withdrawals for period ¢
SWi(e;) = {
0 otherwise.
EASi(e;)  earnings accrued in period ¢ on cash surplus balance
EASy(ej) = EASi-1(e;) +1ie-1(e;)Se(ej) — SEi-1(e;)-
SEq(e;) earnings received in period ¢ on cash surplus balance
SE,(e;) = EASi(e;)-

Se(e;) (for t = 2,...,T + 1) cash surplus balance at the beginning
of period ¢

Si(ej) = Se-1(ej) + SDi-a(e;) + SEe-1(ej) — SWe-a(e;)-

EV St41(e;) ending market value of cash surplus balance at
time T +1

EVSt11(e5) = S+41(e5).
TCFSie;) total cash flows for cash surplus in period ¢

TCFS:(GJ') = SW¢_1(eJ’) - SDg_l(eJ').

min(Sq(e;) + SEi(ej),~CSDi(e;)) if CSDy(e;) <

221
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DBy(e;) cash deficit (penalty) borrowing in period &

DBi(e;) = {;nin(—CSDt(e,') — §Wi(e;),0) if CSDy(e;) <0

otherwise.

DRy(e;) cash deficit (penalty borrowing) repayment in period 1

DR;(GJ) = {Eﬁn(D‘(eJ) + D‘{t(ej)’ CSD:(C))) if OSDg(eJ) > 0

otherwise.

ADI(e;)  accrued interest in period t on the penalty borrowing balance
ADI(e;) = ADIi-a(gj) + rdy—1 Di(e;) — DIr-1(€;)-
DI(e;) interest paid in period ¢ on the penalty borrowing balance
DIy(e;) = ADIi(e;)-

Dy(e;) (for t =2,..., T+ 1) cash deficit balance at the beginning
of period i

Di(e;) = Di-1(ej) + DBe-s(es) ~ DRe-s(e):
TCFDy(e;) total cash flows for cash deficit in period ¢
TCFDy(ej) = DBu(e;) — DRy(e;) — DIi(e;).
EV D141(e;) ending market value of cash deficit balance at time T' +1
EV Drya(e;) = Dra(es)-

Bi(e;) total amount borrowed at the beginning of period ¢

K
Be(e;) = 3 Bl(ej) + DBi(e;)-
k=1
Fy(e;) total issue costs in period 1

K
Fi(es) = Y_ F(es):

k=1



O1(e;)

NO(e;)

IAt(ej)

IPg(ej)

RC’t(ej)

Ri(e;)

EVrii(e;)
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(for t =2,...,T +1) total debt principal outstanding at the
beginning of time period £

O(e;) = ZZOH (e;) + Di(e;j)-

k=1 a=1
(for t = .»T' +1) net principal outstanding at the beginning of
time penod t
K t-1
NOu(ej) =3 NOE (e;) + Si(e;).
k=1 2=1

total accrued interest at the beginning of period ¢

K t-1

TAi(ej) =Y IA% (e;)+ ADIi(e;).

k=1 s=1

total interest paid at the beginning of period ¢

K t-1

IP;(e,-):ZZI MCHESZ2ACHE

k=1 a=1

total retirement costs in period ¢

K t-1

RCy(e;) Z z RC} o(e5)-

k=1 s=1

total principal retired in period ¢

K t-1

Rie;) =D RE(e;) + DRu(e;).

k=1 s=1

total debt market value at the end of the planning period

K t-2
EVrii(e;) = Z > EVfriie;) + EVDriae;).

=12=1
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NEVry(ej) net portfolio market value at the end of the planning period

K t—1
NEVrii(e;) =Y Y NEVEr,.(e;) + EVDryi(e;) - EV Srii(e;).

k=1 a=1

SFCy(e;)  total sinking fund contributions at the beginning of period ¢

K t—1

SFCi(e;) =YY SFCE (e;).

k=1 a=1

ASFE(e;) total sinking fund earnings accrued at the beginning of period ¢

K t-1

ASFEi(e;) =Y ) ASFEE (e;).

k=1 a=1

SFE(e;)  total sinking fund earnings received in period ¢

K t-1

SFEy(e;) = ) ) SFEE (e;).

k=1 as=1

SFWy(e;)  total sinking fund withdrawals in period ¢

K t-1

SFWilej) =) ) SFWE,(e;).

k=1 s=1

SFy(e;) (for ¢ = 1,...,T + 1) total sinking fund balance at the beginning of
period ¢

K t-1

SFy(e;) ZZSFM(EJ)

k=1 =1
EV SFr.i(e;) total sinking fund market value at the end of the planning
period

K T
EVSFrii(e;) =" EVSFFr, (e;).

k=1 s=1



TCFy(e;) (fort=1,...,T +1) total cash flows in period ¢

K t-1
TCFy(ej) =Y Y TCF}(e;) + TCFSf(e;) + TCFDf(e;).

k=1 s=1

TOCF,(e;) total operating cash flows in period ¢

K T
TOCFi(e;) = Y Y TOCFf (e;) + DIf(e;).
k=1 s=1

2.2.2 Performance indicators

NPV S(e;) net present value of cash surplus cash flows at time ¢ = 1,

discounted at the borrower’s discount rate

T+1
NPVS(e;) = Y TCFSi(e;)/{1 +d)~".

t=1

NPV D(e;) net present value of cash deficit cash flows at time ¢t =1,
discounted at the borrower’s discount rate

T+1
NPVD(e;) = Y TCFD(e;)/(1+d)'"

=1

NPV(e;)  net present value of cash flows at time ¢t = 1, discounted
at the borrower’s discount rate

K
NPV(e;) =) ) NPV}(e;) + NPVS*(e;) + NPV D(e;).

k=1 s=1
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IRR(e;) internal rate of return

IRR(e;) = discount rate irr such that

T+1
NPV(e;) = i (TCFi(e;) + TCFSy(e;) + TCFDy(e;)) /(1 + irr)i = 0.

t=1

WAT,(e;) weighted average term in period

K t-1
Z Z NO,, t(ea)"'a {ej) + Dy(e;) — Si(ej)

a=1

W ATy(e;) = =—
S5 NO% (es) + Diles) - Ste)

k=1 a=1

WAC(e;) weighted average debt service in period ¢

K t-1
3D NOL () YTOCFE (e;) + DIi(e;) - Di(e;)
W AC(e;) = ==
3 NOE (&5} + Diles) — Sele;)
k=1 s=1

%ST,(e;)  percent short-term in period &

[ L t-1 :
2 ZNOfx.e(ej) + Di(e;) — Si(e;)
%STi(es) = | e (100.0)
L E Z O:g(e,’) + Dy(ej) — Si(e;)
k=1 s=1 )

for ! a debt with remaining term < 1.
%MTy(e;) percent medium-term in period ¢
t-1

L
Y. > No, g(e:)

BRMTy(e;) = | 2 (100.0)

3D NOL(e))

Lk-—l s=1
for ! a debt with remaining term > 1 and <15.
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%LT,(e;)  percent long-term in period ¢

L t-1

Z Z Nofl,t(ej)-‘

BLTy(e;) = | = (100.0)

LZZNOi‘.t(%‘)

k=1 a=1

for | a debt with remaining term > 15.

9%V Ty(e;)  percent variable-rate in period ¢

L t-1

Y D NO,(es) + Di(e;) - S,(e,—).‘

BV Ti(e;) = | oy (100.0)

33 NOk (e5) + Diles) = Seles)

Lk:la:l

for | a debt with variable interest rate.

2.2.3 Constraint satisfaction indicators

MCi(e;) maximum cash outflows for debt service in period ¢
MCy(e;) = M - TOCFi(e;).
M By(e;) maximum total borrowing in period ¢
MBy(e;) = Ny — By(ej)-

MXk(e;)  maximum issue size for debt type k in period ¢

MX} = Q% — Bi(ej).
MNFk(e;)  minimum issue size for debt type k in period t

MNE = ¢* — Bf(e;)-
MCLE (e;) short-term credit line, for k a type of short-term debt

MCLE (e;) = CL* — 05 (e))-
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MXR(e;) maximum principal retired in period ¢
MXRy(ej) = U — Ri(e;).
MNR(e;) minimum principal retired in period ¢
MNRq(ej) = L — Ry(e;)-

2.2.4 Expected values

E(OP) For each portfolio output OF(e;) above, its expected value over
all event sequences

J
E(OP.) = _p(e;j) OPi(e;).
Jj=1




Appendix C
MIDAS Design Specification

Object-oriented systems differ from traditional systems in that they integrate rather
than separate data and processes in their conceptual design and implementation.
Structured tools which focus on either data or processes individually cannot, there-
fore, document object-oriented systems without modification.

The design specifications for MIDAS are presented here using a combination of
modified dataflow diagrams, object class hierarchy charts and detailed object and
method definitions. The documentation approach is based on commonly-accepted
tools and conventions (Gane and Sarson 1979; Whitten, Bentley and Barlow 1989),
modified for this project. Graphic documentation was produced using Excelerator
CASE software (Index Technology Corporation 1989).

System documentation consists of the following components:

1. System overview diagram. This diagram decomposes the system into groups
and subgroups of objects related by function. It gives an overview of system
architecture and documentation organization; each connected level in the tree

corresponds to an object diagram.

2. Object diagrams. Object diagrams show object groups in functional relation-
ships, connected by both data flows and message (method call} flows. These
diagrams modify Gane and Sarson dataflow diagrams to (a) combine processes
and data stores into objects rather than showing them as separate system com-

ponents, and (b) show message flows as well as data flows within the system.

3. Class diagrams. These show the inheritance class relationships used to define
object classes in the system’s knowledge base. They further document some
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object groups in the lowest-level object diagrams.

4. Object definitions. These give detailed definitions of object classes and instances
in the system knowledge base. They further document (a) object classes in the
class hierarchy charts, and (b) objects in the lowest-level object diagrams which

are not defined in class hierarchies.

5. Method structure charis. These decompose complex methods (named in object

definitions) into modules and show their control structures.

6. Primitive method specifications. These specify processing logic for primitive

methods named in object definitions.

7. Rule speciﬁcationa; Individual rules are stated in an English-like syntax, and

each set of rules is documented as to its purpose and chaining sequence.
Input and output formats are not given here but are illustrated in Chapter 10.

Specific conventions for each type of documentation are described in detail in
the applicable sections of this Appendix.

For the portions of the design which are implemented, this documentation is
supplemented by the system code listings provided on microfiche. These contain all
LISP code implementing the prototype system and give additional detail on object
definitions, specific method calls and data flow contents.

This documentation covers optimization, plan refinement and simulation, with
related system support and user support, for single-path rate scenarios. Extension
to branching scenarios would rquire additional methods, method arguments and

summary objects to create, identify and manage multiple worlds.

1. System overview diagram

Figure C.1 gives the system overview diagram.
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2. Object diagrams
Obiect diagrams use the following symbols and conventions:

1. A square represents an input source or output
destination outside the system.

2. A rounded rectangle represents a subsystem,
object group or primitive object, as follows:

A solid-line rounded rectangle represents a
subsystem, object subgroup or object within
that group.

e e, A dashed-line rounded rectangle represents a
’ subsystem, object subgroup or object outside the
object group being described in the current diagram.

3. ( \ A solid arrow represents a data
' flow between objects or between
o objects and external entities.
4. A dashed arrow represents a
message flow (processing request

and accompanying parameters)

between objects.
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5. Beginning with the top level system diagram, object diagrams ezplode to lower-
level object diagrams, class hierarchy diagrams or object definitions which give
additional design details not provided in higher-level diagrams. Object groups
which explode to class hierarchy charts are indicated by ‘CH’ in their identifying
codes; objects which explode to object definitions are indicated by ‘O’ in their

identifying codes.

Because all object diagrams in this documentation were used in the text of this

disssertation, they are referenced here rather than duplicated. Their locations are

as follows:

1. System architecture: objected-oriented view: Figure 4.6.

2. Modelling subsystem: Figure 6.1.

3. Modelling subsystem: model object detail: Figure 6.2.

4. Modelling subsystem: model support object detail: Figure 6.6.

5. Modelling subsystem: LP support model object detail: Figure 6.13.
6. System support subsystem: Figure 7.1.

7. System support subsystem: user interface detail: Figure 7.2.

8. System support subsystem: output management detail: Figure 7.5.
9. System support subsystem: task management detail: Figure 7.11.

Uy
e

User support subsystem: Figure 8.1.

3. Class hierarchy diagrams

Class hierarchy diagrams show the inheritance hierarchies defining object classes,
subclasses and instances within the main MIDAS knowledge base.
Within these diagrams, rounded rectangles represent object classes or instances,

solid connecting lines represent subclass relationships and dashed connecting lines

represent member (instance) relationships.
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Class hierarchies used in MIDAS are the following:

Model.objects: Figure 6.3.
Financial.markets: Figure C.2.
Borrowing.plans: Figure C.3.
Decision.variable.specifiers: Figure 6.14.
Constraint.specifiers: Figure 6.17.
Input.file.builders: Figure C.4.
Task.conditions: Figure 7.14.
Presentation.managers: Figure C.5.

Result.analyzers: Figure 8.2.

Object definitions
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An object definition is given for each class or individual (instance) object defined

in the system knowledge base. An individual problem and its analysis results are

represented in a separate knowledge base called a problem space which is stored sep-

arately from the main knowledge base. Objects in the problem space are created

as instances of objects in the main knowledge base, so that the main knowledge

base objects serve as templates for objects in the problem space. The object defi-

nitions given in this documentation are for classes and instance objects in the main

knowledge base.

1.

2.

An object definition consists of the following:

NAME: The reference name within the knowledge base for the class or

instance being defined.

SUBCLASS.OF: The name(s) of the parent class(es) of the object if the object

is a class. Member slot and method names and values (see

below) for subclasses are inherited from parent classes unless

overridden; class objects pass their slots and methods to their

child classes or instances. NIL indicates no parents for the

class.
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3. INSTANCE.OF:

4. SUBCLASSES:

5. INSTANCES:

6. DESCRIPTION:

7. ATTRIBUTE
SLOTS:
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The name(s) of the parent class(es) for the object if the object
is an instance. Slot and method names and values for instances
are inherited from parent classes unless overridden. Instance
classes do not have child classes or instances. NIL indicates

no parents for the object.

The name(s) of subclasses of the object class in the main

knowledge base. NIL indicates no such subclasses.

The name(s) of instances of the class defined in the main

knowledge base. NIL indicates no such subclasses.

A comment field describing the purpose and role of the object.

The names and defining characteristics of slots which desc-

ribe attributes of tie object and which are inherited by its
child objects. These slots are known as member slots in KEE.
This section is omitted if there are no such slots with local

definitions or values.

8. CLASS-SPECIFICThe names and defining characteristics of slots which are

SLOTS:

9. SLOT CHAR-
ACTERISTICS:

not inherited by child objects. Own slots in class objects are
attributes or methods pertaining to the class itself rather than
to its members; all slots in instance objects are own slots.
These slots are known as own slots in KEE. This section is
omitted if there are no such slots with local definitions or

values.

A slot may have facets which document, specify or limit the

slot’s value. Critical facets are listed for slots in object def-



10. EXTERNAL-
METHODS:
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initions; complete listings of slot facets are found in the knowl-
edge base listing on microfiche. The facet inkeritance specifies
the way in which inheritance takes Place for the slot; UNION
means that values are combined in a set union operations so
that values from parent classes are retained and added to by
child classes, while unspecified inheritance meang that values
are overridden so that parent-class values are lost when new

values are specified.

USE The names of methods in the object which are called by

methodsin other objects. (The prefix MTH. is used for method
names in the system but has been omitted from all method
slot names for clarity.) The value of a method slot is the name
of the LISP function which defines the method’s procedures.
Comments describe metiods in the objects in which they are
first defined. If a value is given for a method, it is included ig
the system Prototype and documented oq microfiche; if it is

marked with a =, it is documented in §6 of this Appendix.

11. INTERNAL-USE The names of methods in the object which are cajled only

METHODS:

by methods within the object. (The prefix MTH., has been
omitted from all method slot names for clarity.) The value
of a method slot is the name of the LISP function which de-
fines the method’s procedures. Comments describe methods
in the objects in which they are first defined. If a value is
given for a method, it is included jn the system prototype and
documented in Appendix C; if it is marked with a «, it is

documented in §6 of this Appendix.
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Object definitions are listed in depth-first order of the inheritance hierarchies

in which they are defined, so that top-level object classes are presented first and

followed by lower-level specializing classes.

4.1 Modelling subsystem

4.1.1 Model objects

NAME: MODEL.OBJECTS

SUBCLASS.OF: NIL
INSTANCE.OF: NIL

SUBCLASSES: FINANCIAL.INSTRUMENTS, PORTFOLIOS

INSTANCES: NIL

DESCRIPTION: Top-level class specifying attributes and method names
common to both individual financial instruments (basic
model objects) and portfolios (composite model objects).

ATTRIBUTE SLOTS:
active.cf.slots
comment

cf.table
comment
class
comment

unit.display.data
comment

unit.display.slots
comment

unit.display.titles

Names of slots in the associated CF.TABLE object which are
used by this model object during cash flow caleulations.

Name of the CF.TABLE holding output for this object.

The model object class for this object (inherited
by instances and used in displays and reports).

A siot to hold formatted data for display of details for
this object.

A slot to hold the names of slots to be displayed in the
chject detail display.

A slot to hold titles for slot displays in the object detail display.

UNIT.MTH.ADD
Method to add an instance of this class of object in the
problem space.

UNIT.MTH.CHANGE
Method to change the user-specified slot values of an instance
of this class in the problem space.

comment
EXTERNAL-USE METHODS:

add

value

comment
change

value

comment
delete

value

UNIT.MTH.DELETE
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comment Method to delete an instance of this class from the
problem space.
project
comment Top-level method controlling the cash flow projection process.
simulate
comment Top-level method controlling random-rate simulation of
cash flows for instance of this class.

INTERNAL-USE METHODS:
do.cfs
comment Method controlling cash flow initialization and calculation
sequence for an instance of this class.
input
comment Method for obtaining form-based user input to define
an instance of this class.

NAME: FINANCIAL.INSTRUMENTS
SUBCLASS.OF: MODEL.OBJECTS
INSTANCE.OF: NIL

SUBCLASSES: INVESTMENTS, DEBTS
INSTANCES: NIL

DESCRIPTION: Highest basic mode! object class in hierarchy.

ATTRIBUTE SLOTS:
currency
comment Currency of issue.
default cs
range Currencies in markets defined in the problem space.
market

comment Market in which issued.

default CANADA

range Markets defined in the problem space.

spread.slots

comment List of names of financial.market slots containing spreads
to be used in determining the market interest rate for
instances of this class.

inheritance. UNION

INTERNAL-USE METHODS:
one.period.cfs
comment Method to calculate cash flows for instance of this class
for a single time period.

EXTERNAL-USE METHODS:

do.cfs

value FI.MTH.DO.CFS
project

value FI.MTH.PROJECT
simulate

value FI.MTH.SIMULATE
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NAME: DEBTS

SUBCLASS.OF: FINANCIAL.INSTRUMENTS

INSTANCE.OF: NIL

SUBCLASSES: LONG.TERM.DEBTS, SHORT.TERM.DEBTS
INSTANCES: NIL

DESCRIPTION: Generic debt definition,

ATTRIBUTE SLOTS:
accrued.interest
comment Accrued interest balance for an instance of this class as at
the knowledge base date, which should correspond to the start
of the planning period.
default 0.0
active.cf.slots
values CF.PRINCIPAL.BORROWED, CF.PRINCIPAL.RETIRED,
CF.INTEREST.ACCRUED, CF.INTEREST.PAID,
CF.INTEREST.RATE, CF.REMAINING.TERM,
CF.STATUS, CF.TOTAL.CASH.FLOWS,
CF.TOTAL.OPERATING.CASH.FLOWS,
CF.NET.CASH.FLOWS, CF.NET.OPERATING.CASH.FLOWS
principal.outstanding
comment Outstanding balance for instance of this instrument
as at the knowledge base date.
default 0.0
term

comment Length of time in years instrument is outstanding.
default 0.0

NAME: LONG.TERM.DEBTS
SUBCLASS.OF: DEBTS
INSTANCE.OF: NIL

SUBCLASSES: BONDS
INSTANCES: NIL

DESCRIPTION: Generic long-term debt definition.

ATTRIBUTE SLOTS:
original.principal
comment Amount for which an instance of this class was or is to be
originally issued. Used in cash flow projections when the

object is to be issued during the projection period.
default 0.0

NAME: BONDS

SUBCLASS.OF: LONG.TERM.DEBTS

INSTANCE.OF: NIL

SUBCLASSES: BASIC.BONDS, CALLABLE.BONDS, FOREIGN.BONDS,
SINKING.FUND.BONDS

INSTANCES: NIL



244

DESCRIPTION: Bond class definition (specialization of long-term debts).

ATTRIBUTESLOTS:

active.cf.slots

values CF.ISSUE.COSTS, CF.RETIREMENT.COST
class
value BOND
coupon.rate
comment Contract interest rate at which instance of this
class is issued.
default 0.0

interest.payments.per.year

comment Number of interest payments required by bond contract.
default 2
range 1,20r4

issue.admin.costs

comment Dollar amount of administrative costs on issue.
Part of total issue costs.
default 0.0

issue.commission.rate

comment Per-dollar rate for commission costs on issue costs.
Part of total issue costs.
default 0.0
issue.date
comment Date of issue, in Explorer universal date format
(time since Dec 31, 1899).
default 0

issue.discount.or.premium

comment

issue.period
comment

issue.quarter

Dollar amount of discount or premium on issue. Assumed
zero for new issues. Computed from public price.

Index of time period of issue, relative to beginning of planning
period. Computed at start of cf projection or simulation.

comment Quarter of issue, Computed from issue.date.
range 1,2,30r4
issue.total.costs
comment Dollar amount of total issue costs. Either input directly or
computed from admin costs and discount or premium.
default 0.0
issue.year
comment Year of issue. Computed from issue date.
maturity.date
comment Date bond issue matures (must be retired), according

maturity.period
comment

maturity.quarter
comment

to contract. Computed from issue date and term,
Index of time period of maturity, relative to beginning
of planning period. Computed at start of cf projection
or simulation.

Quarter in which issue matures. Computed from



maturity.year
comment
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maturity date.

Year in which issue matures. Computed from maturity date.

quarters.interest.paid

comment
spread.slots
value

cf.carry.fwd
comment

List of quarters in which interest payments required.

SPREAD.BOND

INTERNAL-USE METHODS:

Method to compute beginning balance for a cash
flow period.

value BONDS.MTH.CF.CARRY.FWD
cf.end.value
comment Method to compute market value for an instance of
this class at the end of the planning period.
value BONDS.MTH.CF.END.VALUE
cf.interest
comment Method to compute interest accrued and paid for
a single time period.
value BONDS.MTH.CF.INTEREST
cf.issue
comment Method to compute cash flows for a bond issue.
value BONDS.MTH.CF.ISSUE
cf.retire
comment Method to compute cash flows on retirement.
value BONDS.MTH.CF.RETIRE
cf.setup
comment Method to set up opening balance at the beginning
of the planning period.
value BONDS.MTH.CF.SETUP
cf.status
comment Method to determine and record in the bond's cf.table the status
indicators for the bond (NEW, ACTIVE, MATURE, CALLABLE,
CALLED) for each time period during the planning period.
value BONDS.MTH.CF.STATUS
dates
comment Method to calculate issue and maturity years and quarters
from input dates.
value BONDS.MTH.CF.DATES
one.period.cfs
value BONDS.MTH.ONE.PERIOD.CFS
update.features
comment Control method for input of parameters for bond features
(call options, foreign currency, and sinking funds).
value BONDS.MTH.UPDATE.FEATURES
NAME: BASIC.BONDS

SUBCLASS.OF: BONDS
INSTANCE.OF: NIL
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SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Lowest-level bond class with no special features.
All stots and methods inherited from bonds. !ncluded for symmetry with specialize

NAME: CALLABLE.BONDS
SUBCLASS.OF: BONDS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Definitional class for bonds with a call feature.

ATTRIBUTE SLOTS:

call.first.call.price
comment Call price in the first year in which the issue is callable.
comment First year in which the issue is callable.

call.part?
comment indicator as to whether the issue can be called in part.
default  NIL (indicating NO)

call.prices
comment List of call prices in format ((year price)...).

Computed from first call price and first call year.

spread.slots
value SPREAD.CALL

INTERNAL-USE METHODS:
call.option.input
comment Input method for call option parameters.
value CALLABLE.BONDS.MTH.CALL.OPTION.INPUT
call.prices
comment Method to compute call prices and set up list.
value CALLABLE.BONDS.MTH.CALL.PRICES

cf.call
comment Method to compute cash flows in a period in which the issue
is called.
value CALLABLE.BONDS.MTH.CF.CALL
call.price

comment Method to return the call price for an issue for a specified year.

NAME: FOREIGN.BONDS
SUBCLASS.OF: BONDS
INSTANCE.OF: NIL
SUBCLASSES: NIL

INSTANCES: NiL

DESCRIPTION: Bonds in foreign currency.

INTERNAL-USE METHODS:
fgn.input
comment Method to obtain input for foreign bond slots.
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value FGN.BONDS.MTH.FGN.INPUT

NAME: SINKING.FUND.BONDS
SUBCLASS.OF: BONDS

INSTANCE.OF: NiL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Definitional class for bonds with sinking fund feature.

ATTRIBUTE SLOTS:
active.cf.slots
values SF.BALANCE, SF.CONTRIBUTIONS,
SF.EARNINGS.ACCRUED, SF.EARNINGS,
SF.EARNINGS.RATE, SF.STATUS,
SF.TOTAL.CASH.FLOWS, SF.TOTAL.EARNINGS,

SF.WITHDRAWALS
sf.name
comment The name of the sinking fund object for an instance
of this class.

spread.slots
value SPREAD.SF
INTERNAL-USE METHODS:
sf.input
value SINKING.FUND.BONDS.MTH.INPUT

NAME: SHORT.TERM.DEBTS

SUBCLASS.OF: DEBTS

INSTANCE.OF: NIL

SUBCLASSES: BANK.CREDIT, PENALTY.CREDIT, PROVINCIAL.CREDIT
INSTANCES: NIL

DESCRIPTION: Generic short-term debt class. Instances represent
sources of short-term credit.

ATTRIBUTE SLOTS:
class
value SHORT.TERM.DEBT
credit.maximum
comment Maximum credit available from this source.

INTERNAL-USE METHODS:
cf.borrow
comment Method to compute cash flows for borrowing from this
source, based on borrow actions for this source in the current
borrowing plan.
value STD.MTH.CF.BORROW
cf.carry.fwd
comment Method to compute beginning balance for a cash flow period.
value STD.MTH.CF.CARRY.FWD
cf.end.value
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comment Method to compute market value for an instance of this
class at the end of the planning period.
value STD.MTH.CF.END.VALUE
cf.interest
comment Method to compute interest accrued and paid for a
single time period.
value STD.MTH.CF.INTEREST
cf.retire
comment Method to compute cash flows on retirement, based on
retire actions for this source in the current borrowing plan.
value STD.MTH.CF.RETIRE
cf.setup
comment Method to set up opening balance at the beginning of the
planning period.
value STD.MTH.CF.SETUP
cf.status
comment Method to determine and record in the bond’s cf.table
the status indicators for the debt soures (ACTIVE, NIL)
for each time period during the planning period.
value STD.MTH.CF.STATUS
one.period.cfs
value STD.MTH.ONE.PERIOD.CFS
input
value STD.MTH.INPUT
NAME: BANK.CREDIT
SUBCLASS.OF: SHORT.TERM.DEBTS
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION:

Definitional class for bank credit (specialization of short-term debt).

ATTRIBUTE SLOTS:
spread.slots

value SPREAD.BANK.CREDIT
NAME: PENALTY.CREDIT
SUBCLASS.OF: SHORT.TERM.DEBTS
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL
DESCRIPTION: Definitional class for penalty credit (specialization of short-term debt).

ATTRIBUTE SLOTS:
spread.slots

value

SPREAD.PENALTY.CREDIT




NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:
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PROVINCIAL.CREDIT
SHORT.TERM.DEBTS
NIL
NIL
NIL

Definitional class for provincial credit (specialization of short-term debt).

ATTRIBUTE SLOTS:
spread.slots

value

SPREAD.PROV.CREDIT

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

INVESTMENTS
FINANCIAL.INSTRUMENTS
NIL

LONG.TERM.INVESTMENTS, SHORT.TERM.INVESTMENTS
NiL

Generic investment class.

ATTRIBUTE SLOTS:
accrued.earnings
comment Accrued earnings balance as at the knowledge base date,

default

which should correspond to the start of the planning period.
0.0

investment.balance
comment Balance for an instance of this class as at the knowledge

default

base date,
0.0

NAME: LONG.TERM.INVESTMENTS

SUBCLASS.OF: INVESTMENTS

INSTANCE.OF: NIL

SUBCLASSES: SINKING.FUNDS

INSTANCES: NIL

DESCRIPTION: Generic long-term investment class. Included for completeness;
all slots and methods inherited from parent classes.

NAME: SINKING.FUNDS

SUBCLASS.OF: LONG.TERM.INVESTMENTS

INSTANCE.OF: NIL

SUBCLASSES: CS$.SINKING.FUNDS, FOREIGN.SINKING.FUNDS

INSTANCES: NIL

DESCRIPTION: Defining class for sinking funds (long-term investment funds
driven by bond requirements).

ATTRIBUTE SLOTS:

class

value

SINKING.FUND



debt.name
comment

sf.ceiling
comment
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Name of bond object associated with an instance of
this class.

Maximum required balance for an instance of this class
(often equal to the bond face value).

sf.contribution.amount

comment

default

Dollar amount of required annual sinking fund contribution.
May be computed from contribution percent and bond
original principal.

0.0

sf.contribution.percent

comment

default
sf.start.year

comment
spread.slots

value

one.pericd.cfs

Percentage of bond original principal to be contributed
annually to the sinking fund.
0.0

Year in which sinking fund contributions are to begin.

SPREAD.SF.EARNINGS

EXTERNAL-USE METHODS:

value SF.MTH.ONE.PERIOD.CFS
INTERNAL-USE METHODS:
cf.carry.fwd
comment Method to compute the beginning sinking fund balance
for a cash flow period.
value SF.MTH.CF.CARRY.FWD
cf.contributions
comment Method to compute the cash flows for a contribution
to the sinking fund for a single time period.
value SF.MTH.CF.CONTRIBUTIONS
cf.earnings
comment Method to compute the earnings accrued and received
for a sinking fund for a single time period.
value SF.MTH.CF.EARNINGS
cf.end.value
comment Method to compute the value for a sinking fund
at the end of the planning period.
value SF.MTH.CF.END.VALUE
cf.setup
comment Method to set up the balance of an existing sinking
fund at the beginning of a planning period.
value SF.MTH.CF.SETUP
cf.status
comment Method to determine the status of a sinking fund
(ACTIVE, CONTRIBUTE, WITHDRAW, NIL)
for a single time period.
value SF.MTH.CF.STATUS
cf.withdrawals
comment Method to compute the cash flows associated with



value

input

value
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a sinking fund withdrawal on bond retirement.
SF.MTH.CF.WITHDRAWALS

SF.MTH.INPUT

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

CS$.SINKING.FUNDS
SINKING.FUNDS
NIL

NIL

NIL

Class for sinking funds in domestic currency. All attributes,
methods and values inherited from generi: sinking fund class.

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

FOREIGN.SINKING.FUNDS

SINKING.FUNDS

NIL

NIL

NIL

Defining class for sinking fund in foreign currency. All slots

and methods are inherited from parent class, but cash flow calculations
check for parent class and translate fx if foreign.

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

SHORT.TERM.INVESTMENTS
INVESTMENTS

NIL

NIL

NIL

Generic short-term investment class. Now used only for the
portfolio CASH.SURPLUS.

ATTRIBUTE SLOTS:
active.cf.slots

value

class

value

CF.REMAINING.TERM

SHORT.TERM.INVESTMENT

spread.slots

value

SPREAD.BANK.DEPOSIT

INTERNAL-USE METHODS:

cf.carry.fwd

comment Method to compute beginning balance for instance

value

of this class for a single time period.
STC.MTH.CF.CARRY.FWD

cf.end.value
comment Method to compute the value of an instance of this

class at the end of a planning period.
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value STC.MTH.CF.END.VALUE
cf.interest
comment Method to compute the cash flows for earnings accrued and
received for a single time period for an instance of this class.
value STC.MTH.INTEREST
cf.invest.or.withdraw
comment Method to computer the cash flows for investing
or withdrawing from an instance of this class, based on
surplus actions in the current borrowing plan.
value STC.MTH.INVEST.OR.WITHDRAN
cf.setup
comment Method to set up opening balance for an instance
of this class at the start of a planning period.
value STC.MTH.SETUP
cf.status
comment Method to determine the status (ACTIVE or NIL)
for an instance of this class for a single time period.
value STC.MTH.CF.STATUS
input
value STC.MTH.INPUT
one.period.cfs
value STC.MTH.ONE.PERIOD.CFS

NAME: PORTFOLIOS
SUBCLASS.OF: MODEL.OBJECTS
INSTANCE.OF: NIL
SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Generic portfolio definition, containing slots and methods for linking
individual financial instruments and handling cash surpluses and deficits.

ATTRIBUTE SLOTS:
active.cf.slots
value CF.CASH.NEEDS, CF.CASH.DEFICIT,
CF.AVERAGE.DEBT.SVC, CF.AVERAGE.TERM,
CF.PERCENT.LT, CF.PERCENT.MT, CF.PERCENT.ST,

CF.PERCENT.VARIABLE
class
value PORTFOLIO
pf.markets
comment List of markets in which this portfolio has debts.
range Markets defined in this problem space.
pf.members
comment List of financial instruments which make up this portfolio.
range Financial instruments defined for this problem space.
EXTERNAL-USE METHODS:
optimize*

comment Top-level contro! method for plan and portfolio optimization,
project
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value PF.MTH.PROJECT

simulate
value PFMTH.SIMULATE
INTERNAL-USE METHODS:
borrow.st

comment Method to create a borrow action to cover the portfolio’s
cash deficit for a single time period.
value PF.MTH.BORROW.ST
cash.deficit
comment Method to handle cash deficits and surpluses with respect to
cash requirements during cash flow projection and simulation.
value PF.MTH.CASH.DEFICIT
do.cfs
value PF.MTH.DO.CFS
configure.optimization.model*
comment Method to control sequence of operations for LP formulation.
input
value PF.MTH.INPUT
invest.st
comment Method to create a surplus action to invest a cash surplus
for a single time period.
value PF.MTH.INVEST.ST
retire.st
comment Method to create a retire short-term debt
when there is a cash surplus in a single time period.
value PF.MTH.RETIREET
withdraw.st
comment Method to create a surplus action to withdraw short-term
deposits to cover a cash deficit in a single time period.

value Pl MTH.WITHDRAW.ST

4.1.2 Model support objects

NAME: PROBLEM.SPECIFIERS
SUBC1ASS.OF: NIL
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Objects to hold and maintain high-level mode! parameters driving
number of passes, time periods, planning horizon and names of objects
currently in use.

ATTRIBUTE SLOTS:
cf.begin.quarter

comment Quarter in which planning period begins.
default 1



cf.begin.year
comment
default

cf.col.headings
comment

cf.col.titles
comment

cf.end.quarter
comment
defavlt
cf.end.year
comment
defauit
cf.interval
comment
range
default
cf.length
comment

cf.quarters
comment

cf.years
comment

current.borrower
comment
range

current.fi
comment

range
current.pf
comment

range
current.plan
comment

range
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Year in which planning period begins.

1990

List of formatted year and quarter headings for use in table
and graph displays. Generated by table and graph display managers.

List containing 'year' and ‘quarter’ headings for use in displays.
Generated by table and display managers.

Quarter in which planning period ends,

4

Year in which planning period ends.
2000

Length of time intervals making up ths planning period.
YEAR or QUARTER
YEAR

Length of cash flow lists in output tables. Computed from the
beginning and ending dates and length of time intervals.

List of quarter numbers for the planning period. Used in cash
flow calculations.

List of years for the planning period. Used
in cash flow calculations.

Name of the borrower object currently in use.
Borrowers defined for this problem space.

Name of the last financial instrument for which a cash
flow projection or simulation was done.
Names of financial instruments defined for the problem space.

Name of the last portfolio for which an optimization,
simulation or cash flow projection was done.
Names of portfolios defined in the problem space.

Name of the last borrowing plan for which an which a cash
simulation or cash flow projection was done.
Names of borrowing plans defined in the problem space.

knowledge.base.date

comment
rate.event.tree

comment

range

sim.passes

Date of last update of opening balances.

Name of the rate event tree to be used to generate
future rate sequences.

Names of rate event trees currently defined in the
problem space.
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comment Number of passes to be used in stochastic in the
of portfolios or financial instruments.

EXTERNAL-USE METHODS:
add
value PROBLEM.SPECIFIERS.MTH.ADD
change
value PROBLEM.SPECIFIERS.MTH.CHANGE

Note: Problem specifiers have no delete method because one and only one
problem specifier is required for each problem space

INTERNAL-USE METHODS:
cf.dates
comment Method to build year «nd quarter lists from planning period
beginning and ending dates.
value PROBLEM.SPECIFIERS.MTH.CF.DATES
cf.length
comment Method to compute and store length of cash flow lists
from planning period beginning and ending dates and
time interval specification.
value PROBLEM.SPECIFIERS.MTH.CF.LENGTH
input
value PROBLEM.SPECIFIERS.MTH.INPUT

NAME: BORROWERS
SUBCLASS.OF: NIL
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Defining class for borrower objects, which handle goals, parameters and
constraints set up by the borrower for whom plans are being modeiled.

ATTRIBUTESLOTS:
cash.needs.actual.percent
comment Percentage to be used in converting budgeted
cash requirements to actual cash requirements.
default 100.0
cash.needs.budget
comment Budgeted cash requirements for an instance of this
class, in a list of the form ({year quarter amount)...)
discount.rate
comment Discount rate to be used in calculating net present values.
maximum.annual.debt.service
comment Dollar amount of maximum desired annual cash outfiows
for debt service for an instance of this class.
maximum.annual.borrowing
comment Dollar amount of maximum desired ammount borrowed
in a year,
maximum.annual.retirement
comment Dollar amount of maximum desired debt amount retired
in a year.



minimum.annual.retirement
comment Dollar amount of minimum desired debt amount retired
in a year,

EXTERNAL-USE METHODS:
add
value UNIT.MTH.ADD
cf.cash.needs
comment Method to generate lists of actual cash requirements in
pf.tables from the budgeted cash requirements defined for
an instance of this class.
value BORROWERS.MTH.CF.CASH.NEEDS
change
value UNIT.MTH.CHANGE
delete
value UNIT.MTH.DELETE

INTERNAL-USE METHODS:
cash.needs.input
comment Method handling repetitive form-based input
of budgeted cash requirements.
vaiue BORROWERS.MTH.CASH.NEEDS.INPUT
input
value BORROWERS.MTH.INPUT
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NAME: FINANCIAL.MARKETS
SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: C$.MARKETS, FOREIGN.MARKETS
INSTANCES: NiL

DESCRIPTION: Definitional class for market objects, handling market condition
parameters and future rate lists derived from event trees.

ATTRIBUTE SLOTS:

Lists of current yield curve coefficients over the planning period:
cf.current.a.coeffs
cf.current.b.coeffs

Lists of current mean rates over the planning period:
cf.mean.rates.|t
cf.mean.rates.st

Lists of current rate changes over the planning period:
cf.rate.changes.!t
cf.rate.changes.st

Default debt attribute values for use in creating new debts
from borrowing plan actions:

default.call.first.premium

default.call.part?

default.call.wait.period

default.interest.pmts.per.year

default.issue.cost.rate
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default.sf.contribution.rate
default.sf.wait.period

Constraint values for use in portfolio optimization, simulation
or cash flow projection:

max.annual.borrowing

max.issue.size

min.annual.borrowing

min.issue.size

Parameters for pseudo-random rate generation:
quarter.alpha
quarter.sd.lt
quarter.sd.st
quarter.sd.random.part
year.alpha
year.sd.It
year.sd.st
year.sd.st.random.part

Interest rate spreads for use in determining market rates
for single financial instruments:
spread.bank.credit
spread.bank.deposit

spread.bond
spread.call
spread.prov.credit
spread.sf
spread.sf.earnings
spread.yield.to.call
term.lt

term.st

Other attributes:
currency
comment Currency used in this market.
default cs
issue.multiple
comment Multiple amount in which debts are issued in this market.
default 10.0
rate.event.slot
comment Name of slot in rate events containing rates for this market.

EXTERNAL-USE METHODS:

add

value UNIT.MTH.ADD
change

value UNIT.MTH.CHANGE
delete

value UNIT.MTH.DELETE
generate.mean.rates

comment Method to build mean-rate yield curve lists
from mean-rate short-term and long-term rate lists,
for use in optimization and cash flow projection.
value MKT.MTH.GENERATE.MEAN.RATES
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generate.random.rates
comment Method to build pseudo-random yield curve
lists from mean-rate short-term and long-term
rate lists, for use in a single simulation pass.
value MKT.MTH.GENERATE.RANDOM.RATES
interest.rate
comment Method to return the market interest rate for
a financial instrument in a spbecified time period.
value MKT.MTH.INTEREST.RATE

INTERNAL-USE METHODS:
input
value MKT.MTH.INPUT
interest.rate.model.input

comment Method for form-based input of rate model parameters,
value MKT.MTH.INTEREST.RATE.MODEL.INPUT

NAME: C$.MARKET

SUBCLASS.OF: FINANCIAL.MARKETS

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Class for markets in domestic currency. All slots and methods
inherited from financial.markets.

NAME: FOREIGN.MARKETS
SUBCLASS.OF: NIL
INSTANCE.OF: NiL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Foreign market class (subclass of generic markets).

ATTRIBUTE SLOTS:
cf.current.rates.fx
comment List of current exchange rates.
cf.mean.rates.fx
comment List of mean exchange rates over the planning period,
based on the current rate event tree.
cf.rate.changes.fx
comment List of intra-period exchange rate changes over the
planning period.
fx.qtr.sd
comment Standard deviation of quarterly changes in exchange rates.
fx.year.sd
comment standard deviation of yearly changes in exchange rates.
EXTERNAL-USE METHODS:
fx.rate
comment Method to return the current exchange rate for a single
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financial instrument, based on the current rate list
in an instance of this class.
value FGN.MKT.MTH.FX.RATE

INTERNAL-USE METHODS:
fx.rate.model.input
comment Method for form-based input of exchange rate model
parameters.
value FGN.MKT.MTH.FX.RATE.MODEL.INPUT
random.fx.rates
comment Method to generate pseudo-random future exchange rates
over the planning period, for use in a single
simulation pass.
value FGN.MKT.MTH.RANDOM.FX.RATES

NAME: RATE.EVENTS
SUBCLASS.OF: NIL
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Rate events, linked by subclass relations into trees so that rates
specified in an event are inherited unless changed.

ATTRIBUTE SLOTS:
event.branch
comment Indicator that this event is the first in a new scenario. To be
used in world creation and construction of optimization input.
range T or NIL
event.description
comment Description of event’s causes or rationale.
event.period
comment Index number of time period in which event occurs.
Computed from event.year, event.quarter and planning period
specifications as needed.
event.probability
comment Conditional probability of evant, given prior events in a
rate scenario.
event.quarter
comment Quarter in which event occurs.
event.year
comment Year in which event occurs.
rates.canada
comment New interest rates for Canada if this event takes place,
in list of the form ((LT rate) (ST rate))
rates.us
comment New interest and exchange rates for the US if this eveat
occurs, in list of the form ((LT rate) (ST rate) (FX rate))
tree.name
comment Name of the rate event tree containing this event.

EXTERNAL-USE METHODS:
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add
value RATE.EVENTS.MTH.ADD
change
value RATE.EVENTS.MTH.CHANGE
delete
value RATE.EVENTS.MTH.DELETE
set.up.scenarios
comment Method to build mean-rate lists in financial markets at the
start of optimization, simulation or cash flow projection.
value RATE.EVENTS.MTH.SET.UP.SCENARIOS
INTERNAL-USE METHODS:
input
value RATE.EVENTS.MTH.INPUT
market.input
comment Method for form-based input of rates for a single market,
for a single event.
value RATE.EVENTS.MTH.MKT.INPUT
NAME: DEBT.TYPES
SUBCLASS.OF: NIL
INSTANCE.OF: NIL
SUBCLASSES: BOND.TYPES, ST.DEBT.TYPES
INSTANCES: NiL

DESCRIPTION:

Top-level defining class for specifications for debt types from which
an optimal portfolio is selected by the optimization model,

or from which new debts are created from borrowing plans for simulation
and cash flow projection.

ATTRIBUTE SLOTS:

classes
comment Parent classes of the debt type.
market
comment Market in which the debt type is issued.
range Markets defined in the current problem space.
term
comment Term for the debt type.
ip.name
comment Two-character name for this debt type used in the Ip

column name according to the Ip naming convention.

EXTERNAL-USE METHODS:

create.plan
comment Top-level method controlling the creation of a hypothetical borrowing

plan action corresponding to a set of selected debt types.

create.hypothetical.portfolio*

comment

select

comment

based on a list of selected debt types, from which the
optimization model will sefect an optimal portfolio.

Method to select a set of debt types to be considered by the

Top-level method controlling the creation of a hypothetical portfolio
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optimization model, from those defined for the problem space.

INTERNAL-USE METHODS:
create.actions
comment Method to create hypothetical borrowing plan actions
corresponding to a single debt type.
create.debts
comment Method to create hypothetical debt objects for this debt type.
input
comment Method for form-based input through which users define
individual debt types.

NAME: BOND.TYPES
SUBCLASS.OF: DEBT.TYPES
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Defining class for bond types (specialization of debt types). Methods
using the names defined in the parent class will be defined for this class.
ATTRIBUTE SLOTS:
call.wait
comment Waiting period before bond type is callable, if type is
a callable bond.

call.price
comment First call price, if type is a callable bond.
classes
range Any combination of bond classes defined in the main
knowledge base.
sf.wait

comment Waiting period before sinking fund contributions are
required, if bond is a sinking fund bond.
sf.contribution.percent
comment Sinking fund contribution rate, if bond is a
sinking fund bond.

NAME: ST.DEBT.TYPES

SUBCLASS.OF: DEBT.TYPES

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for specifications for short-term debt types
(specialization of debt types). Methods using the names defined
in the parent class will be defined for this class.

ATTRIBUTE SLOTS:
classes

range Short-term debt classes defined in the main knowledge base.
term
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1

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:

INSTANCES:
DESCRIPTION:

BORROWING.ACTIONS

NIL

NIL

BORROW.ACTIONS, OUTSTANDING.ACTIONS,
RETIRE.ACTIONS, SURPLUS.ACTIONS, DELTA.ACTIONS
NIL

Definitional class for objects representing actions in a borrowing plan.

ATTRIBUTE SLOTS:

action.date
comment

action.period
comment

action.quarter
comment

action.source
comment
range

action.year
comment

amount
comment

debt.type
comment

fi.name
comment

issue.date
comment

issue.period
comment

issue.quarter
comment

issue.year
comment

Ip.name
comment

add

Date on which action takes place, in Explorer
universal date format.

Index of time period in which action occurs, based on
a planning pericd specification.

Quarter in which action occurs. Computed from action date,

Source for this action's specification.
LP, USER or PF.SIMULATICN

Year in which the action takes place.
Computed from the action date.

Amount for this action. Will be 1 at start of optimization
and will be modified to equal decision variable values after optimization.

Debt type referred to by this action.
Name of the financial instrument associated with this action.

Date of issue for the financial instrument associated
with this action.

Index number of the time period of issue, computed
with respect to a planning period specification.

Quarter of financial instrument issue.
Computed from issue date.

Year of financial instrument issue.
Computed from issue date.

The name for the Ip decision variable corresponding to this
action, according to the Ip variable naming convention.

EXTERNAL-USE METHODS:
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value UNIT.MTH.ADD
change
value UNIT.MTH.CHANGE
create.debt
comment Method to create or modify the debt object corresponding to
a borrowing plan action.
delete
value UNIT.MTH.DELETE

INTERNAL-USE METHODS:

choose.type

comment Method used during input to select from a

value

input

value

list menu the action type to be created or modified.
BP.MTH.CHOOSE.TYPE

BP.MTH.INPUT

NAME: BORROW.ACTIONS

SUBCLASS.OF: BORROWING.PLANS

INSTANCE.OF: NIL

SUBCLASSES: NiL

INSTANCES: NIL

DESCRIPTION: Definitional class for borrow actions. All slots and methods
inherited from the parent class except for the ‘create.debt’
method, which is defined uniquely for these actions.

NAME: OUTSTANDING.ACTIONS

SUBCLASS.OF: BORROWING.PLANS

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Definitional class for outstanding actions. All slots and methods
inherited from the parent class except for the ‘create.debt’
method, which is defined uniquely for these actions.

NAME: RETIRE.ACTIONS

SUBCLASS.OF: BORROWING.PLANS

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Definitional class for retire actions. All slots and methods inherited

from the parent class except for the ‘create.debt’ method,
which is defined uniquely for these actions.




NAME:

SUBCLASS.OF:
INSTANCE.OF:

SUBCLASSES:
INSTANCES:

DESCRIPTION:
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SURPLUS.ACTIONS
BORROWING.PLANS
NIL

NIL

NIL

Definitional class for surplus actions. All slots and methods inherited
from the parent class except for the ‘create.debt’ method,
which is defined uniquely for these actions.

NAME:

SUBCLASS.OF:
INSTANCE.OF:

SUBCLASSES:
INSTANCES:

DESCRIPTION:

DELTA.ACTIONS
BORROWING.PLANS
NIL

NIL

NIL

Definitional class for delta actions. All slots and methods inherited
from the parent class except for the ‘create.debt’ method,
which is defined uniquely for these actions.

4.1.3 LP Support objects

NAME:

SUBCLASS.OF:
INSTANCE.OF:

LP.STRUCTURE.SPECIFIERS
NIL
NIL

SUBCLASSES: DECISION.VARIABLE.SPECIFIERS,
CONSTRAINT.SPECIFIERS, OBJECTIVE.SPECIFIER

INSTANCES: NIL

DESCRIPTION: Parent class for objects that define the Ip structure. Serves no purpose
except to group objects by function in KEE graphic knowledge
base displays.

NAME: DECISION.VARIABLE.SPECIFIERS

SUBCLASS.OF:
INSTANCE.OF:

SUBCLASSES:

INSTANCES:

DESCRIPTION:

LP.STRUCTURE.SPECIFIERS

NIL

BORROW.DECISION.SPECIFIERS,
OUTSTANDING.DECISION.SPECIFIERS,
RETIRE.DECISION.SPECIFIERS,
DELTA.DECISION.SPECIFIERS,
SURPLUS.DECISION.SPECIFIERS

NIL

Parent class for decision variable specifiers, which build hypothetical
borrowing decisions (actions) corresponding to
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decision variables for optimization models.

ATTRIBUTESLOTS:
decision.type
comment One-character identifier for the decision type, used in the
Ip decision variable name.
decision.period.maximum
comment Upper limit on decision periods used by an instance of this
class to create separate actions.
range (time period T, time period T + 1, minimum of maturity
period and T, minimum of maturity period and
T + 1, issue period only)
decision.period.values
comment Decision period values, given an issue period value,
for actions created by an instance of this class.
range ISSUE.PERIOD, NEXT.PERIOD, FUTURE.PERIODS,
description.format
comment Format string for the action description.
issue.period.source.slot
comment Source slot in the debt object for the issue period value for
an action created by an instance of this class.

NIL indicates that the issue period is not used, as for delta decisions.

range ISSUE.PERIOD, ALL.PERIODS, NIL
name.format
comment Format string for decision variable name according to
the LP naming convention.
object.classes
comment Classes of object associated with actions created by
an instance of this class.
range LONG.TERM.DEBTS, SHORT.TERM.DEBTS, NIL
EXTERNAL-USE METHODS:
create.plan*
comment Method controlling the creation of all action objects for
all decision.variable.specifiers.

INTERNAL-USE METHODS:
create.actions*

comment Method to create all actions for an instance of this class.
create.action®

comment Method to create one action for an instance of this class.

NAME: BORROW.DECISION.SPECIFIERS

SUBCLASS.OF: DECISION.VARIABLE.SPECIFIERS

INSTANCE.OF: NIL

SUBCLASSES: BORROW.LT.DECISION.SPECIFIERS,
BORROW.ST.DECISION.SPECIFIERS

INSTANCES: NIL

DESCRIPTION: Parent class for decision variable specifiers for borrow decisions.

ATTRIBUTE SLOTS:
decision.type
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value B
decision.period.maximum

value (time period T)
description.format

value (‘Borrow’ + decision.amount + ‘of' +

debt.type + 'in period’ + decision.period.)

name.format

value (‘B' + 2-digit debt.type + 2-digit decision.period)

NAME: BORROW.LT.DECISION.SPECIFIERS
SUBCLASS.OF: BORROW.DECISIO!.SPECIFIERS
INSTANCE.OF: NilL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for decision variable specifiers for long-term
borrowing decisions.

ATTRIBUTE SLOTS:
decision.period.values
value ISSUE.PERIOD
issue.period.source.slot
value {SSUE.PERIOD
object.classes
value LONG.TERM.DEBTS

NAME: BORROW.ST.DECISION.SPECIFIERS
SUBCLASS.OF: BORROW.DECISION.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for decision variable specifiers for short-term
borrowing decisions.

ATTRIBUTE SLOTS:
decision.period.values
value ISSUE.PERIOD
issue.period.source
value ALL.PERIODS
object.classes
value SHORT.TERM.DEBTS

NAME: OUTSTANDING.DECISION.SPECIFIERS

SUBCLASS.OF: DECISION.VARIABLE.SPECIFIERS

INSTANCE.OF: NIL

SUBCLASSES: OS.LT.DECISION.SPECIFIERS,
0S5.ST.DECISION.SPECIFIERS

INSTANCES: NIL



DESCRIPTION: Parent class for decision variable specifiers for decisions to hold
outstanding debt,

ATTRIBUTE SLOTS:
decision.type
value o
decision.period.maximum
value (minimum of maturity period and time period T+1)
description.format
value ('Hold’ + decision.amount + ‘of’ - debt.type
+ ‘issued in period’ + issue period ‘at the
beginning of period' + decision.period.)
name.format

value (‘0" + 2-digit debt.type + 2-digit
issue.period + 2-digit decision.period)
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NAME: OS.LT.DECISION.SPECIFIERS
SUBCLASS.OF: OUTSTANDING.DECISION.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for decision variable specifiers for decisions to
hold long-term debt.

ATTRIBUTE SLOTS:
decision.period.values
value FUTURE.PERIODS
issue.period.source.slot
value ISSUE.PERIOD
object.classes
value LONG.TERM.DEBTS

NAME: 0S.ST.DECISION.SPECIFIERS
SUBCLASS.OF: OUTSTANDING.DECISION.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for decision variable specifiers for decisions to
hold short-term debt.

ATTRIBUTESLOTS:
decision.period.values
value NEXT.PERIOD
issue.period.source
value ALL_.PERIODS
object.classes
value SHORT.TERM.DEBTS




NAME: RETIRE.DECISION.SPECIFIERS

SUBCLASS.OF: DECISION.VARIABLE.SPECIFIERS

INSTANCE.OF: NIL

SUBCLASSES: RETIRE.LT.DECISION.SPECIFIERS,
RETIRE.ST.DECISION.SPECIFIERS

INSTANCES: NiL

DESCRIPTION: Parent class for decision variable specifiers for decisions to

retire debt.
ATTRIBUTE SLOTS:

decision.type

value R
decision.period.maximum

value (minimum of maturity period and time period T + 1)
description.format

value (‘Retire’ + decision.amount + ‘of’ +

debt.type + ‘issued in period’ + issue period
+ ‘in period’ + decision.period. )
name.format
value (‘'R" + 2-digit debt.type -+ 2.digit issue.period +
2-digit decision.period)
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NAME: RETIRE.LT.DECISION.SPECIFIERS
SUBCLASS.OF: RETIRE.DECISION.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Defining class for decision variable specifiers for decisions
to retire long-term debt.
ATTRIBUTE SLOTS:
decision.period.values
value FUTURE.PERIODS
issue.period.source.slot
value ISSUE.PERIOD
object.classes
value LONG.TERM.DEBTS

NAME: RETIRE.ST.DECISION.SPECIFIERS
SUBCLASS.OF: RETIRE.DECISION.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NiL

DESCRIPTION: Defining class for decision variable specifiers for decisions
to hold short-term debt.

ATTRIBUTE SLOTS:
decision.period.values
value NEXT.PERIOD
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issue.period.source

value ALL.PERIODS
object.classes

value SHORT.TERM.DEBTS

NAME: DELTA.DECISION.SPECIFIERS
SUBCLASS.OF: DECISION.VARIABLE.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Parent class for decision variable specifiers for delta decisions
handling integer values for minimum issue size constraints.

ATTRIBUTE SLOTS:

decision.type

value D
decision.period.maximum

value (time period T+1)
description.format

value (*Delta decision of' + decision.amount + 'in period’

+ decision.period)

decision.period.values

value ALL.PERIODS
issue,period.source.slot

value NIL
name.format
value (‘D' + 2-digit debt.type + 2-digit decision.periad)
object.classes
value NIL
NAME: SURPLUS.DECISION.SPECIFIERS

SUBCLASS.OF: DECISION.VARIABLE.SPECIFIERS
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Parent class for decision variable specifiers for decisions to hold
a cash surplus balance.

ATTRIBUTE SLOTS:
decision.lype
value S
decision.period.maximum
value (time period T+1)
decision.period.vclues
value ALL.PERIODS
description.format
value (‘Hold a cash surplus of " + decision.amount +
‘of' ‘in period’ + decision.period.)
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issue.period.source.slot

value NIL
name.format

value ('S' 4 2-digit decision.period)
object.classes

value NIL

NAME: CONSTRAINT.SPECIFIERS

SUBCLASS.OF: LP.STRUCTURE.SPECIFIERS

INSTANCE.OF: NIL

SUBCLASSES: CASH.REQUIREMENTS.CONSTRAINT.SPECIFIERS,
INVENTORY.CONSTRAINT.SPECIFIERSA,
INVENTORY.CONSTRAINT.SPECIFIERS.B,
MAX.DEBT.SVC.CONSTRAINT.SPECIFIERS,
MAX.ISSUE.SIZE.CONSTRAINT.SPECIFIERS,
MIN.ISSUE.SIZE.CONSTRAINT.SPECIFIERS,
MATURITY.SMOOTHING.CONSTRAINT.SPECIFIERS,
NONNEGATIVITY.CONSTRAINT.SPECIFIERS,
BOUND.CONSTRAINT.SPECIFIERS,
RANGE.CONSTRAINT.SPECIFIERS

INSTANCES: NIL

DESCRIPTION: Parent class for objects specifying the structure of individual
Ip constraints for use in building 1p input files.
ATTRIBUTE SLOTS:
constraint.type
comment 2 character mnemonic constraint identifier, used to construct
constraint name according to |p naming convention.
translation.format
comment Format string for text translation of meaning
of constraints specified by an instance of this class.
decision.period.range
comment Range of decision periods over which constraints
of this type are defined.
range (1 through T, 2 through T' + 1. ISSUE.PERIOD+1)
issue.period.range
comment Range of issue periods over which constraints
of this type are defined.
range (O through T' — 2, 0 through T ~ 1)
sum.over.debt.types?
comment Indicator as to whether or not constraints
specified by an instance of this class sum over k (debt type)
subscripts. If NIL, a separate constraint is created for each debt type.
range T, NIL
sum.over.issue.periods?
comment Indicator as to whether or not constraints specified by
an instance of this class sum over s (issue period) subscripts.
If NIL, a separate constraint is created for each issue period
value, (If both sum indicators are NIL, a separate constraint
is created for each combination of the two.)



271

range T, NIL
borrow.decisions
comment Indicator as to whether or not borrow decisions are used
in constraints specified by an instance of this class.
range T, NIL
outstanding.decisions
comment Indicator as to whether or not outstanding decisions are used
in constraints specified by an instance of this class.
range T, NIL
retire.decisions
comment Indicator as to whether or not retire decisions are used
in constraints specified by an instance of this class.
range T, NIL
delta.decisions
comment Indicator as to whether or not delta decisions are used
in constraints specified by an instance of this class.
range T, NIL
surplus.decisions
comment Indicator as to whether or not surplus decisions are used
in constraints specified by an instance of this class.
range T, NiL

Each of the four slots immediately above has the following facets, which give decision and
coefficient details for a type of decision variable in constraints specified by an instance of this
class:

decision.period
comment The ¢ subscript for these decision variables in these
constraints. Multiple values indicate that these
decision variables are used more than once.
range t,t—-1,t4+1
coeff.source.objects
comment Object class in which the cosfficient is found for these
decision variables in these constraints. Will have
multiple values, in order corresponding to that
of the values in the decision period range facet,
if the decision variables are used more than once.
coeff.source.slots
comment Slots in which the coefficients are found for these
decision variables in these constraints. If more than
one slot, values are totalled to give the coefficients.
coeff.source.index
comment Specification for the time period index within cash flow
lists for the coefficients for these decision variables in
these constraints. NIL if the value is not taken from a list.
range CURRENT, PREVIOUS, NEXT
coeff.value
comment Value of the coefficients for these decision variables in
these constraints, if known rather than specified
within an object in the knowledge base.
coeff.sign
comment Sign for the coefficients of these decision variables
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in these constraints.
range +, —
equation.type
comment Type of equation for these constraints.
range E éindicating equal), L (indicating less than or equal),
G (indicating greater than or equal), NV (indicating nonnegativity).
rhs.source.object.class
comment Object class in which the right-hand side value is found
for these constraints.
rhs.source.slot
comment Slot in which the right-hand side value is
found for these constraints.
rhs.source.index
comment Specification for the time period index for the right-hand
side value for these constraints. NIL is the value
is not taken from a list.
rhs.value
comment Value of the constraint right-hand side if known rather
than specified within an object in the knowledge base.
constraint.names
comment List of the names of constraints of this type for the
current problem.

EXTERNAL-USE METHODS:
create.constraint.name.lists*
comment Method to control creation of lists of constraint names for the
current problem and to store the names in the constraint
specifier instances in the current problem space, and in the
borrowing action object corresponding to the decision variable used
in each type of constraint.
create,rows
comment Method to build input rows for this type of constraint.
Called by input file builder methods.
sort.constraint.names.list
comment Method to sort constraint name lists into the order required
for optimization model input.

INTERNAL-USE METHODS:

do.constraint.names
comment Method to create and store constraint names in a list
in this unit.

do.constraint.variables
comment Method to create and store constraint names in decision
variable (borrowing action) lists for use by input file builders.

NAME: CASH.REQUIREMENTS.CONSTRAINT.SPECIFIERS
SUBCLASS.OF: CONSTRAINT.SPECIFIERS

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Parent class for objects specifying the structure of cash
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requirements constraints.

ATTRIBUTE SLOTS:

constraint.type

value CR
translation.format

value (‘CR’ + 2-digit decision.period)
decision.period.range

value (1 through T')
issue.period.range

value (0 through T' — 1)
sum.over.debt.types?

value T
sum.over.issue.periods?

value T
borrow.decisions

value T
decision.period

value ¢
coeff.source.objects

value CF.TABLES FOR DEBTS
coeff.source.slots
value CF.PRINCIPAL.BORROWED, CF.ISSUE.COSTS

coeff.source.index

value CURRENT
coeff.sign

value +
outstanding.decisions

value T
decision.period

value 4

coeff.source.objects

value CF.TABLES FOR DEBTS
coeff.source.slots

value CF.INTEREST.PAID, SF.CONTRIBUTIONS
coeff.source.index

value CURRENT

coeff.sign
value -+
retire.decisions
value T
decision.period
value i

coeff.source.objects
value CF.TABLES FOR DEBTS
coeff.source.slots
value CF.RETIREMENT.COSTS, SF.WITHDRAWALS
coeff.source.index
value CURRENT
coeff.sign
value +
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delta.decisions

value NIL
surplus.decisions

value T
decision.period

value t,t+1
coeff.source.objects

value
coeff.source.slots

value (CF.INV.BALANCE, CF.EARNINGS.RECEIVED),

CF.INV.BALANCE

coeff.source.index

value CURRENT, NEXT
coeff.sign

value -
equation.type

value
rhs.source.object

value PF.TABLE
rhs.source.slot

value CF.CASH.NEEDS
rhs.source.index

value CURRENT
rhs.value

value NIL

NAME: INVENTORY.CONSTRAINT.SPECIFIERSA
SUBCLASS.OF: CONSTRAINT.SPECIFIERS
INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Parent class for objects specifying the structure of inventory constraints

for the period immediately after the issue period for a debt type.

ATTRIBUTE SLOTS:

constraint.type

value v
translation.format

value (‘IV' + 2-digit debt.type + 2-digit

issue.period -+ 2-digit decision.period)

decision.period.range

value (ISSUE.PERIOD+1)
issue.period.range

value (1 through T)
sum.over.debt.types?

value NIL
sum.over.issue.periods?

value NIL
borrow.decisions

value T
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decision.period

value t—-1
coeff.source.objects

value NIL
coeff.source.slots

value NIL
coeff.source.index

value NIL
coeff.sign

value NIL
coeff.value

value -1
outstanding.decisions

value T
decision.period

value t
coeff.source.objects

value NIL
coeff.source.slots

value NIL
coeff.source.index

value NIL
coeff.sign

value NIL
coeff.value

value +1
retire.decisions

value NIL
delta.decisions

value NIL
surplus.decisions

value NIL
equation.type

value E
rhs.value

value 0

Note: Other constraints are specified in a similar manner.

NAME: INPUT.FILE.BUILDERS

SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: CORE.FILE.BUILDER, TIME.FILE.BUILDER,
STOCH.FILE.BUILDER

DESCRIPTION: Objects containing specifications and methods for building
standard optimization input files.

ATTRIBUTE SLOTS:
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comment List specifying the order of contents in the input file

built by this object.

card.image.format
comment Format string for ths FORTRAN card image format used

for standard input lines.

EXTERNAL-USE METHODS:

build.file*

comment Method to build file based on contents list.

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

CORE.FILE.BUILDERS

NiL

NIL

NIL

CORE.FILE.BUILDER, TIME.FILE.BUILDER,
STOCH.FILE.BUILDER

Objects containing specifications and methods for building
CORE file optimization input.

ATTRIBUTE SLOTS:

contents

value

('NAME' 'ROWS’' ROWS ‘COLUMNS' COLUMNS ‘RHS’
‘BOUNDS' BOUNDS 'RANGES' RANGES ‘ENDATA’)

Note: Other input file builders are defined in a similar manner.

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

OUTPUT.TRANSLATOR
NIL
NIL
NIL
NIL

Object containing methods for translating optimization model
output into knowledge base objects and slot values.

EXTERNAL-USE METHODS:
translate.output®

comment Top-level methods controlling the sequence of output

translation operations.

INTERNAL-USE METHODS:
record.decisions
comment Method to store decision variable values in borrowing plan

action objects and to delete unused actions and debt objects.

record.EVPl.data
comment Method to store data on the expected value of perfect

information in rate event objects, for later use in
EVPl-based model modification. (Needed for branching
scenario analysis rather than for the current system prototype.)



271

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

ATTRIBUTES:

COMMUNICATIONS.MANAGER
NIL
NIL
NIL
NIL

Object containing methods for sending optimization input,
requesting solution and receiving optimization output via DECNet.

input.files.path.names
output.files.path.names

solver.login
solver.start.

command

EXTERNAL-USE METHODS:

run.solver

comment Top-level control method for solver operation.
INTERNAL-USE METHODS:

invomslip

comment Method to contact the sclver machine,

checkmslip

transmit input files and run the solver in background.

comment Method to check until the solver job is complete

and copy its output to the Explorer host.

4.2 System support subsystem

4.2.1 User interface objects

NAME: .O.UNITS

SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Definition for class of objects to handle menu and main window
(MIDAS user interface screen) displays. One member is
instantiated in each problem space.

ATTRIBUTE SLOTS:

bp.menu

comment Slot containing menu listing types of borrowing actions.

Used in borrowing plan modification.

display.menu
comment Slot containing menu listing display options following cash

flow simulation or projection. Menu is accessed by a
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middle mouse click on the main window icon.
list.menu
comment Slot holding a menu (which changes depending on current
activity) listing members of a specified object class. Used
by ‘change’ and ‘delete’ methods in knowledge base objects.
midas.main.menu
comment Slot holding the main command menu for the system,
The menu is accessed by a left mouse click on the main
window icon.

EXTERNAL-USE METHODS:
choose.from.list
comment Method to generate a list of object names and return
a user selection.
value .LO.UNIT.MTH.CHOOSE.FROM.LIST
set.current.problem.space
comment Method to set up a knowledge base for the current
problem space if it does not already exist.
value .LO.UNIT.MTH.SET.CURRENT .PROBLEM.SPACE
shutdown
comment Method to delete KEEPictures and the 1.O.unit instance in the
current problem space prior to saving the problem space or
main knowledge base. Done to reduce storage requirements
and ensure a clean system startup without rebooting
the Explorer.
value LO.UNIT.MTH.SHUTDOWN
startup
comment Method to create all windows, menus and the main window
icor, set related global variables main a problem space
prior to system use.

value 1.O.UNIT.MTH.STARTUP

INTERNAL-USE METHODS:
delete.pictures
comment Method to delete all KEEPictures. Used by the shutdown
method.
value I.O.UNIT.MTH.DELETE.PICTURES
msg.window
comment Method to expose a window and send a message for which
a reply is not expected.
value 1.O.UNIT.MTH.MSG.WINDOW
print.slot.value
comment Utility method to print a specified slot value on request
from the main menu.

value .LO.UNIT.MTH.PRINT.SLOT.VALUE
prompt.window
comment Method to expose a window, send a user prompt and return
the reply.

value .O.UNIT.MTH.PROMPT.WINDOW
shrink.viewports
comment Utility method to shrink the main window to a bar, enabling
a return to the development system without a
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full-scale shutdown and restart.
value LO.UNIT.MTH.SHRINK.VIEWPORTS

Note: Specifications for bitmaps, the icon, windows. menus and miscelleanous display
functions are found in the files MIDASPT.LISP and UI-METHODS.LISP
on microfiche,

4.2.2 Qutput managers

NAME: CF.TABLES
SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: FI.TABLES, PF.TABLES
INSTANCES: NIL

DESCRIPTION: Generic class defining tables of cash flow lists, along with general
methods and facet parameters to do standard computations.

ATTRIBUTE SLOTS:

Cash flow detail slots, containing lists of cash filow detail amounts by time period:
cf.interest.paid
cf.issue.costs
cf.principal.borrowed
cf.principal.invested
cf.principal.retired
cf.principal.withdrawn
cf.retirement.costs
sf.contributions
sf.earnings
sf.withdrawals

Memo siots, containing lists of non-cash flow items by time period:

cf.interest.earned
cf.earnings.accrued
cf.earnings.rate
cf.fx.rate
cf.interest.accrued
cf.interest.rate
cf.inv.balance
cf.net.principal.outstanding
cf.principal.outstanding
cf.remaining.term
cf.status

sf.balance
sf.earnings.accrued
sf.earnings.rate
sf.status
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Cash flow and memo slot facets, attached to each such slot and used by
table methods:

active
comment Indicator as to whether the slot is used for cash flows
by the source object.
initial.element
comment Symbol to be used to initialize the slot’s list at the start
of optimization, simulation or cash flow projection.
Value depends on the type of data in the list.

range 0, 0.0 or NIL
title

comment Line item title string for use in displays of the slot's contents.
Total slots, containing lists of total amounts by time period:

cf.total.cash.flows
cf.total.earnings
cf.total.operating.cash.flows
sf.total.cash.flows
sf.total.earnings

Total slot facets, attached to each total slot and used bv table methods:

active
comment Indicator as to whether the slot is used for cash flows
by the source object.
initial.element
comment Symbol to be used to initialize the slot's list at the start of
optimization, simulation or cash flow projection. Value
depends on the type of data in the list.
range 0, 0.0 or NIL
sum.of
comment List of names of slots to be totalled by time period
to give the value of this slot.
title
comment Line item title string for use in displays of the slot’s
contents.

Net slots, containing lists of net amounts by time period:

cf.net.cash.flows
cf.net.operating.cash.flows

Net slot facets, attached to each net slot and used by table methods:

active
comment Indicator as to whether the slot is used for cash flows
by the source object.
initial.element
comment Symbol to be used to initialize the slot’s list at the
start of optimization, simulation or cash flow projection.
Value depends on the type of data in the list.
range 0, 0.0 or NIL
net.of
comment Names of the slots for which the difference by time



281

period gives the value of this slot.
title
comment Line item title string for use in displays of the slot's
contents.

NPV slots, containing the discounted value of lists elsewhere in the table:

npv.total.cash.flows
NPV slot facets:
active
comment Indicator as to whether the slot is used for cash flows
by the source object.
base.slot
comment Name of the siot to be discounted to give this slot's value.
initial.element
comment Symbol to be used to initialize the slot at the start
of optimization, simulation or cash flow projection.
value 0.0
title
comment Line item title string for use in displays of the slot’s contents.

IRR slots, containing the internal rate of return (if defined) for lists elsewhere
in the table:
irr.total.cash.flows
IRR slot facets:
active
comment Indicator as to whether the slot is used for cash flows
by the source object.
base.slot
comment Name of the slot to be used to compute this slot's value.
initial.element
comment Symbol to be used to initialize the slot at the start
of optimization, simulation or cash flow projection.
value 0.0
title
comment Line item title string for use in displays of the slot's contents.

Simulation result slots, containing lists of results from multiple simulation passes:

sim.end.value
sim.irr.total.cash.flows
sim.npv.total.cash.flows

Simulation result slot facets, attached to each such slot and containing the results
of the statistical analysis of the slot's values:

base.slot
comment Name of the slot to be used to compute this slot’s value.
high
comment Maximum element in the list of results.
low
comment Minimum element in the list of results.
mean
comment Mean result value.
quartile.1
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comment First-quartile value in the list of results.

quartile.2

comment Second-quartile value in the list of results.
quartile.3

comment Third-quartile value in the list of results,
std.dev

comment Standard deviation of the results.
title

comment Line item title string for use in displays of the slot's contents.

Display slots, filled in and used by display methods, containing formatted titles
and data for table displays of data in the table:

cf.display.data
cf.display.titles
earnings.display.data
earnings.display.titles
ocf.display.data
ocf.display.titles
sf.cf.display.data
sf.cf.display.titles
sf.earnings.display.data
sf.earnings.display.titles

Slot name lists, containing lists of slot names for use by table methods:

cf.slots

fx.slots
irr.slots
net.slots
npv.siots
sim.result.slots
total.slots

Source slots, documenting the source of data in the table:

source.class
source.name

EXTERNAL-USE METHODS:
analyze.sim.results
comment Method to do statistical analysis and fill in
facet values for simulation result slots.

value CF.TABLES.MTH.ANALYZE.SIM.RESULTS
initialize

comment Method to initialize slots in a table prior

to cash flow calculations.

value CT.TABLES.MTH.INITIALIZE
initialize.sim.results

comment Method to initalize simulation result slots.

value CF.TABLES.MTH.INITIALIZE.SIM.RESULTS
nets

comment Method to compute net lists for specified slots.
value CF.TABLES.MTH.NETS
npvs
comment Method to compute net present values for specified slots.
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value CF.TABLES.MTH.NPVS
setup.cf.table
comment Method to create a new table for a model object and store
the required cross-reference pointers between the table
and the source object.
value CF.TABLES.MTH.SETUP.CF.TABLE
store.sim.results
comment Method to store simulation results in lists.
value CF.TABLES.MTH.STORE.SIM.RESULTS
totals
comment [Method to compute total values for specified lists.
value CF.TABLES.MTH.TOTALS
translate.fx
comment Method to translate specified slots to their
Canadian dollar equivalents.
value CF.TABLES.MTH.TRANSLATE.FX
NAME: FIL.TABLES
SUBCLASS.OF: CF.TABLES
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION:

Class for cf.tables for individual financial instruments.
All slots and methods inherited from parent class.

NAME: PF.TABLES

SUBCLASS.OF: CF.TABLES

INSTANCE.OF: NIL

SUBCLASSES: NIL

INSTANCES: NIL

DESCRIPTION: Extension of cf.tables for portfolios; contain performance indicators,

constraint comparisons and cash surplus/deficit data.

ATTRIBUTE SLOTS:

Slots used for processing cash requirements and the cash deficit or surplus:

cf.cash.deficit
cf.cash.needs

Each of these slots has active, initial.element and title facets as described in
CF.TABLES, above.

Performance indicator slots:

cf.average.cost
cf.average.term
cf.percent.foreign
cf.percent.lt
cf.percent.mt
cf.percent.st
cf.percent.variable
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Performance indicator slot facets;

condition
comment Condition to be satisfied if a portfolio member is to be

included in this indicator.
denominator.slot

comment Slot in portfolio member where a value is found that

should be added to the indicator's denominator.
multiplier.slot

comment Slot in portfolio member where a value is found with
which to multiply the numerator value.
numerator.siot
comment Slot in portfolio member where a value is found to be
added to the indicator's numerator,
percent
comment Indicator as to whether or not this indicator is a
percentage and should be multplied by 100.

Each of these slots also has active, initial.element and title facets as described in
CF.TABLES, above.

Constraint comparison slots:

cf.max.debt.sve
cf.max.debt.retirement
cf.min.debt.retirement

Constraint comparison slots facets:

base.slot

comment Slot in table containing list to be compared against constraint.
source

comment Name of object containing constraint value.
source,slot

comment Name of slot in source object containing constraint value.

Each of these slots also has active, initial.element and title facets as described in
CF.TABLES, above.

Slot name lists:

cf.slots
line.item.slots
constraint.slots
pi.slots

Each of these slots has active, initial.element and title facets as described in
CF.TABLES, above.

Display slots:
pi.display.data
pi.display.titles
EXTERNAL-USE METHODS:
check.constraints
comment Method to compare constraints against result lists.
line.totals
comment Method to compute line-by-line totals of member results

to give portfolio results.
value PF.TABLES.MTH.LINE.TOTALS
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perf.indicators
comment Method to calculate performance indicators for pi.siots.
value PF.TABLES.MTH.PERF.INDICATORS

NAME: PRESENTATION.MANAGERS

SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: UNIT.DISPLAY.MANAGERS, TEXT.DISPLAY.MANAGERS,
SLOT.DISPLAY.MANAGERS, GRAPH.DISPLAY.MANAGERS,
HEADING.DISPLAY.MANAGERS, TABLE.DISPLAY.MANAGERS

INSTANCES: NIL

DESCRIPTION: Generic class for objects to produce output displays and graphs.

ATTRIBUTE SLOTS:
contents
comment List specifying display contents.
data.repaint.function
comment Name of function to display contents of data (scrolling)
window for this display.
data.slot
comment Name of slot in the table to be displayed in which
data contents will be stored after formatting.
data.window
comment Name of data window to be used by this display.
output.type
comment Name of display, to be used in formatting title.
title.repaint.function
comment Name of function to display contents of title (nonscroliing)
window for this display.
title.slot
comment Name of slot in the table to be displayed in which
title contents will be stored after formatting.
title.string
comment Format string for display title,
title.window
comment Name of title window to be used for this display.

EXTERNAL-USE METHODS:
display
comment Control method to format and display this output.
INTERNAL-USE METHODS:
format.title
comment Method to format the display title.
setup
comment Method to initialize window streams and function names
prior to the actual display.

Note: Specifications for output manager subclasses, instances and methods are found
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in the files MIDASPT.U and UI-METHODS.LISP on microfiche.

NAME: LP.HISTORY.OBJECTS
SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBLCLASSES: NIL

INSTANCES: NiL

DESCRIPTION: Definitional class for objects holding the history of Ip model runs
and modifications. A LP history object is instantiated for each run
of the Ip in a problem space.

ATTRIBUTE SLOTS:
run.id
comment Identifier for Ip run.
default INITIAL
run.date.and.time
comment Date and time of this run, in Explorer universal date format.
slot.changes
comment List of slot changes prior to this run, in list of form
((object.name slot.name old.value new.value changed.by)...)
object.changes
comment List of object changes prior to this run, in list of form
((object.name change.type changed.by)...)
rate.event.tree.changes
comment List of rate event tree changes prior to this run,
in list of form ((node.name change.type changed.by)...)

Methods for this class will be defined as system development progresses.

4.2.3 Task managers

NAME: TASKS

SUBCLASS.OF: NiIL

INSTANCE.OF: NIL

SUBCLASSES: SUBCLASSES DEFINING SPECIFIC TASKS.
INSTANCES:

DESCRIPTION: Defining class for tasks for use in system control.
Specific task objects are instantiated in the problem space.

ATTRIBUTE SLOTS:
conditions
comment Names of condition objects representing conditions
to be satisfied before this tasks can be executed.
subtasks
comment Names of subtasks of this task.
next.task



comment

alternate.tasks
comment

long.nrompt
comment

short.prompt
comment

why.perform?
comment

confirm?
comment

range
required?
comment

range
schedule,status
comment

range
condition.status
comment

range
confirmed.status
comment

range

performed.status
comment
range

subtask.status
comment

range

perform
comment

confirm
comment

check.conditions
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Name of task which is normally performed following
this task.

Names of tasks which may be performed if the user decides
not to perform this task.

Prompt which explains this task and asks for
user confirmation.

Prompt which briefly asks for confirmation of this task,
used as an alternative to the long.prompt based on
a flag set by the user,

String describing the task, for use in task explanations.

Indicator as to whether or not this task requires
user confirmation before execution.
T, NIL

Indicator as to whether or not this task must be
performed for a given analysis type.
T, analysis type names

Indicator as to whether or not this task has been placed

on the system agenda.
T, NIL

Indicator as to whether or not all conditions for this task
are satisfied.
T, NIL

Indicator as to whether or not this task has been confirmed
by the user,
T, NIL

Indicator as to whether or not this task has been performed.
T,NIL

Indicator as to whether or not all subtasks
of this task have been performed.
T, NiL

EXTERNAL-USE METHODS:

Method to start execution of this task, by either starting
rule-based reasoning or sending a message.

INTERNAL-USE METHODS:

Method to request and process user confirmation or
rejection of this task.
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Method controlling condition checks for this task.

NAME: TASK.CONTROLLERS

SUBCLASS.OF: NIL
INSTANCE.OF: NIL
SUBCLASSES: NIL
INSTANCES: NIL

DESCRIPTION: Defining class for task control cbject, which maintains agenda
and starts task control reasoning.

ATTRIBUTE SLOTS:
task.agenda
comment

current.task
comment

analysis.type
comment
range

completed.tasks
comment

range

List of tasks scheduled for consideration, in order of planned
performance. The current task is the first element in the list.

Task currently under consideration for performance.

Narme of analysis being performed.

OPTIMIZE.PLAN, REFINE.PLAN,

SIMULATE.PLAN, SIMULATE.PF, SIMULATE.DEBT,
PROJECT.PLAN, PROJECT.PF, PROJECT.DEBT.

List of names of completed task for this analysis
session. Used to store session status in problem
space file.

Task names

conditions.ok.tasks

comment

List of names of tasks for which conditions are
satisfied for this analysis session. Used to store
session status in problem space file.

range Task names
confirmed.tasks
comment List of names of tasks which have been confirmed
by the user during this analysis session. Used to
store session status in problem space file.
range Task names
end.status
comment Indicator as to whether session is to end before
a new task is started. Set by task control rules
at end of analysis step.
range T, NIL
prompt.type
comment Type of prompt to be shown to user.
range LONG, SHORT
EXTERNAL-USE METHODS:

begin.assisted.analysis

comment

Method initiating rule-based reasoning for system control.
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NAME: TASK.CONDITIONS

SUBCLASS.OF: NIL

INSTANCE.OF: NiIL

SUBCLASSES: SPECIFIC TASK CONDITION CLASSES.

INSTANCES: NIL

DESCRIPTION: Defining class for task conditions, used by tasks in task control.
ATTRIBUTE SLOTS:

condition.status
comment Indicator as to whether or not this condition is currently

satisfied in the knowledge base.

condition.description
comment Description of this condition, for use in long.prompt

and in explanations.

long.prompt
comment Explanatory prompt for use when the user must confirm

that a condition is satisfied.

short.prompt
comment Short prompt for use when the user must confirm that a

condition is satisfied. Used rather than the long.prompt if
a user flag is set.

EXTERNAL-USE METHODS:

check.condition
comment Method to check whether this condition is satisfied,

either by initiating rule-based reasoning or sending a message.

confirm.condition
comment Method to confirm with the user than this condition is satisfied.

4.3 User support subsystem

NAME:
SUBCLASS.OF:
INSTANCE.OF:
SUBCLASSES:
INSTANCES:

DESCRIPTION:

RESULT.ANALYZERS

NIL

NIL

LP.ANALYZERS, SENSITIVITY.ANALYZERS
NIiL

Defining class for objects guiding analysis of model results.
Subclasses are defined in a hierarchy, ending in a
specific analyzer for each type of result to be analyzed.

ATTRIBUTE SLOTS:

result.type

comment |dentifier for the type of result analyzed by

an instance of this class.

result.source

comment Name of object containing resuits to be analyzed.
result.description

comment Description of the result type, for use in explanations.
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possible.key.factors
comment List of key factors to be considered as possible causes or
contributing factors for the results being analyzed.
actual.key.factors
comment List of key factors identified as actual causes or
contributing factors for the results being analyzed.
analysis.tasks
comment List of tasks to be carried out for this type of analysis
once key factors are identified.
EXTERNAL-USE METHODS:
check.key.factors
comment Method controlling key factor checking for a set of
results by an instance of this class.
schedule.analysis.tasks
comment Method to schedule the analysis tasks for this analysis
once key factors are identified.

Note: The subclasses of RESULT.ANALYZERS are identified in Figure 8.2. They will
be further defined as result analysis requirements become clear during further work.

NAME: KEY.RESULT.FACTORS

SUBCLASS.OF: NIL

INSTANCE.OF: NIL

SUBCLASSES: SUBCLASSES FOR SPECIFIC KEY FACTORS, SUCH AS
LARGEST.DEBT, HIGHEST.END.VALUE.DEBT, ETC.

INSTANCES: NiL

DESCRIPTION: Defining class for objects representing possible key factors
to be investigated during result analysis.
ATTRIBUTE SLOTS:
result.types
comment Types of results for which an instance of this class
is a possible key factor.
result.source
comment Object containing the results being analyzed.
key.factor.status
comment Indicator as to whether or not this factor is a cause
or contributing factor in the results being analyzed.
EXTERNAL-USE METHODS:
check.factor
comment Method to check for this factor in a set of results.

5. Method structure charts

Structure charts are used to document the control structures of significant high-level
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methods within MIDAS. These charts use the following symbols and conventions,

which are simplifications of the standard notation documented in Whitten et al.

(1989):
1.

A rectangle represents a program (method) module,
which may be either a separate method or a subsection
of a method. Each module carries out a single well-
defined procedure. The object in which the module is

located within the system is used as the first part of
the module label.

AN

A solid line represents a module rela-
tionship in which the upper module calls
and passes parameters to the lower mod-
ule. Control and data parameters are
not shown on these charts but can be
seen in the code listings on microfiche.

A diamond indicates the conditional
execution of one or more submodules
based on conditions noted in the chart.

An arc-shaped arrow is a ‘loop’ sym-
bol, indicating repetition of one or more
modules based on conditions noted in
the chart.
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Method structure charts in this documentation are the following:
1. Portfolios: Optimize: Figure 6.20.
2. Portfolios: Configure.optimization.model: Figure 6.21.
3. Portfolios: Simulate: Figure 6.22.
4. Financial.instruments: Do.cash.flows: Figure 6.23.
5. Table.display.managers: Display: Figure 7.10.

6. Parametric analysis: Figure 8.5.

6. Detailed method specifications

Detailed method specifications are given in Structured English with the follow-
ing conventions: (a) submodules, which may be either separate methods or parts
of the method being specified, are indented; (b) Slot values are shown in the
form OBJECT: SLOT.NAME; (c) method calls are shown in the form OBJECT:
METHOD.NAME; and (d) THISUNIT refers to the object in which the method is
called.

Methods which are working in the system prototype have been documented
through comments in the function files on microfiche. Specifications for significant
methods which are not yet implemented are given here by subsystem and object
class, in the order of the object definitions given earlier, for single-scenario models.
Extension to branching scenarios and worlds would require loops for each world,
world specification for slot value changes, additional summary objects and methods

and the use of the TIME and STOCH files for LP input.

6.1 Modelling subsystem methods
6.1.1 Model object methods

Portfolios: Optimize
Initialize.optimization
Confirm problem description with user



For each market:
Market: Generate.mean.rates

Debt types: Create.hypothetical.portfolio
Hypothetical.portfolio: Configure.optimization.model
Communications.manager: Run, solver
Terminate optimization

Output.translator: Translate.output

Main.heading.display.managers: Display

LP.results.display.manager: Display
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Portfolios: Configure.optimization.model

Buiid LP structure
Decision.variable.specifiers: Create.plan
Constraint.specifiers: Create.constraint.name.lists
Objective.specifier: Create.objective.name.list
Do LP coefficients
Hypothetical.portfolio: Do.cash.flows
Build input files
Core.file.builder: Build.file

6.1.2 Model support object methods
Debt.types: Create.hypothetical.portfolio

Format the hypothetical portfolio name
If the hypothetical portfolio does not exist
Create it as a child of PORTFOLIOS
Else initialize its members list to NIL
Set the portfolio members list equal to members of existing
debt portfolio
For each debt type
Debt.type: Create.debts
If the object CASH.SURPLIJS does nox exist

Create it as a child of SHORT.TERM.INVESTMENTS

Add its name to the list of portfolio members
If the object CASH.DEFICIT does not exist

Create it as a child of PENALTY.BORROWING

Add its name to the list of portfolio members
Store the hypothetical portfolio name as the name of the
current portfolio

Debt.types: Create.debts

For each time pericd in planning period
Format a debt name
Set parent.classes equal to Debt.type: classes
If debt object of that name does not exist, create it
with specified parent classes
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Store object attributes
Set debt: LP name to debt.type: LP name
Set debt: market equal to debt.type: market
Set debt: term equal to debt.type: term
if not a foreign debt, set debt:

original.principal and debt: principal.outstanding
equal to 1.0

Else set debt: original.principal and debt:
principal.outstanding equal to $1/fx rate for the
time period. (**don't have rates yet)

Set other debt parameters, depending on debt type,
from defaults in debt.type: market

Add debt name to portfolioc members list

6.1.3 LP support object methods

Decision.variable.specifiers: Create.plan
For each subclass of decision.variable.specifiers
Subclass: Create.actions

Decision.variable.specifiers: Create,actions
Set decision.amount equal to 0.0
For each debt named in thisunit’s object.classes slot which
is also in the hypothetical portfolio
Set debt.type equal to debt: Ip.name
Set issue.period equal to the value in the debt object
of the slot specified in the issue.period.source.slot
Set decision.period.values equal to thisunit:
decision.period.values
Set decision.period.maximum equal to thisunit:
decision.period.maximum
If decision.period.values is equal to ISSUE.PERIOD
Set decision.period equal to issue.period
If the decision.period is less than the
decision.period.maximum
Thisunit: create.action
Else if decision.period.values is equa! to NEXT.PERIOD
Set decision.period equal to issue.period+1
If the decision.period is less than the
decision.period.maximum
Thisunit: create.action
Else if decision.period.values is equal to
FUTURE.PERIODS
For each time period from issue.period to end of
planning period
Set decision.period equal to the index of the
time period
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If the decision.period is less than the
decision.period.maximum
Thisunit: create.action
Else if decision.period.values is equal to ALL.PERIODS
For each time period from the beginning to the end
of planning period
Set decision.period equal to the index of the
time period
If the decision.period is less than the
decision.period.maximum
Thisunit: create.action

Decision.variable.specifiers: Create.action
Format the decision.variable.name using the name.format in
thisunit and the issue.period and decision.period set by the
create.actions method
If an action of the decision.variable.name does not exist,
create it in the problem space as an instance of the class
named in thisunit: dccision.parent.class
Else set its amount slot value to 0.0
Set action: action.period to decision.period
Set action: action.year to the year corresponding to
action.period
Set action: action.quarter to the quarter corresponding to
action.quarter
Set action: debt.type to debt.type
Set action: fi.name to the name of the debt for which this
action was created
Set action: issue.period to issue.period
Set action: issue.year to the year corresponding to
issue,period
Set action: issue.quarter to the quarter corresponding to
issue.period
Set action: Ip.name to Ip.name

Constraint.specifiers: Create.constraint.name.lists
For each subclass of Constraint.specifiers
Create a subclass instance in the problem space
Instance: Do.constraint.names
Instance: Do.constraint.variables
Instance: Sort.constraint.name.list
Create a master list of all constraint names, sort and
store in the current [p history object
For each instance of borrowing.plans
Instance: Sort.constraint.name.list

Constraint.specifiers: Do.constraint.names
Set constraint.names list in thisunit to NIL.
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Set constraint.type to value of thisunit: constraint.type
Do for ¢ from beginning to end of thisunit:
decision.period.range
If thisunit: sum.over.debt.types? is equal to T'
Do for k equals 1
If thisunit: sum.over.issue.periods? is equal to T
Do for s =1
Else do for s from beginning to end of
thisunit: issue.period.range
Format a constraint name using
constraint.type, k, 8 and ¢
Add the constraint name to
thisunit: constraint.names
Else do for each selected debt type and each
existing debt
Set k& equal to the Ip.name of the debt
type or existing debt
If thisunit: sum.over.issue.periods? is
equal to T
Dofors =1
Format a constraint name using
constraint.type, k, s and 1
Add the constraint name to
thisunit: constraint.names
Else do for 8 from beginning to end of
thisunit: issue.period.range
Format a constraint name using
constraint.type, k, s and ¢
Add the constrainc name to
thisunit: constraint.names

Constraint.specifiers: Do.constraint.variables
For each constraint name in thisunit: constraint.names
Use the specifications in thisunit to build the names
of the decision varibles used in the constraint
For each such decision variable, add the constraint
name to the constraint.names slot in the corresponding
borrowing.action.

Note: This method uses the same generalized approach as
constraint.specifiers: Do.constraint.names.

Core. file.builder: Build.file
Name and open core file
Format and write the NAME record
Format and write a ROWS record
Format and write an objective name record
For each constraint name in the master list in the Ip
history object
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Format and write a ROW record
Format and write a COLUMNS record
For each borrowing plan action
For each constraint name in action: constraint.names
Use the coefficient specifications in the
corresponding constraint specifier to determine
the action's coefficient
Format and write a COLUMN record with the
coefficient value
Format and write a RHS record
For each constraint name in the master list in the Ip
history object
Format and write a RHS record
Do BOUNDS header and records using the same approach
Do RANGES header and records using the same approach
Format and write an ENDDATA record

Note: Other file builders operate in the same manner.

Output.translator: Translate.output
Do until end of file:
Read an Ip output file record
Set card.id equal to the first field in the record
If card.id equals NAME
Set problem.name equal to the second field in the record
Check that problem.name equals Core.file.builder:
problem.name and Time.file.builder: problem.name
Else if card.id equals STATUS
Set status equal to the second field in the record
If status not equal SOLVED return status and end
Else if card.id equals TIME
Set time.period.index equal to the second field in
the record
Else if card.id equals VALUE
Set the objective value in the current LP.history
object equal to the second field in the record
Else if card.id equals VARIABLES
Do until DUALS card is reached
Read a new record
Set variable.name equal to the first field in
the record
Set action.name equal to the name of the
borrowing action having variable.name as its
Ip.name slot value
Set the AMOUNT field in the action.name
object equal to the second field in the record
Borrowing.actions: Create.actual.portfolio

Note: This definition handles only output for single-scenario problems,
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Branching scenario problems have SCENARIO header cards, which mark
the beginnings of new scenarios and worlds.

6.2 System support subsystem

6.2.1 Output management methods

All output management methods are documented in the files CFT-METHODS.LISP
and UI-METHODS.LISP on microfiche, with the exception of Portfolios: Check
constraints, which uses the same technique as the others to compare the constraint

value period-by-period against list elements in the pf.table’s base.slot value.

6.2.2 Task management methods

Top-level task management methods consist of single-line requests to start rule-
based reasoning. Individual task performance, confirmation and condition checking

methods are straightforward procedures and are individually defined by task or

condition.

6.3 User support subsystem

Methods for the user support subsystem must be defined specifically for each
result type and key factor type and will be defined through further work. A structure

chart illustrating a typical user support method is given in Figure 8.5.

7. Rule specifications

The rules used in the MIDAS prototype are given in the following figures in the

text of this dissertation:

1. Heuristic plan refinement rules: Figures 6.18 and 6.19.
2. Task control rules: Figure 7.16.



Appendix D

Prototype System Code: Comments

LISP code listings for the MIDAS prototype system, found on pages D1-D184 of
the microfiche inside the back cover of this volume, contain (a) the main knowledge
based definition, generated by KEE, (b) method definitions which are accessed
through messages to method slots in KEE objects, (c) global variable, window and
bitmap definitions, and (d) a few miscellaneous functions which are used in methods
but were defined as LISP functions.

File contents are as follows:
1. CFT-METHODS: Methods for cash flow tables.
2. DEBT-METHODS.LISP: Methods for all classes of bonds and short-term debts.

3. INV-METHODS.LISP: Methods for long-term investments (sinking funds) and

short-term investments (cash surplus).
4. MIDASPT.LISP: Bitmaps for the user interface, generated by KEE.
5. MIDASPT.U: KEE knowledge base definition.

6. MISC-FUNCTIONS: Non-method functions; also methods, including UNIT.ADD,
CHANGE and DELETE, used by more than one object class.

7. MKT-METHODS.LISP: Methods for financial markets and rate event trees.

8. MO-METHODS.LISP: Methods for model objects not found elsewhere (portfo-

lios and financial instruments).

9. MS-METHODS.LISP: Methods for model support objects not found elsewhere

(borrowers, problem specifiers, debt types, borrowing plans).
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10. UI-METHODS.LISP: Methods, window definitions, menu definitions and global

variable settings for the user interface.

Assistance in understanding LISP syntax and functions can be found in Stecle

(1984).



Appendix E

Test Data: Comments

Microfiche pages E1~E100 list the KEE-generated problem space file containing a
comprehensive set of test data for the MIDAS prototype. A subset of this data
produced the examples in Chapter 10. Rates and rate model parameters used are

hypothetical and are used merely to test and illustrate the system’s operation.
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