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ABSTRACT

The study of surface samples was used to characterize the marsh foraminiferal
distributions for the first time in South Carolina in three marsh areas: Murrelis Inlet, North
Inlet and Santee Delta. Vertical zonations of foraminifera with respect to mean sea level are
not as well defined as at more temperate localities to the north. The clearest marsh
foraminiferal zonations were recognized at North Inlet which is also the least altered by
human influence of the areas examined. Zonations in the other two areas were affectad
either by development (Murrells Inlet) or high river discharge (Santee Deita). Although
same of the species are different from those in other marsh zonations from further north,
comparable zonations do still exist but provide less absolute accuracy than found in, for
example, Nova Scotian marshes. Marsh foraminifera are living infaunally in the shallow
subsurface (to 20 cm) but appear to have little affect on the total assemblage (which is the
ultimate fossil assemblage). Preservation of agglutinated foraminifera was generally poor in
subsurface sediments, especially from Murrells Inlet, possibly as a result of bioturbation.
Grab sample~ ;om the Intracoastal Waterway/Winyah Bay and nearshore localities show the
effects of combined high organic matter loadings, pollution and high riverine discharge.
Typical estuarine assemblages appear to be displaced offshore as a result of these effects.
Using marsh foraminiferal assemblages in vibracores, a sea-level oscillation was identified in
sediments from Murrells Inlet with a 2 m rise in sea-level between 5000 yBP and 4300 yBP
followed by a 2 m fall between 4300 yBP and 3600 yBP which corresponds to the end of
the mid Holocene warming. Limited data from North Inlet fit well on the Murrells Inlet sea-
level curve although the highstand was not identified.
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CHAPTERI
INTRODUCTION

1.1 General Intreduction

Recently, with the current concerns of, for example, global warming or for pollution
monitoring, much attention has been focused on the coastal zone. Work in the coastal
zone generally involves the study of beach, lagoon, estuarine and marsh systems.
Unfortunately, it is often difficult to distinguish subsurface deposits of these various
environments, especially between fresh and salt water marshes, based on sedimentology
alone. Much of the paleoecological/sea-level work in South Carolina has been based on
interpretation of undifferertiated peats (eg. Colquhoun and Brooks, 1986; Sexton, 1987)
which often lead to ambiguous interpretations of the deposit. To properly interpret
subsurface deposits from a given geographical locality, especially for marsh/estuarine
systems, it is important to determine the characteristics of the present day environments
from that area since conditions (both physical and biological), although they may be similar,
vary with latitude (eg. Chapman, 1960; Goldstein, 1986; Murray, 1991). Benthic
foraminifera and arcellaceans have been shown to be excellent indicators for characterizing
various coastal environments, hence are useful in paleosnvironmental interpretations (see
below) and are the proxies used in this study.

Benthic foraminifera are unicellular protists with a test that may be agglutinated,
calcareous or porcelaneous (Loeblich and Tappan, 1964). Since the early work in
Barnstable Harbor, Massachusetts by Phleger and Walton (1950), foraminiferal distributions
in salt marshes have been documented in many localities throughout the world. Buzas
(1969), in his study of Choptank River, Maryland for example, has shown that foraminiferal

distributions are controlled by a number of interdependent variables. However, in marsh



systems, the relative elevation in relation to sea level has been shown to be the primary
controlling factor of the vertical zonation of foraminiferal assemblages across the marsh
surface at Chezzetcook Inlet, Nova Scotia (Scott and Medioli, 1978; 1980a). This has been
confirmed by other workers at localities in, for example, South America (Scott et al., 1990),
British Columbia (Patterson, 1990), Oregon (Jennings and Nelson, 1992), Maine (Gehrels,
1994) and along the Pacific rim (Scott et al., in press). In a study of the Great Marshes,
Massachusetts by de Rijk (1995), she concluded there was no relationship between
foraminiferal assemblages and elevation abave mean sea level. She concluded that
changes in assemblages along the marsh were controlled by salinity variations. However,
since the samples she examined were all from within the high marsh zone, it is questionable
how significant her conclusions were.

For many years it has been known that benthic foraminiferal assemblages in a given
area may be affected by a wide variety of physical, chemical and biological factors (eg.
Phieger, 1951). From this, foraminiferal workers have used benthic foraminiferal
assemblages as proxies in assessing environmental conditions in stressed or polluted
areas. The importance of foraminifera for environmental applications was highlighted in a
Theme Issue of Journal of Foraminiferal Research (July, 1995) on Environmental
Applications of Foraminiferal Studies.

The purpose of this thesis was first to document the Recent benthic foraminiferal
distributions (both living and total) in sediments from three marsh-estuarine-nearshore
systems, from north to south - Murrells Inlet, North Inlet/Winyah Bay and Santee Delta since
there was no previous quantitative distributional studies of benthic foraminifera in South
Carolina (other than Collins et al., 1995, from this work) (Figure 1). This study also
documents the occurrence of foraminifera living infaunally in sediments from a North Inlet

marsh and evaluates their effect on the total (living + dead) assemblage. Based on these
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Figure 1. Map of study area showing the location of Mutreils Inlet, North Inlet, Winyah

Bay and Santee Delta region (North and South Santee River).
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data the mid-Holocene to present sea-level history of this area was interpreted. A pollution
study was also undertaken to determine if there was any relationship between the
foraminiferal assemblages and organic matter loadings in sediments from Winyah Bay

compared with those from Murrells Inlet and South Santee River.

1.2 Study Loczations and Environmental Characteristics

Murrells Inlet is a small bar-built 2stuary located along the northern coast of South
Carolina (Figure 1). Approximately 15.5 km? of marsh exist between the barrier beaches
and the Pleistccene upland (Fulton et al., 1993). Tides are semi-diurnal with a mean tidal
range of 1.4 m (Gayes et al., 1992). Salinity values are fairly constant throughout the infet
(generally greater than 30%.) since Murrells Inlet presently receives very limited freshwater
input other than rainfall and runoff as no streams currently drain into it (Fulton et al., 1993).
Jetties were constructed between 1977 and 1980 at the seaward mouth (both sides) of the
inlet to stabilize the inlet for safe navigation (Douglas, 1987). The inlet exists within an
embayment produced by the palec-Pee Dee River valley (Gayes et al., 1992). Murrells Inlet
is an impacted estuary, affected by urbanization in response to residential and tourist
demands, but is not affected by industrial wastes (Fulton et al., 1993).

North Inlet (Figure 1) is considered to be a relatively pristine tidal estuary since it has
minimal anthropogenic effects as a result of the Belle Baruch laboratory and reserve (Blood
and Vernberg, 1992; Fulton et al., 1993). Approximately 20 km2 of marsh are present
around the North Inlet locality (Fulton et al., 1993). There is litle freshwater input to the
North Inlet system which has a mean tidal range of 1.4 m with semi-diurnal tides; salinities
range between 30 and 34%. in the outer part of the estuary (Blood and Vernberg, 1992).

Although several creeks connect North Inlet to Winyah Bay, most of the water exchange



between the two localities accurs through South Jones Creek (Schwing and Kjerfve,
1980).

Winyah Bay is one of the largest estuaries on the eastern coast of the United
States (Figure 1). Itis almost completely surrounded by marshes; 87% of these are
affected by tidal influence and many of the marshes are dominated by either Spartina
alterniflora or S. cynosuroides (Allen et al., 1982). Winyah Bay has an average depth of 4.2
m with a maintained navigable channel of 8.2 m water depth along the axis of the bay; mean
tidal range is 1 m (Blood and Varnberg, 1992). Salinity range is extensive due to the large
freshwater discharge primarily from the Pee Dee and Waccamaw Rivers (Schwing and
Kjerfve, 1980}, Allen et al. (1984) reported salinity values measured between Sept. 1981
and Sept. 1982 (33 measurements) where salinity ranged from 0 to 35.3%. at various
stations throughout the bay. Approximately 3 km upstream from the mouth of the
Waccamaw River, salinity varied from 0to 11.7%. while at the mouth of the bay values
ranged from 21.5 to 35.3%.. The bay is salt-wedge stratified for most of the year and
differences of 10 to 15%. between surface and bottom water samples were common (Allen
etal., 1984). While collecting samples for this study, a plume of dark greyish water was
noted flowing out of Winyah Bay (see Chapter 3 - Results, Winyah Bay). During periods of
low freshwater flow to the bay, the salt wedge can be identified to approximately 35 km
upstream from the mouth of the Waccamaw River while under average flow it reaches
approximately 4 km upstream (Allen et al., 1984). The water quality in much of Winyah Bay
is reduced due to the pulp and steel mills around Georgetown, ship traffic and domestic
pollution (Schwing and Kjerfje, 1980). The Sampit River, discharging water to the bay near
Georgetown, is the most heavily polluted river in the Winyah Bay system (Allen et al,, 1982).

Santee Delta is the largest deltaic system on the east coast of the United States

and the subaerial Santee River Delta covers an area approximately 100 km? (Sexton,



1987). Although this is a unique feature along the eastern United States coast, there is
very little published environmental information on the delta system. With the completion of
the Santee-Cooper dam in 1942, 95% of the freshwater flowing into the Santee River was
diverted to the Cooper River (Stephens et al, 1975). The diversion caused: 1) the rivers to
change from being salt-wedge stratified to a partially mixed type; 2) a decrease in downriver
sediment supply, and 3) filling in of the rivers with sediment supplied from the ocean
(Stephens et al., 1975). Salinity ranged from 35%. at the mouth of the rivers to 0% just
seaward of the Highway 17 bridge (Stephens et al., 1975). The tidal range averaged 1.4 m
at the mouth of the North and South Santee Rivers (Stephens et al., 1976). The Santee
Delta region is characterized by extensive swamps and marshes, few people live in this area
and there is na industry on the rivers (Kjerfve and Greer, 1978). Due to problems in
Charleston Harbor, as a result of the diversion of freshwater to the Cooper River, it was
proposed to redivert up to 80% of the water flow back to Santee River by 1980 (Kjerfve and
Greer, 1978). This diversion was completed in 1986 (C. Marsh, R. Devoy, pers. comm,,
1995). As suggesied by Kjerfve and Greer (1978}, the diversion would cause the river to

again become partially stratified and have less marine influence upstream.

1.3 Previous Wark

Although distributional patterns of present day salt marsh foraminifera have been
described from many east coast North American marshes, for example in Georgia (Goldstein
and Frey, 1986), Virginia (Ellison and Nichols, 1976), Connecticut (Thomas and Varekamp,
1991), Massachusetts (Phleger and Walton, 1850; Parker and Athearn, 1959; Scott and
Leckie, 1990; de Rijk, 1995), Maine (Gehrels, 1994) and Nova Scotia (Scott and Medioli,
1978; 1980a), no distributional studies, with the exception of data from this work on two

North Inlet marsh transects (Collins et al, 1995), existed for South Carolina marsh systems.



The only published estuarine distributional study in South Carolina is that by Collins et al.
(1995) for Winyah Bay from this work.

There has been some controversy among authors as to whether living or total
benthic foraminiferal assemblages should be used in environmental analyses. Mumray
(1984) concluded that only the living foraminiferal assemblage should be used to interpret
environmental conditions. Buzas (1968) felt that examination of the living assemblage at
any one time did not represent the environmerital conditions on the population over longer
periods of time, Although some variation between living and dead assemblages have been
noted, Scott and Medioli (1980b) have shown total (live + dead) populations to be good
indicators of long term, rather than seasonal conditions and therefore serve as a better
basis for paleoenvironmental studies. Murray (1991) listed ecological tolerances for many
species identified in this study.

Few studies, especially concerning marsh foraminifera, have addressed the impact
of both infaunal habitat and taphonomy when comparing surface and subsurface
assemblages. The infaunal habitat of some foraminiferal species, and i ~ome cases
taphonomic processes, have been discussed primarily in deep sea marine environments
(eg. Corliss, 1985; Loubere, 1989; Corliss and Emerson, 1990; Kuhnt et al., submitted)
bijt there are a few studies from marshes. Matera and Lee (1972), in their study of marshes
and adjacent sandflats near Southampton, Long Island, reported increased abundances of
live Trochammina inflata specimens with depth. In studies of only living foraminifera from
Hommocks salt marsh, New York, Steineck and Bergstein (1979) reported that
Ammobaculites exiguus and Ammonia beccariihad a “living zone* extending 10 cm or more
oelow the marsh surface. Goldstein (1988) identified living foraminifera to depths of 30 cm
in sediments from a relict salt marsh along the easten  :ast of St. Catherines Island,

Georgia. Buzas et al. (1993) classified the infaunal character of 48 species in water depths

-y |
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ranging from less than one meter to 2975 m. Goldstein and Harben (1993), in their study of
marshes on Sapelo Island, Georgia, identitiad living Arenoparella mexicana and
Haplophragmoides wilbertito depths of 30 cm and also concluded there was selective
preservation of agglutinated as well as calcareous foraminiferal tests in the subsurface
marsh sediments. In marshes from the Fraser River Delta, British Columbia, Canada,
Jonasson and Patterson (1992) also reported selective preservation of both agglutinated
and calcareous foraminiferal tests with depth. This problem will also be addressed in this
thesis.

Benthic foraminiferal assemblages have been used to determine the effects of
pollution on the marine environment. Many of these studies focused on the environmental
chany: caused by organic poliution frum sewage outfalls (eg. Watkins, 1961; Schafer,
1970, 1973) or discharge from pulp and paper mills (eg. Schafer, 1973; Schafer and Cole,
1974; Nagy and Alve, 1987; Schafer et al., 1991). Often near the point source of sewage
outfalls, an "abiotic zone" develops where there are no foraminifera while further from the
source a "hypertrophic zone" develops where the are incre ased concentrations of some
tolerant foraminiferal species relative to "normal” for the surroundiny areas (Alve, 1995).
From more diffuse sources, the pollution may be widely transported through river discharge
and the eifects on the foraminiferal populations are more difficult to assess. The zone of
few or no foraminifera near the pollution source is probably due to low oxygen and pH
values caused by higher organic matter loadings (Boltovskoy and Wright, 1976). Further
from the poliutian source (especially sewage) the extra organic material may act as food and
supply nutrients for the foraminiferal population (Murray, 1991). This situation occurred
around the Orange County, California sewage outfall site where concentrations of
Eggerella advena were two to three times higher than the normal on the shelf off California

(Watkins, 1961), A similar situation was reported by Schafer and Cole (1974). Schafer
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(1970; 1973) reported that the Elphidium incertum/clavatum group (= Elphidium excavatum
group, this study) dominated the living assemblages nearest to outfalis from a lead-zinc
smeiter, a fertilizer plant, a power plant, pulp and municipal wastes and a chlorine alkali plant.
Schafer (1970) also identified a general increase in both the number of living and total
foraminiferal specimens further from the pollution sources. Schafer et al. (1991) studied
both the spatial and temporal changes in the benthic foraminiferal assemblages in the
Saguenay Fiord, Quebec which, for most of the 20th century, had been contaminated
primarily by organic matter dischiarges from several local pulp and paper mills. During times
of intense pollution (1920-1970) foraminiferal results from core samples show these times
are marked by barren intervals, absence of calcareous species or a reduction in the
pollution-tolerant species Spiroplectammina biformis. These polluted sediments were
capped by impervious marine clays during a 1971 landslide and with increased govemment
regulations imposed on local industrial polluters, surficial grab samples collected in 1982
and 1988 show the recolonization of several calcareous and arenaceous foraminiferal
species. In a study of Canso Strait, Nova Scotia, moderately poliuted primarily by organic
matter, Schafer et al. (1975) reported that sediments from the stressed environments near
poliution sources were characterized by large numbers of Eggerella advena and Elphidium
incertumyclavatum group (= Elphidium excavatum group, this study). Schafer (1982) also
studied the recolonization of benthic foraminifera at an offshore dump site after cessation
of dumping of dredge spoil with high concentrations of organic matter. By one month after
the last dumping of spoil, benthic foraminifera had recolonized most of the site with
Eggerelia advena and Ammotium cassis being the pioneer species. Fewer studies have
documented the effects of chemical poilution (eg. Schafer, 1970; Alve, 1991). A review on

the effects of benthic foraminiferal response to various sources of estuarine poliution is
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presented by Alve (1995) while effects of anthropogenic changes to the marine
environment are described by Culver and Buzas (1995).

Although there have been no previous distributional studies of Recent benthic
foraminifera in South Carolina, other than Collins et al. (1995}, a few foraminiferal samples
were examined to prepare a preliminary sea level curve for Murrells Inlet (Gayes et al., 1992;
Scott et al., 1995a). Colquhoun and Brooks (1986) and Colquhoun et al. (1995) have
identified several Holocene sea-level fluctuations in their sea-level curve for South
Carclina, based on archaeological data and undifferentiated peats. They identified a
highstand at approximately 4000 yBP, which agrees well with that of this study. DePratter
and Howard (1981) reported a highstand by 4500 yBP (uncorrected date) along the
Georgia and South Carolina coasts based on archaeological sites and submerged tree
stumps as x~a-level points. This fluctuation has not been recorded along the east coast of
North American except by Dionne (1988) in the St. Lawrence Valley. Data from Nova Scotia
indicate an acceleration in sea-level rise between 5500 and 4500 yBP; no sea-level
oscillation is identified but the rapid sea-level rise ends approximately at the time of the
highstand in South Carolina (Scott et al., 1995a; Scott et al., 1995b). The highstand
reported in South Carolina has not been identified in sea-level studies from adjacent areas,
eg. North Carolina (Moslow and Heron, 1981), Virginia (van de Plassche, 1990), Delaware
(Belknap and Kraft, 1977), Connecticut (van de Plassche, 1991)or Maine (Gehrels, 1994),
No evidence for this highstand was found on Barbados (Fairbanks, 1989) although this

curve had poor resolution in the last 6000 years.



CHAPTER I

FIELD AND LABORATORY METHQODS

2.1 Field Methods

Sediment surface samples from the Mumells Inlet marsh system were collected in
July 1990 (Transect 2) and in May 1991 (Transect 7 and Transect 8 - Figure 2). Samples
from the North Inlet marsh transects were collected in July 1990 (Transect 1) and in March
1991 (Transect 6 - Figure 3). Short cores taken from the same marsh system, although not
directly along Transect 6, were collected in April, 1991 (Figure 3). These were collected by
gently pushing a core tube by hand into the sediment. Sediment surface samples from the
Santee Delta marshes were collected in February 1891 (Transect 4 and Transect §) and in
May 1991 (Transect 10 - Figure 4). A 10 cm3 sample from of the top centimeter of marsh
sediment was collected at each surveyed (elevation and distance along transect measured
with a theodolite and and stadia rod) station for foraminiferal analysis. In the absence of
geodetic benchmarks, which in most cases were not accessible or had been disturbed,
mean sea level was considered to be at the lowermost continuous occurrence of Spartina
alternifiora; this was the datum elevations were measured from. The foraminiferal samples
were stored in plastic bags or vials and freated immediately after returning from the field with
buffered formalin to prevent the decay of any living foraminiferal protoplasm. A replicate
sample was collected at most transect stations (none at Transect 1 or Transect 2) for organic
matter analysis. These samples were frozen to prevent the decay of organics within the
sediment.

A van veen grab sampler deployed from a boat was used to obtain sediment from
the channels, bays and nearshore iocalities for this study. Samples from Murrells inlet were

collected in March 1991 (Stations 1 - 20) and from the nearshore off Murrells inlet in May
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Detailed map of Santee Delta region showing the location of North and
South Santee Rivers, the location of River samples; Offshore samples and
Vibracore 1, 3and 7.
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1991 (Stations 21 -37; Figure 2). Stations at South Santee River were sampled in February
1991 (Stations 1 - 10) and in October 1991 (Stations 11 - 26; Figure 4). Samples from the
Intracoastal Waterway/Winyah Bay and nearshore localities were collected in May 1991
(Figure 5). Replicate 10 cm3 subsamples of the top centimeter of sediment were removed
for foraminiferal analysis and percentage organic matter determinations and the samples
were treated as described above until they could be returned to the laboratory. Sample
station positions were determined using Loran C at the Intracoastal Waterway/Winyah Bay
and all nearshore localities and by visual determination with navigation charts at Murrells
Inlet and South Santee River. Salinities were measured using an American Optical
temperature-corrected salinity refractometer.

Vibracoring was the technique used to collect subsurface sediments. Vibracores
were collected using a cement vibrator connected to a 9 m long, 7.62 cm diameter
aluminum irrigation pipe. Sediment compaction during vibracoring was measured for each
core taken. Compaction values during coring ranged from 0 to 135 cm. Compaction during
deposition is more difficult to measure and remains a problem in accuracy of sea-level
curves, Most compaction generally occurs in the younger salt marsh peats while there is
little or no compaction due to coring in the sandy marsh, beach ridge or in the older
desiccated freshwater peat deposits encountered in coring at the various localities. In the
upper 1 m of Core 103, elevations of unit boundaries were also determined using non-
compacted hand pushed core samples (same diameter as vibracores). When the core was
retrieved it was capped and cut into 1.5 m sections, transported to the laboratory and split.
Split cores were described, and foraminiferal and radiocarbon samples were taken within
two weeks of collection. Vibracores were stored at 4° C to minimize diagenetic alteration of
foraminiferal assemblages. Vibracores from Murrells Inlet marshes {(Cores 100 - 106) were

collected in February 1991 and Core 90 was collected in July 1990. Cores B1 - B3 and B9
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from North Inlet were collected in June 1991. Vibracores from Santee Delta (Cores 1, 3 and

7) were collected in August 1989.

2.2 Laboratory Methods

After collection, each foraminiferal subsample was preserved in buffered formalin.
in the laboratory the samples were gently sieved through a 63 pm (#230 mesh) sieve; the
residue was placed in a sample container with rose Bengal for about one hour, then
washed again through a 63 um sieve to remave any excess stain. Residues with little
organic debris were dried in an oven at 40° C and the foraminifera were separated from the
sand by flotation using carbon tetrachloride (specific gravity 1.58). Organic-rich residues
were split using a wet splitter described by Scott and Hermelin (1993); the majority of
samples were not decanted since McCarthy (1984) demonstrated that many arcellaceans
may be lost in the decant (only a few from Core 106 were decanted) . This also appears to
be the case for many smal! foraminifera (Collins and McCarthy, in progress). In all cases
approximately 300 foraminifera or arcellaceans were counted and the quantitative data have
been standardized to a volume of 10 cmS,

Samples for organic matter analysis were dried in an oven at 500 C. After cooling
the samples were pulverized using a ceramic mortar and pestle and the sediment was
weighed. The samples were then roasted in a furnace at 500° C for 2.25 hours (Mook and
Hoskin, 1982). Organic matter loss on ignition was determined after the sample had cooled
to room temperature.

Foraminiferal assemblages were intetpreted graphically since the small numbers of
foraminilera present in most bay, channel and nearshare samples would render any
statistical analyses meaningless. Trends within the marsh transects were quite obvious

graphically, most physical and chemical parameters were nut measured across the marsh
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surface since this was a one-time collection at each locality and Phleger and Bradshaw
(1966) showed that these variables change dramatically throughout each tidal cycle.

Carbon -14 (1 4C) dating of peat was done by Geochron Laboratories in Cambridge,
Mass. using conventional techniques for larger peat samples. These include dispersing
the entire sample in a large volume of water and the clays and organic matter were
separated away from any sand and silt by decantation. The clay/organic fraction was then
treated with hot dilute hydrochloric acid ta remove any carbonates. The residue was then
filtered, washed, dried and roasted in oxygen to recover carbon dioxide from the arganic
matter for the analysis. Radiocarbon ages, reported as radiocarbon years before present
{BP), where present is 1950 AD, were converted from radiocarbon years to calendar years
with the calibration CALIB 3.0.3 (Stuiver and Reimer, 1986; 1987) and are reported as cal yr
BP. Parameters used in this conversion were those for atmospheric conditions at one
sigma because the marsh plants, even though they are marine, draw their 14C from the
atmosphere (Stuiver et al., 1986, C. Hillaire-Marcel, pers. comm., 1995).

Scanning electron micrographs, which provide high surface detail but do not
penetrate the surface of the shell, were taken using a Bausch and Lomb Nanolab 2000
scanning electron microscope located in the Biology Department at Dalhousie University,
using black and white 35 mm film. Scanning light micrographs, which provide an image of
some of the intemnal structures of hyaline foraminiferal species, were taken using a
Dynaphot® scanning light microscope with Tech Pan black and white 35 mm film following

the technique described in Gerakaris (1986) and Scott and Vilks (1991).



CHAPTER Il
RESULTS

3.1 MARSH SURFICIAL TRANSECTS
3.1.1 Murrells Inlet
3.1.1.1 Transect 2

In the 26 samples examined from this transect, total abundances were generally
quite high throughout (202 to 13,334 inds/10 cm3) (Appendix Table 1; Figure 6). Note: In
this and each subsequent data table arcellacean species are listed at the bottom of the
table separated from the foraminiferal species by a double fine. Numbers of living
specimens were also quite high (52 to 3072 inds/10 cm3) and the living distributions
(Figure 7) were similar to those of the total distributions. in the higher elevations of this
transect (higher than +40 cm) the assemblage was strongly dominated by the calcareous
species Ammonia beccarii, Eiphidium excavatum formae and Helenina anderseni while
there was a consistent but low percentage of Trochammina inflata in these samples. In the
low marsh (lower than +35 cm) the assemblages were dominated by the agglutinated
species Miliammina fusca and Ammotium salsurm; very rare calcareous specimens were
present. Rare arcellacean specimens of the genus Centropyxis were identified in many
samples throughout this transect. Spartina afternifiora dominated the floral assemblage
from the edge of the small tidal channel (Station 24) to +53.8 cm (Station 16), above which
there was a mixture of Borrichia spp., Juncus spp., Salicornia and Spartina alternifiora.
Distichlis spp. and Juncus spp. dominated the floral assemblage from +72.8 cm (Station 7)
to where the transect ended at the edge of a resident's backyard. There was very sparse
vegetation at the end of the transect. Salinity ranged from 28%. in the channel to 40%. at

Station 17, the last station where the sediment was wet enough to obtain a measurement.
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3.1.1.2 Transect?7

Of the 48 samples collected along this marsh transect, total abundances ranged
from 4 to 1768 inds/10 cm3 although total numbers were generally low at the majority of
stations (Appendix Table 2; Figure 8). Abundances of living specimens were also low and
ranged between 0 and 322 inds/10 cm3; only four samples had >75 living inds/10 cm3
(Figure 9). The foraminiferal assemblage was generally dominated by Trochammina inflala,
Trochammina macrescens and Siphotrochammina lobata at elevations above 100 ecm while
below this height the assemblages were dominated by Ammiotium salsum and Miliammina
fusca. The exception to this was along the channel edge (seaward of the levee) where
Ammonia beccarii and Elphidium spp. dominated the assemblage. Significant percentages
of these species were also found in samiples from the middle of the transect where the
elevalion decreased (the transect ran obliquely along a small tidal channel). Trochammina
ochraceawas also present in relatively high percentages at lower elevations, although it
was identified throughout most of the transect. Arenoparella mexicana was present
generally at stations with higher elevations. Haplophragmoides wilberti was only identified
in samples near or greater than 150 cm at the landward end of the transect. Living
percentages generally were similar to those of the total percentages. Organic matter
percentages vary greatly across the transect with percentages ranging from 0.64% to
25.61%. Two peaks in organic matter were identified; the first in the depression just
landward of the levee along the channel edge and the second at the termination of the
transect at the forest edge. Spartina alternifiora dominated the floral assemblage from the
waters edge a! Station 110 +97.3 cm (Station 10). There was then a mixed floral
assemblage dominated by Salicornia spp. with some Borrichia spp., Limonium spp.,
Spartina patens with little S. alternifiora. This assemblage was replaced by one dominated

by Spartina afternifiora when the marsh elevation dropped below approximately +100 cm



Figure 8.

Profile of marsh elevation, number of individuals, organic matter, and
percent abundance of some foraminiferal species relative to the total
foraminiferal and arcellacean assemblage in sediments from Transect 7,
Murrells Inlet.
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Profile of marsh elevation, number of individuals, organic matter, and
percent abundance of some foraminiferal species relative to the live
foraminiferal and arcellacean assemblage in sediments from Transect 7,

Murrells Inlet.
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(Stations 25-30). Further along the transect the assemblage was again dominated by
Salicornia spp. (with some Distichlis spp., Limonium spp. and litle Spartina alternifiora) to
approximately +150 cm (Station 41), above which Juncus spp. was almost the only plant
present to the end of the transect at the edge of the forest. Salinity ranged from 26%. in
water from the channel at Station 1 to 32%. in water from the channel close to Station 28.
There was a small, very shallow marsh pond approximately 10 m from Station 34 where a

salinity of 74%. was measured.

3.1.1.3 Transect 8

In the 22 samples examined here, total abundances ranged between 174 and
3072 inds/10 cm3 (Appendix Table 3; Figure 10). Living abundances were relatively high
and ranged between 18 and 536 inds/10 cm?3 with all but four samples having greater than
100 live specimens (Figure 11). Living distributions were similar to those of the total
distributions. Miliammina fusca and Ammotium salsum were the dominant species
throughout most of the transect both in the living and total assemblage. Highest total
abundances of Arenoparella mexicana were present in samples below +50 c¢m although the
highest living percentages of this species were further along the transect between +73 cm
and +87 cm. Trochammina inflata was also identified in all samples from this transect with
the highest total percentage and most living specimens present in samples in elevations
higher than +70 cm. Ammoastuta inepta and Haplophragmoides spp. were also present in
most samples although the highest percentages and the only living specimens were
identified in samples higher than +87 cm. Organic matter percentages were high
throughout the transect and ranged from 3.67% at the channel edge to 26.95% at Station
18. The floral assemblage consisted exclusively Spartina alternifiora to Station 11; Juncus

spp., with little Spartina alternifiora and S. patens strongly dominated the transect to Station
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20 where Typha spp. dominated to the end. The transect ended approximately 2 m from
cedar trees and very close to a resident’s backyard. Salinity varied greatly across this
transect ranging from 19%. in the channel at the beginning of the transect (35%. at Station
8, 20%. at Station 12) to 0%. at Station 18. (Note: the elevation at Stations 21 and 22 were
not measured because of the tall vegetation but these stations were somewhat higher than

Station 20.

3.1.2 North Inlet
3.1.2.1 Transect 1

Of the 34 samples collected along this marsh transect, total abundances were
generally high throughout (up to 5456 inds/ 10 cm3) (Appendix Table 4; Figure 12). All
samples contained living foraminifera (up to 1128 inds/ 10cm3) (Figure 13) and for other
than Trochammina macrescens, the distribution of living foraminifera generally mirror that of
the total population. The foraminiferal fauna was dominated by agglutinated species but
Elphidium excavatum was common in samples close to the channel, Miliammina fusca and
Ammotium salsum were the dominant species in the lower elevations of the marsh (lower
than +112 cm - Statioris 20 to 34) with a significant percentage of Trochammina
macrescens in the sample from the levee along the channel (Station 32). At higher
elevations the assemblage was dominated by Trochammina inflata, Haplophragmoides
wilberli, Siphotrochammina lobata and Trochammina macrescens. There are significant
percentages of live Trochammina macrescens throughout most of the transect although
live percentages are high only in samples from stations with elevations higher than +112 cm
as well as in the levee sample. Spartina alternifiora was the only plant species present at
stations below +77 cm (Stations 20 to 33) while between +77 cm and +105 cm the floral

assemblage was strongly dominated by Salicornia spp with little Spartina alternifiora. Above
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Figure 12.

Profile of marsh elevation, number of individuals, and percent abundance
of some foraminiferal species relative to the total foraminiferal and
arcellacean assemblage in sediments from Transect 1, No:th Inlet. Note
the maximum Number of Individuals/10 cm3 plotted is 4000 although there
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arcellacean assemblage in sediments from Transect 1, North Inlet.
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this elevation, Juncus spp. with some Distichlis spp. and Borrichia spp. were the dominant
plants. Sample 34 was taken 35 cm below the lowest occurrence of Spartina alternifiora.

Salinity values ranged from 28%. in the channel to 70%. at Station 21.

3.1.2.2 Transect 6

In the 41 samples examined from this transect, total abundances ranged between
98 and 7224 inds/10 cm3 (Appendix Table 5; Figure 14). Live abundances ranged
between 2 and 2376 inds/10 cm® and the living distributions (Figure 15) were similar to the
total distributions. At stations from the lower elevations of the marsh (lower than +70 cm)
Ammotium salsum and Miliammina fusca were the dominant species in the assemblage with
lesser percentages of Trochammina inflata, T. macrescens and Siphotrochammina lobata.
Miliammina fusca reaches its peak between +60 cm and +70 cm where it strongly dominates
the assemblage. Above this the assemblage was dominated by Trochammina inflata and
Haplophragmoides wilberti with lower, but significant, percentages of Trochammina
macrescens and Siphotrochammina lobata. Siphotrochammina lobata has a bitnodal
distribution in this transect; this species has significant percentages in the lower low marsh
and in the high marsh but only rare specimens were identified between +40 cm and +80
cm. Calcareous foraminiferal specimens occurred rarely in few samples. The arcellacean
species Centropyxis aculeata is present in many of the high marsh samples. Organic matter
percentages are generally highest in the low marsh samples (up to 21.59%) and are
significantly lower in the sandier samples from the high marsh. The floral assemblages were
composed entirely of Spartina alterniflora to Station 12 (+60 cm) where it changes to one
mixed - ially with Puccinella spp. ta Stati:)n 17 (+70 cm). From there to the strand line
(Staton 24 - +111 cm) the floral assemblage was dominated by Salicornia spp. with some

Borrichia spp. and rare Spartina alternifiora. Higher than +111 cm the fioral assemblage was



35
TRANSECT 6, NORTH INLET (Total)

ELEVATION IN cm ABOVE MSL

150 =

NUMBER OF INDIVIDUALS/10cc

(%)

(%)

(%) s0
25 e e
X Ty |
60 6
50 50
% ) 7 40
30 ; 30
(%) 20 ?pﬁ’% - 20
1044 10 10
0 wiiiai A

100

50
Distance along transect (m)
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foraminiferal and arcellacean assemblage in sediments from Transect 6,
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foraminiferal and arcellacean assemblage in sediments from Transect 6,
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a mixture of Juncus spp., Borrichia spp. and Distichlis spp. Salinity varied little at the

statiuns measured- from 22%. at the edge of the channel to 24%. at Station 13.

3.1.3 Santee Delta
3.1.3.1 Transect 4

Of the 24 samples collected along this transect, total numbers were somewhat low
except at the landward end of the transect (11 - 544 inds/10cm3) (Appendix Table 6;
Figure 16). Live numbers were also low (0 - 60 inds/10 cm3) (Figure 17) with the highest
occurrences from stations near the river. Living distributions are similar to those of the total
distributions except in the highest m: rsh were calcareous foraminifera dominate but have
few living representatives. Generally, narrow foraminiferal zones appear to be present
along this transect. Arenoparella mexicana and Trochammina inflata were the only species
to be consistently present, usually in high percentages, except at the end of the transect
where they were replaced by Ammonia beccarii and Elphidium spp. as the dominant
foraminifera. In the lowest marsh the assemblage was dominated by Trochammina
ochracea with high percentages of Miliammina fusca. Further along, (Stations 4 - 6) higher
percentages of Ammotium salsum and Trochammina macrescens were present with
Trochammina inflata and Arenoparella mexicana. Between Stations 9 and 19 there were
high percentages of Haplophragmoides wilberti, albeit in low numbers, combined with a
peak of abundance of Siphotrochammina lobata at Station 17. Organic matter percentages
ranged between 0.25% and 19.61% with the highest percentages in sediments from
stations near the river. Spartina alternificra dominated the floral assemblage from the rivers
edge to Station 5 (+130 cm). From there to Station 14 the assemblage is dominated by
Salicornia spp. but mixed with Spartina alternifiora and Distichlis spp. Juncus spp. with litlle

Distichlis spp. and Borrichia spp. composed the assemblage to Station 20. Beyond this



Figure 16.

Profile of marsh elevation, number of individuals, organic matter, and
percent abundance of some foraminiferal species relative ta the total
foraminiferal and arcellacean assemblage in sediments from Transect 4,
Santee Delta.
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Figure 17.

Profile of marsh elevation, number of individuals, organic matter, and
percent abundance of some foraminiferal species relative to the live
foraminiferal and arcellacean assemblage in sediments from Transect 4,
Santee Delta.
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vegetation was extremely sparse, but there were a few Salicornia spp. patches. From
Station 20 to the end of the transect, the substrate was composed completely of fine sand.

Salinity values ranged from 6%. near the river's edge to 25%. at Station 13.

3.1.3.2 Transect5

In the six samples examined from this short transect, total abundances ranged from
70 to 1176 inds/10 cm3 (Appendix Table 7; Figure 18). Living abundances ranged from 6
to 328 inds/10 cm3 and the living distributions were similar to the total distributions (Figure
19). Along the first two meters of this fransect, the assemblage was dominated by
Trochammina ochracea, Arcellaceans and Haplophragmoides spp. Ammoastuta inepta
dominated the remaining samples with high percentages of Arenoparella mexicana and
Trochammina macrescens in samples from some stations. Ammoastuta inepta dominated
the living assemblage except at Station 2 where Trochammina ociracea was dominant.
Organic matter percentages ranged from 17.81% to 22.44%. Spartina cynosuroides was
the only plant species along this transect. Salinity or elevation measurements were not

taken here due to the threat of alligators to my field assistants.

3.1.3.3 Transect 10

Of the 22 samples collected along this transect, total abundances were generally
high and ranged between 14 and 5120 inds/10 cm3 (Appendix Table 10; Figure 20).
Abundances of living specimens ranged between 0 and 496 inds/10 cm3 (Figure 21) and
the living distributions did not follow those of the total distributions. Few specimens were
present in samples from the first two station but the assemblage was dominated by
Arcellaceans. Arcellaceans, primarily Centropyxis spp., were present in all samples and

usually formed at least 20% of the assemblage. Arenoparella mexicanawas also present
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Figure 18. Profile of number of individuals, organic matter, and percent abundance of
some foraminiferal species and arcellaceans relative to the total
foraminiferal and arcellacean assemblage in sediments from Transeci 5,

Santee Delta.
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percent abundance of some foraminiferal species and arcellaceans relative

to the total foraminiferal and arcellacean assemblage in sediments from

Transect 10, Santee Delta.
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throughout the transect but at much lower percentages. Haplophragmoides spp.
dominated the assemblages at the iandward end of the transect with high percentages of
Trochammina macrescens and Ammoastuta inepta. Trochammina macrescens had a
bimodal distribution where high percentages were also in samples from stations close to
the river. Trochammina ochracea dominated the samples from stations with elevations less
than +100 cm with high percentages of Ammotium salsum and Miliammina fusca.
Miliammina fusca and Ammotium salsum dominated the middle portion ot the transect with
high proportions of Trochammina ochracea. Many of the foraminiferal species
(Haplophragmoides spp., Ammoastuta inepta, Trochamimina macrescens, Miliammina
fusca, Arenoparella mexicana and Trochammina ochracea) appeared to have somewhat
bimodal living distributions with high percentages both at the beginning and the end of the
transect. Arcellaceans strongly dominate the living assemblage in the middle of the
transect with some Ammotium salsum. Pseudothurammina limnetis, which composed a
small proportion of the total assemblage, had a high proportion of living individuals between
Stations 3 and 5. Organic matter percentages ranged between 10.31% and 24.71%.
Terrestrial plants were the only vegetation present at the first two stations. Beyond this, to
Station 7, the floral assemblage was strongly dominated by Spartina cynosuroides with
traces of Scirpus spp. Further along the transect, to Station 11, the floral assemblage was
composed of an equal proportion of Spartina cynosuroides and Scirpus spp. Along the
remainder of the transect, Spartina alternifiora was almost exclusively the only plant species

present. Salinity was 0%. at Stations 10 - 14, the only stations where it was measured.

3.2 BAY, CHANNEL, RIVER AND NEARSHORE SAMPLES
3.2.1 Murrells Inlet

3.2.1.1 Murrells Inlet (Channel)
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Of the 20 samples collected from the inlet, total abundances varied greatly (from 14
to 3776 inds/10 cm3) (Appendix Table 9; Figure 22). Total species diversity was also
variable (6 to 29 species per sample). Most samples contained living foraminifera although
their numbers were generally low (Appendix Table 9). Ammonia beccariiand Elphidium
excavatum spp. were the dominant foraminifera both in the total and living distributions.
Haynesina depressula was present at most stations although there were generally only
living representatives in the upper part of the channel (Stations 1 to 13). Trochammina
ochracea was present in samples from most stations with significant percentages (both in
the total and living distributions) in some samples. Typical marsh foraminiferal species were
present in many samples with few living representatives. Samples were collected from
water depths ranging between 1.0 m and 4.0 m. Surface salinity values ranged between
26%. and 28%. th >ughout Murrells inlet. Organic matter percentages were low (0.20% to

3.56%).

3.2.1.2 Murrells Inlet (Offshore)

In the 17 samples collected along two parallel transects just ~ffshore of Murrells
Inlet, total abundances were higher at Stations 28 - 37 (up to 836 inds/10cm3) thanin
samples from Stations 21 - 27 (up to 128 inds/1 Ocm3) {(Appendix Table 10; Figure 23).
Species diversity and total living foraminifera were also generally higher in samples from
Stations 28 -37. The dominant foraminiferal species were similar at equivalent depths for
these two sample groups with the exception of Trochammina ochracea; higher
percentages of this species were present in samples from Stations 21 - 27. Ammonia
beccarii and Elphidium excavatum spp. were the dominant foraminifera. Trochammina
ochracea and Ammonia beccarii generally dominated the living assemblage in samples from

Stations 21 - 27, Ammonia beccarii dominated, with high percentages of Elphidium
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abundance of some foraminiferal species relative to the total foraminiferal
and arcellacean assemblage in sediments from Murrells Inlet (channel).
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excavatum spp. and some Gavelinopsis translucens, the living assemblage in samples from
Stations 28-37. Water depths ranged from 4.0 m to 8.5 m, Salinities were not measured at

the stations. Organic maiter percentages were low (less than 1.4%).

3.2.2 Santee Delta
3.2.2.1 South Santee River

Fifty one samples from 26 Stations (at different depths across the river) (Appendix
Table 11) show variations in total abundance both across the river (i.e. at the same Station)
and going up the river (i.e. different Stations). Figure 24 displays results for the shallowest
sample at each Station (but not for Wambaw Creek - Stations 20 -26) along the river. The
assemblage in Wambaw Creek was almost completely composed of arcellaceans,
dominated by species of the genera Centropyxis and Difflugia. Total numbers ranged from
1 t0 644 inds/10 cm3 but were generally high (Appendix Table 11). There were few living
arcellaceans in sarnples from these stations. Organic matter percentages ranged from
0.36% to 19.33%.

Generally, highest total abundances were observed in samples from the shallowest
stations along the river, especially from stations where a sample was taken very close to, or
at, the riverbank (Stations 11 - 19). Living abundances were low except at the very shallow
sample sites. Organic matter percentages generally decreased with depth (at individual
Stations), again highest at the very shallow sites close to the riverbank (Appendix Table
11). Figure 24 shows that this trend does not necessarily hold true when going
downstream; high percentages of organic matter were present in many relatively deep
samples (Stations 3 - 6). Changes in the faunal assemblage were also observed going
downstream. Aicellaceans strongly dominated the total faunal assemblage in many shallow

upstream samples (Stations 11 - 19) with high percentages of Trochammina inflaia +
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Profile of water depth, organic matter, number of species and individuals,
and percent abundance of some foraminiferal species and arcellaceans
relative to the total foraminiferal and arcellacean assemblage in sediments
from the shallowest samples at each station from South Santee River.
Station 1 is the most scaward.
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Trochammina macrescens, Ammoastuta inepta and Haplophragmoides wilbertiin some
samples. Few foraminifera or arcellaceans were identified in the deeper samples from
these stations. Samples from Stations 9 and 10 were barren. Downstream (Stations 1 - 8),
Trochammina ochracea dominated the total assemblage often with high percentages of
Haplophragmoides wilberti and Arenoparella mexicana. The exception was the sample
from Station 2 which had a higher species diversity and larger calcareous component in the
assemblage. Generally fewer foraminifera or arcellaceans were identified in the deeper
samples from these stations. Few living foraminifera or arcellaceans were present in any of
the samgples. A surface salinity of 5%. was measured at Station 1, 1%. at Station 2, and 0%.

at the remaining stations.

3.2.2.2 Santee Delta (Offshore)

Of the 10 samples examined here, total abundances varied greatly between those
off North Santee River (Stations 1 -5) and South Santee River (Stations 6 - 10);
abundances ranged from 41 to 8928 inds/10 cm3 off North Santee River and from 7 to 48
inds/10cm3 off South Santee River {(Appendix Table 12; Figure 25). Species diversity was
also lower off South Santee River. The foraminiferal fauna was similar in these two
transects; the assemblages from both short transects were dominated by Ammonia
beccarii, Elphidium spp. and Gavelinopsis transiucens with some Trochammina ochracea
and Quinqueloculina spp. There were only rare living foraminiferal specimens in samples
off South Santee River; Elphidium spp., Gavelinopsis transiucens and Trochammina
ochracea generally dominated the living assemblages in samples off North Santee River.
Organic matter percentages ranged from 0.29% to 7.62% off North Santee River while

values were less than 2% off South Santee River. Surface salinities varied greatly at these
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Figure 25. Profile of organic matter, number of species and individuals, and percent
abundance of some foraminiferal species relative to the total foraminiferal
and arcellacean assemblage in sediments from Santee Delta (offshore).
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Stations, from 6%. to 25%. off North Santee River and from 12%. to 26%- off South Santee

River.

3.2.3 Intracoastal Waterway, Winyah Bay and Nearshore
3.2.3.1 Intracoastal Waterway

Of the 11 samples containing foraminifera or arcellaceans from the waterway, total
abundances were generally low (1 - 123 inds/10 cm3)(Appendix Table 13; Figure 26)
Arcellaceans, mostly species from the genera Centropyxis and Difflugia, generally
dominated the total assemblages but only rare specimeris were present in the living
ascemblages. No living foraminifera were present. Organic matter percentages ranged

between 0.19% and 14.79%.

3.2,3.2 Winyah Bay

in the 11 samples examined here, abundances ranged from 1 to 114 inds/1 0cm3
(Appendix Table 13; Figure 26). No living specimens were observed in these samples.
Arcellaceans were common in samples from the upper reaches of the bay and are absent in
those from the lower reaches. The foraminiferai fauna from the upper part of the bay was
dominated by agglutinated species, most commenly belonging to the genera
Trochammina, Ammotium and Ammobaculites. Near the mouth of the bay the fauna
consists of only calcarsous foraminiferal species (mainly Ammonia beccarii and Elphidium
spp.). Generally high organic matter percentages (up to 20.24%) are present in sediments
from the upper reaches of the bay. Surface salinities ranged from 0%. at Station 12 to 3%. at

Station 25,
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3.2.3.3 Nearshore locality

Both the highest total abundance (1232 inds/10cm3) and the highest species
diversity (26 species) were observed in a sample from this area (Appendix Table 13; Figure
26). Generally high species diversity is observed in most of these samples. Few living
foraminiferal specimens are present in samples furthest from the mouth of the bay. The
foraminiferal fauna is dominated by calcareous species; species of the genus Ejphidium
and Ammonia beccarii dominate the total assemblage in samples close to the mouth of the
bay while the percentage of species of the genus Quinqueloculina increase in more distal
samples. Organic matter percentages ranged between 0.27 and 4.22%. Surface salinities
&t Stations 27 and 28 were 3%. and 4%. respectively while between Stations 29 and 32

salinities increased from 19%. to 30%..

3.3 CORE SAMPLES
3.3.1 Murrells Inlet
3.3.1.1 Vibracore 90

Of the 91 samples examined from this core, 36 were barren (Appendix Table . 4).
Total abundances and species diversity were generally low exceptin the intervals from 0 -
50 cm and between 152 and 168 cm. In these intervals, the number of Individuals/10 cm3
reached to 1320 with up to 16 species present (Appendix Tabie 14; Figure 27). In the
upper 50 cm of the core, the faunal assemblage was generally dominated by Arenoparella
mexicana, with high percentages of Trochammina inflata, Aranmoastuta inepta and
Haplophragmoides spp. High percentages of Miliammina fusca were present in the top 10
cm of the core. No calcarevus benthic foraminifera were present in the top 50 cm and only
very rare specimens of the arcellacean Ceniropyxis aculeata were encountered, Betweeii

50 and 152 cm of the core, rare specimens of both agglutinated and calcareous
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foraminifera and Centropyxis aculeata were identified in a few samples. In the interval
betweeir 152 and 168 cm, the foraminiferal assemblage is essentially one composed of
calcareous species and dominated by Ammonia beccarii and Elphidium excavatum spp.
From 168 cm to the bottom of the core, rare specimens of generally calcareous benthic
foraminifera were identified. Organic matter percentages ranged from 0.47% to 15.24%
with the highest percentages near the top of the core; numerous organic matter values are

missing throughout the core including those from the top 8 cm.

3.3.1.2 Vibracore 100

In the 22 samples examined from this core, only four had significant total numbers
(Appendix Table 15). Note: In this and other vibracores from Murrells Inlet containing few
foraminifera, no figures are presented. In those from intervals 16-18 ¢cm, 21-23 cm, 30-32
cm and 70-72 cm, abundances ranged from 78 to 297 inds/10 cm3 with between four and
eight species present. Nine samples were barren while eight contained only one or two
specimens each. In the top 30 cm of the core, the three samples from this interval were
dominated by Arenopareila mexicana; the sample from 16-18 cm also had high
percentages of Miliammina fusca and Trochammina inflata. The other sample with high total
numbers, 70-72 cm, was alsc dominated by Arenoparella mexicana. The sample from 196-
198 em, which had only six foraminiferal specimens, contained only calcareous foraminifera
(Cibicides lobatulus, Elphidium excavatum spp., Helenina anderseni and a planktonic). A
radiocarbon age of 3435 + 105 years before present (yBP) (Scott et al., 1995a) was
obtained between 70-72 cm. Organic matter percentages were not measured from this

core.
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3.3.1.3 Vibracore 101

Of the 15 samples examined from this core, eight were barren (Appendix Table
16). The six samples from the top 70 cm of the core all contained foraminifera, with
abundances ranging between 3 and 1328 inds/10 cm3. Between three and nine species
were present. The uppermost sample (8-10 cm) was dominated by Miliammina fusca with
high percentages of Trochammina inflata and Arenoparella mexicana. The two samples
from the interval between 16 and 30 cm were dominated by Arenoparetla mexicana. In the
interval between 40 and 52 cm, the two sampies here were dominated by
Haplophragmoides spp. with high percentages of Arenoparella mexicana. In the only other
sample containing foraminifera (242-244 cm), a single specimen of Cassidulina reniforme
was identified. This was also the only calcareous individual present in the core. Organic

matter percentages were not measured,

3.3.1.4 Vibracore 102

Oft the 16 samples examined here, unly one below 77 cm contained rare
foraminifera (273-275 cm) and there were eight barren samples (Appendix Table 17). The
seven samples from the top 77 ¢ of this core all contained foraminifera, with abundances
ranging between 2 and 529 inds/10 cm3. One to 11 foraminiferal species were present.
Arenoparella mexicana was the dominant species, with high percentages of Trochammina
inflata. The only calcareous specimen (Cibicides lobatulus) was present in the sample from

273-275 cm, No organic matter percentages were obtained from these samples.

3.3.1.5 Push Core and Vibracore 103
Two data sets are presented in Appendix Table 18 from cores taken approximately

75 cm from each other. The push core was obtained by pushing a core tube by hand into
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the marsh peat; this sample was not affected by compaction. The second data set was from
the vibracore. In the seven samples examined from the push cor, total abundances
ranged from O to 360 inds/10 cm3 (Appendix Table 18). These samples were carefully
decanted but the total numbers may be slightly low due to this processing technique. An
assemblage dominated by Haplophragmoides manilaensis, Trochammina inflata and
Arenoparella mexicana was identified in the top 48 cm. A unit containing very black peat
and cyprus stumps (freshwater unit) was identified between 48 and 98 cm. Rare marsh
foraminiferal specimens were present in the upper part of this unit. Another marsh faunal
assemblage dominated by Ammoastuta inepta (in brown peat with marsh plant fragments)
was identified in the unit between 99 cm and 110 cm. Below this, to the bottom of the core
at 135 cm, there was again the very black peat. A single marsh foraminiferal specimen was
identified in this unit. Radiocarbon ages were obtained from four intervals (42-47 cm - 405
+ 145 yBP; 70-75 cm - 2140 = 230 yBP; 80-85 cm - 2510 = 140 yBP; 100-105 cm - 3850
145 yBP) (Gayes et al, 1992). Of the 20 samples examined from the vibracore, 12 were
barren (Appendix Table 18). Of the remaining samples, abundances ranged from 1 to 691
inds/10cm3 and from 1 to 11 species (Appendix Table 18). Although Arenoparella
mexicana strongly dominated the assemblage in the two samples from the top 14 cm, there
were differences in the subordinate species. In the sample from 6-8 cm there were
approximately equally high percentages of Haplophragmoides wilberti, Miliammina fusca,
Siphotrochammina lobata and Trochammina inflata; 12-14 cm had high percentages of
Haplophragmoides wilbertiand Trochammina macrescens. The sample from 20-22 cm had
Arenoparella mexicana and Haplophragmoides manilaensis as co-dominants with high
percentages of Tiphotrocha comprimala. Arenoparella mexicana and Ammoastuta inepta
dominated 35-37 cm while Ammoastuta inepla, with high percentages of

Haplophragmoides wilberti and Tiphotrocha comprimata, dominated 45-47 cm. The faunal



63

assemblage was strongly dominated by Ammoasiuta inepta. A single specimen of
Ammonia beccarii was identified at 310-312 cm. Organic matter percentages were not

measured.

3.3.1.6 Vibracore 106

Of the 28 samples examined from this core, all but two contained foraminifera or
arcellaceans (Appendix Table 19; Figure 28). In those with foraminifera or arcellaceans,
abundances ranged from 1 to 2224 inds/10 cm3 (Appendix Table 19). In the upper 50 cm,
the faunal assemblage was composed of typical marsh species, with the exception of the
interval 15-17 cm. This sample, with few specimens and only calcareous foraminifera,
contained coarse sand and may hiave been a storm deposit. Miliammina fusca strongly
dominated the surface assemblage with high percentages of Ammotium salsum and
Arenoparella mexicana. The sample from 8-10 cm was dominated by Trochammina inflata
with high percentages of Arenoparella mexicana and Miliammina fusca. Between 23 and 47
cm, the assemblage was again strongly dominated by Miliammina fusca with percentages of
Arenoparella mexicana toward the bottom of this interval. By 50-52 cm Arenoparella
mexicana strongly dominated the assemblage. In the interval between 60 and 132 cm, the
assemblage had an extremely high calcareous foraminiferal component dominated by
Ammonia beccarii, Elphidium spp. and Haynesina depressula. Low percentages of
Arenoparella mexicana, Siphotrochammina lobata and Trachammina spp. were present
throughout. Total numbers of individuals drop significantly (compared to the unit
dominated by calcareous foraminifera) from 140 cm to the bottom of the core. in the interval
between 140 and 187 cm the assemblages were dominated by either Arenoparella
mexicana or Trochammina spp. Trochammina spp. dominated from 190 to 202 cm. From

240 cm to the bottom of the core, a single specimen of Centropyxis aculeata was
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encountered while the remainder of the samples were barren. Radiocarbon ages were
obtained from three intervals (136-141 cm - 2475 + 135 yBP; 163-166 cm - 3460 + 155
yBP; 183-186 cm - 4090 + 235 yBP) (Gayes et al, 1992). Organic matter percentages were
measured at most intervals and values ranged between 0.22% and 74.20%, Highest
values (greater than 20%) were obtained from samples below 140 cm and values

exceeding 60% occurred below 210 cm.

3.3.2 North Inlet
3.3.2.1 Vibracore B1

Of the 30 samples examined from this core, all but four from the bottom 30 cm
contained foraminifera or arcellaceans (Appendix Table 20; Figure 29). Abundances
ranged from 14 to 15,072 inds/10 cm3 although total numbers were generally high in most
samples. In the upper 50 cm, the faunal assemblage was dominated by Haplophragmoidss
wilberti. There were also significant percentages of Arenoparella mexicana, generally
increasing towards the bottom of the unit. Low percentages of other marsh foraminiferal
species were also present although Miliammina fusca had higher percentages between 38
and 63 cm. By 63 cm, Arenoparella mexicana dominated and continued to do so to 110
cm. Percentages of Haplophragmoides wilberti continued to decrease throughout this
interval. There was an increase in percentages of Ammoastuta inepta between 98 and 110
cm. From 119 to 157 cm, Haplophragmoides witberti again strongly dominated the
samples; there was a significant decrease in percentages of Arenoparella mexicana. ‘There
were generally high percentages of Trochammina macrescens throughout this interval, with
decreasing percentages of Tiphotrocha comprimata with depth. Between 164 and 292 cm,
Arenopareila mexicana generally dominated the assemblage although Ammoastuta inepta

had high percentages, and dominated, at some levels. Percentages of Haplophragmoides
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wilberti were significantly lower than at the higher levels of the core. Highest percentages
of Miliammina fusca were observed between 180 and 192 cm. Radiocarbon ages were
obtained from three intervals (89-95 cm - 2075 + 125 yBP; 245-251 c¢m - 4050 = 145 yBP;
265-270 cm - 3835 + 140 yBP). Organic matter percentages ranged from 2.15% at the top

of the core to extremely high values (greater the 70%) near the bottom.

3.3.2.2 Vibracere B2

In the 30 samples examined from this core, abundances ranged from O to 5944
inds/10 cm3 (Appendix Table 21; Figure 30). Ten samples were barren. In the uppermost
sample from the care, the faunal assemblage was dominated by Haplophragmoides wilberti
with significant percentages of Arenoparella mexicana. Ammoastuta inepta dominated the
assemblage between 15 and 30 cm,; there were decreasing percentages of Arenoparella
mexicana and increasing values of Haplophragmoides wilberii down core in this interval.
Haplophragmoides wilberti strongly dominated 35-37 cm while Ammoastuta inepta
dominated 40-42 cm. The highest percentages of Miliammina fusca were also abserved in
this sample. From 47 to 70 cm, Arenoparella mexicana dominated with high percentages of
Haplophragmoides wilberti and Ammoastuta inepta. Haplophragmoides wilberti dominated
the assemblage between 80 and 122 cm with high percentages of Arenoparella mexicana.
There were low, but somewhat consistent percentages of Tiphotrocha comprimata,
Trochammina inflata and T. macrescens from the top of the core to 112 cm. Between 120
and 167 total numbers were quite low and Arenoparella mexicana was the dominant
foraminifera. From 180 to 382 cm the interval was barren with them exception of a sample
irom 310-312 cm that contained three foraminifera. By 430 cm the assemblage was

strongly dominated by Elphidium spp. Organic matter percentages ranged between 0.40

and 25.15%.
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3.3.2.3 Vibracore B3

Of the 27 samples examined from this core, two broad assembiages were
identified; the first. from the top to 152 cm was dominated by marsh foraminifera while from
200 to 672 cm a calcareous assemblage was present. Abundances ranged from 0 to 3104
inds/10 cm3 in the samples dominated by marsh foraminifera while up to 33, 920 inds/10
cm3 were identified in samples dominated by calcareous species (Appendix Table 22;
Figure 31). Of those samples containing foraminifera in the top 97 cm of the core, the
assemblage was strongly dominated by Arenoparella mexicana. High percentages of
Haplophragmoides wilberti were present at some levels. There were lower, but significant
percentages of Ammoastuta inepta, Siphotrochammina lobata and Trochammina inflata at
different levels within this unit. Between 110 and 152 cm, Haplophragmoides wilberti
dominated with high abundances of Arenoparella mexicana. The sample from 180-182 cm
had a mixed agglutinated/calcareous foraminiferal assemblage. From 200 cm to the bottom
of the core, Elphidium excavatum spp. dominated. There were high percentages of
Bolivina spp. between 200 and 232 cm while present in most other samples. Highest
abundances of Quingueloculina spp. were identified in samples between 540 and 672 cm
although they were present in low percentages at levels between 255 and 357 cm.

Organic matter percentages ranged between 0.40 and 14.72%.

3.3.2.4 Vibracore B9

In the 43 samples examined from this core, an assemblage dominated by marsh
foraminiferal species was identified between 0 and 197 cm while calcareous foraminifera
dominated between 215 and 507 cm. Within the marsh foraminiferal assemblage zone,
abundances ranged between 1 aad 6728 inds/10 cm3 and from 624 to 18,048 inds/10

cm3 in the samples dominated ty calcareous foraminifera (Appendix Table 23; Figure 32).
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In the uppermost 10 cm of the core, Haplophragmoides wilberti strongly dominated the
faunal assemblage. Between 12 and 52 cm the assemblage was generally dominated by
Ammoastuta inepta or co-dominated with Arenoparella mexicana. Percentages of
Miliammina fusca generally increased toward the bottom of the unit. From 60 to 82 cm,
percentages of the Ammoastula inepta decreased down core as percentages of
Miliammina fusca increased. Trochammina ochracea, Ammotium salsum and Miliammina
fusca generally co-dominated the intervai between 90 and 122 cm. From 130 to 138 cm
the assemblage was dominated by Miliammina fusca, with high percentages of Ammoasituta
inepta, Ammotium salsum, Arenoparelia mexicana and Trochammina ochracea. Few
foraminiferal specimens were identified between 147 and 157 cm. Haplophragmoides
wilberti strongly dominated the interval between 175 and 197 cm and this interval
contained the highest percentage of Trochammina inflata in the core. Elphidium
excavatum spp. strongly dominated samples between 275 and 507 em. Radiocarbon ages
were obtained from two intervals (142-147 cm - 2045 = 175 yBP; 443-456 cm - 534,500

yBP). Organic matter percentages ranged from 0.91 to 33.67%.

3.3.2.5 Short Core 1 (Trans. 6)

Of the 30 samples examined continuously every centimeter down this core, total
abundances ranged between 173 and 815 inds/10 cm3 (Appendix Table 24; Figure 33).
Total species diversity was quite consistent thrcughout. Generally the total assemblage
was co-dominated by Trochammina inflata and T. macrescens throughout the core.
Miliammina fusca dominated the surface with another, but lower percentage, peak between
4 and 6 cm. There were moderate percentages of Trochammina ochracea throughout the
core, with a general increase in values below 8 cm. There were low percentages of

Siphotrochammina lobata and Ammotium salsum throughout the core; there was generally
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a slight increase in percentages of Ammolium salsum below the 24 cm level. Low
percentages of Polysaccammina hyperhalina were present throughout, with the highest
values near the battom. Living specimens were identified to the 15-16 cm level and
abundances ranged from 1 to 152 inds/10 cm3 (Appendix Table 24; Figure 34). Of the 12
species having living representatives, nine were present in the surface (0-1 cm) sample.
Highest numbers (greater than 30) of living specimens were present in the top 6 cm.
Miliammina fusca generally dominated the living assemblage throughout. There were
moderate percentages of Trochammina inflatain the upper eight centimeters with highest
values between 1 and 3 cm. Low numbers of living Ammotium salsurn were present to § cm
(highest at the surface), Polysaccammina hyperhalina to 8 cm and Trochammina
macrescensto 12 cm. Qrganic matter percentages ranged from 14.09 to 27.68%. Tall
Spartina alterniflora was the only plant species present at this core locality. A salinity value

of 20%. was obtained at this core site.

3.3.2.6 Short Core 2 (Trans. 6)

in the 30 samples examined from every centimeter down this core, total
abundances ranged from 13 to 1256 inds/10 cm3 (Appendix Table 25; Figure 35). Total
numbers dropped significantly below 3 cm. Ammotium saisum generally dominated,
although co-dominated the faunal assemblage with Miliammina fusca, in many samples from
the upper 15 c¢m; there were also high percentages of Miliammina fusca at some levels
below 15 cm. High percentages of Trochammina infiata and T. macrescens were also
present at some levels between G and 15 cm. Trochammina macrescens dominated
between 16 and 17 cm while Trochammina inflata, with high percentages of Trochammina
macrescens, generally dominated between 19 and 24 cm. Below this, Trochammina inflata

continued to have high percentages. The continuaus down core accurrence of
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Arenoparella mexicana began at 17 cm while percentages peaked between 20 and 22 cm.
Haplophragmoides wilbertiformed a significant component of the assemblage (up to
35.4%) between 24 and 30 cm and only a single specimen of this species was identified
above this interval. Living foraminifera were identified in each sample between 0 and 13
cm, with the highest numbaers in the top 3 cm, and abundances ranged from 1 to 632
inds/10 cm3 (Appendix Table 25; Figure 36). Of the 7 species having living
representatives, five were present in the surface (0-1 cm) sample. Five live specimens
were also identified at the 16-17 cm level. The living faunal assemblage had low diversity
{up to five species per sample). Miliammina fusca generally dominated (strongly at the
surface) the living assemblage with high percentages of Ammotium salsum. Percentages
of Ammotiumn salsum generally increased with depth, although there was a decrease in
absolute numbers, from the surface to the 5-6 cm level. Between 1 and 5 cm there were
consistent, but moderate, percentages, although a decrease absolute numbers, of
Trochammina inflata and lower percentages of Trochammina macrescens. There were also
rare specimens of these species at some levels below this interval. Organic matter
percentages ranged from 2.90 to 10.50%. This core was taken near the fransition from tall

to short Spartina alterniflora..

3.3.2.7 Short Core 3 (Trans. 6)

Of the 29 samples examined continuously from every centimeter down this core,
total abundances ranged between 284 and 1240 inds/10 cm3 with the lowest total
numbers at the top of the core (Appendix Table 26; Figure 37). Trochammina inflata
strongly dominated the foraminiferal assemblage throughout this core (50 to 65%) with
high percentages cf Trochammina macrescens (generally 20 to 30%). There were low

percentages, with litde variation in values throughout the core, of Arenoparella mexicana,
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Miliammina fuscs, Siphotrochammina lobata and Tiphotrocha comprimata. Abundances of
living specimens ranged between 4 and 152 inds/10 cm3 with living specimens present to
the 21 cm level (few specimens of Miliammina fusca and Tiphotrocha comprimata)
(Appendix Table 26; Figure 38). Of the nine species having living representatives, six were
present in the surface (0-1 cm) sample. High iiving abundances were generally present
between 7 and 14 cm. Trochammina inflata generally dominated the living assemblage,
with highest percentages generally in samples from the top 6 cm. Trochammina
macrescens also had highest percentages near the top of the core; values greater than
10% also occurred between 7 and 12 cm. Percentages of living Miliammina fusca and
Arencparella moxicana both generally increased w{th depth. There were low percentages
of Miliammina fusca near the surface, with peak values between 6 and 17 cm. For
Arenoparella mexicana, other than sample 19-20 cm (100% live), percentages peaked
between 10 and 17 cm. Tiphotrocha comprimata did not have a continuous living
distribution down core; highest living percentages generally occurred lower in the core.
Eight living specimens of Siphotrachammina lobata were identified between 7 anc 8 cm.
Organic matter percentages were consistently low throughout the core ranging from 1.86
to 3.13%. The floral assemblage at this core site was dominated by Salicornia sp. and

Borrichia sp. with some Spartina alternifiora.

3.3.3 Santee Delta
3.3.3.1 Vibracore 1

Of the 26 samples examined from this core, all but three from the bottom 90 cm
contained foraminifera or arcellaceans (Appendix Table 27: Figure 39). In those samples
containing foraminifera or arcellaceans, abundances ranged from 1 to 14,592 inds/10 cm3S.

Abundances were generally low in sedimer:z from the upper meter of the core, Diversity
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was generally high although there were only rare specimens off many species. Elphidium
excaveatum spp. generally dominated the faunal assemblage throughout ttie core except at
288-290 cm and 336-328 cm where Trochammina ochracea strongly dominated. | Y
percentages of Trochammine schracea were also identified at 390-392 cm. Ammonia
baccarii and Elphidium poevanum also had high percentages at most levels and
contributed significantly to the assemblage. A radiocarbon age was of 2045 + 345 yBP was
obtained from 288-280 cm. Organic matter percentages ranged from 0.32 to 6.49%

although there were no measurements from many levels.

3.3.3.2 Vibracore 3

In the 46 samples examined from this core, abundances ranged from 1 to 27,264
inds/10 cm3 in those samples containing foraminifera or arcellaceans (Appendix Table 28;
Figure 40). Samples between 45 and 144 cm and between 490 and 570 ¢cm generally had
either iow total numbers or were barren. Samples from the other levels generally had high
species diversity. From 18 to 33 cm, the fauna! assemblage was generally co-dominated by
Trochammina inflata and Arenoparella mexicana. Thare were aiso low percentages of other
marsh foraminiferal species in this interval. Between 45 and 90 cm the samples were
barren. Trochammina ochracea strongly dominated the assemblage between 108 and 144
cm although there were low percentages of other marsh foraminiferal species. The interval
between 160 and 490 cm generally contained the highest total numbers and highest
species diversity in the core; the assemblage was dominated by Eiphidium excavatum spp.
with consistent, somewhat high, percentages of Ammonia beccarii and Elphidium
poeyanum. From 493 to 551 cm (with the exception of 495-497 cm) few foraminifera were
identified but the assemblage was dominated by Arenoparella mexicana. More numerous

specimens were present at the 495-497 cm level and the assemblage was strongly
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dominated by Trochamrnina ochracea. A radiocarbon age was of 2890 = 230 yBP was

obtained from 495-497 cm. Organic matter percentages ranged from 0.42 to 22.89%

although there v/ere no measurements from some levels.

3.3.3.3 Vibracore 7

Of the 33 samples examined from this core, all but two contained foraminifera or
arcellaceans and abundances ranged from 20 to 31,488 inds/10 cmS (Appendix Table 29;
Figure 41). From the top of the core to 80 cm (with thz exception of 70-72 cm) the faunal
assemblage was dominated by Trochammina ochracea with significant percentages of
Arenoparella mexicana and Trochammina inflata. At the 70-72 cm level, Eiphidium
excavatum spp. dominated with high percentages of Ammonia beccarii. Between 90 and
140 cm the assemblage was generally dominated by Eiphidium excavatum spp. with
significant percentages of Eiphidium poeyanum and Gavelinopsis translucens. There were
also som 2what consistent, but lower percentages of Ammonia beccarii and Trochammina
ochracea. From 148 to 270 cm, some levels were dominated by Trochammina ochracea-
Arenoparella mexicana assemblage while others were dominated by the Elphidium
excavatum spp.-Ammonia beccarii/Elphidium poeyanum assemblage. Between 281 and
337 cm, the assemblage was generally dominated by Elphidium excavatum spp. with
significant percentages of E. poeyanum, Gavelinopsis transiucens and Amrionia beccaril,
A ragicearbon age was of 2680 + 195 yBP was obtained from 2€8-270 cm. Organic matter

percentages ranged from 1.31 to 29.24%.
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CHAPTER IV
INTERPRETATIONS AND DISCUSSION

4.1 Vegetation and Relation to Mean Sea Level

Seait marsh plants, or halophytes, extend vertically from about mean sea level (MSL)
to the upper limit of tides where thev end at the point typical land vegetation begins to grow
or else grade into freshwater swamips. A distinctive characteristic of most salt marshes
throughout much of the world is the vertical zonation of many halophyte species
(Chapman, 1960). Chapman (1960) charactetized most marshes regionally throughout the
worlid; those from Soutih Carolina are considered to be in his "Easiemn North American
Group, Coastal Plain Type." He also statzd that these marshes are similar to those further
north (ie., Northeastern U.S.A. and Nova Scotia) with the addition of indigenous southern
species which culminate in mangrove swamps at the scuthern tip of Florida and along part
of the Gulf of Mexico coast. The typical vertical halophyte association in the Coastal Plain,
described from North Carolina, is one in which Spartina alterniflora dominates the low marsh
flora, followed by an association of Spartina alterniflora, S, patens and Salicornia spp. in the
upper low marsh to middle marsh to Distichlis spp. and Juncus spp. in the high marsh
(Wells, 1928). This is generally the vertical succession of halophytes observed in transects
from both Murrells and North Inlets and from Transect 4, near the mouth of South Santee
River, which has more tidal influence and hence higher salinities than observed in the
transects further upstream. Throughout these marshes, Spaiina alterniflora also fringes
smali tidal channels, situated at lower elevations. Figure 42 shows this generalized
halophyte zonation. The floral zonation, especially in the high marsh, is generally not as
well developed in South Carolina marshes compared to marshes further north (ie., Maine to

Nova Scofia, see Scott and Medioli, 1980a; Gehrels, 1994). The vertical zonation of marsh
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plants observed in the South Carolina marshes is similar to the associations reported by
Goldstein and Frey (1986) and Goldsiein and Harben (1993) for Georgia marshes.

There is also an apparent spatial change in marsh plant assemblages along
estuaries, river banks or tributaries observed in coast to hinterland transects. This change
is related to a general upstream decrease in salinity (less tidal influence) (Chapman, 1960).
The typical association in this situation is one where Spartina afternifiora marshes grade
laterally into marshes dominated by Spartina cynosuroides (genvrally a freshwater swamp
species) and eventually to upland plants and trees (Chapman, 1960). This is the general
plant zonation observed geing upstream along the shores of South Santee River and
along the shores of Winyah Bay. The fransition between Spartina alternifiora and S.
cynosuroides tiominated marshes (along the riverbank) occurs between Transects 5 and
10 in the South Santee River system while Spartina alfternifiora fringes much of the
shoreline of Winyah Bay. In the very upper reaches of Winyah Bay, and along the
Intracoastal Waterway, Spartina cynosuroides dominates because of the lowered salinities.
Similar plant associations occur along the shoreline of Chesapeake Bay and estuaries
draining into the Bay (Ellison and Nichols, 1976). In Nova Scotia a smaller variety of Spartina
cynosuroides is virtually never in tida! areas regardless of salinity (Scott and Medioli, 1980a),
showing some of the regional variation in plant species.

In this study, mean high water (MHW) is defined as the upper limit of the Spaitina
alternifiora zone. The area of the marsh surface akove this horizon is considered to be high
marsh, usually dominated by Distichlis spp. or Juncus spp.; the area below, which is either
exclusively or strongly dominated by Spartina afternifiora, is considered the low marsh. A
transition, or middle marsh with a mixed floral assembiage (but containing Spartina

alterniflora) separate the two "end member" zones. Mean sea level is considered to be the

lower limit of the growth of Spartina alterniflora, which is a reasonable assumption according
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to Chapman (1960). Highest high water is generally considered the point above which
halophytes do not grow (Scott and Medionli, 1980a). This relationship has generally been
shown to hold true in Nova Scotia (Scott and Medioli, 1980a) as well as in Maine (Gehrels,
1994) although in some transects from Chezzetcook Inlet, Nova Scotia, Scott and Medioli
(1980a) reported that Spartina altemnifiora can extend up to 30 cm below MSL.

The tidal range often becomes distorted as the tide propagates into shallow
estuaries or into small tidal infets inland along the U.S. East coast (Aubrey and Speer, 1985;
Lincoln and Fitzgerald, 1988), Both of these studies reported a decrease in tidal amplitude
with distance from the open ocean. A 50 to 60% decrease in tidal range over a distance of
five to six kilometers was reported by Aubrey and Spears (1985} in a back barrier system in
Massachusetts. Lincoln and Fitzgerald (1988) also reported a non-linear decrease in tidal
amplitude with distance from some small Inlets in Maine; the reduction was attributed to the
channel geometry and the broad, widespread character of the back barrier marshes. The
spatial distribution of Spartina alterniflora was also observed in the marshes they
investigated. The range in elevation of the upper limit of the Spartina alterniflora zone in
transects from Murrells Inlet, alithough not quantified by relating the levels to benchmarks,
may also be related to a spatial variation of mean high water levels, The upper limit of the
floral zone dominated by Spartina alterniflorawas approximately 100 cm above the lower
limit of Spartina alternifiora (which was used as MSL in this study) at Transect 7 (near the
open coast) while it was only 55 cm and 60 cm above MSL at Transects 2 and 8 respectively
(near the head of the inlef). There are two causeways with bridges crossing the tidal
channel between the mouth of Murrells Inlet and the head of the marsh system where
Transects 2 an- 2 were sampled; these may also be affecting the tidal flow since they cause

a large decrease in the tidal prism (Scott et al., 1976).
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In their study of Chezzetcook Iniet, Scott and Medioli (1980a) recogniz2d that
along the sides of some channels the slope was very steep due te the undercutting of the
marsh peat by tidal currents. Along these channels there was usually a poorly developed
low marsh with a narrow zone of Spartina akiemificra. in the transecis at the head of Murrells
Inlet, the slope was aiso somewhat steep close to the edge of the tidal channel (observed
at low tide especially at Transect 8). A similar situatioi was observed at most transects,
including Transect 7 at the mouth of the Iniet (ie. there were no gradational slopes to MSL
or extensive mudflats). Although there is a well developed, extensive low marsh around
the channel, both at Transects 2 and 8 near the head of Murrells Inlet, the lower limit of the
Spartina alternifiora zone identified here may not be the true lower fimit of this zone.
Possibly some combination of changes in tidal amplitude from the mouth to the head of
Murrells Inlet, the presence of causeways, or not establishing the true lower limit of the
Spartina aiterniflora zone (in relation to MSL by comparing this level to benchmarks) may
account for the differences in the upper limit of the Spartina alternifiora zone between the

head and mouth of Murrells Inlet.

4.2 Foraminifera From Surficial Marsh Transects and Comparison With Other Marshes
According to Scott and Medicli (1978; 1980a), there are discrete vertical ranges of
certain species or assemblages of agglutinated sait marsh foraminifera which make tham
“the most accurate" sea-level indicators on temperate coastlines since these foraminiferal
assemblages are generally preserved in subsurface sediments. The vertical zonation
concept is based on the principal that there is a relationship between ecological parameters
and species that controls their distribution (elevation). Some of these include salinity,
temperature, substrate and length of tidal submergence. In their study of Chezzetcook

Inlet, Nova Scotia, Scott and Medioli (1980a) identified an assemblage containing 100%

.
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Trochammina macrescens that was restricted to a 6 cm vertical range along the uppermost
edge of the marsh. Above this interval no foraminifera were present. Other foraminiferal
assemblages were related to various elevation intervals across the marsh surface.

Although the broad trends in foraminiferal distributions generally followed the halophyte
zonation in Chezzetcook !nlet (ie. low to high marsh zones), these plant zones could be
subdivided based on their associated agglutinated foraminiferal assemblages. Since the
halophytes in Chezzetcook Inlet had larger vertical ranges than the agglutinated
foraminiferal assembiages Scott and Medioli (1980a) concluded that they were less useful
as accurate sea-level monitors than the foraminifera, Another problem with using salt-marsh
plant remains as indicators of former marsh elevations is that identification of the plant
remains from subsurface sediments to the species level can be extremely difficult.
Conversely, in a preliminary quantitative study relating marsh foraminiferal distributions to
elevation above mean sea level, in southern Califoriia, Scott (1976a) noted that the
elevation ranges cf some marsh species correlated exactly with the floral ranges. In marsh
sediments from Sapelo Island, Georgia, Goldstein and Frey (1986) reported associations of
marsh foraminiferal assemblages with specific marsh habitats but did not give vertical
intervals for these associations. These examples show that there is a relationship beiween
march foraminiferal assemblages and halophyte assemblages across the marsh surface

which in turn can be generally related to sea-level or tidal variations.

4.2.1 Murrells Inlet

Although there are many similarities in species conposition and spatial distribution
of foraminifera within the transects from Mumells Inlet, there are also some striking
differences (Figures 6-11). Transect 2 from the head of the Inlet has a distinctively high

calcareous component (Ammonia beccarii and Elphidium excavatum spp.) in the high
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marsh, in both the living and total assemblages. Of all the marshes examined during this
study, this is the only one where this situation occurs. Phleger (1965a) reported high
percentages of calcareous foraminifera (Ammonia beccarii- Elphidium spp.) in sediments
from a Mangrove marsh in Florida where the substrate was an organic calcareous quartz
sand and silt. Phleger (1965b, 1965c¢) also identified living Ammonia beccarii and
Elphidium spp. in coastal Texas marshes and lagoons. Elphidium spp. were generally
restricted to the lower marsh while Ammonia beccarii was abundant throughout the
marshes. These species were also common in the bays and lagoons surrounding the
marshes and Phleger (1965b) suggested that they might have been introduced to the
marsh during times of flooding from either the ocean or the lagoons. This may also be the
case at Transect 2; the high marsh is not far from the ocean and is flooded periodically
during storms or extreme tides. These species are present in nearshore environments
seaward of the marsh (Figure 23). This possibility also seems to be supported by the
presence of Gavelinopsis translucens, a marine foraminiferal species (Murray, 1991) which
was observed in high marsh sediments from Transect 2. What is unusual is that Ammonia
beccariiand Elphidium spp. have only occupied the sandier high marsh environment along
this transect suggesting the possibility that tests deposited in the generally muddier, lower
pH low marsh sediments may have dissolved. Given the high numbers of living specimens
observed in high marsh sediments at the time of collection their presence should have also
been observed in the low marsh if they were utilizing that habitat. In Chezzetcook Inlet,
Scott and Medioli (1980b) identified living calcareous foraminiferal specimens in low marsh
sediments with rare, badly etched, dead calcareous tests indicating the calcareous species
dissolve quickly after death in the low pH marsh environments. Since Transect 2 was
collected less than one year after Hurricane Hugo, this calcareous assemblage may be a

result of flooding of the marsh with marine water during the hurricane, transporting these
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calcareous species to this locality and then conditions being favorable for their
reproduction. Transect 8 on the opposite side of the channel was collected one year later.
If calcareous foraminifera had been transported there by the hurricane, there was no record
preserved in the surficial sediments.

Hurricane Hugo, with sustained winds of 248 km/hr, made landfall just north of
Charleston, South Carolina on September 22, 1989 (Sexton and Hayes, 1991). This
occurred about one hour before high tide and the storm surge ranged from between four
and five meters above MHW in the Santee Delta region (Sexton and Hayes, 1991) and up
to 3.6 m above mean low water along Myrtie Beach (Hall and Halsey, 1991). The head of
Murrells Iniet (lccation of Transects 2 and 8) was probably flooded both by the surge directly
from the ocean as well from increased water levels in the Inlet and tidal channels. Although
there was little sediment deposited or major geomorphic changes as a result of the storm
surge at inland localities along the coastline (Hall and Halsey, 1991; Gardner et al., 1992;
Sexton, 1995}, objects as large as refrigerators scattered across the marsh surface at
Murrells Inlet (P. Gayes, pers. comm., 1990) were evidence of the high energy of this
catastrophic event.

Parker and Athearn (1959) also reported calcareous species in marsh sediments
from Massachusetts, although they were typically restricted to the low marsh. [n Georgia,
Ammonia beccariiis present throughout most marshes, from low to high marsh but with low
numbers in high marsh sediments, while Elphidium spp. are restricted to the low marsh (S.
Goldstein, pers. comm., 1995). There are low numbers of Ammonia beccarii and Elphidium
spp. in some low marsh samples from Transect 7 but they do not extend into the high
marsh zone.

Miliammina fusca and Ammotium salsum generally dominate the assemblages

within the low marsh sediments from all Murrells Inlet ransects. Subsidiary species in many
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samples include Trochammina inflata and Arenoparella mexicana. Arenoparella mexicana
has also been identified in the low and high marsh zones in Georgia (Goldstein and Harben,
1993). Relatively high percentages of Arenoparella mexicana were present in samples
near the channel end of Transect 8 althougki they were present generally throughout most
of the transect. Calcareous species are present near the channel end of Transect 7. The
dominant low marsh foraminiferal species from Murrells Inlet are similar to those from
marshes to the north, ie. Maine (Gehrels, 1994) and Nova Scotia (Scott and Medioli, 1980a)
although there are more subsidiary species in the Murrells Inlet samples. There is generally
a lower calcareous component in these samples than in low marsh sediments to the south
(Phleger, 1965b, 1965c; Goldstein and Harben, 1993).

To deune an overall foraminiferal zonation, related to absolute elevation, of Murrells
Inlet marsh system is somewhat problematic. With the difference in elevations between the
boundaries of the high and low marshes from the head to the mouth of the Inlet, placing a
number on this change for the whale system would be misleading in the absence of
benchmarks. At Transect 7, closest to the ocean, and not affected by the possible tidal
distortions previously discussed, more typical high and low marsh foraminiferal associations
are observed. Ammotium salsum and Miliammina fusca generally dominate in low marsh
assemblages to about +100 cm above the base of Spartina alternifiora (considered MSL).
There are also significant percentages of Ammonia beccarii and Eiphidium spp. near the
channels. In the middle marsh (+100 to +150 cm) the foraminiferal assemblage is
dominated generally by Trochammina infiata with high percentages of Siphotrochamrnina
Jobata and Trochammina macrescens in some samples. Between +110 ¢cm and +121 cm,
near the seaward end of the channel, there is an assemblage strongly dominated (but with
relatively low numbers) by Trochammina macrescens although this assemblage is not

repeated at equivalent elevations along the transect. This suggests there is some
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microhabitat favorable (and not necessarily elevation control) for this peak of Trochammina
macrescens in this transect. In the high marsh of this transect (greater than +150 cm), the
foraminiferal assemblage was again dominated by Trochammina inflata with some
Haplophragmoides wilberti; this is the high marsh assemblage zone identified in sediments
from North Iniet (see next section),

Scott and Medioli (1980a) used Haplophragmoides bonplandi (=
Haplophragmoides manilaensis, this study) as a high marsh indicator species in Wallace
Basin, Nava Scotia. Scott et al. (1990) used Haplophragmoides spp. (Haplophragmoides
manilaensis + Haplophragmoides wilbert) and Trochamimina inflata to characterize the
environment above mangroves (high marsh) in Guaratuba, Brazil. They suggested that
there may be an intergradation between these two species and included them as a group.
There also appeared to be an intergradation in some specimens from South Carolina
marshes although in most cases the typical end member species could be recognized.
Generally, Haplophragmoides wilberti (and if intergradational, Haplophragmoides
manilaensis) may also be considered a low salinity indicator since it was living (although in
low percentages) along the riverbank in the upper reaches of Santee River (Appendix
Table 11), presumably in a low salinity environment. In a study of the Great Marshes,
Massachusetts, de Rijk (1995) presented data showing a positive correlation of
Hapiuphragmoides manilaensis with elevation abave mean high water and suggests that it
may prefer more elevated areas. Nevertheless, she concludes that Haplophragmoides
manilaensis is a low salinity indicator and that there is norelationship with elevation above
mean sea level. A problem with this study is that de Rijk (1995) presented data only for
those samples above mean high water. Since Haplophragmoides manilaensis occurs in

the high marsh deposits at the Great Marshes it may (and since typical low marsh species
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are not present in her data set) be a high marsh, low salinity indicator. That interpretation of
her work agrees well with that of this study and of other previous works.

The zonaticn observed in the marshes from Murrells Inlet is not as well refined as
those from the northern marshes (ie. Scott and Medioli, 1978; 1980a; Gehrels, 1994). This
may in part be due to the fact that there has been a lot of development around the head of
Murrells Inlet and possibly this marsh system has not yet recovered from the possibie
alterations in the foraminiferal assemblages as a result of Hunicane Hugo. The interesting
factor with Hurricane Hugo is that there is little or no sedimentological trace of this event on
the modern marsh surface.

In all three transects from Murrells Inlet, foraminifera were living in the highest
vertical samples of the transects, which, when sampled, had been thought to be at or
above highest high water, This feature contrasts with the studies of Scott and Medioli
(197va) and Gehrels (1994) where environments above highest high water were barren of
foraminifera. Transect 2 ended at the edge of a resident's backyard. At this site there were
surprisingly high percentages of Ammonia beccarii, typically a iow marsh to estuarine
species (Murray, 1991), living in the highest marsh (that was dry and sandy) with sparse
vegetation and bordering upland grass, ie., an environment in which salinity must be
typically very low. Goldstein and Frey (1986) reported low total percentages of Ammonia
parkinsoniana in maist high (Juncus) sediments from Sapelo Island, Georgia, but did not
report on living percentages. Goldstein and Harben (1993} also reported low living and
total percentages of Ammonia beccariiin moist high (Distichlis) marsh sediments which is
perhaps not surprising since the Distichlis marsh is vertically lower than the Juncus marsh in
Georgia (S. Goldstein, pers. comm., 1995). At the end of Transect 7, there were low
numbers of living Haplophragmoides wiiberti, Siphotrochammina lobata and Trochammina

infiata living at the edge of the Juncus marsh. This transect ended at the edge of a forest,
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and although the numbers of both living and total foraminifera decrease, they were present
above what is considered highest high water. Goldstein and Frey (1986) reported
Siphotrochammina lobata from unvegetatad tidzl creeks but not in sediments from the high
marsh, while Goldstein and Harben (1993) reported low percentages of both living
Haplophragmoides wilbertiand Trochammina inflata in high (Distichlis) marsh sediments in
Georgia. In any case, although not measured, the salinity must be low for these nearby
upland plants and trees to survive so these foraminiferal species can tolerate very low
salinities. In more northern marshes, Trochemmina inflata has been considered to thrive
more in the upper low to middle marsh (ie. Scott and Medioli, 1980a). Transect 8 ended at
the edge of the Typha spp. swamp, typically freshwater (Chapman, 1960), and very close to
cypress trees and a resident's backyard. There were very high numbers of living
foraminifera in these samples and the living assemblage was strongly dominated by
Miliammina fusca. Miliammina fuscais generally considered to be an intertidal to lcw marsh
species tolerating a salinity range of 0 to 35%. (Murray, 1991) although usually found in
localities at the lower end of this range. It generally lives in low marsh localities with salinities
between 0 and 10%. in Chezzetcook Inlet marshes, Nova Scotia (Scott and Medioli, 1980a)
and in low marsh localities in Maine (Gehrels, 1994). Itis interesting that Miliammina fuscais
the dominant living taxon, with high total abundances in these high marsh sediments and
the high abundances observed at the end of Transect 8 suggest that its presence is not
exclusively controlled by either salinity or elevation. A similar situation was observed in a
very brackish marsh in Japan (Scott et al., 1995¢). Ammoastula inepta, a typical low salinity
foraminiferal species present in the high marsh along the James River Estuary, Virginia
(Eliison and Nichols, 1976) is also present in high marsh sediments at the end of Transect 8
both in the living and total assemblage. Haplophragmoides wilbertiis also present here, as

expected, since this species is also a good high marsh indicator. There is a general inverse
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relationship between salinity and elevation in the salt marsh (especially if there is little

marine influence other than tidal channels) and it appears that the relatively lower salinities
at the end of Transect 8 may be affecting the assemblages present. The absence of large
populations of arcellaceans suggest that freshwater input is relatively low (Medioli and
Scoft, 1983); rainfall is probably the only source of surface freshwater. In each of these
cases the marsh foraminifera did extend slighly higher than what has been considered
highest high water on the basis of floral zone boundaries. This suggests that salinity may
be raised by capillary action creating a slighlly brackish sediment/water interface suitable for
foraminifera and that they may not necessarily require exposure to the effects of tides. If
these typically low marsh foraminiferal species were passively transported to the high marsh
(possibly during Hurricane Hugo), they have adapted well to conditions in this environment.
Phleger (1976) relates the number of foraminifera in a given locality to the organic
preduction at that site. In areas with high organic production there is generally a high
concentration of benthic foraminifera. Taken somewhat further, this relationship can be
tied to the total organic matter concentration in sediments, since Phleger (1976) stated that
marshes with sandy substrates generally have small standing crops of both marsh plants
and foraminifera, Areas with high organic matter concentrations create an environment
favorabile for production of food for foraminifera (ie. bacteria or algae) (eg. Lee and Muller,
1973; Murray, 1991). Scott et al. (1991) noted limited marsh foraminiferal faunas in areas
that had been affected by two hurricanes the year before collection; the hurricanes had
swept the area clean of vegetation and the next year the plants {and organic matter) were
just being reestablished and numbers of foraminifera were low compared to areas not
affected by the hurricanes. Phleger (1976) also noted that in the highest marsh, although it
may be organic-rich, there may be low densities of foraminifera since the area may only

rarely be flooded by tides however in more northern marshes this does not appear to be



100
true until you get above tidal influence (Scott and Medioli, 1980a; Gehrels, 1994). If there

is alei of freshwater influence, it would be expected that arcellaceans would colonize this
environment.

Overall, percentages of organic matter were higher in Transect 8 and there were
also higher total numbers of both total and living foraminifera in these sediments than those
observed in Transect 7 material. Generally organic content wili be higher as the marsh gets
fresher (je. higher plant productivity and diversity) so it is not surprising that total numbers of
foraminifera would increase while diversity decreases. Some of the highest marsh
foraminiferal densities measured (at least known to the author), both in living and total
populations, are in a low salinity, highly organic marsh in eastern Hokkaido, Japan (Scott et
al., 1995¢c). Numbers of both total and living foraminifera were also higher in sediments
from Transect 2 (at the head of the Inlet) than Transect 8 and this suggests that the habitat
for certain species of marsh foraminifera is more favorable at the head, rather than the
mouth of the Inlet. The area around the head of the marsh is more sheltered than at the
mouth and the freshwater entering the system is less diluted allowing more plant growth,

more organic matter and more foraminifera.

4.2.2 North Inlet

Transects 1 and 6 showed very similar pattemns in the benthic foraminiferal
distributions (Figures 12-15). Well defined foraminiferal assembiage zones are identified
from these transects based on the dominance of certain species. The elevations of the
subdivisions of the marsh based on the plant zonations (ie., high, middle and low marsh) in
relation to MSL corresponds well between the two transects, although they have not been
tied to a benchmark but are based instead on the lowermost occurrence of Spartina

alternifiora as being equal to MSL.

S -
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There are four distinct assemblages that are indicative of elevation changes within
these transects. Below the MHW level (based on the deminance of Spartina alterniflora),
the marsh fauna can be divided into two zones: the first (= Scott and Medioli, 1980a, Zone ||
B) ranges from MSL to +66 cm at Transect 1 (Figure 43) and from MSL to + 52 cm at
Transect 6 (Figure 44). This assemblage contained varying percentagas of Ammotium
salsum, Millammina fusca, Trochammina infiata, T. macrescens and Siphotrochammina
lobata. There is also a zone strongly dominiated by Miliammina fusca from + 66-77 cm ai
Transect 1 and from + 52-70 cm at Transect 6 (= Scoft and Medioli, 1980a, Zone il Aq).
Zone 3, corresponding to the middle marsh, is strongly dominated by Trochammina inflata
with lesser percentages of Trochammina macrescens and Siphotrochammina lobata. This
zone ranges from + 77 cm to + 105 cm at Transect 1 and from + 70cm to + 111 cm at
Transect 6. It carresponds raughly to Zone | B2 of Scott and Medioli (1980a). The
remainhing zone, which marks the high marsh, is similar in faunal character to the middle
marsh zone with the addition of significant percentages of Haplophragmoides wilberti, This
zone corresponds approximately to Zone | B1 of Scott and Medioli (1980a). Figure 45
shows the relationship of foraminiferal species along Transect 1, North Inlet with Scott and
Mediol’s (1980a) overall foraminiferal zonation from Chezzetcook Inlet (which is typical for
marshes in most temperate areas).

Most of the foraminifera present in the low marsh Zone 1 are also present in Sample
34, Transect 1, that was taken 35 cm below the lowermost Spartina alternifiora (MSL in this
study). This would make it virtually impossible to distinguish these shallow subtidal or
mudflat deposits near the marsh based only on the benthic foraminifera. The total number
of specimens per sample are generally higher in the marsh sediments although this may not

always be the case. The high numbers in Sample 34 may be patrtially due to its proximity to
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Figure 43. Summary of North Inlet, Transect 1; physical, vegetation and foraminiferal

data. MSL = mean sea level, MHW = mean high water.
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Organic  Salinty Floral  Tidal Foraminferal  Faunal
Plant Species matter (%) Range Zone Heghts  Spacies Zone
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Figure 44. Summary of North Inlet, Transect 6; physical, vegetation and foraminiferal

data. MSL = mean sea level, MHW = mean high water.
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the marsh edge where foraminifera may bs transported into the channel through tidal action
and/or slumping from marsh banks.

Scott and Medioli (1980a) and Gehrels (1994) both identified an assemblage
containing only Trochamimina macrescens in the highest high marshes from Nova Scotia
and Maine respectively. This assemblage was also recognized in subsurface sediments
and was considered to be a very accurate indicator of former sea-level position in their
studies. The distribution of Trochammina macrescens along the two North Inlet transects
show that there is no relationship of this taxon to elevation at these localities. In the total
assemblage this species is present from the lowest to highest marsh, with lowest
percen-ages in the upper low marsh (Zene 2). The living distribution is different from that of
the total; highest living percentages are generally in the higher marsh although there are
also living members in the low marsh. This suggests that the distribution is not totally
related to salinity variations since this species is living both at higher and lower salinity areas.
There appears to be a weak association of the Trochammina macrescens distribution with
organic matter here; generally there are higher living percerizges of living Trochammina
macrescens at sample localities with low organic matter concentrations, especially in the
high marsh. This could in part be due to low numbers generally and a more random
distribution of the species here where it is not dominant. However, this species appears to
favor high organic matter - the highest densities (both total and living) occurred in Japan in
almost freshwater marshes. Also the highest living and total numbers of Trochammina
macrescens in Chezzetcook Inlet occurred in the most brackish station which was high in
organic matter (Scott and Medioli, 1980b). The distribution of Siphotrochammina lobata
generally follows a similar pattern to Trochammina macrescens. Trochammina inflata, both
in the living and total distributions, is more restricted to the high marsh. Haplophragmoides

maniiaensis, the low salinity indicator in the Great Marshes, Massachusetts (de Rijk, 1995),
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was observed in some high marsh sediments, but at much lower percentages than
Haplophragmoides wilberti. Both of these species were restricted to the high marsh which

again suggests there may be some salinity, as welt as elevational control in their distribution.

4.2.3 Santee Delta

Three transects were obtained along Santee River (Figures 16-21) in what, from
the vegetation zones, were considered to be affected by varying degrees of salinity. Near
the mouth of the river Transect 4 displayed the typical floral associations (although the floral
Zones were somewhat narrow) from low to high marsh that were also observed at the higher
salinity localities in Murrells and North Inlets. Upstream, at Transect 10, Spartina alternifiora
was replaced by S. cynosuroides across the marsh. Along Transect 5 only Spartina
cynosuroides was observed. It was expected that the transition from more marine to
freshwater-influenced conditions, indicated by the floral assemblages, would be observed
with respect to foraminifera in these transects but the relationship is not as simple as one in
which foraminifera are replaced by arcellaceans.

Total numbers were very low throughout much of Transect 4 except from Station
20 to the end; the assemblage was strongly dominated by calcareous species (Ammonia
beccariiand Elphidium spp.). Very rare living calcareous specimens were present perhaps
a result of transport during washover from the nearby ocean. Few living marsh foraminifera
were also present in thesw samples. The Holocene barrier sands (Sexton et al., 1992), on
which the marsh has accreted, contain very litle organic matter and the calcareous
assemblage is a relict one. Although the low numbers of foraminiferal specimens present in
this transect disallow any firm conclusions, some trends are worth mentioning.

Within the marsh itself there is a very narrow low marsh zone (5 m) along a steep

topagraphic gradient. This zone contains the typical low marsh assemblage identified at
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both Murrells and North inlets (Miliammina fusca and Ammotium salsum with some
Trochammina inflatd) although here there are also significant percentages of Trochammina
ochracea here. Trochammina ochraceais also common in Transects 5 and 10 further
upstream. This species has a broad distribution that extends from the low marsh into South
Santee River (see Appendix Table 11). Buzas (1965) identified Trochammina squamata (=
Trochammina ochracea, this study) in many samples from Lorg Island Sound.

Excluding the sandy interval at the end of Transect 4, there is a 17 cm vertical
change in elevaticn along the remainder of the transect (a distance of 101 m) and there are
changes in the floral assemblage along the transect. Total numbers of foraminifera are low
along the remainder of the transect except for Sample 19 which had more individuals (103
inds/10 cm3). Haplophragmoides wilbertiis again generally dominant at higher elevations,
throughout much of the mid- to high marsh (based on the floral zonation), although the
salinities measured in the middle marsh are high. These were "one time" salinity
measurements and may not reflect either average or extreme values. Arenoparella
mexicana and Trochammina inflata have high percentages through the transect but Fhese
species alone do not define any zonation. Trochammina macrescens showed a bimodal
distribution and therefore cannot be used by itself to characterize a zone in relation to mean
sea level as has been done in some northern areas (ie., Scott and Medioli, 1980a; Gehrels,
1994). There is a peak of Siphotrochammina lobata in the high marsh (based on halophyte
associations) but, because of low total numbers, its use as a high marsh indicator is
questionable. High percentages of this species were found in the high marsh both at
Murrells and North Inlets, although not exclusively. A bimodal distribution of this species
was observed at North Inlet. It is curious that there are living specimens of many of the
marsh species in the high marsh and even in the sandy area at the end of the transect. The

only typical low marsh species not found living there is Ammotium salsum.
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in both Transects 5 and 10 a curious mixed foraminiferal and arcellacean species
assemblage was identified. The surface samples in the- - fransects may be reflecting
changes, presumably in salinity, caused by the rediversion of freshwater flow back to the
Santee River in 1985. Since the accumulation rate of sediment on the recent marsh
surface is not known, the numbers of years represented in the interval fromn 0-1 cm is
cannot be estimated.

Medioli and Scott (1983), Collins et al. (1990) and Medioli et al. (1994) all
suggested that the arcellacean species Centropyxis aculeata, although considered a
freshwater species, could live and reproduce in slightly saline environments. Other
arcellacean genera were considered to live exclusively in freshwater environments. In their
study of foraminiferal and arcellaceans distributions in the lower Mississippi Delta, Scott et
al. (1991) reported moderate percentages of living Centropyxis spp. in the brackish
marshes (extremely rare living occurrences of Difflugia spp. were reported in a few samples
from these transects) while even in their freshwater transects they observed low
percentages of Difflugiaspp. The low percentage of foraminiferal species in these
freshwater marshes were attributed to episodic marine incursions, primarily from storms. In
Santee Delta Transect 10, although Centropyxis spp. are the dominant living arcellaceans,
there are consistent occurrences of live Difflugia spp. and Cucurbitella tricuspis in many
samples in association with living foraminifera. This indicates that these arcellacean species
also have a salinity tolerance (assuming that the foraminifera need some marine influence to
live and reproduce).

it has been suggested that substrate composition may also control the arcellacean
distribution at a given locality (Haman, 1990; Scott et al., 1991) and that in areas with little
sand (ie. floating marshes or bogs) genera such as Ceniropyxis will dominate the

assemblage while in more mineralic localities Difflugia spp. may dominate. Both genera
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have been recognized in samples from bogs in Nova Scotia (Medioli and Collins,
unpublished data). Collins et al. (1990) suggested that climate and limnologic conditions
also control the distributions of the taxa (eg. in a lake ini Virginia with high concentrations of
the algae Spirogyra spp., Cucurbitella tricuspis generally dominated although there were
high percentages of both Centropyxis spp. and Difflugia spp.). There are high organic
matter concentrations, as well as a high mineralic content in sediments from Transect 10,
therefore substrate composition should not be a limiting factor for either Centropyxis spp.
or Difflugia spp. In any case, this is the first known occurrence of Difflugia spp. and
Cucurbiteila tricuspis living throughout a marsh with living marsh foraminifera and is
attributed to possible previously unreported salinity tolerances of these species.

Even with the mixed foraminiferal and arcellacean assemblage, some vertical
zonation of the associated foraminiferal species is evident. It appears that this is the only
transect where samples were obtained above highest high water. These samples (1 and 2)
contained few, almost exclusively arceilacean specimens. Only terrestrial plants were
present. In the floral zone that was strongly dominated by Spartina cynosuroides,
(between +115 cm and +154 cm), highest total numbers of foraminiferal specimens were
present and the assemblage wais strongly dominated by Haplophragmoides spp. with lower
percentages of Ammoastuta inepta, Miliammina fusca and Trochammina macrescens. This
assemblage is similar to the high marsh assemblages identified at the other localities. High
numbers of foraminifera in the Spartina cynosuroides zone contrasts markedly with results
from Nova Scotia (Scott and Medioli, 1980a). No foraminifera were found in sediments from
this plant zcne in Nova Scotia; elevation measurements showed that this floral assemblage
was growing above highest high water (Scott and Medioli, 1980a). This does not appear to
be the case in South Carolina since foraminifera are living within the Spartina cynosuroides

zone.
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The remainder of the marsh has very little vertical change, approximately 7 cm (until
it drops off near the channel). Generally, along this section of the marsh, the total
assemblage is co-dominated by Ammotium salsum, Miliammina fusca and arcellaceans while
the living assemblage is strongly dominated by arcellaceans. The exception is between
Stations 7 and 11 where there were high total and living percentages of Ammotium salsum;
there was a lateral floral change in this interval (an increase in Scirpus spp.) although this
does not appear to be related to an elevation change. The difference between the species
composition of living and total populations here may be indicative of changes in the
hydrology of the river (the rediversion); the total population averages the accumulation of
individuals over time (Scott and Medioli, 1980b) while the living populaton represents
conditions at one time (Murray, 1984). Along this central, relatively flat portion of the
transect the living microfossil assemblage suggests that conditions are quite fresh while the
total assemblage suggests that conditions are more marine. Here the living population may
be better reflecting the present conditions, with probable freshening since the rediversion
of the flow back to Santee River, than the total although this is highly speculative without
the benefit of core data from this locality. Salinities of 0%. were obtained between Stations
10 and 14 although these were one time measurements only and probably do not reflect
average salinity conditions.

Most marsh foraminifera are capable of withstanding a broad range of conditions
since the marsh is an extremely harsh and variable environment (Phleger and Bradshaw,
1966, Murray, 1991). The foraminifera present in samples along Transect 10 may be
particularly suited to withstanding extremely low salinities over a long period of time (Ellison
and Nichols, 1976; Murray, 1991). Itis interesting to note that Trochammina infiata,

common to abundant in other transects including Transect 4 downstream, is rare or absent
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in most samples from this transect suggesting that it may need higher salinities to thrive.
Murray (1991) lists its salinity range as highly variable.

No elevations were obtained, and the distances between samples along the short
Transect 5 are approximate, but the faunal associations observed here are generally similar
to those observed near the channel at Transect 10. Here living and total distributions are
much more similar than in Transect 10; the main difference between these two transects is
the higher ~ercentage of living Ammoastuta inepta (although totat numbers are iow). In
both transects, over comparable distances from the channel edge, organic matter
percentages are similar; the only difference identified here is floral composition. Spartina
cynosuroides dominates this interval in Transect 5 while S. alternifiora dominates Transect

10.

4.2.4 Comparisons Between Marsh Systems

Generally, a similar marsh foraminiferal assemblage zone (dominated by Miliammina
fusca and Ammotium salsum usually with some Trochammina inflata) was recognized in
sediments from the low marsh in all marine influenced-transects from Murrells Inlet, North
Inlet and Santee Delta. High percentages of Trochammina ochraceawere also present in
low marsh sediments from Santee Delta, Transect 4. The best zonation of foraminiferal
assemblages was recognized in sediments from North inlet, where a subzone of the low
marsh was recognized, and where low and high marsh assemblages were recognized at all
localities. Haplophragmoides wilberti appeared to be a reliable high marsh indicator (above
mean high water) in most fransects; it was typically associated with low salinity plant
assemblages. Santee Delta Transect 10 has a mixed foraminiferal and arcellacean faunal
assemblage which may be reflecting the change in the hydrology of Santee River. Within

this mixed assemblage, a distinctive high marsh foraminiferal assemblage could also be
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recognized. Although zonations can be recognized in these data, they are not as well-
defined (and with different species contained in some zones) as in the marshes to the
north (Nova Scotia, Maine and Massachusetts).

This suggests that although most of the marsh foraminiferal species are ubiquitous,
there are regional differences in assemblage compositions that can possibly be related to
climatic variations. Even within the same climatic region, marshes with broad variations in
chemical or physical parameters (eg. salinity, organic matter composition, tidaf exposure
time, sediment type) will affect the foraminiferal assemblages across a marsh surface. The
marsh foraminiferal assemblage zone is essentially a result of the tolerances of the various
foraminiferal species to differing physical and chemical conditions that are usually different
at different elevations. On a microscale this can be seen in Chezzetcook Inlet where
Haplophragmoides spp. is a dominant component in upper estuarine high marsh
assemblages but absent from high marsh assemblages in lower estuarine areas of the same

inlet (Scott and Medioli, 1980a).

4.3 Estuarine Foraminiferal Assemblages and Reiationship to Pollution

There are distinct differences in the estuarine fauna between the three localities
studied. Mumells Inlet sediments contain a typical brackish water assemblage dominated by
Ammonia beccarii and Eiphidium excavatum spp. (Figure 22) identified in many estuaries
along the western Atlantic seaboard {Murray, 1991). Althcugh development has taken
place around parts of the inlet, there is litle evidence in the estuarine foraminiferal
assemblages for anthropogenic changes. Species diversity decreases towards the mouth
of the inlet (from Station 14) and this may in part be related to fewer marsh foraminifera
(washed in from the fringing marshes) and higher energy conditions here. A similar

situation, which was related to higher energy conditions, occurred near the head of
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Chezzetcoak Inlet; although conditions hecame more marine both species density and
diversity decreased (Scctt et al., 1980a). At Chezzetcook Inlet there was a decrease in
numbers of more delicate species such as Buliminella elegantissima and an increase in
more robust ones such as Gibicides lobatuius (Scott et al., 1980a); similar to what was
observed in these samples. Organic matter percentages are low (less than 4%) throughout
the inlet although they are lowest in these samples. The total numbers of foraminifera also
decline at Station 14; from here the total numbers and species composition are similar to
those in samples from the nearshore locality at Murrells Inlet (Figure 23). There are
generally higher percentages of Ammonia beccarii in the nearshore samples which may be
a result of higher salinities.

There are very few estuarine foraminifera in samples from South Santee River
(Figure 24). Most of the foraminiferal assemblage consists of specimens washed in from
the fringing marshes while arcellaceans are present in the upper reaches of the river and in
Wambaw Creek. The absence of estuarine foraminifera and presence of thecamoebians
near the river's mouth could be a result of the increase in freshwater flow resulting from the
rediversion of flow back to the Santee River in 1986.

Two short transects were sampled off the mouths of the North and South Santee
Rivers to test for differences in faunal characteristics (Figure 25). Total numbers were
much higher off the mouth of North Santee River and these samples had a higher species
diversity. The higher number of marsh foraminifera and some arcellaceans in these
samples suggest that the discharge rate may be higher, and hence more sediment
transport (including foraminiferal tests), from that branch compared to the South Santee
River. This contention is supported by observations of higher organic matter percentages
and abundance of marsh vegetation, and by depressed salinities that were measured close

to the mouth of North Santee River.
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Benthic foraminiferal and arcellacean distributions in the Intracoastal
Waterway/Winyah Bay and associated nearshore localities suggested that the assemblages
were reacting to a combined pollution/estuarine signal. The relatively low numbers of
arcellaceans (both live and dead) in many of the Iniracoastal Waterway samples suggested
that this is not a hospitable environment for their colonization and reproduction. Schafer et
al. (1831) suggested that high organic matter percentages may enhance the environment
for arcellaceans; that does not appear to be the case in the Intracoastal Waterway. Surface
salinities, where measured, were low in the bay {0 - 3%.) and increased to 30%. at the
nearshore localities. Again these were one time measurements and do not represent the
salinity variation throughout the bay (see Introduction - Environmental Characteristics).

The presence of arcellaceans in the upper reaches of Winyah Bay confirms the
high freshwater and probable sediment transport from the Waccamaw and Pee Dee Rivers.
Species of typical marsh foraminifera genera such as Trochammina, Ammoastuta,
Ammobaculites and Ammotium have also been washed into this area from surrounding
marshes. The presence of only the transported dead foraminifera and arcellaceans, and
the associated high organic matter loadings suggest that the typical estuarine fauna that
should be present in this environment either (1) cannot colonize at this locality, or (2) their
tests have been destroyed by post-mortem diagenesis. Ellison and Nichois (1976)
identified an Ammobaculites crassus assemblage in very low salinity localities in the
Chesapeake Bay region and Elphidium clavatum in higher salinity localities; neither
assemblage was present in the upper reaches of Winyah Bay.

Towards the mouth of the bay, where sediments are characterized by lower organic
matter percentages (less than 4%), an assemblage containing a high calcareous
component is present. The visually recognized plume of water leaving Winyah Bay has

apparently minimal effects on the benthic foraminiferal assemblages further seaward, where
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samples were taken that contain a generally higher species diversity and higher total
numbers. This can be recognized clearly by the dominance of miliolid species at Station
30, a location where the organic matter percentage drops to almost zero (Figure 26).
Although many of the pollution-tolerant species recognized by Schafer (1970, 1973), Nagy
and Alve (1987), Alve (1991) and Schafer et al. (1991) are not present in the Winyah Bay
samples {eg. Eggerella advena, Elphidium excavatum spp.), the spatial change from a
predominantly agglutinated assemblage to one dominated by calcareous forms (distal to
the pollution source or area) is observed. A similar situation may occur in the transition from
an estuarine to marginal marine setting; a combination of these two factors are probably

affecting the foraminiferal assemblages in the Winyah Bay region.

4.4 Comparisons of Infaunal Habitat and Taphonomic implications of Foraminifera from

North Inlet Short Cores and Vibracores

According to Loubere (1989) the downcore distribution of total assemblages of

benthic foraminifera are controlled by three factors: 1) changing environmental conditions
at the sediment surface which may result in changes in the composition of the living
popuiations, 2} the different habitat depth of the populations, and 3) taphonomic
processes and different fossilization potential of the tests. Loubere (1989) concluded that
under conditions of constant habitat, or stable environment, epifaunal species would have
canstant abundances in the entire sediment column, while infauial species will have
abundances in the sediments that increase down to their maximum habitat depth and then
remain constant below that depth. The three short cores discussed here came from
different marsh settings within the same marsh; Short Core (SC) 1 was from the low marsh,
SC 2 was from the upper low marsh while SC 3 was obtained from the middle or transition

marsh and allows comparison between these settings. In many cases, the few numbers of
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living foraminifera of some species in these sediments do not allow for proper evaluation of
the infaunal character of each species with living specimens in the subsurface.

The increase in the total number of foraminifera between 1 and 3 cm of SC 1 can
not be attributed to an increase in infaunal specimens; there is a sharp decline in the total
number of living specimens in this interval. The high percentages of living Miliammina fusca
in sediments from the top 6 cm are contributing greatly to the total proportion of Miliammina
fusca within this interval, although the peak in relative percentage between 4 and 6 cm
appears to be caused more by a decrease in total numbers of all specimens rather than the
increase in the numbers of living Miliammina fusca. The generally high living percentage of
Miliammina fusca between 7 end 11 cm represents only a few specimens in an
impoverished living assemblage. The slight peak in the relative abundance of live
Trochammina inflata between 1 and 3 cm is not contributing much to the total assemblage,
although a similar distribution pattem is seen in the total percentage, due to the low number
of living Trochammina inflata specimens. The remaining species do not appear to be
affected by living infaunal representatives.

Overall, the density of total foraminifera decreases somewhat downcore in SC 1.
There are higher total numbers in the interval between 7 and 10 cm but this enrichment of
total foraminifera in these shallow subsurface samples cannot be attributed to an increase in
infaunal specimens. The overall decrease in total numbers downcore is either related to
changes in environmental conditions at the time of deposition, resulting in a different faunal
density than is observed now at the surface, or selective preservation of foraminiferal tests.
Other than the distribution of Miliammina fusca, which generally has persistent occurrences
but at much lower frequencies downcore than in the surface assemblage, there is little
difference between the surface and subsurface distributions of the other foraminiferal

species present. While this suggests some selective preservation of Miliammina fuscain
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this core, it does not occur at all core sites from North Inlet. Goldstein and Harben (1993)
suggested Miliammina fusca was more prone to degradation than many other marsh
species while Scott (1977) and Scott et al. (1995b) did not observe any diagenetic effects
of this species in cores from Nova Scotia. Highest concentrations of organic matter of the
three short cores were observed in sediments from SC 1 and possible high oxidation or
bacterial action may be affecting the Miliammina fusca tests. The remnant organic linings,
even in the surface sample, of some calcareous species also indicate lowered pH
conditions has resulted in the destruction of the calcium carbonate.

Maximum densities of infaunal specimens are present in the upper 3 cm of SC 2
and this is the enly interval where infaunal foraminifera have an effect on the total
assemblage. The high densities of living Miliarmmina fusca in this uppermost interval are
reflected in the total percentage for this species. The peaks in relative abundances of living
species below this interval generally represents few specimens and these are not reflected
in the total percentage. There is a dramatic decrease in total densities below 3 ¢cm in SC 2,
Although there are minor fluctuations in relative total abundances between 3 and 14 cm,
the overall trends are fairly constant, so if the decrease in density is a result of taphonomic
processes, all species are being affected equally. The depth range of infaunal species is
very similar between SC 1 and SC 2.

There are differences in the foraminiferal composition between the bottom and the
top of Core SC 2 but it is difficult to relate these to either infaunal or taphonomic causes.
Other than the one sample containing rare specimens of Arenoparella mexicana at the 8-9
cm level, both Arenoparella mexicana and Haplophragmoides wilberti were restricted to the
lower 12 cm of the core although there were no living representatives. The relatively high
percentages of these two species represent only a few specimens. Goldstein and Harben

(1993) recognized both as deep infaunal species (living to depths of 30 ¢cm) in marsh
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depaosits in Georgia. This assemblage represents either the possible infaunal nature of
these species or changes in environmental conditions at the marsh surface during
deposition.

Although there are moderate to high densities of infaunal specimens in SC 3, there
appears to be no effect on the total assemblage distributions. There are variations in both
densities and relative abundances of the dominant living species although the total relative
abundances are almost constant throughout the core. This also indicates no taphonomic
alterations of the assemblages and may be related to the consistently low organic matter
percentages in the sediments from this core.

The infaunal assemblage has a deeper living zone in SC 3 than in the cores from
the low marsh. Higher numbers of infaunal specimens are present below the 0-1 cm
interval and may be a result of drier conditions at the surface of the marsh due to the higher
elevation.

Comparisons of the infaunal distribution of SC 3 with that from a Salicomia marsh in
Georgia (Goldstein and Harben, 1993) show some similarities although there are some
surface vegetation differences (the North Inlet marsh also has some Borrichia spp. and litile
Spartina alterniflora) and the samples from Geargia were collected in July. In Georgia,
highest percentages of Arenoparella mexicana were observed at 8-10 cm, very similar to
those for this study although in South Carolina Arenoparella mexicana was not the
dominant infaunal species. There were no infaunal Miliammina fusca, rare Trochammina
macrescens and Trochammina inflata had low abundances between 3 and 15 cm in the
Georgia marsh.

According to Buzas et al. (1993), foraminifera living within the top centimeter of
sediment should be considered as shallow infaunal, due to the size of foraminiferain

relation to one centimeter of sediment. Their description of an epifaunal species is one
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living generally on a hard substrate. Loosely following their classification (since no statistical
analyses were performed on these data and very rare accurrences were not considered)
the species discussed here can be classified as deep infaunal.

The data show that there was poor preservation of benthic foraminifera in
sediments from many of the vibracores but especially from Murrells Inlet marsh. Some units
without foraminifera have been interpreted as freshwater deposits (see following section,
Figure 46), so there would not be any foraminifera in those anyway. Even within near
surface marsh depaosits, however, densities are much lower than observed at the surface of
the marsh. Very few typical marsh or calcareous foraminiferal specimens were identified
below approximately 50 cm in cores from this marsh system. The profile for Core 90 from
Murrells Inlet, which was examined continuously to 180 cm, shows a dramatic decrease in
densities at 28 cm and this does not appear 1o be related to variations in organic matter
concentrations. Organic matter percentages did not have to be particularly high, even in
shallow subsurface sediments, for there to be few toraminifera preserved. Calcareous
foraminifera were preserved in the subsurface in an interval from Core 106, and although
the lower part of this unit had very low organic matter percentages and this unit was sandy.
The upper part of it had organic matter percentages with values similar to the overlying
marsh deposit. These foraminifera did display some effects of dissolution but in most cases
the specimens could be identified to the species level. This suggests that high organic
matter concentrations alone are not creating the adverse conditions causing the
destruction of foraminiferal tests, either agglutinated or calcareous.

The foraminiferal assemblages in North Inlet vibracore subsurface sediments also
suggest some taphonomic alteration although not as severe as at Murrells inlet. Densities
do drop substantially below the uppermost core samples although high numbers of marsh

foraminifera were present in many samples with high organic matter concentrations. The
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calcareous assemblage present in the Pleistoc ;ne sands at the bases of some of these
cores was well preserved. The calcareous assemblages in sediments from the Santee
Deita cores also generally contained abundant foraminifera and the specimens were usually
well preserved indicating little alteration. The marsh sequences in the lower sections of
cores from Santee Delta generally had few foraminifera although it is impossible to
determine if this is a resuit of aiteration of the deposited assemblage.

Further north, from marsh sequences in Maine (Gehrels, 1994) and Nova Scotia
(eg. Scott et al., 1995b) there is little or no loss of foraminifera in the subsurface. Hence, it
must be asked: what is different between these northern sites and South Carolina? First,
organic matter contents are considerably higher in the northern sites with up to 50%
organic content in some high marsh areas (Scott and Medioli, 1980a), whereas, the trend is
for higher organic matter content in low marsh sediments in South Carolina. Second,
temperature is higher in South Carolina which makes it easier to preserve CaCO3. These
two factors would seem to suggest less, not more, preservation in the north. A final factor,
bio'urbation (in this case, fiddler crabs) is much higher in South Carclina; bioturbation is
minimal in the northem marshes. Bioturbation could have several effects on the
subsurface foraminiferal assemblages: 1) it can physically break down specimens if the
foraminifera are being eaten - this is not the case here since crabs don't eat foraminifera,
although other detritus feeders may, 2) bioturbation does break down the layering of the
sedirents and introduces oxygen to the subsurface creating surface-like conditions inside
some burrows, and 3) the oxygen introduced might facilitate oxidizing bacteria into the
subsurface ard these bacteria are known to destroy foraminiferal tests, especially
agglutinated ones (Scoit and Medioli, 1986). These processes may explain why
subsurface assemiblages are poor throughout the southeastem United States (Goldstein

and Harben, 1993).
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4.5 Marsh Evolution and Sea-Leve! Implications

Of the more than 50 vibracares collected from Murrells Inlet, only about 10 had
good preservation of a detailed Holocene relative sea-level record. Of these, five along a
transect (Cores 100, 101, 102, 103 and 19€) were selected for detailed
micropaleontologicai study while selected samples from some cothers were examined to
prepare a sea-level curve for this marsh system. In most other cores the strata are
reworked, largely as a resuit of migration of the tidal creeks. Figure 46 displays the
lithostratigraphy and shows a record of the mid-Holocene sea-level reversal with salt marsh
peat overlain by freshwater peat with salt marsh peat on top (Core 103). Table 1 lists a
summary of the core intervals dated and the associated foraminiferal assemblages in these
samples. Figure 47 shows the sea-level curve interpreted from the radiocarbon dates from
the three marsh systems.

Unfortunately, the foraminiferal assemblages in the subsurface samples from the
Murrells Inlet cores generally do not contain abundant foraminifera and this makes
comparison with the surface transects more difficult. The foraminiferal species Ammoastuta
inepta, Haplophragmoides wilberti, Trochammina inflata and Arenoparella mexicana
generally had higher percentages in the middle to high marsh along the surface transects in
this marsh system. Because of the comparative problems with subsurface assemblages, a
relatively wide vertical accuracy of +30 cm in relation to MHW is assigned to assemblages
containing these species; in the subsurface intervals used for sea-level points typical low
marsh indicators such as Ammotium salsum or Miliammina fusca were rare or absent.
Freshwater peats were generally barren of microfossils but within these units there were
often large cypress roots. It is probable that the subaerial exposure and transgressive
erosion and oxidation destroyed the arcellaceans (since they are usually present in

freshwater environments).
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core interval and corrected depth in core {coring-compaction correction) for
sea-level points plotted in Figure 47. MHW = mean high water. yBP =
years before present. Dates from Murrells Inlet are from Scott at al., 1995a,

1986; 1987), laboratory numbers, material dated and foraminiferal zone,
those from Santee Delta are from Gayes et al., 1992,

Carbon14 dates and correction to sidereal dates (Stuiver and Reimer,

Table 1.
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cores with dates from North inlet and Santee Delta plotted on the curve.
Numbers on dates refer to Table 1. Ml = Murrells Inlet, NI = North Infet and
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Another problem common with studies of marsh deposits is the autocompaction of
the peat. Itis probable that the most critical dates in this curve, the two lowstands, 4570
yBP (Core 106), 3593 yBP (Core 8- from Gayes et al., 1992) and the highstand, 4281 yBP
(Core 103) are resting on non-compactable material. The salt marsh peats where the two
lowstand dates were obtained were overlying extremely hard and weathered freshwater
peat. A sandy unit was underlying the peat where the highstand date was obtained.
However, compaction may have affected the samples from peat sequences not resting on
a hard substrate and hence they may have formed at a higher level than they were
identified in the care. In the case of dates 6 and 10 (Table 1), if they were higher they
waould fit on the curve slightly better (Figure 47).

The lithostratigraphy (in conjunction with the foraminiferal interpretations) also
displays the complexity in the evolution of the marsh system at this locality. During the
latest transgression salt marsh deposits were restricted to an area seaward of the present
day channel until 500 years ago. From at least 2700 yBP (date 2, Table 1) to probably 500
yBP the landward side of the channel could have been cypress swamp although there is a
large hiatus between the youngest cypress date (2123 yBP) and the first salt marsh date
(487 yBP). During the regression (4281-3593 yBP) most of the salt marsh deposit was
eroded away on the landward side of the present channel except one small pocket in Core
100. As sea level began to rise again at 3593 yBP (Core 8}, salt marsh accretion was again
generally restricted to the area seaward of the present channel, with either cypress swamp
or other freshwater depaosits on the landward side of the channel. At about 500 yBP there
was an event that has been interpreted as a storm, recorded in other cores from Murrells
Inlet (Gayes et al., 1992) that appears to have leveled the cypress, cut the channel and salt
marsh accretion then started across its present extent (487 yBP, Core 103). This

interpretation is supported by the foraminiferal assemblages in Care 90, collected further
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up the head of the marsh. In the upper section of the core marsh foraminifera disappear at
60 cm, and although this level is not dated, itis et approximately the same horizon that
massh foraminifera disappear in Cores 100-103 before going into freshwater sediments.

From the Murrells Inlet cores it appears that there is a highstand between 5000 and
3600 yBP which consists of a transgressive phase with a 2 m rise in sea-level between
5000 and 4300 yBP to 1.2 m below present mean sea level and a regressive phase with a 2
m fall from 4300 to 3600 yBP. The rates of both sea-lavel rise and fall during this period are
high mid-Holocene rates (30 cm/100 yrs). The rate of rise since 3600 yBP is much slower
(8 cm/100 yrs). A warming trend in the mid-Holocene followed by a cooling to the present is
suggested in many climatic models (eg. Houghton et al., 1990); this was the explanation
attributed to the oscillation in South Carolina by Gayes et al (1992) and by Scott et al.
(1995a). A similar rise and fall in relative sea-level was doccumented in West Africa by
Giresse (1989) and in Brazil (Dominquez et al., 1987). The limited data obtained from the
North Inlet cores fit well on this curve and although the highstand was not identified, that
was probably due to a lack of material collected and dated. The lowermost peat date fits well
with the rise before the highstand while the other dates fit with the sea-level rise after the
lowstand.

Figure 48 displays the lithostratigraphy interpreted from the cores from the short
North Inlet transect. Here Core B1 obtained a freshwater peat unit (:iigh organic matter) at
approximately the same depth as that identified at Murrells Inlet. The remaining deposit
records marsh accretion on Pleistocene sands or nearshare marine deposits.

The sea-level points from Santee Delta plot well below those from both Murrells
and North Inlets (Figure 47). This may, in part, be explained by the foraminiferal
assemblage in these peat samples which suggest they were deposited in a low marsh

environment and the relative position in relation to mean high water is harder to determine.
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Santee Delta Core 1 was composed primarily of mud or shelly sandy mud with the
exception of three thin somewhat peaty layers dominated by Trochammina ochracea, The
upper 180 cm and lower 50 cm of Core 3 was somewhat peaty; the remainder of the core
was mud or shelly mud. The top 90 cm of Core 7 is again peaty; the remainder of the core is
either mud or shelly mud. The wide spacing of the cores do not allow for accurate
correlations between them. The foraminiferal assemblages in peats dated from Santee
Delta were dominated by Trochammina ochracea and indicate a low marsh environment with
a vertical range of up to 1 m around mean sea level. This vertical difference in positions of
sea-level paints from Santee Delta may also be expected for a prograding delta where
sediment loading and increased subsidence (ie. relative sea-level rise) can be significant
{Gayes et al., 1992).

Stephens et al. (1976), in their study of North Santee River, suggested that there
was a laterally continuous peat deposit at a depth of 5 to 6 m below mean sea level (MSL) at
least at the delta front. An undifferentiated peat at this level was identified in a core from the
island between North and South Santee Rivers and was dated at 4400 radiocarbon yBP
(Aburawi, 1972). Eckard (1986) also identified what he called a freshwater peat horizon at
this level seaward of the Intracoastal Waterway which dated between 6100 and 4400
radiocarbon yBP. Eckard (1987) identified a similar peat 2.5 km seaward of the active delta
front between 6.5 and 7.5 m below MSL. If these peats are freshwater (there was no
paleontological work done on them), the situation is similar to that at Mutrells inlet where the
brackish marsh deposits are underlain by freshwater peats (which was not determined from
the previous studies). These freshwater peats are at a lower elevation than those at
Munelis Inlet, similar to the sea-level points obtained from the marsh, but this may be

explained by high sediment loading and subsidence at the delta front.
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De Pratter and Howard (1981) reported a fluctuation in sea level along the Georgia
and South Carolina coasts where sea level reached 1.5 m below present MSL by 4500 yBP
and had fallen to 3 to 4 m below present MSL by 3000 yBP (uncorrected dates). They
used the position of shell middens and other archaeological sites as well as submerged
tree stumps as sea-level points. Colqguhoun and Brooks (1986) and Colquhoun et al.
(1995) (Figure 49) proposed nine fluctuations in sea level (both rise and then fall) over the
last 7000 years. Their former sea-level positions were based on both archaeological data
and undifferentiated peats. Although they identify numerous fluctuations, they have a
highstand at approximately 4000 yBP. This highstand is approximately 20 cm higher than
that from the Murrells Inlet curve and essentially fits within the age range for the Murrells
Inlet highstand.

The only other report of a sea-level oscillation north of South Carolina during mid-
Holocene time is a report by Dionne (1988) from the North Shore of the St. Lawrence River
estuary where he observed an oscillation in a deposit that is now raised above present sea
level by isostatic rebound. New aata from Chezzetcook Inlet and Baie Verte, Nova Scotia
also show a sharp acceleration in sea-level rise in the mid-Holocene which ends at the time
of the highstand in South Carolina (Scott et al., 1995b). No associated sea-level fall was

identified after the acceleration in Nova Scotia.
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al., 1995).



CHAPTER YV

COUNCLUSIONS

1. Marsh Foraminiferal and Arcellacean Distributions

a

The vertical zonation of foraminifera in Murrells Inlet and Santee Delta marshes is
not well defined although a low and high marsh faraminiferal assemblage zone can
usually be recognized. This may in part be due to anthropogenic effects at Murrells
Inlet and the low salinity environment at Santee Delta. The best vertical zonation of
foraminiferal species is recognized in the normal salinity, undisturbed marshes at
North Inlet.

The species composition of foraminifera in assemblage zones varies with
geographic locality. The highest high marsh indicator in northern marshes,
Trochammina macrescens, does not define any zone in South Carolina. Surficial
information from the locality being studied must be assessed before interpreting
subsurface material from that locality. An assemblage dominated by Ammotium
salsum and Miliammina fusca generally dominates the low marsh assemblage at
Murrells and North Inlets. These species, combined with high percentages of
Trochammina ochracea dominate the low marsh at Santee Deita.
Haplophragmoides wilberti, often in association with Ammoastuta inepta,
Trochammina inflata or Arenoparella mexicana appear to be reliable high marsh
indicators at these localities.

In Transect 2, Murrells Inlet, an assemblage dominated by Ammonia beccarii and

" ~hidium spp. was identified in high marsh sediments and may be a result of the
sturm surge from Hurricane Hugo.

Living foraminifera were identified in what have been considered freshwater plant

associations (Spartina cynosuroides) indicating that the vertical range of

131



132

foraminifera may extend above highest high water or that the freshwater plants can
tolerate some tidal action.

Cucurbitella tricuspis and Difflugia oblonga, previously thought to be exclusively
freshwater species, may tolerate slight salinities since they were found living with
foraminifera in Santee Deita marshes. Their presence in this marsh system may be
due to freshening of the marshes caused by the rediversion of water to the Santee

River in 1986,

2. Estuarine Foraminiferal Assemblages

a

Typical estuarine foraminiferal assemblages were identified in Murrells Inlet.
Although there is a lot of development around the inlet, the decrease in
foraminiferal densities near the mouth of the inlet is probably due to higher energy
here rather than anthropogenic changes.

In Santee River, the absence of an estuarine foraminiferal assemblage is a resuit of
the high freshwater flow in the river.

Winyah Bay/Intracoastal Waterway sediments contain a mixed arcellacean and
transported foraminiferal assemblage; its typical estuarine character is identified
further seaward than expected. This is a result of combined the high organic matter

loadings in sediments and high freshwater discharge.

3. Infaunal foraminifera and Taphonomy

a.

Living marsh foraminifera were encountered to depths of 20 cm in sediments from
short cores from North Inlet. Generally, highest densities of living foraminifera were
encountered in the upper 5 cm of cores from the low marsh while in the core from
the middle marsh living foraminifera densities were highest between 7 and 14 cm.
Both total and living assemblages were studied and the living faunae at depth

appear to have little influence in composition of the total faunae.
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b. Preservation of agglutinated marsh foraminifera was poor in subsurface sediments,
especially from Murrells inlet marsh. Organic content of these sediments is not
high but there is some bioturbation (fiddler crabs). This contrasts with marshes in
more northemn localities where subsurface foraminiferal assembiages are usually
well preserved (ie. Massachusetts to Nova Scotia); the more temperate marshes
generally have higher organic matter concentrations but lower bioturbation,

4. Sea-level History
A rapid sea-level oscillation was identified in Murrells Inlet deposits with a 2 m rise in
sea level belween 5000 and 4300 yBP and a 2 m fail between 4300 and 3600
yBP. The rate of sea-level rise and fall during the oscillation (30 cm/100 yrs each) is
about three times the rate of sea-level rise from the lowstand (3600 yBP) to the
present. Limited data from North Inlet fits well on this sea level curve although the
highstand was not identified. Data from Santee Delta fall below the curve but this

may be accounted for by increased subsidence due to sediment loading.
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ABBREVIATED SYSTEMATIC TAXONOMY OF ARCELLACEANS AND
BENTHIC FORAMINIFERA

Suprageneric classification of the foraminifera follow that of Loeblich and Tappan
(1964, 1988); the suprageneric classification of Medioli and Scott (1983) and Medioli et al.
(1987) was used for the arcellaceans. Generic names referred to in this section are
organized within the classification system of Loeblich and Tappan (1964) except where
otherwise noted. Species within genera are listed in alphabetical order. Each synonomy
includes the original reference, those used in species identification as well as some generic

changes for each species.

Order ARCELLINIDA Kent, 1880
Superfamily ARCELLACEA Ehrenberg, 1832
Family DIFFLUGIDAE Siein, 1859
Genus Difflugia LeClerc in Lamarck, 1816
Difflugia corona Wallich, 1864
Plate 1, figure 1
Diffiugia proleiformis {sic) (Ehrenberg) subspecies D. globularis (Dujardin) var. D. corona
(Wallich). WALLICH, 1864, p. 244, pl. 15, fig. 4b; pl. 16, figs. 19, 20.

Difflugia corona Wallich. ARCHER, 1866, p. 186. MEDIOLI and SCOTT, 1983, p. 22, pl. 1,

figs. 6-14.

Difflugia oblonga Ehrenberg, 1832
Plate 1, figure 2
Difflugia oblonga EHRENBERG, 1832, p. 90. EHRENBERG, 1838, p. 131, pl. 9, fig. 2.

MEDIOLI and SCOTT, 1983, p. 25, pl. 2, figs. 1-17, 24-26,



135

Difflugia capreolata Penard. Scott and others, 1980, p. 224, pl. 1, figs. 4-7.

Difflugla urceolata Carter, 1864
Plate 1, figure 3
Difflugia urceolata CARTER, 1864, p. 27, pl. 1, fig. 7. SCOTT and others, 1980, p. 224, pl.
1, figs. 10-12. MEDIOLI and SCOTT, 1983, p. 31, pl. 3, figs. 1-23; pl. 4, figs. 1-4.
Lagunculina vadescens CUSHMAN and BRONNIMANN, 1948a, p. 15, pl. 3, figs. 1, 2.

PARKER, 1952a, p. 451, fig. 8.

Genus Pontigulasia Rhumbler, 1895
Pontigulasia compressa (Carter), 1864
Plate 1, figure 4
Difflugia compressa CARTER, 1864, p. 22, pl. 1, figs. 5, 6.
Pontigulasia compressa RHUMBLER, 1885, p. 105, pl. 4, figs. 13a, b.
Pontigulasia compressa {Carter). AVERINTSEV, 1906, p. 169. SCOTT and others, 1980,

p. 224, pl. 1, figs. 10-12, MEDIOLI and SCOTT, 1983, p. 34, pl. 6, figs. 5-14.

Family HYALOSPHENIIDAE Schulze, 1877
Genus Cucurbitella Penard, 1902
Cucurbitella tricuspis (Carter), 1856
Plate 1, figure 5
Difflugia tricuspis CARTER, 1856, p. 221, pl. 7, fig. 80. MEDIOLI and SCOTT, 1983, p. 28,
pl. 4, figs. 5-19. HAMAN, 1986, p. 47, pl. 1, figs. 1-14; pl. 2, figs. 1-12.
Cucurbitella mespiliformis PENARD, 1902, p. 311, text-figs. 1-9.

Cucurbitella tricuspis (Carter). MEDIOU and others, 1987, p. 42, pl. 1, figs. 1-10; pl. 2,
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figs. 1-10; pl. 3, figs. 1-7, pl. 4, figs. 1-9.

Genus Heleopera Leidy, 1879
Hsleopera sphagnl (Leidy), 1874
Difflugia (Nebela) sphagni LEIDY, 1874, p. 15.
Nebela sphagni (Leidy). LEIDY, 1876, p. 118, text-figs. 16, 17.
Heleopera sphagni (Leidy). CASH and HOPKINSON, 1909, p. 143, pl. 30, figs. 4-9.

MEDIOLI and SCOTT, 1983, p. 37, pi. 6, figs. 15-18.

Genus Lesquereusia Schlumberger, 1845
Lesquereusia splralis (Ehrenberg), 1840a
Difflugia spiralis EHRENBERG, 1840a, p. 199.
Lesquersusia spiralis (Ehrenberg). PENARD, 1902, p. 36, text figs. 1-10. PATTERSON
and others, 1985, p. 135, pl. 2, figs. 9, 10. SCOTT and others, 1991, p. 386, pl. 1,

fig. 10.

Family CENTROPYXIDAE Jung, 1942
Genus Centropyxis Stein, 1859
Centropyxis aculeata (Ehrenberg), 1832 ab (Ehrenberg), 1830
Plate 1, figure 6
Arcella aculeata EHRENBERG, 1832 (ab Ehrenberg, 1830, p. 60, nomen nudem), p. 91.
Leptodermelia salsa CUSHMAN and BRONNIMANN, 1948a, p. 15, pl. 3, figs. 3, 4.
Leptodermella variabilis PARKER, 1952a, p. 452, pl. 1, figs. 11, 12.
Centropyxis excentricus (Cushman and Bronnimann), SCOTT, 1976, p. 320, pl. 1, figs. 1,

2. SCOTT and others, 1980, p. 224, pl. 1, figs. 1-3.
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Centropyxis aculeata (Ehrenberg). STEIN, 1859, p. 43. MEDIOLI and SCOTT, 1983, p.

39, pl. 7, figs. 10-19. SCOTT and others, 1991, p. 384, pl. 1, figs. 7-S.

Centropyxis constricta (Ehrenberg, 1843)
Plate 1, figure 7

Arcella constricta EHRENBERG, 1843, p. 410, pl. 4, fig. 35, pl. 5, fig. 1.

Difflugia constricta (Ehrenberg). LEIDY, 1879, p. 120, pl. 18, figs. 8-55.

Urnulina compressa CUSHMAN, 19303, p. 15, pl. 1, fig. 2. PARKER, 1952a, p. 460, pl. 1,
fig. 9. SCOTT and others, 1980, p. 224, pl. 1, figs. 13-15.

Centropyxis constricta (Ehrenberg). DEFLANDRE, 1929, p. 340, text-figs. 6-67. MEDIOLI

and SCOTT, 1983, p. 41, pl. 7, figs. 1-9. SCOTT and others, 1991, p. 384, pl. 1,
fig. 4.

Order FORAMINIFERIDA Eichwald, 1830
Suborder TEXTULARIINA Delage and Hérouard, 1896
Superfamily AMMODISCACEA Reuss, 1862
Family SACCAMMINIDAE Brady, 1884
Subfamily SACCAMMININAE Brady, 1884
Genus Polysaccammina Scott, 1976b
Remark: This genus was placed in this taxonomic position by Scott (1976b).
Polysaccammina hyperhalina Medioli, Scott and Petrucci, /In Petrucci et al., 1983
Plate 1, figure 8

Polysaccammina hyperhalina MEDIOLI and others, /n Petrucci et al., 1983, p. 72, pls. 1, 2.

SCOTT and others, 1990, p. 731.
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Polysaccammina ipohalina Scott, 1976b
Polysaccammina ipohalina SCOTT, 1976b, p. 316, pl. 2, figs. 1-4; text fig. 4. ZANINETTI
and others, 1977, pl. 1, fig. 7. SCOTT and MEDIOLI, 19804, p. 43, pl. 2, figs. 8-11.
SCOTT and others, 1991, p. 386, pl. 2, fig. 3.
Genus Pseudothurammina Scott, Medioli and Williamson, /n Scott et al., 1981
Remark: This genus was placed in this taxonomic position by Scott et ai. (1981).
Pseudothurammina limnetis Scott, Medioli and Williamson, /n Scott et al., 1981
Plate 1, figure 9
Astrammina sphaerica (Herca-Allen and Earland). ZANINETTI and others, 1977, pl. 1,
fig. 9.
Thurammina (?) limnetis SCOTT and MEDIOLI, 1980a, p. 43, pl. 1, figs. 1-3.
Pseudothurammina limnetis SCOTT and others, /n Scott et al., 1981, p. 126. SCOTT and

others, 1991, p. 386, pl. 2, fig. 4.

Family AMMODISCIDAE Reuss, 1862
Subfamily AMMODISCINAE Reuss, 1862
Genus Ammodiscus Reuss, 1862
Ammodiscus catinus Hoglund, 1947
Ammodiscus catinus HOGLUND, 1947, p. 122. PARKER, 1952b, p. 398, pl. 2, figs. 3-4.

GOLDSTEIN and FREY, 1986, pl. 3, fig. 4.

Genus Glomosplira Rzehak, 1885
Glomospira gordialis (Jones and Parker), 1860

Trochammina squamata var. gordialis JONES and PARKER, 1860, p. 3C4.
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Glomospira gordialis CUSHMAN and MCCULLOCH, 1939, p. 70, pl. 5, figs. 5, 6. SCOTT

and others, 1991, p. 385.

Superfamily ITUOLACEA de Blainville, 1825
Family HORMOSINIDAE Haeckel, 1894
Subfamily HORMOSININAE Haeckel, 1894
Genus Reophax de Montfort, 1808
Reophax nana Rhumbler, 1911
Reophax nana RHUMBLER, 1911, p. 182, pl. 8, figs. 6-12. PARKER and others, 1953, p.
13, pl. 1, fig. 11. .LANKFORD, 1959, p. 2099, pl. 1, fig. 2. SCOTT and MEDIOL!,

19804, p. 43, pl. 2, fig. 6.

Genus Sulcophax Rhumbler in Wiesner, 1931
Sulcophax palustris Warren, 1957

Sulcaphax palustris WARREN, 1957, p. 31, pl. 3, figs. 1-4.

Family RZEHAKINIDAE Cushman, 1933a
Genus Millammina Heron-Allen and Earland, 1930a
Millammina fusca (Brady), 1870
Plate 1, figure 10
Quinqueloculina fusca BRADY, 1870, p. 286, pl. 11, figs. 2, 3.
Miliammina fusca (Brady). PARKER and others, 1953, p. 10, pl. 1, figs. 40, 41. PARKER,
1952a, p. 452, pl. 2, fig. 6. PHLEGER, 1954, p. 642, pl. 2, figs. 22, 23,

LANKFORD, 1959, p. 2098, pl. 1, fig. 18. SCOTT and MEDIOLI, 19804, p. 40, pl.
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2, figs. 1-3. GOLDSTEIN and FREY, 1986, pl. 4, fig. 23. BOLTOVSKOY, 1984,

fig. 6. SCOTT and others, 1991, p. 386, pl. 1, fig. 14.

Family LITUOLIDAE de Blainville, 1825
Subfamily HAPLOPHRAGMOIDINAE Maync, 1952
Genus Haplophragmoldes Cushman, 1910
Haplophragmolides manilaensis Andersen, 1953
Plate 1, figure 11

Haplophragmoides manilaensis ANDERSEN, 1953, p. 22, pl. 4, fig. 8. SAUNDERS, 1957,

p. 2, pl. 1, figs. 1, 2. LANKFORD, 1959, p. 2098, pl. 1, fig. 3. SCOTT and others,

1991, p. 385, pl. 1, figs. 18, 19.
Haplophragmoides bonplandi TODD and BRONNIMANN, 1957, p. 23, pl. 2, fig. 2. SCOTT

and MEDIOLI, 1980a, p. 40, pl. 2, figs. 4, 5.

Haplophragmoides wilberti Andersen, 1953
Plate 1, figure 12
Haplophragmoides wilberti ANDERSEN, 1953, p. 21, pl. 4, fig. 7. SAUNDERS, 1957, p. 3,
pl. 2, fig. 1. ZANINETTI and others, 1977, pl. 1, fig. 12, 13. BOLTOVSKOY, 1984,
fig. 7. GOLDSTEIN and FREY, 1986, pl. 3, fig. 11. SCOTT and others, 1991, p.

385, pl. 1, figs. 20, 21.

Subfamily LITUOLINAE de Blainville, 1825

Genus Ammoastuta Cushman and Bréonnimann, 1948a
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Ammoastuta Inepta (Cushman and McCulloch), 1939

Plate 1, figure 13
Ammabaculites ineptus CUSHMAN and MCCULLOCH, 1939, p. 89, pl. 7, fig. 6.
Ammoastuta salsa CUSHMAN ard BRONNIMANN, 1948a, p. 17, pl. 3, figs. 14-16.
PARKER, 19523, p. 443, pl. 2, figs, 1,2. ZANINETTI and others, 1977, pl. 2,
figs. 1, 2, 6.
Ammoastuta inepta (Cushman and McCulloch). PARKER and others, 1953, p. 4, pl. 1, fig.
12. PHLEGER, 1954, p. 633, pl. 1, figs. 1-3. LANKFORD, 1959, p. 2097, pl. 1,

fig. 4. SCOTT and others, 1991, p. 384, pl. 1, fig. 15.

Genus Ammobaculites Cushman, 1910
Ammobaculites dilatatus Cushman and Bronnimann, 1948b
Plate 1, figure 14
Ammobaculites dilatatus CUSHMAN and BRONNIMANN, 1948b, p. 39, pl. 7, figs. 10, 11.
PARKER and others, 1953, p. 5, pl. 1, figs. 13-15. BOLTOVSKOY, 1984, figs. 11,
12. GOLDSTEIN and FREY, 1986, pl. 3, fig. 14.
Ammobaculites c. . foliaceus (Brady). PARKER, 19523, p. 444, pl. 1, figs. 20, 21.

Ammobaculites foliaceus (Brady). SCOTT and MEDIOLI, 1980a, p. 35, pl. 1, figs. 6-8.

Ammobaculites exiguus Cushman and Bronnimann, 1948b
Plate 1, figure 15
Ammobaculites exiguus CUSHMAN and BRONNIMANN, 1948b, p. 38, pl. 7, figs. 7, 8.
SCOTT and others, 1991, p. 384.
Ammokaculites dilatatus CUSHMAN and BRONNIMANN. SCOTT and MEDIOLY, 1980a, p.

35, pl. 1, figs. 9, 10
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Genus Ammotium Loeblich and Tappan, 1953
Ammotium multliloculatum Warren, 1957

Ammotium multiloculatum WARREN, 1957, p. 33, pl. 4, figs. 1, 2.

Ammotium salsum (Cushman and Brénnimann), 1948a
Plate 1, figure 16

Ammobaculites salsus CUSHMAN and BRONNIMANN, 1948a, p. 16, pl. 3, figs. 7-9.
PARKER and others, 1953, p. 5, pl., figs. 17-25. PHLEGER, 1954, p. 635, pl. 1,
figs. 7, 8.

Ammotium salsum (Cushman and Bronnimann) forma exilie Cushman and Brénnimann.
POAG, 1978, p. 405, pl. 5, figs. 11-32, 34-39. POAG, 1981, p. 39, pl. 51, fig. 4; pl.
52, fig. 4.

Amimotium salsum (Cushman and Bronnimann) forma typicum POAG, 1978, p. 405, pl. 5,
figs. 1-10, 33. POAG, 1981, p. 40, pl. 51, fig. 3; pl. 52, fig. 3.

Ammotium salsum (Cushman and Brénnimann). PARKER and ATHEARN, 1959, p. 340,
pl. 50, figs. 6, 13. ZANINETTI and others, 1977, pl. 2, figs. 4, 5. SCOTT and
MEDIOLI, 1980a, p. 35, pl. 1, figs. 11-13. GOLDSTEIN and FREY, 1986, pl. 3, fig.

13. SCOTT and others, 1991, p. 384, pl. 1, figs. 11-13.

Ammotium subdirectum Warren, 1957
Plate 1, figure 17

Ammotium subdirectum Warren, 1957, p. 33, pl. 4, figs. 6-8.

Family TEXTULARIIDAE Ehrenberg, 1838

Subfamily TEXTULARIINAE Ehrenberg, 1838
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Genus Textularla Defrance In de Blainville, 1824
Textularia candelana d'Orbigny, 1839a
Textularia candeiana d'ORBIGNY, 18394, p. 143, pl. 1, figs. 19, 20. SCHNITKER, 1971,

p. 212, pl. 1, fig. 10.

Family TROCHAMMINIDAE Schwager, 1877
Subfamily TROCHAMMININAE Schwager, 1877
Genus Trochammina Parker and Jones, 1859
Trochammina Inflata (Montagu), 1808
Plate 2, figures 1-4
Nautilus inflatus MONTAGU, 1808, p. 81, pl. 18, fig. 3.
Rotalina inflata WILLIAMSON, 1858, p. 50, pl. 4, figs. 93, 94,
Trochammina inflata (Montagu). PARKER and JONES, 1859, p. 347. CARPENTER and
others, 1862, p. 141, pl. 11, fig. 5. PARKER, 1952a, p. 459, pl. 3, fig. 1. PARKER
and others, 1953, p. 15, pl. 3, figs. 7, 8. PHLEGER, 195<. . 6486, pl. 3, figs. 22,
23. LANKFORD, 1959, p. 2099, pl. 1, fig. 21. ZANINETT! and others, 1977, pl. 1,
figs. 1, 2. SCOTT and MEDIOLI, 1980a, p. 44, pl. 3, figs. 12-14; pl. 4, figs. 1-3.
BOLTOVSKOY, 1984, fig. 13. GOLDSTEIN and FREY, 1986, pl. 3, figs. 15-17.

SCOTT and others, 1991, p. 388, pl. 2, figs. 7, 8.

Trochammina macrescens Brady, 1870
Plate 3, figure 3
Trochammina inflata (Montagu) var. macrescens BRADY, 1870, p. 290, pl. 11, fig. 5.
SCOTT, 1976, p. 320, pl. 1, figs. 4-7.

Jadammina polystoma BARTENSTEIN and BRAND, 1938, p. 381, figs. 1, 2.
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Trochammina macrescens Brady. PARKER, 1952a, p. 460, pl. 3, fig. 3. PARKER and

others, 1953, p. 15, pl. 3, fig. 7, 8. PHLEGER, 1954, p. 646, pl. 3, fig. 24, SCOTT
and MEDIOLI, 19804, p. 44, pl. 3, figs. 1-12. SCOTT and others, 1991, p. 388, pl.

2, figs. 10, 11.

Trochammina ochracea (Williamson), 1858
Plate 1, figures 18, 19

Rotalina ochracea WILLIAMSON, 1858, p. 55, pl. 4, fig. 112, pl. 5, fig. 113,

Trochammina squamata PARKER and JONES, 1865, p. 407, pl. 15, figs. 30, 31.
PARKER, 1952a, p. 460, pl. 3, fig. 4. PARKER, 1952b, p. 408, pl. 4, figs. 11-16.
SCOTT and MEDIOLI, 1980a, p. 45, pl. 4, figs. 6, 7.

Trochammina squamata PARKER and JONES, and related species. PARKER, 1952a, p.
460, pl. 3, fig. 5.

Trochammina ochracea (Williamson). CUSHMAN, 1920, p. 75, pl. 15, fig. 3. SCOTT and

MEDIOLI, 1980a, p. 45, pl. 4, figs. 4, 5. GOLDSTEIN and FREY, 1986, pl. 4, fig. 1.

Genus Arenoparella Andersen, 1951a
Arenoparella mexicana (Kornfeld), 1931
Plate 2, figures 5, 6
Trochammina inflata (Montagu) var. mexicana KORNFELD, 1931, p. 86, pl. 13, fig. 5.
Arenoparella mexicana (Kornfeld). ANDERSEN, 1951a, p. 31, fig. 1. ANDERSEN, 1951b,
p. 96, pl. 11, fig. 4. PARKER and others, 1953, p. 6, pl. 2, figs. 33, 34. PHLEGER,
1954, p. 636, pl. 1, figs. 12-14. SAUNDERS, 1957, p. 12, pl. 4, fig. 5. ZANINETTI

and others, 1977, pl. 2, figs. 3, 7. SCOTT and MEDIOLI, 1980a, p. 35, pl. 4, figs. 8-
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11. GOLDSTEIN and FREY, 1986, pl. 4, figs. 19, 20. SCOTT and others, 1991, p.

384, pl. 1, figs. 16, 17.

Genus Siphotrochammina Saunders, 1957
Siphotrochammina lobata Saunders, 1957
Plate 2, figures 5-16; Plate 3, figures 1, 2
Siphotrochammina lobata SAUNDERS, 1957, p. 9, pl. 3, figs. 1, 2. GOLDSTEIN and FREY,
1986, pl. 4, figs. 21, 22.

Siphotrochammina elegans ZANINETT! and others, 1977, pl. 2, figs. 8, 10, 11.
Remarks: Although this species probably is an scophenotype (as described by Mayr and
others, 1953; Medio'i and Scott, 1978; Miller and others, 1982) of Trochammina inflata it
was counted separately in this work.

According to the original diagnosis by Saunders (1957) p. 9, "...The last chamber
has a ventral, siphon like lobe extending partially across the umbilicus. The aperture is
situated at the umbilical end of this lobe and is directed forward. The aperture of the
penultimate chamber opens into the ventral lobe of the last chamber..." Saunders (1957)
also recognized the similarity to Trochammina by stating on p. 9 "...In Trochammina the
aperture is an arched slit at the inner margin of the ventral side of the last chamber whereas
in Siphotrochammina the aperture is a forward-directed, circular opening at the inner end of
a siphon like lobe that extends from the last chamber into the umbilicus..."

The S. E. M. photographs presented here show the variation in the position of the
siphon-type aperture from the inner margin of the ventral side (Plate 2, figure 5), which is
the location of the slit like aperture in Trochammina, to the umbilical region (Plate 2, figure
16) as described in the original diagnosis. This suggests that the variation could be

ecophenotypic, i.e. caused by environmentally controlied non-genetic modifications of the
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phenotype (Mayr and others, 1953; Medioli and Scott, 1978; Miller and others, 1982). This

problem needs to be more thoroughly investigated in localities that contain high

percentages of both Trochammina inflata and Siphotrochammina lobata.

Genus Tiphotrocha Saunders, 1957
Tiphoirocha comprimata (Cushman and Brénnimann), 1948b
Plate 3, figures 7, 8
Trochammina comprimata CUSHMAN and BRONNIMANN, 1948b, p. 41, pl. 8, figs. 1-3.
PARKER and others, 1953, p. 14, pl. 3, figs. 3, 4. PHLEGER, 1954, p. 646, pl. 3,
figs. 20, 21.
Tiphotrocha comprimata (Cushman and Bronnimann). SAUNDERS, 1957, p. 11, pl. 4, figs.
1-4. ZANINETTI and others, 1977, pl. 1, figs. 4, 6. SCOTT and MEDIOLI, 1980a,
p. 44, pl. 5, figs. 1-3. GOLDSTEIN and FREY, 1986, pl. 4, fig. 24. SCOTT and

others, 1991, p. 388, pl. 2, figs. 5, 6.

Family ATAXOPHRAGMIIDAE Schwager, 1877
Subfamily VERNEUILININAE Cushman, 1911
Genus Gaudryina d'Orbigny, 1839a
Gaudryina exilis Cushman and Brénnimann, 1948b
Plate 3, figure 4
Gaudryina exilis CUSHMAN and BRONNIMANN, 1948b, p. 40, pl. 7, figs. 15, 16.

ZANINETT! and others, 1977, pl. 1, fig. 3.

Subfamily GLOBOTEXTULARIINAE Cushman, 1927a

Genus Eggerella Cushman, 1933b
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Eggerella advena (Cushman), 1922a
Vemeuilina advena CUSHMAN, 19223, p. 141.
Eggerella advena (Cushinan). CUSHMAN, 1937, p. 51, pl. 5, figs. 12-15. PHLEGER and
WALTON, 1950, p. 277, pl. 1, figs. 16-18. PARKER, 1952a, p. 447, pl. 2, fig. 3.
SCOTT and MEDIOLI, 19804, p. 40, pl. 2, fig. 7. SCOTT and others, 1991, p. 385,

pl. 2, figs. 1, 2.

Suborder MILIOLINA Delage and Hérouard, 1896
Superfamily MILIOLACEA Ehrenberg, 1839
Family FISCHERINIDAE Millett, 1898
Subfamily CYCLOGYRINAE Loeblich and Tappan, 1961
Genus Cyclogyra Wood, 1842
Cyclogyra Involvens (Reuss), 1850
Operculina involvens REUSS, 1850, p. 370, pl. 46, fig. 30.
Cornuspira involvens (Reuss ). REUSS, 1863, p. 39, pl. 1, fig. 2. CUSHMAN, 1929, p. 80,
pl. 20, figs. 6, 8.

Cyclogyra involvens (Reuss). BOCK, 1971, p. 12, pl. 3, fig. 2.
Remark: The genus Cornuspirawas placed in synonymy with the genus Cyclogyra by

Loeblich and Tappan (1961).

Family NUBECULARIIDAE Jones, 1875
Subfamily OPHTHALMIDIINAE Wiesner, 1920
Genus Wiesnerella Cushman, 1933b
Wiesnerella auriculata (Egger), 1893

Plate 3, figure 9
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Planispirina auriculata EGGER, 1893, p. 245, pl. 3, figs. 13-15.

Wiesnerella auriculata (Egget). SCHNITKER, 1971, p. 214, pl. 2, fig. 9.

Subfamily SPIROLOCULININAE Wiesner, 1920
Genus Spiroloculina d'Orbigny, 1826
Spiroloculina atlantica Cushman, 1947a
Spiroloculina atlantica CUSHMAN, 1947a, p. 88, pl. 19, figs. 3-5. SCHNITKER, 1971,

p. 216, pl. 2, fig. 10.

Family MILIOLIDAE Ehrenberg, 1839
Subfamily QUINQUELOCULININAE Cushman, 1917
Genus Quinqueloculina d'Orbigny, 1826
Quinqueloculina compta Cushman, 1947a
Quinqueloculina compta CUSHMAN, 19474, p. 87, pl. 19, fig. 2. BANDY, 1954, p. 138,

pl. 28, fig. 2.

Quinqueloculina funafutiensis (Chapman), 1901
Miliolina funafutiensis CHAPMAN, 1901, p. 178, pl. 19, fig. 6.
Quinqueloculina funafutiensis (Chapman). CUSHMAN, 1922b, p. 67, pl. 13, fig. 3.

CUSHMAN, 1929, p. 30, pl. 4, fig. 4.

Quinqueloculina lamarckiana d'Orbigny, 1839a
Plate 3, figure 10
Quinqueloculinia lamarckiana d'Orbigny, 1839a, p. 189, pl. 11, figs. 14, 15. CUSHMAN,

1921, p. 65, pl. 15, figs. 13, 14. CUSHMAN, 1922b, p. 64. CUSHMAN, 1929, p.
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26, pl. 2, fig. 6. BANDY, 1954, p. 138, pl. 28, fig. 3. BOCK, 1971, p. 19, pl. 6, figs.

7-9. TODD and LOW, 1971, p. 8, pl. 2, fig. 10.

Quinqueloculina polygona d'Orbigny, 1839a
Quinqueloculina polygona d'Orbigny, 1839a, p. 198, pl. 12, figs. 21-23. CUSHMAN,
1921, p. 66, pl. 16, figs. 3, 4. CUSHMAN, 1929, p. 28, pl. 3, fig. 5. BOCK, 1971,

p. 20, pl. 7, figs. 1-3. TODD and LOW, 1971, p. 8, pl. 2, fig. 5.

Quinqueloculina seminulum (Linné), 1758

Serpula seminulum LINNE, 1758, p. 786.

Quinqueloculina seminulum (Linné). d'ORBIGNY, 1826, p. 301. CUSHMAN, 1929, p. 24,
pl. 2, figs. 1, 2. PARKER, 19523, p. 456, pl. 2, fig. 7. BOCK, 1971, p. 21, pl. 7,
figs. 7-9. SCOTT and others, 1980, p. 231, pl. 3, figs. 3-5. SCOTT and others,
1991, p. 386, pl. 2, fig. 16.

Quinqueloculina seminulum (Linné), 1758 forma Jugosa Cushman, 1944
Plate 3, figure 11
Quinqueloculina seminulum (Linné, 1758) var. jugosa Cushman, 1944, p. 13, pl. 2, fig. 15.

PARKER, 1952a, p. 458, pl. 2, fig. 8.

Genus Triloculina Reuss, d'Orbigny, 1826
Triloculina oblonga (Montague), 1803
Plate 3, figure 12
Vermiculum oblongum MONTAGUE, 1803, p. 522, pl. 14, fig. 9.
Triloculina oblonga (Montague). d'ORBIGNY, 1826, p. 300, no. 16. BOCK, 1971, p. 27, pl.

11, figs. 2-4. GOLDSTEIN and FREY, 1986, pl. 4, fig. 25.
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Suborder ROTALIINAE Delage and Hérouard, 1896

Superfamily NODOSARIACEA Ehrenberg, 1838
Family POLYMORPHINIDAE d'Orbigny, 1839a
Subfamily POLYMORPHININAE d'Orbigny, 1839a
Genus Guttulina d'Orbigny, 1839a
Guttulina lactea (Walker and Jacob), 1798
Serpula lactea WALKER and JACOB, 1798, p. 634, pl. 24, fig. 4.

Guttulina lactea (Walker and Jacob). SCHNITKER, 1971, p. 202, pl. 4, fig. 10.

Superfamily BULIMINACEA, Jones, 1875
Family TURRILINIDAE Cushman, 1927a
Subfamily TURRILININAE Cushman, 1927a
Genus Buliminella Cushman, 1911
Bullminella elegantissima (d'Orbigny), 1839b
Bulimina elegantissima d'ORBIGNY, 1839b, p. 51, pl. 7, figs. 13, 14.
Buliminefia elegantissima (d'Orbigny). PARKER and others, 1953, p. 6, pl. 4, figs. 8, 9.
PHLEGER, 1954, p. 637, pl. 1, figs. 24, 25. LANKFORD, 1959, p. 2097, pl. 2, fig.
16. BOCK, 1971, p. 44, pl. 16, fig. 9. SCOTT and others, 1980, p. 226, pl. 3,

figs. 1, 2.

Family BOLIVINITIDAE Cushman, 1927a
Genus Bolivina d'Orbigny, 1839a
Bolivina lowmani Phleger and Parker, 1951

Plate 3, figure 13
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Bolivina lowmani PHLEGER and PARKER, 1951, p. 13, pl. 6, figs. 20, 21. PARKER, 1954,

p. 515, pl. 7, fig. 21. LANKFORD, 1959, p. 2097, pl. 3, fig. 4. BOCK, 1971, p. 46,
pl. 16, fig. 14.

Brizalina jowmnani (Phleger and Parker). SCOTT and others, 1991, p. 384, pl. 2, fig. 12.

Bolivina pseudoplicata Heron-Allen and Earland, 1930b
Bolivina pseudoplicta HERON-ALLEN and EARLAND, 1930b, p. 181, pl. 3, figs. 36-40.
CUSHMAN and TODD, 1947, p. 66, pl. 16, fig. 2, 3. PARKER, 1952a, p. 444, pl.
4, fig. 11. SCHNITKER, 1971, p. 194, pl. 4, fig. 23. SCOTT and athers, 1980, p.

226, pl. 4, fig. 3. SCOTT, 1987, p. 326.

Bolivina striatula Cushman, 1922b
Bolivina striatula CUSHMAN, 1822b, p. 27, pl. 3, fig. 10. PARKER and others, 1953, pl. 4,
figs. 4, 5. BANDY, 1954, p. 135, pl. 31, fig. 9. LANKFORD, 1959, p. 2097, pl. 3,

fig. 6.

Genus Rectobolivina Cushman, 1927a
Rectobollvina advena (Cushman), 1922b
Siphogenerina advena CUSHMAN, 1922b, p. 35, pl. 5, fig. 2.

Rectobolivina advena (Cushman). SCHNITKER, 1971, p. 208, pl. 4, fig. 26.

Family BULIMINIDAE Jones, 1875
Subfamily BULIMININAE Jones, 1875
Genus Bulimina d'Orbigny, 1826

Bullmina aculeata d'Orbigny, 1826
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Bulimina aculeata d'ORBIGNY, 1826, p. 269. SCHNITKER, 1971, p. 194, pl. 5, fig. 4.

Genus Globobulimina Cushman, 1927a
Globobulimina auriculata (Bailey), 1851
Bulimina auriculata BAILEY, 1851, p. 12, figs. 25-27.

Globobulimina auriculata (Bailey), SCHNITKER, 1971, p. 202, pl. 5, fig. 6.

Family UVIGERINIDAE Haeckel, 1894
Genus Uvigerina d'Orbigny, 1826
Uvigerina auberlana d'Orbigny, 1839a
Wvigerina auberiana d'OCRBIGNY, 18394, p. 106, pl. 2, figs. 23, 24. SCHNITKER, 1971,

p. 212, figs. 23, 24.

Genus Trifarina Cushman, 1923
Trifarina fluens (Todd), 1947
Anglogerina fluens TODD, In Cushman and Todd, 1947, p. 67, pl. 16, figs. 6, 7.
Trifarina fluens (Todd). SCOTT and others, 1980, p. 231, pl. 4, figs. 12, 13. SCOTT, 1987,

p. 329

Superfamily DISCORBACEA Ehrenberg, 1838
Family DISCORBIDAE Ehrenberg, 1838
Subfamily DISCORBINAE Ehrenberg, 1838
Genus Buccella Andersen, 1952
Buccella hannal (Phleger and Parker), 1951

Eponides hannai PHLEGER and PARKER, 1951, p. 21, pl. 10, figs. 10-14,



Buccella hannai (Phleger and Parker). SCHNITKER, 1971, p. 194, pl. 5, fig. 15.

Genus Eveponidella Wickenden, 1949
Eoeponidella pulchella (Parker), 1952b

Prinaella (?) pulchella PARKER, 1952b, p. 420, pl. 6, figs. 18-20.

Genus Epistominella Husezima and Maiuhasi, 1944
Epistominella takayanagillwasa, 1955

Epistominella takayanagii IWASA, 1955, p. 16, text fig. 4.

Genus Gavelinopsis Hofker, 1951
Gavelinopsis translucens (Phleger and Parker), 1951

Plate 3, figures 14, 15

"Rotalia” transiucens PHLEGER and PARKER, 1951, p. 24, pl. 12, figs. 11, 12.
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Gavelinopsis transiucens (Phleger and Parker). SCOTT, 1987, p. 328, pl. 2, figs. 14, 15.

Genus Helenina Saunders, 1961
Helenina anderseni (Warren), 1957
Plate 3, figures 16, 17

Pseudoeponides anderseni WARREN, 1957, p. 39, pl. 4, figs. 12-15.

Helenina anderseni (Warren). SAUNDERS, 1961, p. 148. SCOTT and MEDIOLI, 1980a,

p. 40, pl. 5, figs. 10, 11. SCOTT and others, 1991, p. 385, pi. 2, figs. 19, 20.

Genus Rosalina d'Orbigny, 1826

Rosalina columblensls (Cushman), 1925
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Discorbis columbiensis CUSHMAN, 1925, p. 43, pl. 6, fig. 13.

Rosalina columbiensis (Cushman). SCOTT and others, 1980, p. 231, pl. 4, figs. 6, 7.

Rosalina Horidana (Cushman), 1922b
Discorbis floridana CUSHMAN, 1922b, p. 39, pl. 5, figs. 11, 12,

Rosalina floridane {Cushman). SCHNITKER, 1971, p. 210, pl. 5, fig. 19.

Superfamily SPIRILLINACEA Reuss, 1862
Family SPIRILLINIDAE Reuss, 1862
Subfamily PATELLININAE Rhumbler, 1906
Genus Pateliina Williamson, 1858
Patellina corrugata Williamson, 1858
Patellina corrugata WILLIAMSON, 1858, p. 46, pl. 3, figs. 86-89. PHLEGER and PARKER,

1951, p. 23, pl. 12, fig. 4.

Superfamily ROTALIACEA Ehrenberg, 1839
Family ROTALIIDAE Ehrenberg, 1839
Subfamily ROTALIINAE Ehrenberg, 1839
Genus Ammon{a Brannich, 1772
Ammonla beccarll (Linné), 1758
Plate 3, figure 13
Nautilus beccarii LINNE, 1758, p. 719.
Ammonia beccarii (Linné). BRUNNICH, 1772, p. 232. FRIZZELL and KEEN, 1949, p. 106.
SCHNITKER, 1974, p. 216-223. SCOTT and MEDIOLI, 19804, p. 35, pl. 5,

figs. 8, 9.
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“Rotalia* beccarii (Linné) var. parkinsoniana (d'Orbigny). PHLEGER and PARKER, 1951, p.

23, pl. 12, fig. 6. BOCK, 1971, p. 55, pl. 20, figs. 5, 6.

*Rotalia® beccarii (Linné) var. tepida CUSHMAN, 1926, p. 79, pl. 1. PHLEGER and
PARKER, 1951, p. 23, pl. 12, fig. 7.

“Rotalia” beccarii (Linné) variants. PARKER, 1952a, p. 457, pl. 5, figs. 5, 7, 8. PARKER
and others, 1953, p. 13, pl. 4, figs. 20-22, 25-30. PARKER, 1954, p. 531, pl. 10,
figs. 1, 2, 5, 6. PHLEGER, 1954, p. 645, pl. 3, figs. 4-10. LANKFORD, 1959, p.
2099, pl. 3, figs. 10, 13.

Streblus beccarii (Linné) var. sobrinus (Shupack). BANDY, 1954, p. 138, pl. 30, fig. 7.
BENDA and PURI, 1962, p. 355, pi. 1, figs. 12-14,

Streblus beccarii (Linné) var. tepida (Cushmar). BENDA and PURI, 1962, p. 355, pl. 1,
figs. 26, 27.

Streblus tepidus (Cushman). BANDY, 1856, p. 197, pl. 31, fig. 2.

Ammonia parkinsoniana (d'Orbigny) forma tepida Cushman. POAG, 1978, p. 397, pl. 1,
figs. 1-4, 10-12, 17, 18. GOLDSTEIN and FREY, 1936, pl. 4, fig. 29.

Ammonia parkinsoniana (d'Orbigny) forma typica POAG, 1978, p. 397, pl. 1, figs. 5-9, 13-
16, 19-21.

Remark: In this study, no attempt was made to distinguish the various forms of Ammonia

beccarii since Schnitker (1974) demonstrated with culturing techniques that many of the

described forms are ecophenotypic variations of Ammonia beccarii,

Family ELPHIDIIDAE Galloway, 1933
Subfamily ELPHIDIINAE Galloway, 1933

Genus Eiphidium de Montfort, 1808
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Elphidium excavatum (Terquem) forma clavatum Cushman, 1930b
Plate 4, figures 1, 2
Elphidium incertum (Williamson) var. clavatum CUSHMAN, 1930b, p. 20, pl. 7, fig. 10.
Elphidium incertum (Williamson) and variants, PARKER, 1952a, p. 448, pl. 3, fig. 16.
Elphidium excavaturn (Terquem) forma clavata Cushman. MILLER and others, 1982, p.
124, pl. 1, figs. 5-8; pl. 2, figs. 3-8; pl. 3, figs. 3-8 pl. 4, figs. 1-6; pl. 5, figs. 4-8;

pl. 6, figs. 1-5.

Elphidium excavatum (Terquem) forma excavatum (Terquem), 1876
Plate 4, figure 3

Polystomeila excavata TERQUEM, 1876, p. 429, pl. 2, fig. 2.

Elphidium excavatum (Terquem). CUSHMAN, 1930b, p. 21, pl. 8, figs. 1-7. CUSHMAN,
1944, p. 26, pl. 2, fig. 40. BENDA and PURI, 1962, p. 325, pl. 1, fig. 16. HANSEN
and LYKKE-ANDERSEN, 1976, p. 10, pl. 6, figs. 1-6.

Elphidium excavatum (Terquem) forma excavala (Terquem). MILLER and others, 1982, p.
128, pl. 1, figs. 9-12; pl. 2, figs. 1, 2; pl. 3, figs. 1, 2; pl. 4, figs. 13-16; pl. 5,

figs. 15, 16; pl. 6, figs. 6-8, 14.

Elphidlum excavatum (Terquem) forma gunterl Cole, 1931
Plate 4, figures 4,5
Elphidium gunteri COLE, 1931, p. 34, pl. 4, figs. 9, 10. PARKER and others, 1953, p. 8,
pl. 3, figs. 18, 19. PARKER, 1954, p. 508, ;)I. 6, fig. 16. PHLEGER, 1954, p. 639,
pl. 2, figs. 3, 4. BANDY, 1956, p. 194, pl. 30, fig. 19. LEHMANN, 1957, p. 348, pl.
3, figs. 1-4. LANKFORD, 1959, p. 2098, pl. 2, fig. 7. BENDA and PURI, 1962, p.

335, pl. 1, fig. 11. SCOTT and others, 1991, p. 385, pl. 2, fig. 15.

ALY
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Eiphidlum excavatum (Terquem) forma /l[doensie Cushman, 1936
Plate 4, figures 6, 7
Eiphidium lidoense CUSHMAN, 1936, p. 86, pl. 15, fig. 6.
Elphidium excavatum (Terquem) forma lidoensis Cushman. MILLER and others, 1982, p.

134, pl. 1, figs. 17-20; pl. 4, figs. 7-12; pl. 5, fig. 9; pl. 6, figs. 15, 16.

Elphidium excavatum (Terquem) forma selseyensis
(Heron-Allen and Earland), 1911 emended (Brand), 1941
Plate 4, figures 8, 9
Designated by Brand, 1941, p. 66, as: Polystominella striatopunciata variety selseyensis
Heron-Allen and Earland, 1909, p. 695, pl. 21, figs. 2a-2c¢.
Polystominelia striatopunctata (Fichtel and Moll) variety HERON-ALLEN and EARLAND,
1909, p. 695, pl. 21, fig. 2a-2c.
Polystominella striatopunctata (Fichtel and Moll) variety selseyensis HERON-ALLEN and
EARLAND, 1911, p. 448,
Elphidium incertum (Williamson) and variants. PARKER, 1952a, p. 448, pl. 3, figs. 14, 17,
pl. 4, figs. 1, 2.
Elphidium excavatum (Terquem) forma selseyensis Heron-Allen and Earland. MILLER and

others, 1982, p. 132, pl. 1, figs. 13-16; pl. 5, figs. 10-13; pl. 6, figs. 9-13.

Elphidium galvestonense Kornfeld, 1931
Plate 4, figure 10
Elphidium gunteri Cole var. galvestonensis KORNFELD, 1931, p. 87, pl. 15, fig. 1.
Elphidium galvestonense Kornfeld forma typicum FOAG, 1978, p. 403, pl. 3, figs. 13-16,

22, 23. POAG, 1981, p. 60, pl. 35, fig. 3, pl. 36, fig. 3.
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Elphidium galvestonense Kornfeld. PARKER and others, 1953, p. 7, pl. 3, figs. 15, 16.
PHLEGER, 1954, p. 639, pl. 2, figs. 1, 2. LEHMANN, 1957, p. 348, pl. 2,

figs. 37-40,

Elphidium poeyanum (d'Orbigny), 183%9a
Plate 4, figures 11, 12

Polystomella poeyana d'Orbigny, 1839a, p. 55, pl. 6, figs. 25, 26.

Cribroelphidium kugleri CUSHMAN and BRONNIMANN, 1948a, p. 18, pl. 4, fig. 4.

Cribroelphidium poeyanum (d'Orbigny). BOCK, 1971, p. 57, pl. 21, figs. 1, 2.

Elphidium kugleri (Cushman and Brénnimann). HANSEN and LYKKE-ANDERSEN, 1976,
p. 12, pl. 9, figs. 4-8.

Elphidium poeyanum (d'Orbigny). CUSHMAN, 1930b, p. 25, pl. 10, figs. 4, 5. PARKER
and others, 1953, p. 9, pl. 3, fig. 26. BANDY, 1954, p. 136, pl. 30, fig. 6.
PARKER, 1954, p. 509, pl. 6, fig. 17. PHLEGER, 1954, p. 639, pl. 2, figs. 8, 9.
LEHMANN, 1957, p. 348, pl. 3, figs. 13, 14. LANKFORD, 1959, p. 2098, pl. 2, fig.
5. HANSEN and LYKKE-ANDERSEN, 1976, p. 13, pl. 9, figs. 9-12; pl. 10,

figs. 1-5.

Elphidium subarcticum Cushman, 1944
Elphidium subarcticum CUSHMAN, 1944, p. 27, pl. 3, figs. 34, 35.

Cribrononion subarcticum (Cushman). SCOTT and others, 1980, p. 228, pl. 2, fig. 9.

Superfamily ORBITOIDACEA Schwager, 1876
Family EPONIDIDAE Hofker, 1951

Genus Eponides de Montfort, 1808
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Eponides repandus (Fichtel and Moll), 1797
Nautilus repandus FICHTEL and MOLL, 1798, p. 35, pl. 3, figs. a-d.
Eponides repandus (Fichtel and Moll). BARKER, 1960, p. 214, pl. 104, fig. 18. BOCK,

1971, p. 58, pl. 21, figs. 6, 7.

Family CIBICIDIDAE Cushman, 1927a
Subfamily CIBICIDINAE Cushman, 1927a
Genus Cibicides de Montfort, 1808
Cibicides lobatulus (Walker and Jacob), 1798
Nautilus lobatulus WALKER and JACOB, 1798, p. 642, pl. 14, fig. 36.
Truncatulina lobatula (Walker and Jacob). d'Orbigny, 1839a, p. 134, pl. 2, figs. 22-24.
BRADY, 1884, p. 660, pl. 92, fig. 10, pl. 93, fig. 1. CUSHMAN, 1918, p. 16, pl. 1,
fig. 10, p. 60, pl. 17, figs. 1-3.
Cibicides lobatulus (Walker and Jacob). CUSHMAN, 1927b, p. 170, pl. 27, figs. 12, 13.
CUSHMAN, 1935, p. 52, pl. 52, figs. 4-6. PARKER, 1952a, p. 446, pl. 5, fig. 11.

SCOTT and others, 1980, p. 226, pl. 4, figs. 8, 9.

Superfamily CASSIDULINACEA d'Orbigny, 1839a
Family CASSIDULINIDAE d'Orbigny, 183%9a
Genus Cassidulina d'Orbigny, 1826
Cassidulina laevigata d'Orbigny, 1826
Cassidulina laevigata d'ORBIGNY, 1826, p. 282, no. 1, pl. 15, figs. 4,5. SCHNITKER,

1971, p. 196, pl. 10, fig. 5.
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Cassidulina reniforme Norvang, 1945
Cassidulina crassa var. reniforme NORVANG, 1945, p. 41, text figs. 6¢c-h.

Cassldulina reniforme (Nervang). SCOTT, 1987, p. 327, pl. 2, figs. 11, 12,

Family NONIONIDAE Schultze, 1854
Subfamily NONIONINAE Schultze, 1854
Genus Haynes/na Banner and Culver, 1978
Remark: This genus was placed in this taxonomic position since Banner and Culver (1978)
designated Nonionina germanica Ehrenberg, 1840b as the type species for this genus.
Haynesina depressula (Walker and Jacob), 1798
Plate 4, figure 13

Nautilus depressulus WALKER and JACOB, 1798, p. 641, fig. 33.
Nonionina depressula (Walker and Jacob). HERON-ALLEN and EARLAND, 1916, p. 279,

pl. 43, fig. 4.
Nonion depressulus (Walker and Jacob). MURIRAY, 1965, p. 148, pl. 25, figs. 6, 7, pl. 26,

figs. 7, 8. HAYNES, 1973, p. 209, pl. 22, figs. 8-11, pl. 29, fig. 9, text-fig. 44,

no. 1-3.
Haynesina depressula (Walker and Jacob), BANNER and CULVER, 1978, p. 200, pl. 10,

figs. 1-10.

Genus Nonionella Cushman, 1926
Nonlionella auricula Heron-Allen and Earland, 1930b
Nonionella auricula HERON-ALLEN and EARLAND, 1930b, p. 192, pl. 5, figs. 68-70.

CUSHMAN, 1347b, p. 13, pl. 2, fig. 14.
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Family ANOMALINIDAE Cushman, 1927a
Subfamily ANOMALININAE Cushman, 1927a
Genus Hanzawala Asano, 1944
Hanzawala stratton/ (Applin, Ellisor and Kniker), 1925
Truncatulina americana Cushman var. strattoni APPLIN and others, 1925, p. 99, pl. 3, fig. 3.
Cibicidina strattoni (Applin). PARKER and others, 1953, p. 7, pl. 4, figs. 38, 39.
PHLEGER, 1954, p. 638, pl. 1, figs. 26, 27.
Hanzawaia strattoni (Applin). BANDY, 1954, p. 136, pl. 31, fig. 4. LANKFORD, 1959,

p. 2098, pl. 3, fig. 16.



L _____J

Figure 1.
Figure 2,
Figure 3.
Figure 4.
Figure 5.
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Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14,
Figure 15,
Figure 16,
Figure 17.

Figure 18, 19. Trochammina ochracea (Williamson). 18. dorsal view, 19. ventral »iew.

PLATE 1
Difflugia corona Ehrenberg.
Difflugia oblonga Ehrenberg.
Difflugia urceolata Carter.
Pontigulasia compressa (Carter).
Cucurbitella tricuspis (Carter).
Centropyxis aculeata (Ehrenbearg).
Centropyxis constricta (Ehrenberg).
Polysaccammina hyperhalina Medioli, Scott and Petrucci.
Pseudothurammina limnetis Scott, Medioli and Williamson.
Miliammina fusca (Brady).
Haplophragmoides manilaensis Andersen.
Hanlophragmoides wilberti Andersen.
Ammoastula inepla (Cushman and Brénnimann).
Ammobaculites dilatatus Cushman and Brénnimann.
Ammobaculites exiguus Cushman and Brénnimann.
Ammotium galsum (Cushman and Bronnimann).

Ammotium subdirecturn Warren.
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Plate 1
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PLATE 2

Figure 1-4. Trochammina inflata (Montagu). 1. dorsal view, 2-4. ventral view.

Figure. 5-16.  Siphotrochammina lobata Saunders. 5-16. ventral view.
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Plate 2
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Figure 1, 2.
Figure 3.
Figure 4,
Figure 5, 6.

Figure 7, 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12,
Figure 13,

Figure 14, 15.

Figure 16, 17.

Figure 18.
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PLATE 3

Sipnotrochammina lobata Saunders. 1, 2. ventral view.
Trochammina macrescens Brady. 3. ventral view,

Gaudryina exilis Cushman and Bronnimann.

Arenoparella mexicana (Kornfeld). 5. dorsal view, 6. ventral view.
Tiphotrocha comprimata (Cushman and Brénnimann). 7. dorsal view,
8. ventral view,

Wiesnerella auricuiata (Egger).

Quinqueloculina lamarckiana d'Orbigny.

Quinqueloculina seminulum (Linné) forma jugosa Cushman.
Triloculina oblonga (Montague).

Bolivina lowmani Phlegeer and Parker.

Gavelinopsis transiucens (Phlegeer and Parker). 14. dorsal view,
15. ventral view.

Helenina anderseni (Warren). 16. dorsal view, 17. ventral view.

Ammonia beccarii (Linné).

b - |
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Figure 1, 2,

Figure 3.
Figure 4, 5.
Figure 6, 7.

Figure 8, 9,

Figure 10.
Figure 11, 12,

Figure 13.
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PLATE 4
Elphidium excavatum (Terquem) forma clavatum Cushman. 2. Scanning
Light Micrograph (SLM) x40
Elphidium excavatum (Terquem) forma excavatum (Terquem).
Elphidium excavatum (Terquem) forma gunteriCole. 4. SLM x40
Elphidium excavatum (Terquem) forma lidoensis Cushmzn. 6. SLM x40
Elphidium excavatum (Terquem) forma selseyensis (Heron-Allen and
Earland, emmended Brand). 8. SLM x40
Elphidium galvestonense Korrifeld.
Elphidium poeyanum (d'Orbigny). 12, SLM x40

Haynesina depressula (Walker and Jacob).
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Plate 4
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Appendix Table 2. Percent abundance of living (stained, L) and total (T} foraminifera and
arcellaceans and percentage of organic matter from Transect 7,
Murrells Inlet.
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Percent abundance of living (stained, L) and total (T) foraminifera and

arcellaceans from Transect 1, North Inlet.
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Percent abundance of living (stained, L) and total (T) foraminifera and
arcellaceans and percentage of organic matter from Transect 6, North
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Percent abundance of living (stained, L) and total (T) foraminifera and
arcellaceans and percentage of organic matter from Transect 4,

Santee Delta.
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STATION NUMBER 1 2 3 4 5 3
|DISTANCE ALONG TRANSECT (m 0 2 4 6 8 10
IPERCENT ORGANIC MATTER 17.81 19.25 20.35 22.44 20.26 19.84
fiveA LT[t vt [t vt & Jt v Jt [T
NO. OF SPECIES 5| 1] 3] o 5 7 of 13 9 12 7 11
NO. OF INDIVIDUALS/10cc e 70l 21] 210] 21] 40! 176| 349] 233] 377] 328| 1176
Ammoastuta inepta 333 7.1 71.4] 57.5| 83.5] 49.0] 56.7| 49.1] 70.7| 58.2
Ammobaculites dilatatus 0.3
Ammolium selsum 167] 43| 48] 1.9 0.3
A. subdirectum 17) 1.1
Arenoparella mexicana 7.1 48] 25| 1.7{ 1.4] 159] 135 0.7
| Haplophragmoides manilaerisis | 04] 13| 24| 37
H. witberti 16.7] 186 1.9] 48] 50f 06| os| 34 32] 24] 51
Milammina fusca 14] 48] 19! 95| 75| 40] 7.7] 04| 16] 61] 68
Pseudothurammina limnetis 60| 114] 12| 24
Siphotrochammina lobata 0.3
Tiphotrocha comprimata 0.5 13] 1.6
Trochammina inflata 4.3 0.5 06| 1.7 1.7] 19| 37 48
T. macrascens 167] 57 1.0[ 9.5] 7.5] 3.4] 40| 142] 14.3] 134] 163
T. ochracea 30.0{ 90.5] 848 15.0 3.7 1.6
Centropyxis aculeata 16.7| 18.6 741 50] 34| 26.4 0.3 14
C. constricta 1] 1.1
Diffugia oblonga 2.9 0.5 23 0.3
Heleopera sphagnii 0.3
Appendix Teble 7.  Percent abundance of living (stained, L) and total (T) foraminifera and

arcellaceans and percentage of organic iatter from Transect 5,

Santee Delta.
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Appendix Table 9.  Percent abundance of living (stained, L) and total (T) foraminifera and
arcellaceans and percentage of organic matter from Murrells Inlet
(channel).
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Appendix Table 10. Percent abundance of living (stained, L) and total (T) foraminifera and
percentage of organic matter from Murrells Inlet {offshore).
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Appendix Table 11. Percent abundance of living (stained, L) and total (T) foraminifera and
arcellaceans and percentage of organic matter from South Santee
River.
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Appendix Table 11 (continued).
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Percent abundance of living (stained, L) and total (T) foraminifera and
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Appendix Table 13. Percent abundance of living (stained, L) and total (T) foraminifera and
arcellaceans and percentage of organic matter from Intracoastal
Waterway, Winyah Bay and nearshore.
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Appendix Table 14. Percent abundance of foraminifera and arcellaceans and percentage
of organic matter from Vibracore 90, Murrells infet.
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Appendix Table 14 (continued).
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Appendix Table 15. Percent abundance of foraminifera from Vibracore 100, Murrells Inlet.

£6C ‘
L [] $3103dS 40 'ON
€ |2 {u) 3609

2 {8t NiHiLd3a

RRI"

RBOO
3"
887"
gYvIR

[]
0
98l |28t [0 1081 iSSi j2vt [2el |22 {211 |26
-86L |-o8L |-89L |-8S) [-€SL |-ObL |-OCL {-02L {-OLL |-06

T

vz fove (vee
-S¥2 |-9E2 {-222

B TV P



19|U] SjlaLNY ‘104 2J0JBIGIA 'LOL BISHUIWEIO} JO B0UBPUNGE JUsdiad ‘9L alqeL Xipuaddy

DEPTH IN 8| 16-| 28-| 40-| 50-] 70-f 90-f 107-| 140-| 171-] 190-| 215-| 242-| 270-] 290-
CORE (cm) 10| 18] 30] 42| 52| 72] 92| 109| 142] 173] 192] 217| 244} 272] 292
NO. OF SPECIES 9 5 3 9 7 3 0 0 0 0 0 0 1 0 0
NO. OF INDIVIDUALS/10cc 139] 1328 3] 372 38 3 0 0 0 0 0 0 1 0 0
Ammoastuta inepta 0.7 03] 26

Ammobaculites exiquus 0.7

Ammotium salsum 0.7 7.7

Arenoparella mexicana 11.5| 85.2| 76.9| 32.5] 31.6] 33.3

Cassidulina reniforme 100

| Haplophragmoides manilaensis 12.4] 10.5] 33.3

H. wilberti 41.4]| 342

Miliammina fusca 432 24 0.3

Siphotrochammina lobata 50| 3.6 1.6 33.3

Tiphotrocha comprimata 0.7 0.8f 26

Trochammina inflata 273] 7.2] 154] 5.1] 105

T. macrescens 72| 15 56] 79
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DEPTH IN 12-| 20-] 34-f 44-| 54-| 65-] 75-| 9C-{ 100-] 120-] 141-] 160-] 172-| 221-| 273-| 313-
CORE (cm) 14] 221 351 46] 56| 671 77] 92] 102] 122| 143| 161} 173} 223] 275| 315
NO. OF SPECIES 7 8 5 11 9 4 1 0 0 0 0 0 0 0 2 Q
NO. OF INDIVIDUALS/10cc 181] 529] 354] 404] 406] 87 2 0 0 0 0 0} 0 0 2 0
Ammoastuta inepta 03] 04

Ammotium salsum 0.7 03] 07

Arenoparella mexicana 65.5] 42.0{ 61.5f 68.7] 53.2| 75.9{ 100

 Cibicides lob: “1us 50.0
Gaudryina exilis 0.3

Haplophragmoides manilaensis 03

H. wilberti 1.1 03] 1.4

Miliammina fusca 28f 04 12| 04

Polysaccammina ipohalina 0.2

Siphotrochammina lobata 0.7] 1.3] 2.1 19] 39| 1.1

| Textularia candeiana 50.0
Tiphotrocha comprimata 28| 1.1} 1.1 03} 07 1.1

Trochammina inflata 23.4] 44.21 17.3] 20.4{ 35.9| 21.8

T. macrescens 41f 9.6] 18.0f 59] 35
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Appendix Table 18. Percent abundance of foraminifera from Push Core and Vibracore
103, Murrelis Inlet.
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Appendix Table 19. Percent abundance of foraminifera and arcellaceans and percentage
of organic matter from Vibracore 106, Murrells Inlet.
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Appendix Table 20. Percent abundance of foraminifera and arcellaceans and percentage
of organic matter from Vibracore B1, North Inlet.
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Percent abundance of foraminifera and percentage of organic matter

from Vibracore B3, North Inlet.

Appendix Table 22,
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Appendix Table 23. Percent abundance of foraminifera and arcellaceans and percentage
of organic matter from Vibracore BS, North infet.
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Percent abundance of living (stained, L) and total {T) foraminifera and

percentage of organic matter from Core 1 (Trans. 6), North Inlet.

Appendix Table 24.
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Appendix Table 27. Percent abundance of foraminifera and arcellaceans and percentage
of organic matter from Vibracore 1, Santee Delta.
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Appendix Table 28. Percent abundance of foraminifera and arcellaceans and percentage

of organic matter from Vibracore 3, Santee Delta.
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Appendix Table 29. Percent abundance of foraminifera and arcellaceans and percentage
of arganic matter from Vibracore 7, Santee Delta.
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