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ABSTRACT

An analysis of the Ising-Potts model using symbolic computation is
presented. The work considers the Kramers and Wannier V-matrix in two-
dimensions and its extension to three-dimensions. Some of the properties
of the V-matrices are also considered. The computation of the partition
function of the Potts-Ising model is carried out using the perturbation
theory. The computation of the partition function has been completed
on a two-dimensional square net and on a three-dimensional cubic lattice
as well. The eigenvectors needed to analyze the propagation of order
in the crystal, and to compute long-range order in crystals have been
given. An Onsager complete solution for the two-dimensional model has
been incorporated as well as the two-dimensional n-state Potts model. A
construction of symbolic proof that a order-disorder transition actually
takes place in crystals has also been considered. The computation of the
ground state entropy which provides a formal connection to the coloring
of graphs has been examined.

The second part of the thesis examines the three-state Potts model
on a three-dimensional cubic lattice. Using the microcanonical simulation
method, the dynamic critical exponent » and the critical exponent v were
measured to be » = 2.11:£0.05 and v = 0.613£0.005 respectively. Also a gen-
eral theorem for computing the average demon energy and an important

consequence of the theorem has been presented,

ix
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Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

For the Potts model, each site of a lattice can be in one of ¢ distinct
states. The Potts model is known to fall into the same universality class as
many other statistical mechanics models and real physical systems. Many
physicochemical systems can be approximated by a lattice arrangement
of the molecules with nearest neighbor interactions. The Potts model is
a generalization of the Ising model to more than two components. It has
been the subject of increasingly intense research in recent years. It has
some important applications, such as the calculation of hadronic proper-
ties in lattice gauge theory and phase transitions in condensed matter. It
has also been related to models of percolation, absorption of rare gases
on graphite, cubic ferremagnets, crystallographic transition, spin glasses
and many other systems [1]. Because of the nature of the Potts models

problem, it is almost impossible to find an analytic solution. In the ab-
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sence of an analytic solution, perturbation theory is the method usually
employed to deal with the problem. Important as the model is, there is no
symbolic computation engine adequate to address the subject. The basic
aim of this thesis is to address this problem, as well as providing the tools
that will be necessary to back up the simulation methods that are already
available.

The main parts of this thesis, symbolic solutions and microcanonical
simulation of the Potts model, are covered in chapter three and chapter
four, respectively. In chapter two, an overview of the microcanonical en-
semble is given, preceded by a short historical review of the Potts model.
This chapter also contains a description of a type of Monte Carlo sampling
method which was first proposed by Metropolis et al. {2]. It allows for the
evaluation of multidimensional integrals that arise in statistical mechanics.
It is simple but powerful, and can be adapted to solve various simulation
problems.

There are also a number of different techniques for the theoretical de-
scription of the two-dimensional ferromagnetic models. Commonly applied
techniques are Monte Carlo simulation, series expansion, Monte Carlo
renormalization, finite-size scaling and exact analytical treatments. It is
clear from these methods that the phase transition between the ordered
phase and the disordered phase occurs at a value of the coupling, K.,
which is given exactly by In(,/7 + 1) [3], for the simple quadratic ¢-state
Potts model. Due to its popularity, the Monte Carlo simulation will be
examined in more detail in chapter 2.

Chapter three is the core of the thesis. Its main aim is to present a
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symbolic solution of the Potts model. With more powerful symbelic com-
putation systems emerging, great progress will be achieved in every area
of science. Some complex integrals that required numerical computation
because they were too tedious and difficult to integrate can now be eval-
uated symbolically, and the numerical value can easily be evaluated by
substituting the numerical data. The basic symbolic algebra tool used in
this thesis is Maple. Almost the entire program is written thanks to the
powerful Maple computational engine. Mathematica also has been helpful
in testing the temperature expression derived for use in the simulation al-
gorithin. The task that is accomplished is the development of the symbolic
series solution of the Potts model.

First a one-dimensional (1-d) case was tackled. The 1-d case is the
simplest model and it exhibits no phase transition. This conclusion agrees
with the known original work of Ising. The 1-d solution is based on a
matrix approach. Despite the fact that the mathematics involved in the
1-d case is easy, it is a good start because it gives insight into the more
complex mathematics involved in the 2-d and 3-d cases. The three differ-
ent methods for the 2-d solution are based on the solutions of Onsager [4]
and Kihara, Midzuno and Shizume [5], and on the perturbation method of
Kramers and Wannier [6]. Kramers and Wannier developed an interest-
ing matrix called the V-matrix, which I have implemented in my program.
The 3-d construction of the series expansion uses an extended construction
of the Kramers and Wannier V-matrix, which was developed in a paper by
Oguchi [7]. The basic idea is the same for the 2-d and the 3-d construction

except that the elements of the 3-d model are block matrices while those
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of the 2-d are not. The names of the programs that we have developed

to compute the 2-d and 3-d Kramers and Wannier V-matrices and some
important transformations are called d2evmat, ddnvmat, d2upemat, d2stmai,
d3cvmat, d3lnvmat, and dyupvmat [8]. This work also has an additional ob-
jective, the programs are designed to be a teaching tool, hence the basic
matrices used in the construction can be accessed. The detailed construc-
tion of the V-matrix will be described in chapter three. The four functions
we have built to compute the partition function of 2-d series expansion
are d2npps, d2lppps, d2rppps, and d2rnpps. The four functions which we have
developed to compute the partition function of 3-d series expansion are
d3lnpps, d3lppps, d3rppps, and ddrnpps. Also the computation of 2-d lattices
with many components, instead of the two component lattice considered
by Kramers and Wannier, has been developed. The names of the pro-
grams are d2mcltpf and d2mchipf. They compute the 2-d many-components
low (high) temperature partition function in series. This function, created
after the the work of Kihara, Midzuno and Shizume, is computed to only

16 terms.

1.2 Computers and Simulation

The technological advances in both hardware and software have enabled
computers to be versatile and effective in dealing with many problems
that were impossible to handle some decades ago. With the improved
capabilities of current computers, the simulation of statistical systems de-

fined by their Hamiltonian equations has become an essential component
Yy q
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in the work of theoretical physicists and mathematicians. More than that,

computer simulation is now an integral part of contemporary basic and ap-
plied science. Indeed, modern computers have become indispensable for
progress in all scientific areas. By using fast computers, many integrals of
statistical mechanics may be evaluated more accurately. Computers are
becoming as important as the experiments to theoretical science. Hence
the ability to compute is part of the essential repertoire of a research scien-
tist. On the analytical front, the computer is used to calculate determin-
istic statistical mechanics equations to obtain numerical results, and these
results are compared with known results, thereby evaluating the validity
of the solution and the simplifying ideas underlying the initial equation.
In this case, we aim at trying to expand the initial intractable integral in
terms of some suitable parameter and some simpler integrals that can be
evaluated on the computer. An example is the high-temperature series
expansion. In chapter four, the microcanonical simulation of the Potts
model will be considered. The microcanonical simulation is a fast and
simple way to simulate statistical systems. It can easily be implemented
on most general purpose computers at a reasonable speed. This enables us
to obtain most of the important relational parameters. These parameters
give us access to investigate some of the properties of the material under
consideration. This will be fully expanded on in chapters three and four.

Another phenomenon that is of great interest to scientists are phase
transitions. They are associated with abrupt changes, discontinuities and
strong fluctuations. Such behavior is assumed to be due to interactions

between microscopic constituents of matter. The number of constituents
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of a macroscopic system is generally of the order of 10*). Each constituent

will carry several degrees of freedom. So the theoretical description of
phase transition, which takes into account the microscopic nature, will
be very difficult. Statistical mechanics should give precise mathematical
relations between the microscopic and macroscopic descriptions of physical
systems. Thus it actually gives a theoretical foundation that describes the
existence of this phenomenon.

The present thesis will simulate the three-state Potts model in order
to obtain some basic properties of ferromagnets. In chapter 4, only the
fundamental interactions between the microscopic components are consid-
ered. Only this fundamental interactions are taken into account within
the microcanonical simulation. For this simulation, the question of using
a computer to simulate directly the behavior of a physical system, taking
as its starting point the fundamental equations of statistical mechanics,
will be addressed. The simulation is carried out on a well-defined lattice
system, and there is control over all the parameters. It allows for a new
discovery that otherwise cculd not be inferred from the basic physical
laws of interaction. Simulation is very important, because its results can
be compared with experimental data as well as predictions of analytical
theories. It illuminates and illustrates subtle basic conceptual relations in
scientific reasoning that cannot easily be recognized or deduced from the
basic physical laws. This program to simulate the model uses an algorithm
similar to the work done by Drouffe and Moriarty [9]. The three-state
Potts model is simulated, and it is used to identify the phase transition,

and to measure critical exponents. Hereby the critical temperature T,,
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the dynamic critical exponents z, and the critical exponent » have been
obtained. The relations between magnetization, temperature and energy
are illustrated. Part of the work is the derivation of a general temperature
expression for the simulation algorithm which uses the demon apprea-h.
Also I have derived an approximate or simpler temperature expressicn.
This new expression gives almost the same results as those obtained us-
ing the full temperature expression. The result is given in Theorem 1 of
chapter four.

The Maple work presented here will form part of the long-term strategy
in developing a symbolic computatien software for the Potts and Ising

models.



Chapter 2

MICROCANONICAL
ENSEMBLE

2.1 Introduction

Considerable efforts have been invested over recent years to develop nu-
merical simulation methods and apply them to statistical systems. For
some time the stochastic methods used in applications concerning spin or
gauge systems have been Monte Carlo methods. However, in searching for
a method that is relatively fast even for use on general purpose comput-
ers, we have settled on microcanonical simulations. This chapter presents
a general overview of the microcanonical ensemble. In section 2.2, a brief
historical review of the Potts model will be given. Then in section 2.3,
some properties of statistical systems are examined, and in section 2.4,
a general review of the canonical ensemble will be given. 1ln section 2.5,

only a basic idea of the canonical ensemble is presented. Lastly, in section
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2.6, the chapter will be concluded with a type of Monte Carlo simulation

generally called Metropolis algorithm. Monte Carlo simulation is essential
because it gives a practical method of obtaining a representative sample
of the total number of microstates. It is widely used in most statistical

mechanics problems because of its simplicity and adaptability.

2.2 Brief Historical Review of the Potts Model

The history of the Potts model is directly linked with that of the Lenz-
Ising model. Therefore a short introduction to the Lenz-Ising model will
be appropriate here. Owing to the simplicity of the Ising model as an
approximation of intermolecular forces, it was doubtful at first whether it
could be made applicable to any real system. But now it is known that
the essential features of cooperative phenomena depend on the mechanism
of propagation of long-range order, especially at the critical point, rather
than on the details of the intermolecular forces. Thus the Ising model
offers, despite its simplicity, a satisfying representation of the mechanism.
The importance of the model is that it can represent a wide class of physi-
cal systems: for example, glass-liquid critical phenomena, magnetic Curie
points, order-disorder and transitions in alloys. All these can be described
fairly well by the same model. Moreover, it has been used in a number of
sciences, including physics, chemistry, metallurgy, mathematics and biol-
ogy [1].

The model commonly referred to as Ising’s was originally proposed by

Ising’s supervisor, Wilhelm Lenz, in 1920. The details of the model will be
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given in chapter four when the simulation of the three-state Potts model

is examined. Lenz suggested that dipole atoms in crystals may be free to
rotate about a free rest position in a lattice. In a paper published in 1925,
Ising carried out an exact calculation of the partition functicn of a one-
dimensional lattice. His work showed that there was no phase transition to
a ferromagnetic ordered state at any temperature. Ising failed to predict
phase transition in two and three dimensions.

This apparent failure caused Heisenberg to develop his theory to explain
ferromagnetism. His theory deals with nearest neighbor interactions with
more degrees of freedom between spins. Since then, there have been many
other models. The details of all the various models cannot be given here,
so a summary of the common ones is given. The appropriate Hamiltonian,
which will be ideal for the work at hand, is given below:

H= -t S Jydid — @}N:rﬁﬁ,:, (2.1)
7% &ij> =
where J is the coupling constant, m the magnetic moments of the spin, //

is the magnetic field, and the spins 4; are D-dimensional vectors given by
-
O = 0i1,0i25 - - -y OTiD)-

The summation is over all lattice points and all nearest neighbors < 7 ..,
The interaction between the spins takes the form of a scalar product 4,4,
and Eq. (2.1) defines the so called D-vector model. The spins 4 can
be treated as quantum mechanical operators or as classical vectors. In
the case of a quantum mechanical operator, one obtains for example the
quantum Heisenberg model () = 3) and the quantum X-Y model (/) = Z,

spin-spin coupling along the z-axis being zero). When o tends to infinity,
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so that the #/o becomes the classical D~dimensional unit vectors, one
realizes the classical D-vector model. For special values of D, the classical

vector model reduces to the following models:

1. -\, 6,6 = ojo] (Ising model)
2. D= 2, 6.0, =0l07 + )0} (planar or X-Y muodel)

3. D=3, 6.0, =00, +0/0) +0]0; (classical Heisenberg model)
4. D -0 (extended volume problem)

5. D =00 (spherical model)

The variations that can be incorporated into the Hamiltonian include

(i) lattice anisotropy,
(ii) spin anisotropy, and
(iii) nearest neighbor interactions.

The problems (i) and (ii) can be tackled by developing series expansion
around the isotropic case to compute the partition function. However, in
this work, we will confine ourselves to (iii) above.

In an attempt to extend the exact results obtained for the standard
Ising model in one and two dimensions, Potts (1952) [3] was led, at the
suggestions of Domb, to introduce a model in which each site of a lattice
can be in one of ¢ distinct states. If o, = 1,2,....¢q characterizes the state
of site k, then the Potts model Hamiltonian is given by

a N
H==J) b8(c.,0,) =)D h.é(c,0;),
<> o=1 ;=1
where ¢ is the Kronecker function and h,.c = 1,2,...,q is the field for

the state 0. Two neighboring sites interact only if they are in the same
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state. The Ising model corresponds to the case ¢ = 2. In this thesis the
three-state Potts model without an external field, with the Hamiltonian
H=-K Z o(ay, 0,),
<19>

will be investigated. This will be further elaborated on in chapter 4.

2.3 Some Properties of Statistical Systems

The properties of a statistical system are governed by its Hamiltonian
defined by its mechanical variables, here represented by §). The probability
associated with each microstate can be expressed in terms of its canonical
density function by
Q e~ H()/kyT
= 2.2

p(€2) 7 (2.2)

where Z is the normalization factor or the partition function. The form of

the partition function is given by
7 = / (~HEDRT g (2.3)
0

where T is the absolute temperature and kg is the Boltzmann constant.
For a given probability distribution of the microstates, the thermodynamic
value of a measurable physical quantity, f({}), is obtained in the canonical

ensemble as
<f>= /s T p(s2)ds2. (2.4)
!

This equation constitutes the formal connection between the microscopic
and macroscopic worlds. When the partition function exhibits singulari-

ties, the singularities can be associated with phase transitions. The phase
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transitions can be classified as continuous or first-order transitions using

the free energy, which is defined as
F=—kgThZ (2.5)

If the first derivatives of I with respect to T are continuous at the singular
point, then the phase transition is continuous; otherwise, it is a first-
order transition. A phase transition is characterized by a spontaneously
broken symmetry. Symmetry-breaking is described in terms of the order

paramneter, ®. We define the order parameter by

dF
b= (m),,

where /i3 is a thermodynamic conjugate field associated with the order pa-
rameter. The corresponding term in the free energy is —he®. By Fisher’s
classification of phase transitions [10], ¢ is discontinuous at a first-order
transition and goes to zero continuously at a continuous transition (crit-
ical point). The behavior of the order parameter in computer simulation
is therefore often used in order to determine the nature of the phase tran-
sition [11].

Another important quantity that is influenced by critical fluctuations

is defined below:

Definition 1 The isothermal ordering susceptibility x, is defined by
\e = (PF[0ke)r = (09 /0he)T.

If we introduce the order parameter < ® >, then we have

e = (kaT) (< @2 > — < @ »2), (2.6)
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This is significant for computer simulations because it implies that the

response function may be evaluated directly from the therma! fluctuations.
The fluctuations theorem also relates the fluctuations in internal energy

to the specific heat as

Oy = (SE[ST), = (kgT?) V(< H? > — < H >2). (

ts
~1
g’

Wisdom (1965) [12] was the first to analyze the scaling hypothesis for
static critical phenomena. By this hypothesis the singular part, I, of the

free energy is a generalized homogeneous function
FA AP = AT, hg), (2.8)

where t = (T'—T,)/T. is a measure of the relative distance from the critical
temperature 7. Taking the derivative of 1:', with respect to hy, the corre-
sponding singular behavior of the order parameter can be obtained. We
find
O(t, h = 0) ~ (1), (2.9)
with the critical exponents 3 = (1 — 0)/a. Power-law singularities can be
derived for other qaantities as follows:
Cilt) ~ (=07 T ~T.
~ (=), T T (2.10)
xalt) ~ (=07, T .- 7T

~ (=), T (2.11)

According to Stanley [13], scaling implies that not all critical exponents

are independent. For example ¢ and ) in Eq. (2.8) are related to the
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critical exponent ;4. This two-factor scaie invariance could be expressed in

terms of the scaling relation, which can be expressed as

o F28 44 = 2

Y =

Corrections o scaling are important. The order parameter has the form

O(1) = B(=1)"(1 + 3 a;|t|™), (2.12)

1=zl

where 0, are correction-to-scaling exponents.

The universality principle states that continuous phase transitions can
be classified in a few universality classes, each class giving rise to a cer-
tain set of exponents. These classes are determined by a few fundamental
properties of the systems, such as spatial dimension (d), range of inter-
action, symmetry, and degree of freedom of the fields. The physical idea
behind the universality principle is that at the critical point, all details
of the microscopic interactions are overshadowed by the long wavelength
fluctuations. Renormalization group theory provides the mathematical

explanation for the concept of universality.

2.4 Microcanonical Ensemble
The notion of what a microstate or configuration is, is contained in the
following definition:

Definition 2 .1 microstate. or configuration, of a system is defined to be a set of

vartables Q. which contains the values of all possible degrees of freedom for each
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partiele of the system. The phase space is defined to be the space spanned by all

possible microstates of a system,

Examples of microstates are spatial position, velocity, and magnetic mo-
ment. Consider a closed system in which the volume V', the number of
particles N, and the energy F are fixed. Also assume that the system
is isolated; that is, the influences of external parameters such as gravita-
tional force and external magnetic fields are ignored. Generally, closed
macroscopic systems tend to a time-independent state of equilibrium of
maximum entropy. The macrostate of the system is specified by the values
V, N, and E. At the macroscopic level, there are many different ways or
configurations in which the macrostate comprising of V', N, and I can be
realized. A particular configuration or microstate is accessible if its prop-
erties are consistent with the known macroscopic quantities of the system.
At any given time, the system is equally likely to be in any of its accessible
microstates. Let an isolated systen have an accessible macrostate (), then
the probability P, of finding the system in microstates s is

L

Q>
Ps =

0, otherwise,

if s is accessible

where ) g P = 1.

In the laboratory, the physical quantities are measured over a span of
time sufficiently long to allow the system to sample a large number of
its accessible microstates. The meaning of the probabilities in Eq. (2.13)
that is consistent with such a time average is that during a sequence of
observations, £ yields the fraction of times that a single system is found

in a given microstate. Normally, measurements are not done on a single



17

system. Consider a collection of systems that are identical replicas char-
acterized by the same macrostate. Then Eq (2.13) describes an ensemble
of identical systems. With these basic concepts outlined, the definition of

microcanonical ensemble follows:

Definition 3 An cnsemble of systems speeified by E, N, V that is described by the
probability distribution of the form

L. if s is accessible

0
P, =
0, otherwise,

is called @ microcanonical ensemble.

As an illustration of the above definition, consider a physical quantity A,
which has the value A, when the system is in microstate s. Then the

ensemble average of A is given by
<A>= Z Aspsa
S

where I’ is given by Eq. (2.13). We clarify the above definitions with an

example.

Example 1 Let a model consist of N distinguishable particles that are noninteract-

ing, and have vclocities v and —v only. The ensemble of configurations consistent

2

with N =5 and I = 3v* with a unit mass is described by the binomial coefficients

()

Then it is not difficult to calculate the ensemble averages for the physical

[ 13

system. For example, the mean number of particles moving in the right is

1 XL (N
<">:§I_\727(7‘)‘

=1



2.5 Canonical Ensemble

Most physical systems are not isolated but exchange energy with their
environment. Such systems are usually small in comparison with their
environment, We can therefore assume that a change in energy in the
smaller system does not have a significant effect on the temperature of
the larger system. Thus the larger system acts as a heat bath at a fixed
absolute temperature 7'. If a small but microscopic system is placed in
thermal contact with a heat bath, the system reaches thermal equilibrium
by exchanging energy with the heat bath, until the systemm attains the
temperature of the bath. Let us imagine an infinitely large number of
copies of the system and the heat bath. The probability, /5, that the

system is in microstate s with energy F, is given by

Py = e EelknT (2.14)

N —

where Z is the normalization constant. The ensemble defined by Eq. (2.14)
is known as the canonical ensemble. Taking note of the fact that )~ /.- 1,

Z can be obtained as

M
Z =y ¢~ bslknl (2.15)

s=1

The sum in Eq. (2.15) is over all M microstates of the system., The
quantity Z is known as the partition function of the system. We can
use Eq. (2.14) to obtain the ensemble average of physical quantities; for

example, the mean energy is given by

< E>=S EL =Y B (2.16)
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In contrast to the microcanonical ensemble which is specified by I, N, and
V, with the probability distribution given in Eq. (2.13), the canonical en-
semble is specified by T, N, and V, with the probability distribution given
by the Eq. (2.14). In the canonical ensemble the energy can fluctuate,
while in the microcanonical ensemble the energy is fixed. In the micro-
canonical ensemble the temperature can fluctuate, while in the canonical
ensemble the temperature is fixed.

Monte Carlo simulations that shall evaluate properties of physical sys-
tems, the canonical distribution function is used quite often. In section

2.6, we give a detailed description of the method.

2.6 The Monte Carlo Simulation Method

Our prime objective here is to give the solid mathematical theory on which
the Monte Carlo method is based. The approach will not attack any par-
ticular problem. But most problems can easily be adapted to the method.
Some important phenomena and properties relating to the method will also
be examined. Numerical simulation methods are concerned with proce-
dures based on random numbers. Basically one has to generate and process
a large number of random numbers. Hence the appearance of modern com-
puters has stimulated the use of the method. The Monte Carlo method is
extremely useful as a mathematical tool for solving numerically problems
that are too complex to be solved analytically. The problems attacked by
the method normally fall inte two classes: probabilistic and deterministic.

The probabilistic problems are solved by simulating directly the random



20
process inherent in the problem. Some examples are the simulation of

neutron diffusion in reactors and the simulation of random fluctuations on
a telephone network. The deterministic problem is transformed to one of
stochastic nature, with the requirement that the original problem and the
transformed one have solutions that differ by a controlled amount. An
example of such a problem is that of multidimensional integrals in many-
body theory. The Monte Carlo method can be tailored to meet one’s needs
depending on the nature of the problem. Different Monte Carlo methods
can be distinguished by the sampling techniques they employ. The sam-
pling technique also depends on the bias imposed on the sampling scheme.
In importance sampling, statistical information is collected according to its
importance for a particular problem. A kind of Monte Carlo importance
sampling method first proposed by Metropolis et al. (1953) [2] has proved
to be very successful in statistical mecharics. Though the method and its
realization are extremely simple, it has proved to be very powerful. The
method can be introduced to achieve an efficient numerical evaluation of
the multidimensional integral Eq. (2.4) in many-body systems.

For a physical system with a known Hamiltonian, the energy of a given
microstate F; = H({;) can be easily computed. Then Eq. (2.4) determines
the properties of the system in thermodynamic equilibrium. Assuming
a discrete phase space {Sli}?:’l, the fundamental mathematical object Eq.

(2.4) can be written as

<[> =3 f()p(8,). (2.17)

Thz idea is to introduce stochastic elements into the computation. The

direct attack of introducing unbiased choice will be quite unfavorable since
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the Boltzmann weights vary by many orders of magnitude in the neigh-
borhood of the phase transitions. So the best method is to impose a bias
and choose a finite set of points, {sz,}f‘il, with each state (2, having a fre-
quency proportional to the Boltzmann probability, Eq. (2.2). Thus the

microstates are sampled according to their importance, and the estimate

M
< f>= M1 ZJ(Q,) (2.18)

1=1
is obtained. This partition set, {Q,}?il, is generated by setting a random
walk in the phase space. A Markov chain is associated with the discrete
set that can be parameterized by a discrete time parameter t, the Markov
time. The sequence 1, {),, ..., 2 of states is a realization of a Markov chain
determined by the initial configuration 2, and a stochastic matrix P with

elements p,, where 1 </,j < A, which are subject to the conditions

M
Vijipy 20, Vied p, =1 (2.19)

1=1

Here the p;, is the conditional probability for the one-step transition Q; —
{}, in the chain.

Confining oneself to homogeneous Markov chains, defined by time-
independent transition probabilities, the configurational average in Eq.
(2.17) is replaced by the time average in Eq. (2.18). The matris P mus!
be constructed to make the limit distribution of the chain =, equal to p(0,).

The n-step transition probabilities pf’,‘) are recursively given as

AM
.. 7 i—1 1 €«
Yi.j :pf‘,) = Z})EL )ka; pfj) =Py (2.20)
k=1

The above condition can be formulated as

vi: limp™ =m, > 0. (2.21)

T+ X tJ
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By the homogeneous Markov chains theory the limit exists if the chain
is irreducible, i.e, when all elements are in the same ergodic class. The
assumption that two averages yield equivalent results is called the ergodic
hypothesis or, more accurately the quasi-ergodic hypothesis. The limit
distribution is then independent of j, and the initial state ¢ - 1. 1t is

determined uniquely by the normalization and steady state conditions

M

Yo =1, (2.2)
J=1
M
Vit m =) mm, (2.23)
1=:1

This condition is usually fulfilled by imposing a stronger requirement of

microscopic irreversibility:
VJ, k: TPk = TkPk;- (2.2‘1)

The above conditions on the stochastic matrix P imply 2M linear equa-
tions. This gives considerable freedvm to choose the A ¥ Al matrix ele-
ments., A much simpler method has been suggested by Metropolis et al.
(1953) [2] for choosing P* with elements p;, with the associated irreducible

ergodic Markov chain. In terms of />*, the matrix I’ is defined as

Pk = 7):17 wj/ﬂ-l 2 1

p.l"‘- = p:]W.I/Wh 7TJ/7rl < l (2'25)
M

Pu=1= 2 pu (2.26)
k(1)

The presentation of the Monte Carlo method in terms of a Markov chain
with a time-parameter makes it easy to visualize that the process of gen-

erating a chain of microstates may be given a dynamical interpretation.
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The Markov process thus described above is governed by the equation

1
(Wz(t) — _sz]ﬂ“,(t) + ijiﬂ'.](t)'
dt ] i

It may be noted that in thermal equilibrium, dr;(t)/dt = 0 and lim;_ m;(t) =
p(§%,). This dynamics is not the true physical dynamics of the system
because the actual equation of motion has not been used. However, in
many cases the time evclution given by the Markov chain closely resembles
the kinematic of the approach to thermodynamic equilibrium [14-20]. It
must ~ize be noted that time average and ensemble average coincide in
the limit as lim,_..., and lim,,_. ., respectively.

At this point we are ready to describe a realization of the Monte Carlo
importance sampling method. Let us consider a system of N particles with
a microstate () where ) = (my,my,..,my) = {m;}Y,.

To present the general case normally encountered in the applications, to
each single-particle state n there is an internal degeneracy D,, associated.
The canonical density function Eq. (2.2) is then written as

N
pU{m ) = Z7U(] D, ) expl—H({m:} )1/ ke T, (2.27)
=1
where 7 is the generalized partition function

N
% = Y2(TT D) expl—H({mi} L))/ ks T1.

{m} =1

For simplicity choose a I’* that corresponds to single site-transitions, my —
m). The description can be generalized to account for any combination of
single-site excitations. For convenience, we introduce the internal energy
change

Al = H(QY) - H(Q), (2.28)



and the internal entropy associated with the transition is as follows:

AS =kglu(D) /Dy, ) (2.29)

T"’k

A possible realization of the Markov chain may then be described by the

following algorithm:

1. Choose an arbitrary (e.g., random ) initial configuration, {};.
2. Pick a trial state, §),, according to the probability p,.

3. If AU - TAS <0, which is equivalent to I)m'k/l)’"lk exp(~ AU kgT) 2 1,

the trial state is accepted as the next element in the chain (), = (1,

4. If AU —TAS > 0, i.e. X = Dm;;/l)mk exp(—=AU/kT) < 1, a random
number n € [0,1] is generated. If A > 7, the trial state is accepted as
the next element in the chain, €0, = Q,. If A <y, the original state is

duplicated, 2, = §;.
5. A new trial state, Q,, is considered.

The process is repeated until sufficient data have been generated. It is also
assumed that the thermodynamic temperature is positive. If the ergodic
requirement is satisfied, the procedure above will, in the limit of a large
number of Monte Carlo steps, lead to a distribution of states given by
the canonical distribution function Eq. (2.27). This limit distribution
of states constitutes the equilibrium ensemble at temperature 7' for the
model under consideration. In chapter 4, where our simulation procedure
is described, a different method called microcanonical simulation is used.
It will be shown that it is more efficient than the one just described. In

the next chapter, the symbolic solution of the Potts-Ising model is tackled.



Chapter 3

SYMBOLIC SOLUTION OF
THE POTTS MODEL

3.1 Introduction

The heart of this thesis is the symbolic solution of the Potts (Ising)
model. The approach adopted demonstrates how the Potts model not
only is widely used practically, but also has a rich mathematical represen-
tation. It will also provide a general solution to the long-standing problem
of computing the coefficients of low-temperature series expansion of the
Ising model. The high-temperature series is easily deduced from the same
method; hence, it will not be provided in this work.

After the eigenvalue method in statistics is examined in section 3.2, it
will be applied to the one-dimensional closed chain and the one-dimensional
open chain in sections 3.3 and 3.4 respectively. In section 3.5 the famous

Ousager solution [4] for the rectangular square net will be presented, fol-
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lowed by an application to large crystals. Then the construction of an
algorithm that computes the partition function of the two-dimensional
Ising net with examples based on the Onsager work will be given. Lastly,
in sections 3.7 and 3.8, the computation of the partition function for the
two-dimensional and the three-dimensional Ising model usitlg the Kramers
and Wannier approach will be presented. The chapter will close with the
development of the algorithms and some examples.

The various aspects of mathematics that are relevant to the Potts

(Ising) model are given below:
(a) group analysis

(b) series solution

(c) matrix or algebraic solution
(d) graph theory analysis

(e) combinatorial method

(f) C*-algebra approach

This work will focus on the series and the matrix or algebraic solution
of the Ising model. The next section begins by analyzing the eigenvalue

method in statistics.

3.2 The Eigenvalue Method

In the treatment of statistical cooperation in crystals, the partition func-

tion evaluation of properties of statistical systems is simplified if the in-
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teracting units have a fixed location. Also, the periodicity of the systems
allows a simplifying transformation. This was discovered independently
by Kramers and Wannier [6], Lassettre and Howe [21] and Montroll and
Mayer [22]. The transformation can be derived under the following general

assumptions:
(a) The identical units in the structure are lined up as beads on a string
(b) Number them as 0,1.2,3,...n

(c) Describe the state of each unit by the discrete or continuous variable

T, Ty, iy Ty

(d) Represent the potential energy of the system by the sum of the in-

teractions of each molecule with its nearest neighbors

X X

-
—

¢
n-1 X
| Xn 0

FIG. 3.1. A closed chain of n cooperating units.

The reason for (d) is that the number of molecu’es is large, so the inter-

molecular forces are sufficiently short-ranged to permit the total potential
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energy to be represented by the sum of the interactions of each molecule
with its nearest neighbors. The interaction is symbolized by connecting
lines as in Fig. 3.1. Let the interacting potential be denoted by 1 (o,.7)).
Then the probability for a given state of the assembly is proportional to

the Boltzmann exponential

exp[—

! 14 r .
A T(" (”1;‘72) +V (0'3. 04) | (0’,“0“))1.

B
The partition function can be formed by either summation or integration

as

1 , -
7 = Z Z exp [—m(v(a,,az) + o) ((rn,(rl))] . (3.1)

ay==1 ap=1z11

If Z is known, one can obtain some of the physical properties of the crys-
tals; for example, the energy U/ and the total magnetization A can be

given in the form

,oInZ
[ = o204
U=kl =5
and
A 0
M = kgl Py (3.2)

where H is the applied magnetic field. From probability calculus [5] one
can associate the following eigenvalue problem with Eq. (3.1),

E{;exp [—--’;;171-;\/(0, a')| A(a) = AA(d'). (:3.3)

Here ) may have a series of different eigenvalues A,. To each A,, there
corresponds one eigenvector A, if multiple values are counted as often as
they arise. One can obtain an orthogonal relation between the A’s which
1s given by

S Aula)Alo) = by, (3.4)
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For integral equations, the kernel can be developed in terms of the eigen-
vectors, This is also valid for the matrices below because the two sides have
identical eigenvectors and eigenvalues. Thus the diagonalized expansion

of exp[--V (e, ')/ kgT] is

(%p[wziTVXUgﬂﬂ::E:AVAJJ)AJGQ. (3.5)
B v

Substitituting Eq. (3.5) in Eq. (3.1) and carrying out the summations

over ay,m,,...,q, explicitly with the help of Eq. (3.4) one obtains
Z=> AL (3.6)

When the number of the interacting units n is large, all but the largest

eigenvalue can be neglected. Hence Eq. (3.7) takes the form

7=\

max*

(3.7)

In the same way in three dimensions |Ay,.(0i)|? can be interpreted as the
relative probability that any layer in the system is in the /th configuration,
or the probability that the internal coordinates have a particular value,
say ;. However, for a chain with free ends, A,,,x measures the probability
for a state A; in the end member. At a temperature of absolute zero, the
components of A,,., correspond to a completely ordered state with a value
I/\/no. The ny is the number of configurations possible with complete
order, the other components being zero. At a temperature sufficiently
high for thermal agitation to cause complete disorder, all configurations
are equally probable aud A,,,, — (1,1,...1)/y/n. The above considerations

are applied to the one-dimensional Ising model in the next section.
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3.3 Transfer Matrix Solution of the Closed Chain

The one-dimensional Ising model is the simplest of the models. The ap-
proach here will be very similar to that described by Kramers and Wan-

nier.

Definition 4 The total energy E, for a closed Ising chain of N spins in an ertcrnal

magnetic field H, takes the form

S — ]Z FiTip1 — M Hz:’r“ (3.8)

where m ts the magnetic moment, J is the coupling constant betfwecn nearest neighbor

spins or the energy of interaction between nearest neighbor spins, and oy = +1.

As mentioned above, most statistical questions concerning Eq. (3.8) can

be answered if the partition function

Z= Y exp[- k]

=1,
{e,=%1} 1

where on4; is identified with oy, in order to get a closed chain. With

i J
K= 50T
and
mH
("=
A’HT’

the partition function above can be expressed in the form

N
4= Z H IJ(O",,(TH_]), (3())

{a} =1

where

|

. ( .
L(o;,0i41) = exp[K oo + 72(0“; + o)) (3.10)
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The sum over configurations in Eq. (3.9) has the form of a matrix product;

i.e., after summing over o, = *1,03 = £1,..0y = +1, we have

Z= 35 LY(o1,0), (3.11)

o=+l
where LV(o,0') denotes the element of the matrix L, with the components

(3.10) raised to the Nth power. In matrix form we write

L(+1,+1) L(+1,-1) eh+C oK

L(-1,+1) L(-1,-1) el KO
The eigenvalue method will be applied to evaluate the partition function
7. Assume we have a linear chain of finite length n+ 1. Let A; = {0y}, i =

0...n-1 be any arrangement with n spins. Then by Boltzmann’s theorem
P(A)) o exp(=E/kpT) = exp[K (o901 + ... + 0p20n-1)} + C{oo+ ... + 0-1)], (3.12)

because each arrangement has a weight of 1, and F is the total energy.
Also let Ay = {0;}, i = 0,...,n be the arrangement of adding the n + 1-th
spin, then

P(Ay) — P(A;) = exp[K o110, + Coyl.

From Eq. (3.12) the probability /’(¢,-;) that the ¢,_; has either values

irrespective of the value of ay,04,...,0,_, is

P(("n—-l) x Z (’XI)[[\’(‘TOUI + ...+ 0'71-2011——1) + C(O'O + ..t Un—l)]

OOy Tyep=:k1

also

P(oy1, @) o > explK(0001 + ... F Tu2Ouct + Gac10n) + C(00 F ..+ 03)]

T yeeny Ty =]

Thus

AP(ayo1,00) = Plon=1) exp[K o0y + Coyl. (3.13)
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The factor A is present because Boltzmann exponentials are only propor-

tional to the probabilities. Assume the chain is very long, then

Z AP(op—1,00) = AP(oy,) = Z P(oyq)exp[Koy oy 4 Cay).

op—-1=x1 oy =1

The matrix equations have the form of matrix eigenvalue problems. The

v atrix can be symmetrized by the substitution

A(o) = P(O’)(’X})(é('ﬂ’),

4]

which reduces the problem to the form

Y L(o,6")A(c") = A(0), (3.14)

al=+41

where
l l
L(o,0") = exp[Kaa' + ;C0+ ;('rr’].
Using the theorem that develops any matrix into eigenvectors, the matrix

Eq. (3.14) can be written as
L{o1,02) = A Ai(o1)Ai(02) + AaAa(or)Ax(a,),

where Ai(c) and Ay(o) are the eigenvectors belonging to A, and )., respec-

tively. Since they are orthogonal and may be assumed to be normalized,

Z A (o) Ap(a) = by

o=+1
Thus we can unite N of the L’s to

Z...ZL(O’10’2)L(0'20'3)...L(0N0'N+1) = A{VA1(0'1)A1(0'N+1) + )\QIAQ(O'l)Ag((}'NH).

a2 ON

Now, since we are considering a closed ring as in Fig. 3.1, by setting

on+1 = 01 and sutuming over the last spin, we get

Z fae ZL(U],UZ)]J(UQ, U:;)...[J(O'N, 0'1) = /\gv + )\i\l

[ aN
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The left-hand side is exactly the partition function Z, which from Eq.

(3.11) can be identified as the trace of LV, and hence
Z =XV 4. (3.15)

If the length N of the chain tends to infinity, the smaller root )\; may be
neglected. The values )\; and )\, can easily be computed. By taking note

of the matrix L, the eigenvalue problem can be written as
KHC =K A(+) \ A(+)
K K=\ A=) A(-)
which can also be given by the eigenvalue equation
det(L — AI) = A% — 2Xe” cosh(C) + 2sinh(2K) = 0.
Solving, we get
Az = €' cosh((7) & (e*M sinh*(C) + 6_2]")%,
and hence the maximum characteristic value equation is
Ay = o cosh(C) + (€K sinh?(C) + 8—2]{)%.
Indeed, since A\;/A; < 1,V (" > 0, we have

Jim Nz = Jim N7Hn AN (1 4+ (A/A0Y)

= Ilnd+ Jlim N7 n(1+ (A2/M)M)
= In)\
= In(e" cosh(C7) + (¢*¥ sinh?(C) + e2)7).
The total magnetization for the linear chain of length N according to Eq.

(3.2) and Eq. (3.15) is

M= mg—g(l;ém N sinh(C)(sinh?®(C) + f—“")_%-
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This expression vanishes with H; hence the linear chain is not forro-
magnetic. A plot of magnetization (M/m.\) against the magnetic field

C = mH/kgT for seveial values of N’ = %J [kyT is shown in Fig. 3.2 below.

Here, it has been assumed that m/kp = J/kp = 1.

.-
A

M

- 0.4

FIG. 3.2. Magnetization M(H) of 1-d Ising model at i
various temperatures (T) for m/kg=J/kg=1 |

The molecular paramagnetic susceptibility is defined as
\ = (2 kpT) exp(J/kyT).
The partition function in the absence of a magnetic ficld is given by
Z = (2cosh(K)N.
which gives the energy U from Eq. (3.2) as a function of temperature as

1
U= ——l]ranh(h’) = -;2-./tanh(.]/:Zl;,,T).

.
[y
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3.4 The Open Chain Without Magnetic Field

The partition function of the open chain without the magnetic field is

given by
N-1

S >0 T explKo,0,44).

=%kl on=%x1 j=1
Only one of the above factors involves oy; in other words, in the one-

dimensional structure we can separate off and sum over the Nth spin to

get

}: exp(Koy.on) = exp(Koy-y) +exp(—Hoy-1) = 2cosh(Kon_q)
an=%1

= 2cosh(f),

and therefore
N=—-32

7 =2cosh(Kon_ Z Z H exp(Ko;ojp).

m__:tl an_=+1 ;=1

Since cosh(A) = cosh(—A") and ony_y = 1, we set
cosh(Kopn_1) = cosh(K),

and thus

Z = 2cosh(K) 3 .. >, Hexp (Kojoj41)

o=kl on-1==%1 j=1
= 2cosh(K)Zn-1.

The recursive relation 7 = 2cosh(K)Zx_; can be solved by iteration and by

noting the additional fact that 7, = 2. Hence
7 = 2V coshV U K).
By evaluating the limit limy._.., N7'In Z = In(2cosh(K)), it is seen to be a

completely analytic function of A, and hence of all temperatures, V7T > 0.

Thus, as expected, there is no phase transition.
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3.5 The Complete Solution of the 2-D Ising Model
on a Square Lattice

At this point, we will consider the basic concepts underlying the Onsager
solution of the Ising model on a square lattice. The symmetry method
does not reveal anything about the thermal behavior of the Ising net in the
neighborhood of the singular temperature. Fortunately, this information
is provided by Onsager [4], who derived the complete solution for the Ising

model on the rectangular lattice.

‘ J
J0 ’ °
® ¢ ¢ o °

! - | i ' ’ X
| ! X -
| | x X X X X ‘
ok o
: . gﬁ 2x ¥ Ix‘ n_1 . s

'FIG. 3.3. Adaptation of Ising net to eigenvalue method

The approach Onsager adopted uses the operator algebha. In his work
he divided the lattice into n parallel chains. The chains were built simnulta-
neously tier by tier, adding one atom to each chain in each step as shown

in Fig. 3.3. The jth chain gets the variable o, capable of the values 1.
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The operator that describes the addition of a new tier with the interaction

energy

w (o), (0")) = =J i; (730; = —kpTH i; UJU;-

= =

is

Vi = ﬁ((” + M) = (2sinh(2H))" 2B,

s=1
where 3 = Y7, (/;. The individual operators (,...,C,; have the following
effect:
(O P (T1y ey T vy 00)) = (014 0oy g1y =0y Op1ney T (3.16)

Assume a similar interaction between the adjacent atoms in a tier, only
with the independent value .J' for the pairwise energy of interaction. For
symmetry, let the nth atom be neighbor to the first. Then the periodic
condition o,;, = o, holds. Hence the total tierwise interaction energy is
Up(01, ey On) = —J’iajo-].m = —-IJBTH'iO'JUJH.
=1 =1

The effect of this interaction is to multiply the general term of the partition
function represented by one of the 2" vector components, ¢ (oy,...,0,), by
the appropriate factor exp(ua(oq,...,0,))/kgT. The corresponding operator
1, has a diagonal matrix in the representation. It can be constructed from
the simple operators s,...s,, which multiply ¢ by its first, ..., nth argument,
as follows:

(505 ¥(o15 00y 00)) = o33 (015 .0, 00), (3.17)
A=) "s,5.1, and Vi = exp(H'A).

k=1

The crystal can be built in alternate steps, adding a new tier of atoms

as illustrated in Fig. 3.4, then introducing interaction among atoms in the
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same tier, and then adding another tier, etc. The alternate modifications

of the partition function are given by the product ..15171,171517%,

|

X

T
®
o

Jbv—? —0 X
]
X— @ 0 X X
(a) (b)
FIG. 3.4. Two-step extension of a 2-d crystal. (a) A new
tier of atoms O is added (Vy); their configuration dep-

ends on that of the atoms @& in the previous marginal
position. (b) Interaction energy between marginal
atoms O is introduced (V5), which modifies the distri-

bution of confuguration in this tier of atoms.

!
|
|
|
l

with alternating factors. The addition of one tier of atoms with interaction

both ways is represented by V = (1,1}). The eigenvalue problem which

yields the partition function of the crystals is therefore given as

Moo= (Vo) = (1517, ) = (28inh(2H))" 2 (exp(H' A) exp (U 13). ).

Thus the basic matrix equation that needs to be solved is

Mpo=exp(H' > 0,0041) Y, (:xp(HerJ(r;)r/'(rf'l...a
J=1

J=1 o) ..ol =El]

n).

(3.18)

The operators (3.16) and (3.17) form a complete generating basis for the

matrix algebra and satisfy the following conditions:

2 2 NI
s7=C7=1. 5,C; =—=C}s,
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s,55 = sk, OCh = Cu0ly, (3.19)

,‘.J(fk = "‘("k-“Ja (] 7é k)
The operator

n n
H=exp(H' Y o0501) >, exp(H) oo} (3.20)

J=1 al.oh=%1 J=1
can be expressed in terms of the s’s and the (’s. Onsager constructed a
subalgebra containing A which is invariant with respect to the cylinder in
Fig. 3.3. The subalgebra can be generated as a direct product of mutually
commutating quantenion algebra [4]. This quantenion basis has the prop-

erty that H can be written as a direct product of operators belonging to

each basis,

H=H; xHy X..%xXH,.

Each quantenion basis is two-dimensional, so the problem only demands
the solution of a series of quadratic equations. The eigenvalue obtained is

a product of the form

n
A=TIM
r=0
1 _1
A =€27 72" or 1forr=0,n,

Ar=e€", e or | forr#0,n,

with v = A* — K’ and v, = K' + K*.

3.6 Thermodynamic Properties of Large Crystals

To compute the partition function per atom

/\ = )‘(XJ = 1iln (Amax)llns

N0
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for an infinite crystal, replace the sum with an integral. Thus we have

InAy = ~1~hl(?.sinh(‘ZH)) + L /W Y{whdw, (3.21)
2 2r Jo
where
y(w) = cosh_l(cosh(ZH') cosh(2H*) — sinh(2H") sinh (211*) cos(w)).

Using the identity

2r

/ In(2 cosh(z) — 2 cos(w))dw = 2mr,
0

the above integral can be converted into a double integral to describe a

symmetrical function of H and H’, namely

In(A/2) = —;—.vr'z /0 i /0 " n(cosh (2H) cosh (2H')—sinh(2H) cos(w)—sinh(2H") cos(w’))dwdes'.
(3.22)

Using the notations 2k = tanh(2H)/ cosh(2H') and 2+’ = tanh(2/")/ cosh(2H),

a generalization of the Kramers and Wannier series can be obtained. By

expanding the logarithm in powers of x and &' and integrating term by

term, the following can be obtained:

InA— % In(4 cosh(2H) cosh(2H')) = ;l;7r“2 /ﬂ/ In(1 - 2k cos(w) — 2k cos(w'))dwdw’
L 0 0
| ‘ 0 9r g
= = > (242 = DY) TERYRL (3.23)
2 r438>0

Considering the case when H = [I’ and £ = &/, the quadratic syminetry

yields

In ) —In(2cosh (2H)) = ;—r'z / ’ / "In(1 = 4k cos(wr ) cos(ws ) jdwy dw
4] 0

ol 27L : =] 2n Ly
= -3 ) (An)~" | k*. (3.24)
n=1 '
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Even though the convergent of the series solution cannot easily be inferred
from the matrix approach, it can easily be deduced here. The expansions

converge for all values of /1 and [/’ because
|25 cos(w) + 26" cos(w')] < 26 + 26" = sin(g + ¢') £ 1,

where 2k = sin(g)cos(¢’) and 2+’ = cos(g)sin{g’). The angles ¢’ and g are

defined through the gudermannian angles as
¢ =gd(2H"), g=gd(2H) = 1/2r — gd(2H™).

The limit of convergence of the series is the transition point. For the
special case of quadratic symmetry I/ = H', the computation of the ther-
modynamic functions can be simplified. Assuming the number of spins

fitting one tier is large and &; = 4x, the partition function has this form:

mw

In(A/2cosh(2H)) = :Z—I;r/ ln(é(l + (1 — ki sin®(¢))
0

Nl

)do. (3.25)

The following conclusions can easily be deduced. The partition function

(8.21) yields the free energy, which is given as
F=U-<T5=~NkgTIn A,

[/ = F —T(dI'/dT) = NkgT*d(In())/dT),
(' =dll/dT,
for a crystal of N atoms. For the simpler case, H = H’, differentiating Eq.

(3.25) under the integral sign yields, for the energy U/,

, dln A ) 2,
[/ = —"-NJ—‘I-I—[— = "N'](0f112f1(1 + ;611&1(}11)),
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where s; = (1 — ls'f)%. The specific heat (" is given as

= Nkg(Heoth2H)2(2/m) (2K (k)= Fy (k) ~ (1 - ) 4+ spRa (k).

o, —

The K, and the E, are the complete elliptic integrals of the first kind,

given below:
Ky = K(k) :/ 1)(1 ~ k¥ sin®(¢ ))*}d(/),
and
™1
Ey = E(ky) = / (1 = K2 sin®(¢))* dob
The plus (+) sign in (s1) holds below the transition (Curie) point, and
the minus (—) sign above the Curie point. The integral (3.25) cannot be

expressed in a closed form, but a convergent series can be given with the

following notation:

K = K(k), In(q) =7mni=~nK{/K\ = 1/21 = 1/2r,

(=Y (=12 + 1)

1220

The number (7 is the Catalan’s constant, and 7 is the ratio of periods. The

convergent series to Eq. (3.25) is given as

In(}) = = 111(251111 (2H)) — - ln (q1) + Z ~1)*(2n - D)In(l ¢+ '),

n=t
which converges except in the immediate neighborhood of the critical

point. For the region near the critical point we have

X! (L4 (2n+ 1)(mifm)  exp] (20t 1)mif7y))
— i (] 7L o .
In() 111(2%11111(2,]1))—1‘- +“§_:O (G 4 D sink((n 1 1y

The following fact has been applied:

wf2
/ In(eot ()dr) = Ci.
1]
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A singularity occurs ‘or H = H = %ln cotw /8, in which case k; = 1,K; =
0, K| = 1r, [y = 1. The specific heat becomes infinity at the critical point,
and the energy is continuous because s; = 0. The analytic nature of the

singularity is evident from the approximate formulas

Ky ~ In(4/k)) ~ log(2% /|H — H.|),

. 1
() Nky ~ (2/m)(In cotm [8)*(K; — 1 — Zw)

The following are the critical values at the critical point:

H. = J/kgT.=Incotr/8 = 0.4406867935, (3.26)

!
~Fo/NksT. = Inh. = 5In2+ (2/7)( = 09296953983, (3.27)
~U/NJ = 27 = 14142135624, (3.28)

S./Nkg = Inh. —25H, = 0.3064701582 = In 1.3586209232.  (3.29)

The exact value of A, is given by

N
3 fro

€ (".

Ae =2

The Kramers and Wannier estimation of \. = 2.5335 was very close to the
exact value given above,.

The above work is of great interest because it enables us to construct the
exact partition function for both low and high temperature to any degree
of accuracy needed. In fact, for the quadratic symmetry, with H = H’
and x = #', one can obtain a closed form solution of the Ising model on a
square lattice. This is a generalization of the partition function computed
by Kramers and Wannier, The symbolir solution of the above work is given

the name erddserivs (exact two-dimensional series) for the Ising model on a
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square lattice. The program takes the order as an argument and computes

the series to this order. It uses Eq. (3.24) to directly compute the series.
The following illustrative examples show how the program works. This
can be used as a test result for other approximate results. The program
is given in the Appendix A. Some examples are given below:

Example 1.

ex2dseries(10);
pf = 2cosh(H)(1 — r* — 4o? — 200° — 26520% — 2745.19)

Example 2.

ex2dseries(20);

pf =2cosh(H)(1 — &% — 4o* — 295 — 2652% — 2745201 ~ 30773012

~3643150M — 4488749015 — 57020414, — 741999760.02°)

3.7 2-D Perturbation Method of the Ising Model

In considering the theory of the 2-d Ising model on a simple square lat-
tice, Kramers and Wannier introduced the screw construction, which is a
simplification of the matrix constraction. It can be simply described as
having the lattice sites regularly distributed along a continuous line twist-
ing its way in a screwise fashion over the surface of a torus. Suppose that
it consists of m pitches of n spins, and the configuration on each pitch is
denoted by (o1,03,...,0,). The coordinates oy,0y,...,0,,, can take values 11

or —1. The total energy can be written as

I = —%J Z F,0,,

<,
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where the sum is over all pairs < {.j > which are nearest neighbors. Let
n be the number of spins that make up a pitch of the screw, by adding
the nth spin, we notice that it interacts with the Oth and the (n — 1)th
spins enly, because only nearest neighbors are considered. Thus the two

interaction energies are

— A TpTy—1

and

~Ko,o0,

where K = J/2kT. Let the probability of the arrangement o,_1,04-3,...,00
be A(c,_,04-2,...,00), and the one including o, at th iext position be
given by P(o,,04-1,...,00). By Boltzmann’s theorem, tiie probability for
any particular arrangement is proportional to the exp(—E/kT). Applying

this theorem one obtains
AP(0yyey00) = A(Gy_1,...,00)exp[Koy(op_1 + (3.30)

Summing (o, ..., o) over o, gives Y, P(6,,...,00) = A(oy, ...,01). This case
is identical to the one described by A(o,_1,0,-3,...,00), if the screw is very
long. The difference being that o, takes the place of oy and o, of oy, etc.
Thus one gets
Z ¢ ‘1'17[1\'0-71(0‘"-1 + 00)]A(0.1L—1‘ eery 00) = )‘A(Jna ey 0-1)) (331)
o
Since the matrix M = 3, exp[Kc,(0,-1 + 00)] is not symmetric, it is
necessary to introduce right- and left-handed characteristic vectors A, and
B,, satisfying
MA, = \A, and B'M = A\, B,
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Normalizing the characteristic vectors Aq and By, it can be made to satisfy

orthogonality conditions
BIA, = ZBp(a ) = b, (3.32)

The matrix element («;|M]ay) can be expressed as a bilinear combination

of the components Ap(«z2) and Bp(ay), and we find

V((Iz) + V((h ) (\’2)
]\'BT

Z /\"A (av2)By(a) = exp (3.33)

where v(az) is the total energy of interaction between nearest neigh-
boring atoms of pitch 2, and v{«a;, ) is the energy of interaction between
the pitches 1 and 2. By repeated use of Eq. (3.32) and Eq. (3.33), one

finds the partition function to be

Zn
7o mn
Z=35 A,
p=1

If one compares the 3-d case in section 8.10 with the 2-d case, it is
seen that A" of the 2-d case is the analogue of ) in 3-d. The advantage of
this result is that A has a meaning which is independent of the size of the
crystal. Also the logarithm of A,., is the free energy per particle. Thus
Amax enables one to study the variation of the properties of the crystal as
it becomes infinite in two directions [23]. The matrix M(K) is brought

to its standard form by arranging it in some definite order. This can be
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done in the following way, as suggested by Kramers and Wannier. For
any configuration (— + — + — + —), replace every + by 0 and every — by
I. Then read the number in the base two system. For example, in the

given configuration, one gets 1010101, which gives the order to be 83. The

configuration will be separated into two parts. Those with

o, =1 are 0,1,...,2""1 — 1,

and the rest that belong to the class
oy =—1 are 2% —1,2" —2, . 9"l

The reason for the arrangement is that if « and @ belong to corresponding
places in the two classes, then their order numbers add up to 2*! and are
conjugate to each other, in the sense that by reversing all the signs of one,

the other can be obtained. Let

J

K= ot

also let

a=eN and B=e7,



Then the standard form of the matrix .M is given by,

a |

o |

B 1
B 1

where the blank spaces indicate zeros.
The matrix M(K) is simplified using the transformation matrix H de-

fined as

Pl (3.34)
V2|

where I is the unit matrix of order 2"~!. Performing the matrix product

operations HM(K)H™!, one obtains two submatrices V.(K) and V_(K)

which are defined to be the upper positive and lower negative V-matrices
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of Kramers and Wannier. Their forms are given as

a |
o |
o 1
V+(1\’):: )
g1
71
71
and
1e% )
o |
o |
V.(K)=
-3 =1
-4 -1
-3 =1

These two submatrices are known as the V-matrix. The characteristic
values and characteristic vectors of M(/) fall into two classes. Let 1, (K)
and #_(K’) be the right-handed characteristic vectors of V. (K) and V_(K),

respectively, corresponding to the characteristic values A\ (K) and A_(K),
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then the associated vectors of M(/') are

Vg (K v ()
A+(1\’)"-:H*1 = +( ) prm i‘
0 Ve (A)
and I '
0 v ()
A(K)=H"1= |- :
Y- (1Y) —i () l
The components are arranged in the order of the two groups o, = | and
o, = —1 . In a similar way, for the left-handed characteristic vectors ¢/ (/'),

¢ (K) of V.(K) and V_(k), the corresponding vectors are
BL(K) =[ ¢4 (K), ¢5(K) |

and

BL(K) = ¢_(K). —4_(K) | .

It is worthwhile mentioning that the antiferromagnetic case can be easily
treated once the ferromagnetic case is discussed. The necescary properties
are these: in the antiferromagnetic case the interaction energy is J < () and
hence the parameter K < 0, but in the ferromagnetic case the A .- (. Let
R be a permutation that changes every alternate atom on a pitch from +

to — and vice versa, then it can be verified that

| VL (K) |0

RHM(-K)H 1R
l () ’ ~-V._.(K)

The characteristic values of M(—K) are A.(K) and —A_(K'), and the char-
acteristic vectors A (—K), etc., are obtained from AL (K}, BL(K)... by per-
muting the components according to R. Next we tackle the problem of

finding the characteristic values ar 1 the characteristic vectors of V, (/). In
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the limiting case of an infinitely large crystal, the maximum characteristic

value of V.. is equal to the maximum characteristic value of V,

3.8 Low-Temperature Solution of the Matrix
Problem

For the low temperature limit, we have

lim K = lim — 400

T—0 T-0 2kgT

Thus K is large and positive, hence it is ferromagnetic. The pararneter 3
satisfies

i = fim et =0
Hence the expansion can be carried out on powers of 3. Define the matrix

U,(A) as

Vi(K) =« = 2U+(h),
gt p| f

[

A B



0l

where

01

01

0 1

U.(B) + 13 0 1

0 1

0 1

+p? 0 1

0 1
Setting the constant matrices in the equation U, (4) to Uy, Uy, and Ug,

one can write
U, (8) = Ug + AU;7 + f*Us.
Assume that there are n atoms in a pitch, then these matrices will have a

dimension 2"~ !,2"~!. This corresponds to the configurations 0,1,2,...,2" ! - |
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with 7, = 1. What is required is to obtain a power series expansion of
Amaxs the maximum characteristic value, and its corresponding character-
istic vector ., in the parameter 3. The question is whether there is
justification in seeking a power series expansion for A\, and ¥y An ex-
amination of Uy reveals that it has a single nondegenerate characteristic
value of unity, and a 2*°! — |-fold degenerate value of zero. This means
that A,a.x will be well separated from the other characteristic values at low
temperatures. Hence it is an analytic function of # in the neighborhood

of /3 = (), thus justifying the approximation by power series. Now let
= Amax = Z/\pﬂ (335)

and

= Pmax = Z 1/)7;/3” (336)

Inserting Eq. (2.35) and Eq. (3.36) into the Eq. (3.37)
U (B)Y = M, (3.37)

and equating the coefficients of like powers of 3, a set of equations for A,

and ¥, can be derived as

14
Uothp + Ustpoa + Uztppz = D Aty p > 0. (3.38)

q=0

From Eq. (3.38), for p =0, 1,2, one obtains

U'(ﬂ)[)() = )\0’([’0, (339)
Uotfy + Urihg = Aothr + Ao, (3.40)

Unira + Urthy 4 Usthg = AoPy + Aithr + Azibo. (3.41)
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By raising Uy to a higher power, it can be seen that \; = 1, and y,(0) -- 1,
and vp(a) = 0 for @ = 1,2,..2"71 — 1. Since Uyyy = 0, it is easy to deduce
that A\; = 0. The equation for i, becomes Uy = 1. For consistency, and
to remove arbitrariness, set ;(«) = 0 for « = 0,1,2,..2""! — 1. To enhance
the speed of the computation and simplification of the vector i, T have
modified Eq. (3.38) to the set of equations given in the form
i3
(I—Ug)h; = Unthi_y + Ugthyop — 3 thicjosjps, 1 2 3. (3.42)
J=0
Here ] is the identity matrix of the same dimension as the matrix Uj.
The whole idea of the perturbation method depends on solving the set
of equations of the type given in Eq. (3.42). Lastly, from orthogonal
considerations, 1, is expected to be orthogonal to each of the i, giving

A = PU1t,.—;. However, since y,Uy = |010...0],

/\r = 'l/'r—l(l)-

3.9 2-D Perturbation Algorithm and Examples

The functions I have developed to compute the partition function by se-
ries expansion are called d2npps, d2lppps, d2rppps, and d2rnpps. The names
are taken from the two-dimensional left (right) positive (negative) Potts
perturbation series. The functions take two arguments. The first is the
size of the matrix, and the second is the order of the series one wants to
compute. One has to be careful of the size of the matrix because it in-
creases rapidly as (2"!') with n. For example, if one sets n = 5, it produces

a V-matrix of dimension (16,16). Matrices of any size can be calculated.
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However, because of the rapid growth of the matrix, it takes consider-
ably longer to compute the bigger arrays than the smaller ones. Also any
desirable degree of accuracy can be set. Nevertheless, it takes longer to
compute higher orders of the series as computation becomes more com-
plex. Briefly, the main idea behind the algorithm is that, when any of
the functions d2lnpps, d2ppps, d2rppps, or d2rnpps receives its arguments, it
creates the matrices Uy, l/; and l/;, of Eq. (3.38). Then using Eq. (3.42),
an identity is set up to evaluate ¢ and 1, which are the coefficients of the

series. From the evaluated coeflicients the series is composed. The eigen-

—2K J

where K = 5. The algorithm

values series is given in terms of b = ¢

is summarized by the following Pseudocode:
1. Input size of array
2. Input order of the series
3. Create the constant matrices Uy, U/}, U,
4. Set up matrix idertities using Eq. (3.42)

Compute series coefficients

[

6. Compute matrix coefficients
7. Create the partition function series in terms of b = ¢=2K
8. Create the eigenvector series in terms of b = ¢~ 2K

Our program took only 7 minutes on the Sun workstation to compute

the eigenvalues series of degree 50 for n = 5, an array of (32,32). This
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computation is given below as an example. The programs are given in the

Appendix A.

pf=d2rppps(5,50);

pf=1 + 0" 4+30° 4 150% 4 480" + 705'2 — 2530 — 3L18H'C — [868OHS
— 7551207 — 17228066 4 3368550% -+ 659383702 4- 115928360
+ 19998954950 4- 533833645632 — 56762012563 — 1785509402163
—  1320684266240°® - 6352887497680™ — 18811187786626™

+  T146239389176% + 545517189360856™ + 4361655391 14081 5™

+  2219269737289813558.

The eigenvector series is computed along with the computation of the
eigenvalues series. For the sake of space, only 20 terms are represented for

a smaller matrix n = 4. This eigenvector series is given below as

0

0 0 0
5414352 15410619 ~1128b1% ~3309517
188876%° 50480 - 16850 - 2153017
5120006 1367801 —-900!# 32433017
11884020 209151 —1905H13 ! ~-2080H17
—2038H° —3486H1 —~2557h1* -~ 1652017
250530 312261 262201 - 3088H17
283095% 556659 ARTHB 1392017




0

2T 3510
— 131401
—2547H16
— 1140
~T7601¢
~ 21631

— 1483018

()
~188b14
—BRH12
—~ 1806
6401
—4pt*
83012

—B5012

0 - _ 0
—200151" —89151
— 10055 ~399514
—174501% —899h14
+
—~7920" —3306™
—354H15 —144p
~11895" ~5920™
—713p"" —487hM
4 ) - -
~3hot!t —15b10
301! —401°
—44p' —651°
+ +
AV pio
10610
—19p11 6510
—40b1 b1o
- 4] - — 0 - [ 0
20° b b
b 0 b
305 f bt b’
+ | +
b 0 b
b b 0
20° b 0
i b* b 0

95°

. 1
—458h13
—1805"2
—39801°
—1260%
—29b13
—248p13
—210p3 ]
- 0
1168
848
. 106°
T
448
(5
208
0 (| |
0 0
0 0
0 N 0
0 0
0 0
0 0
b? | 1 0

57
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It is accessed by the Maple cor mand map(cvalin, cr). The cr means char-

acteristic vectors. To demonstrate the power of the algorithmn, some ex-

amples are shown for each of the functions we have developed for a matrix

of dimension (64, 64).

ex5=d2rppps(5,20);
ex5 = 1 + 0% + 30° + 150% + 480'° + 706'% — 2530™ — 31180' — 186800'F — ThE 1202

ex6=d2rnpps(5,20);

et =1 — b — % — 50% — 140"0 — 70512 — 22151 — 1122516 — J15401 — 1971453

ex7=d2lnpps(5,20);

ex? =14+ 61+ 0% — 50% — 20610 4 8012 + 24551 + 48801 — 206658 — 1190252

ex8=d2lppps(5,20);

ex8 =14 0"+ 208 + 308 + 150'° + 580" + 1500M + 1280"° — 9635 — T9824%"
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The constant matrices that are used in the computation are U, U;, and

/.. They are evaluated using the Maple command ¢velin. The matrix Up,

F T 00000O0O0O0O0OCGOOO0 0 -
0 01T 009000O0O0O0O0C0 0
0 00 01000C0O0O0CO0O0TGCGOTO
D 00006 01T00O00O0O0CO0CO00O
000 00O0OCO0O01TO0OO0O0O0OO0O0
000 0000O0O0O0CTTO0OO0O0O0O0
0o 000000O0O0O0CO0CO0OTLTO0O0O0

= 000 0000O0O0OOCOCO0OO0O0CT1TO0 ’

6 00 0000O0OCO0OOCOOOOO0GCO
0 00 00O0O0O0OO0OOOO0OO0OO0GCO
0O 0000O0O0O0CODODO0OOO0O0O0
000 00O0O0CO0DOOO0OO0OO0O0O0O0
0O 0000O0O0CO0CO0OOO0OO0OOO0O009
0 0000 O0OO0O0O0O0ODO0OO0OO0OO0O0OT©
000 000O0O0OO0OOGOOOO0O0O0

I 000 00O0O0OO0CO0OOO0OO0COO0O0O0 |

is one of the constant matrices obtained from the partition function
series computation in the example ex8 above. The computation is done
for n = 5, whose dimension is the same as that of the V-matrix from

which it is derived. The next matrix U/; of dimension (16, 16) is the second
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constant matrix derived from the V-matrix for n = 5, It is obtained by

the command cvalm(U;), and it is available after the computation of the

partition function series in the example ex8. It is represented as

0100000000 O0O0O0Q0 00
00 01T000O00C0C0C0O0O0O0OO0
00 00O01TO0CO0DO0GCOO0OO0O0O0O0O0

0 000006C1TO0O000O0O000

00000100
00 00GOO0T¢L

o
o O
o o o o o @
o o o o o o
o o o o
o
o=

00000100

o
=
o O
<o
e}

0

<

00001000000

o
o o o

00 00100000000

0000000

o
<o
(=]
ol
o o o o
=
<
<
<

The last constant matrix to be derived from the V-matrix for n - i is
U, of dimension (16, 16). It is obtained by the command ecwvalm((/;), and it
is available after the computation of the partition function series. This
particular matrix is obtained after the computation of example ex8 above.

Notice that all the constant matrices have the same dimension as that of
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the V-matrix from which they are derived. The matrix is displayed below:

[ O 0000000000 O0O0CO0O0¢0 -
00000006000 00 000
0O 00 000O0CO0O0CO0GCOUO OO0OO0O0O 0
0 0000O0OO0O0O0O0O0OTO OGOOGO0O0
000 0000O0O0O0CO0O0OOTO0COT®O
6 0000 O0O0O0OCO0CO0O0GO0CO0O0O0O0
0 0000O00O0OCO0O0OO0DODO0OCGOO 0

, = 0 06000 00O0OO0OO0OCO0OOO0OCO0OO0OTPO
6 0000 00O0O0CO0CO0OCO0OCOTTO
0 00000O0O0CO0COO0OOT1TO0O0TO 0
0O 00 000O0CO0OO0OO0OTTO0OO0OO0O0TO0
0 6000 00O01TO0O0O0O0O0CO0O
0 0600001T0O0O0CO0GOGOCOO0O
¢ 0 001T00CO0OO0CO0OO0O0ODO0O0O0O
0 0100 000O0O0O0OO0OOCOO
] 100000000O0O0O0OCO0CCO0CO0O0 ]

As explained above, by following a binary number system one can ob-
tain the complete matrix. Kramers and Wannier neglected the lower ma-
trix in their work. However, the complete matrix has been built into our
program, and it is available in the form shown below. As an example,
the complete V-matrix of Kramers and Wannier for n = 4 is obtained by
the command d2cvmat. It must also be mentioned that from the complete

matrix the lower and upper parts of Kramers and Wannier’s V-matrix can
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easily be obtained. The transformation H through which this is accom-
plished is given the name two-dimensional special transformation matrix
(d2stmat). A demonstration of its effect on the complete V-matrix will be

be given below. The matrix below is an example of a {16, 16) 2-d complete

V-matrix with default values ¢** and ¢ 2/,
d2cvmat(4);

R 0 0 00 0 0 0 0 0 0 0 0 0]
0 0 e 1 90 0 0 0 0 0 0 0 0 0 0 0
0 00 0 K 1 0 00 0 0 00 00 0
0 00 00 0 2 19 0 0 00 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ¢ * 1
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 ()
0 0 0 0 0 0 0 0 0 0 28 1 0 0 0 0
0 0 0 00 0 0 0 28 1.0 00 00 0
0 00 0 0 0 0 0 2K 10 0 0 0 0 ()
0 0 0 0 0 00 0 0 0 2 1 90 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 10 0
0 0 0 0 0 0 0 0 0 0 0 00 0 2K 1
0 00 0 0 0 3 1 0 00 0 0 0 0 0
0 00 0 2K 1 0 0 0 0 0 0 0 0 0 ]
0 0 2 1 ¢ 0 0 0 0 0 0 0 0 0 0 0
em?K 1 0 0 0 00 0 0 0 0 0 0 0 0 0]

The upper positive and lower negative components of the complete

V-matrix given above are alse available by the commands d?upvmal and
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d2Inomat, respectively. The next example is the upper positive V-matrix
obtained from the complete V-matrix given above. This form is obtained
through the transformation H, defined by Eq. (3.34). In this example, the
dimensions are half those of the complete V-matrix given above, which in
this case is (8,8). Also the default values used in the above example have
been offset by using the optional arguments s and ¢.

d2upvmat(4,s,t);

F s 1000000 —
060 s 10000
0000 s 100
000000 s 1
00000O0O0TC¢ 1
00 00¢t 100
0 0¢t 10 0 0
{t 1000000

As mentioned above, these programs are built to be used as a teach-
ing tool so all the various components are buiit into the program. This
technique shows the flexibility of our program. Also it can be used when
solving any problem that needs these special matrix constructions. The
example given below is in the form of a lower negative V-matrix. It is also

derived from the complete V-matrix given in the example d2cvmat(4). It

uses the default elements ¢** and ¢~?" since only one argument is given.
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The dimensions are again (8.8).

d2lnvmat(4);
[ 2k 1 0 0 0 N0 0
0 0 2N 1 0 0 0 0
0 0 0 0 2K 1 0 0
0 0 0 0 0 0 2R 1
0 0 0 0 0 | |
0 0 0 0 —c™ 1 0 0
0 0 —e?F -1 0 0 0 0
—e2K 1 0 0 0 () 0

These three functions, d2cvmat, d2upovmat, and d2lnvmat, take three ar-
guments, of which the second and third are optional. One can set his
own elements to be used for the array as in the example given above for
the d2upvmat. However, if no optional arguments are set the default argu-
ments exp(2/’) and exp(—2K) are used as noted in the other two examples.
The result obtained through the special transformation matrix d2stmal for
n = 4 is shown below. It must be noted that the result is obtained through
the operation HMH~!, where M is a given complete V-matrix, and I/ is
the transformation matrix defined through the identity matrix as shown

earlier in this section in Eq. (3.34). In Maple’s terminology, it is given as



em=evalm(d2stmat (4)&*d2cvmat (4)&*inverse(d2stmat (4)));

et 10 00 00 00 0 0 0 0 0 0 0 -
6 0 ¢t 10 00 00 0 0 0 0 0 0 0
0 00 0 ¢ 10 00 0 0 0 0 0 0 0
0 00 00 0e¢ 10 0 0 0 0 0 0 0
0 00 00 0 ¢t 10 0 0 0 0 0 0 0
0 00 0 et 10 00 0 0 0 0 0 0 0
0 0 et 10 00 00 0 0 0 0 0 0 0
10 00 00 00 0 0 0 0 6 0 0
0 00 00 00 0 ¢ 1 0 0 0 5 0 0o |
0 00 00 00 00 0 e 1 0 0 0 0
0O 00 006G 00 00 0 0 6 € 1 0 0
O 00 00 00 00 0 0 0 0 0 e 1
0 00 00 00 00 0 0 0 0 0 —et -1
0 00 00 00 00 0 0 0 —et -1 0 0
0O 00 00 00 00 0 —e?! —-10 0 0 0
(000 00 00 0 =t =10 0 0 0 0 0

where { = 2K.

In what follows, the symbolic proof that an order-disorder actually takes
place between states of finite long-range order and those with no long-
range is presented. The proof, using matrix theory, consists of proving
the fact that for sufficiently high temperature, the maximum characteristic

value of the matrix M(A’) no longer degenerates. For high temperature,
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K = J/2kgT — 0, so o = 3 = 1. Now using our function d2uprmat and for

n = 5, a two-dimensional upper positive V-matrix is generated using 1 as
the default element as explained above. The result is

V4 (0) := d2upvmat(5, 1, 1);

0000009000

o o S O el
]
<o
fa—
i

L

0060000001100

<o O

Vi{0) =

0 0000011

(=]
o O
<

0011040

o o o o o o < o <o
<o
<
= o o
<

0o 000011000000

o o o o o o O

PR e S s S e S o S oo B e S o R v S <o S s S e e B o T e B

In the same way, using our function d2invmal, the two-dimensional lower
Y, g 3
negative V-matrix for n = 5 is generated. The default elements needed for

the construction are 1, as is demanded by the explanation given at the
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beginning of the problem. From the previous and the next matrix, it is
obvious why the name V-matrix is chosen.

V.(0) = d2lnvmat(h, 1,1);

— 1 1 06 o0 o o0 O O 0 0 0 0 0 0 O

6 ¢ 1 1 0 0O 0O O 0 0o 6 0 0 0 O

o o ¢ ¢ 1 1 0O 0 0 0 0 0 0 0 o0

o o o o0 o0 0o 1 1 0 60 0 0 o0 0

o o0 o o 0 0 0 0 1 6 0 0 0 0O

6 o o o0 o o0 0 0 0 0 1 1 0 0 O

o o o o0 0 o0 OO o0 o o0 0 0 1 1 0

V() = 6 o o0 o0 o O 0 ¢ 0 0 0 0 0 1
o o 0o o o 0 0 O 0 0 O 0 0 0 -1

¢ ¢ ¢ o0 o ¢ 0 0 0 0 O 0 -1 -10

6 ¢ o o0 o 0 0 0 0 0 -1 -10 0 O

6 o o o0 o o0 0 0 -1 -10 0 0 0 O

¢ ¢ o0 0 0o 0 -r -10 0 0 0 0 0 0

¢ o 0 60 -1 -10 0 O 0O O 0 0 0 O

6 6 -1 -r0 0 O O 0O 0 O 0 0 0 O

e i1 10 0 ¢ 0 ¢ 0 0o 0 ¢ 0 0 0 0

Using the Maple function evalm, if the upper positive matrix V,(0) is
raised to the the fourth power, then one obtains the matrix (V;(0))* whose

elements are all ones, as is clear from the representation given below. It

o o o o o

- o o

o o O o o <o o
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must also be noted that by choosing an arbitrary upper yositive matrix,

the power that produces this result changes. Thus for an arbitrary upper
positive matrix there exists a positive number, say (r), such that raising
the matrix V;(0) to that power gives a matrix (V,(0))" whose elements are

all ones. The resulting matrix is as

evalm (V_{+}(0))"4;

(V4(0))* =

11111111 1 b 111111

L J

When the same operation specified above is performed on the lower neg-

ative matrix V_(0), one obtains a matrix that has alternating plus ones in
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the odd rows and minus oues in the everr rows. Also the same general-
ization noted for the upper positive V-matrix holds for the lower negative
V-matrix. Thus there exists an arbitrary positive number r (say) such that
(V_(0))" produces a matrix that has alternate rows of plus ones in the odd
rows and minus ones in the even rows. The resulting matrix is (V_(0))*),
for » = 4, and is evaluated as evalm (V_(0))*).

(V.(0)) =

Computing the characteristic values of the fourth power of the upper pos-

itive V-matrix, (V;(0))!, using Maple’s command ¢igenvals, one obtains
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eigenvals(Vy(0))*

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 16.

It is observed that since the trace of (1,(0))!) is 2!, the characteristic val-
ues of (V,.(0))*) are (21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), giving the maximum
characteristic value of Vi (0) as 2. Also the characteristic values of the
fourth power of the negative matrix (1..(0))! are computed using the same

Maple command eigenvals, to give
eigenvals (V_{-}(0))"4);

0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0.

The trace of (V_(0))* vanishes; hence the characteristic value vanishes. For
any upper V-matrix W,(0) and lower V-matrix W_(0) of an arbitrary size,
there exists a positive integer r such that, since the rank of (11, (0))" and

(W_(0))" are one, the characteristic equations reduce to
A (trace W £ (0)7)XF ! = 0.

The trace of (W.(0))" is 27; hence the characteristic values of (W, (0)))" are
27, ...,0, giving the maximum characteristic value of W, (0)) as 2, and all the
rest are 0. However, the trace of (W_(0))" is 0. Hence all the characteristic
values vanish and so are the characteristic values of W_(0)). This proves
that for sufficiently high temperature, the maximum characteristic value
of M is nondegenerate. Hence, it has no long-range order.

Note: The symbolic mnethod shown here gives a good idea of how a full

proof can be constructed by induction.
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3.10 3-D Perturbation Method of the Ising Model

It is possible to regard the three-dimensional treatment of the Ising model
of ferromagnetism as several pile of 1. ers of the two-dimensional case.
Since the matrix method of the two-dimensional Ising ferromagnet has
been treated, there will be an obvious extension to the three-dimensional
treatment. This has been pointed out by Oguchi [7]. We begin by analyz-
ing the general three-dimensional matrix method. Following the notation
of Montroll [24], consider a binary alloy AB whose crystal forms a simple
cubic. Let the dimension of the crystal be L, M, N in units of the lattice
distances. The crystal is thus made up of L layers of M x N atoms each.
Each layer can be regarded as having 2MV dist” \ct configurations. The
sites in each of the layers can take each of the atoms A or B. Let the
v(«r,) be the total potential energy with respect to the coordinate « of in-
teraction between all neighboring cells of a configuration in the jth layer,
while v(«;, ;) is the total energy of interaction between the jth layer in
configuration «, with their nearest neighboring atoms in the j + 1th layer
in «;4;. If the periodic boundary is considered by allowing the first layer

to interact with layer L, the partition function takes the form

L L exp ~(v{ay) + .4 vlag) + (e, ap) 4 o+ v(ap-1,ar) + (e, @)
kgT

el o]

n,l-'

Substituting V(o a,) = Lo(ay)+ oo, ;) +1 ;0(«y;) in the equation immediatly

above we get

=33 1‘1 exp [-_g-%t% , (3.43)

[ll]] [lt[]t-—



with the periodic condition a;.; = a;. Now set
+1
—V{a, o)
M(o,a’) = exp ——--§-~L,M~w .
]x‘}gl
Define a symmetrical matrix M with 2MV < 9MN pows and columns labeled

" . : .
by o',a’,..., in accordance with the 2V

possible configurations a. The
principal elements relevant to the theory are the characteristic values \,
and the characteristic vectors i, (r = 1,3,...,2M"). Now our interest is in

solving the characteristic values problem
M) = M. (3.11)

This enables one to answer all questions of thermodynainical and statistical
interest for the crystals, including the order-disorder phenomenon. A
characteristic vector i), has 2V components i,(«), one for each possible

configuration «. Assume that the A, and i,(a) are known, then the matrix

element can be written as

7 ’ 2AIN
M(a, ') = exp[ ' (oi’,(z—)] = 3 M) (o), (3.15)
kgl 1
provided the . is normalized to unity,
> () by (ax) = by (3.46)

Substituting Eq. (3.45) into Eq. (3.43) and applying Eq. (3.46), it can be

proved that

JMN

Z =5 AL
r=1}
The evaluation of Z and consequently the investigation of the thermody-

narnic quantities like entropy, energy, and specific heat are reduced to the
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evaluation of the characteristic value problem (3.44). Because the number
of layers is very large for an actual crystal, we need only solve for )., the
highest characteristic value of the matrix equation, and the corresponding

characteristic vector. If A,y 1s d-fold degenerate, we get

7 = d\E

max*

This equation also shows that we can regard A,.x as the partition function

per individual spin.

3.11 Extension of Kramers and Wannier V-matrix

This section deals basically with the extension of Kramers and Wannier’s
matrix construction. It will be appropriate here to give some details of
the construction. To investigate the three-dimensional ferromagnet, one
may be tempted to regard one layer as a constituent element and to pile
up layers one by one. However, the matrices will be so large that, mathe-
matically, it will be impractical to handle them. A manageable approach
is to add spins one by one. For the simple cubic lattice, it can be divided
into many layers. Starting from a first arbitrary position, one adds a spin
beyond the one just placed previously. This construction is continued un-
til a full line is arranged. The next line is then arranged in the same
sequence until the whole arrangement is completed. Then moving to the
first position in the next layer, the same process is repeated. Consider the
mth layer, if the Ath spin is to be added next, then since the interactions
are restricted to only nearest neighbors, only the (& — 1)th, the jth placed

immediately beside it in a preceding line, and the 0th spin placed just
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under the ith spin in the (i — 1)th layer interact with it as shown in Fig.

3.5 below

FIG. 3.5. Ferromagnetic arrangement of a simple cubic
lattice

Each spin has two orientations, o, = +1. Thus the interaction ener-
gies are IF%J for parallel and antiparallel spins, respectively. The three

interactions stated above are
—-Kopo.1, —Kowo,, —Ko0y,

where IV = J/2kpT. Let the arrangement oy_1,...,0,_1, ..., 73, have the proba-
bility A(oy—1,...,0,-1.....0¢), and the probability A(o......a,,...,0;) be the one
in which o, occupies the place of gy, 7y takes the place of oy, ete. By the
Boltzmann theorem, the probability of any particular arrangement of spins
is proportional to exp(—E/kyT), because every arrangement has weight 1.
Hence the following relation is obtained:

AA(ok, 0y, .0y) = Z exp[Now(op -y +a, +og)ldloy oo, yoog). (3.A47)

oo=x1

The A which enters into the above equation is the result of the Boltzmann

exponential being proportional to probabilities. It becomes the eigenvalue
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of that equation. In a zero field the total energy is given as

E=-=J/2)" agio.

<4j>

The sum is over all pairs of (7, j) which are nearest neighbors. The partition

function has the following form:

(L—1)k—1 Lk Lk
/= Z (‘X[)[K Z (0’,‘0’1‘ -+ 1) + K Z(Gj+i0k+i) + K E(O'io'k+i)]a
ay,0y..0 =t i==k =1 i=1

where N is the total number of spins. As in the two-dimensional case, left-
and right-handed eigenvectors have to be considered berause the matrix
is not syminetrical. Call the left-handed eigenvectors B(ok,...,0j,...,01).

Obviously this satisfies the equation

S exp[Kow(or-r + a5 + 70)]B(Tiaty ooy Tjty ooy 00) = AB(0ky ooy 0y vy 1) (3.48)

Th

After normalization, A, and B, satisfy the orthogonal conditions
Z B0ty ey 04y ey 01) Ag( Oy vy 0y ooy 01) = Epge (3.49)

If the matrix operation is repeated % times, one obtains from Eqs.(3.47)

and (3.48),

2h—1 k k
S explh S oot R > oot K Y 0iokpi] = Ag(ahy ey 0r) = M A (T2ky veey Thpt)
ap,.0 i=1 i=1 t=1
(3.50)
and
2k~1 k &
}: expl A Z fT,’O",+1+[\’Z(Tj+,‘G'k+,'+1\’ ZUiUH,-] = By(0py ey Opp1) = /\kB,,(crk, ey 01).
TRl 02k ik 1221 i=1
(3.51)
From Egs. (3.49), (3.50) and (8.51) one obtains
2k—~1 k k
(‘Xp[[\' Z 00531 + K Zo'j+i(fk+i + K Z U,‘O’k_;_,'] =
1=k 1==1 i=1

2I\:
S A A (Ouks ooy Thgr) By vy ). (3.52)

p=1



76

For the next layer, the same formula can be written as

3k-1 2k
exp[ Z a0 + K Z O Okti + K }: OO hti] =
=2k t=ht1 i=h41
Z )\p 1,, Taky - (Tgk+1)Bp((T-3k, ey Ohg 1) (3.53)

p=1
Multiplying Eqs. (3.52) and (3.53) and summing over the spins of the

middle layer oy, ..., 0441, One gets

3k—2 2k
> exp[i z oioit1 + N ) 0ok + K Z OOk =
TR 102k =k =1 ==
2k
37N Ap(Gte oo Tokp1) By @k cenn 1), (3.54)
1):1

The boundary effects can be eliminated by setting oy, = 0y, which finally

yields

7 = Z)\ ZANNAQ{“

p=1 p=1

The perturbation solution will be considered as in the two-dimensional
case to the eigenvalue problem (3.47). If the configurations are separated
into two classes according to the sign of o, = %1, and the o = +1 con-
figurations are grouped with order numbers 1,2,...,25"!, and the o, -~ -1
configurations with order numbers 2% — [, ...,25"! 4 |, then the matrix can
be brought to its standard form by using the binary numbering system
as suggested by Kramers and Wannier. For more details on the binary
system see section 3.7. This form of the matrix is called the Oguchi
extended complete V-matrix of Kramers and Wannier. Or simply, the
three-dimensional complete V-matrix. It was discovered that the number

of submatrices needed for the correct computation of the partition func-
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tion must be 1 if » is odd and 2 if 1 1s even. The three-dimensional matrix

M(K) is presented in the form shown below as

1)
Q
Q
S
S
R
M(K) = :
})
Q
Q
S
hi
R
where the submatrices P, (), K, and S have the form
¢* ¢
Y ¢
¢ 6 ¢
7
P . Q= ’ ,




n

n’on

mTon

where ( = exp(/) and 7 = exp(—N'). The order of the matrix M(A') is

Ui

/i

/NS

28, The P, Q, R, and S are submatrices of M(RK).

same dimensions of (2/ — 1,27).

plicated, it is reducible with an orthogonal transformation similar to the

T8

They all have the
Despite the fact that M(L') is very com-

two-dimensional case. Thus the two irreducible matrices obtained from

M(K) are V. and V_. Each has an order of 2*~!. They have the form

[)
Q

p
¢
@
p

Vi (k) =

@
p

])

—f?

¢

Q)

L
¢
()
e
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The eigenvalue valid for low temperatures is obtained, first of all, by
transforming V, (K) to U, (5?) as

l 1
Vi(K) = UL () = mpUs(8),

where 3 = y2. Next expand U,(f) in the form
U, () = Ug + AUy + Uz + B°Us.

The matrices Uy, Uy, Uz and Us are constant matrices derived from V. (K).
They are used in the computation of the partition function series, and they

have the form given below as

P2
Il
P1
0

P2
0
Pl

“(]“——“ y (]1 = s
Q1

Q1
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0
P2
0
P2
U, =  Ug = )
Ol 0
Q2 (1
Q1 0
02 Q1
where
1 0 0 1 I 0 ()
Pl = e |, 2= e L Ql= 2=
1 0 0 1 1 0 01

The U, has a single nondegenerate eigenvalue of unity and a (2% 1.
1)—fold degenerate value of zero. Hence the maximum eigenvalue and the
maximum eigenvectors of U, can be expanded into the power series in /.

So

A= Aax = Ao+ BAF 2+ A+
and

Y = ax = Po + B1py -+ B2 + By 4 o

The eigenvalue equation at 37 is

r
(/r(ﬂ/)p + Uld)p—l + (/27/)['—2 + (/31/)7,“,:5 = Z /\'[T/)];--rp

q=0)
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where 11, 10, and 5 are zero. The perturbation method was given in detail
when considering the two-dimensional case. Thus one only need emphasize
that, for an infinite crystal, the left- and right-handed eigenvalues of V
and V_ coincide.

The equivalent program for the partition function of the three-dimensional
cubic lattice has been developed. It is almost equivalent to the two-
dimensional case, except in the construction of the constant matrices used
in computing the series. There are four of these programs, whose names
are dlnpps, d3lppps, d3rppps, and d3rnpps. The d3 tells us that the compu-
tation is in three dimensions. The number of arguments is two. The first
is the size of the matrix used in the computation, and the second is the
number of terms of the series to be computed. The programs are given in
Appendix A. Four examples for each of the functions we have created are
given below. The matrix used has a dimension of 32,32, which corresponds
to n = 5. The order of the series computed is 20.

ex2:=d3rnpps(5,20);
e vz 1400074 3010~ 361 3B - 7H13 4 1 561 —8b15 — 23516 6D 48501843301 1965
ex3:=d3Inpps(5,20);
o iz 1400071361030 361~ TH3 L 15514 — 8615 — 23516 — 6517 48558433519 — 19652
ex4:==d3lppps(5,20);
crd i TR b4 30" 04 30T 3012 476"+ 1501 48615 2301 +601 7 +-85b5 — 33610 — 1965%°
ex1:=d3rppps(7,38);

el = 00 4 1Y — D12 2 B — TH1E 4 1300 — 181 0% + 643 072 — 2079 b* +
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{28

3786 526 — 18366 028 + 29120 50 — 147381 6%% + 275306 ™ — 1115822 0%¢ 4 2758242

-

It can be observed that the coefficients of the series in the above exam-
ples are the same except for sign. One can easily obtain the eigenvectors

series by using the Maple command map(cvalm, cv).

3.12 2-D Lattices with Many Components

The model presented here will closely follow that of Kihara et al. [5]. The
model is very resourceful. It gives the connection between grph coloring
and the series solution of the Potts model. The formal connection will
be shown when the overview of the Potts model is presented in the next
section. Furthermore, this section links the computation of the series
coefficients to the number of ways of coloring a given graph with a certain
number of colors. The model also generalizes some of the work of Kramers
and Wannier. However, they do not provide any specified method for
computing the coeflicients of the series. This is a great handicap of the
method. The results of this model shall be compared with those of the
perturbation method.

Consider a lattice of N equal lattice sites, each with an internal coor-
dinate ¢ which takes s values ¢y, cy,...¢5, corresponding to the s different

states which satisfy the relation

| for [ = m,
€y, = (3.55)

0 for [ # m.
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The interaction energy takes the form

1
o= =] Z (Z(J'iO'k — 1)

+
2 <,k

Here J is the energy gained when a pair of unlike neighbors changes to a
pair of like neighbors; }°, ., means the summation is carried over all pairs

(7,)) of nearest neighbors. The partition function of the system is

Z= 5 explK Y Qoo —1)], (3.56)

TyTE€] b e <i,k>

where KN = J/2kpT, and ¥, ., .. is the sum over all possible states of the

system, which is explicitly written as

DD

TS aes M meiees  ONSe1.es
The Eq. (3.56) is a sum of terms, each of which is a product of factors of
the type exp[K (200’ — 1)] where 0,0’ are the internal coordinates of direct
neighbors. The factor exp[K (200’ — 1)] can be replaced by other appropri-
ate expressions to yield the two values ¢X,¢~%. Hence we introduce the

following dual transformation:
(20 = [ (K)[eM + (so0’ = 1)) (3.57)
The ¢", I',(K) are determined by
M= KN = N o= B O[T (s = 17N
From which we obtain
e S L S o G e e ] (3.58)
and

2 o4 = 1)(‘”2]"

[[’3(1\ )] - :(2[\’# + (H — l)(.--'ZK"




Now the partition function takes the form

Z = 3 H{f B (sea’ — DM, (33.60)

Fy=e Lt s ezl

The product over r extends over all connecting rods in the lattice, and M
is the total number of such connecting rods. For example, Al = 2N and
M = 3N for a square and simple cubic lattice respectively. In what follows
the connection between the partition function and graph coloring will be
derived. It should be noted that in developing the product of Eq. (3.60),
we get the sum of 2" and (soo'—1)e™"". Each product can be characterized
in the lattice by a polygon, not necessarily closed. Connecting rods not
included in the polygon contribute a factor of " to the product, and
those included in the polygon contribute a factor of « ", Thus we get

Z = [FOM ST H (sa,0" — 1)e(M-20K

==t et paL;qu L |

= [F(K)M ST A1) M2, (3.61)

polygon
wiiere | 1s the number of connecting rods included in the polygon I}
!_i(r) means the product is taken over all connecting rods of the polygon
Iy 3 polygen indicates the sum over all possible polygons denoted by
!
)= > Jl)sewal —1). (3.62)
Oy Lot s 1221
In the product development (3.61), v(I') vanishes when the polygon is not

closed. Let I' consist of two polypons IV and I with only one common

lattice site, then

(17 (1) = (1N )5 (1) o« (1™ )5 (1),
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and for isolated rods we have
*y
Z Z (sopr — 1) =sxs -5 =0,
[T 35 PYORIY S I c 0 R 3 IRPIY I
Thus only closed polygons with bridges give nonzero coutribution. Hence

Z=[F.(®" S e (3.63)

tlosed polygon

For a lattice on a simply connected surface, every closed polyron divides

LU
the surface into several regions. Thus each term in the product can be
characterized by an arrangement of s states, r, = ¢, ¢, ...c. in the dual
net. All the lattice sites in a region are in the same state and two sites in

neighboring regions are in different states, as shown in Fig. 3.6.

\
|
l FIG. 3.6. Characterization of the product terms
| by arrangement of s states

I

Let (1), ....v}3.: ') be one such arrangement corresponding to the polygon

I'. Writing
‘ M ,
M2 e exp | [\"'(21/1(_’1/,(.’ - 1),

=1

it is easily proved by induction that
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The p(l') is the number of different ways to paint, by s different colors
(states), a map that has boundary lines corresponding to the polygon T
A general form of the derivation of the temperature symmetry given by
Kramers and Wannier is given below. Starting from Eq. (3.63), one gets

Z o= UM ST M) exp[) K=(2020% = 1)]

ased polygon

= (I (KNS exp[3D K2t - 1)

= [F ()M 2 (3.64)
where Z*(1') is the partition function for the dual net, and 7* the dual

temperature, given by K~ =.//2kgT*. The equation

Z z
SN[ 3 (5 — 1) ~2K)A/2 = SN[ ERT (g = 1) 2K M]2

is obtained by substituting Eq. (3.59) in Eq. (3.64), where N* is the total
number of lattice sites of the dual net, and N+ N* = M +2. Euler’s thecorem
has been applied.

For a square lattice, one can deduce the following relation:
L'=Z, N =N M=2N,

from which we get the relation

Z N Z"
[6‘21\, ¥ (s 1)(~21\’]N = [(121\-, T (S . 1)6,—21«;.]1\].

(3.65)

This indeed is the generalized form of Kramers-Wannier’s relation of the
temperature symmetry for the square net. Setting
ZI/N

V() = (R J (5 < 1)e-2k°




we get
VA) = (A7) (3.66)
The energy of the system is given as

) e s =D 1 . -
E(K)=~NJ [521‘. T s ”(...)7( + '.E(l;;'; I (K)], (3.671

and the specific heat is given as

. . 16(s — 1) o .
A Tt e I . ‘n‘
()= NkK {[('2]\, (5 = 1) 282 + ThE Iny (A )} . (3.68)

It is clear from Eq. (3.66) that if \(/\') has a singulas point at a temperature
Ty, then it must also have a singular point at 7} dual to T,. Hence if
there exists only one singular point of \ ('), it must occur at 7. for which
K* = K. It follows from Eq. (3.58) that the transition temperature (Curie

temperature) is given by
(8= 1) po—the ) =, (3.69)

from which we get
(=1 4 /s, (3.70)

where K. = J/2kpT.. From Eq. (3.58) the following relation holds at the

(d[x'* L ’@:) B AL
dK ] eon. - ((”\rz' ik 7

Hence from Eq. (3.66)
dy dy
—_— PR = (), 3.71
(dh’) o ((11{),\.‘ (311

d*x d*x 2 ((lx' dy
—= S . S LIS s S i , 372
((11{2) o ((u«:l),\,mj { i), " \dic) (3.72)

Curie temperature

and
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We can use Eq. (3.67) and Eq. (3.71) to compute the arithmetic mean,

(/5 + 0) and (A —0), as

J
E(K)=-N-"=.
Vs

s
When the energy is continuous at the Curie temperature, £(/4) becomes
the total energy of the system. It follows from Eq. (3.67), Eq. (3.68) and
Eq. (3.72) that if the energy is continuous at the Curie temperature, the
specific heat is either continuous or infinite.

Now consider the partition function for the square lattice. The partition

function (3.56) can be expressed in the form

Z =Y g(i)exp(—E./ksT).

t

Here ¢, is the number of states of the system at the energy level F;. The
3., i1s taken over all energy levels. At low temperatures, corresponding
low-energy terms predominate. At the lowest energy level, all the lattice
sites are in a state such that Fy = NJ and gy = s. At the first excited
level, a single site is in another state so £, = NJ +4J and ¢y = N(s —
1)s. We may proceed in this way to find a power series expansion valid
for low temperatures. However, we must note that the computation of
the ¢, at energy level F, is difficult. We have not been able to derive
any mathematical formula to compute this. The low-temperature series

expansion has the form
Z = aN[s 4+ N(s = Dsa* £ 2N(N = 1)sz® + ..,
with s = ¢//*4T  The Nth root can be taken to obtain

[Z]'/N = &' P(a),



where
Pley=14(s= Do +2(s = D= 1 k(s DY (3.73)
LI
The coeflicients ¢, for 1 < 7 < 14 are given in the symbolic computation. By
virtue of the symmetry relation (3.65), the high temperature expansion

can be deduced from the low-temperature expansion:

.

Plu),

(1 —u){l + (s — u)

-8

1
where u = TTomiE

and P(u) is the same as in Eq. (3.73). The energy per
site can be computed from these two expansions as

, .
EIN = kyT?—=ln 2N,
/ I (,),1,[]11 ]

and the specific heat per site as

OF
N =1/NIE
[N = 1IN

Here again we developed the function that computes the series expansion
of the work presented in this section. Two functions have been developed.
They compute the series expansion for the partition function, energy, and
the specific heat for the many-component states. The names of the pro-
grams are d2melipf and d2mehipf. They are taken from two-dimenstonal
many components low (high)-temperature partition function. The func-
tion takes one argument. However, there are two additional optional argu-
ments. The first argument is the order of the series to be computed. The
second argument is the number of coimmponents or the number of states.
The last argument is the variable which one wants to use in the series
computation. An example of high temperature series expansion is given

below in Maple’s format:



a0
pf:=d2mchtpf(8,2,t);

) (1—n 21 —1¢) 5(1—1)“( 1-4)-1
=1 1~ .
vl +(1+1)‘+ (1+1)° i (1+1)° L+

Maple can be used to simplify the above partition function to get

>pf= simplify(pf);

; 9 101~ 2061 + 10611 = 21687 + 17215 =407 + 17282 + 98
) — G .
P 2(1+0)"1

The following examples are given for the low-temperature series expan-
sion, The successive optional arguments are used for a four-component
state. When no component state is specified, it is assumed to be a two-

component state.

pfil:=d2mclitpf(8);

1
pfl ::1+{“‘A1:1 +2¢ 8T 4 K¢ “FrT ¢ KpT
>spfl= d2mcitpf(8,4);

N _..,.;L_i .18 _P__!__T _____)__8___;_-—-1
spfl =14+3¢ *sl +6¢ *nl 412 ¢ *81 4+ 3¢ *BT ¢ *BT

> tpfl = d2mcltpf(8,4,x);

1430t + 608+ 1207 + 308

tpfl
J
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3.13 Comparison of the Results

n this section the results are validated by comparing them with those of
others who have done the same computation or similar computations in
this area. This enables us to see how our symbolic computation results
agree with theirs.

Table 3.1 shows some of my results for the two-dimensional Ising model
computed for the 5-screw and the 9-screw case for a series of order 20, com-
pared with Domb computation for n = 5. The first row of the 2-d table in
Table 3.1, gives the order of the series whose coefficients are compared.
The next two rows give the coeflicients of our symbolic computation for
n =", (S Co(s)) and n = 9 (S Co(5)). The fourth row shows the coetli-
cients of Domb’s computation for n = 5. Domb’s method is very similar
to the method used in my symbolic computation. Hence it is seen that

the coefficients are the same, attesting to the correctness of the symbolic

method.

Y 3 /
'Var .l'(‘ .1'4 J,h J,?s J'IU J.u J‘] 1 J.lh J.IH J.“.ll

SCo(5) |1 |1 |3 |15|48 ;70 | -253 |-3118 | -18680 | -75512

SCo(9) |1 |1 |2 |5 |15 |80 | 598 | 3436 | 13141 28995

DCo(5) |1 |1 |3 |15|48 |70 |-253 - - )

Table 3.1. Comparison of the cocfficicnts for 2-d Ising model
Also the symbolic computation can compute much more than what
Domb computed. In fact the symbolic computation is not limited to the

order of the series which one needs to compute., The eigenvector series
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are also computed along-side of the partition function series, but Domb
did not show the computation of the eigenvector series. It is important to

note that as n increases the symbolic corsputation coefficients tend to the

exact value or a limiting value.

Var P B G B Ve B L I B '

K&ME& Co 1l |1 |2 |5 |14 |44 | 152 | 518

Table 3.2. Cloc fficicents of 2-d Ising model by Kihara, Midzuno and Shizume

Table 3.2 shows the coefficients of Kihara, Midzuno and Shizume. Their
method considers the state of the lattice sites at the lowest energy level,
then the first excited energy level in which a single site is in another state,
ete. Continuing in this manner the coefficients of the partition function are
computed. This computation tends to be closer to the limiting value than
the matrix approach used in the symbolic computation. However, one
cannot control the lattice size when using the method of Kihara, Midzuno
and Shizume. Also the magnetization cannot be analyzed by their method
because it does not contain an external magnetic field. Also their method
is limited to the order of the series due te the complexity of the computa-
tion, If one has large computer resources then the symbolic computation
is the best method. The reason is that, apart from the partition func-
tion, one can also use the eigenvector series to analyze the magnetization,
propagation of order, and long-range order in crystals. However, if one is
interested only in the limiting value of the partition function without an
external magnetic field, then the Kihara, Midzuno and Shizume method

seems best. For n = 9 my result agrees with the Kihara, Midzuno and
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Shizume coefficients to the Xth order of the series.

Table 3.3 shows the symbolic computation coefficients of the partition
function of the three-dimensional Ising model for the 7-screw and the 9-
screw case for a series of order 22, compared with the coefficients of the

computations of Wakefield and Oguchi.

Var | S Co(7) | S Co{9) | W Co | O Co
2 |1 1 1 1

N | 1 1 1

riv 13 3 3 3

iz 1.2 -3 -3 -3
oo 21 15 15 15
x| -9 -27 -30 -30
% 1139 94 101 101
2 1 -148 -216 -261 | -

2 121 685 807 -

Table 3.3.Comparison of the cocfficients for 3-d Ising model

The first column of the table above gives the order of the series whose
coefficients are compared. The next two columns give the coefficients
of our symbolic computation for n = 7 (S Co(7)) and n = 9 (S Co(9)).
The fourth column shows the coeflicients of Wakefield [25] (W (o), whose
method is similar to that used by Kihara, Midzuno and Shizume, The
last column shows the coefficients of Oguchi (O Co). His method may
be similar to Wakefield’s. Any missing terms in column 1 means the

coefficients are zero. As n increases the symbolic computation coefficients
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tend to the limiting value. The symbolic computation can compute as
:nany terms as necded, but all the other methods are limited due to the
complexity of the computation. As the number of terms increases the
computation becomes so tedious that symbolic computation becomes the
only adequate method. The missing coefficients in the last column means

that they were computed

4 T
- |
B |
}
l
| ;
1
T |
l |
’ 1
e
!
| |
I
o ] 7 ? - » Tl
} FIG. 3.7. A plot of energy vs. temperature J

only to the indicated order. When one wants to consider finite lattices,
then the symbolic computation is the best method, since any lattice size
can be considered and analyzed. Also if one wants to analyze magnetiza-
tion and propagation of order in a crystal as well as long-range order in
crystals, the symbolic computation is the best method. From Table 3.3
it is clear that for n = 7 the symbolic computation agrees with the work

of Wakefield and Oguchi to the 10th order of the series. For n = 9 the
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symbolic computation agrees with the work of Wakefield and Oguchi to
the 14th order of the series. Thus as n increases the symbolic computa-
tion coeflicients become closer to the coefficients of Wakefield and Ogucl.d,
Hence, if one needs only the limiting value of the partition function, the
method of Wakefield and Oguchi secms closer o the limiting value.

This section ends with two plots for the 3-screw case. The plot of
energy against temperature for the 3-screw case is shown in Fig. 3.7, the
plot shown in Fig. 3.8. is the energy against inverse temperature for

the 3-screw. The shape is comparable to what is given by Kramers and

Wannier [6] in Fig. 7.

o oz 0.4 06 o8 1 2. 14 16 18 o
[ o 1 I T 1 J 1 T ! T

FIG. 3.8. A plot of energy vs. inverse temperature

3.14 The Potts Model

The original problem that Domb proposed was to regard the Ising model

as a system of interacting spins that can be either parallel or antiparallel,
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Then an appropriate generalization would be to consider a system of spins
confined in a plane, with each spin pointing to one of the ¢ equally spaced

directions specified by the angles
6, = 2lin/q, n=01,..¢—1. (3.74)

Generally, the form of the nearest-neighbor interaction depends only on
the relative angle between the two vectors. This is commonly known as a
system of Z(¢) symmetry whose Hamiltonian is given below by

H=— > J(O:), (3.75)

<i,j>

where the function J(®) is 27 periodic and 0;; = 0,, — 0,,, the angle
between the two spins at neighboring sites / and j. The Z(q) model plays
an important role in the lattice gauge theories and has attracted growing

interest. The model suggested by Domb [3] (Potts [26]) is to choose
J(0;)) = —e¢qcos(04;). (3.76)

Using analysis of the Kramers and Wannier [6] type, Potts was able to
determine the critical point of this model on the square lattice for ¢ = 2,3, 4.
Although unable to extend this finding to ¢ > 4, Potts [27, 28] reported, as
a remark at the end of his paper, the critical point for all ¢ of the following

model:

J(0i;) = —e20p, (ni,n ). (3.77)

It is a g-component model that has attracted the most attention.
Following the suggestion of Domb [29-31], the model given by Eq. (3.76)

will be named the planar Potts model, and the model given by th=
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Eq. (3.77) is called the standard Potts model, or simply the Potts model
Other names for these models have also appeared in the literature. The
planar Potts model has been referred to as the vector Potts model and
also as the clock model in 7ecent literature; the standard Potis model has
often been called the Ashkin-Teller-Potts model, for historical reasons.
It appears that Domb’s suggestion is simplest, and should be adopted in
conjunction with using the name of the Ashkin-Teller [32] model for the

four-component model with (and without) symmetry breakings.

A 1‘\ N |

| i A K

| q=2 q=3 =4

FIG. 3.9. The vectors pointing in the g -symmetric direction of a
hypertetrahedron in g -7 dimensions

The (standard) Potts model is ferromagnetic if ¢, » 0 and antifer:.
magnetic if €, < 0. The interaction shown in Eq (3.77) can be alternately

formulated to reticct its full symmetry in a ¢ — [-dimensional space. This
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is achieved by writing, in Eq. (3.77),

on (. d) = -31-[1 +{q — e, (3.78)
where ¢, « = (. 1....,¢g—1 are unit vectors pointing in the g-symmetric direc-
tions of a hypertetrahedron in ¢ — | dimensions, and ég, is the Kronecker
delta function. The three figures shown in Fig. 3.9 are examples of these
vectors for ¢ = 2, ¢ = 3, and ¢ = 1, respectively. The Hamiltonian in the
form of (3.77) and (3.78) has proved convenient to use in the continuous-
spin formulation of the Potts model. The planar and standard models are
identical for ¢ = 2 (Ising) and ¢ = 3 with ¢, = 2¢; and ¢, = 3¢, /2, respectively.
Also, the four-state planar model is reducible to the ¢ = 2 models (Betts,
[33, 34]) and this equivalence is valid for arbitrary lattices (Kasteleyn, [35,
36]). No apparent relations exist between the planar and standard models
for ¢ -1

In addition to the two-site interactions, there can be multisite interac-
tions as well as external fields. For a Potts model on a lattice & of N sites,
the Hamiltonian H generally takes the form

SH = LY b5, (0,,0) + K0, (60 8,) + K3 D 85, (606,40 62) + ey
: i tak
where J = {/kyT, and o, = 0,1,....¢ — | specifies the spin states at the ith

site and

Op, (0 dp) = 1 if o,=..=ay

= (), otherwise.

Here K - Je¢;, Ny, n >3 is the strength of the n-site interactions, and L is
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an external field applied to the spin state 0, The partition function is

g1
Zolgo LUK K, = Z ¢ "M (3.79)

Fel)
The physical properties of the system are derived in the usual way by tak-
ing the thermodynamic limit. Relevant thermodynamic quantities include

the per site “free energy”

flg. Lo KVK,) = hm ~\~ InZe{g. LKL K,), {3.80)

the per site energy

()
E(q.L.K.K,) = ;f (g, L, K, K,), (3.81)
and the per site “magnetization,”
- i .
M{q.L K, K,)) = i g LK KS). (3.82)

The order parameter m, which takes the values 0 and | for completely

disordered and ordered systems, respectively, is defined to be
m(g. L, K, K,,) = (¢ M ~ 1)/(q — 1). (3.43)

A ferromagnetic transition is then accompanied with the onset of a spon-
taneous ordering

mo = m(q, 04+, K, K, ). (3.81)

As shown in chapter 2, the critical exponents «.«'.4,~,v... can be defined
in the usual fashion from a singular behavior of these thermodynamic
quantities near the critical temperature 7,. The two-point correlation

function I, (r1, 1) of the zero-field Potts model is

I‘u‘(r(ThrZ) = [)«y,u(rlq"'z) - ([“‘zn {3%5}
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where P, ,, is the probability that the sites at r; and r, are both in the

same spin state . Clearly, I', ., takes the respective values 0 and (¢—1)/¢?
for completely disordered and completely ordered systems. This then
suggests the following relation between the large distance correlation and

the spontaneous ordering:

lim  Paelrm) = (¢ — 1)(mo/q)%.

[ry =2 | msex;

Indeed, the relation above, which first appeared as a footnote in Potts
and Ward [37], for ¢ = 2, can be established by a decomposition of the
correlation function into those of the extremum states (Kunz and Wu ,
[38]). It has also been established rigorously that I'. . decays exponentially
above the critical temperature T.. The decay of I', o for T' < T, is not known
except for ¢ = 2. Furthermore, surface tension for the generalized Potts
model has been discussed by Fontaine and Gruber [39]. It can be shown
that, in two dimensions, the surface tension is related to the two-point
correlation function of the dual model. The wide application of the Potts
model is its close relation to the problem of graph colorings, so it is useful
to introduce here the needed definitions. Let P;(q) be the number of ways
that the vertices of a graph (i can be colored in ¢ which is known as the
chromatic function for the graph (/. Consider next an antiferromagnetic
Potts model on (7 with pure two-site interactions & < 0. Consider further
the zero-temperature limit of A — —oo. It is clear that in this limit the

partition function (3.79) reduces to
Zei(g K — —00) = Pr(q). (3.86)

This simple connection between the Potts partition function and the chro-
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matic function is valid for (7 in any dimension. In addition, a graphiecal

interpretation of ¢ = —1 has been given by Stanley [40, 41]. For a lattice
(G of N sites, the free energy Eq. (3.80) in the zero-temperature limit of

K — —oc becomes the ground state entropy

. . 1 "
[§1 a = \;Lll}\ ‘7\7 In ]’(;(q). (3.31)

The existence of this limit has been discussed by Biggs [42] using the
technique of graph coloring. In particular he showed that the chromatic
limit exists. However, there are three exact results on 117;(¢) for ¢ - 3.

These are the values for the ¢ = 3 square lattice, ¢ = 1 triangular lattice:

W) = (4/3)
. N (3n-l!2
Wtrz(‘l) - Hn:] [.‘in(.’37z—~2)]

‘/VI\'aguan (';) = [[Vtrt (‘I )]};

We have designed the Maple program that computes these physical
quantities. It is known from the above that these quantities are basically
the ground state entropy, so the name of the program is grsfcn. It hag
two arguments and a third optional argument. The limit of the square
lattice with ¢ = 3 (i.e. coloring with three colors or equivalently each spin
pointing to one of the three equally spaced directions) is constant. Only ¢
and square (sq) need to be specified. However, for the triangular (/7/) and
the Kagome lattice, one needs to specify », the number of terms of the

series. The advantage of the program is that any desired precision can be
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set. The program is given in the Appendix A. Examples are given below.
In Example 1, we compute the Potts ground state entropy for a square
lattice for ¢ = 3.

Example 1

grsten(3,sq) ;
oy 4 .
W_Sq(&) —_— '(5\/;1 3
In Example 2, we compute the Potts ground state entopy for a triangular
lattice, for ¢ = 3. To get a higher precision the digit is set to 200. The
value is obtained by using the evalf function in Maple to obtain the floating

point value,.

Example 2

>evalf(grsten(4,200,tri));

W_tri(4) = 1.4601877225626119272

In Example 3, we compute the Potts ground state entropy for ¢ =3 on a
Kagome lattice. The digit is set to 100 and the value is evaluated auto-
matically by using Maple’s evalf function.

Example 3

> evalf(grsten(3,100,kagome));

W _kagome(3) = 1.1342862673811495332

The programs for these constants are given in the Appendix A.



Chapter 4

DESCRIPTION OF THE
SIMULATION CODE

4.1 Introduction

The Ising model is considered to be made up of part of a system which
is large enough for statistical concepts to be useful. Thus we expect the
forces which make the connections to be sufficiently weak. To do this
construction within the context of discrete energy levels, consider a large
number N of identical Ising models of M rows and A columns. Connect
them together by infinitely weak forces that enable the model to exchange
energy but do not contribute to the total energy of the system. Our
interest is in one of the Ising models, while the others serve to define
the temperature. We know that a collection of such systems is called an
ensemble. Let the total energy of the system be Iy, but the encrgies

of each of the Ising model that make it up are unknown. Then all such

103
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distributions of the total energy are equally probable. An ensemble with

this probability function is called a microcanonical ensemble. Suppose ¢,
is the set of variables that specify the nth Ising model and let £,0, be
the energy corresponding to a,. If the total energy Er is known, then the
probability that the N Ising models have the configurations specified by

T, eea 0y 18

oy
= Erér (4.1)

Here

IV
g’[‘ == Z €7¢(U7z)v

ne=l

where 4,/ 1s the Kronecker’s delta, which is 1 if j = j' and 0 otherwise, and

UEBr) =03 bppep
T Ty

where }_, is the sununation over all configurations o,, of the nth Ising
model. Since we are interested in a particular Ising model, we need to
find the probability P(s: I'r) that one Ising model is in some particular
state o, while the rest may be in any state subject to the fact that the

energy I/r is constant. This probability is easily computed from Eq. (4.1)
as [438]

Y b8
Pl Ep) = =0 QY(‘:E;)LT“. (4.2)

If we take the limit as V — ¢, it will correspond to a physical situation of
having one small Ising model attached to an external system or heat bath.
A collection of Ising models with a probability determined by Eq. (4.2) in

the limit as N - oo is called a canonical ensemble.
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4.2 Temperature Measurement and

Microcanonical Simulation

Our numerical simulation procedure, described in section 4.3, should gen-
erate configurations of the spin system (denoted by (" ) and of the demon
system (denoted by ¢) with equal probability and with constant total en-
ergy Et. The average over passes of any observable ©((', ¢) should approach

the following ensemble average:

O(Ey) = 20 Qu Oy +iBs ), B O 0) (13)
e OB (V4B ()

Assume g(F;) and (7(E,) to be the number of states of the demons and the
spin system at energy F; and FE,, respectively. Then
Y bnacyranerir = O GUE)GEDOR 41k 1, - (1.1)
Cre Eoly

In the absence of demons, the microcanonical average may be defined by

2 0B (), O((7)
O(E) = : ) 5
B == ) (1.5)

The exact known solution for the Ising model gives an analytic expression

for canonical averages [44-46]:

W SEGE) L) ,
(©), = = (4.6)

Therefore, one has to relate the measured averages of Eq. (4.3) to the
predicted averaged of Eq. (4.6). The average of Eq. (4.5) is an interme-
diate step. With these observations, I derive a general expression that

relates the expectation value of the demon energy in an n-dimensional
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model. This enables one, in microcanonical simulation that uses demons,
to measure the temperature or the inverse temperature.

In the microcanonical approach the total energy of the system (spin
plus demon) is held fixed, while the temperature of the system is a derived
quantity. We measured the temperature by measuring the average energy
of the demons. From the point of view of each demon the rest of the
system is a large heat bath, and the possible states of the demon will
therefore be distributed canonically according to the temperature T = 1/
of the bath.

One of my contributions is the following theorem which gives a general
expression for the determination of the temperature for simulations that

uses the demons approach.

Theorem 1 Lel Z = ¢ then the average demon energy is given by the expression

n-1 1

[~z T T=Z (4.7)

< ky>=n-—

Jor any n nonzcro possible changes in the energy states of the system or the possible
values of the demons. This cquation can also be used in microcanonical simulation to

obtain the inverse temperature 3 by numeriecal inversion.

Proof of Theorein. For an n-dimensional model each spin has 2n nearest
neighbors. If an Ising spin is flipped in a zero magnetic field, the minimun
nonzero decrease in energy is 4J. Thus the possible changes in the energy
of the system upon flipping a spin are 0, £4 +38,...,44n. Each demon
is allowed n + 1 energy states with values 0, 4 8,...,4n. Removing the
factor 1, the allowed energy states of the demons becomes E; =0, 12,...,n.

The demons become thermalized after a number of passes through the



107
lattice. On a large system the values of the kinetic variable should become

exponentially distributed with the Boltzmann weights corresponding to
the temperature T = 1/3 of the system. Hence the probability for the
demon to have energy E; is given by

1
P{Ea) = - exp(=Eqid), (L&)

&

where 7 is the normalization constant such that the sum over all states of
the demon is 1.

Thus the expectation value of £; or the average demon energy which
gives a means of measuring the temperature is given as

n ,—4bii
b=0 ‘1’ b(

7" —4bi 3
h==0 ¢ f

4 < By >= {1.9)

where E; represents the demons or the momentum variable conjugate to

the spins. Using the transformation 7 = ¢ ™, write Eq. (4.9) as

L4272 4 . 4 nin
< E;>= , . 4.10
d |+ Z+ 7% +.. 4 n (4.10)

Multiply the pumerator and denominator of Eq. (4.10) by 1 — 7 and write
the numerator as (1 — Z)[n +nZ + ...+ nZ"* ~n—(n-1)7 — ... - 2**]. Thus
one can simplify the denominator to obtain

(1-2)1+Z+ 2+ ...+ 2"~ [l = Z)n+ (=~ 1)Z + ..+ Z" )

| — Znti )
(4.11)

By writing (1 -Z)(n+(n—1)Z+..+Z2" Yas | - Z"+1 2"+ 41~ 27441 Z,

<Ed>=

Eq. (4.11) takes the form

. "Jn+l . . ’J?L‘l"] -y
<E,1>-_—.““ z) (n;”);;f]] 2m)/a Q. (4.12)
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Simplifying Eq. (4.12) one obtains the required equation (4.7).

n+1 1
[—zmi T 1=Z

< by >=n-—-

We derived the following corollary that gives a simpler formula for com-
puting the inverse temperature, it the number of possible states of the

demons is large,

Corollary 1 Let n be the number of the possible states of the demons. Let |Z]| < 1,

then the cxpression for the average demon energy, which is given by

a l «
< By >= T:_Z— -1, (413)

can be used in the microcanonical simulation that uses the demon approach to compute

the inverse temperature 3 = 1/T numerically.

Proof of Corollary.
Assume f > (), then considering the last expression of Eq. (4.7), |Z] is

less than 1. Thus Z < 1 so |Z™"!| tends to zero if n is large. Hence

—(n+1
l—’(-——z'ﬁ%'&"—(n—!'l).

Substituting this approximation in Eq. (4.7) we get

< By>m—— 1,

1—-7Z
which is the required result.
The results of computing the temperature (T) at various iteration
points, for 8 possible states of the demon energy (E;) (i.e., n = T) are
shown in Table 4.1. The first column gives the two demon energy expres-

sions (ly), the second column is the temperature (T') computation using
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(E4) expressions. The third column is the absolute value of the difference

in temperature obtained from using the two demon energy expressions to
compute the temperature. The fourth column is the number of iterations,
(2) used in determining the temperature. The various iteration points are

chosen arbitrarily.

Eq T |AT! i |T |§'| r

= -1 1.81697 | 0.00001 | 20 | 1.82885 | 0.00001 | 40
n— 2 + 155 | 1.81698 20 | 1.82884 40
= -1 1.82529 | 0.00001 | 60 | 1.81833 | 0do00z |80
n— 2w + = | 1.82528 60 | 1.81835 80
= -1 1.82459 | 0 .00002 | 100 | 1.81425 | 0 .00001 | 120
n— 2 + 25 | 1.82457 100 | 1.81426 120
2z -1 1.82109 | 0.c0001 | 140 | 1.81971 | 0.00002 | 200
n— 2 + 115 | 1.82108 140 | 1.81969 200
-1 1.80497 | 0 400 | 1.81425 | 0.00001 | 1000
n— e + L5 | 1.80497 400 | 1.81426 1000

Table 4.1.  Simulation rcsults comparing the two cnerqy crpressions, ]f 4 |
n41
and n — 2455 4+ 155,
The important observation about expression (4.13) is that it reveals
that the inverse temperature is independent of the number of possible

states n. This is true in the three-state Potts model we are considering. By

using each of the two Eqgs. (4.13) and (4.7) separately in our temperature
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measurement routine, almost equivalent results were obtained in each case

as shown in Table 4.1.

For our model under consideration, since there are eight possible states

for our demons, the average demon energy takes the form

< [1 > Z:Z=04b£)_4bﬂ
G D me————
ZZ::U be—-‘lbﬁ
Using our theorem for n = 8 we obtain

8 + 1
1-28 " 1-2

< E,[ >= T -

The above expression gives [ as a function of the average demon energy.
By measuring the average demon energy, 7 can be estimated numerically,
and hence the inverse temperature J can be evaluated. Strictly speaking
the average of the demon energy is taken both over all demons and over
time. In practice, however, we have computed /#(¢) at time ¢ by averaging
over all of the demons, and then computed the equilibrium temperature by
averaging /() over time. Since we work on a large lattice the discrepancy
between the two procedures is sufficiently small, even near the critical
point. In view of the importance of the temperature measurement we have
developed a program that computes the inversion to obtain 3. All that is
needed is to input the number of the states of the demons. The program is

constructed with the help of the computer algebra systern Mathematica.

(*This is a temperature measurement for ke Potts Model#)
PottsTemp[n_Integer?Positive] :=
Module[{t1,t2},

t1=(n-1)-n/(1-Z"n);
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t2=1/(1-2);

t1+t2]

We illustrate with two examples:

Example 1.

In[1]:= PottsTemp[4]

l i

Out[l] =3+ ;
ufll] (1-2) (- 2z

We can easily check our results by expanding Out[l] in the form of a

rational polynomial:

In[2]:= Together[ExpandAll[Together[PottsTemp[4]]]]

AR Y AR Y A

Oul = 5 s

For our model, which has 8 possible states of the demaoens, we geot

In[3]:= PottsTemp[8]

1 8
-z 12

Ouil3] =7+

This polynomial can be expanded out to obtain the following rational

number:

In[4] := Together[ExpandAll[Together[PottsTemp[8]]]]

VAR N AN R YA ’i"}.’/:'_i:r’zr' AR N AL
AR N AN AR AR B AN I AR B AL

()ul['l] =
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4.3 TFortran Code for the Microcanonical

Simulation of the Three-State Potts Model

The microcanonical simulation of statistical systems uses a concept that
is different from that of Monte Carlo algorithms. It uses a deterministic
updating procedure. The main advantage is that the algorithm is very
efficient, does not use random number generators and conditional branch-
ing, and is adaptable for parallelization and vectorization techniques. The
problem with this method is that one must check whether or not the
procedure is stochastic and correctly covers the phase space.

The implementation of the microcanonical sirnulation has beem out-
lined elsewhere [47, 48, 49, 50] and is particularly simple for the Ising
model. One introduces a demon that visits in succession all spins with
an energy bag of finite size. It flips the spin systematically if it can, that
is, if the required amount of energy can be provided from its bag. This
process can be described as a succession of logical operations on single
bits. Parailelization is naturally introduced when one groups the bits into
computer words. In this section we will discuss the implementation for
the three-state Potts model. Let us recall that the action of this model is

S=3" bae,s (4.14)

<ig>
where 7 is the inverse temperature. The spins {7;} take three possible
states. The dificulty to be overcome is that the demon has to choose
betweey two possible states when it wants to flip a given spin. We may

choose to solve this problem in a deterministic way (example 1 — 2 —
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3 — 1); however, correlations will be induced, and the stochasticity of the

process will be lost. The best way to solve this difficulty is by reintroducing
arandom choice. The demon will visit in succession all spins. For each one,
one of the two possible flips is chosen at random (with equal probabilities
%) Then the flip is done if the demon has the correct amount of energy to
do it; if this is not the case, the spin remains unchanged. As will become
obvious, the generation of an equal probability toss will not affect the
efficiency of the algorithm.

In section 4.5, we show how the process can be expressed as a succes-
sion of logical operations performed on single bits. Section 4.6 discusses
other problems such as the various possible implementations for a given
lattice, the measurement of the temperature and the implementation of
the random generator of bits. The code for the three-dimensional cubic

lattice is given in the Appendix B.

4.4 Implementation at the Spin Level

The three states of a given spin can be represented as a set of two bits 00,
01 or 10 (11 is excluded). Let us denote these two bits as « and b and let
a, and b, be the corresponding states of a neighboring spin. The energy of

the link is related to
[, =NOT(OR(XOR(a,a,), XOR(b,b,))). (4.15)

Indeed, the contribution to the action is /4 if [ = 1, and 0 otherwise. While

visiting the spin, the demon has to choose at random its new trial state

a'd :ab — d'l.
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This is performed by using a random bit 7 according to the rule
00 - 10—-01 —-00,ifT=0,

00 — 01 — 10 — 00, if 7 =1,

which is implemented by the operations

i = AND(COMPL(b), XOR(a, 7)),

@ = AND(COMPL(a), XOR(COMPL(b),1)). (4.16)

The bag of the visiting demon contains the energy E = Sk, with the con-
straint k& = 0,...,hnax. The new state causes this amount to change to
I = k' with

]r‘lzl\‘-I-ZlJ"—Zl"l,
J J

and the trial is accepted if
0 S kl S klnax = 2" - 1¢ (4-17)

The bag energy of the demon is represented by a string of n bits, and thus
kmax = 2" 4- 1. According to Eq. (4.17), the new state is acceplable if the
binary representation of 4’ only involves n bits. If |k — &’| is bounded by
2%, the arithietic can be performed with only n + | binary digits, with the
one of highest significance checking the condition (4.16). For instance, let
us consider a cubic la*tice with nearest neighbor interaction. The quantity
k- & ranges from —6 to 6. Choosing kya.x, one sees that &' + 8 ranges from
2 to 21. The admissible range (8,15) is characterized by the fourth bit of
the binary representation set to one. Thus, the updating algorithin is as

follows:
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Choose at random 7 and compute the trial state 'V using (4.16). From

the bag, energy &, represented by the three bits ryz, computes the binary

representation ABC D of
R+8A—1,Be—r,Cey D e ).

For each neighbor j, compute [; and /) using Eq. (4.15). Add and subtract

respectively these quantities to ABCD. This is performed using

A « XOR(AND(I,, B,(', D), A),

B — XOR(AND(;.C,D),B),

' — XOR(AND(l;,D),C),

D « XOR(,, D), (4.18)
A — XORAND(I',NOT(D), NOT(C'), NOT(B)), A),

B — XORAND(l,, NOT(D), NOT((")), B),

¢ — XORAND(,NOT(D)),(),

D «— XOR(l,D).

Now accept the changes ab — o'V, 2yz — BCDif A == |, and reject otherwise.

This is done using

@ — XOR(AND(A,d'), AND(NOT(A),q)),
b~ XORAND(A V), AND(NOT(A), b)),
z — XOR(AND(A, B), AND(NOT(A), z)),
y — XOR(AND(A,C), AND(NOT(A), ),

2= XOR(AND(A, D), AND(NOT(A), 7). (1.19)
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For the general implementation, one should add to the previous description
some details to allow full performance of the algorithm. The parallelization
is ensured by grouping the bits into words. Independent demons work for
each bit position. One should be careful to treat simultaneously non-
interacting spins. As usual, a first possibility is to treat simultaneously
independent replicas of the system, with one demon per replica. A second
possibility is to treat a row of only non-interacting spins of the same system
by a “battalion” of demons. We choose this option and give in Appendix
B the code for a three-dimensional cubic lattice. To avoid interactions,
the system is divided into odd-numbered and even-numbered subsystems
which are treated in succession.

Simulation is done at a given energy rather than at a given temperature.
The temperature is measured in the bags of the demons which are in
thermal =quilibrium with the system. Indeed the relation between the
mean energy and the temperature is known for such a simple system.
Two ways of measuring the temperature were shown in the last section of
chapter three. The generation of the random bits 7 in parallel is based
on the theory of “primitive polynomials modulo 2”. For instance, the
polynomial

R N B B |
was used to generate a random sequence of length 2'® — | by the recurrence
relation

T(n) — ‘X'()R(T(n-—m) + T(n—5) + T(?L—?) + T(n——l)).

The following subroutine allows simulation of the Potts model on a three-

dimensional cubic lattice. They are written in standard FORTRAN-77.
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However, some compiler dependencies might occur. One uses extensively

the logical (generally built-in) functions GR (logical or), XOR (logical ex-
clusive or), AND (logical and), NOT (bitwise complement), ISHFTC (cir-
cular shift) and MASK (mask generation). Variables representing strings
of bits should be conveniently declared. They are declared here as IN-
TEGER, but some computers might require different declarations (e.g.
INTEGER™*8 if one wants to use words with 64 bits).

The function ISHFT (word, n) is used to construct a logical circular
shift of “word” (assumed to be 64 bits long) of “n” bits toward the right
(e.g ISHFTC(4,1) — 2). The implementation of this function is unfortu-
nately not universal and should be checked on a given computer.

The lattice is supposed to have a size (LX*LY* 2w), where w is the
number of bits per word (depending on the computer ). The configuration
is described by two arrays, SPIN and SPIN2, containing (2*LX*LY) words
each. Skew periodic boundary conditions are set in directions .r and y, such
that the neighbors of a given spin are located in words at relative positions
+2 and +2 % LX(modulo[2 x LX * LY]). Let us first give the subroutine that
performs one updating of the lattice. The arguments of the routine are

the configuration (two arrays) and the demons (array of three words ).

*This function ensures periodic boundary conditions in the lattice
*If LX and LY are powers of 2, it can be advantageously replaced by
SUBROUTINE MONTE(SPIN1i,SPIN2,DMN)
* PARAMETER (LX=32,LY=32,LW=16)
PARAMETER(LX=64,LY=64,LW=32)

* LX and LY are the dimensions of the lattice
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PARAMETER (NSIZE=2*LX#LY-1)

PARAMETER (IHOP=13)

* This number IHOP should be prime with LX and LY
IMPLICIT INTEGER (A-Z)
DIMENSION SPIN1(0:NSIZE),SPIN2(0:NSIZE) ,DMN(3)
DIMENSION NEIGH1(6) ,NEIGH2(6)

INLAT(I)=MOD(I,NSIZE+1)

*

*

This function ensures periodic boundary conditions in the lattice

*

If LX and LY are powers of 2, it can be advantageously replaced by
INLAT(I)=AND(I,NSIZE)
J=0
K=1

DO 1 I=0,NSIZE

*

setting the neighbors
NEIGH1(1)=SPIN1(J+K)
NEIGH2(1)=SPIN2(J+K)
NEIGH1(2)=ISHF1C(SPIN1(J+K) ,K,LW)
NEIGH2(2)=ISHFTC(SPIN2(J+K) ,K,LW)
NEIGH1(3)=SPIN1(INLAT(J+2))
NEIGH2(3)=SPIN2(INLAT(J+2))
NEIGH1(4)=SPIN1(INLAT(J-2))
NEIGH2(4)=SPIN2(INLAT(J-2))
NEIGH1(5)=SPIN1(INLAT(J+2%LX))
NEIGH2(5)=SPIN2(INLAT(J+2*LX))
NEIGH1(6)=SPIN1(INLAT(J-2%LX))



ila
NEIGH2(6)=SPIN2(INLAT(J~2*LX))

CHOICE=IRDBIT(0)
NEW1=AND (NOT(SPIN1(J)) ,XOR(NOT{SPIN2(J)),CHOICE))
NEW2=AND(NOT (SPIN2(J)) ,XOR(SPIN1(J),CHOICE))
* now compute 8 + energy_of_demon + number_of_old_links_with_equal_spins
* -~ number_of_new_links_with_equal_spins
DP1=DMN (1)
DP2=DMN(2)
DP3=DMN(3)
ACCEPT=-1
DO 2 M=1,86
* adds old energy
LINK=NOT (OR(XOR(SPIN1(J),NEIGH1(M)),XOR(SPIN2(J) ,NEIGH2(M))))
CARRY1=AND(LINK,DP1)
DP1=XOR(DP1,LINK)
CARRY2=AND (CARRY1,DP2)
DP2=X0R(DP2,CARRY1)
CARRY1=AND (CARRY2,DP3)
DP3=XOR(DP3,CARRY2)
ACCEPT=X0R (ACCEPT,CARRY1)
* subtracts new energy
LINK=NOT (OR(XOR(NEW1,NEIGH1(M)) ,XOR(NEW2,NEIGH2(M))))
CARRY1=AND (LINK,NOT(DP1))
DP1=XOR(DP1,LINK)

CARRY2=AND (CARRY1,NOT(DP2) )
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DP2=X0R (DP2,CARRY1)

CARRY1=AND(CARRY2,NOT(DP3))
DP3=XOR (DP3,CARRY2)
ACCEPT=XOR (ACCEPT,CARRY1)
2 CONTINUE
* accepts or rejects the change
SPIN1(J)=XOR(AND(ACCEPT ,NEW1) ,AND(NOT(ACCEPT) ,SPIN1(J)))
SPIN2(J)=XOR(AND(ACCEPT,NEW2) , AND (NOT (ACCEPT) ,SPIN2(J)))
DMN (1)=XOR(AND (ACCEPT,DP1) ,AND (NOT (ACCEPT) ,DMN(1)))
DMN (2)=X0R (AND (ACCEPT,DP2) ,AND(NOT (ACCEPT) ,DMN(2)))
DMN (3) =XOR (AND (ACCEPT,DP3) , AND (NOT (ACCEPT) ,DMN(3)))
* End of the loop
J=INLAT(J+IHOP)
K=-K
1 CONTINUE
RETURN

END

The function also returning a string of random bits is given. If its ar-
gument is 0, the next string is returned. If the argument is not 0, it is
used as a seed for the generation. Note that 18 seeds are necessary to ini-
tialize completely the generator. The data are random, but the following
condition is required: the OR of all these data should not contain any 0

bits.

FUNCTION IRDBIT(INIT)

IMPLICIT INTEGER (A-Z)
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DIMENSION ITAB(0:31)

SAVE I118,I15,12,I1,I0,IFIRST

DATA IFIRST/0/,Ii8/0/,15/13/,12/16/,11/17/,10/18/

* Standard initialization (random bits, here given in hexadecimmal * for

words with 64 bits; truncate if necessary)

* DATA ITAB/
* x °TEB722A0C9743C06°Z, ’534AB9SDITECF94A°Z,
* x ’'FD3CD86EFCCC61DE’Z,’3B341E5A9A1160B4°Z,
* x ’5CDA1DE25BBS8ESFS5’Z, ’76EDDA93192BC357Z,
* x ’1CD3CF66101C4CBD’Z,’0C7216C2C95676A8°Z,
* x ’ACF117D1EF24D606°'Z, ' AFA52B2A2FB48E98°Z,
* x ’GE7C758368B24840°Z, 'FF29D95A6F897866°Z,
* x ’D1A46D4C9F62639A°Z, ’ CAOSFFEO20E049BD’Z,
* x ’7102A31B08C39D1E’Z, ESDE18695A18CA02'Z,
* x ’98A33097B9C2260E’Z, ’4556037DC5A2CC1A’Z,14%0/
DATA ITAB/

x Z°C9743C06’,Z’9TECF94A’,

x Z’FCCC61DE’,Z’9A1160B4’,

x 7’GBBBESF5’,Z’192BC3577,

x Z’101C4CBD’,Z’C95676A87,

x Z’EF24D606°,Z’ 2FB48E98’,

X Z'68B24840’,Z'6F897866’,

x Z’9F62639A’,Z° 20E049BD’ ,

x Z°08C39D1E’,Z’5A18CA02’,

x Z’B9C2250E’,Z’C5A2CC1A’,14%0/
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IF(INIT.NE.O) THEN

* Initialization (with a check avoiding the generation of a sequence of

Zeros)
ITAB(I1)=INIT
J=INIT
I=AND(31,I18+1)
DO 1 K=1,16
J=0R(J,ITAB(I))
I=AND(31,I+1)
1 CONTINUE

ITAB(I18)=0R(ITAB(I18),NOT(J))
ENDIF
ITAB(IO0)=XOR(XOR(ITAB(I18),ITAB(I5)),XOR(ITAB(I2),ITAB(I1)))
IRDBIT=ITAB(IO)
10=AND(31,10+1)
I1=AND(31,I1+1)
I2=AND(31,I2+1)
I5=AND(31,I5+1)
I18=AND(31,118+1)
RETURN

END

Now let us give some additional information for using the previous routines

in a simulation. The main program has to build a starting configuration,
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for instance, ordered or disordered. In this construction, one should not
b] ]

forget that the state “11” is forbidden; that is, AND(SPIN(i),SPIN(i)) is
always zero. In the simulation, it wise to scramble the energy bags of the

demons at each updating step, for example, using

DO 11 I =1,3

i1 DMN(I) = AMIX(DMN(I))

*with a scrambling function AMIX (written for words of 64 bits)
INTEGER FUNCTION AMIX(WORD)
PARAMETER (LW=32,LH=LW/2)
IMPLICIT INTEGER (A-Z)

REAL RANF
L=INT (LH*RANF())
P1=AND (MASK(L) ,WORD)
P2=AND (MASK(L) , ISHFTC(WORD,~L,LW))
P3=AND (NOT(MASK (2%L)) ,WORD)
AMIX=ISHFTC(OR(OR(P2,ISHFTC(P1,L,LW)),P3) ,INT(LW*RANF()) ,LW)
RETURN

END

In the function AMIX, one exchanges the “L” lower order bits with the
“L” next lower order bits. Thus, I should be less than 32 for 64-bit
words. The energy of the demons is measured using deinon energy ==
IBCOUNT(DMN(1) +2*IBCOUNT(DMN(2) )-+4* IBCOUNT(DMN(3))
where the function IBCOUNT counts the number of 1bits in the bi-

nary representation of its arguments. In the function IBCOUNT, we use
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ISHIFT(word,n), which shifts “word” “n” times toward the right (e.g.

ISHIFT(12,1) — 60). The mean energy per demon allows one to compute

the temperature through the routine

FUNCTION BETA(DENERG)

XL=0

XH=1

DO 1 N=1,36

XN=0.5% (XL+XH)

A=1-XN**§

FN= (8% (A+XN-1) -7*A*XN)/A/ (1-XN)

IF(FN.GT.DENERG) THEN

XH=XN
ELSE
XL=XN
ENDIF
1 CONTINUE

BETA=~-0.25%ALOG(XN)
RETURN

END

The full code is given in the Appendix B.



125

4.5 Numerical Simulation Results

This section shows the results of the simulation examined in section 4.4.
The first result shows how soon the system establishes equilibriun:. The
faster the system equilibrates the better, since measurements are taken
after equilibrium is established. The utility that determines how fast a
system equilibrates is the dynamic critical exponent. Later on in this
chapter, I will compute this value. A rough estimate of how fast the
system equilibrates is obtained by keeping the energy constant and steadily
increasing the iterations. The magnetization and the temperature were

measured and the following two graphs were constructed.
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FIG. 4.1. A graph of magndlization m vs, ifcralion



The graph of temperature against iteration follows below.
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The two plots show that magnetization and temperature stabilizes
quickly. This shows that the system equilibrat. 5 quickly too, because the
temperature is measured by demon energy which is in equilibrium with
the system. Hence reasonably good measurements can be taken after 330
iterations.

Working on a lattice 61 « 61 « 32, we steadily increase the energy E
between 0 < F . | by an increment of 0.1. The iterations were fixed at
20,000 and ten measurements were taken for magnetization and tempera-
tuce. The first measurements were discarded to allow equilibrium to be
established. For each energy, the a-erage magnetization and the average
temperature were computed. The results of the averages computed are

shown in the following table. The way the simulation is terminated de-
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pends on the number of iterations that is set. By setting VSIVFFP - 100,

NVEAS =20, and VBAT('H = 10, the main loop is run 100 times, then

measurements are taken. Then it is repeated 20 times and average mea-

surements are taken. The whole process is repeated 10 times and the

process is terminated.

E 0.1 0.2 0.3 0.4 0.5 o
<M > 0917763 | 0.824314 | 0.716367 | 0.583866 | 0.394458
<T > | 1.80598 | 1.809554 | 1.815777 | 1.815163 ! 1.815996
E 0.6 0.615 | 0.7 | 0.8 0.9 ]
< M > | 0.000794 | -0.000456 | -0.000157 | 0.000174 | 0.000133
<7T> | 1.817117 | 1.820132 | 1.827005 | 1.852209 | 1.888042

TABLE 4.2, Simulation results of total energy, average nmagnetization and tem-

perature

The basic goal here is to determine the phase transition. Thus more

measurements were taken around the critical point, and they are given in

the table below.

E
< M>

<T>

0.55
0.231782
1.815179

0.5771
0.083975

1.815979

0.578
0.008972

1.816213

0.58
-0.001522

1.816115

PR y—

0.59
0.003952

1.80379

0.625
(.000202
1.817651

TABLE 4.3. Simulation results of total everqy. average magnetization and tom-

perature near the phase transition
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Figure 4.3 is the average magnetization vs. temperature (7).
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FIG. 4.3. Average magnetization < m > vs, the temperature (T').

The graph in Fig. 4.4 is a plot of energy against average magnetization.
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The graph of Fig. 4.5 is a plot of energy against average temperature.

On this graph the energy at which phase transition occurs is very distinct.
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FIG. 4.5. Variation of energy E vs. the avcrage lemperalure < T >,

From the Fig. 4.3 the critical temperature 7. was estimated.

4.6 Finite-Size Effects

The most serious drawback of a computer simulation approach to the study
of phase transitions is that one must deal with finite systems. No finite
system with a nonsingular Hamiltonian can exhibit a true phase transi-
tion. This becomes obvious when noting that the partition function in Eq.
(2.3) cannot develop a singularity when the integral of the finite bounded
Boltzmann function is performed over a finite space. Nevertheless, finite
systems are reminiscent of phase transitions, and systematic studies of

these pseudo-transitions as functions of system size may reveal informa-
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tion about the phase transitions in the infinite system [51]. A finite system
gives an accurate description of the infinite system as long as the correla-
tion length £ < L, the linear extension of the system. When & > L (e.g.,
near a critical point), the properties of the finite system will reflect the
nature of the boundary conditions. For systems with periodic boundary
conditions, the fluctuations will be “overcorrelated” and the various prop-
erties will be “rounded”. As an example, the long-range order will persist
above the phase transition, and singularities in the specific heat and the
ordering susceptibility will be rounded and shifted in temperature. Ferdi-
nard and Fisher [52] also Fisher [53] developed a finite-size scaling theory
for critical phenomena which is extremely useful to guide the extrapola-
tion of Monte Carlo finite-system properties to the thermodynamic limit.
According to this theory, the free energy of a finite system is given by the

homogeneous function
F(N,T) = LEE( LYY, (4.20)

where o and v are the critical exponents pertaining to the specific heat and
to the correlation length, respectively. / is a scaling function involving
the scaled variable tL'* only, and ¢t = (T — T.)/T. with T, = T.(L = o).
Fisher [53] suggested the position of the maximum of the specific heat (or
alternatively the ordering susceptibility ) as an appropriate definition of
the “transition temperature” of the finite system, T.(L). According to the

finite-size scaling theory, the shift in critical temperature then scales as

8T = To(L = 00) — To(L) ~ L™".
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From the free energy in Eq. (4.20), the scaling properties of other ther-

modynamics functions may be derived, e.g.,
@ = LAY, (1.21)

In the limit ¢t — 0 and L — oo, Eq. (4.21) has to reduce to the infinite-
system singular behavior, Eq. (2.9), and therefore in this limit, the order

parameter scaling function is given by
MELMYY ~ (=t LYY,

The various scaling functions and amplitudes are nonuniversal properties
which depend on the details of the system under consideration. In particu-
lar, these nonuniversal properties are functions of the boundary conditions
chosen. The validity of the finite-size scaling theory has been demonstrated
through extensive Monte Carlo simulations on two- and three-dimensional
Ising models with periodic boundary conditions as well as free surfaces [54,
55]. It appears from these calculations that the systems with L > 10 are
well inside the asymptotic region described by Eq. (4.21). Therefore cor-

rections to finite-size scaling, e.g.,
6Te~ LV +al™® +...),

where A is the correction-to-scaling exponents (A ~ 1) (cf. Eq. (2.12)),
need not be invoked. This is a very important result because it anticipates
that Monte Carlo simulations of critical phenomena are feasible using sys-

tem sizes and statistics compatible with current computer capacities.
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4.7 Determining the Nature of a Phase

Transition

Analyzing the nature of phase transitions by computer simulation tech-
niques is hampered by finite-size effects. A phase transition is infinitely
sharp only in an infinite system. The characteristic discontinuities and sin-
gularities accompanying phase transitions will appear rounded and smeared
in the finite systems employed in a computer simulation. In real systems,
phase transitions will also appear smeared to a degree that depends on
the size of the system. Also it depends especially on the concentration of
imperfections and impurities.

In principle, it is impossible, by any laboratory experiment or computer
simulation, to prove that a phase transition is continuous. It can always
be postulated that possible first-order discontinuities are below the reso-
lution of the experiment. Similarly, it may be argued that experimentally
observed metastabilities do not signal first-order phase transitions but are
nonequilibrium effects associated with continuous transitions. The best
one can do is to analyze as many properties as possible in the neighbor-
hood of the phase transition and compare them with phase transitions of
well-established nature. Thus, laboratory and computer experiments share
a deficiency in their inability to determine unambiguously the nature of
a phase transition. In a computer simulation study of the cooperative
behavior of an interacting many-body system, the primary question to be
answered is related to the existence of a stable ordered phase at finite

temperatures. Theoretically, this is known to be a very difficalt problem
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(see e.g. Griffiths 1972) [56]. In computer simulation studies, this problem

is approached by a finite-size analysis of the possible long-range order pa-
rameters. The possible types of ordering in the finite system are suggested
by the simulation itself. If the order parameter for finite temperatures ap-
proaches a nonzero value as L — oo, it is concluded that a phase with
long-range order remains stable at finite temperatures. Therefore a finite
temperature phase transition must exist. As the existence and structure
of the ordered phase have been established, the question of the nature
of the phase transition will now be examined. The transition is triggered
when a thermodynamic parameter, such as the temperature, is varied. For
the sake of simplicity, let us restrict ourselves to situations with a single
phase transition. Only first-order and continuous phase transitions shall
be distinguished.

A first-order phase transition is characterized by a discontinuity in the
order parameter. The specific heat has a é-function singularity superim-
posed on its discontinuity at 7.. The energy content of the é-function
represents the enthalpy of the transition. An important indication of a
first-order phase transition is the presence of metastable states in the
transition region. In this region, the free energy has two minima, and
the system may become trapped in the upper metastable one for a fi-
nite time ¢ < 7(7'), where 7(7') is the relaxation time of the metastable
state. In Figure 4.6 shows schematically the variation with temperature
of the order parameter, ®(7'), and the inverse relaxation time in the re-
gion around first-order transition. The metastable branches of ®(7') are

indicated. The endpoints of these branches are pseudospinodal points at
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which the metastable system becomes thermodynamically unstable. The

inverse relaxation time, accordingly, has two branches. The relaxation out
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FIG. 4.6 Variation of order parameters and inverse

relaxation time with temperature, and variation of
parameters with Markov time.

of the metastable states becomes infinitely slow as the equilibrium tran-
sition point is approached from either side. When the system is perturbed
in a metastable state, e.g. by an appropriate change in temperature, it
may exhibit a two-step relaxation behavior which is an exceptional feature
of systems undergoing first-order transitions: Firstly, the system relaxes

into a new metastable state characterized by the new temperature and
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then eventually it relaxes into the true equilibrium state. The impor-

tant point to stress is that the second step of the relaxation may not set
in for a long time and that therefore in some cases the metastable state
may mistakenly be confused with the equilibrium state. The microscopic
consequence of trapping in the metastable state is the observability of hys-
teresis; i.e., the behavior of the system in the transition region depends
on its thermal history. There are a few important exceptions to the above
description. Firstly, some systems may have several local minima of the
free energy in the transition region and may therefore give rise t¢ a more
complicated pattern of metastable states. This may in some cases lead to
a cascading relaxation behavior associated with a whole staircase of steps.
Secondly, the presence of hysteresis may not necessarily signal a first-order
transition. If the system under consideration has more order parameter
components than physical dimensions. an extremely slow domain-growth
kinetics may result when the system is taken below the transition point.
In that case, the annealing of domain characterized by different order pa-
rameters will be the rate-determining process, and in many cases it ig
impossible within a reasonable observation time to bring the system into
a uniformly ordered phase. A global hysteresis will then result irrespective
of the specific nature of the phase transition.

At a continuous transition, the order parameter vanishes in a continu-
ous manner as in Eq. (2.9), and the fluctuation quantities may diverge, cf.
Egs. (2.10) and (2.11). The free energy only has a single minimum and
no metastabilities are expected. However, the relaxation to equilibrirnn

becomes slower as T, is approached and the relaxation time diverges at
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the critical point (“critical slowing down”). Thus, very close to T, and for
sufficiently short observation times, a system with a continuous transition
may behave as being effectively in a metastable state. The temperature
variation of ®(7') and #*(7') is drawn schematically in Fig. 4.6. Note this
figure applies for a finite system which supports long-range ordering even
of the temperatures above 7.

In computer simulations on finite systems, first-order phase transitions
will appear as partly smeared. The discontinuities are reduced and the
é-function of the specific heat is broadened. For first-order transitions as-
sociated with strong fluctuations, these observations are the usual conse-
quences of finite-size rounding. However, there is always a contribution to
the smearing from the effective averaging of information from metastable
and stable states. Since a finite system can give rise to only a finite free
energy barrier between the two minima of the free energy function, there
is a finite probability of crossing the barrier within the observation time.
This crossing is not only allowed from the local (metastable) minimum to
the global (stable) minimum, but a finite system may perform a shifting
between the two. If the barrier is very low (which it will be close to T.),
this will lead to a complete smearing, and it may be difficult to resolve the
two states. In that case, the first-order transition effectively appears as a
continuous transition strongly dominated by fluctuations. However, by in-
creasing the lattice size, the two minima may be resolved and the complete
free energy surface may be accurately probed by the simulation. This is
a remarkable advantage of computer simulation over conventional theo-

retical calculations which are usually only able to probe the equilibrium
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properties. Detection of the metastable states is facilitated by studying the

time-evolution of coarse-grained averages and the structure of distribution
functions of internal energy and the order-parameter. The distribution
functions are particularly useful if the system has several order-parameter
components. In that case, the shifting between ordered and disordered
states near 7. is coupled with a shifting between the various ~omponents
of the order parameter. If the shifting between the stable and metastable
states is sufficiently rapid to sample accurately the complete distribution
function for, say, the order parameter P(®), a unique way is offered for
determining the equilibrium first-order phase transition temperature. It
shows P(®) in the transition region of a finite system with a single order
parameter component. P(®) is a double-peaked function throughout the
transition region where metastable states persist. At 7'~ 7T,, the two peaks
have the same intensity. This indicates that both phases are equally likely
and that we are therefore at the only point where the two phases can co-
exist, i.e., at the equilibrium transition point. To be consistent with the
first-order transition, it 1s an important requirement that its two peaks
move apart as the system size increases. Glosli and Plischke [49] have

pointed out that P(®) is related to the free energy functional

F(®) = —kgTIn (D), (1.22)

which is part of the total free energy. The equivalent use of F'(¢) to an-

alyze the nature of the phase transition is perhaps somewhat more heuris-
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tic. If the complete distribution function, £(®), cannot be obtained for

systems with first-order transition, a few other methods may be called
upon to determine 7T.. The first one uses the classic Maxwell equal-area
rule. This method is not very accurate because it presupposes, incorrectly,
that the relaxation time is symmetric about 7.. A second method, which
has found wide use among high-energy physicists for locating phase transi-
tion in lattice gauge theories (see e.g. Creutz et al.) [50], is a mixed-phase
calculation. The idea is to initiate the simulation by a configuration which
is a one-to-one mixture of the two phases. The equilibrium phase is then
determined as the phase of the mixture which grows as the ensemble is
built up. This method requires less computer time but is not as accurate
as the method which uses the complete P(®) function. The third method
requires an evaluation of the free energy function itself. Since F(T) is not
a thermal average, its evaluation presupposes knowledge of the partition
function, 7. However, Z is not available from a Monte Carlo calculation
which is built on Eq. (2.25). Therefore, F/(T) has to be determined indi-
rectly, e.g. by a numerical integration of the internal energy

(T = %1«’(7;) +7 [ T E(x)da.

Such a procedure requires detailed information on the internal energy
over a wide range of temperature around the transition as well as precise
knowledge of the appropriate high and low temperature boundaries, F(T;),
where the integration is started. If the internal energy is known along the
metastable branches of the hysteresis loop, the point at which the two re-

sulting free energy branches intersect may be determined fairly accurately.
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This point is the equilibrium transition point. From the difference in the

slope of the two [(T') branches in this point, the enthalpy and entropy of

transition may be derived:

‘S“
%,— = AE = A@F(T)/0T)y..

The distribution function, F’(®), for a finite system with one order-parameter
component undergoing a continuous transition has a single peak for all
temperatures, and the position of the peak moves continually as the tem-
perature is varied through the phase transition. The corresponding free
energy functional, F'(®) Eq. (4.22), has a single minimum. These charac-
teristics are distinctly different from those found for first-order transitions.
The finite-size behavior of the various thermodynamics functions is conve-
niently analyzed in terms of the finite-size scaling theory to yield critical

temperature and exponents.

4.8 General Correlation Function Series

In this section our aim is to measure the critical exponenis v and the
critical temperature at [ = oo. We first note that the basic quantity of
a spin system is the spin-spin correlation function I',4(r, )T which is a
measure of the degree of correlation between spin fluctuations at lattice
sites i and j. For T'> T. and in zero extiernal field, I',; takes the following

form of systems with no off-diagonal interactions

FPap(riy, T) = < (0= < 0w oy~ < a5 ) /T'I'(ffuz)

2
= (Suﬁ < Ty Ty -~ /,1"'(”” )-
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a,, is one of the components of the spin vector ; = (0i,,04,7i:). A variety
of physical quantities can be constructed from the correlation function.
First, the internal energy of systems with pair interactions is simply a
linear combination of pair-correlations within the interaction sphere. The
specific heat can be derived from the internal energy. Second, by the fluc-
tuation theorem the wave vector-dependent susceptibility tensor x.(§,T) is
the Fourier transform of I',s. Third, the wave vector-dependent spherical

moments

Tan(T) = S (I75i]/70) ™ D aa (15, T)
J(#)

enable us to determine the correlation length
lsal N e — 1
Eu(qs 1 ) = 7‘0[(7(:,2(% 1 )/Z(IUQ,U(Qa T)]2 »
where r is the lattice constant and d is the spatial dimension. If T — T, the
correlation length defined from the second spherical moment is expected
to be proportional to the true correlation length (Fisher and Burford 1967)
[42]:

Eq.T) = lilmm rolri, |10 [e 779 T oo (755, 7))

[regf—

This general approach constitutes a convenient way to calculate correla-
tion function series. The availability of autocorrelation and paircorrelation

functions seen as a function r;, allows studies of several thermodynamic
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quantities which are expected to display critical fluctuations. These im-

portant relations of critical exponents and their dependency on correlation

lengths are summarized below:

TamlG= G0, T) ~ (I =T, T —T.
a0l = qo.T) = kTN '\ ((go0,T) = L'aa(0.7T)
~ kTN "\algo, T) — T (0.TY, T — T

~ (T=T). T T,
E(v((i = (o, T) ~ (7' — ']‘(‘)us T — ,l‘“

where ¢y is the wave vector characterizing the ordered phase. As has been
pointed out, the relatively small size of our system is the most serious
limitation in computer simulation studies. Since one can simulate only
finite lattices, it is difficult to apply the above definitions to compute the
critical exponents directly. However, with the help of finite-size scaling
analysis, the finite length can be extrapolated to infinity. According to

finite-size scaling one gets the following relation:

{T)~L~|T =T, (1.23)
To(L) =T L = %) ~ al'", (4.24)
In our work, the lengths L = 4, 8, 16, 32 and L = 64 were used for the

following different energies: F = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and IV = 0.8 at
22K. Eleven measurements were taken, but the first measurements were
neglected to allow equilibrium to be established. A graph of temperature

against magnetization was constructed, and the critical temperature was
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estimated from the graph. The results of our measurements are summa-

rized in the Table 4.4 below including our estimated critical temperature

for the various lengths.

L {T T.

4 |0.481296 | 0.481022
8 | 0.788997 | 0.788469
16 | 1.130654 | 1.128900
32| 1.480854 | 1.474803

L64 1.827005 | 1.817117
i

Table 4.4. Length of the lattices, near and at the critical temperat

By plotting In(L) against In(7 — T.) the critical exponent » was obtained
by taking the gradient. The graph of our measurement is shown in Fig.

4.7.

7 Y T T T T T
Log log plot ot temperature vs. length Fe—

FIG. 4.7, Determining the ceritical erponent v by plotting In(L) vs. In(T — T).
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The critical exponent v estimation from our measurements was found

to be equal to 0.631 4+ 0.005. The error measurement used is the standard

deviation which is obtained directly fromx Maple.

2.2 T T T T T

Criticd]l temperaturle v, length Heed

a -

0.2 ] 1 [ 1 I3
o] v.02 0.04 U.06 0,04 0.1 a.1

FYG. 4.8. ('ritical temperature To(L = oc) for an infinity systcm, oblained by
plotting T.(L) for finite length L vs. L='/*,

Once the critical exponent v is obtained, a graph of L~'/* against 71.(L)
can be plotted and the value of T.(L = c0) is obtained by taking the inter-
section on the vertical axis. The smallest length [ =1 is know to deviate
from the linearity of the curve so it was neglected. The graph of our mea-
surements is shown in Fig. 4.8. For smaller lattice size, there is a deviation
from the linearity of the curve. However, one cannot use very large lattice
sizes because it will take a long time before any reascnable measurements
can be taken. Hence for Fig. 4.8, the last two measurements were ne-

glected. The best straight line was fitted using the rest of the noints. The
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errors used are the mean deviation.

The critical temperature for an infinite-lattice was estimated to be

T(L = ) = 2.15 = 0.05

4.9 The Dynamical Critical Exponent
Measurement

The principle of dynamic scaling, as confirmed by renormalization-group
theory of the critical dynamics, asserts that the decay rate I' of the order-
parameter fluctuations sufficiently close to the critical point assumes the
form

I = FQ(k¢).

It also predicts that the shear viscosity 5 will diverge as
ns = &%,
The dynamic scaling function {}(y) satisfies the boundary conditions

1i11(]) Oy) = Coy~ 0+
y——}

lim Q(y) = Cw,

Y=>r00

where ('y and (', are constants. The dynamic critical exponents z and ¢
satisfy the relation

=3+ ¢

At a given temperature, i.e. at a given value of ¢, I" will vary as k? for k¢ < 1

in agreement with the laws of hydrodynamics. On the other hand, I' will
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vary as k° in the critical region k¢ > 1. The dynamic critical phenomenon

can be characterized if systems can be grouped in dynamic universality
classes. Systems within the same dynamic universality class have identical
dynamic critical exponents as well as the dynamical scaling function I'(y)
when properly normalized,

Creutz’s deterministic microcanonical dynamics is an interesting alter-
native to standard Monte Carlo simulations of classic statistical systems.
The main advantage of microcanonical dynamics is increased speed in nu-
merical simulations. Microcanonical algorithms are easily vectorized, can
often be implemented without the use of floating point arithmetic, and
may not require the generation of random numbers. What will eventually
decide the utility of the microcanonical approach, however, is how quickly
the system equilibrates in the critical region. A fundamental measure of
how fast a system reaches equilibrium is the dynamical critical exponent
2. We show how to measure this exponent for the microcanonical three-
dimensional Potts model. We then compare our results with what others
have obtained. For example, Brower et al. [47] obtained z = 2.26 -+ (.05,
which is comparable to the dynamical critical exponent found for Monte
Carlo algorithms. Their measurements demonstrate that microcanonical
simnulation equilibrates at roughly the same rate as the nondeterministic
algorithms, while using much less computer time.

In general, any statistical dynamics will exhibit an autocorrelation sin-
gularity at a critical point. If A({) is an observable at time {, the autocor-

relation time 7 is defined by

< A(TYA(L + T) >~ e~ Tl + censt, (4.25)
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where the average is taken over the sampling time 7. In the critical region

the autocorrelation time increases like
T~ ( V.Afz

as the correlation length ¢ diverges. This is known as “critical slowing
down,” because in numerical simulations one must run much longer times
to make uncorrelated measurements. (74 is a constant that can depend
both on the particular observable A and on the particular dynamics used.
In contrast, the dynamical critical exponent = is believed to be universal.

The basic universality classes that have been proposed are as follows:

(a) dynamics with no local conservation laws (model A),
(b) dynamics with local order-paraineter conservation (model B),

(¢) dynamics with a conserved density other than the order parameter,

such as an energy density (model (7).

Standard Metropolis or heat bath algorithms are in the “model A” uni-
versality class. For the three-dimensional Ising model the dynamical crit-
ical exponent has been measured for these Monte Carlo algorithms to be
z =~ 2.08 by Yalabik and Gunton [58], = = 2.17 4 0.06 by Chakrabarti et al.
[59], z = 2.11 £ 0.03 by Jan et al. [60], and =z = 1.965 £+ 0.010 by Kalle [61].
The semilocal implementation of the microcanonical dynamics is expected
to be "model .1,” and indeed the system measurement of z = 2.26 + 0.05
agrees with the Monte Carlo measurements as much as they agree among
themselves [47]. The important difference between microcanonical sim-
ulation and these previous results is that the algorithm uses the faster

deterministic dynamics.
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To determine = the magnetization autocorrelation function Q(1') was

measured by

QT = ~(l~ <~ m(bHm+1T) ~,

where the average is over the sampling time { and (/) is the instantaneous

magnetization given as

1 H

m(l) = ——% Z"‘U)'

131

By working at temperatures below the critical value we found - m(t) -

0, so that the constant in Eq. (4.25) could be neglected. Guided by
the results obtained in section 4.6 we took average measurements of the
magnetization and temperature for different values of Monte Carlo steps
and at different energy values below the critical point. The values of
Q(T') were computed. The autocorrelation time 7 was determined as the
gradient from a linear fit of InQ(7') to T. We could always obtain good
linear fits, which demonstrates the correctness of using Eq. (4.25) to

determine 7. The equation
§T) ~(T-T.)""

is used to compute v, and once the correlation time 7 for various values
of the temperature was determined, we were in a position to obtain the

dynamical critical exponent z by noting that near the critical point

T~ (T =T
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Our results for In(r) and In(T" — 7.) are shown in Table 4.5 below.

s et

in(7 -~ 7T.)| 7.3540 | 5.8158 | 6.2607 | 6.8880
lu(r) 1.2809 | 4.1026 | 4.4257 | 3.6434

In(T - 1T.) | 6.4890 | 7.3385 | 5.8328 | 6.6377
In(T) 3.9343 | 1.2929 | 4.8709 | 3.7645

Table 4.5. A {able of WT — T, and InT
We fit In(7) versus In(T — T.) shown in the Fig. 4.9.

E

T T ¥ 1 1 L) ]
Lotp dog plot of megnet 1zarion (m) vs. temperature (T) He

FIG. 4.9. A graph of logarithm of the autocorrelation coefficient T against tem-
perature In(T — 1.} to measure the dynamic eritical exponent z.

We measured the gradient, and since » has been determined, the expo-
nent z is easily computed to be the gradient divided by ». Our result for
the dynamic critical exponent is z = 2.11 &+ 0.05. The error measurement

used is the standard deviation which is obtained directly from Maple.



Chapter 5

CONCLUSION

Much has been written about the Potts-Ising model, but very little on
the symbolic computation of the Potts-Ising model. This thesis therefore
serves to begin bridging this long-standing gap. In this thesis, I have con-
sidered the symbolic solution of the two-dimensional Potts-Ising model
by the perturbation method. The one-dimensional case is not interesting
because the partition function is analytic and does not reveal any phase
transition. However, from the one-dimensional computation, a method
for attacking the two-dimensional case is made clear. Using the screw
method of Kramers and Wannier, I developed an algorithim using Maple
for computing the low-temperature partition function and the eigenvector
series without an external magnetic field, which has not be done before.
The algorithm was carefully designed so that one can use it to teach the
construction of the partition function by Kramers and Wannier. Moreover
the algorithms are easily adaptable to be used with any work that requires

the construction of V-matrices for both numerical and symbolic compu-

149
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tation. The transformation matrix which is used to simplify the complete
V-matrix has also been built into the program.

I have also incorporated the two-dimensional exact series solution of
Onsager’s compﬁtation on a square lattice. The series solution of the two-
dimensional Ising model with many components has also been built, The
parameter s is the number of components one needs to input. For s = 2,
the many components lattice reduces to the Kramers and Wannier model.
I have also built an algorithm that computes the three-dimensional Ising
model. It is an extension of the work of Kramers and Wannier which was
started by Oguchi. My symbolic computation reveals the additional infor-
mation that if n is odd, the number of the submatrices of the V-matrix
must be | each. Otherwise the computation of the partition function
computation will be false. If n is even, then twice the number of the
submatrices P, (), R, and S must be taken. In fact the computation of the
eigenvectors of the partition function would be almost impossible without
the symbolic computation. Until now only 3-screw and 5-screw computa-
tion has been attempted. My work, however, has generalized the screw
approach to the n-screw. Another achievement is the algorithm that com-
putes the ground state entropy, W;(¢), for a lattice, G, where ¢ > 3 is an
integer. The computation is carried out on square, triangular, and Kagome
lattices, for the number of colors ¢ =3, ¢ = 4, and ¢ = 3, respectively.

The only concern for the algorithm based on Kramers and Wannier
V-matrices and its extension is that the size of the matrices used in the
computation grows rapidly. Therefore for large matrices the program is

slow (for specific examples see chapter 3).
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Nevertheless this work demonstrates the first use of Maple symbolic

computation to attack the partition function of the Ising model based on
the V-matrices of Kramers and Wannier and other statistical mechanics
problems.

For the microcanonical simulation, an important achievement is the
general formula which has been derived to compute the temperature or
the inverse temperature of a system that uses the demon approwch. The
deduction from the general formula is also significant. With only one
condition to check, one can use a simpler formula with a relatively very
small error. Moreover, it shows that in general the demon’s energy is
independent of the dimension of the lattices when considering nearest
neighbor interaction. The simulation results are also comparable to the
theoretical results. The graphs obtained from my simulation results truly
confirm theoretical prediction.

As a possible extension to the work so far achieved, several alterna-
tive approaches to the solution of the Potts-Ising model exist. A natural
extension to this work is the high-temperature computation of partition
function of the model. Another immediate need to be addressed is the
inclusion of the an external magnetic field into the Hamiltonian equation.
There are also other methods based on group theory that should be imple-
mented. For example, the set ¢/ can be thought of as points of a countable

set,

U:={A: A& Z"},

which is the set of v-tuples of integers of lattice sites per each cell or a
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sum of several lattice sites per unit cell.
If one considers a set A C V((7), then the group of graphs is given as
A Gy =TI Go = {1 = (b)sesa }»
bEB,

where G, denotes the dual group of G, x ¢ M. The Hamiltonian definition
for this Ising model ((,G,X’) could be given as

Hio)=- >, Keoe,0€G. (5.1)

ecE((7)

For graph theory, one can link the coefficients of the partition function
of the series to the number of ways of coloring a graph G with a given
number of colors, which also can be linked to the computation of the
chromatic polynomial.

From combinatorial theory, at zero magnetic field, one can obtain the
power series expansion by counting the number of ways of forming closed
paths of a given length along the bonds of the lattice. In this case, the
partition function can be in the form

Z= > ... > Hexp(Koic;).
oy=k1  ay=kinn
The product over n.n denotes the product over values of ¢« and j corre-
sponding to nearest neighbor points of the lattice [44].

The (™-algebra consideration of the Ising model can consider the Hamil-

tonian

H(n) — é,dmf[((ri + oi41) — BJTioig,

where o : Z — {l,~1}, and Z is the set of integers. One can denote GK,,

the algebra of all observables relative to the interval [a,b] which can be
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equipped with the sup-nom:

HAl = sup [A(ou,...o0l,
€N fa)
where A, ;) is the configuration space for the interval [«, 8] [44].

Also the complicated derivation of Onsager’s complete solution of the
Ising model on a square net can be tackled in a less complicated form
by considering dimer statistics. A dimer is simply a figure that may be
drawn on a lattice that covers two nearest-neighbor sites and the bond
that joins them. In this case the generating function for closest-packed
dimer configurations is related to the Pfaffians, which is an antisymmetric
matrix whose associated determinants can be evaluated. This Pfaffians
plays a crucial role in the analysis of the two-dimensional Ising model [44].
All these are issues which need to be addressed with symbolic computation
in the future.

The strategy which I would hope to follow in the future with the work
of the symbolic computation and the simulation method, which is beyond
this scepe of thesis is to send information from the simulation to the sym-
bolic and vice versa. In this way the results of the symbolic computation
could be piped to the various components of v.e simulation which need
them. Ideally, the work so far achieved is a stepping stone which, if the
various approaches are followed satisfactorily, should be integrated into a
comprehensive package of tools for dealing with the Potts-Ising model.

Finally it is anticipated that it will be fully developed into a marketable
software. Because the model has a wide application, I hope that it will be

helpful as a tool for research as well as in the clagsroom.



APPENDIX A

# Lars Onsager generalization of the Kramers and Wannier series solution of the
# Ising square net. x=tanh(2H)/cosh(2H) H=J/kT, J is the interaction strength.
# x is normally given to be kappa (k) k=tanh(H)/(2%cosh(H)) or

# 2k=sinh(H)/cosh~2(H)

# This progrm computes the exact 2-d partition function of Ising square net

# in series.

ex2dsert s:=proc(t) local t1,t2;

t1:=-su. .1nomial(2%n,n) 2%(4*n)"(-1)*x"~(2*n),n=1..t+2);

K_:=x=tanh(H)/(2%cosh(H));

pf=2*cosh(H) *(value(subs({ln(e)=1,0=0},series(e"t1,x=0,t+2))));

end;

#This computes the associated two-dimensional partition function on a square
#lattice for the lower right negative Kramers and Wannier matrix defined

#on the LEFT by perturbation method given in series.

d21lnpps:= proc(n,p) local ci,c2,Id,i,ii,j,k,ms,nl,q,u0,ul,u2,ls;
#'’n’ is the size of the matrices and ’p’ is the length of the series
#options trace;

nil:=2"n/2;

#compute the needed matrices.



u0:=matrix(ni,ni,[]): #the constant matrix U0
for i to nl do
for j to nil do
if j=2%i-1 then w0[i,jl:=1
else u0[i,j]:=0
fi;
od;
od;
ul:=matrix(ni,n1,[]): #the constant matrix Ul
for i to nl do
for j to nl do
if j=2%i then uili,jl:=1
elif j=2%(ni1-i)+2 then uili,jl:=-1
else uili,jl:=0
fi;
od;
od;
u2:=matrix(ni,ni1,[]): #the constant matrix U2
for 1 to nl do
for j to nl do
if j=2%(ni-i)+1 then u2[i,j]:=-1
else u2f1,3]:=0
fi;

od;



od;

#perturbation method begins here.

#set up array to be used in the perturbation computation

for i from 0 to p do
f.i:=matrix(i,ni, [seq(ff.j,j=0..n1-1)1);

od;

#begin perturbation computation.

#compute initial perturbation results.

Id:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]); #linsolve(multiply(u0,£0),£0);
£0:=matrix(1,n1,[1,0$n1-1]);
Li:=matrix(i,1,[01);
1s:=map(evalm,f1&*(Id-u0)=£0&*ul);

for i from 1 to nl do

m.i:=lhs(1s)[1,il=rhs(1s) [1,i];

od;
assign(solve({seq(m.i,i=1..n1)} { aq(ff.k,k=1..n1-1)}));
f1:=matrix(1,n1,[0,seq(ff.k,k=1..0n1~-1)]);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));

L2:=evalm(-matrix(1,1,[f0{1,n11]1));



#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for i from 2 to p do
U.i:= f.i&*(Id-u0)=Ff.(i~1)&*ul+f. (i=2)&*u2-
convert ([seq(L. (q+2)&*f.(i-q~2), q=0..i-2)]1,‘+");q:="q’:
U.i:=map(evalm,U.1i);
for ii from 1 to nl do
ms[1i]:=1hs(U.i)[1,ii]l= rhs(U.1)[1,ii];
od;ii:=’3ii’:
assign(solve({seq(ms[k],k=1..n1)},{seq(ff.k,k=1..01-1)}));
f.i:=matrix(1,n1,[0,seq(ff.k,k=1..n1-1)1);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));
L.(i+1) :=evalm(-matrix(1,1,[f.(G-1){1,n1]11));

od;

#matrices used on the perturbation computation

U_0:=ul
U_1l:=ul
U_2:=u?2

#eigenvalues and eigenvectors series



cv:=sort(convert([seq(b~i*f.i, i=0..p)], +)):
#cv:=map(evalm,cv);
convert{[seq(b~i*L.i[1,1], 1=0..p)], +*);

end;

#This computes the associated two-dimensional partition function on a square

#lattice for the upper left positive Kramers and Wannier matrix defined on the #

d21lppps‘= proc(n,p) local ci,c2,Id,i,ii,j,k,ms,ni,q,u0,ul,u2;
#'n’ is the size of the matrices and ’p’ is the length of the series
#options trace;

nl:=2"n/2;

#compute the needed matrices.

u0:=matrix(ni,n1,[]):
for 1 to nl do
for j to mnl do
if j=2%i-1 then w0[i,j]:=1
else u0[i,j]:=0
fi;
od;

od;



ul:=matrix(ni,ni,[]):
for i to nl do
for j to nl do
if j=2%i or j=2%(n1-i)+2 then uif[i,jl:=1
else ulli,jl:=0
£i;
od;
od;
u2:=matrix(ni,ni,[]):
for i to nl do
for j to nl do
if j=2x(ni-i)+1 then u2[i,jl:=1
else u2li,jl:=0
fi;
od;

od;

#perturbation method begins here.

#set up array to be used in the perturbation computation
for i from 0 to p do #frist define all the fi’s
f.i:=matrix(1,nl, [seq(ff.j,j=0..n1-1)]);

od; i:=’1i’: j:=7j’:

#begin perturbation computation.

1hY
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#compute initial perturbation results.

Id:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]); #linsolve(multiply(u0,f0),f0);
£f0:=matrix(1,n1,[1,0$n1-11);

Li:=matrix(1,1,[01);

f1l:=matrix(1,n1, [0$(n1-2),1,0]);
L2:=matrix(1,1,[0]);

f2:=matrix(1,n1, [0${(ni-1),1]);

L3:=matrix(1,1,[0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for i from 3 to p do
U.i:= £.i&*x(Id-u0)=Ff. (i-1)&*ul+f. (i-2)&*u2-
convert([seq(L. (q+3)&*f.(i-q-3), g=0..i-3)],‘+);q:=’q’:
U i:=map(evalm,U.1);
for ii from 1 to nl1 do
msliil:=1hs(U.i)[1,ii]l= rhs(U.i)[1,ii];
od;ii:=’ii’:
assign(solve({seq(ms[k],k=1..n1)},{seq(ff .k, k=1..n1-1)}));
f.i:=matrix(i,n1,[0,seq(ff.k,k=1..n1-1)]);
readlib(unassign):

unassign(evaln(ff.(1..n1-1)));
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L.(i+1) :=matrix(1,1, [f.(E-1)[1,n1]]);

od;

#matrices used on the perturbation computation

U_0:=ul
U_1:=ul:
U_2:=u2:

#eigenvalues and eigenvectors series

c_vi=sort(convert([seq(b i*f.i, i=0..p)], +)):
#cv:=map(evalm,cv);
convert([seq(b~i*L.i[1,1], i=0..p)],‘+%);

end;

#This computes the associated two-dimensional partition function on a square
#lattice for the upper left positive Kramers and Wannier matrix defined on the

#RIGHT by perturbation method given in series.

d2rppps:= proc(n,p) local c1,c2,Id,i,ii,j,k,ms,nl,q,u0,ul,u2;
#’n’ is the size of the matrices and ’p’ is the length of the series
#options trace;

nl:=2"n/2;


http://ms.nl
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#compute the needed matrices.

u0:=matrix(nl,ni,[]):
for 1 to nl do
for j to nl do
if j=2%i-1 then uw0[i,j]:=1
else u0[i,jl:=0
fi;
od;
od;
ul:=matrix(ni,ni,[]):
for i to nl do
for j to nl do
if j=2%i or j=2*(ni1-i)+2 then uili,jl:=1
else uili,jl:=0
fi;
od;
od;
u2:=matrix(nil,nt,[]):
for i to nl do
for j to nl do
if j=2%(ni-i)+1 then u2[i,j]l:=1
else u2{i,jJ:=0
fi;

od;
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od;

#perturbation method begins here.

#set up array to be used in the perturbation computation

for i from 0 to p do
f.i:=matrix(nl,1, [seq(£ff.j,j=0..n1-1)1);

od; i:=’1’: j:=7j’:

#begin perturbation computation.

#compute initial perturbation results.

Id:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]1); #linsolve(multiply(u0,f0),f0);
f0:=matrix(ni,1,[1,08n1-11);
#£0t:=matrix(1,n1,[1,0$a1-1]);

Li:=matrix(1,1,[0]1);

fl:=matrix(nl,1, [0$ni]);

L2:=matrix(1,1,[0]);

f2:=matrix(ni,1,[0$ni-1,1]);

L3:=matrix(1,1,[0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.
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for i from 3 to p do

U.i:= (Id=u0)&*f,i=ull*f. (i-1)+u2&*f. (i-2)-
convert([seq(f.(i-q-3)&*L.(g+3), q=0..i-3)1,+‘);q:="q’:
U.i:=map(evalm,U.1i);
for ii from 1 to nl do
ms[iil:=1hs(U.i)[ii,1]= rhs(U.1) [1i1,1];
od;ii:="ii’:

assign(solve({seq(ms[k],k=1..n1)},{seq(ff .k,k=1..n1-1)}));
f.i:=matrix(nl,1,[0,seq(ff .k,k=1..n1-1)1);

readlib(unassign):

unassign(evaln(ff.(1..n1-1)));

L.(i+1) :=matrix(1,1,[f.i[2,11]);

od;

#matrices used on the perturbation computation

U_0:=ul:
U_1l:=ul:
U_2:=u?2

#eigenvalues and eigenvectors series

cvi=sort(convert([seq(b"i*f.i, i=0..p)],‘+)):
#cv:=map(evalm,cv);

convert([seq(b~i*L.i[1,1], i=0..p)], ‘+%);
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end;

#This computes the associated two-dimensional partition function on a square
#lattice for the lower right negative Kramers and Wannier matrix defined on the

#RIGHT by perturbation method given in series.

d2rnpps:= proc(n,p) local ci,c2,Id,i,ii,j,k,ms,nl,q,u0,ul,u?;
#'n’ is the size of the matrices and ’'p’ is the length of the series
#options trace;

nl:=2"n/2;

#compute the needed matrices.

u0:=matrix(ni,n1,[]):
for i to nl do
for j to nl do
if j=2%i-1 then u0[i,jl:=1
else u0[i,jl:=0
fi;
od;
od;
ul:=matrix(ni,ni,[]):
for i to nl do

for j to nl do
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if j=2%i then uili,jl:=1

elif j=2%(ni-i)+2 then utli,j]l:=-1
else uili,jl:=0
fi;
od;
od;
u2:=matrix(ni,ni, []):
for i to nl do
for j to nl do
if j=2%(ni-i)+1 then u2[i,jl:=-1
else u2[i,j]:=0
fi;
od;

od;

#perturbation method begins here.

#set up array to be used in the perturbation computation

for i from 0 to p do
f.i:=matrix(n1,1,[seq(ff.j,j=0..n1-1)1);

od; i:=’1i’: j:=’j’:

#begin perturbation computation.

#compute initial perturbation results.
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Id:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]); #linsolve(multiply(u0,f0),f0);
£0:=matrix(ni,1,[1,0$ni-11);
#£0t:=matrix(i,ni,[1,0$n1-1]);

Li:=matrix(1,1,[0]);

fil:=matrix(ni,1, [0$n1]);

L2:=matrix(1,1,[0]);

f2:=matrix(ni,1,[0$ni-1,1]1);

L3:=matrix (1,1, [0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for i from 3 to p do
U.i:= (Id-u0)&*f.i=uld*f. (i-1)+u2&*f.(i-2)~
convert ([seq(f.(i-q-3)&*L. (q+3), q=0..1-3)],+‘);q:='q’:
U.i:=map(evalm,U.i);
for ii from 1 to ni do
ms[iil:=1hs(U.i)[ii,1]= rhs(U.1)[21,1];
od;ii:=’1ii’:
assign(solve({seq(ms[k] ,k=1..n1)},{seq(ff.k,k=1..ni1-1)}));
f.i:=matrix(ni,1,[0,seq(ff.k,k=1..n1-1)]);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));

L.(i+1):=matrix(1,1,[f.2[2,1]1]1);



od;

#matrices used on the perturbation computat-on

U_0:=u0
U_1:=ut:
UJ_2:=u2:

#eigenvalues and eigenvectors series

cv:=sort(convert([seq(b i*f.i, i=0..p)], +)):
#cv:=nmap(evalm,cv);
convert([seq(b~i*L.i[1,1], i=0..p)], +);

end;

#This program calculates the complete V matrix of Kramers and Wannier

d2cvmat:= proc(n) local c1,c2,a,b,u0,ui,u2,f0,f2,nl;
#options trace;
if nargs=1 then
a:=exp(2#K): b:i=exp(-2*K):
else
a:=args[2]; b:=args[3];

fa1;



nl:=2"n/2;
u0:=matrix(ni,n1,[1):
for 1 to nil do
for j to nl do
if 3=2%i-1 then u0[i,jl:=a
elif j=2#%i then u0[i,;]:=1
else u0[i,j]:=0
fi;
od;
od;
u2:=matrix(ni,ni,[]1):
for 1 to nl do
for j to nl1 do
if j=2x(n1-i)+1 then u2(i,jl:=b
elif j=2*%(ni-i)+2 then u2([i,jl:=1
else u2l1,31:=0
fi;
od;
od;

cvm:=augment (stack(u0,u2),stack(u2,n0));

end;

#This program calculates the lower negative V matrix
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d2lnvmat:= proc(n) local ci,c2,a,b,u0,ul,u2,f0,f2,ni;

#options trace;
if nargs=1 then
a:=exp(2*K): b:=exp(-2%K):
else
a:=args[2]; b:=args[3];
fi;
nl:=2"n/2;
u0:=matrix(ni,n1,[]):
for i to nl do
for j to nil do
if j=2%i~1 then u0[i,j]l:=a
elif j=2%i then u0[i,jl:=1
else u0[i,jl:=0
fi;
od;
od;
u2:=matrix(ni,ni,[]):
for i to nl do

for j to nl do

if j=2%(ni1-i)+1 then u2[i,jl:=-b

elif j=2%(n1-1i)+2 then u2{i,jl:=-1

else u2(i,jl:=0
fi;

od;
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od;

f0:=delrows(u0,n1/2+1..n1);
f2:=delrows(u2,1..n1/2);

stack(£f0,f2);

end;

#This program calculates the upper V matrix of Kramers and Wannier.

d2upvmat:= proc(m) local cl,c2,a,b,f0,f2,u0,ul, 12,n1;
#options trace;
if nargs=1 then
a:=exp(2xK): b:=exp(-2%K): '
else
a:=args[2]; b:=args[3];
fi;
nl:=2"n/2;
w0:=matrix(ni,ni, [J):
for i to nl do
for j to nl do
if j=2%i-1 then u0[i,j]l:=a
elif j=2%i then u0[i,jl:=1
else uo[i,j]:=0

£i;
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od;
od;
u2:=matrix(ni,n1,[]):
for i to nl do
for j to nil do
if j=2%(ni-i)+1 then u2[i,j]l:=b
elif j=2*(n1-i)+2 then u2[i,jl:=1
else u2li,j]:=0
fi;
od;
od;
f0:=delrows(u0,n1/2+1..n1);
f2:=delrows(u2,1..n1/2);

stack(f0,f2);

end;

$This is the transformation matrix which transforms the a square matrix into
#left upper and right lower parts. In particular the complete Kramer and

#Wannier matrix is transformed into two V matrices.

stmatrix:=proc(n) local H1,H2,H,nl ;
#options trace;
nl;=2"n;

Hi:=array(identity,1..n1/2,1..n1/2);
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H2:=evalm(~array(identity,1..n1/2,1..n1/2));

H:=copyinto(H2,stack(augment (H1,H1) ,augment (H1,H1)) ,n1/2+1,n1/2+1);
end;

The three-dimensional perturbation method follows

#This computes the associated three-dimensional partition function on a cubic
#lattice for the lower right negative Kramers and Wannier matrix defined on the

#LEFT by perturbation method given in series.

d3lnpps:=proc(n,p) local ni,j1,P1,01,P2,k;
#'n’ is the size of the matrices and ’'p’ is the length of the series
#options trace;
with(linalg):
nl:=2"n/2;
if type(n,odd) then
k:=1;
elif type(n, even) then
k:=2;
else ERROR(‘n must be a positive integer‘);
fi;
if n<3 then
ERROR(‘n must be 3 or greater);
fi;
if n >=3 then

jl:=n-1-k;
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nb:=k;

f1;
#create the needed matrices.

Pi:=matrix(2°(j1-1),2°j1,[1): #the constant matrix U0
for i to 2°(ji-1) do
for j to 27j1 do
if j=2%i-1 then P1[i,3]l:=1:
else Pifi,j]:=0:
ti:
od:
od:

print (P1);

P2:=matrix(2~(ji-1),2"j1,[1):
for i to 2°(jt-1) do
for j to 27j1 do
if j=2%i then P2[i,j]:=1:
else P2[i,jl:=0:
f1:
od:
od:
print (P2);

Qi:=matrix(2-(j1-1),2731,01):



for i to 27(ji-1) do
for j to 27j1 do
if j=273j1-1-2%(i-1) then Q1[i,j]:=1:
else Qili,jl:=0:
fi:
od:
od:
print(Q1);
Q2:=matrix(2~(ji-1),2"j1,0):
for i to 27(ji-1) do
for j to 27j1 do
if j=27j1-2%(i-1) then Q2[i,jl:=1:
else Qz[i,jJ:=0:
fi:
od:
od:

print(Q2);

u0:=matrix(ni,n1,0);
for i from 1 to nb do
u0:=copyinto(P1,u0, (27 (j1-1))#2%(i-1)+1,2"j1%2% (i-1)+1);

od;

ul:=matrix(ni,ni,0);

for 1 from 1 to nb do

~1
v



176
ul:=copyinto(P2,ul, (27 (j1-1))*2%(i-1)+1,27j1*2x(i-1)+1);

ul:=copyinto(P1,ul,2 (j1-1)*(2*%i-1)+1,2"j1*(2*i-1)+1);
ul:=copyinto(evalm(-02) ,ul,n1/2+27 (j1-1)*2%(i-1)+1,n1-2"j1%(2%i-1)+1);

od;

u2:=matrix(ni,n1,0);

for 1 from 1 to nb do
u2:=copyinto(P2,u2,27(j1-1)*(2%i-1)+1,2"jix(2%i-1)+1);
u2:=copyinto(evalm(-Q1) ,u2,n1/2+2" (j1-1)*2*(i-1)+1,n1-2"J1*(2%i~1)+1);
u2:=copyinto(evalm(-02) ,u2,n1/2+2" (j1-1)*(2*i-1)+1,n1-2"j1*2*i+1);

od;

u3:=matrix(ni,n1,0);
for i from 1 t¢ nb do
u3:=copyinto(evalm(-Q1) ,u3,n1/2+2" (1-1)*(2%i-1)+1,01~2" j1*2%i+1);

od;

u3d:=matrix(ni,ni,0);
for i from 1 to nb do
u3:=copyinto(Q1,ud,n1/2+27 (j1-1)*(2%i-1)+1,n1-2" 1%2*i+1);

od;

#perturbation method begins here.

#define array to be used in the computation



for i from 0 to p do #define array to be used in the computation
f.i:=matrix(1,n1, [seq(ff.j,j=0..01-1)1);

od; i:=’1i’: j:=737:

#begin perturbation computation.

#compute initial perturbation results.

Id:= array(identity, 1..nl1,1..n1);
LO:=matrix(1,1,[1]); #linsolve(multiply(u0,£0),f0);
f0:=matrix(1,n1,[1,0$ni1-1]);
#£0t :=matrix(1,n1,[1,0$n1-1]); if each eqn is multiplied through by this
#matrix the L’s are easily computed
Li:=matrix(1,1,[0]);
1s:=map(evalm, f1&*(Id-u0)=£0&*ul) ;
for i from 1 to nl do
m.i:=lhs(1ls)[1,il=rhs(1s)[1,i];
od;
assign(solve({seq(m.i,i=1..n1)},{seq(ff.k,k=1..n1-1)}));
f1l:=matrix(1,n1,[0,seq(ff.k,k=1..n1-1)]);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));

L2:=matrix(1,1,[0]);

1s:=map(evalm,f2&* (Id-u0)=f 1&*ul+f0&*u2) ;

for i from 1 to nl do
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m.i:=1hs(1s)[1,il=rhs(1s)[1,i];

od;
assign(solve({seq(m.i,i=1..n1)},{seq(ff.k,k=1..0n1-1)}));
f2:=matrix(1,ni, [0,seq(ff.k,k=1..n1-1)]);
readlib(unassign) :
unassign(evaln(ff.(1..n1-1)));

L3:=matrix(1,1,[0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for i from 3 to p do
U.i:= £.i&*(Id-u0)=f. (i-1)&*ul+f. (i-2)&*u2+f. (i-3)&*uld-
convert([seq(L.(q*3)&*f.(i-q~3), g=0..1-3)],‘+");q:="q’:
U.i:=map(evalm,U.1i);
for ii from 1 to nl do
ms[ii]:=1hs(U.i)[1,iil= rhs(U.1)[1,1ii];
od;ii:=’ii’:
assign(solve({seq(ms[k],k=1..n1)},{seq(ff.k,k=1..n1-1)}));
f.i:=matrix(1l,n1,[0,seq(ff.k,k=1..0n1-1)]);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));
L.(i+1):=matrix(1,1,[f.(1i-2)[1,n1]1]);

od;
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#matrices used on the perturbation computation

U_0:=ul:
U_1l:=ul:
U_2:=u2:
U_3:=u3:

#eigenvalues and eigenvectors series

cv:=sort(convert([seq(b~i*f.i, 1=0..p)], +)):
#cv:=map(evalm,cv) ;
convert([seq(b~i*L.i[1,1], i=0..p)], +);

end;

#This computes the associated three-dimensional partition function on a cubic
#lattice for the lower right negative Kramers and Wannier matrix defined on

#RIGHT by perturbation method given in series.

d3rnpps:=proc(n,p) local Id,n1,ji,P1,P2,Q01,02,k;
#'n’ is the size of the matrices and ’p’ is the length of the series
#options trace;
nl:=2"n/2;
if type(n,odd) then
k:=1;
elif type(n, even) then

k:=2;



else ERROR(‘n must be a positive integer‘);
fi;
if n<3 then
ERROR(‘n must be 3 or greater‘);
fi;
if n >=3 then
ji:=n-1-k;
nb:=k;
fi;

#compute the needed matrices.

Pi:=matrix(2~(j1-1),2"j1,[1): #the constant matrix U0
for i to 27(ji-1) do
for j to 27j1 do
if j=2%i-1 then P1[i,jl:=1:
else P1[i,j]:=0:
fi:
od:
od:

print(P1);

P2:=matrix(2-(j1-1),2"j1,[1):
for i to 2°(ji-1) do
for j to 27j1 do

if j=2%i then P2[i,j]l:=1:
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else P2[i,j]:=0:

fi:
od:
od:
print (P2);
Q1:=matrix(2~(j1-1),2"j1,01):
for i to 27(ji-1) do
for j to 2°j1 do
if j=2"j1-1-2%(i-1) then Q1[i,j]:=1:
else Qili,jl:=0:
fi:
od:
od:
print(Q1) ;
Q2:=matrix(2°(j1-1),2"j1,[1):
for i to 2°(ji-1) do
for j to 27j1 do
if j=2"j1-2%(i-1) then Q2[i,j]:=1:
else Q2{i,j]:=0:
fi:
od:
od:

print(Q2) ;

u0:=matrix{(ni,n1,0);
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for i from 1 to nb do
u0:=copyinto(P1,u0, (2" (G1~-1))*2x(i-1)+1,2 " j1x2*(i-1)+1);

od;

ul:=matrix(ni,n1,0);

for i from 1 to nb do
ul:=copyinto(P2,ul, (27 (G1-1))*2%(i-1)+1,2"j1*2x(i-1)+1);
ul:=copyinto(P1,ul,27(j1-1)*(2%i-1)+1,2"j1*(2%i-1)+1);
ul:=copyinto(evalm(-Q2),ul,n1/2+2° (j1-1)*2%(i-1)+1,n1-2"j1%(ki=-1)+1);

od;

u2:=matrix(ni,n1,0);

for i from 1 to nb do
u2:=copyinto(P2,u2,2 7 (j1-1)*(2ki-1)+1,27j1*(2xi~1)+1);
u2:=copyinto(evalm(-Q1),u2,n1/242" (j1-1)*2%(i-1)+1,n1-2"j1* (2*i-1)+1);
u2:=copyinto(evalm(-Q2),u2,n1/2+27 (j1-1)*(2*i~-1)+1,n1-2" j1*2%i+1);

od;

u3:=matrix(ni,n1,0);
for i from 1 to nb do
u3:=copyinto(evalm(-Q1) ,u3,n1/2+2" (j1-1)*(2%i~1)+1,n1-2" j1*24i+1);

od;

#perturbation method begins here.

#set up array to be used in the perturbation computation



for 1 from 0 to p do
f.i:=matrix(nl,1, [seq(ff.j,j=0..n1-1)1);

od;

#begin perturbation computation.

#compute initial perturbation results.

id:= array(identity, 1..n1,1..n1);

LO:=matrix(1,1,[1]);

fO:=matrix(ni,1,[1,0$n1-1]1);
#f0t:=matrix(1,n1,[1,0$n1-1]); if each eqn is multiplied through by this
#matrix the L’s are easily computed

Li:=matriz(1,1,[0]);

fi:=matrix(nl,1,[0$n1]);

L2:=matrix(1,1,[0]);

f2:=matrix(ni,1, [0$n1]);

L3:=matrix(1,1,[0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for 1 from 3 to p do
U.i:= (Td-u0)&*f.i=ul&+*f, (i-1)+u2&*f. (1-2)+uld&*f. (i-3)-

convert([seq(f.(i-q-3)&+*L.(q+3), q=0..i-3)],‘+*);q:="q’:
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U.i:=map(evalm,VU.i);

for ii from 1 to nl do
ms[iil :=1hs(U.i)[ii,1]= rhs(U.i)[ii,1];
od;ii:=’ii’:

assign(solve({seq(ms[k],k=1..n1)},{seq(ff .k ,k=1..n1-1)}));
f.i:=matrix(ni,1,[0,seq(ff .k, k=1..01-1)1);

readlib(unassign):

unassign(evaln(£f.(1..n1-1}));

L.(i+1) :=matrix(1,1,[f.i[2,1]11);

od;

#matrices used on the perturbation computation

U_0:=ul:
U_1l:=ul:
U_2:=u2:
U_3:=u3:

#eigenvalues and eigenvectors series

cv:=sort(convert([seq(bi*f.i, 1=0..p)],‘+)):
#cv:=map(evalm,cv);
convert ([seq(b~ixL.i[1,1], i=0..p)], +);

end;

#This computes the associated three-dimensional partition function on a cubir
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#lattice for the left upper left positive Kramers and Wannier matrix defined

# on the LEFT by perturbation method given in series.

d3lppps:=proc(n,p) local nl1,j1.,P1,01,P2,k;
#’n’ is the size of the matrices and ’p’ is the length of the series
# options trace;
ni:=2"n/2;
if type(n,odd) then
k:=1;
elif type(n, even) then
k:=2;
else ERROR(‘n must be a positive integer‘);
fi;
if n<3 then
ERROR(‘n must be 3 or greater‘);
fi;
if n >=3 then
jl:=n-1-k;
nb:=k;
fi;

#compute the needed matrices.

P1l:=matrix(2°(j1-1),27j1,[1):
for i to 27(j1-1) do

for j to 27j1 do
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if j=2%i-1 then P1[i,j]:=1:

else Pi[i,3]:=0:
fi:
od:
od:

print(P1);

P2:=matrix(2~(ji-1),2"j1,[1):
for i to 27(j1-1) do
for j to 27j1 do
if j=2%i then P2[i,j]:=1:
else P2[i,j]l:=0:
fi:
od:
od:
print (P2) ;
Qi:=matrix(2-(ji-1),27j1,[1):
for i to 27(ji-1) do
for j to 2°j1 do
if j=27j1-1-2%(i-1) then Q1[i,j]:=1:
else Q1[1,3]:=0:
fi:
od:
od:

print(Q1);
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G2:=matrix(2-(j1-1),2°j1,[1):

for i to 2°(j1-1) do
for j to 27j1 de
if j=2"j1-2%(i-1) then Q2[i,jl:=1:
else Q2[i,3]:=0:
fi:
od:
od:

print(Q2);

w0 :=matrix(ni,n1,0);
for i from 1 to nb do
ul:=copyinto(P1,u0, (27 (J1-1))*2*%(i~-1)+1,27ji*2%(i-1)+1);

od;

ul:=matrix(ni,ni,0);

for i from 1 to nb do
ul:=copyinto(P2,ul, (2" (j1-1))*2*(i-1)+1,27j1*2k(i-1)+1);
ul:=copyinto(P1,ul,2" (j1-1)*(2%i-1)+1,2"j1*(2*i-1)+1);
ul:=copyinto(Q2,ul,n1/2+27 (§1-1)*2*(i~1)+1,n1~2"j1*(2*i=-1)+1);

od;

u2:=matrix(ni,n1,0);
for i from 1 to nb do

u2:=copyinto(P2,u2,2"(j1-1)*(2%i-1)+1,2 " jLk(2%i-1)+1);
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u2:=copyinto(Q1,u2,n1/2+2" (j1-1)*24(i-1)+1,n1-2"j1*(2*i-1)+1);

u2:=copyinto(Q2,u2,n1/2+2" (j1-1)*(2*i-1)+1,n1-2"71%2%i+1);

od;

u3:=matrix(nl,nl1,0);
for i from 1 to nb do
u3:=copyinto(Q1,u3,n1/2+2'(j1-1)*(2*i“1)+1,n1-2*j1*2*i+1);

od;

#perturbation method begins here.

#define array to be used in the computation

for i from 0 to p do
f.i:=matrix(1l,n1, [seq(£ff.j,j=0..n1-1)]1);

od; i:=’1’: j:=’3’:

#begin perturbation computation.

#compute initial perturbation results.

Id:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]1); #linsolve(multiply(u0,f0),f0);
f0:=matrix(1,n1,[1,0$n1-1]);
#f0t:=matrix(1,n1,[1,0$n1-1]); if each eqn is multiplied through by this
#matrix the L’s are easily computed

L1:=matrix(1,1,[01);
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15:=map(evalm,f1&* (Id-u0)=f0&*ul) ;

for 1 from 1 to nl do
m.1:=1lhs(ls)[1,1]=rhs(1s)[1,i];
od;
assign(solve({seq(m.i,i=1..n1)},{seq(ff k,k=1..n1~-1)}));
f1:=matrix(1,ni,[0,seq(ff.k,k=1..n1-1)]);
readlib(unassign):
unassign(evaln(ff.(1..n1-1)));

L2:=matrix(1,1,[0]);

ls:=map(evalm,f2&* (Id~u0)=f 1&*ul+£0&*u2) ;
for i from 1 to ni do
m.i:=lhs(1s)[1,i]=rhs(1s) [1,i];
od;
assign(solve({seq(m.i,i=1..n1)},{seq(ff.k,k=1..01~1)}));
£2:=matrix(1,n1,[0,seq(ff . k,k=1..n1-1)1);
readlib(unassign):
unassign{evaln(ff.(1..n1-1)));

L3:=matrix(1,1,[0]);

#set up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for i from 3 to p do

U.i:= £.i&*(Id-u0)=Ff.(i-1)&*ul+f. (i-2)&*u2+f. (i-3) &*u3-
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convert([seq(L. (q+3)&*f.(i-q-3), q=0..i-3)],+);q:="q*:

U.i:=map(evalm,U.1i);

for ii from 1 to nl do

ms[ii] :=1hs(U.i)[1,iil]= rhs(U.1i)[1,11];

od;ii:=’ii?’:
assign(solve({seq(ms[k],k=1..n1)},{seq(ff . k,k=1..n1-1)}));
f.i:=matrix(1,n1,[0,seq(ff.k,k=1..01-1)]1);
readlib(unassign):
unassign(evaln(ff. (1..n1-1)));
L.(i+1) :=matrix(1,1,[f.(1-2)[1,n1]1]);

od;

#matrices used on the perturbation computation

U_0:=ul:
U_1:=ul:
U_2:=u2:
U_3:=u3:

#eigenvalues and eigenvectors series

cv:=sort(convert([seq(b i*f.i, i=0..p)], +)):
#cv:=map(evalm,cv);
convert([seq(b~i*L.i[1,1], i=0..p)], “+°);

end;
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#This computes the associated three-~dimensional partition function on a cubic
#lattice for the upper left positive Kramers and Wannier matrix defined on the

#RIGHT by perturbation method given in series.

d3rppps:=proc(n,p) local Id,ni,j1,P1,P2,Q1,Q02,k;
#'n’ is the size of the matrices and ’'p’ is the length of the series
# options trace;
nl:=2"n/2;
if type(n,odd) then
k:=1;
elif type(n, even) then
k:=2;
else ERROR(‘n must be a positive integer‘);
£i;
if n<3 then
ERROR( ‘n must be 3 or greater‘);
fi;
if n >=3 then
jl:=n-1-k;
nb:=k;
fi;

#compute the needed matrices.

Pl:=matrix(2°(j1-1),2"ji,[1): #the constant matrix UO

for i to 2°(ji-1) do
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for j to 27j1 do
if j=2%i-1 then P1[i,j]:=1:
else P1[i,j]:=0:
fi:
od:
od:

print(P1);

P2:=matrix(2~(j1-1),2°j1,[]):
for i to 2°(ji1-1) do
for j to 27j1 do
if j=2%i then P2[i,j]l:=1:
else P2[i,j]:=0:
fi:
od:
od:
print (P2);
Ql:=matrix(2-(j1-1),27j1,[1):
for i to 2°(j1~-1) do
for j to 27j1 do
if j=2"j1-1-2%(i-1) then Qi[i,jl:=1:
else Q1li,jl:=0:
fi:
od:

od:



print(01);
Q2:=matrix(2~(j1-1),2"j1,[1):
for i to 27(j1-1) do
for j to 27j1 do
if j=2"j1-2%(i-1) then Q2[i,jl:=1:
else Q2[i,jl:=0:
fi:
od:
od:

print (Q2);

10 =matrix(ni,n1,0);
for 1 from 1 to nb do
uO:=copyinto(P1,uO,(2”(jl-i))*Q*(i‘1>+1agﬁj1*2*£i°1)+1);

od;

ul:=matrix(ni,n1,0);

for i from 1 to nb do
ul:=copyinto(P2,ul, (2" (ji-1))*2%(i-1)+1,2"j1*2*x(i-1)+1);
ul:=copyinto(P1,ul,2 7 (j1-1)*(2%i-1)+1,2"ji*(2*i-1)+1);
ul:=copyinto(Q2,ul,n1/2+2~ (j1-1)*2%(i-1)+1,n1-2"j1*(2*%i~1) +1);

od;

u2:=matrix(ni,n1,0);

for i from 1 to nb do
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tat
u2:=copyinto(P2,u2,2" (j1-1)*(2%i-1)+1,27 7% (2%, ~1)+1);

u2:=copyinto(Q1,u2,n1/2+2° (j1-1)%2%(i~1)+1,n1=2 31 (2%1-11+1);
u2:=copyinto(Q2,u2,n1/2427 (j1-1)%*(2%i-1)+1,n1-27j1¥2%1+1);

od;

u3:=matrix(ni,n1,0);
for i from 1 to nb do
u3:=copyinto(Q1,u3,n1/2+27 (J1-1)*(2%i~1)+1 ni~2"j1%2xi+1);

od;

#perturbation method begins here.

#set up array to be used in the perturbation computation

for i from 0 to p do
f.i:=matrix(ni,1, [seq(£ff.j,j=0..n1~1)1);

od;

#begin perturbation computation.

#compute initial perturbation results.

ld:= array(identity, 1..n1,1..n1);
LO:=matrix(1,1,[1]);
fO:=matrix(n1,1,[1,0$n1-1]);
#£0t:=matrix(1,n1,[1,0$n1-1]); if each eqn iz multiplied throngh by thin

#matrix the L’s are easily computed



Li:=matrix(1,1,[01);
f1:=matrix(ni,1,[0$nil);
L2:=matrix(1,1,[0]);

£2:=matrix(ni,1,[0%nil);

#cet up recurring formula for perturbation computation and

#compute the eigenvalues and the eigenvectors.

for 1 from 3 to p do
U.1:= (Id-u0)&*f.i=ul&*f. (1~1)+u2&+f. (1-2)+u3&*f.(1-3)-
convert([seq(f.(1-q-3)&*L.(q+3), q=0..i-3)],‘+‘);q:="q’:
U.1:=map(evalm,U.1);
for 11 from 1 to nl do
ms[11]:=1hs(U.2)[11,1]= rhs(U.1)[1i,1];
od;11:="12":
assign(solve({seq(ms[k] ,k=1..n1)},{seq(ff .k ,k=1..n1-1)}));
f.1:=matrix(nl,1,[0,seq(ff.k,k=1..n1-1)1);
readlib(unassign) :
unassign(evaln(£ff.(1..n1-1)));
L.(a+1) r=matrix(l,1,[f.2[2,1]1]);

od;

#matrices used on the perturbation computation
U_0:=ul:

U_1l:=utl:
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U_2:=u2:

U_3:=u3:

#eigenvalues and eigenvectors series

cv:=sort(convert([seq(b i*f.i, i=0..p)], +)):
#cv:=map(evalm,cv);
convert([seq(b~i*L.i[1,1], i=0..p)],+*);

end;

$This is the transformation matrix which transforms the a square matrix into

#left upper and right lower parts. In particular the complete Kramers and #Wann:

d2stmat:=proc(n) local H1,H2,H,nl ;

#options trace;

ni:=2%n;

Hi:=array(identity,1..n1/2,1..n1/2);
H2:=evalm(-array(identity,1..n1/2,1..0n1/2));
H:=copyinto(H2,stack(augment (H1,H1) ,augment (H1,H1)) ,n1/2+1,0n1/2+1);

end;

#This program calculates the complete V matrix of Kramers and Wannier

d3cvmat:= proc(n) local P,Q,a,b,R,S,jl,nb,k,V0,VZ;

#options trace;
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with(linalg):

if nargs=1 then
a:=exp(K): br=exp(-K):
else
a:=args[2]; b:=args[3];
fi;
nl:=2"n/2;
if type(n,odd) then
ki=1;
elif type(n, even) then
k:i=2;
else ERROR(‘n must be a positive integer‘);
fi;
if n<3 then
ERROR(‘n must be 3 or greater);
fi;
if n >=3 +then
jl:=n-1-k;

nb:

il
=

fi;

#tcompute the needed matrices.

P:=matrix(2°(j1-1),2"j1,[]): #the constant matrix U0
for i to 2°(j1-1) do

for j to 27j1 do



198
if  j=2%i-1 then P[i,j]l:=a"3:

elif j=2%i then P[i,j]:=a:
else P[i,j]:=0:
fi:
od:

od:

Q:=matrix(2°(j1-1),2°j1,[1):
for i to 27(j1-1) do

for j to 27j1 do

if j=2*i-1 then Q[i,j]:=a:
elif j=2*i then Q[i,j]:=b:
else Qli,j]:=0:
fi:
od:
od:

R:=matrix(2~(ji-1),2°j1,[1):
for i to 2°(j1-1) do

for j to 27j1 do

if  §=2"j1-1-2%(i-1) then R[i,j]:=b"3:
elif j=2"j1-2%(i-1) then  R[i,j]:=b:
else REi,j1:=0:
fi:

od:



199
od:

S:=matrix(2-(j1-1),2"j1,[1):
for i to 2°(ji-1) do

for j to 27j1 do
if j=2"j1-1-2%(i~-1) then S[i,j]:=b:
elif j=2"j1-2%(i-1) then Sfi,jl:=a:
else S[i,jl1:=0:

fi:

od:

od:

#the block of matrices needed

VO:=matrix(ni,n1,0);

for i from 1 to nb do
VO:=copyinto(P,V0, (27 (j1-1))*2%(i-1)+1,2"j1%2*%(i-1)+1);
V0:=copyinto(Q,V0,27 (j1-1)*(2%i-1)+1,2" j1*(2*i-1)+1);

od}

V2:=matrix(ni,n1,0);

for 1 from 1 to nb do
V2:=copyinto(S,V2,n1/2+2" (j1-1)#2%(i-1)+1,n1-2"ji*(2%i-1)+1);
V2:=copyinto(R,V2,n1/2+2° (j1-1)*(2%i-1)+1,n1-2"j1*2%i+1);

od;

#gather matrices together to form the d3 complete V matrix
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augment (stack(V0,V2),stack(V2,V0));

end;

#This program calculates the complete V matrix of Kramers and Wannier

d3lnvmat:= proc(n) local P,Q,a,b,R,S,jl,nb,k,V;
#options trace;
with(linalg):
if nargs=1 then
a:=exp(K): b:=exp(-K):
else
a:=args[2]; b:=args[3];
fi;
nl:=2"n/2;
if type(n,odd) then
k:=1;
elif type(n, even) then
k:=2;
else ERROR(‘n must be a positive integer‘);
fi;
#k:=round((n-3)/2);
if n<3 then
ERROR( ‘n must be 3 or greater‘);

fi;



1f n >=3 then
jl:=n-1-k;
nb:=k;
fi;

#compute the needed matrices.

P:=matrix(2~(j1-1),2"j1,[1): #the constant matrix UO
for i to 27(j1-1) do

for 3 to 27j1 do

if  j=2%i-1 then P[i,3]:=a"3:
elif j=2%i then P[i,j]:=a:
else P[i,j]:=0:
fi:
od:
od:
Q:=matrix(2-(31-1),2"j1,[1):
for 1 to 2°(j1-1) do
for j to 27j1 do
if j=2%i-1 then Q[i,j]:=a:
elaf j=2%i then Q[i,j]:=b:
else Qli,3]:=0:
fa:
od:

od:



R:=matrix(2~(j1-1),2731,[D):
for i to 2°(ji-1) do

for j to 27j1 do
if  j=2°j1-1-2%(a-1) then R[i,jl:=b"3:
elif j=2"j1-2%(i-1) then R[1,j]:=b:
else R[i,j]:=0:

fi:

od:

ed:

S:=matrix(2~(ji-1),2"j1,01):
for i to 27(ji~1) do

for j to 27j1 do
if  §=27j1-1-2%(i-1) then S[i,jl:=b:
elif j=2"j1-2%(i-1) then sli,jl:=a:
else s[i,jl:=0:

fi:

od:

od:

Vi=matrix(nl,n1,0);
for i from 1 to nb do
Vi=copyinto(P,V,(27(j1-1))*2%(i-1)+1,27j1%2% (i-1)+1) ;

V:i=copyinto(Q,V,2" (j1-1)*(2%i-1)+1,27j1*(2%1-1)+1);
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V:=copyinto(evaln(-8),V,n1/2+27 (j1-1)#2*(i-1)+1,n1-2"j1*(2%i-1)+1);
V:=copyinto(evalm(-R),V,n1/2+2"(j1-1) *(2%i-1)+1,n1~-2"j1%2%i+1);

od;

end;

#This program calculates the complete V matrix of Kramers and Wannier
d3upvmat:= proc(n) local P,Q,a,b,R,S,ji,nb,k,V;
#options trace;
with(linalg):
if nargs=1 then
a:=exp(K): b:=exp(-K):
else
a:=args[2]; b:=args[3];
fi;
ni:=2"n/2;
if type(n,odd) then
Ik:=1;
elif type(n, even) then
k:=2;
else ERROR(‘n must be a positive integer‘);
fi;
#k:=round((n-3)/2);
if n<3 then

ERROR(‘n must be 3 or greater‘);
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fi;
if n >=3 +then
jil:=n-1-k;
nb:=k;

fi;

#compute the needed matrices.
P:=matrix(2°(j1-1),2"j1,[]): #the constant matrix UO
for i to 2°(ji-1) do
for j to 27j1 do
if  j=2%i-1 then P[i,jl:=a"3:
elif j=2xi then P[i,j]:=a:
else P[i,j]:=0:
fi:
od:

od:

Q:=matrix(2"(j1-1),2"j1,[1):
for i to 2°(j1-1) do

for j to 27j1 do

if j=2%i-1 then Q[i,j]:=a:

elif j=2*i then Q[i,j]:=b:

else Qli,j]:=0:
fi:

od:
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od:

Ri=matrix(2~(j1-1),27j1,[1):
for i to 27(j1-1) do
for j to 27j1 do

if  j=2"j1-1-2%(i-1) then R[i,j]l:=b"3:

elif j=2"j1-2*(i-1) then R[i,j]:=b:
else R[i,j]:=0:
fi:
od:
od:
S:=matrix(2~(j1-1),2~j1,[1):
for 1 to 2°(ji1-1) do
for j to 27j1 do
if j=2"j1-1-2%(i-1) then S[i,j]l:=b:
elif j=2"j1-2%(i-1) then s[i,jl:=a:
else s[i,jl:=0:
fi:
od:

od:

V:=matrix(nl,n1,0);
for 1 from 1 to nb do

Vi=copyinto(P,V,(2°(j1-1) ) %2 (i~-1)+1,2"j1*2%(i-1)+1);
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V:i=copyinto(Q,V,2" (F1-1)*(2%i-1)+1,2"ji*(2%i-1)+1);

Vi=copyinto(S,V,n1/2+2" (G1-1)*2*(i-1)+1,n1-2"jix(2*%i-1)+1);
V:i=copyinto(R,V,n1/2+27 (j1-1)*(2%i-1)+1,n1-2"j1*2%i+1);

od;

end;

CRITEMP
#This function computes the ctitical temperature.
# s is the different states which each lattice site can take.
# if s=2 we get the Ising lattice which is a typical model of phase
#transition of the second order.
critemp:=proc(s) local x,CT:
if type(s,algebraic) then
CT=1/2*1n(1+s~(1/2));
elif type(s,positive) and type(s,integer) then
CT=1/2%1n(1+s"(1/2)):
else ERROR (‘s must be a positive integer‘) fi;

end;

D2MCLTPF

# s is the different states which each lattice site can take.

# if s=2 we get the Ising lattice which is a typical model of phase
#transition of the second order.

#potts low temp series partition function energy and specific heat per

gite



#many components high temp. partition function
d2mcltpf:=proc(n) local «,i,a:
if nargs =1 and type(n,integer) then
5:=2:
x:=exp(~J/(k*T)):
elif nargs =2 and type(args[2],integer) then
s:=args[2]:
x:=exp (-J/(k*T)):
elif nargs =3 and type(args[2],integer) and not type(args[3],integer) then
s:=args[2]: x:=args[3]:
£i;
if type(n,integer) and n>16 then ERROR(‘series is not computed beyond 16°);
elif nargs =1 and not type(n,integer) then
x:=exp(=J/ (kxT));
x"(-1)*(1+(s-1)*sum(a(i)*x~i, i=4..n)):
D2MCLTE:= U/N=k*T"2%diff(1n("),T):
D2MCLTSH :=C/N=1/N*diff (rhs (D2MCLTE) ,T) :

e,
¥

elif type(n,positive) and type(n,integer) then

a(4):= 1;:

a(6):= 0:

a(6):= 2:

a(7):= 2%(s-2):
a(8):= ~2%s+9:
a(9):= 12x(s-2):



a(10):
a(11):
a(12):
a(13):
a(14):
a(15):

a(16):

i
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2% (3*s"2-16%54+27) :

2% (5~2)*(-5%s+32) :

5" 3+55%g"~2-243%3+302:

2% (g-2)*%(9%5"2-71%35+180) :
~37%s"3+561*%5"2-1802*5+1808:

2% (s-2)* (4%s~3+130%s"~2-704*s+1189) :

55%574~-998%s"3+6269%s572-156162%s+12870:

x"(-1)*(1+(s-1)*sum(a(i)*x~i, i=4..n)):

D2MCLTE:= E/N=k*T"2*diff(1n("),T):

D2MCLTSH:=C/N=1/N*diff (rhs (D2MCLTE) ,T):

IR TR 1N
H

fi;

end;

D2MCHTPF

# s is the different states which each lattice site can take.

# if s=2 we get the Ising lattice which is a typical model of phase

#transition of the second order.

#Pots high temp specific heat per site.

#many components high temp. partition function

d2mchtpf :=proc(n) local a,i,x,u;

if nargs =1 and type(n,integer) then

S

x:=exp(~J/ (k*T)):

elif nargs =2 and type(args[2],integer) then
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a:margs[2]

x:i=exp(~J/(k*T)):
elif nargc =3 and type(args[2],integer) and not type(args[3],integer) +then
s:=args[2]: x:=args[3]:
f1;
if type(n,integer) and n>16 then ERROR(‘series is not computed beyond 16°);
elif nargs =1 and not type(n,integer) then
x:=exp(~J/(k*T)):
ur=(1-x)/(1+(s-1)*x) :
s/((1-u)*(1+(s~1)"uw) ) *(1+(s-1)*Sum(a(i)*u~i, i=4..n)):
D2MCHTE:= U/N=k*T~2*diff (ln("),T):

D2MCHTSH: =C/N=1/N*diff (rhs (D2MCHTE) ,T) :

i,
s

elif type(n,positive) and type(n,integer) then

a(4):= 1:
a(s8):= 0:
a(6):= 2:

a(7):= 2%{s~2):

a(8):= ~2%3+9:

a9):= 12%(s-2):

a(10) 1= 2% (3%3"2-16%s427) :
a(l11) := 2% (g=~2) (-5*g+32) :

a(12) 1= g"3+B5%s5~2-243%5+302:
a(13) 1= 2% (5~2)*(9*s"2-T1*s+180) :

~37*s"3+561%572-1802*s+1808:

i

a(14):
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a(15) := 2% (s5-2) % (4*s"3+130%s"~2-704%s+1189) :

a(16):

55*s"4-998%s"3+6269%s72~15162%s+12870:
u:=(1-x)/(1+(s-1)*x):
s/((1-w)*(1+(s-1)"w))*(1+(s-D)*sum(a(i)*u~i, i=4..n)):
D2MCHTE: = U=N*k*T"~2*diff(In("),T):
D2MCHTSH:=C/N=1/N*diff (rhs (D2MCHTE),T) :

fi;

end;

GRSTEN:
#This calculates the ground state entropy
grsten:=proc(q,n) local i,W_tri;
options trace;
if g=3 and n=‘sq’ then
RETURN( W_sq(3)=(4/3)"(3/2));
elif g=4 and type(n, posint) and args[3]=‘tri‘then
RETURN( W_tri(4)=product((3*i-1)"2/(3%i*(3%i-2)),i=1..n));
elif g=3 and type(n, posint) and args[3]=‘kagome‘ then
W_tri(4) :=product((3*i~1)"2/(3*i*(3%1-2") ,i=1..n);
RETURN( V_kagome(3)=(W_tr1(4))"~(1/3));

£i; end;
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APPENDIX B

PROGRAM POTTS
PARAMETER (LX=64,LY=64,LW=32)
* LX, LY: lattice sizes in x and y directions
* LW=length of the computer word=0.5%lattice size in z direction
PARAMETER (NSIZE=2*LX*LY-1)
* DOUBLE PRECISION E,BETA,BET
IMPLICIT INTEGER (A-Z)
REAL E,BETA,BET
COMPLEX MAG,CMAG

DIMENSION SPIN1(0:NSIZE),SPIN2(0:NSIZE) ,DMN(3)

* Initializing spins and demons
*  Parameter E determines the average energy per bond (ordered=0<E<1)

E=0.75

IE=LX*LY*LW*E
K=1

DO 1 I=LX*LY,1,-1
SPIN1(2*I-1)=0
SPIN1(2%I-2)=0
SPIN2(2*I-K)=0
K=3-K

J=IE/1
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IE=IE-J]

SPIN2(2%I~K)=AMIX(MASK(J))
1 CONTINUE
ILNK=ILINK(SPIN1,SPIN2)

* WRITE(6,%) 'ILNK=’,ILNK

DMN(1)=0
DMN(2)=0
DMN(3)=0
* SIMULATION
* Parameters are
* 1- NSWEEP
* 2- NMEAS
* 3- NBATCH
* One sweeps NSWEEP times, then a measurement is performed
* This is repeated NMEAS times; then average measurements are printed
* The entire process resumes NBATCH times
NSWEEP=13
NMEAS=5
NBATCH=10

DO 20 IBATCH=1,NBATCH
* Prepares accumulation of data

IED=0
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CMAG=0
DO 21 IMEAS=1,NMEAS
DO 22 ISWEEP=1,NSWEEP
* gcramble demons
DO 23 I=1,3
23 DMN (I)=AMIX(DMN(I))
* Performs one simulation step
CALL MONTE(SPIN1,SPIN2,DMN)
ILNK=ILINK(SPIN1,SPIN2)
IDMN=IBCOUNT (DMN (1)) +2+IBCOUNT (DMN(2))+4*IBCOUNT (DMN(3))
* WRITE(6,%)’ILNK=’,6ILNK,’,IDMN=’,6IDMN, ILNK-IDMN
22 CONTINUE
* accumulates demon energy
1 :D=IED+IBCOUNT (DMN (1) ) +2*IBCOUNT (DMN(2) ) +4*IBCOUNT (DMN(3))
CMAG=CMAG+MAG(SPIN1,SPIN2)
21 CONTINUE
* computes the inverse temperature
BET=BETA (FLOAT (IED) /FLOAT (LW*NMEAS* (NSIZE+1)))
PRINT *,’ Beta=’,BET
CMAG=CMAG/NMEAS
PRINT *,’ Magnetization=’',6CMAG
20 CONTINUE
STOP

END



SUBROUTINE MONTE(SPIN1,SPIN2,DMN)

*

PARAMETER (LX=32,LY=32,LW=16)

PARAMETER (LX=64,LY=64 ,LW=32)

*

LX and LY are the dimensions of the lattice
PARAMETER (NSIZE=2%LX*LY-1)
PARAMETER (IHOP=13)
* This number THOP should be prime with LX and LY
IMPLICIT INTEGER (A-Z)
DIMENSION SPIN1(0:NSIZE),SPIN2(0:NSIZE) ,DMN(3)
DIMENSION NEIGH1(6),NEIGH2(6)

* INLAT(I)=MOD(I,NSIZE+1)

*

This function ensures periodic boundary conditions in the lattice

*

If LX and LY are powers of 2, it can be advantageously replaced by

INLAT(I)=AND(I,NSIZE)

J=0

K=1

DO 1 I=0,NSIZE
* setting the neighbors
NEIGH1(1)=SPIN1(J+K)
NEIGH2(1)=SPIN2(J+K)
NEIGH1(2)=ISHFTC(SPIN1(J+K),K,LW)
NEIGH2(2)=ISHFTC(SPIN2(J+K) ,K,LW)
NEIGH1(3)=SPIN1(INLAT(J+2))
NEIGH2(3)=SPIN2(INLAT(J+2))

NEIGH1(4)=SPIN1(INLAT(J-2))



NEIGH2(4)=SPIN2(INLAT(J-2))
NEIGH1(5)=SPIN1 (INLAT(J+2*LX))
NEIGH2(5)=SPIN2(INLAT(J+2*LX))
NEIGH1 (6)=SPIN1(INLAT(J-2%LX))
NEIGH2(6)=SPIN2 (INLAT(J-2*LX))

* Randomly changing the spin

SPIN1 SPIN2 CHOICE NEW1 NEW2 CHOICE NEW1 NEW2

*

* 0 0 0 1 0 1 0 1
* 0 1 0 0 0 1 1 0
* 1 0 0 0 1 1 0 0

CHOICE=IRDBIT(0)
NEW1=AND (NOT (SPIN1(J)),XOR(NOT(SPIN2(J)),CHOICE))
NEW2=AND (NOT(SPIN2(J)),X0OR(SPIN1(J),CHOICE))

* now compute 8 + energy_of_daemon + number_of_old_links with_equal_spins

*

- number_of_new_links_with_equal_spins
DP1=DMN(1)
DP2=DMN(2)
DP3=DMN(3)
ACCEPT=-1
DD 2 M=1,6
* adds old energy
LINK=NOT (OR(XOR(SPIN1(J) ,NEIGH1(M)),X0R(SPIN2(J),NEIGH2(M))))
CARRY1=AND(LINK,DP1)
DP1=X0R(DP1,LINK)

CARRY2=AND(CARRY1,DP2)
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DP2=XOR(DP2,CARRY1)

CARRY1=AND(CARRY2,DP3)
DP3=X0R(DP3,CARRY2)

ACCEPT=XOR(ACCEPT,CARRY1)

* subtracts new energy

2

LINK=NOT (OR(XOR(NEW1,NEIGH1(M)) ,XOR(NEW2,NEIGH2(M))))
CARRY1=AND(LINK,NOT(DP1))

DP1=XO0R(DP1,LINK)

CARRY2=AND(CARRY1,NOT(DP2))

DP2=X0R(DP2,CARRY1)

CARRY1=AND(CARRY2,NOT(DP3))

DP3=XOR (DP3, CARRY2)

ACCEPT=XOR(ACCEPT,CARRY1)

CONTINUE

* accepts or rejects the change

SPIN1(J)=XOR(AND(ACCEPT,NEW1) ,AND (NOT(ACCEPT) ,SPIN1(J)})
SPIN2(J)=XOR(AND(ACCEPT,NEW2) ,AND (NOT(ACCEPT) ,SPIN2(J)))
DMN(1)=X0OR(AND (ACCEPT,DP1) ,AND(NOT (ACCEPT) ,DMN(1)))
DMN (2) =XOR(AND (ACCFPT,DP2) ,AND (NOT (ACCEPT) ,DMN(2)))

DMN (3) =XOR(AND (ACCEPT,DP3) , AND(NOT (ACCEPT) ,DMN(3)})

* End of the loop

J=INLAT(J+IHOP)
K=-K
CONTINUE

RETURN
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END

FUNCTION ILINK(SPIN1,SPIN2)
* Returns the number of unsatisfied links (hence the energy)
PARAMETER(LX=64 ,LY=64,LW=32)

LX and LY are the dimensions of the lattice

*

PARAMETER (NSIZE=2*LX*LY 1)

IMPLICIT INTEGER (A-Z)

DIMENSION SPIN1(0:NSIZE),SPIN2(0:NSIZE)
DIMENSION NEIGH1(6) ,NEIGH2(6)

INLAT(I)=MOD(I,NSIZE+1)

*

*

This function ensures periodic boundary conditions in the lattice

*

If LX and LY are powers of 2, it can be advantageously replaced by

INLAT(I)=AND(I,NSIZE)

K=1
ILINK=6*(NSIZE+1)*LW

DO 1 J=0,NSIZE

* setting the neighbors
NEIGH1(1)=SPIN1(J+K)
NEIGH2(1)=SPIN2(J+K)
NEIGHi(2)=ISHFTC(SPIN1(J+K),K,LW)
NEIGH2(2)=ISHFTC(SPIN2(J+K) ,K,LW)
NEIGH1(3)=SPIN1(INLAT(J+2))
NETGH2(3)=SPIN2(INLAT(J+2))

NEIGH1(4)=SPIN1(INLAT(J-2))
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NEIGH2(4)=SPIN2(INLAT(J-2))

NEIGH1(5)=SPIN1 (INLAT(J+2*LX))
NEIGH2(5)=SPIN2(INLAT(J+2*LX))
NEIGH1(6)=SPIN1(INLAT(J-2*LX))
NEIGH2(6)=SPIN2 (INLAT(J-2*LX))
* now compute number_of_links_with_equal_spins
DP1=0
DP2=0
DP3=0
DO 2 M=1,6
LINK=NOT (DR (XOR(SPIN1(J) ,NEIGH1(M)) ,XOR(SPIN2(J),NEIGH2(M))))
CARRY1=AND(LINK,DP1)
DP1=XOR(DP1,LINK)
CARRY2=AND (CARRY1,DP2)
DP2=X0R(DP2,CARRY1)
DP3=X0OR(DP3,CARRY2)
2 CONTINUE
ILINK=ILINK- (IBCOUNT(DP1)+2%*IBCOUNT(DP2)+4*IBCOUNT (DP3))
* End of the loop
K=-K
1 CONTINUE
ILINK=ILINK/2
RETURN

END
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FUNCTION IRDBIT(INIT)

IMPLICIT INTEGER (A-Z)
DIMENSION ITAB(0:31)
SAVE I18,15,I2,I1,10,IFIRST

DATA IFIRST/0/,I18/0/,15/13/,12/16/,11/17/,10/18/

* Standard initialization (random bits, here given in hexadecimal

* for words with 64 bits; truncate if necessary)

*

%

DATA ITAB/

"TEB722A0C9743C06°Z, '534AB9SDIO7TECF94A’Z,
’FD3CD86EFCCCGIDE’Z, ’3B341E5A9A1160B4°Z,
’5CDA1DE25BB8BE8SF5°Z, ' 76 EDDA93192BC357° Z,
’1CD3CF66101C4CBD’Z, ’007216C2C95676A8°Z,
'ACF117D1EF24D606'Z,’ AF452B2A2FB48E98’Z,
’BETC758368B24840°7Z, *FF29D95A6F897866° Z,
'D1A46D4COF62639A°Z, ' CAOSFFEO20E049BD’ Z,
’7102A31B08C39D1E’Z, 'ESDE18695A18CA02°Z,
’98A33097B9C2250E’Z, ’4556037DC5A2CC1A’Z, 14%0/
DATA ITAB/

Z2’°C9743C067 ,Z’9TECF944’,

Z’'FCCC61DE’ ,Z’9A1160B4° ,

Z’5BB8ESF5’ ,Z'192BC357,

Z’101C4CBD’ ,Z’CO5676AL ",
Z’EF24D606’ ,Z’ 2FB48E98’ ,

Z2’'68B24840’ ,Z’6F897866°,

Z’9F62639A’ ,Z’20E049BD’,
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X Z’08C39D1E’,Z’5A18CA02°,
x Z’B9C2250E’,Z’C5A2CC1A’,14%0/
IF(INIT.NE.O) THEN
* Initialization (with a check avoiding the generation of a sequence of zeros)
ITAB(I1)=INIT
J=INIT
I=AND(31,I18+1)
DO 1 K=1,16
J=0R(J,ITAB(I))
I=AND(31,I+1)
1 CONTINUE
ITAB(I18)=0R(ITAB(I18),NOT(J))
ENDIF
ITAB(I0)=XOR(XOR(ITAB(I18),ITAB(I5)),X0R(ITAB(I2),ITAB(I1)))
IRDBIT=ITAB(IO)
10=AND(31,I0+1)
I1=AND(31,I1+1)
I2=AND(31,I2+1)
I5=AND(31,I5+1)
I118=AND(31,I18+1)
RETURN

END

INTEGER FUNCTION AMIX(WORD)

PARAMETER (LW=32,LH=LW/2)
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IMPLICIT INTEGER (A-Z)

REAL RANF
L=INT (LH*RANF())
P1=AND (MASK (L) , WORD)
P2=AND (MASK (L) , ISHFTC(WORD,-L,LW))
P3=AND (NOT (MASK (2%L)) ,WORD)
AMIX=ISHFTC(OR(OR(P2,ISHFTC(P1,L,LW)),P3),INT(LW*RANF()),LW)
RETURN

END

FUNCTION BETA(DENERG)

XL=0

XH=1

DO 1 N=1,36

XN=0. 5% (XL+XH)

A=1-XN¥%x8

FN= (8% (A+XN-1) -7T*A%XN) /A/ (1-XN)

IF(FN.GT.DENERG) THEN

XH=XN
ELSE
XL=XN
ENDIF
1 CONTINUE

BETA=-0,25%AL0G (XN)

RETURN



END

FUNCTION IBCOUNT(X)
INTEGER Y,X,IBCOUNT
IBCOUNT=0
Y=X
DO 1 N=1,16
* IBCOUNT=IBCOUNT+AND (’0001000100010001°X,Y)
IBCOUNT=IBCOUNT+AND (X’ 00010001°,Y)
1 Y=ISHFT{Y,-1)
* IBCOUNT=AND ( (IBCOUNT+SHIFT (IBCOUNT, 16)
* X+SHIFT(IBCOUNT,32)+SHIFT (IBCOUNT,48)),127)
IBCOUNT=AND ( (IBCOUNT+ISHFT(IBCOUNT,~16)
X ),127)
RETURN

END

COMPLEX FUNCTION MAG(SPIN1,SPIN2)
* PARAMETER (LX=32,LY=32,LW=16)
PARAMETER (LX=64,LY=64,LW=32)
PARAMETER (NSIZE=2*LX*LY~1)
INTEGER SPINt,SPIN2
DIMENSION SPIN1(0:NSIZE),SPIN2(0:NSIZE)

MAG=0



DO 1 I=0,NSIZE
MAG=MAG+CMPLX (
$ LW~1.5*%IBCOUNT(OR(SPINL(I),SPIN2(I))),
$ 0.732*(IBCOUNT{SPIN1(I))-IBCOUNT(SPIN2(I)))
$ )
1 CONTINUE
MAG=MAG/ ((NSIZE+1)*LW)
RETURN

END

INTEGER FUNCTION MASK(L)
MASK=ISHFT(1,L)-1
RETURN

END

FUNCTION RANF()
RANF=RAND (0)
RETURN

END

s
[ 3]
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