
USING PHYSICAL PRINCIPLES TO ENHANCE THE
MEASUREMENT, INTERPRETATION AND UNDERSTANDING

OF SOIL RESPIRATION

by

Nicholas R. Nickerson

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

July 2014

c© Copyright by Nicholas R. Nickerson, 2014



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 General Introduction & Objectives . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Forced Diffusion Soil Flux: A New Technique for Con-

tinuous Monitoring of Soil Gas Efflux . . . . . . . . . . . 4

2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Embodiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.4 Flux Generator Experiments . . . . . . . . . . . . . . . . . . . 12

2.4.5 Comparative Mesocosm Tests with Li-Cor LI-8100 . . . . . . . 13

2.4.6 Field Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Modelling Simulations . . . . . . . . . . . . . . . . . . . . . . 15

ii



2.5.2 Flux Generator Trials . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Comparative Mesocosm Experiment . . . . . . . . . . . . . . . 17

2.5.4 Field Deployments . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Iso-FD: A Novel Method for Measuring the Isotopic

Signature of Soil Flux . . . . . . . . . . . . . . . . . . . . . 34

3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Iso-FD Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Iso-FD Chamber Design & Isotopic Measurements . . . . . . . 38

3.4.4 Valving System . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5 Lab Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.6 Field Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Lab Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Field Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.4 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.5 Comparison with Other Chamber Types . . . . . . . . . . . . 47

3.5.6 Sampling Method Modifications . . . . . . . . . . . . . . . . . 47

3.5.7 Chamber Design Considerations . . . . . . . . . . . . . . . . . 48

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



Chapter 4 Subsurface Approaches for Measuring Soil CO2 Isotopo-

logue Flux: Theory and Application . . . . . . . . . . . 56

4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Delta Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Subsurface Methods . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Steady State Soil CO2 Isotopologue Model . . . . . . . . . . . 63

4.4.4 Model Parameter Ranges and Data Generation . . . . . . . . 64

4.4.5 Laboratory and Field Testing . . . . . . . . . . . . . . . . . . 65

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Model - Keeling Plot Approach . . . . . . . . . . . . . . . . . 68

4.5.2 Model - Gradient Approach . . . . . . . . . . . . . . . . . . . 69

4.5.3 Model - Production Profile Approach . . . . . . . . . . . . . . 70

4.5.4 Error Analysis (PP and Gradient) . . . . . . . . . . . . . . . . 72

4.5.5 Laboratory Results . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.6 Field Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Summary and Recommendations . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Summary Comparison of Theoretical, Lab and Field Data . . 75

4.6.2 Davidson’s δJ Method . . . . . . . . . . . . . . . . . . . . . . 76

4.6.3 Considerations for Field Measurements . . . . . . . . . . . . . 77

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5 A Numerical Examination of 14CO2 Chamber Method-

ologies for Measuring Fluxes at the Soil Surface . . . . 89

5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iv



5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Soil-Atmosphere Model . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Calculation of Isotopic Signatures . . . . . . . . . . . . . . . . 93

5.4.3 Chamber Descriptions . . . . . . . . . . . . . . . . . . . . . . 93

5.4.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 Dynamic Chambers (A and B) . . . . . . . . . . . . . . . . . . 96

5.5.2 Static Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.3 Isotopic-Forced Diffusion Chamber . . . . . . . . . . . . . . . 100

5.5.4 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 6 Interpreting Diel Hysteresis Between Soil Respiration

and Temperature . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Model Implementation . . . . . . . . . . . . . . . . . . . . . . 117

6.4.3 Comparison of apparent and actual Q10 values . . . . . . . . . 118

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5.1 Impacts of Transport-Related Lags on Regressions of Surface

Flux and Soil Temperature . . . . . . . . . . . . . . . . . . . . 119

6.5.2 Sensitivity of Lag Time to Thermal Diffusivity . . . . . . . . . 122

v



6.5.3 Sensitivity to CO2 Diffusivity, Production Depth . . . . . . . . 122

6.5.4 Sensitivity to Basal Respiration Rate and Other Environmental

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.5 Effects of Soil Moisture on Phase Lags . . . . . . . . . . . . . 124

6.5.6 Diel Variation in Atmospheric CO2 . . . . . . . . . . . . . . . 125

6.5.7 Changing Substrate Supply . . . . . . . . . . . . . . . . . . . 125

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Effects of Soil Moisture . . . . . . . . . . . . . . . . . . . . . . 127

6.6.2 Detecting Effects of Factors Other than Temperature on Diel

Surface Flux Patterns . . . . . . . . . . . . . . . . . . . . . . 128

6.6.3 Impacts of Diel Dynamics on Interpretation of Temperature

Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 7 Using Production Weighted Heat to Disentangle the

Environmental Sensitivities of Soil Respiration . . . . . 139

7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.2 Field Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6.2 Non-Uniform Q10 . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6.3 Gas Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . 149

7.6.4 Estimating Production Weighted Heat (Hpw) . . . . . . . . . . 150

7.6.5 Field Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vi



7.7 Recommendations & Conclusions . . . . . . . . . . . . . . . . . . . . 153

Chapter 8 Challenges in Determining the Environmental Sensitivity

of Soil Respiration: Data Interpretation and the Role of

Isotopic Data . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.4 Soil Respiration Modelling & Soil Process Detail . . . . . . . . . . . . 163

8.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.4.2 Soil Process Detail - A Practical Example . . . . . . . . . . . 165

8.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.5 The New Role of Isotopic Data . . . . . . . . . . . . . . . . . . . . . 168

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Chapter 9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Appendix A A Numerical Examination of 14CO2 Chamber Method-

ologies for Measuring Fluxes at the Soil Surface . . . . 181

A.1 Dynamic Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Appendix B A Numerical Examination of 14CO2 Chamber Method-

ologies for Measuring Fluxes at the Soil Surface . . . . 183

B.1 Static Chamber and Iso-FD . . . . . . . . . . . . . . . . . . . . . . . 183

vii



Appendix C Interpreting Diel Hysteresis Between Soil Respiration

and Temperature . . . . . . . . . . . . . . . . . . . . . . . 185

Appendix D Expanded Definitions of Commonly Used Concepts . . 189

D.1 Q10 Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 189

D.2 Keeling Plot, Keeling Intercept . . . . . . . . . . . . . . . . . . . . . 189

Appendix E Copyright Permissions . . . . . . . . . . . . . . . . . . . . 191

E.1 Forced Diffusion Soil Flux: A New Technique for Continuous Monitor-

ing of Soil Gas Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

E.2 Iso-FD: A Novel Method for Measuring the Isotopic Signature of Soil

Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E.3 Interpreting Diel Hysteresis Between Soil Respiration and Temperature 200

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

viii



List of Tables

Table 2.1 Range of simulations performed using the 3-D model, to assess

error as a function of operational parameters . . . . . . . . . . 22

Table 2.2 Increase in Cchamb-Catm for steady state chambers used in other

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 2.3 Properties of the FD instrument used in the flux generator tests 24

Table 2.4 Analysis to identify the consequences of moving the atmospheric

probe up and down in the surface boundary layer . . . . . . . . 25

Table 4.1 Parameter ranges for model simulations . . . . . . . . . . . . . 80

Table 5.1 The ranges of model parameters input for the Δ14CO2 chamber

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 6.1 Default parameters used for model simulations. Deviations from

these values are noted in the text or figures. . . . . . . . . . . . 132

Table 7.1 Equation parameters and parameter ranges used in integrations

of Eq. 7.7 and 7.10. . . . . . . . . . . . . . . . . . . . . . . . . 154

Table 8.1 Respiration models commonly used by researchers . . . . . . . 172

ix



List of Figures

Figure 2.1 Schematic of Forced Diffusion Flux chambers . . . . . . . . . . 26

Figure 2.2 One-dimensional miniature flux generator device . . . . . . . . 27

Figure 2.3 1-D numerical model results . . . . . . . . . . . . . . . . . . . 28

Figure 2.4 3-D Numerical modeled flux error as a function of configurations

and environments . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.5 45-minute flux generator run using the miniature 1-D device . 30

Figure 2.6 Comparison of a GMM-222 based FD FD chamber and a Li-

Cor-8100 automated chamber . . . . . . . . . . . . . . . . . . 31

Figure 2.7 Field data from Woods Harbour, Nova Scotia . . . . . . . . . 32

Figure 2.8 Example of spatial survey with Li-Cor LI-8100 and existing FD

chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.1 Characteristic data showing the CO2 concentrations measured

by the G1101-i as the valves switch. Visible transitions between

sample types is caused by low gas flow rate and short lived

analyzer/tubing memory effects. . . . . . . . . . . . . . . . . . 49

Figure 3.2 Contour plot of the isotopic deviance of the δ13CO2 Iso-FD

chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.3 Pumping offset for Iso-FD chambers with varying membrane

diffusivities on soils of various diffusivities . . . . . . . . . . . 51

Figure 3.4 An example of Iso-FD laboratory calibration using the Flux

Generator concentration decay mode . . . . . . . . . . . . . . 52

x



Figure 3.5 True versus measured isotopic signature of surface flux from

laboratory calibration of the Iso-FD chamber . . . . . . . . . . 53

Figure 3.6 Field measurements of the isotopic composition of flux using the

Iso-FD method, two-point subsurface Keeling plot and multi-

point subsurface Keeling plot . . . . . . . . . . . . . . . . . . 54

Figure 3.7 Iso-FD probable uncertainty for 1 % and 5 % standard devi-

ations in CO2 concentration measurements and 0.5 � (open

circles) and 1 � standard deviations in δ13C measurements . . 55

Figure 4.1 Histogram of Keeling plot bias for 1000 randomly sampled

parameter sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.2 Sensitivity analyses for Keeling plot bias . . . . . . . . . . . . 82

Figure 4.3 Keeling plots for a linear and non-linear case with δobs in units

of � and 1/CO2 in units of 1/ppm . . . . . . . . . . . . . . . 83

Figure 4.4 Example figure for isotopic flux (�) estimated using the gradi-

ent approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.5 Error in estimated isotopic signature for the gradient and PP

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.6 Contour plots of soil CO2 concentration and isotopic composi-

tion from the girdled and intact sites . . . . . . . . . . . . . . 86

Figure 4.7 Keeling plot intercepts and gradient estimates of the CO2

isotopologue flux signature from the field site . . . . . . . . . . 87

Figure 4.8 Keeling plot residuals for the intact and girdled sites . . . . . 88

Figure 4.9 Production profile estimates for the girdled and intact sites . . 88

Figure 5.1 The four Δ14CO2 simulated in the numerical model . . . . . . 105

xi



Figure 5.2 Isotopic deviance contour plots for the dynamic chambers with

a simulated Δ14C of production of - 200 �, collar length of 2

cm, and δ13C of production of - 30 �, - 20 � and -15 � . . . 106

Figure 5.3 Isotopic deviance contour plots for the dynamic chambers with

a simulated δ13C of production of - 30 �, collar length of 2 cm,

and Δ14C of production of - 500 �, - 200 �, 0 �, 200 � and

500 � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.4 Uncertainty estimates for the dynamics chambers . . . . . . . 108

Figure 5.5 The probable uncertainty for static and Iso-FD chambers . . . 109

Figure 5.6 Chamber equilibration 13C and 14C mixing behaviour . . . . . 110

Figure 6.1 Diel hysteresis between surface flux and soil temperature at

several depths, and apparent Q10 values calculated from least

squares regression . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 6.2 Impact of phase lags on R2 and apparent Q10 calculated from

regressions of surface flux and soil temperature . . . . . . . . . 133

Figure 6.3 Effect of thermal diffusivity, DT , on soil temperatures at several

depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 6.4 Sensitivity of lag time to soil and environmental parameters . 135

Figure 6.5 Effect of CO2 diffusivity on soil CO2 concentrations and surface

fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 6.6 Potential responses of soil respiration to diel changes in photo-

synthate supply . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.7 Interactive effects of soil moisture and thermal diffusivity on

dial hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xii



Figure 7.1 Time series plot for surface flux, production weighted heat and

unweighted soil heat . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 7.2 Distribution of yearly (a) and diel (b) Q10 estimates . . . . . . 155

Figure 7.3 Comparison of expected (Qavg
10 ) and regression estimated (Q∗

10)

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 7.4 Sensitivity of the Q10 deviation (Qdev) to yearly and daily

temperature amplitudes . . . . . . . . . . . . . . . . . . . . . 156

Figure 7.5 Estimates of Q10 with soil gas diffusion considering yearly data 157

Figure 7.6 Timeseries of Q10 estimates for low diffusivity and high diffu-

sivity soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 7.7 Soil flux vs. Hpw estimates for the 4 chambers deployed at the

Deschutes National Forest field site . . . . . . . . . . . . . . . 158

Figure 7.8 Timeseries of soil flux, soil temperature and soil VWC . . . . 159

Figure 8.1 Conceptual framework for the optimization of Soil Process

Detail populated with several commonly used soil respiration

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 8.2 Estimates of the Q10 temperature sensitivity of soil respiration

for the Q10 model . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 8.3 Estimates of the Q10 temperature sensitivity of soil respiration

for the linear combination Q10 model . . . . . . . . . . . . . . 175

Figure 8.4 Estimates of the Q10 temperature sensitivity of soil respiration

for the Production Weighted Heat approach . . . . . . . . . . 176

Figure C.1 Effect of A0 on lag times between surface flux and temperature

at the soil surface, and at 10 cm and 20 cm depth . . . . . . . 187

xiii



Figure C.2 Time series for surface flux at several Q10 values, in comparison

to air and soil temperatures . . . . . . . . . . . . . . . . . . . 188

xiv



Abstract

Atmospheric concentrations of greenhouse gases (GHGs) play an extremely important

role in regulating Earth’s climate system. Researchers need to understand how GHGs

are produced at a process-level in order to predict what might happen under future

climate scenarios. A great deal of work has gone into understanding the fundamental

processes that control GHG production and consumption, but many questions remain.

To date, much of this research has focused on the biology of the soil system but there

are also many physical processes that control the transport of decomposable substrate,

nutrient supply, the local-environment (e.g. temperature and moisture) as well as the

eventual emission of GHGs to the atmosphere (i.e. diffusion and advection). Some

recent soil respiration studies suggest that the physical aspects of the soil have an

equal or greater influence on the measurement and interpretation of soil respiration

data.

Here a combination of numerical and analytical models, laboratory experiments

and field studies are used to help understand the effect that soil physics has on the

measurement and interpretation of soil respiration data. These analyses focus mainly

on high-resolution and istopologue techniques for understanding soil respiration, and

how considerations including gas diffusion and thermal conduction affect results

obtained using these methods. The interpretation of soil respiration data is also

carefully considered, again with a focus on how physical drivers can explain patterns in

field measurements, and how physical and biological processes might be disentangled

in GHG investigations. The results presented here show clearly how gaseous diffusion,

thermal conduction and poor methodological assumptions can bias the measurement

and interpretation of GHG emissions data. These biases and misinterpretations

can often be resolved through application of physical principles and mathematical

modelling. The physical and mathematical approaches presented here form a basis

for making robust measurements of GHG emissions and also for forming process-based

models that can be more universally applicable across space and time.
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Chapter 1

Introduction

1.1 General Introduction & Objectives

Atmospheric concentrations of greenhouse gases (GHGs) play an extremely impor-

tant role in regulating Earths climate system. Decades of research have shown that,

until recently, atmospheric greenhouse gas concentrations have remained relatively

stable or varied slowly over geologic time scales (IPCC, 2001). Post-industrial era

anthropogenic activities have caused rapid and sustained increases in the concen-

trations of many GHGs, most notably carbon dioxide (CO2), methane (CH4), ni-

trous oxide (N2O) and water vapour (H2O). There is significant potential for these

anthropogenically-induced changes in GHG concentrations to affect local and global

climate, thereby upsetting natural balances between uptake and release of GHGs and

creating climate feedback loops (Holland et al., 2000; Davidson et al., 2006a; Bond-

Lamberty and Thomson, 2010a). Ultimately researchers need to understand how

GHGs are produced in natural systems at a process-level in order to then predict

what might happen to these balances under various future climate scenarios. A great

deal of research has gone into understanding the fundamental processes that control

GHG production and consumption and how changes in Earths climate could poten-

tially affect these processes, but many questions remain (Davidson et al., 2006b).

As an example, carbon dioxide (CO2), which is produced primarily by aerobic

respiration and consumed by photosynthetic activity, is arguably the most well

studied GHG to date. While the processes underlying photosynthetic uptake of

CO2 by autotrophs are well understood, much of the literature regarding respiration

(particularly in soil systems) suggests that a process-based understanding is lacking

(e.g. Davidson et al. (2006b)). Researchers have made progress in this direction by

improving the understanding of the fundamental soil biology and ecology (Schimel

and Weintraub, 2003; Tang et al., 2005a; Risk et al., 2008a; Davidson et al., 2012),

developing robust methodologies for measuring GHG exchanges (Davidson et al.,
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2002; Subke et al., 2004; Livingston et al., 2005; Senevirathna et al., 2007; Risk et

al., 2008b), and adopting more complex mathematical techniques for analysis and

predictive modelling (Pumpanen et al., 2003; Reichstein et al., 2005; Ryan and Law,

2005; Livingston et al., 2005; Graf et al., 2008), to name a few.

However, to date soil respiration research has focused largely on the biology of the

soil system, as the soil organisms are ultimately the producers of CO2. But, there

are many physical processes that control the transport of decomposable substrate

(Davidson et al., 2012), nutrient supply (Schimel and Weintraub, 2003), the local-

environment (e.g. temperature and moisture) (Xu et al., 2004; Wei et al., 2010;

Falloon et al., 2011; Moyano et al., 2012; Suseela et al., 2012) as well as the eventual

emission of the produced gas to the atmosphere (i.e. diffusion and advection)

(McCarthy et al., 1995; Moldrup et al., 2000; Kayler et al., 2010; Bowling and

Massman, 2011). While researchers acknowledge these physical complexities they

have not, until recently, received as much attention as the biological aspects. Some

recent soil respiration studies suggest that the physical aspects of the soil have an

equal or greater influence on the measurement and interpretation of soil respiration

data (Moyes et al., 2010b; Phillips et al., 2011; Martin et al., 2012). These physical

aspects will affect every part of the study of GHG emission, from measurement to

data interpretation. The overall goal of this work is to evaluate the impact that soil

physics - with a particular focus on thermal and gaseous diffusion dynamics - has

on the study of CO2 emissions (including carbon (C) isotopologues (12CO2,
13CO2,

14CO2)).

This overarching goal was accomplished in two parts. First methodologies for

measurement and monitoring of GHG emissions were examined using a combination

of theoretical, experimental and field data sets. The specific methods presented in

this thesis were chosen either because they are likely to become prominent in the

near-future due to recent advances in analytical equipment, or because the methods

offer potential solution to already identified methodological biases (most of which

are caused by soil physical considerations). Secondly, the influence of soil physics

(i.e. gas and heat transport) on the interpretation of soil respiration measurements

was characterized. This work sought to qualitatively match in-situ data collected by

researchers and show that patterns they interpret as being biological could equally
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be physical in nature. This was demonstrated mainly through numerical modelling

approaches and subsequent comparison to field data gathered during this thesis

research or by other researchers. After qualitatively demonstrating the importance of

these physical considerations, the focus shifted towards showing that these physical

patterns can be corrected for, or removed from the data, to get at the underlying

biological and biogeochemical processes. This was accomplished through careful

theoretical consideration of how physical processes (in this case temperature) and

biological processes are linked.

1.2 Thesis Outline

This thesis consists of 7 manuscripts that together explore the influence of soil physics

on the measurement and interpretation of soil respiration data. These manuscripts are

presented in two distinct sections, the first topic being measurement methodologies

for CO2 and its carbon isotopologues with 4 manuscripts: 1) Forced Diffusion Soil

Flux: A New Technique for Continuous Monitoring of Soil Gas Efflux; 2) Iso-FD:

A novel method for measuring the isotopic signature of soil flux; 3) Subsurface

Approaches for Measuring Soil CO2 Isotopologue Flux: Theory and Application,

and; 4) A numerical examination of 14CO2 chamber methodologies for measuring

fluxes at the soil surface. The second section looks at how this data can be

interpreted robustly so as to answer questions about biological and soil processes that

lead to soil respiration and includes 2 manuscripts: 1) Interpreting Diel Hysteresis

Between Soil Respiration and Temperature, and; 2) Using production weighted heat

to disentangle the environmental sensitivities of soil respiration. Finally a preliminary

manuscript that outlines a conceptual framework for interpretation of soil respiration

data is presented (Chapter 8). Each chapter begins with a preamble, describing my

contribution to the work in question as well as its status as a publication. Many of the

manuscripts have been accepted for publication, with several under review currently

and one in preparation for submission.



Chapter 2

Forced Diffusion Soil Flux: A New Technique for Continuous

Monitoring of Soil Gas Efflux

2.1 Preamble

This chapter presents a new method used to monitor the flux of soil gas to the

atmosphere. Authorship on this manuscript is as follows: Dave Risk, Nick Nickerson,

Chance Creelman, Gordon McArthur and Jen Owens. Dave Risk was responsible for

much of the manuscript text, design of the instrument, and field and lab testing along

with Gordon McArthur and Jen Owens. I was involved in the initial proof of concept

experiments and in the theoretical derivation of the method and computational

simulation efforts (along with Chance Creelman) presented in the manuscript, as

well as a portion of the lab data collection and interpretation. A version of this

manuscript was published in Agricultural and Forest Meteorology in December 2011

(Volume 151, Issue 12). Copyright permission for this publication can be found in

Appendix E.

2.2 Abstract

Measurements of soil carbon dioxide efflux provide critical information on soil carbon

balance. In light of increasing interest in monitoring carbon balance of northern

soils, it is important that new methodologies are developed that are better suited

to long-term, remote, and off-grid deployments. In this study, a Forced Diffusion

(FD) dynamic chamber is described, in which a gas permeable membrane passively

regulates mixing of atmosphere and soil air in the chamber, in place of the active

pumping system inside a regular dynamic efflux chamber system. A combination of

methodologies are used to explore the FD chamber technique, including numerical

modelling, laboratory benchmarking, mesocosm testing, and year-round field studies

in northern temperate ecosystems. Not surprisingly, FD chambers are functionally
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similar to regular dynamic chambers, but the passive regulation of gas flow means that

internal concentration sensors can be switched off between measurements, thereby

achieving very low power consumption and high reliability. In numerical modelling

experiments and controlled lab tests, FD chambers deliver data that are comparable

to commercially available instruments. As with other efflux techniques, calibration,

design geometry, and deployment methodology are critical issues for generating good

accuracy and precision with FD chambers.

2.3 Introduction

Soil efflux is a commonly measured ecological parameter that is critical to the current

and future understanding of ecosystem carbon dynamics and overall carbon balance.

“Open” or “dynamic” soil chambers have been shown as among the best systems

for accurate measurements of soil flux (Pumpanen et al., 2004). These systems

have good potential for making long-term measurements because they generally

have fewer moving parts than automated static chambers, which require arms or

pistons to open and close the chamber during measurement cycles. However, dynamic

systems are expensive to build and operate (Subke et al., 2004) and improvements

or simplifications can be of high value to researchers, especially as instrumental

limitations still compromise the ability to collect continuous long-term soil respiration

records (Elberling and Brandt, 2003).

Dynamic chambers are active devices, and require a pump, flow controller and

sustained power supply to maintain equilibrium between atmospheric air and soil-

source gases. These components consume power, and have limited lifetimes. For

example, few small pumps have rated lifetimes that exceed one year of continuous use.

There is, however, reason to think that dynamic chambers could be built as passive

devices. For a decade, passive diffusion-based sensors have been widely used by

ecological researchers, and there are many applications where permeable membranes

are used as an alternative to pumps. In a dynamic chamber, water-resistant gas

permeable diffusion membranes could potentially replace pump and controller, to

maintain equilibration by diffusive means.

The aim of this experiment is to build and test a dynamic diffusion soil CO2

efflux instrument, using diffusion-based (open) CO2 sensors and commonly available
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gas-permeable membranes. While most similar manuscripts tend to describe new

hardware by using either laboratory evidence (Martin et al., 2004; Pumpanen et

al., 2004), comparative field/mesoscosm data (Bjorkman et al., 2010), or results

from numerical modelling (Senevirathna et al., 2007; Nickerson and Risk, 2009c),

this study is intended to have a multifaceted approach which relies on all of the

above. The objectives are threefold: to test the theory in a modelling environment

for identification of important operational parameters and uncertainty; to build and

verify embodiments using flux generator (Martin et al., 2004) benchmarking devices;

and to test the technique in the field.

2.4 Methods

2.4.1 Theory

Though designs vary somewhat, dynamic chamber systems are comprised of a closed

cylinder through which atmospheric air is pumped at a controlled rate in order to

establish equilibrium mixing between the atmosphere and soil gases moving upward

into the chamber (Rayment and Jarvis, 1999). The path of soil gas flow is from the

soil to the chamber exhaust, and is continually diluted by incoming atmospheric air.

The concentration inside a dynamic chamber is always intermediate between that of

the atmosphere and the soil. Both inlet (atmospheric) and exhaust (mean chamber)

concentrations must be measured to calculate flux by mass balance, as the difference

between incoming and outgoing concentrations:

Fs =
Γ(Cchamb − Catm)

As

(2.1)

where Γ is the pump speed (m3 s−1) at which air is being drawn through the chamber,

Cchamb (μmol m−3) is the concentration of the chamber as measured in the exhaust,

Catm (μmol m−3) is the concentration entering the chamber and As is the area of the

chamber in contact with the soil (m2).

It is possible to consider the same system with two straightforward design

modifications: 1) traditional closed-path analyzers are substituted for open path

sensors and 2) in lieu of a pump and flow controller a proportion of the closed cylinder

surface is covered by gas-permeable membrane. Like the traditional technique,
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a continuous dynamic equilibrium will be established between soil gases and the

atmosphere, and CO2 concentration can still be measured at the same points.

This new system differs from the traditional dynamic system in two important

ways. Firstly, the chamber is no longer mixed by a pump, with free air diffusion and

thermal convection now acting as the agents of mixing. Chambers that have a small

volume can be well mixed by convection and diffusion because the free-air transport

rate of CO2 is fast relative to the rate at which gases are passing across the soil or

atmospheric membrane interfaces. The second and more important difference is that

Eq 1. no longer applies. Consider the mass balance for this new system:

V
∂Ccham

∂t
= AsF (t)− Aa

(
D
Ccham − Catm

L

)
(2.2)

where V is the chamber volume (m3), ∂C/∂t is the time rate of change in the

concentration in the chamber (μmol m−3 s−1), F(t) is the time dependent soil flux rate

(μmol m−2 s−1), Aa is the area of the membrane in contact with the atmosphere (m2),

D is the diffusivity (m2 s−1) through the chamber volume and across the membrane

to the atmosphere and L is the characteristic path length (m) for diffusion. Assuming

the soil system is in steady state, ∂C/∂t=0 (similarly F(t)=Fs) and rearranging Eq.

2.2 to solve for Fs:

Fs =
Aa

As

(
D
Ccham − Catm

L

)
(2.3)

For simplicity constants (D, L, Aa and As) can be combined into a single term, G,

which has units of m s−1:

Fs = G(Cchamb − Catm) (2.4)

In relation to the original dynamic chamber mass balance, pump speed (Γ) has been

replaced with a diffusive term that describes the overall diffusive transport properties

of the membrane-chamber system (G) but the units of the equation remain unaffected

(Γ/As has units of m s−1 as does G).

Membrane material, chamber geometry, and membrane surface areas As and Aa

can be adjusted to manipulate the proportional relationship of Cchamber-Catm as a

function of Fs. This technique is called “Forced-Diffusion” (FD) flux because the

membranes control chamber equilibration and gas flow by imposing a strict, constant,

and known (via calibration) diffusive regime at the soil surface.
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Like pump flow rate in the traditional dynamic chamber, G must be empirically

quantifiable. While it is possible to measure membrane D, it will differ somewhat

between batches of a given membrane material. It is also possible to estimate

a diffusive path length (L), but owing to obstructions in the flowpath (Vaisala

sensor) and complex geometries (membranes on bottom and sides), this is difficult.

It is easiest to empirically measure the characteristic G of each soil chamber by

rearrangement of Eq 2 to solve for G on a laboratory apparatus where Fs is known.

Any known flux environment would allow the proportionality (G) between flux and

internal concentration to be quantified. Benchmarking devices such as flux generators

(Martin et al., 2004) should serve this purpose adequately.

It should be noted that FD is not a gradient technique, either in time or in space. It

is a single point measurement technique based on a traditional flow-through dynamic

chamber.

2.4.2 Modelling

Numerical modelling is used as validation of theory and to inform design and con-

struction of FD embodiments. Modelling of soil respiration chambers (Senevirathna

et al., 2007; Nickerson and Risk, 2009c) is a powerful tool for exploring chamber per-

formance under a wide range of scenarios, across which exhaustive empirical tests are

impractical or impossible. Chambers interact with and perturb their natural envi-

ronment in several ways. In particular, when high chamber CO2 values (relative to

ambient) decrease the surface concentration gradient under the chamber, soil-source

CO2 begins to move laterally, resulting in under-reporting of fluxes in the chamber.

Pumpanen et al. (2004) documents this downward bias experimentally for several

chamber types.

Overall, this modelling approach is similar to Nickerson and Risk (2009c) except

with a more flexible cubic grid geometry rather than the previous radial form. The

coupled soil and atmosphere model simulates 3-D diffusive transport of CO2 through

soil subsurface and atmosphere layers into an infinite atmosphere. Each cell has

its own layer specific total, air-filled and water-filled porosity; six diffusivity values

(corresponding to the boundaries of the six nearest neighbours); and an internal CO2
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production rate. Exchange of CO2 between cells is controlled by Fick’s law:

F1,2 = D1,2
ΔC1,2

Δ(ijk)1,2
(2.5)

where D1,2 is the diffusion coefficient (m2s−1) between cells, Δ C1,2 is the difference

in CO2 concentration (μmol m−3) and Δ (ijk)1,2 is the coordinate difference in the

positions (m) of the cells. Each soil column has uniformly distributed production of

CO2, summing to 1.0 μmol m−2 s−1. Within the model, the chamber always sits on the

soil surface, occupying cells in the middle of the lowest layers of the atmosphere. The

bottom of this chamber exchanges CO2 with the soil whereas the top of the chamber

interacts with the atmosphere, in both cases using Fick’s Law and the diffusivity

coefficients of soil and free air respectively. The model was validated using both

steady- and non-steady-state analytical solutions to the diffusion equation and the

coupled chamber models were validated using the non-steady-state analytical solution

described by Livingston et al. (2005).

Using Atlantic Computational Excellence Network (ACEnet) computing resources,

model runs were used to evaluate the range of parameters summarized in Table 1.

Tested parameters included soil diffusivity, chamber diffusivity (function of mem-

branes and surface areas), collar length, and atmospheric diffusivity. These tests

were repeated for a range of FD chamber geometries, membrane diffusivities and sur-

face areas, but for simplicity results are presented only for the embodiment (described

below) that was used in empirical validation testing. To force 1-D behaviour, the soil

collar was extended to the bottom of the model soil.

2.4.3 Embodiment

For this study, small FD dynamic chambers were built (PVC, 5 cm internal diameter,

8 cm tall) into which a Vaisala GMP343 CO2 sensor is mounted in a downwards

fashion without its factory diffusion shield. Two opposing UV-resistant TyvekTM

(part number 1460CL) membranes are installed on the sides of the chamber to

communicate to the atmosphere, where they sit in a vertical orientation to help shed

dust and water, though they are already highly hydrophobic and naturally resist

water films. A third membrane is installed on the bottom of the chamber. The

relative areas of the top and side membranes are key determinants in the overall gas
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transport through the chamber, and in the described embodiment they are roughly

equal, at 18.92 cm2 and 20.10 cm2 for bottom and outlet, respectively. With a rated

water-resistance of 3 m, the membranes simultaneously regulate dynamic chamber

equilibration and protect the optics of the open path chamber from standing water,

dust, etc. A soil collar of 2.5 cm is attached to the chamber to create a gas seal

with the soil surface, and legs to provide firm support in continuous deployments.

An external reference sensor (Catm) is placed adjacent to the soil chamber inside a

separate chamber that is identical except for the fact that a thick piece of rubber

substitutes for the bottom (soil) membrane and blocks communication with the soil.

Since the soil and reference chambers are almost identical, they should respond at

the same rate to changes in atmospheric concentration. While the Cchamb and Catm

measurements could readily be integrated, it is convenient to separate them so that

a common reference measurement could be used for several nearby soil chambers, as

the Vaisala 343 sensors are rather expensive. Figure 2.1 provides a schematic of this

typical form. Many other embodiments and geometries are possible, including those

with clear or opaque chambers, or with sensors for other gases of interest such as

methane. A second set of embodiments were built for mesocosm tests with the same

proportional geometries of bottom and side membrane surface areas, but the overall

package was somewhat narrower (3.175 cm diameter) and housed the smaller Vaisala

GMM222 0-2000 ppm sensors.

The probes above were initially based around the size and shape of the Vaisala

343 sensor, with membrane sizes optimized afterwards. However, many possible

embodiment shapes, sizes, and configurations are possible so long as they allow for

a reasonable G value (sufficient membrane area), and that internal mixing would

proceed at an adequate rate without pumps (shorter is typically better). There is

however no theoretical limit to scale, and inevitably embodiments can be built for

various field environments. Small chambers can be placed between plants or clumps

of vegetation, but do not integrate fluxes across a large area. Larger chambers do not

allow for continued plant growth and might create a non-representative soil surface

in systems where photosynthesis occurs near the ground, as in grasslands. In forests

with relatively bare understory, however, larger FD chambers could be quite suitable.

The preferred shape and size of FD chambers will no doubt vary as the technique
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comes into wider use, but these geometries were suitable for development.

Overall, one target of development was to minimize the long-term concentration

footprint of the FD chamber (and lateral diffusion impacts) by selecting fast-diffusing

membranes and high surface areas, while allowing for a reasonable concentration

increase in the housing per unit increase in flux. The latter is required to generate

reasonable precision. Although modelling helped inform these choices, comparative

data was drawn from the literature to shape the frame of reference. Using published

information on geometries and flowrates and by applying Eq 1 or 2 (as appropriate)

for a variety of well-cited studies where dynamic chambers were used, Cchamb-Catm

values were estimated. These values are presented in Table 2 and include the Subke

(2002) and Kutsch et al. (2001) chambers that performed very well in the Pumpanen

et al. (2004) tests. There is a surprising range in the values deemed to be acceptable,

and relative to the other dynamic chambers the lateral diffusion footprint of the FD

embodiments is likely to be rather low. Lateral diffusion error does, however, remain

an important consideration that will be addressed in this study using 3D modelling,

and specifically for the FD chamber embodiments used here.

Pressure venting is an important aspect of chamber design. It has been established

that pressure gradients in efflux chambers cause measurement errors (Davidson et

al., 2002) and as a result, chamber systems of all types rely on venting to equilibrate

pressures with the free atmosphere. In the FD chamber, the membrane itself is used

to accommodate pressure changes. Somewhere between 1% and 10% of the membrane

surface is made up of pores of micron scale, which allows free passage of all gases.

Liquid water is excluded simply due to its strong surface tension on the hydrophobic

surface. In the embodiment described above, the total membrane porosity would

equate to a vent tube of 1 cm diameter, which is very large for the small chamber

volume under consideration. In addition to cross-membrane pressure equilibration,

the membranes are somewhat flexible. Although supplementary venting does not

appear to be necessary, this topic merits further research. Ideally, this would take the

form of a comparative laboratory study comparing several efflux techniques where

artificial wind is generated.
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2.4.4 Flux Generator Experiments

A reference apparatus provides a good platform for empirical tests of FD dynamic

chambers. Performance was benchmarked in both a 1-D environment (no lateral

diffusion), and a 3-D environment, using several soil gas diffusivities.

A flux generator similar to that of Martin et al. (2004) was built using a Li-Cor LI-

820 infrared gas analyzer (IRGA) with 0-20,000 ppm range to continuously measure

CO2 concentration inside a reservoir. A small diaphragm pump (Gast 3D1060-1-1-

1073) was used for loop circulation. A 234.23 L reservoir was used, in which air was

mixed by a fixed-speed fan which circulated air from top to bottom and mixed the

entire volume in ∼15 s. On top of the reservoir sat a 0.324 m2 tray holding a glass

bead soil, or in some cases a homogenized soil free of organics (as processed by loss on

ignition) to a depth of ∼14 cm. A four-port exhaust manifold coupled to a Nederman

exhaust arm was used to keep the soil surface concentration near ambient levels.

The flux generator was automated using a National Instruments Data Acquisition

device and a custom-designed Labview interface. Pure CO2 was introduced into the

reservoir downstream of the Li-Cor IRGA by automated valving (Clippard). Two

Vaisala GMM222 0-2000 ppm sensors were used to monitor ambient (Catm) and soil

surface concentrations as required. Otherwise, all operational parameters and mass

balance equations for calculating flux were as presented in Martin et al. (2004). Flux

rates up to 12 μmol m−2 s−1 were produced on the generator, with a decay time of

at least 12 hours before reaching flux rates less than 0.5 μmol m−2 s−1. In the 3-D

tests, the FD soil and reference chambers were deployed together on the surface. In

this large soil area, lateral diffusion was allowed to proceed as it would in the field.

For 1-D tests, the smaller apparatus shown in Figure 2.2 was used, with a reservoir

of 0.412 litres in which a Vaisala 0-5000 ppm GMP343 sensor is mounted integrally.

The FD chamber was coupled directly to the generator, excluding the synthetic soil

used by Martin et al. (2004), creating a 1-D flow system and preventing development

of lateral diffusion gradients around the chamber. A flow of CO2-free air (N2, high

purity) was circulated through a larger cylinder that covered the side (exhaust)

membranes. The Catm value does not have to be measured in this case because

the N2 flow maintains a zero CO2 concentration. G is measured by first spiking

the concentration of the reservoir by injection of pure CO2, waiting for the system
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to equilibrate (∼20 minutes), and then logging the decay rates of reservoir and FD

chamber concentration. The process takes roughly one hour. While 3-D testing is

obviously a more realistic analogue to field deployment environments, 1-D testing

provides an opportunity to validate the technique without the complicating noise of

lateral diffusive effects.

1-D and 3-D flux generator runs were used to evaluate: linearity between Cchamb

and F ; the value of G for each FD chamber; the consistency of G between 1-D and 3-

D environments; the effect of controlled and uncontrolled Catm; and lastly to compare

against modelling simulation of similar systems.

2.4.5 Comparative Mesocosm Tests with Li-Cor LI-8100

Instrument intercomparison is important for method validation, and in recognition

of this comparative tests were undertaken in a real packed soil to determine relative

response between Li-Cor LI-8100 and FD dynamic chambers. For these tests, an

experimental mesocosm was used where CO2 was produced in a soil by an active

microbial community responding to forced changes in temperature. This experiment

provided a more realistic environment than the flux generator, but also allowed us to

minimize the complicating factors of spatial variability that might be encountered in

side-by-side field tests.

The synthetic soil was made using a mix of silica, sand and commercial topsoil,

homogenized and packed into a round 0.25 m2 column approximately 25 cm deep.

Electric soil heating cables (Nexans CSA LL23462 F AWU90 XLPE) were installed

in the bottom and on the sides of the column before soil packing, controlled

thermostatically by a datalogger that simulated a realistic diurnal pattern of soil

temperature. Thermostatic control was carried out using a Campbell Scientific CR23x

datalogger and relays, and three Campbell Scientific 107b thermistors which were

installed in the soil at 5 cm depth and positioned equidistant from one another,

all 10 cm from the centre of the plot. The datalogger took an average of these

temperature readings and turned heating cables on or off as necessary, forcing a

smooth sinusoidal temperature variation with a mean of 23◦C and amplitude of 5◦C.

The room temperature was kept constant at 18◦C. A Campbell Scientific (CS616)

volumetric water content reflectometer recorded soil moisture variations during the
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experiments.

Three smaller Vaisala GMM222-based FD chambers were used for this test, with 5

cm collars, and metal spikes fixed to the outside of the housings to hold the chambers

stationary in the soil. The FD chambers were installed at a radial distance of 15 cm

from the centre of the plot, as was the Li-Cor LI-8100. Since the soil was actively

respiring at an unknown flux rate, the Li-Cor was used to measure the flux magnitudes

across one diurnal cycle so that the FD G value could be established. For the balance

of the experiment, the FD chambers and Li-Cor ran independently of one another.

Atmospheric concentrations were not controlled, though the experimental apparatus

was placed in a lesser used part of the the lab and saw somewhat smaller deviations

than the core working area. Approximately one thousand Li-Cor and comparative

15-minute timescale FD flux measurements were taken over the course of a 10-day

period, and no corrections were applied to the data except for routine ideal gas law

corrections required by the Vaisala 222 sensors.

2.4.6 Field Tests

Data are presented here from two long-term field deployments initiated in July 2010

using Vaisala 343-based FD chambers: one at a boreal system on North Mountain,

Nova Scotia (46◦55’15”N, 60◦25’17”W) and the other at the margin of a fallow

agricultural field in Woods Harbour Nova Scotia (43◦39’26”N 65◦29’38”W). Two

FD chambers and one FD reference chamber were deployed at each site within a

footprint of roughly 1 m2. A Campbell Scientific CR1000 datalogger was used to

toggle the sensors on for 15 minutes every half hour, at the end of which data was

sampled, calculations were done, and data was stored in the logger memory and/or

transmitted via cellular telemetry to St. Francis Xavier University. A Sharp 80 watt

solar panel, and Discovery D12550 deep cycle battery was used to power the small

station. Peripheral sensors measured temperature (Campbell 107b at 2 m in air,

and 0, 10, and 30 cm depth), volumetric soil water content (Campbell CS616-L at

10cm and 30 cm), shallow soil oxygen (S-200 Apogee Instruments Inc), and relative

humidity (Pace Scientific). Li-Cor LI-8100 spatial flux surveys were conducted several

times during the summer and fall of 2010, along the same 1 m increments in N,S,E,

and W directions from the FD sensors. Flux surveys were used as a qualitative
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comparator of Li-Cor and FD values, though the spatial and temporal heterogeneity

of these natural environments is too high to provide reasonable controlled comparator

data. The primary motivation for establishing the field sites was to assess real-world

power consumption of the FD technique, test overwinter applications, establish long-

term drift due to membrane degradation, and overall to consider the utility of FD

chamber data.

2.5 Results and Discussion

2.5.1 Modelling Simulations

Figure 2.3 (A-C) shows the behaviour of the FD instrument in the absence of lateral

diffusion (1-D diffusion only). Here the behaviour of the FD method was examined

under three conditions. In panel A, 5% gaussian noise was added to the FD signal

to examine the effect of potential electrical noise in the concentration measurement

signal. Not surprisingly, the mean signal with noise added was the same as the noise

free case and noise propagated linearly such that 5% noise in concentration manifested

itself as 5% noise in the flux signal. In panel B, the effect of a step change in soil

diffusivity and pore space on the probe measurement was examined. Theoretically, the

probe should measure soil surface flux and be unaffected by the soil’s diffusive regime

once reequilibrated (at least in 1-D). As expected, the measured and actual values for

flux followed each other closely before and after the step change has occurred. Finally

C shows the effect of changing atmospheric concentration and the importance of an

atmospheric reference. Panel C shows a FD chamber with and without atmospheric

compensation, in an atmosphere where soil fluxes and atmospheric concentration are

varying with the same (double diurnal) period, but with a small offset in peaks.

In both cases, the atmosphere was experiencing sinusoidal variation of ±75 ppm.

Without an atmospheric reference (dotted lines), the timeseries recorded the right

mean owing to the equal variation of atmospheric concentration through time, but the

amplitude and temporal variation are obviously not captured properly. In the simplest

terms, this last panel illustrates the consequences of assuming that Catm is stable in

time, and that Cchamb alone could be descriptive of flux. It is therefore not possible

to leave terms out of Equation 2.4 and arrive at reasonable approximations of flux
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rate, unless Catm were truly stable, which is unlikely. The results of these simulations

show clearly that atmospheric CO2 concentration measurement is as important as the

measurement within the FD chamber itself.

The 3-D model runs shown in Figure 2.4 help inform us about real-world lateral

diffusion impacts and associated errors. Consistent with the relationship between

lateral diffusion and Cchamb-Catm, this error was directly related to the difference

between the diffusivity of the FD chamber and the diffusivity of the atmosphere. Low

chamber diffusivity values resulted in high retention of CO2 within the chamber. As

a consequence, soil CO2 moved around the chamber in favour of quicker moving soil-

atmosphere flow paths. As the difference in the atmospheric and chamber diffusivities

approached zero, so did the associated 3-D error. Due to the resolution of the Vaisala

sensor, however, the chamber needs to maintain a super-ambient concentration and

imposes a practical limit to how much of this error can be removed. As shown in

Panel C of Figure 2.4, lateral diffusion error was almost a constant offset under a

wide range of real-world conditions, with <1% variation in error at common soil

gas diffusivities equal to or lower than 10−7 m2s−1. Soil gas diffusivities and collar

length were proportionately less important. Owing to compaction and the presence

of moisture, soils have diffusivity values that are 10−7 m2s−1 or lower, especially

at temperate sites (Risk et al., 2008b) so that in most field settings, diffusivity

should be a small determinant of error. In the case of very highly diffusive free

atmospheres (high winds, thin boundary layers), the technique is still valid but more

error is incurred with increasingly diffusive atmospheres, as shown in Panel D of

Figure 2.4. Panel D can also be extrapolated to consider subnivean environment or

environments of lower free-atmospheric diffusivity, where the FD chamber will read

values that are slightly higher than the true flux. The explanatory mechanism is the

channeling of gases through the chamber, whose diffusivity is now higher than the

surrounding environment. This is inverse to the normal pattern of lateral diffusion,

where CO2 flows outwards around the chamber. The subnivean error will be enhanced

as snow diffusivities are reduced below faster equivalent to CO2 free air diffusivity

(1.6x10−5 m2s−1) but is still small overall. Typical snow diffusivities are in the 10−6

m2s−1 range (Winston et al., 1995), where a FD chamber will read several percent

above true flux. As the snowpack evolves and grains sinter, the snow diffusivity and
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the lateral diffusion footprint will change. Luckily these effects are still relatively

small, and a reasonable tradeoff for generating data in this difficult environment. It

should be noted that in sub-snow environments, FD sensors must tolerate higher CO2

concentrations that will be present under snow.

2.5.2 Flux Generator Trials

Figure 2.5 shows typical 1-D and 3-D flux generator runs across different flux ranges.

Linearity of the technique was excellent across the tested range, and a singular

G value adequately describes the proportionality between Csoil-Catm and generator

flux. The 3-D flux generator runs also fell along the same 1:1 line, indicating

that no appreciable 3-D diffusion had taken place. In almost all cases the error

correspondence between flux generator and the FD chamber fell within the 2% error of

the Vaisala concentration sensors. Confirming the results of numerical modelling, soil

gas diffusivities did not significantly affect the correspondence between flux generator

and FD chamber values (not shown).

2.5.3 Comparative Mesocosm Experiment

As shown in Figure 2.6, the Li-Cor LI-8100 and the FD chamber showed excellent

correspondence over the measurement period, and linear regression yielded an R2 of

0.901. Both FD and the Li-Cor were subject to random electrical or measurement

noise, which accounted for much of the variation between the two sets of measure-

ments. To confirm that the empirically (Li-Cor) derived G did not significantly influ-

ence the results of the experiment, the G was re-calculated using five different subsets

of data from the experiment: 6 and 24 hour subsets, from both the start and end

of the 10 day experiment; and by one-time correspondence between the readings at

a single point randomly selected near the middle of the experiment. In all cases the

G value varied slightly, but the variation was not enough to be noticeable on plots

and was well within the error of the instruments and methodologies involved (Vaisala

222s at ∼3%; Li-Cor concentration and regression error at ∼2%). In all cases the

regressions were linear, and with similar R2. This confirms that the measurement of

variability of FD chambers does not differ from the Li-Cor, and suggests that, within
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measurement error of both instruments the FD chambers and the Li-8100 were lin-

early related, captured the same signal, and measured fluxes equally well under these

conditions.

2.5.4 Field Deployments

Figure 2.7 shows portions of characteristic data from Woods Harbour, Nova Scotia

for summer, soil frost, and old snow periods. In each case, fluxes and concentrations

are shown for two FD chambers spaced 30 cm apart. Wide swings in lower boundary

layer CO2 concentrations obviously drove temporal variability in fluxes (particularly

in summer), reinforcing the need for an atmospheric reference sensor to give accurate

readings. While fresh snow seemed uniformly diffusive and presented little problem,

aging, compact, and wet snowpacks (Panel C) appeared to have characteristically high

micro-spatial variability which caused adjacent FD chambers to diverge in flux, and

FD chamber concentrations fell on either side of the (subnivean) atmospheric reference

concentration. This high spatial variability has been observed in other studies, for

example by Winston et al. (1995). While a remote atmospheric reference is normally

sufficient in the well-mixed free atmosphere, a FD chamber-mounted reference would

be more suitable in theses poorly-mixed subnivean environments.

The magnitude of boundary variability in Catm concentrations shown in figure 2.7

is striking. These temporal variations do not undermine the FD technique because the

associated atmospheric reference probe measures Catm continually. However, uneven

vertical positioning of these reference chambers (such as placing the chamber in/on

a hollow/hump) can lead to small deviations in the measured values. Sitting on a

hump, a reference chamber would measure a lower Catm value, corresponding to the

boundary layer concentration decay in the upward direction. A lower Catm value

would increase the Cchamb-Catm difference, and consequently the flux. The opposite

would be true of a reference sensor placed in a small hollow relative to its Cchamb pair.

To explore this spatial boundary-layer related error, data from the North Mountain

field site were used, where in conjunction to FD long-term testing, atmospheric

boundary layer CO2 concentrations were measured at 50 cm increments between 0 cm

(soil surface) and 200 cm with Vaisala 222 sensors. Taking a daytime and nighttime

boundary layer concentration profile from early in September 2010, concentrations
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were regressed against height. The best fit relationship followed a power law, which

is consistent with typical wind profiles and atmospheric mixing processes cited in

other studies (Hsu et al., 1994). These relations were used to infer Catm as a function

of height, and re-calculated the flux values based on the new Cchamb-Catm difference.

Table 4 shows results from this analysis. In this table, Factual represents the observed

data for a FD chamber and immediately adjacent FD atmospheric reference chamber.

If the reference Catm probe were moved upwards by +2.5 cm, the measured Catm

would see lower concentrations and higher apparent fluxes owing to larger Cchamb-

Catm difference. The potential consequences of a misplaced reference FD chamber

are clearly large, particularly in hump and hollow topography that is characteristic of

temperate forests. Both the mean and amplitude of data will be affected. A simple

offset or multiplier cannot be used to correct the data, because the boundary layer

decay exponent varies in time. This source of error can be averted by proper sensor

placement on the landscape. To avoid this issue altogether, new FD prototypes may

integrate both Cchamb and Catm sensors into a single instrument, which will no doubt

become more affordable as new sensors come to market. Overall, rapid concentration

change with height in the surface boundary layer is a potential issue for both FD and

normal dynamic chambers. It is also a non-trivial issue for static chambers, where

concentration at t=0 must be representative of the soil surface boundary layer, as

opposed to knee height, which might be more typical of a survey instrument being

carried between collars.

Figure 2.8 shows results of a typical spatial survey with Li-Cor LI-8100 and

existing FD chambers at the Highland site where hump and hollow topography is

characteristic. During the time it took to conduct the Li-Cor survey, the FD chambers

onsite read between 2.0 and 2.5 μmol/m2/s, and the Li-Cor value in close proximity

(30 cm) to the FD chambers matched up well in magnitude (2.38 μmol/m2/s). Data of

this nature is, however, relatively qualitative because it is impossible to make accurate

comparisons between instruments where both temporal and spatial variability are so

characteristically high.

Due to membrane degradation via UV radiation, particle abrasion, or biofouling,

it is likely that G will drift through time as a function of environmental conditions.

However, the hydrophobic UV stabilized 1460CL Tyvek was surprisingly durable, and
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during the course of these lab studies no measurable drift was found in retesting even

after 4 months. Initial local field experience suggests that G is very stable over time

periods of at least several months. Once a full one-year period has elapsed, the existing

housings will be brought into the laboratory to re-determine their G value. A better

procedure for assessing drift or re-calibration interval would be to conduct a suite of

laboratory experiments, where membranes could be artificially aged by sandblasting,

microbial culturing, etc. Once drift rates are known, it will be possible to define

recalibration intervals, which would involve replacement of the diffusive membrane

portion of the dynamic chamber with new (and recently calibrated) parts. Given the

low membrane material cost, regular replacement is a feasible and prudent option,

with readily available calibration equipment. The optimal membrane replacement

intervals are estimated to range from several months to one year, depending on

environment. Additionally, louvres or other physical protection could be designed

to extend membrane lifetimes in very harsh environments.

Power consumption at the field sites was manageably low, at roughly 1 watt per

hour total for one FD chamber and one atmospheric reference chamber measuring at

half-hourly intervals. This compares very favourably to a continuously operating Li-

Cor, which consumes about 15 watts per hour and is comparatively difficult to sustain

off-grid. The data loss rate during the 8 month deployment was only ∼1%, usually

due to temporary power loss after five or more successive days of fog. Opportunities

are evident to further reduce power consumption using logic sequences to toggle the

Vaisala optics heaters, or by reducing the duty cycle with a move towards CO2 sensors

with faster warmup times. It is likely that more power-thrifty and/or faster warmup

sensors will reach the market in the coming years, potentially in a miniaturized form

which would allow for fast warmup and for each FD chamber to have an on-board

reference. If sensors could be found that would reach warm-up in 1 minute or less,

power consumption could be reduced by a factor of ten or more.

2.6 Conclusions

Overall, the passive FD chamber technique is promising in both benchmarking and

head-to-head tests relative to a Li-Cor LI-8100. The technique performs much as

a typical dynamic chamber, and no significant new operational constraints were
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identified during this study. Numerical modelling helped identify that diffusive

through-flow potential (G) of the FD chamber (equivalent to pump volumetric flow

in the traditional dynamic chamber method) was the most important operational

parameter for measuring accurate efflux values.

Given the various field and laboratory tests described here, and the extensive 3-

D modelling, the FD technique is perhaps better characterized than many existing

chambers (static or dynamic). It is shown that the technique is theoretically valid

and, not surprisingly, very similar to regular dynamic chambers which have been in

use for many decades.

While accuracy and precision of FD dynamic chambers appear to be comparable

to other techniques, the passive design offers the advantage of significantly reduced

power consumption. FD chambers offer other potential advantages including simpli-

fied calibration (G is the only configurable/calibrated operational parameter), and

flexibility as the technique can be extended to work with clear or opaque chambers,

or adapted for use with other soil gases of interest. FD chambers are robust enough

for further usage in field studies, but further FD empirical testing is probably justified

in four areas: 1) to investigate potential venting/pressure considerations and exam-

ine whether additional compensatory vents are required ; 2) to define re-calibration

intervals; 3) to establish fast and repeatable rapid-calibration devices for FD hous-

ings, and 4) to document performance and survivability in additional subnivean field

studies and harsh environments.

Overall, the FD chamber technique is promising, and offers new possibilities to

researchers in soil carbon cycle research.
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Table 2.1: Range of simulations performed using the 3-D model, to assess error
(observed flux / true flux) as a function of operational parameters. Changes in
atmospheric diffusivity are meant to simulate non-diffusive surface boundary layer
environments. This analysis was also performed for a range of accepted traditional
static and dynamic efflux chambers, where FD fell in the middle of the pack. Results
for the full comparative study will be documented in a separate manuscript.

Parameter Range of Values Increments
Collar length 0-20 cm 5

Diffusivity of FD chamber (DFD) 0.2-1 fractions of atmospheric D 5
Diffusivity of soil (Ds) 1x10−9 -1x10−5 m2s−1 5

Diffusivity of atmosphere (Datm) 1x10−5 -1x10−3 m2s−1 5
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Table 2.2: Increase in Cchamb-Catm for steady state chambers used in other studies.
Although geometries are also a consideration, progressively larger values of Cchamb-
Catm indicate that larger chambers have a greater likelihood of inducing feedbacks in
the soil, which result in lateral diffusion and under-reporting of flux.

Study Area Volume Pump Rate Elevated CO2

(m2) (m3) (litres min−1) (ppm per 1 μmol m−2s−1)
FD (this study) 0.0020 0.0137 - 26-45

Gamnitzer et al. 2009 0.8300 0.6600 1.6000 694
Camarada et al. 2009 0.0314 0.0031 1.0000 42
Rochette et al. 1997 1.3273 0.2655 - 97
Bain et al., 2005 0.0500 0.0050 0.5000 134

Rayment and Jarvis, 1997 0.0616 0.0092 1.0000 82
Subke, 2002 0.0314 0.0025 1.0000 42

Kutch et al., 2001 0.0200 0.0028 1.0000 27
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Table 2.3: Properties of the FD instrument used in the flux generator tests, with a
Vaisala GMP 343 (0-2000 ppm) as the base sensor and a membrane arrangement that
retains ∼26 ppm per 1 μmol m−2s−1 flux, depending on housing. Power consumption
is estimated for hourly data collection, where the sensor is active for 15 minutes of
every hour for warmup and measurement. For comparison, Li-Cor LI-8100 power
consumption specification is ∼285 Watts/day. Accuracy and precision values for Li-
Cor and similar instruments will vary, depending on user configuration.

Parameter Value
Accuracy - Vaisala GMP343 2%
Precision - Vaisala GMP343 0.1 ppm

Accuracy - FD 2%
Precision - FD 0.0038 μmol m−2s−1

FD range 0-60 μmol m−2s−1

FD + FDref power consumption (25% duty) 10.8 Watts/day
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Table 2.4: Analysis to identify the consequences of moving the atmospheric probe
up and down in the surface boundary layer, using data from the Highland site where
atmospheric boundary layer concentrations are measured continually in the first 200
cm of the atmosphere. One overnight and daytime period are shown.

Date Sept 3 2010, 0200h Sept 4, 2010, 1400h
Fit, z=0-100 cm Catm=568.49z−0.093 Catm=403.25z−0.061

Fit R2 0.96 0.94

Catm z=sensor 489 366
Catm z=-2.5 cm 522 381
Catm z=+2.5 cm 471 357
Catm z=+10 cm 442 342

Factual z=sensor 5.30 3.90
Fmeas z=-2.5 cm 4.00 3.27
Fmeas z=+2.5 cm 6.02 4.26
Fmeas z=+10 cm 7.40 4.85

Fmeas/Factual z=-2.5 cm 0.75 0.84
Fmeas/Factual z=+2.5 cm 1.14 1.09
Fmeas/Factual z=+10 cm 1.36 1.24
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Figure 2.1: Schematic of Forced Diffusion Flux chambers tested in this study.
Membranes not shown in exploded view. Reference (Catm) setup is identical except
that a thick impermeable rubber gasket is situated between the collar and cylinder
in place of the usual Tyvek membrane. The typical G for the embodiment drawn
here is ∼0.03886 ±0.00364 owing to small differences in membranes, machining and
assembly tolerances, etc.
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Figure 2.2: One-dimensional miniature flux generator device used for benchmarking
in 1-D, and calibration of FD housings. The cavity around the FD housing is purged
continually with N2 at a flow rate of >200 sccm which is sufficient to minimize internal
buildup of exhausting CO2.
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Figure 2.3: 1-D numerical model results. Panel A shows the sensitivity to concen-
tration error, shown with 5% random error added to concentration data. Panel B
shows true (black) and measured (grey) fluxes following a simulated step change
in moisture, which causes a decreases in soil pore space and diffusivity of 0.05 v/v
and 8.26x10−7 m2ss−1, respectively. Panel C shows a FD chamber with and without
atmospheric compensation in a time-variant atmosphere. The solid lines show two
simulated atmospherically-corrected fluxes varying on 12 hour timescale, with slightly
different amplitudes. The dotted lines represent the same timeseries without atmo-
spheric correction. In both cases, the atmosphere is experiencing sinusoidal variation
of ±75 ppm with the same 12hour period but a small temporal offset.
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Figure 2.4: 3-D Numerical modeled flux error as a function of configurations and
environments. These 3-D simulations allow lateral diffusion, and the FD technique
is prone to small degrees of under-measurement of flux, particularly if the FD
chamber has a very low diffusivity (D). Preliminary modelling of other instrument
configurations (static chambers, dynamic chambers) suggests that these sensitivities
should not be considered as unique to the FD technique.
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Figure 2.5: Panel A shows a 45-minute flux generator run using the miniature 1-D
device. Concentrations in the FD chamber are plotted here against flux, showing the
characteristically linear relationship. Deviations from linearity are most likely due to
behaviour of Vaisala 343 sensors, as model data cannot reproduce this effect. Panel
B shows one flux generator calibration run (24 hours long, 10 to 0.5 μmol/m2s−1)
with two Vaisala 343-based FD soil FD chambers (Cchamb), and one Vaisala 343-based
atmospheric FD chamber (Catm) deployed on the synthetic soil surface in which lateral
diffusion is allowed to take place. The Cchamb-Catm difference and (G) is again linear
despite widely variant Catm values. Both panels show results which are typical of
many dozen similar runs that have been performed to date.
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Figure 2.6: Comparison of a GMM-222 based FD FD chamber and a Li-Cor-8100
automated chamber, on mesocosm soils undergoing temperature change forced by
heating cables controlled by a datalogger. Both instruments show very similar
response over time, and linear regression yields an R2 value of 0.901.
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Figure 2.7: Field data from Woods Harbour, Nova Scotia, showing characteristic data
for summer, soil frost, and old snow periods. In each case, fluxes and concentrations
are shown for two FD chambers spaced 30 cm apart. The legend for all plots is shown
in Panel C. Wide swings in lower boundary layer CO2 concentrations obviously drive
temporal variability in fluxes (particular in summer), which reinforces the need for
an atmospheric reference sensor for accuracy.
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Figure 2.8: Example of spatial survey with Li-Cor LI-8100 and existing FD chambers,
at the North Mountain site. During the time it took to conduct the Li-Cor survey,
the FD chambers onsite were reading between 2.0 and 2.5 μmol/m2/s, and the Li-Cor
value in close proximity (30 cm) to the FD chambers matched up well in magnitude
(2.38 μmol/m2/s).



Chapter 3

Iso-FD: A Novel Method for Measuring the Isotopic

Signature of Soil Flux

3.1 Preamble

This chapter describes the adaption of the FD technique, presented in Chapter 2,

to the measurement of the isotopic composition of soil flux. Authorship on this

manuscript is as follows: Nick Nickerson, Jocelyn Egan and Dave Risk. I was the

principal investigator in this research and handled all of the writing, theory, and

numerical modelling and also helped to perform the lab and field experiments with

Jocelyn Egan. Dave Risk supervised this project. A version of this manuscript has

been published in Soil Biology and Biochemistry in July, 2013 (Volume 62). Copyright

permission for this publication can be found in Appendix E.

3.2 Abstract

Stable carbon isotopes have become a critical and often used tool in understanding

ecological and physical processes affecting gas production and emissions in soil.

While the insights gained using chamber based flux methods have been significant,

it is known now that many of these chamber methods have an inherent bias that

complicates the interpretation of their measurements. Here a new chamber method

is presented that uses diffusive membranes to control CO2 flow into and out of the

chamber, and can measure the isotopic composition of soil flux without inducing

a bias. Results from numerical modelling are presented, followed by laboratory

calibration and field measurements using this new method coupled to a Cavity

Ring Down Spectrometer (CRDS). Simulations, as well was lab and field results

showed that the method is both robust over a range of environmental conditions and

can be unbiased, unlike other chamber approaches. Finally, possibilities for future

improvements and variations on the measurement approaches are discussed.

34
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3.3 Introduction

Over the past two decades, the measurement of stable carbon (C) isotopes has become

a critical tool in elucidating the biological and environmental controls on many of

the pathways by which CO2 can be produced and emitted from the soil (Ekblad

and Högberg, 2001; Formanek and Ambus, 2004; Maseyk et al., 2009; Subke et al.,

2009; Phillips et al., 2010). While field and laboratory work continues to advance the

understanding of the biology, chemistry and physics of soil CO2 processes, researchers

are likely still overlooking or misinterpreting potentially critical scientific results from

isotopic data due to methodological biases (Phillips et al., 2010; Nickerson and Risk,

2009b,c; Ohlsson, 2010; Gamnitzer et al., 2011).

Specifically, when measuring soil CO2 efflux and its stable C isotopic signature,

chamber methods such as static or dynamic chambers, may drive a potentially

large bias because of non-steady state diffusion processes (Nickerson and Risk,

2009c). More importantly, these biases are likely to co-vary with environmental

conditions (Nickerson and Risk, 2009c; Phillips et al., 2010), thereby confounding the

interpretation of results further. These methodological biases have been documented

and some solutions have been offered, such as modification of the historical chamber

designs (Ohlsson, 2010) to minimize the bias and model fitting of chamber data to

remove bias artifacts (Nickerson and Risk, 2009c; Gamnitzer et al., 2011). Although

each of these approaches is likely to offer more reliable data, the ideal scenario would

be to develop a new method of measurement that does not inherently have a bias.

Here, a steady-state method called Forced Diffusion (FD) (Risk et al., 2011),

which is functionally similar to open chamber systems, was modified so that it could

be used for measurement of isotopic fluxes. The hypothesis was that the steady

state diffusion based chamber design should eliminate biases that are present in other

chamber systems. The basic theory of the method is presented, as well as numerical

modelling which helped us ensure that the method is theoretically robust under a host

of diffusive conditions. FD chambers were then modified for use as Isotopic Forced

Diffusion (Iso-FD) chambers, coupling them to the Picarro G1101-i Cavity Ring Down

Spectrometer for measurements of CO2 concentrations and isotopic signatures. The

chamber design was tested against soil gas derived measurements of isotopic flux in

the lab to validate the method and was subsequently deployed under field conditions
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in a ∼ 20 year old Red Pine stand for comparison against the subsurface Keeling

plot (see Appendix D2 for an expanded definition of the Keeling Plot) and gradient

approaches.

3.4 Methods

3.4.1 Iso-FD Theory

Isotopic Forced Diffusion (Iso-FD) chambers are an isotopic variant of Forced Diffu-

sion (FD) chambers presented in Risk et al. (2011). The chamber design is a logical

extension of the typical dynamic chamber design (Rayment and Jarvis, 1997), except

the outflow of accumulated soil gases is regulated by a diffusive membrane rather

than mass flow. The chambers used in this study consist of a membrane-covered

inlet in contact with the soil surface, and membrane covered outlets in contact with

the surrounding atmosphere. For the FD chambers, the mass balance for bulk CO2

measurements is:

V
δC

δt
= AsFin − AaFout (3.1)

where V is the chamber volume, C is concentration, t is time, As is the area of the

membrane in contact with the soil surface and Aa is the area of the membrane in

contact with the atmosphere, Fout of the chamber can be thought of as the diffusive

gradient across the membrane from the concentration in the chamber C(t) to the

concentration in the atmosphere Catm, which is dependent on both the path length

of diffusion (L) and the diffusivity of the membrane material (D), as per Fick’s Law.

With these substitutions for Fout, the equation can be modified to:

V
δC

δt
= AsFin − Aa

D

L
(C(t)− Catm) (3.2)

Making the assumption of steady state diffusion through the chamber Equation 3.2

is reduced to:

Fin =
Aa

As

D

L
(CFD − Catm) (3.3)

Equation 3.3 describes the soil flux, where the atmospheric CO2 concentration, Catm

is subtracted from the CO2 concentration in the chamber, CFD. Due to the natural

variability in Catm, it must also be monitored closely to avoid error in the final solution.

To do this a separate, similarly designed chamber with a non-permeable bottom is
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used to prevent soil gas from entering. This dummy chamber allows us to closely

monitor changes in Catm and correct for them in the final flux calculations.

In the case of isotopic flux, each of the carbon isotopologues of CO2 can be treated

as separate diffusing gases (Cerling et al., 1991), allowing us to write similar equations

for both 12CO2 and
13CO2. By taking the ratio of the fluxes of each isotopologue the

isotopic composition of soil flux is gained:
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which can be simplified based on the understanding that 1) the area variables will

cancel because the same chamber is used for each isotope, and 2) the path length (L)

and diffusivity will reduce to the reciprocal of diffusion fractionation (1.0044) yielding

the final Iso-FD solution:
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Equation 3.5, of course, can be converted to del-notation for more convenient use.

3.4.2 Numerical Modelling

To ensure that the Iso-FD chambers do not suffer from any of the lateral diffusion ar-

tifacts present in other chamber systems they were modeled using a three-dimensional

soil-atmosphere-chamber model, similar to the one used in Nickerson and Risk (2009b)

and Nickerson and Risk (2009c). This new model (Creelman et al., 2013) has cubic

grid geometry, making it more flexible to use both for varying soil properties and

varying chamber sizes and geometries. In brief, the model transports gas between its

six nearest-neighbour cells using Fick’s Law:

F1,2 = −D1,2
ΔC1,2

Δ(i, j, k)1,2
(3.6)

where F is the flux between cells, D1,2 is the intercell diffusivity constant, ΔC is the

difference in the cell gas concentrations and Δ(i,j,k) is the three-dimensional difference

in cell positions. After each time step, the concentrations in each cell are re-calculated

taking into account relevant fluxes during the last time step. The model is modified

from bulk CO2 to modelling CO2 isotopologues by the same process described in
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Nickerson and Risk (2009b) Nickerson and Risk (2009b) and Nickerson and Risk

(2009c) Nickerson and Risk (2009c). Previous work has shown that soil diffusivity,

gas production rate and chamber collar depth to exert the most control over the

bias caused by lateral diffusion. To this end steady state chamber concentrations

and isotopic signatures were simulated for diffusivities and production rates spanning

three orders of magnitude (Dsoil: 1×10−8 - 5×10−6 m2 s−1; Production (P): 0.1 -

10 μmol m−2 s−1) and collar lengths (ξ) from 0-8 cm long. A range of values (D:

1×10−7 - 5×10−6 m2 s−1) for the diffusivity of the Iso-FD chamber membrane (D

term in Equation 3.3) were also simulated to examine the effect on the resulting

isotopic flux estimates. The modeled and actual chamber had similar surface areas

(Modeled: Aa=As=16 cm2; Actual: Aa=20 cm2, As=19 cm2) although the volume of

the modeled system was about half for computational reasons (Modeled: V=64 cm3;

Actual: V= 133 cm3); however, this difference in V does not affect the final model

results. For each combination of parameters (Dsoil, P, ξ, D) the true isotopic flux

of the modeled soil was compared to the flux estimated using the modeled Iso-FD

chamber to estimate potential bias under the various conditions. The base model was

also modified slightly to include a pump on the chamber, which draws air from the

chamber for sampling and allows the same volume of air from the atmosphere above

the chamber to enter and dilute the chamber concentration. This was a necessary

model addition in order to test for pumping related biases in the case that the chamber

air cannot be recirculated due to technical limitations, as is discussed in the following

section.

3.4.3 Iso-FD Chamber Design & Isotopic Measurements

The Iso-FD chambers mirror the design of the Forced Diffusion (FD) chambers

presented in Risk et al. (2011). The chambers are made from 5 cm internal diameter,

8 cm long sections of PVC tubing. On opposing sides of the PVC, two ∼ 10 cm2

windows were cut to allow venting of gas to the atmosphere. The bottom (inlet)

surface of the chamber, in contact with the soil, has an open surface area of ∼ 19

cm2 while the top of the chamber is sealed with a PVC plug. Risk et al. (2011)

Risk et al. (2011) provides detailed schematics and photos of the chamber design.

For the Iso-FD chamber, the membrane material covering the inlet surface is a UV
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resistant Tyvek (DuPont) and a Gore-Tex (W. L. Gore & Associates Inc., Newark,

Delaware) membrane material covering the two opposing outlet surfaces. These two

differing membranes (Diffusivity Tyvek > Diffusivity Gore-Tex) allow CO2 to buildup

to a sufficient concentration within the chamber so that isotopic measurements can

be made with minimal error (discussed later). In theory, it is unnecessary to have

a membrane on the inlet surface, as the diffusivity of CO2 in free air is also greater

than the diffusivity through the Gore-Tex membrane. However in practice the Tyvek

bottom membrane helps exclude liquid water from the interior of the chamber as

well as provides a barrier to potential mass flow from the soil pores into the chamber

during sampling. Any mass flow events from the soil would violate the assumption of

diffusive transport and thereby cause error in the Iso-FD estimates.

Isotopologue concentrations within the Iso-FD chamber are measured using a

Cavity Ring Down Spectrometer (CRDS, Picarro G1101-i, Picarro Inc. Sunnyvale,

California) connected to the top of the Iso-FD chamber via urethane tubing (Clippard

Instrument Laboratory Inc., Cincinnati, Ohio). The chamber can operate in two

different modes: 1) gas can be recirculated (or sampled in small quantities) to

maintain the steady-state concentration within the chamber (as in Equation 3.2), or 2)

gas can be drawn from the chamber with volume replacement via an atmospheric vent

tube. Maintenance of pressure in the measurement cell of the Picarro G1101-i relies

on a difference between inflow and outflow rates and because of this recirculation

would cause undesired pressure changes in the Iso-FD chamber and likely lead to

biased results because of chamber over/under pressurization. Air is instead drawn

from the chamber and allow atmospheric air to flow in via a vent tube and replace

air drawn by the G1101-i (∼ 30 ml/min). This modifies the original mass balance

equation (Eq. 3.2) to become:

V
δC

δt
= AsFin − Aa

D

L
(C(t)− Catm) + Γ (Catm − C(t)) (3.7)

where Γ is the G1101-i pump draw rate (m3/s). As a first-order estimate of the effect

of pump draw and atmospheric air dilution on the final calculation of the isotopic flux

Equation 3.6 is solved analytically assuming that Fin is constant. As the modeled

chamber air is drawn by the G1101-i the concentration decays exponentially until

it reaches an equilibrium value between the incoming atmospheric air and the soil

flux through the diffusive portion chamber. Further analysis shows that for a fixed
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total pumping time, regardless of whether the chamber reaches its new pump-driven

equilibrium or not, the offset between the isotopic flux determined using the steady-

state (recirculated) Iso-FD and the pump drawn Iso-FD is always a constant value

regardless of the flux (Fin) rate or the isotopic signature of the flux. This estimated

isotopic signature remains constant because, for a given constant pump rate, the same

relative proportion of 12CO2 and 13CO2 is drawn from the chamber headspace. This

allows us to determine a single offset value for a given chamber design and apply it to

the Iso-FD solution (Eq. 3.5) to correct it for the pump effects. However, note that

the analytical model assumption is that incoming flux (Fin) is constant during the

pumping, which may not be the case in reality due to non-steady state effects. Because

of this analytical model simplification, results are also presented using the numerical

model, which further elucidate the relationship between pumping and potential biases

and offsets.

3.4.4 Valving System

Picarros G1101-i CRDS analyzer is factory equipped with a single inlet port so in

order to sample from multiple lines during experiments a custom valving system was

constructed including eight two-way valves (EV-2M, Clippard Instrument Laboratory

Inc., Cincinnati, Ohio) connected to a gas tight manifold. Two of these valves are

dedicated to standard gases, while the other 6 were free to collect samples. The

valves are fired using a Phidget Interface Kit 0/0/8 electronic relay (Phidgets Inc.,

Calgary, Alberta), which is connected to the Picarro G1101-i via a USB port and is

commanded by a program written in Microsoft Visual Basic.

3.4.5 Lab Validation

To validate the Iso-FD technique in the lab custom built Flux Generator (FG) was

used. The FG is functionally similar to that of Martin et al. (2004), using most of

the same operational parameters and mass balance equations for calculating flux.

Within the 234.23 L gas reservoir, a fan circulates injected gases at a fixed speed,

mixing the whole volume in approximately 15 seconds. A 0.324 m2 tray on top of the

reservoir contains a homogenized soil of glass beads (22 cm deep, 50 % v/v < 1mm

diameter, 50 % v/v 1-4 mm diameter). Concentrations of CO2 in the gas reservoir are
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monitored continuously using a LiCor LI-820 infrared gas analyzer (IRGA). A four-

port exhaust manifold and fan is situated over the tray to maintain the soil surface

concentration near ambient levels, as described in Martin et al. (2004) Martin et

al. (2004). A custom-designed LabVIEW interface and National Instruments Data

Acquisition device automated the function of the FG (including CO2 injections),

performs calculations, and records data.

Within the FG glass bead soil two filtered sampling tubes were inserted, one near

the top of the soil (∼ 2-3 cm deep) and one near the bottom of the soil (∼ 17-18 cm

deep). These sampling tubes allow us to calculate the true isotopic flux leaving the

FG instrument so that Iso-FD chambers can be calibrated for the pump offset and

also to validate their ability to measure isotopic flux. Calculation of flux from these

profile tubes uses the diffusion corrected two point Keeling plot approach, effectively

the same as the atmospheric profile method used by Griffis et al. (2005) Griffis et al.

(2005).

An Iso-FD chamber and a modified Iso-FD chamber for atmospheric measurement

(bottom surface sealed) were situated on the surface of the glass bead soil. The

two soil profile tubes, two chambers, two atmospheric tubes, and two standards

were all sampled for 15 minutes duration (∼ 450 mL of gas per sample) in the

sequence shown in Figure 3.1, an example of the characteristic unprocessed data.

The atmospheric (simply open to lab air) tubes were sampled between soil profile and

chamber measurements to ensure the sampling pathway was purged of any residual

gases from the previous measurements.

Laboratory trials of the Iso-FD method were performed by injecting CO2 into the

reservoir until the concentration reached 6000 ppm (∼ 2L of pure CO2 injected over

5-15 minutes), after which time the gas was allowed to diffuse freely through the glass

bead soil and into the lab atmosphere. Each run lasted approximately 15 hours.

3.4.6 Field Trial

In September 2011, after lab validation, chambers were moved to a ∼ 20 year old

plantation of Red Pine (Pinus resinosa) located in Heatherton, Nova Scotia (N 45◦

33’ 54”, W 61◦ 46’ 20”). Annual average rainfall for the region is 1100 mm/year with

average monthly rainfalls in August of 92 mm and 101 mm in September. Annual
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average temperature for the region is 7◦C and average temperatures in August and

September are 18.9 and 15.3, respectively.

For a period of approximately 3 days, the G1101-i was used to sample the two

chambers as well was three horizontal soil gas well (∼ 4,13,26 cm depth) that were

installed at the site in May 2011. The gas well was constructed using 50 cm long

sections of 1.3 cm inside diameter PVC tubing. Holes (1.0 cm diameter) were drilled

on opposing sides along the length of the pipe at ∼ 4.5 cm intervals. The outsides

of the wells were wrapped in Tyvek to exclude water from entering. A ∼ 10m long

section of vinyl tubing (∼ 3 mm inside diameter) was connected to the well via a

barbed fitting to allow for sampling by the G1101-i.

Similar to the lab validation, the isotopic flux was calculated for the Iso-FD

chambers (Equation 3.5) and compared them to the isotopic flux calculated via a

subsurface Keeling plot approach. Two variants of the Keeling plot were used, the first

uses the concentration and isotopic composition from shallowest subsurface gas well

and the atmosphere to calculate the isotopic flux. The second includes concentrations

and isotopic compositions from all three subsurface wells and the atmosphere. While

the first, 2-point approach should give an estimate of the flux at the soil surface,

the second 4-point approach offers a more integrated signal over the soil profile, in

addition to being more statistically sound because of the increased number of points

in the regression.

3.5 Results & Discussion

3.5.1 Numerical Simulations

Simulations of the Iso-FD technique under steady state conditions produced concen-

tration and isotopic plumes directly below the chamber similar to those found using

both static and dynamic chamber methods (Nickerson and Risk, 2009c), seen in Fig-

ure 3.2. However, in all simulations the predicted isotopic signature of flux using the

Iso-FD method was very near the input value (Mean Deviation < 0.01�) suggesting

that while the concentrations and isotopic signatures in the subsurface change, lead-

ing to lateral diffusion, the soil to atmosphere diffusive isotopic flux remains stable

during measurement despite the lateral diffusion impacts. This contrasts with the
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results presented in Nickerson and Risk (2009c) Nickerson and Risk (2009c) regard-

ing the functionally similar dynamic chamber method, which displayed significant

error due to lateral diffusion. This non-biased quality of the Iso-FD method can be

attributed to the diffusive (as opposed to advective for the typical dynamic chamber)

nature of the exchange of CO2 between the chamber and its surroundings. This allows

the Iso-FD chamber to attain a new diffusive steady state during the measurement

period that reflects the natural diffusive steady state and therefore allows the method

to predict the true isotopic signature of flux, rather than a biased value as is recorded

in the mass flow driven dynamic system.

The second set of simulations was performed to test the assumption of a constant

offset under the second, pump-drawn, operational mode of the Iso-FD chamber. For

a given Iso-FD membrane diffusivity, the pumping offsets (Figure 3.3) are relatively

constant as the analytical solution (Eq. 3.6) predicted they should be. As soil

diffusivity increases, the pump causes the offset to deviate due to non-steady state

diffusion effects induced by the decrease in chamber concentration (Nickerson and

Risk, 2009c). This soil diffusivity dependent deviation is strongest when the Iso-FD

membrane has a low diffusivity and thus the concentration before pumping is highest

and the change in concentration during pumping is highest. Note in Figure 3.3,

that at very low membrane diffusivities the maximum pumping offset approaches the

theoretical diffusive fractionation factor of 4.4 �. This end of the spectrum represents

a chamber where most of the soil gas influx is being lost via pumping (advectively, with

no fractionation) rather than across the Iso-FD diffusive membrane, so the chamber

effectively becomes a standard dynamic chamber system (Rayment and Jarvis, 1997;

Maseyk et al., 2009) with a small leak through the diffusive membrane. At the other

end of the spectrum of membrane diffusivity, the chamber acts, as it theoretically

should with no (or very little offset) and very little bias across the modeled soil

diffusivity range. In this case the membrane diffusivity is much larger than the pump

speed and the majority of the CO2 flux is exiting the chamber diffusively.

3.5.2 Lab Validation

As was mentioned previously, two separate laboratory trials of the Iso-FD method

were performed. Figure 3.4a shows the observed decay in 12CO2 concentrations in
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the glass bead soil, as measured by the soil profile tubes. To the right, in Figure

3.4b is the trajectory of soil profile isotopic composition during the same time period.

Figure 3.4c shows the concurrent changes in the Iso-FD and atmospheric chamber

12CO2 concentrations, with the isotopic signature of both chambers shown in Figure

3.4d.

Good correlation was observed between the true isotopic flux, calculated using

the soil profile tubes, and the Iso-FD measured isotopic flux values, presented in

Figure 3.5. Linear regression results yielded a slope of 0.956 (S.E.=0.0575) and y-

intercept of -1.958 (S.E.=1.848) with an r2 value of 0.9322. This suggests that the

desired offset for this particular Iso-FD chamber design (and measurement length)

is 1.958�, however the regression standard error is quite high leading to a large

amount of uncertainty in the estimate. This large spread in the potential intercept

value (-3.806 to -0.110) is due in part to the variability in the data and the large

distance to extrapolate the curve to the y-axis. This may be constrained better in

future calibrations by using injection gases with several different isotopic signatures

(around 0 � or heavier), although since the offset value is constant through time for

the same pump rate it will not affect the isotopic variability measured by the Iso-

FD approach. Offset values calculated from individual data points average to 0.54

� (S.E. = 0.14 �), which is likely a more reliable estimate than the extrapolated

value from the regression. In both cases the experimental calculated offset is in the

same direction as is predicted by the model, where the value observed in the Iso-FD

has a consistently lighter isotopic signature than the true flux. Based on the results

from the 3D modelling, these offset values suggest that the membrane has a modeled

diffusivity on the order of 10−6 or 10−5, suggesting that the pump offset over a full

range of soil diffusivity may vary by ∼ 0.2-1.2 � because of lateral diffusion effects

(see Figure 3.3).

One of the main concerns when using pumps in chamber systems is the possibility

for pressure driven advection to either limit or increase the flux of gases (Rayment

and Jarvis, 1997). This is of particular concern when dealing with isotopes, as the

type of transport (i.e. advective or diffusive) determines the transport fractionation

and thus affects the isotope measurement. These laboratory trials were performed

on a media (glass beads) that have both high diffusivity and permeability making
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them particularly prone to advective biases. Despite this, no evidence of advection

was apparent in the data, with all of the data collected during these two days falling

on the diffusive mixing line for CO2 stable isotopes. The lack of advection artifacts

in this high-permeability system, suggests that it would be unlikely to see them in

the field, however this assumption needs to be confirmed.

3.5.3 Field Trial

During the field trial, data from the Iso-FD tracked well with data from both the

two-point and multi-point subsurface Keeling plots, shown in Figure 3.6. In most

cases, departures from the relatively stable Iso-FD signatures (for example around

day 265) are well correlated with sudden increases in CO2 flux, as measured by

a LiCOR LI-8100 located near the Iso-FD chamber (data not shown). It is also

important to consider here, that the subsurface methods are measuring a more stable,

time-integrated (because of diffusive processes) signal and therefore deviations seen

in the Iso-FD data may in fact be high frequency changes in soil gas physics or

microbial/root processes near the surface which do no last for a sufficient period of

time to express themselves in the soil gas concentrations at depth (i.e. wind speed

variation, rapid fluctuations in surface temperature). Additionally, note that the

systematic difference in the two-point and multi-point subsurface data is likely due to

a varying isotopic source signature with respect to depth, which could be a result of

varying soil organic matter quality or rooting density variations. These field data are

not shifted to take into account the offset caused by drawing air from the chamber,

largely because of the uncertainty associated with the offset calculated during the

Flux Generator testing. Assuming, however, the offset is similar to the estimated

0.54 � the isotopic signature measured by the probes would fall between the root

respired isotopic composition from the site (-27 � ± 1.6 �, unpublished incubation

data) and the fluxes measured using the subsurface Keeling plot which will tend to

be biased toward deeper soil respiration rather than the very near surface where the

bulk of the fine root mass is at this site (∼ 60 % of fine root mass within the first 15

cm of soil is in the top 0-5 cm depth increment).
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3.5.4 Uncertainty Analysis

While standard uncertainty analyses were used in the text while presenting the results,

here the effect of methodological uncertainty is more generally explored. Please note

here that these are uncertainties due to the measurement of the concentrations of

isotopic species in instruments such as CRDS and IRMS, not biases due to the Iso-

FD chambers, which were shown above to be theoretically free of methodological

bias.

Error analyses shows that for the Iso-FD chambers, the most critical factor

is the ratio between the 12CO2 concentration in the Iso-FD chamber, and the

atmospheric chamber (Chamber/Atmosphere; C2/C1). There is also a smaller error

that is induced by difference between the isotopic signature in the chamber and

the atmosphere (Chamber/Atmosphere; δ2-δ1), as this difference becomes small the

error is minimized. Figure 3.7 shows the absolute probable error in the calculated

isotopic flux value for C2/C1 and δ2-δ1 with 1 % and 5 % uncertainty in measured

concentration values and 0.5 � and 1.0 � uncertainty in measured isotopic signatures

(i.e. analytical uncertainty).

It is important to note that these errors in measuring isotopic fluxes are induced

only by the differences between the Iso-FD chamber and atmospheric reference and

not by the absolute concentration of CO2 within the Iso-FD chamber. This con-

trasts with the bulk FD method (Risk et al., 2011), where increasing the chamber

concentration significantly can lead to a bias in the measurement of bulk flux. In

contrast with FD for bulk CO2, the Iso-FD chamber concentration would ideally be

made as high as possible to increase the difference between the Iso-FD chamber, and

the atmospheric reference, in order to decrease the uncertainty in the measurement

caused by gas analyses. However, this advice should be taken with caution, as the in-

crease in Iso-FD chamber concentration may come at a cost (i.e. drastically increased

subsurface CO2 concentrations below the chamber may cause shifts in chemistry, for

example by increasing acidity, or biology, for example if the microbial/fungal com-

munity contains CO2 intolerant species). This trade-off between increased resolution

and potential costs associated with the increase should be examined further in future

studies using Iso-FD.

As a final note, using instruments such as the G1101-i, or any other CRDS/TDLAS,
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generally allows better precision than is shown in Figure 3.6 because of the sheer num-

ber of samples that can be taken using these continuous systems. This should allow

for more accurate Iso-FD results, even at low C2/C1 ratios. Despite this, as with any

methodology, careful consideration of the uncertainty associated with the Iso-FD is

critical in interpretation of the results.

3.5.5 Comparison with Other Chamber Types

During the model analysis, the recirculated Iso-FD technique showed no bias in the

measurement of the isotopic composition of soil flux over the full range of model

parameterization. Pump drawn Iso-FD results showed a diffusivity related bias, that

depended on the Iso-FD membrane diffusivity and the soil diffusivity. For the current

model of the Iso-FD this bias is estimated to be ∼ 0.2-1.24 �. Previous calculations

using a similar 3D model have suggested that static Keeling plot based analysis are

biased by up to 4.4 � under similar model soil conditions, and other dynamic chamber

systems range up to 7 � (Nickerson and Risk, 2009c).

3.5.6 Sampling Method Modifications

While the isotopic sampling method presented in this manuscript provided good

results, model results make it evident that the best sampling solution is to recirculate

or quickly sample a small volume of air from the chamber, rather than drawing

air continuously as with the test system. The continuous removal of air requires

the determination of the isotopic offset value, which is cumbersome to calibrate and

the Iso-FD chambers would otherwise be deployable without any calibrations. Small

sample removal from the Iso-FD chambers could be done either by sampling chambers

using pre-evacuated vials or by using a small sample TDLAS/CRDS method similar

to Moyes et al. (2010a) Moyes et al. (2010a). Alternatively, a method whereby the

G1101-i or other isotopic sampling device could be modified to recirculate the air

without any shift in the pressure of the Iso-FD chamber would also provide data

without the need to offset the values. At the time these experiments were performed,

a reliable recirculation system was not available for the Picarro CRDS instruments,

but this has recently become available and will likely lead to improved Iso-FD method

in future work.
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3.5.7 Chamber Design Considerations

The dual chamber design, where one chamber is used for atmospheric referencing,

worked well in the lab and is likely to perform well in the field, at least in conditions

where the atmosphere is laterally homogenous and the reference is placed close to

the Iso-FD chamber. However in future designs of the chamber it may reduce error

if the proximity of the atmospheric reference is maximized, possibly by integration

of the reference and Iso-FD chambers in some manner (i.e. have a dual chamber

reference/Iso-FD within a single physical unit). This would eliminate any possible

error from laterally variant isotopic signature and/or atmospheric concentrations.

In order to use the chamber in its open configuration (i.e. drawing air) with

systems such as the Campbell Scientific TGA100/TGA200 (Campbell Scientific Inc.,

Logan, Utah) which have a much higher flow rate than the G1101-i, the Iso-FD

chambers would likely need a considerable size increase (both in volume and surface

area). This size increase would allow these types of systems to draw a smaller

proportion of the total chamber volume as well as increase the amount of soil

flux entering the chamber, leaving a measurable difference between chamber and

atmospheric air even at high flow.

3.6 Conclusions

While there are several future modifications that should be made to the Iso-FD

chambers, including modifications to the calibration procedure, this manuscript

has demonstrated that the chambers are both theoretically and practically robust

for measuring the stable isotopic composition of soil CO2 flux. This approach

can obviously be applied to isotopologues other than 13CO2 and 12CO2, including

radioactive isotopologues with long half-lives (i.e. 14C), although each will have its

own isotopologue specific transport characteristics that must be accounted for.
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Figure 3.1: Characteristic data showing the CO2 concentrations measured by the
G1101-i as the valves switch. Visible transitions between sample types is caused by
low gas flow rate and short lived analyzer/tubing memory effects.
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Figure 3.2: Contour plot of the isotopic deviance (difference between the steady state
value with no Iso-FD chamber and the steady state value with chamber) as a function
of depth and distance (with the chamber being the center of the modeled grid). Note
that the isotopic deviance is in log10 scale to emphasize the effects. This model run
was performed with a soil diffusivity of 1x10−6 m2/s, isotopic deviance will increase
with decreasing soil diffusivities.
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Figure 3.3: Pumping offset for Iso-FD chambers with varying membrane diffusivities
on soils of various diffusivities. Thickness of lines represent membrane diffusivity with
the thickest line being 1x10−7, 5x10−7, 1x10−6, 5x10−6, 1x10−5, 5x10−5 and 9x10−5

m2/s for the thinnest line. As is evident, for slow diffusing Iso-FD membranes, the
pumping offset can change considerably over varying soil diffusivities, however the
membrane can be tuned by changing the fabric type or exposed surface area so that
this bias is minimized.
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Figure 3.4: a) Decay in CO2 concentrations in the within soil shallow and deep gas
sampling tubes. b) Corresponding shifts in isotopic signature within the soil during
the run. c) Concentrations measured within the atmospheric and Iso-FD chamber
during the course of the experiment. d) Corresponding isotopic signatures within the
chambers.
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Figure 3.5: True isotopic signature of surface flux (calculated from the soil sampling
tubes) verses Iso-FD measured isotopic signature of surface flux. Best-fit OLS line
shown in grey, with a slope of 0.956 and y-intercept value of 1.916. Open squares
represent sampling day 1, whereas open triangles represent sampling day 2. Error
bars are calculated using standard analytical uncertainty analysis (see Discussion,
Figure 3.6).
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Figure 3.6: Field measurements of the isotopic composition of flux using the Iso-
FD method (open squares), two-point subsurface Keeling plot (grey solid line) and
multi-point subsurface Keeling plot (black line with intercept standard error shown
in grey shading). Error for the two-point Keeling plot is calculated using standard
uncertainty analysis. Keep in mind that the Iso-FD approach is likely to measure high
frequency changes in isotopic flux cause by near-surface biological processes, whereas
the Keeling plot approach records a much more stable time-integrated signature.
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Figure 3.7: Probable uncertainty for 1 % (open squares) and 5 % (filled squares)
standard deviations in CO2 concentration measurements (left hand y-axis) and 0.5� (open circles) and 1 � (closed circles) standard deviations in δ13C measurements
(right hand y-axis). The bottom x-axis represents the ratio of the Iso-FD chamber
bulk CO2 concentration (C2) over the atmospheric reference bulk CO2 concentration
(C1). The top x-axis shows the difference between the Iso-FD chamber isotopic
signature (δ2) and the atmospheric reference isotopic signature (δ1).



Chapter 4

Subsurface Approaches for Measuring Soil CO2 Isotopologue

Flux: Theory and Application

4.1 Preamble

This chapter describes a diffusion-theory based method for estimating the isotopic

signature of soil gas production and flux. Authorship on this manuscript is as follows:

Nick Nickerson, Jocelyn Egan and Dave Risk. I was the principal investigator in this

research and handled all of the writing, theory, and numerical modelling and also

helped to perform the lab and field experiments with Jocelyn Egan. Dave Risk

supervised this project. A version of this manuscript has been submitted to Journal

of Geophysical Research: Biogeosciences and is currently in review.

4.2 Abstract

Measurements of the stable isotope composition of soil flux have many uses, from

separating autotrophic and heterotrophic components of respiration to teasing apart

information about gas transport physics. While soil flux chambers are typically used

for these measurements, subsurface approaches are becoming more accessible with the

introduction of field-deployable isotope analyzers. These subsurface measurements

have the unique benefit of offering depth-resolved isotopologue flux data, which can

help to disentangle the many soil respiration processes that occur throughout the

soil profile. These methods are likely to grow in popularity in the coming years

and a solid methodological basis needs to be formed in order for data collected

in these subsurface studies to be interpreted properly. This manuscript explores

the range of possible techniques that could be used for subsurface isotopologue gas

interpretation and rigorously tests the assumptions and application of each approach

using a combination of numerical modelling, laboratory experiments and field studies.

These results suggest that methodological uncertainties arise due to poor assumptions

56
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and mathematical instabilities but certain methods, particularly those based on

diffusion physics, are able to cope with these uncertainties well and produce excellent

depth-resolved isotopologue flux data.

4.3 Introduction

Measurement of the stable isotope composition of carbon dioxide (CO2) has become

an invaluable resource for understanding the biological and physical mechanisms that

drive soil CO2 dynamics (Cerling et al., 1991; Ekblad and Högberg, 2001; Subke et al.,

2009; Gamnitzer et al., 2011). Isotopic data can be used for a variety of applications

ranging from disentangling gas transport processes (Bowling and Massman, 2011)

to tracing the links between aboveground and belowground carbon (C) allocation

(Ekblad and Högberg, 2001). One of the more exciting prospects made possible

by measurement of stable-C isotopologues of CO2 is the potential to differentiate

between autotrophic and heterotrophic CO2 production, assuming each has a distinct

source isotopic signature (Formanek and Ambus, 2004; Albanito et al., 2012). These

distinct source signatures act as a fingerprint, allowing researchers to identify and

account for CO2 being produced by the individual components of the soil CO2 system.

Understanding of these individual components of soil respiration, and their relation

to climate and soil properties, remains one of the more elusive problems in carbon

cycle research (Davidson et al., 2006b).

To this end, a number of methods have been developed that researchers can employ

to determine the isotopic composition of soil CO2 fluxes. These methods generally fall

into two categories, the first being surface flux chambers, and the second being sub-

surface gas sampling. Flux chambers have been a staple device for the measurement of

bulk CO2 emissions from soil for many decades, and many of these chamber designs

have been adapted to measurement of isotopologue flux (e.g. Subke et al. (2004);

Ohlsson et al. (2005); Mora and Raich (2007); Maseyk et al. (2009)). Their prolific

use is likely a result of the technical simplicity and cost-effective nature of the method,

in addition to the ability to deliver reasonable estimates (Pumpanen et al., 2004;

Ohlsson, 2010) of both bulk and isotopologue fluxes, without causing significant soil

disturbance during installation and use.



58

Recent years have seen the increased use of sub-surface gas measurements to esti-

mate the flux rates for bulk CO2, largely due to improvements in CO2 gas detection

technologies (increased resolution, miniaturization), which allow for continuous mea-

surement of soil pore space CO2 concentrations (Tang et al., 2003; Xu et al., 2004;

Barron-Gafford et al., 2010). With these subsurface approaches, researchers are able

to estimate soil surface fluxes based on CO2 gradient data, with the added benefit of

being able to partition total flux with respect to depth, thereby allowing estimates of

CO2 production through the soil profile. As is the case with chamber methods, sub-

surface approaches have been adopted for use in CO2 isotopologue studies (Pendall

et al., 2001; Kayler et al., 2010; Moyes et al., 2010a; Bowling and Massman, 2011;

Parent et al., 2013), but are still in their infancy for these applications. Subsurface

gas sampling approaches may allow for investigation of the soil profile distribution

of isotopic sources, and because of this they could be a very powerful tool for soil

respiration research, providing complimentary isotopic data to chamber based stud-

ies. However, to use subsurface data to the highest of its abilities, the theoretical

and methodological factors that may affect the accuracy and interpretation of data

gained from the subsurface need to be examined.

Due to the recent adoption of subsurface techniques for CO2 isotopologues, only a

small amount of the potential of subsurface data has been tapped. For example, there

are no studies that employ the flux gradient and production profile forms of Fick’s

laws, often used in bulk CO2 research, for interpretation of isotopic data. Further, the

Keeling plot approach has been used to interpret some subsurface isotopologue data

to date (Pendall et al., 2001; Kayler et al., 2008), however, no work has proven that

the Keeling plot is universally applicable for subsurface gas data. This is a particular

concern due to the fact that the soil gas transport regime is generally considered to

be diffusive, and Keeling plots have been shown to be non-linear in other diffusive

systems (Nickerson and Risk, 2009b).

With the development of any new scientific methodology, there is the need to

carefully test the reliability of the method, both under simplified theoretical conditions

and in the system where it will be applied. Numerical and analytical modelling are

often, or should be, the first hurdle that new methods must pass. Obviously it is

critical for methods to be theoretically robust, not just for a special case of the
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method application, but over all possible conditions. Carefully controlled laboratory

experiments are a crucial next step in this process, as models are oversimplifications,

and full-scale field studies are often overcomplicated by uncontrollable environmental

and biological factors. Experimental methods allow the confirmation of theoretical

results and also allow for the initial development of the physical embodiment of the

methodological approach. Finally, the initial application of methods in the field

allow for refinement of the more practical matters surrounding sampling in-situ, and

can provide further method confirmation data, particularly when compared against

currently accepted methods.

The purpose of this study is to examine the range of possible techniques that could

be used for subsurface gas isotopologue interpretation, including the previously used

Keeling plot method, and the isotopologue gradient and production profile approaches

that are developed herein. These methods are rigorously tested using a combination

of analytical modelling, laboratory experiments using an isotopologue flux generation

system, and finally by deployment at a field site, where subsurface approaches were

compared to one another.

4.4 Methods

4.4.1 Delta Notation

Isotopic compositions are commonly reported using delta notation. The delta value

of a gas sample is calculated as follows:

δ =

⎛
⎝
(

[hCO2]
[lCO2]

)
Rstd

− 1

⎞
⎠× 1000 (4.1)

where [hCO2] and [lCO2] are the concentrations of heavy and light CO2 in the

measured gas, respectively, and Rstd is the ratio of hCO2 and lCO2 in the isotopic

standard (Pee Dee Belemnite for stable carbon isotopologues of CO2).



60

4.4.2 Subsurface Methods

Keeling Plot Approach

The Keeling plot is a stable C-CO2 isotope specific variant of the general two end-

member mixing model first developed for use in atmospheric CO2 research (Keeling,

1958). The model assumes two distinct and constant sources of CO2 isotopologues

mixing within the soil profile. The first source is CO2 from the atmosphere, diffusing

into the soil profile, and the second source is CO2 produced within the soil by

autotrophic and heterotrophic organisms, diffusing to the atmosphere. Formally, the

mixing model is as follows:

δobs =
A

Cobs

+ δrs (4.2)

where δobs is the observed (or measured) isotopic composition in the soil pore space,

A is a fitting constant, Cobs is the measured bulk CO2 concentration in the soil

pore space and δrs is the diffusion-fractionated isotopic signature of respiration, the

variable of interest. To obtain the value for δr, the isotopic signature of respiration,

assuming strictly diffusive transport one must account for the 4.4� fractionation

associated with gas diffusion through the soil matrix (Cerling et al., 1991; Davidson

and Trumbore, 1995). This 4.4� fractionation must be subtracted from the Keeling

plot estimate of δrs to derive the isotopic signature of respiration (Pendall et al., 2001).

The Keeling plot model is implemented by regressing observed isotopic composition

(δobs ) against the reciprocal observed bulk CO2 concentration (1/Cobs). The resulting

y-intercept of the least-squares regression will give the value for δrs , which is corrected

for diffusive fractionation to yield the isotopic composition of the soil respiration

(Pendall et al., 2001; Ohlsson et al., 2005).

Gradient Method

The gradient method presented here is an isotopologue modification of the flux

gradient approach for measuring bulk CO2 effluxes (Risk et al., 2002a; Tang et al.,

2003). Steady state (or non-steady state if one accounts for storage terms) diffusive

transport of gas from one soil depth to the next (or from soil to the atmosphere) can

be described using the one-dimensional form of Fick’s First Law:

F (z) = D(z)
∂C(z)

∂z
(4.3)
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where F(z) is the flux density (μmol m−2 s−1), D(z) is the soil diffusivity (m2 s−1) as

a function of depth, z (m), and C(z) is the soil gas concentration (μmol m−3).

Experimental evidence suggests that different stable isotopologues of the same

gases (i.e. 12CO2 and 13CO2) diffuse independently with their own isotopologue

specific concentration gradients and diffusivity rates (Cerling et al., 1991). Assuming

this is true, Fick’s Law can be applied to each isotopologue as follows:

F l(z) = Dl(z)
∂C l(z)

∂z
;F h(z) = Dh(z)

∂Ch(z)

∂z
(4.4)

where the superscripts l and h refer to the light and heavy isotopologues, respectively.

Combination of the heavy and light versions of Fick’s law (Eq. 4.4) allows for the

calculation of the isotopic ratio of flux:

F h(z)

F l(z)
=

Dh(z)

Dl(z)

∂Ch(z)

∂z

∂z

∂C l(z)
(4.5)

It is well known that in diffusive systems, the quotient of the diffusion coefficient of

the heavy isotope over the diffusion coefficient of the lighter isotope yields the inverse

of the kinetic fractionation factor (α; for CO2 α=1.0044) (Cerling et al., 1991):

Dh(z)

Dl(z)
=

1

α
(4.6)

Given this identity (Eq. 4.6), equation 4.5 can be discretized and simplified to yield:

F h(z)

F l(z)
=

1

α

ΔCh

ΔC l
=

1

α

[
Ch

z2
− Ch

z1

C l
z2
− C l

z1

]
(4.7)

where z1 and z2 are arbitrary depths in the diffusive medium (soil).

It should be noted that the relationship presented in Equation 4.7 is convenient

for several reasons. First, there is no need to know the diffusion coefficient, which

can be both difficult to measure and highly error prone. Second, the measurement

of the gas concentrations can be performed from any arbitrary points z2 and z1 so

long as the transport of gas between those two points is dominated by diffusion,

which eliminates error due to the estimation of sampling depth. While it is not

mathematically necessary for the difference between z1 and z2 to be small, in practice

the larger the distance between the two measurement points the further the discretized

form of Equation 4.7 is from the original, and more correct, continuous form given in
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Equation 4.5. It is therefore desirable to difference points that are near each other,

but a strict estimate on the proximity is not possible without information on the soil

profile CO2 concentrations and their derivatives. For example, if the soil CO2 profile

were linear then any two points in the profile could be used. However if the CO2

profile is highly curvilinear then one must be more careful about choosing points.

This concept will be clarified further in the results and discussion on the gradient

method.

Production Profile Method

The production profile (PP) method can be considered as an extension of the gradient

method, and is also used in bulk CO2 research (Davidson and Trumbore, 1995; Risk

et al., 2002a). Consider Fick’s Second Law:

F (z) = D(z)
∂2C(z)

∂z2
(4.8)

To estimate gas production, P(z), at a given soil depth, the second order depth

gradient of concentration (∂2C(z)/∂z2) at that depth and the soil gas diffusivity must

be known. For isotopic measurements two similar equations can be written, one for

the heavy isotopologue and one for the light isotopologue, from which the isotopic

ratio of production can be determined by division.

If the equation is converted into its finite difference approximation one sees that

the depth terms of the gradient cancel to leave a simple differencing of concentrations

measured at several depths (z1, z2 and z3): Similarly, the division cancels the diffusion

coefficients to yield 1/α (see Eq. 4.6).

P h(z)

P l(z)
=

(
Dh

(
Ch

z3
− Ch

z2

z3 − z2
− Ch

z2
− Ch

z1

z2 − z1

))(
1

Dl

(
z3 − z2

C l
z3
− C l

z2

− z2 − z1
C l

z2
− C l

z1

))
(4.9)

P h(z)

P l(z)
=

1

α

(
Ch

z3
− 2Ch

z2
+ Ch

z1

C l
z3
− 2C l

z2
+ C l

z1

)
(4.10)

Equation 4.10 may be converted to delta notation if desired. This equation should

yield the isotopic composition of production at the depth z2, where z2 is a point

intermediate between z1 and z3. Again it is important to stress that with both the

Gradient and Production Profile methods there is no need to know the diffusivity

of the medium nor the depths from which the gas samples are taken because of the

simplifications resulting from using isotopologue ratios.
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4.4.3 Steady State Soil CO2 Isotopologue Model

Under the assumption that the soil gas system is dominated by production by

both heterotrophic and autotrophic sources and that gas transport is controlled by

diffusion, the gas concentration within the soil profile can be calculated by solving

the diffusion equation:

θ
∂C

∂t
=

∂

∂z

(
D(z, t)

∂C

∂z

)
+ P (z, t) (4.11)

where θ is the soil air-filled pore space, C is the gas concentration, t is time, D(z,t)

is the soil gas diffusivity as a function of depth (z) and time, and P(z,t) is the

biological production function, which is also a function of depth and time. Making

the simplifying assumptions that the soil gas system is in steady state (∂C/∂t=0),

and that the soil gas diffusivity is constant with depth (D(z)=D), the equation can

be rearranged to solve for soil gas concentration:

∂2C

∂z2
=

−P (z)

D
(4.12)

where P(z) is the non-time dependent production function. Many researchers have

observed an approximately exponential relationship between CO2 production and

depth (i.e. Davidson and Trumbore (1995), that is:

P (z) =
P0

λ
e−z/n (4.13)

where P0 is the total respiration rate, integrated over all depth, η is the e-folding

depth, or the depth at which production is reduced to 1/e of its value at z=0 and λ

is a parameter that constrains all production to occur over soil depths 0 to L, where

L is some arbitrary depth at which production and diffusion of CO2 stops (e.g. water

table):

λ = η − ηe−L/n (4.14)

Combination of equations 4.12 and 4.13 allows for integration of the steady state

diffusion equation:
∂2C

∂z2
= − P0

Dλ
e−z/n (4.15)

which is subject to the following boundary conditions:

C(z = 0) = Catm (4.16)
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∂C

∂z

∣∣∣∣
z=L

= 0 (4.17)

After integration and application of the boundary conditions one arrives at the final

steady state solution for the concentration of CO2 as a function of depth:

C(z) = −ηP0

Dλ
(ηe−z/η + ze−L/η − η) + Catm (4.18)

Here a common assumption that the bulk CO2 solution (Eq. 4.18) describes the

concentration of 12CO2 is made. A further assumption is that 13CO2 is an independent

species of CO2, with its own characteristic diffusion and production rate (Cerling et

al., 1991). Under this assumption the second steady state equation can be written:

∂2χ

∂z2
=

(
− P0

Dχλ
e−z/n

)
(Rde

−z/σ +Rb) (4.19)

Where Chi (χ) is the 13CO2 concentration, Dχ is the 13CO2 diffusion coefficient,

Rd is the difference in the ratio of 13CO2/
12CO2 production between depth 0 and

L, Rb is the ratio of 13CO2/
12CO2 production at depth L and σ is the e-folding

depth of the 13CO2/
12CO2 production ratio (i.e. how quickly the 13CO2/

12CO2

production ratio changes with depth). Integration of Eq. 4.19 and application of

the boundary conditions stated in Eq. 4.16 and 4.17 yields the steady state solution

for the concentration of 13CO2 with depth:

χ(z) =
ηP0

Dχλ(η + σ)

((
e−z( η+σ

ησ )
(−ησ2Rd

η + σ
−Rb(η

2 + ησ)ez/σ
)
− ze−L( 1

η
+ 1

σ )

(Rdσ +Rb(η + σ)eL/σ)
)− −ησ2Rd

η + σ
−Rb(η

2 + ησ)

)
+ CatmRatm (4.20)

At this point the isotopic composition of soil profile CO2 can be determined by the

division of χ(z) and C(z) (Eqs. 20 & 18, respectively) and application of the delta

notation.

4.4.4 Model Parameter Ranges and Data Generation

For model testing of the three sub-surface methods steady state soil CO2 and isotopic

signatures were simulated for a range of conditions that would be expected in the

field. Listed in Table 1 are the parameter names and ranges used in the simulations.

Unless performing a specific parameter sensitivity analysis, parameters were randomly
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sampled within these ranges so that a range of possible soil conditions could be

covered without performing a time-intensive iterative parameter search over the whole

parameter space. Equations 4.18 and 4.20 were solved using a Perl script under

the Macintosh OS X operating system. Calculations for the Keeling, Gradient and

Production Profile methods were also preformed in Perl.

4.4.5 Laboratory and Field Testing

Laboratory Tests

To test the proposed subsurface methods in a carefully controlled environment a Flux

Generator (FG) apparatus (Martin et al., 2004) was used. The FG consists of a glass

bead soil (∼17 cm deep, 0.234 m2 surface area) that rests on top of a 234.23 L reservoir.

Pure CO2 is injected into the reservoir until the desired concentration is reached, and

the reservoir gas is then allowed to flux diffusively from the synthetic soil. The flux

of bulk CO2 and CO2 isotopologues can then be calculated using the measured decay

timeseries data from the FG apparatus (Martin et al., 2004). Within the synthetic

soil two subsurface sampling tubes were installed (perforated vinyl tubing) with an

additional sampling tube resting on the soil surface. These tubes were connected

to the G1101-i valving system (see Section 2.5.3) for sampling during the reservoir

decay. The decay in reservoir concentration was also modeled using a finite-difference

algorithm (see Nickerson and Risk (2009a) to ensure that the FG system was behaving

diffusively and to provide a common reference isoflux for comparison to the subsurface

approaches. Unfortunately only the Keeling and gradient approaches could be tested

on this apparatus, as the Production Profile method requires that CO2 be produced

within the soil profile (the second order derivative of concentration must be greater

than zero).

Field Tests

Ultimately these methods will be applied in-situ, and while it is not the ideal en-

vironment for methodological testing, field deployments often reveal methodological

complications that were otherwise unapparent in controlled test environments. The
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purpose of these field experiments was to compare the three methods in an uncon-

trolled setting, and to evaluate the uncertainty associated with using each method

in a natural environment (errors due to instrumental set-up and natural noise in

subsurface signals).

The field site is a ∼20 year old plantation of Red Pine (Pinus resinosa) located in

Heatherton, Nova Scotia (N 45◦ 33’ 54”, W 61◦ 46’ 20”). Annual average rainfall for

the region is 1100 mm/year with average monthly rainfalls in August of 92 mm and

101 mm in September, which were the two months over which the field experiment

spanned. Annual average temperature for the region is 7 ◦C and average temperatures

in August and September are 18.9 ◦C and 15.3 ◦C, respectively. The soil in the region

is classified as a moderate to well drained Orthic Humo-Ferric Podzol, although there

is limited horizonation at this site due to relatively recent (ca. 30 years ago) tillage

on the property.

Two soil pits were excavated in May 2011 to 50 cm depth, approximately 15 meters

away from each other. These two soil pits were on separate treatment plots in the same

forest stand. One plot was completely intact whereas the second had undergone tree-

girdling approximately one year earlier in order to cut off supply of photosynthates

to the roots. Gas wells were constructed using 50 cm long sections of 1.3 cm inside

diameter PVC pipe. Holes (1.0 cm diameter) were drilled on opposing sides along the

length of the pipe at∼4.5 cm intervals. The outside of the pipe section was wrapped in

Tyvek R© building material (polyethylene membrane, DuPont) to exclude water from

entering the gas well. Three (3) sections of larger diameter (1.8 cm ID) pipe were

installed in the side of the soil pit at depths ranging between 4 and 28 cm (installation

at approximately 5, 15 and 25 cm but these depths varied due to soil conditions) to

allow for insertion of gas wells into the soil without damaging the membrane material.

Each of the three larger pipes were drilled with opposing 1.0 cm diameter holes as

well, so when then smaller diameter Tyvek wrapped tubing was inserted into the

larger diameter tubing, the holes were aligned. An ∼10m long section of vinyl tubing

was connected to each of the gas wells and the soil pit was filled. A similar Tyvek

wrapped tube was also laid on the soil surface to sample the near surface atmospheric

gas. Gas concentration and isotopic composition measurements were gathered from

these pre-installed gas-sampling tubes over an approximately 8-day period occurring
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between September 18 and 27, 2011.

Isotopic Measurements

To sample gases in the lab and field Picarro G1101-i Cavity Ring Down Spectrometer

was used (hereafter referred to as the G1101-i) and coupled to a custom designed

valving system (6 sample valves) to allow for routing more than one sample port into

the G1101-i. Gases were sampled by approximately 15 minutes of continuous pumping

(∼25 mL/min flow rate) from the soil-gas sampling tubes, using the analyzers vacuum

pump. Two standards were supplied (∼312 ppm [-9.6�], 760 ppm [-27.8�]) to the

G1101-i every 2 hours to allow for correction of the isotopic composition and CO2

concentrations. The raw data was post-processed to use only the last 30 points before

the valve switch, roughly 3-4 minutes of data, and average them to a single value

(typical standard deviations are ∼1-3 ppm and ∼0.05-0.15�). Since the G1101-i is

only rated to ∼4000 ppm CO2 (personal communication, Aaron Van Pelt, Picarro

Inc.), prior to sampling standards tests were performed to confirm that the G1101-

i would maintain linearity in the expected soil gas concentration range, 0-10,000

ppm. Results were good, with r2 values of 1.00 and 0.92 (n=8) for concentration and

isotopic composition, respectively. Note that while linearity was maintained over the

full range, the slope of the fit was not equal to one. This multiplier was corrected

for in the data reported in this manuscript, using both field and laboratory standard

data.

Prior to deployment a simple laboratory experiment was performed on an inert

soil (crushed automotive glass) with a known pore-space CO2 concentration in order

to evaluate the effects of sample drawing on the measured soil CO2 concentrations

and isotopic compositions. No bias in the measurements was found for sample draw

times of up to 30 minutes (data not shown). Based on these results, gas was sampled

for 15-minute periods during laboratory and field experiments to avoid any potential

sample draw related issues while allowing the G1101-i enough measurement time to

produce stable CO2 concentration and isotopic composition measurements.
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4.5 Results and Discussion

4.5.1 Model - Keeling Plot Approach

In published studies where the subsurface Keeling plot approach has been used (i.e.

Pendall et al. (2001)), it is common to use as many sampling points over the soil

column as is practical, to get more robust fit statistics for the regression. Due to this

practice, it should be noted that the resulting Keeling plot intercept should represent

an integrated estimate of the isotopic signature of production over the depth interval

from which the data were collected, after accounting for the 4.4� offset associated

with diffusion. In the following Steady State Soil CO2 Isotopologue Model runs, soil

profile CO2 concentrations and isotopic compositions were simulated from a depth of

z=0 m to z=1 m in increments of 1 cm, yielding 101 data points for each Keeling

plot regression, unless otherwise noted. In the case of using the full soil profile, the

typical assumption is that the Keeling plot estimate of δr should be exactly equal to

the isotopic ratio of surface flux. To check for biases in the Keeling plot δr estimates,

the soil flux isotopic ratio was calculated (by differentiation and solution of Equations

4.18 and 4.20 for z=0) for each Steady State Soil CO2 Isotopologue Model run and

compared it to the regression-estimated δr.

For 1000 randomly sampled parameter combinations (parameter ranges listed in

Table 1) the mean bias in the Keeling plot estimate of δr was found to be 0.09� with

a standard deviation of 1.38�. The maximum and minimum observed errors were

4.12� and -3.74�, respectively. The errors for these 1000 runs were approximately

normally distributed, with the histogram shown in Figure 4.1. Sensitivity analyses

were also ran for each Steady State Soil CO2 Isotopologue Model parameter with

respect to Keeling plot bias. The results of these sensitivity analyses are shown in

Figure 4.2. Most parameters had some effect on bias, with the minimum effects seen

in changing the values of Catm and Ratm. Maximum errors were observed when the

difference between the isotopic signature of CO2 produced at the bottom of the soil

profile and the top of the soil profile were maximized. Positive differences in Rd (Rd ∝
δtop - δbott) resulted in positive bias in the Keeling plot estimate and negative values in

Rd resulted in negative Keeling plot bias. The core reason for the observed biases in

the Keeling plots was non-linearity created by depth-dependent isotopic signatures of
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production. In the case that isotopic signature was constant through the soil profile,

the Keeling plot was perfectly linear with no bias (assuming no error in the data).

Please note that the Steady State Soil CO2 Isotopologue Model parameters used in

the sensitivity test are characteristic of the higher end of the bias shown in Figure 4.1.

These were chosen to clearly show the sensitivity of each parameter for demonstrative

purposes. In many situations, where the bias is closer to the mean shown in Figure

4.1, these sensitivities will be significantly dampened but it is still expected that they

will maintain their characteristic curvatures.

To make these Steady State Soil CO2 Isotopologue Model results more trans-

ferrable to field-based studies, 1000 additional simulations were ran where the sam-

pling depth interval was increased to every 10 cm, and the deepest sample was at 50

cm (half the soil profile length). This resulted in six (including z=0) measurements

of soil CO2 concentrations and δ13C. Mean bias in the Keeling plot estimate of δr was

0.13� with a standard deviation of 1.13�. The maximum and minimum observed

errors were 3.70� and -3.13�, respectively. Noise was then added to the data to

simulate environmental variability and measurement uncertainty. Both a low noise

(S.D.=0.1� for δobs, S.D.=1% of reading for Cobs) and a high noise (S.D.=0.5� for

δobs, S.D.=5% of reading for Cobs) were simulated. The increase in the standard de-

viation of the errors from no error (1.13�), to low (1.20�) and high error (1.23�)

scenarios was negligible compared to the error caused by non-linearity in the subsur-

face Keeling plots.

4.5.2 Model - Gradient Approach

First, as a point of clarification, the Gradient Approach provides estimates of

isotopologue flux and not isotopologue production. Under the assumption of steady

state diffusive conditions, the isotopologue flux across the soil-atmosphere boundary is

equal to the integrated isotopologue production from the whole soil profile. However,

it is not necessarily the case that the isotopologue flux at any depth be equal to the

isotopologe production rate, as the flux is influenced by concentrations and isotopic

ratios of gas in the soil profile. Isotopologue production can be calculated using the

PP method, discussed in section 3.3.

For the gradient method 1000 random parameter combinations were sampled to
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arrive at initial bias estimates. In this case bias is defined as the average difference over

the soil profile of the Steady State Soil CO2 Isotopologue Model calculated isotopic

composition of flux minus the estimated isotopic composition flux using the gradient

method. Gradient estimates of the isotopic flux composition were calculated using

sampling intervals of 1 cm. Samples were excluded where the difference in the 12CO2

concentrations between two successive sampling depths was <10 μmol m−3 because

the reciprocal form of the 12CO2 concentrations in the gradient equation (Eq. 4.7)

causes amplification of any error inherent in ΔCl. The gradient method offered good

estimates of the isotopic composition of flux with depth, with a mean isotopic bias of

0� and a standard deviation of 0.0017�. This reported bias is within the rounding

error of the calculations and should likely be treated, for all intents and purposes, as

being zero bias.

It would be impractical, if not impossible, to sample at 1 cm increments in the

field, so an additional 1000 simulations were ran where the sampling increment was

reduced to 10 cm and measured to 50 cm total soil depth. This lower limit on depth

was chosen to avoid differencing small CO2 gradients that occur deep in the soil

profile which amplify uncertainty in estimates of isotopologue flux, discussed above

and in further detail in Section 3.4. In this case the resulting bias was still centered

around zero, with a mean of -0.0040� and a larger standard deviation of 0.0972�.

The increased bias in this case was essentisally due to estimating the derivative using

a larger secant line between sampling points separated by 10 cm rather than 1 cm.

Most of the bias occurred in regions where the CO2 isotopologue depth gradients

were changing quickly, leading to a misestimate by the discretized form of Eq. 4.17

(again, essentially the problem of moving from tangent to secant lines). A sample of

the Steady State Soil CO2 Isotopologue Model calculated isotopic flux and isotopic

flux calculated using the gradient method with depth increments of 1 cm and 10 cm

is shown in Figure 4.4.

4.5.3 Model - Production Profile Approach

In contrast to the Keeling plot and gradient methods, which provide estimates of

isotopic flux, the production profile (PP) method provides depth-dependent results

for the isotopic signature of CO2 production within each soil layer. To test the
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reliability of the method the values estimated with the PP method were compared to

the prescribed Steady State Soil CO2 Isotopologue Model values over the same depth

interval. To arrive at a single number for the deviation between prescribed and PP

values the absolute deviations between prescribed and PP over the full soil profile

were summed and then divided by the number of sampling depths.

The first simulation again consisted of 1000 randomly chose parameter sets. The

PP isotopic composition was calculated at 1 cm intervals throughout the 1m long

simulated soil column. In some simulations, after a certain soil depth the gradient

of CO2 in the soil approached zero, and because of the lack of gradient the isotopic

signature of production was not able to be calculated. This was addressed by adding

an additional constraint in the Steady State Soil CO2 Isotopologue Model: only

using CO2 and isotopic signatures up to the point where the concentration difference

between two consecutive soil depths is ≥10 μmol m−3.

The PP method offered very good estimates of the isotopic signature of production

over the full soil depth, with a mean bias of 0.002� and a standard deviation of

0.005�. These reported bias values are within the potential numerical error in the

calculations. A sensitivity analysis was also preformed on each of the Steady State

Soil CO2 Isotopologue Model parameters using the PP method, but once again the

error was negligible in all modeled results.

An additional 1000 simulations were run with the sampling interval modified to

every 10 cm, similar to the Keeling plot and gradient data, to get a more realistic

idea of the PP method performance in the field. In general the error increased during

these runs with the mean error being 0.12� and the standard deviation being 0.19�.

The distribution of the error was similar with 878 out of 1000 measurements in the

0-0.2� bin, 70 measurements in the 0.2-0.4� bin, and errors >1.0� occurring in

less than 2% of the simulations. The reason for the increased error in these coarse

sampling interval runs stems largely from trying to estimate the derivative of the

continuous concentration function using secant lines rather than tangent lines. As

the sampling interval decreases, the results will converge on the true results (as was

observed in the 1 cm interval runs), but as the interval increases, so should the error

in the estimated vs. true values. It can therefore be assumed that in settings where

there are steep depth gradients in CO2 production or suspected isotopic composition,
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the sampling interval should be made as fine as possible to minimize these biases.

4.5.4 Error Analysis (PP and Gradient)

Error in the Keeling plot method has been treated extensively in other research (i.e.

Pataki et al. (2008)), so in this section focus is on the two Fick’s Law-based methods.

Uncertainty analysis was performed (propagation of uncertainty using the partial

derivative method applied to equations 4.7 and 4.10) by examining the probable

errors in the flux gradient estimate that would be associated with two error rates,

a low rate being 1% error in concentration measurement and 0.1� error in isotopic

measurement, and a high rate being 5% error in concentration measurement and

0.5� error in isotopic measurement. For the gradient method, the error in estimated

δ13C of flux scales strongly with the ratio of C2 to C1 (see Figure 4.5a and Equation

4.7). Essentially for concentration values that are very similar (small gradients), the

measurement error is large relative to the soil CO2 gradient, and drives the error rate

up. The error in the gradient calculation is reduced to the error in measurement as

the ratio of C2 to C1 becomes large. Contrastingly, as the difference between the

isotopic composition at C2 (δ2) and C1 (δ1) becomes larger, so does the error (also

shown in Figure 4.5a).

Similarly, probable errors inherent in the PP method were evaluated with the same

error rates as above. For PP (Figure 4.5b), the error scaled strongly with the second

order gradient in concentration (i.e. as the gradient in concentration becomes linear

the error is larger). Further, errors are large when the quotients of the isotopologue

gradients in the soil are small, decreasing to a minimum and then increasing slightly as

the isotopologue gradient quotient becomes larger. Unfortunately, the uncertainties

are not as simple to interpret in the PP case as the gradient approach, but the errors

can be calculated easily from the uncertainty equations for a given experimental or

field setup.

4.5.5 Laboratory Results

Finite-difference calculations indicated that both the concentrations and isotopic

composition within the FG synthetic soil were evolving as would be expected under

diffusive conditions. Regressions of finite-difference modeled CO2 vs. measured CO2
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had slopes not significantly different than one and r2 values greater than 0.97. There

was a slight bias for the model concentrations to decay at a slightly different rate

than the measured concentrations (slopes for modeled vs. measured were 1.06 1.08),

but this deviation is quite small and is likely the result of heterogeneous diffusion

coefficients within the synthetic soil, combined with unknown initial conditions for

the modeled soil.

Comparisons of the measured Keeling plot and Gradient isotopologue fluxes with

modeled flux showed good correspondence. For the Keeling plot the regression of

modeled vs. measured isotopic composition of flux yielded a slope of 0.93 with

a standard error of 0.065 (r2=0.96). For the Gradient method two results exist

for isotopic flux compositions, the flux between the deep and shallow (D-S) soil

sampling tubes, and the flux between the shallow sampling tube and the atmosphere

(S-A). For the D-S flux, regressions yielded a slope of 0.96 (S.E.=0.11; r2=0.91)

and 0.91 (S.E.=0.061; r2=0.97) for the S-A flux. There is also good correspondence

between the three methods, with Keeling vs. D-S and S-A slopes of 1.04 (S.E.=0.069;

r2=0.97) and 0.97 (S.E.=0.041; r2=0.99), respectively and a D-S vs. S-A slope of

0.88 (S.E.=0.097; r2=0.91). In all cases the slope was not significantly different from

1 nor was the y-intercept significantly different from 0� (p<0.01). Please note that

the PP approach could not be tested on this apparatus because no production occurs

within the synthetic soil and therefore the second order derivative of concentration is

equal to zero.

4.5.6 Field Results

During September, 2011, approximately three days of subsurface isotopic data were

collected from the girdled site (Julian Days 261-263) and three days of data from

the intact site (Julian Days 264-266). The raw time series measurements of CO2

concentrations and isotopic composition at the two sites are shown in Figure 4.6.

Figure 4.7 presents a time series of soil δ13CO2 flux calculated with the Keeling

plot and Gradient methods (data from the PP method are presented in Fig. 4.9).

The intact site displayed an average soil respiration signature of -30.3�, estimated

by the Keeling plot approach, and -30.0�, -30.4� and -30.6� for the three Gradient

approach depths (G1 shallowest, G2 - middle and G3 - deepest, respectively). The
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girdled site had a similar average of -30.7�, estimated by the Keeling plot approach,

and -30.4�, -30.9� and -24.8� for the three Gradient approach depths (G1, G2 and

G3, respectively). Note that the standard deviation for G3 was quite high (-11.0�)

owing to the fact the concentration gradients deep in the soil were small and therefore

measurement errors become larger (as was discussed in Section 3.4). For comparison,

isotopic measurements of bulk soil organic matter from the same region range between

about -28� to -26� over the first 50 cm soil depth (Risk et al., 2009) and it is not

uncommon to observe biochemical fractionation during respiration of several per mil

(Moyes et al., 2010).

The only notable event in the time series happens at around Julian Day 262.1,

where a large spike occurs in the isotopic composition of flux at G2 concurrent

with a small depletion in the isotopic flux recorded in G1 (Figure 4.7). These

deviations appear to be related to a rain event that likely decreased soil diffusivity

in the top few cm of soil leading to a buildup of CO2 in the soil profile. These

short time-scale dynamics therefore do not likely reflect a change in the isotopic

signature of production, but rather a transient, non-steady state change in the isotopic

composition of flux. The spikes are not present in isotopic fluxes calculated with the

other methods, but this is not wholly unexpected. For the Keeling plot method, the

rain related changes in signature is likely overprinted by the fact that the Keeling plot

represents the integration of flux at all depths, and therefore is not likely to pick up

events happening on smaller spatial scales. The PP method (discussed further below,

shown in Figure 4.9) also did not pick up these observed deviations, but the method

is also intended to detect changes in the isotopic signature of production, which are

not expected to change due to physical disturbances to the gas transport regime.

While there appears to be some variation in the signature of flux with depth using

the gradient approach, the Keeling plot intercept values themselves are unable to show

this because they represent a depth averaged isotopic flux composition estimate.

It was clear from the modelling results, however, that if the isotopic signature of

production (and thus surface flux, under steady state conditions) changes with depth,

then the Keeling plot would display curvature. Keeling plot residuals were isolated

from the data, displayed in Figure 4.8, to see if this phenomenon could be observed.

The figure shows that the residuals from both sites display a curvature (grey lines
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are spline interpolations to make it easier to follow the data) that is consistent with

what is expected from the modeled results.

Finally, the PP approach was used to estimate the isotopic signature of production

in the soil profile two PP points, PP1 (shallow) and PP2 (deep), shown in Figure 4.9.

Unfortunately, as was predicted in the error analyses for this method, the error due

to analytical uncertainty overpowers the environmental signal, and leads to a high

uncertainty in PP estimates of isotopologue production rates.

4.6 Summary and Recommendations

4.6.1 Summary Comparison of Theoretical, Lab and Field Data

Theoretical data showed that the Keeling plot approach was likely to deviate from the

true isotopic flux composition values in situations where the stable isotopic signature

of production varied as a function of depth. In contrast, the gradient and PP

approaches did not suffer from this bias, as they allow separate treatment of each

depth interval, and therefore captured this depth dependent variability. However, the

gradient and PP approach suffer when the depth increment between measurements

becomes too coarse, and therefore does not allow for accurate estimation of the

derivate of the CO2 isotopologue profile. While it was not attempted here, this

could possibly be counteracted by using measurements that are then interpolated to

finer depth intervals using fitting functions, although this is likely to introduce its

own complications as the fits may not capture the true shape of the profile.

During the lab testing of the Keeling plot and gradient methods on the FG appa-

ratus good correspondence was found between finite-difference calculations of δ13CO2

flux, and estimates with the Gradient and Keeling methods. One notable result was

a slightly worse performance (compared to model results) for methods where near-

surface concentration and isotopic compositions were used in calculations (Keeling

plot and S-A gradient). This is likely due to either non-diffusive processes operat-

ing near the experimental soil surface (i.e. advection) or because of high-resolution

temporal changes in the atmospheric isotopic composition and CO2 concentrations.

Field results for the Keeling plot displayed a curvature consistent with the

predicted curvature associated with depth varying CO2 isotopologue production.
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While the curvature in these field results is only slight, allowing a reasonable estimate

of the depth-integrated signature of isotopologue flux using the method, Keeling plots

from other sites with strong production gradients may be affected more significantly.

Curvature related error will be further exacerbated by the reality that the highest

density of points in the Keeling plot are likely to occur at small values of 1/CO2,

biasing the linear fit toward deeper isotopologue compositions and eliminating any

evidence of high-temporal resolution changes near the soil surface. The Gradient

method performed well against the Keeling plot approach in the field, mirroring what

was seen in the lab experiments, but with minor deviations due to the depth variation

in isotopologue production and/or event-driven changes in the gas diffusion regime.

The PP approach seemed to provide reasonable estimates for isotopic signatures of

production, but as is evident from the uncertainty analysis, the amplification in

error is much too large given the current instrument resolution and the relatively

weak second-order CO2 gradients at this field site. Where second-order gradients

are significantly stronger, the PP approach may perform better and yield useful

information about depth variation in isotopologue production.

4.6.2 Davidson’s δJ Method

While the δJ method of Davidson and Trumbore (1995) was not formally considered

in the analysis and results, some conclusions can be drawn about the method based

on the results shown in the Keeling plot and Gradient method sections. It is first

important to note that the δJ method is derived assuming steady-state conditions,

like all other methods presented in this manuscript. Davidson′s derivation of the δJ

method is a special case of the Keeling plot (or the Gradient approach), where only

two points are used in the calculation of isotopologue flux. By design, the δJ method

always uses the atmospheric concentration and isotopic composition as one set of its

constraining variables. The second set is chosen by the user to be the concentration

and isotopic composition at any arbitrary depth in the soil profile. Again, because

the δJ method is a special case of the Keeling plot, it can therefore be expected to

display similar biases and sensitivities as those presented in Section 3.1 and Figures

4.1 and 4.2. For the δJ method these biases are likely to be slightly different than the

Keeling plot estimated biases because the Keeling plots analyzed in section 3.1 have
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significantly larger data densities (n>>2) and therefore the linear regression will tend

to be biased more toward the region where data density is highest (for example, in

Figure 4.3 most of the linear regression would be biased to the domain of 1/[CO2] ¡

5e-4 ppm-1).

4.6.3 Considerations for Field Measurements

Several recommendations can be made on the placement of soil gas sampling tubes

or wells given the various constraints and errors inherent in each method presented

in this manuscript.

For the Keeling plot method it is important to choose sampling depths in such

a way that the Keeling plot is not artificially biased due to higher data density on

the near-zero end of the 1/[CO2] domain. This statistical bias (unrelated to the

non-linearity bias shown in section 3.1) occurs as a result of the strong increase in

CO2 concentration in the shallow soil, which is generally followed by a leveling-off

of CO2 concentrations in the deeper soil, often observed in field studies (Davidson

and Trumbore, 1995; Breecker et al., 2012). For Keeling plot data, it is therefore

important that users choose sampling depths such that the data will have an even

spacing on the 1/[CO2] axis of the Keeling plot, and such that no region of the 1/[CO2]

domain has a significantly higher data density than any other region. This could be

done in post-processing (i.e. by excluding data points from the Keeling plot data set)

or it may be accomplished in the field, given a reasonable a-priori estimate of what

the soil CO2 gradient looks like.

For example if the CO2 concentration with depth were to resemble an exponential

function, users might consider placing a large percentage of their soil sampling tubes

or probes near the surface, and the remaining sampling could be done at depth. The

exact placement of these sampling tubes is difficult to prescribe, but a rough estimate

could be obtained by integration of the CO2 concentration profile and normalizing

this integral to 100% (or 1). Then by integrating over specific depth intervals, for

example 0-5 cm, users could determine how much of the integral lies in that region,

compared to the 100% total. For example, assume that 40% of the integral lies in

the 0-5cm region, and that a possible 10 sampling tubes/wells can be deployed with

depth in the soil, then 4 out of those 10 tubes should go in the top 5 cm of the soil,
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if possible given size constraints and other logistical concerns.

For the gradient method, similar approach to the Keeling plot method would be

advocated. Here the best results, with the least error, are obtained when the point-

to-point soil CO2 concentrations are quite different (i.e. when the gradient is strong).

The procedure for locating sampling tubes would therefore be similar to that outlined

above, where the majority of the gas sampling tubes/well should be placed near the

surface, with fewer at depth where CO2 gradients are generally quite small. Again,

the approach for the PP method would be similar, although somewhat more complex

as users would need to define regions where the second order gradient (curvature

in the CO2 profile) was large. This may not be as straight forward as in the first

two cases, and would likely require more detailed information about the soil profile

than can be assumed without previous measurements. The optimization of sampling

depths PP approach may therefore be best done in post-processing.

While these guidelines presented here will likely serve reasonably in most cases,

the placement of gas sampling tubes/wells and analysis of field data is complex. Care

should be taken to ensure that the measurements and analysis procedures are suitable

on a case-by-case basis.

4.7 Conclusions

These theoretical, lab, and field results show that all three methods are robust for

specific applications. The least error-prone of all of the methods, considering both

calculation uncertainty and bias due to incorrect assumptions (i.e. linearity of model,

steady state conditions), is the Flux Gradient approach. This approach offers both

low uncertainty compared to the PP method and is able to resolve depth dependent

isotopic signatures, unlike the Keeling plot that instead provides a depth-integrated

signature. Given current analytical uncertainty, it is unlikely that the PP methods

will provide good results except in cases where isotopic source signatures are very

different (i.e. C3-C4 transitional systems or labeled soils). Future improvement in

the accuracy and precision of laser based field techniques may allow the PP method to

be applied more widely. Finally, the Keeling plot method is statistically robust when

the soil has a relatively homogenous isotopic source signature with depth. However

when this assumption is violated an inherent bias is observed in the mixing model
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that may skew results. The Keeling plot provides a depth-integrated signature, which

may be useful in some circumstances, but will be a hindrance in studies where the

signatures are expected to vary with depth.

Bear in mind that the treatment of each of these subsurface techniques assumes

that soil CO2 concentrations are at or near steady state. Luckily, the concentration

and stable isotope measurements during the field study were relatively stable, but this

may not always be the case, and any non-steady state diffusion will cause a bias in

all three methods. This potential non-steady state bias should always be considered

when dealing with isotopic data, as it can cause significant deviation from the true

isotopic signatures. Fortunately, for the gradient and production profile methods,

non-steady state versions of the diffusion equation may be used to compensate for

these effects (see Parent et al. (2013); Goffin et al. (2014)), however care should be

taken as these non-steady state approaches are more complicated and have inherent

errors associated with the determination of pore space and soil gas diffusivity.
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Table 4.1: Parameter ranges for production damping depth (η), isotopic pro-
duction damping depth (σ), atmospheric CO2 concentration (Catm), atmospheric
12CO2/

13CO2 ratio (Ratm, expressed in delta notation for ease of interpretation), soil
total CO2 production rate (P0), soil diffusivity (D), difference in isotopic signature of
production between the top and bottom of the soil profile (Rd) and isotopic signature
at the bottom of the soil profile (Rb).

Parameter Range (units)
η 0.01-0.5 (m)
σ 0.01-0.5 (m)
Catm 250-750 (ppm)
Ratm (-3)-(-13) (�)
P0 0.1-10 (μmol m−2 s−1)
D 10−5-10−10 (m2 s−1)
Rd [-19]-20 (�)
Rb [-14]-[-34] (�)



81

-4 -2 0 2 4

Bias (‰)

0

20

40

60

80

100

120

140

160

180

C
ou

nt

Figure 4.1: Histogram of Keeling plot bias for 1000 randomly sampled parameter
sets. Mean bias is 0.09� with a standard deviation of 1.38�.
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Figure 4.2: Sensitivity analyses for Keeling plot bias. Except for the parameter on
the x-axis in each plot, all other values were fixed as follows: D=1×10−6 m2 s−1;
Catm=380 ppm; δatm=-8�; Rb=-25�; Rd=11� (both expressed in delta notation
for ease of reading); P0=1 μmol m−2 s−1; η=0.1 m; σ=0.1 m. Rb and Rd are set
inside of the grey box to draw attention to the fact that the axes are different from
the other plots. Please note that the model parameters used in the sensitivity test
are characteristic of the higher end of the bias shown in Figure 4.1 and with different
model parameter sets the sensitivity magnitudes will be dampened.
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Figure 4.3: Keeling plots for a linear and non-linear case with δobs in units of � and
1/[CO2] in units of 1/ppm. For both simulations D=5×10−6 m2 s−1; Catm=380 ppm;
δatm=-8�; P0=1 μmol m−2 s−1; η=0.2 m; σ=0.1 m. For the curve shown in square
symbols Rb=-25� and Rd=0� and the Keeling plot bias is negligible. For the curve
shown in triangular symbols Rb=-25� and Rd=16� and the Keeling plot bias is
3.35�. Clearly the change in isotopic signature with depth causes non-linearity in
the Keeling plot.
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Figure 4.4: Example figure for isotopic flux (�) estimated using the gradient approach
with sampling intervals of 1 cm (gray dashed line) and 10 cm (squares). For
comparison the true isotopic flux is shown as the solid black line.
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Figure 4.5: a) Error in estimated isotopic signature (�) for the gradient method
for measurement errors (standard deviations of reading) of 1% CO2 and 0.1� δ13C
(open symbols) and 5% CO2 and 0.5� δ13C (closed symbols). Square symbols show
the error rate for different ratios of C2 to C1 (left y-axis) and circles show the error
rate for varying differences between δ2 and δ1 (right y-axis). b) Error in estimated
isotopic signature (�) for the production profile (PP) method for measurement errors
(standard deviations of reading) of 1% CO2 and 0.1� (open symbols) and 5% CO2

and 0.5� (closed symbols). Note that because of the form of the equation, as the
second order gradient converges to zero the error is asymptotic to infinity.



86

Day of Year Day of Year

D
ep

th
 (c

m
)

D
ep

th
 (c

m
)

Figure 4.6: Contour plots of soil CO2 concentration (top row, ppm) and isotopic
composition (bottom row, �) for the girdled (left column) and intact sites (right
column). Approximate locations of the 4 subsurface sampling tubes are show on the
plots with arrows although this varied slightly between the two sites.
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Figure 4.7: Keeling plot intercepts (top row) and gradient estimates (bottom row) of
the CO2 isotopologue flux signature form the girdled (left column) and intact (right
column) sites. For the gradient approach, the solid line is G1, the shallowest set of
gas wells, the long dashed line is the middle set of wells (G2) and the dotted lined is
the deepest set of wells (G3). Error is shown in shaded regions, for the Keeling plot
error is expressed as the standard error of the intercept estimate using OLS, for the
gradient measurements the error is calculated using uncertainty analysis.
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Figure 4.8: Keeling plot residuals for the intact (open squares) and girdled (closed
circles) sites. Note the distinct curvature, likely driven by a non-constant isotopic
signature of production with depth. For clarity, the data from the girdled site has
been shifted down a constant -1�.

Figure 4.9: Production profile estimates for the girdled (left) and intact (right) sites
at both PP1 (shallowest, solid line) and PP2 (deepest, dashed line). Error bounds
were calculated using uncertainty analysis and for the intact sites, the bounds were
removed from the spike around Julian Day 265.5 for plot scaling purposes.



Chapter 5

A Numerical Examination of 14CO2 Chamber Methodologies

for Measuring Fluxes at the Soil Surface

5.1 Preamble

This chapter describes a three-dimensional model analysis of several commonly

used chamber methods for measuring the radiocarbon content of soil respiration.

Authorship is as follows: Jocelyn Egan, Nick Nickerson, Claire Phillips and Dave

Risk. Jocelyn Egan is lead author on this manuscript, however we each contributed

equally to the research. Jocelyn wrote the bulk of the manuscript and performed

some analyses on the model data. I was responsible for the model development, data

collection and interpretation as well as the error analyses. Claire Phillips and Dave

Risk both served as supervisors to this work. A version of this manuscript has been

submitted to Radiocarbon and is currently in review.

5.2 Abstract

Radiocarbon is an exceptionally useful tool for studying soil-respired CO2, providing

information about soil turnover rates, depths of production and the biological

sources of production through partitioning. Unfortunately, little work has been

done to thoroughly investigate the possibility of inherent biases present in current

measurement techniques, like those present in δ13CO2 methodologies, caused by

disturbances to the soil’s natural diffusive regime. This study investigates the

degree of bias present in four radiocarbon sampling chamber methods using a

three-dimensional numerical soil-atmosphere model. The four chambers were tested

numerically with varying Δ14C and δ13C of production, collar lengths, soil biological

productivity rates, and soil diffusivities. The static and Iso-FD chambers showed

almost no isotopic measurement bias, significantly outperforming dynamic chambers

which demonstrated biases exceeding ±200� across all modeled scenarios. The study

89
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also showed that 13C and 14C diffusive fractionation are not a constant multiple of

one another, but that the δ13C correction still works in diffusive scenarios because

changes to 13C/12C diffusive fractionation are not large enough to impact measured

Δ14C values during chamber equilibration.

5.3 Introduction

The radioactive isotope of carbon (14C) is an exceptionally useful tool for studying

soil-respired CO2, providing information about the biological sources of production

through partitioning (Gaudinski et al., 2000; Trumbore, 2000; Hahn et al., 2006;

Schuur and Trumbore, 2006; Hicks-Pries et al., 2013). In recent years many studies

have utilized partitioning techniques, both physical and isotopic, as tools for sepa-

rating sources of soil respiration, to understand how soil respiration sources may be

affected by the future changing climate (Hanson et al., 2000; Högberg et al., 2001;

Bhupinderpal-Singh et al., 2003; Lee et al., 2003; Kuzyakov, 2006; Moyes et al., 2010b;

Bond-Lamberty et al., 2011; Drake et al., 2012; Gomez-Casanovas et al., 2012; Risk

et al., 2012). Source partitioning with isotopes has an advantage over physical parti-

tioning as it typically involves less disturbance than physical partitioning. However,

in natural abundance isotopic partitioning studies, radiocarbon can be more useful

than δ13C. The difference between autotrophic and heterotrophic δ13C signatures of

soil-respired CO2 is only few permil (�) (except in C3-C4 vegetation shifted studies),

whereas there can be a much larger separation between Δ14C source signatures, espe-

cially in systems where slow decomposition or long-term storage accentuate isotopic

differences (Trumbore, 2006). A peak in atmospheric Δ14C signatures in 1963 caused

by nuclear weapons testing has allowed researchers to utilise this 14C as a tracer

to distinguish whether carbon substrates were utilized pre- or post-bomb, because

post-bomb signatures are distinctive given their relative 14C enrichment (Levin and

Hesshaimer, 2000). Autotrophic respiration consumes new carbon, so its radiocarbon

signature will reflect current atmospheric 14CO2 signatures, whereas heterotrophic

signatures will reflect the age of the substrates that the heterotrophs consume, which

can very new or quite old (Gaudinski et al., 2000; Phillips et al., 2013).

Despite the potential utility of 14CO2 as a tool for investigating soil-respired

CO2, little work has been done to thoroughly investigate the possibility of biases
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inherent to existing measurement techniques, because high cost of analysis naturally

drives researchers to focus effort on the ecological aspect of studies, rather than

error/uncertainty testing. In the case of δ13C, Cerling et al. (1991) demonstrated

that although mass differences in 12C and 13C isotopologues cause 12C to diffuse

1.0044 times faster through the soil, if the soil is at a diffusive steady-state, the δ13C

of production should match the δ13C of surface flux. Soils are, however, rarely at a

diffusive steady-state, and research looking at δ13C has shown that non-steady-state

transport fractionations can be induced by soil transport (Nickerson and Risk, 2009a;

Moyes et al., 2010b) and headspace sampling (Ohlsson, 2010), where non steady-state

chambers can induce a bias of 4 � and steady-state chambers up to 15 � caused by

lateral diffusion (Nickerson and Risk, 2009c). The magnitude of these biases could

potentially overprint the δ13CO2 signatures of biological flux (Kayler et al., 2010;

Phillips et al., 2010; Moyes et al., 2010b), making partitioning difficult. These time-

dependent fractionations (”dynamic fractionations”; Nickerson and Risk (2009a)) will

also be present and will potentially cause biases when attempting to measure 14CO2,

because like 13CO2,
14CO2 has a different diffusion coefficient than 12CO2, diffusing

1.0088 times slower (Wang et al., 1994) . Currently, to calculate Δ14C, researchers

use δ13C to correct for potential steady-state mass dependent fractionations (Stuvier

and Polach, 1977). The δ13C correction will not account for dynamic fractionations

however, because the assumption that 14C fractionation is a constant multiple of 13C

fractionation may not hold in typical measurement conditions where the soils are

rarely at steady-state. It will therefore be of interest to the radiocarbon community

to know if steady-state and non steady-state chamber methods used to measure Δ14C

of soil-respired CO2 induce bias in a similar magnitude to those of δ13C.

In order for researchers to understand bias that may have been induced by

14CO2 chamber methodologies in past studies, and to help decide which chamber

method is the most robust for future studies, a three-dimensional numerical soil-

atmosphere model was used to simulate soil-atmosphere-chamber exchange of CO2

isotopologues, including 14CO2, to compare isotopic signatures measured by various

chamber methods to the natural steady-state. The effect of chamber-specific methods,

such as pump speed, stable isotopic signature calculations and mixing model type,

were also considered to determine the effect of these on the final estimates of stable
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and radioactive isotopic signature. Additionally, the effects of equilibration on the

change in the Δ14C of soil flux was examined, and the amount by which 13CO2 and

14CO2 fractionation factors differ from one another during chamber equilibration.

This was done in order to understand whether a biased stable isotopic value for flux

used as a correction in the calculation of Δ14C will affect the results. Predictions

are that the static and dynamic chambers will induce more bias measuring Δ14C of

flux than they do for δ13C, as the diffusive fractionation factor for 14CO2 is larger,

and furthermore because additional error could be related to the δ13C correction in

a dynamic environment (Stuvier and Polach, 1977).

5.4 Methods

5.4.1 Soil-Atmosphere Model

A three-dimensional coupled soil-atmosphere-chamber model was used to explore

biases inherent in current 14CO2 chamber methodologies. The model simulates CO2

produced in the soil, diffusion to the atmosphere and in some cases into a chamber set

on the surface of the modeled soil. Model physics and structure are further described

in Creelman et al. (2013).

Each carbon isotopologue of CO2 (
12CO2,

13CO2 and
14CO2) is treated separately

with its own specific atmospheric concentration, production and diffusion rate. In

the case of 14CO2 it is assumed that radioactive decay is negligible over the timescale

of the measurements (Cerling et al., 1991; Wang et al., 1994). This method produces

model runs for each isotopologue where the resulting concentrations and fluxes of

each isotopic species are used to calculate total CO2, δ
13C and Δ14C signatures of

the soil CO2 and surface flux at each time step.

Simulations were performed using a range of soil production rates, soil diffusivity

coefficients, chamber collar lengths and δ13C and Δ14C signatures of biological

production (Table 4.1). In all model scenarios the δ13C and Δ14C of the atmosphere

were 8.8 � and 100 �, respectively, which are in the range of most typical

environments.
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5.4.2 Calculation of Isotopic Signatures

The model output calculates isotopic signatures using del notation. δ13C is presented

in � as:

δ13C =

(
Rs

Rstd

− 1

)
× 1000 (5.1)

where Rs is the
13C/12C ratio of the sample and Rstd is the

13C/12C ratio of the PDB

standard. Δ14C is also presented in � using the value of fraction modern (FM) of

the sample:

Δ14C = (FM − 1)× 1000 (5.2)

FM is calculated using As, the measured activity of the sample, where the model

outputs a 14C/12C ratio and Aabs, which is equivalent to As to the fourth decimal

place (Southon, 2011). Aabs is the measured activity of the oxalic acid standard, with

a model parameterization value of 1.2511e−12, where Aabs is 0.95 times the activity

of the oxalic acid standard in 1950, corrected to a δ13C of -19� (Stuvier and Polach,

1977):

FM =

(
As

Aabs

) (
1− 25

1000

)2
(
1 + δ13Cs

1000

)2 (5.3)

where δ13Cs is the δ
13C signature of the sample, and 25 is the sample activity corrected

for δ13C isotopic fractionation.

5.4.3 Chamber Descriptions

Four chambers were chosen from past studies, for testing in the model environment,

and these chambers are described below, but also represented graphically in Figure

5.1. All calculations to determine chamber δ13C and Δ14C from the model output

were performed using the equations provided in the original studies. All results were

converted to Δ14C notation in cases where the results were calculated in per cent

modern or fraction modern to facilitate comparison of the results between different

chambers.

Dynamic Chambers

Dynamic chambers are a type of steady-state chamber often employed in soil flux

studies, including radiocarbon studies. They theoretically minimize alteration to the
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soil CO2 concentration gradient by flowing atmospheric air or a CO2 free gas through

the chamber, which decreases the headspace concentration in order to maintain

chamber concentrations closer to the surrounding atmosphere (Rayment and Jarvis,

1997). Two dynamic chambers were chosen to model. Chamber A has a volume

of ∼ 11.5 L and is based on the chamber presented in Gaudinski et al. (2000). It

utilized a pump with a constant flow rate of 0.5 L/min, and soda lime column to

decrease the headspace concentration, regardless of the soil flux value at the time of

measurement, just before diverting the flow path into a molecular sieve trap to collect

2 mg C for radiocarbon analysis. For modelling purposes it was assumed that the

soda lime and molecular trap were perfectly efficient at removing CO2 from the air

stream, and further, that there was no isotopic fractionation associated with either

process. Stable isotopic (δ13C) signatures of surface flux were used to correct the

Δ14C of the headspace for mass-dependent fractionation and for incomplete stripping

of atmospheric CO2 during the trapping period using the following equation:

X =
δ13Cmeasured − δ13Csoil

δ13Catmosphere − δ13Csoil

(5.4)

where X is the fraction of remnant atmospheric air in the sample, δ13Catmosphere is

the atmospheric δ13C signature and δ13Csoil is the δ13C signature of soil respiration.

Δ14C is then calculated as:

Δ14Csoil =
Δ14Cmeasured −X ×Δ14Catmosphere

1−X
(5.5)

Chamber B differs from Chamber A by using an infrared gas analyser in-line with

the pump to determine the flux rate into the headspace prior to CO2 scrubbing.

The pump speed was adjusted to match the soil flux rate, thereby maintaining near

natural steady-state conditions in the chamber (Schuur and Trumbore, 2006). The

same equations for X and Δ14Csoil that were used for Chamber A were also used for

Chamber B. The modeled volume (11.5 L) and surface area (0.058 m2) of Chamber

B were based on the values used in Schuur and Trumbore (2006).

Static Chamber

Static chambers are a type of non-steady-state chamber in which CO2 from soil is

allowed to accumulate without interference in the chamber headspace. In the case
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of 14C sampling, after the accumulation period, a molecular sieve trap or sampling

flask captures gas from the headspace. For modelling scenarios, the static chamber,

Chamber C, is based on the one presented by Hahn et al. (2006). The chamber was

deployed for 30 minutes to allow CO2 accumulation in the headspace before sampling,

thereby ensuring that enough CO2 is captured in the sampling flask for Δ14C analysis.

Isotopic signatures (δ13C and Δ14C) of flux were calculated using a standard 2-source

mixing model:

δ13Crespired =
δ13Cchamber × [CO2]chamber − δ13Cfreeair × [CO2]freeair

[CO2]chamber − [CO2]freeair
(5.6)

where δ13Crespired is the stable isotopic signature of respired CO2, δ
13Cchamber and

[CO2]chamber are the stable isotopic signature and CO2 concentration of chamber air,

respectively, and , δ13Cfreeair and [CO2]freeair are the stable isotopic signature and

CO2 concentration of the free air (near-surface atmosphere). A similar equation can

be constructed to calculate the chamber estimate respired radiocarbon activity, which

can then be converted to Δ14C signature (Hahn et al., 2006).

Isotopic-Forced Diffusion Chamber

The Isotopic-Forced Diffusion (Iso-FD) chamber is similar in design to a dynamic

chamber, but rather than mass outflow, the air exchange between the chamber and

atmosphere is regulated by a diffusive membrane (Figure 5.1D). This chamber design

has been tested as a tool for sampling δ13CO2 (Nickerson et al., 2013) and is based

on the Forced Diffusion (FD) bulk CO2 flux chamber presented by Risk et al. (2011).

Here its theoretical performance for Δ14C sampling was evaluated (Chamber D).

The principle of FD operation is to restrict exchange between the chamber and the

atmosphere passively using membranes of known diffusivities. The offset in CO2

concentration and isotopic abundance between the chamber and the surrounding

atmosphere can then be related to soil flux rate and composition. Membranes of

particular diffusivities and panel surface areas were chosen for the specific chamber

geometry, in order to obtain the ideal amount of CO2 build-up in the chamber for

measurements with the smallest error (Creelman et al., 2013). As is the case with

dynamic chamber, FD chamber interior concentrations are an intermediate between

the atmosphere and soil, so the technique uses an atmospheric reference chamber,
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which has no soil inlet, alongside the FD chamber, to correct for changes in the

atmospheric concentrations in the mass balance equation. For this configuration,

both the chamber and atmospheric reference were coupled to molecular sieve traps.

Δ14C signatures were calculated from the model output for this chamber using the

following equation, modified from that presented in Nickerson et al. (2013):

F
14C
in

F
12C
in

=
1

1.0088

(
C

14C
FD − C

14C
atm

)
(
C

12C
FD − C

12C
atm

) (5.7)

where F
14C
in /F

12C
in is equivalent to As and can be represented in del notation with

equations 5.2 and 5.3, 1.0088 is the diffusive fractionation factor for 14CO2 (Wang

et al., 1994), and CFD and Catm are the concentrations of each isotopologue present

in the Iso-FD chamber and atmospheric reference chamber. Again, for consistency

the modeled volume and surface area of the chamber were 11.5 L and 0.058 m2,

respectively.

5.4.4 Error Analysis

Propagation of uncertainty (error) was calculated for the chambers using the standard

partial derivative form (Ku, 1966):

sf =

√(
∂f

∂x

)2

s2x +

(
∂f

∂y

)2

s2y +

(
∂f

∂z

)2

s2z + ... (5.8)

where sf is the absolute error in the function f, which is composed of the variables

x, y, z, and so on, each with variable specific uncertainty sx, sy, sz. For the specific

equations used for each chamber see Appendices A and B.

5.5 Results & Discussion

5.5.1 Dynamic Chambers (A and B)

Simulations of Chamber A, which used a constant pump speed of 0.5 L/min, showed

that headspace CO2 concentrations could differ substantially from the atmosphere

unless the soil flux rates were well-matched to the CO2 scrubbing rates. Assuming

steady-state concentrations at the soil surface were initially in the range of ∼ 380-

1000 ppm CO2, using a constant pump speed of 0.5 L/min, the optimal soil flux
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rate into the chamber should be 2-6 μmol m−2 s−1 in order to maintain steady-state

concentrations. When soil flux rates fall in this range, the simulation results showed

14C errors were at their lowest (Figure 5.2A). This suggested that the main driver of

error for Chamber A is the constant pump rate, which is unable to maintain a near

steady-state concentration in the chamber during measurement, when fluxes are too

low or too high to match the rate of CO2 removal.

Δ14CO2 errors were exacerbated when Chamber A was placed on virtual porous

soils, and where flux rates were low (Figure 5.2A). This was due to a combination of

over-pumping and lateral diffusion, a problem which is exacerbated in soils of high

soil diffusivity. In low diffusivity soils, however, the chamber performed relatively

well because of the limited feedback between the chamber and the soil, which created

an effective 1D diffusion pathway eliminating lateral diffusion errors. Results from

simulations with varying soil collar depth helped support the interpretation that

lateral diffusion contributed to 14C measurement errors. When the collar depth was

increased at fixed levels of diffusivity and production, Δ14C errors decreased linearly

(data not shown).

The apparent 14C errors associated with Chamber A were also affected by

similarity in isotopic values of soil CO2 production and atmospheric CO2. This

increase in bias arose because of the chamber based errors in the estimate of X (Eq.

5.4). Any error in the chamber estimate becomes amplified because the two δ13C

values are differenced in the denominator of the calculation. As the δ13C signature of

production became more enriched, overestimates in Δ14C began to appear in lower

porosity soils (i.e. soils with higher moisture/bulk density). Similarly, biases also

became larger in porous soils with low biological productivity (Figure 5.2A).

When the specified Δ14CO2 of production in the model was more enriched, in

porous soils with low fluxes, the chamber-measured signatures were more depleted

than they should have been. When the signatures of production were more depleted,

the chamber yielded more enriched values than it should have (Figure 5.3A). Near

the point where soil production and atmospheric Δ14CO2 were similar, the error in

measurement was minimized. This minimized error was likely an apparent minima

caused by the lack of distinction between source and ambient Δ14CO2 signatures.

For chamber B, in which pump speed was regulated to hold CO2 at a constant
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concentration, modeled errors varied with soil porosity and productivity. In soils with

high diffusivity, Δ14CO2 was slightly underestimated, and slightly overestimated in

soils with low diffusivities and low biological production rates. The adjustment of

the pump speed to the ambient atmospheric concentration led to the maintenance of

near steady-state concentrations in the chamber during the measurement period, with

some deviation from the true steady-state caused by soil diffusivity (and therefore soil

collar length) and the slight stratification of the model atmosphere, causing the slight

over- and underestimates.

Similar to the Chamber A results, if the δ13C signature of production and

atmosphere were considerably different, Δ14CO2 deviations from true isotopic value

occurred in soils with low productivity. However, as the δ13C signature of production

approached that of the atmosphere (more enriched), deviations similarly became

apparent in highly productive soils as well (Figure 5.2B). In soils when the Δ14CO2

of production was depleted relative to the atmosphere, Chamber B gave slight

overestimates of Δ14CO2. If the Δ
14CO2 of production were to be enriched more than

the range of the model simulations, the chamber would produce slight underestimates

across all diffusivities, again in soils with lower productivity (Figure 5.3B).

Error analysis performed on Chamber A and B provided further explanation for

deviations in isotopic signature when the inputted isotopic signature of production

was similar to that of the atmosphere.

Uncertainty estimates for the dynamic chambers consist of two necessary calcula-

tions, the first of which is the uncertainty in X, the fraction of remaining atmospheric

air in the chamber. Uncertainty in X is largely driven by the difference between

δ13Catm and δ13Csoil (the denominator in Equation 5.4), where large differences be-

tween the two values minimize the error. Shown in Figure 5.4(a) are uncertainty

estimates in X (unitless) as a function of δ13Catm and δ13Csoil for measurement errors

of 0.1� (open squares) in all of the variables in Equation 5.4, and 0.3 � measure-

ment error in δ13Catmosphere and δ13Cmeasured and 1.0 � measurement error in δ13Csoil

(circles).

Figure 5.4(b) shows the subsequent Δ14Csoil uncertainty estimates as a function of

X for measurement errors of 10 � in Δ14Cmeasured and Δ14Catmosphere, and error in X of

0.01, displayed in the open squares. While the value of X drives the largest uncertainty



99

in the estimate of Δ14Csoil, the spread in the uncertainty data at a given X value is

linearly related to the absolute difference between Δ14Cmeasured and Δ14Catmosphere.

Also shown is the uncertainty for measurement errors of 50 � in Δ14Cmeasured and

Δ14Catmosphere, and error in X of 0.1 (grey circles).

Based on the uncertainty analysis, measurements of Δ14C done with a dynamic

chamber can be made with much more certainty in scenarios where the atmosphere

values of δ13C and Δ14C are different (5 � in the case δ13C) from the δ13C and Δ14C

of the soil.

As demonstrated through the comparison of Chambers A and B in Figures 5.2

and 5.3, Chamber B performed consistently better than Chamber A, in all simulated

scenarios. This increased performance can be attributed to maintenance of near

steady-state conditions through the adjustment of pump speed. With a constant

pump speed there is an optimal range of flux rates when Chamber A can perform

well, but it is less applicable than Chamber B across a large range of soil conditions.

5.5.2 Static Chamber

Previous numerical modelling by Nickerson and Risk (2009c) showed a bias towards

underestimation of δ13CO2 using static chamber designs. The combination of a strong

concentration gradient between the soil and chamber, and diffusive fractionation

caused 12CO2 to accumulate in the chamber before 13CO2, and tended to make the

signature of the chamber headspace more negative than the equilibrium condition,

as 13CO2 caught up (please refer to Figure 3 of Nickerson and Risk (2009b)). One

expects to see similar results when this type of chamber is used to measure 14CO2,

but this was not observed (Fig. 5.4). In fact, the static chamber design (Chamber C)

performed very well over the whole range of soil conditions, with the deviation from

the true isotopic signature of Δ14CO2 flux being in the numerical error bounds of the

model (∼ 1 � Δ14CO2).

Based on subsequent analytical modelling of the chamber isotopic signatures

(data not shown), it seems that the marginally increased fractionation factor for

14CO2 (1.0044 for 13CO2 and 1.0088 for 14CO2) is balanced by a very low Δ14CO2

concentration gradient, leading to a smooth transition from atmospheric to respired

isotopic signatures for Δ14CO2. When the fractionation factor was increased in the



100

analytical model, the non-linear mixing behaviour that was noted in the δ13CO2

simulations became evident in the Δ14CO2 results. Similarly, if the fractionation

factor was held at 1.0088, but the absolute abundance of 14CO2 increased, with
12CO2

and 13CO2 staying the same, (and thus the gradients between soil and atmosphere

became larger) the non-linear mixing behaviour also became evident.

Figure 5.5 shows the probable uncertainty for the static chamber. It assumes two

error rates, the first with a measurement error of 10 � (5 � AMS error and 5 �
sampling and extraction error; (Phillips et al., 2013)) in Δ14C signatures and 1 % in

bulk gas concentrations (open squares), and the second with measurement errors of 50

� in Δ14C signatures, and 5 % in bulk gas concentrations (open circles). Most of the

uncertainty in the estimation of the radiocarbon fluxes with this chamber comes from

the ratio of the final (C2) and initial concentrations (C1). Like the dynamic chambers,

measurements made with the static chamber can be done with more certainty when

the final chamber measurements are at least twice the value of the initial chamber

measurements.

5.5.3 Isotopic-Forced Diffusion Chamber

In all simulations with the Iso-FD chamber, the predicted isotopic signature of flux

was very near the prescribed value. Similar to the static chamber results, the Iso-FD

results were within the numerical error bounds of the model (∼ 1 � Δ14CO2). The

accuracy of this chamber can be attributed to the fact that a diffusive steady-state was

maintained during the measurement period, avoiding isotopic disequilibrium created

by other chamber designs. Simulations showed similar behaviour with Δ14CO2 as

for the δ13CO2 embodiment of this chamber in Nickerson et al. (2013), where a

slight build-up of concentration in the chamber headspace produced concentration

and isotopic plumes directly below the chamber. However, despite these plumes

sampling errors were negligible.

Assuming the fractionation factor for the Iso-FD calculations is constant and

known, the uncertainty for the Iso-FD chamber takes the same form as the static

chamber and uses the same calculation variables (Figure 5.5). For the Iso-FD

chamber, most of the uncertainty in the estimation of the radiocarbon fluxes comes

from the ratio of concentration measurements in soil chamber and atmospheric
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chamber measurements, which can be thought of as equivalent to the ratio of the

final (C2) and initial concentrations (C1) for the static chamber. As was the case

with the dynamic chambers and static chamber, measurements made with Iso-FD

chambers have more certainty when the soil chamber concentration measurements

are at least twice the value of the atmospheric chamber measurements.

5.5.4 Other Considerations

There are also some other possible biases that should be considered, which are not

included in the model. The simulated soil in the model is at steady-state. It has a

constant biological production, soil diffusivity and isotopic signatures of production

through depth, so no non steady-state (NSS) effects (Nickerson and Risk, 2009a) are

included in the results. A non-uniform soil with varying diffusivities and production

rates through depth, would provide different model results than the uniform modeled

soil (Venterea and Baker, 2008). Nickerson and Risk (2009a) and Moyes et al. (2010b)

demonstrated the effects of dynamic fractionations, where soil features and processes

such as biological production, diffusivity, pore space and atmospheric concentrations,

which have temporal variation, will induce NSS transport conditions that lead to

transient changes in the isotopic composition of the soil CO2 flux. The main driving

force behind this is the difference in the diffusion rate between CO2 isotopologues,

which will be slightly amplified when considering 14CO2 due to its increased mass.

The measured values could therefore be further biased on top of the potential biased

induced by the chamber method. Despite the counterbalance of low 14C concentration

gradients shown in the case of the static chamber, these dynamic fractionation effects

should be investigated further in order to ensure that they are not causing bias.

The model also assumes that the method used to sample from the chamber, molec-

ular sieve trap or sampling flask, is completely efficient and causes no fractionations.

Δ14C static chamber methods can include a capillary tube that attaches a sampling

flask to the chamber (Hahn et al., 2006). This method could cause a potential fraction-

ation, where the lighter isotopologue, 12CO2, would travel faster than 14CO2 through

the capillary tube, so the resulting mixture in the sampling flask could potentially be

more depleted than the mixture in the chamber headspace. It would be ideal to obtain

a quick sample from the chamber, for example, by attaching the sampling flask under
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vacuum to the chamber and sucking up 1 L of sample immediately. This configuration

would be similar to how the model simulates sampling from the chamber and would

work well for the two-point mixing model used for static chambers (Hahn et al., 2006).

Another issue not addressed in the model surrounding the static chamber and Iso-FD

chamber methods is the possible stratification of the chamber headspace gas because

of the lack of mixing. In the case of the static chamber, concentration stratification

as well as the capillary tube used in the Hahn et al. (2006) chamber, fractionation

could lead to an even greater bias in the captured gas in the sampling flask, where

the gas traveling along the tube is not well mixed. For the Iso-FD chamber, there

could also be problems with using molecular sieve traps, because as CO2 is removed

from the chamber headspace, it decreases the concentration in the chamber, causing

the chamber to no longer be at steady-state. In the case of dynamic chambers, if the

soda lime trap and molecular sieve trap have different trapping efficiencies, then the

expected advantage of having a truer steady-state, will not be met. If the soda lime

and molecular sieve traps also fractionate 14C, then the already biased results found

in this study will be further biased.

Although the Iso-FD and static chambers perform well under all simulated

conditions in the numerical model, there are some other things that needed to

be considered. The two samples needed for these chambers (soil or final chamber

measurement, and atmosphere or initial chamber measurement) have to be different

enough from one another, to keep the error rate within an acceptable range (Figure

5.6). For the Iso-FD chamber this means choosing an appropriate membrane and for

the static chamber this means leaving the chamber deployed for a long enough period

of time. Therefore, in scenarios where the soil chamber or final concentrations and

the atmospheric chamber or initial chamber concentrations are quite similar, these

chambers would not be ideal.

The δ13C correction used to account for potential steady-state mass-dependent

fractionations in Δ14C assumes that 14CO2 and 13CO2 diffusive fractionation are

a constant multiple of one another. Figure 5.6 (a & b) demonstrates that this

assumption is incorrect. In a time series view of chamber equilibration (Figure 5.6a),

14C/12C does not behave in the same way as 13C/12C (lateral diffusion), except for

when the radiocarbon signatures of production and atmosphere are equal (50 �
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in this case). In Figure 5.6b, chamber equilibration mixing lines of 14C/12C and

13C/12C demonstrate whether a difference in mixing behaviour between the stable and

radioactive isotopes exists. A hook in the line signifies a different mixing behaviour

for 13C and 14C, whereas a straight line means the mixing behaviour is the same

for both isotopes. Despite the differences in mixing behaviours between the isotopes

(fractionation no longer a constant multiple), the changes to the fractionation factor

multiple between the two isotopes does not change enough for lateral diffusion biases

in the stable isotope to have an impact on the radiocarbon result.

5.6 Conclusions

These model simulations provided insights that were unexpected. The static chamber

has low theoretical sampling errors, where it was expected to induce a greater bias

than dynamic chambers, like in the case of δ13C (Nickerson and Risk, 2009c). Based

on the simulation results, the static chamber and Iso-FD chamber performed the best

under all soil conditions, but other considerations should be made when choosing

a sampling method, including aspects not included in the model simulations, such

as the choice between molecular sieve traps or sampling flasks, the cost, and the

length of time needed to sample the chamber. This modelling exercise also showed

that the assumption that stable and radiocarbon isotopic diffusion fractionations are a

constant multiple of one another through time is not universally true, especially under

non-steady state conditions. The δ13C correction still stands because the changes to

the diffusive fractionation during equilibration are not large enough to impact Δ14C,

but researchers should still be cautious, and this should be investigated further for

non steady-state soil conditions.
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Table 5.1: The ranges of model parameters input for the Δ14CO2 chamber simula-
tions.

Variable Ranges
Diffusivity (m2/sec) 10−8, 5x10−8, 10−7, 5x10−7, 10−6, 5x10−6

Productivity (μmol/m2/sec) 0.1, 1, 5
Collar Length (cm) 0, 2, 4, 8

δ13C of production (�) -30, -20, -15
Δ14C of production (�) -500, -200, 0, 200, 500
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Figure 5.2: Contour plots of model output error of Δ14C (�) of Chamber A (panel
A) and Chamber B (panel B) with a simulated Δ14C of production of - 200 �, collar
length of 2 cm, and δ13C of production of - 30 �, - 20 � and -15 � in columns 1,
2 and 3, respectively. Soil production (μmol/m2/sec) is on the x axis and log of soil
diffusivity (m2/sec) on the y axis. Note scale differences between Chamber A and
Chamber B.
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Figure 5.3: Contour plots of model output error of Δ14C (�) of Chamber A (column
A) and Chamber B (column B) with a simulated δ13C of production of - 30 �, collar
length of 2 cm, and Δ14C of production of - 500 �, - 200 �, 0 �, 200 � and 500� in rows 1, 2, 3, 4 and 5 respectively. Soil production (μmol/m2/sec) is on the x
axis and log of soil diffusivity (m2/sec) on the y axis. Note scale differences between
Chamber A and Chamber B.
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a

b

Figure 5.4: Uncertainty estimates for the dynamic chambers. (a) Uncertainty
estimates in X (unit less) as a function of δ13Catm and δ13Csoil for measurement errors
of 0.1� in all of the variables in Equation 5.4 (open squares), and 0.3 � measurement
error in δ13Catmosphere and δ13Cmeasured and 1.0 � measurement error in δ13Csoil

(circles). (b) Δ14Csoil uncertainty estimates as a function of X for measurement errors
of 10 � in Δ14Cmeasured and Δ14Catmosphere, and error in X of 0.01 (open squares), and
the uncertainty for measurement errors of 50 � in Δ14Cmeasured and Δ14Catmosphere,
and error in X of 0.1 (grey circles).
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Figure 5.5: The probable uncertainty for static and Iso-FD chambers assuming two
error rates, the first with a measurement error of 10 � in Δ14C signatures, and 1 %
in bulk gas concentrations (open squares), and the second with measurement errors
of 50 � in Δ14C signatures, and 5 % in bulk gas concentrations (open circles). C1
and C2 are the initial and final concentrations for the static chamber, or for the
Iso-FD chamber, they are equivalent to the atmospheric chamber and soil chamber
measurements.
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Figure 5.6: (a) Time series of chamber equilibration for stable carbon and radiocarbon
ratios. Note that the 13C/12C ratio overshoots the equilibrium value between 2 and
10 hours due to lateral diffusion. This behavior is not present in the radiocarbon
ratios except for when the radiocarbon signature of production and the radiocarbon
signature of the atmosphere (50 � for this model simulation) are equal. The insert
is a y-axis zoom of the Δ14C 50 � line to display the overshooting behaviour. (b)
Radiocarbon and stable carbon ratio mixing lines during chamber equilibration for
three Δ14C signatures. A hook in the line signifies a different mixing behaviour for
13C and 14C, whereas a straight line means the mixing behaviour is the same for both
isotopes.



Chapter 6

Interpreting Diel Hysteresis Between Soil Respiration and

Temperature

6.1 Preamble

This chapter presents a model analysis showing how diel hysteresis patterns, observed

by many researchers during field based measurements, are likely a result of lags

between soil temperature and soil CO2 efflux. Authorship on this paper is as follows:

Claire Phillips, Nick Nickerson, Dave Risk and Barbara Bond. Claire Phillips was

the principal investigator in this work and was responsible for running the model

and writing the bulk of the manuscript. I co-developed the theory, computational

model and helped to interpret the results. Dave Risk and Barbara Bond both had

supervisory roles in this work. This manuscript was published in Global Change

Biology in January, 2011 (Volume 17, Issue 1). Copyright permission for this

publication can be found in Appendix E.

6.2 Abstract

Increasing use of automated soil respiration chambers in recent years has demon-

strated complex diel relationships between soil respiration and temperature that are

not apparent from less frequent measurements. Soil surface flux is often lagged from

soil temperature by several hours, which results in semielliptical hysteresis loops when

surface flux is plotted as a function of soil temperature. Both biological and physical

explanations have been suggested for hysteresis patterns, and there is currently no

consensus on their causes or how such data should be analyzed to interpret the sensi-

tivity of respiration to temperature. A one-dimensional soil CO2 and heat transport

model based on physical first principles was used to demonstrate a theoretical basis

for lags between surface flux and soil temperatures. Using numerical simulations, it

is demonstrated that diel phase lags between surface flux and soil temperature can

111
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result from heat and CO2 transport processes alone. While factors other than temper-

ature that vary on a diel basis, such as carbon substrate supply and atmospheric CO2

concentration, can additionally alter lag times and hysteresis patterns to varying de-

grees, physical transport processes alone are sufficient to create hysteresis. Therefore,

the existence of hysteresis does not necessarily indicate soil respiration is influenced

by photosynthetic carbon supply. It is also demonstrated how lags can cause errors

in Q10 values calculated from regressions of surface flux and soil temperature mea-

sured at a single depth. Furthermore, synchronizing surface flux and soil temperature

to account for transport-related lags generally does not improve Q10 estimation. In

order to calculate the sensitivity of soil respiration to temperature, approaches that

account for the gradients in temperature and production existing within the soil are

most useful. The consideration of heat and CO2 transport processes is a requirement

to correctly interpret diel soil respiration patterns.

6.3 Introduction

Soil respiration, which is often the largest flux of CO2 leaving terrestrial ecosystems

(Ryan and Law, 2005; Jassal et al., 2007; Gaumont-Guay et al., 2008), is likely to be an

important determinant of ecosystem carbon balance under future climate scenarios.

The temperature sensitivity of soil respiration is one of the more basic characteristics

that ecologists would like to quantify in order to predict fluxes in changing envi-

ronments. However, regressions between soil respiration and temperature often have

relationships that do not agree with theoretical models, such as the commonly used

Arrhenius or vant Hoff type expressions (see Davidson et al. (2006b) for a detailed

discussion). Models based on simple reaction kinetics do not capture the biological

and physical complexities of soil systems, including heat and gas transport dynamics

(Risk et al., 2002a; Pumpanen et al., 2003; Davidson et al., 2006a; Pavelka et al.,

2007). While there is much agreement that more sophisticated, mechanistic models

are required to describe and predict soil respiration, many suggestions have focused

on improving descriptions of biological production (Trumbore, 2006; Carbone and

Vargas, 2008), and the complexities of soil physical processes have not received the

same level of attention.

In recent years, automated soil respiration chambers have gained widespread
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use, providing temporally dense sets that reveal complex relationships between

soil respiration and temperature that are not apparent with less frequent survey

measurements. Many researchers who analyze data from automated chambers have

observed diel hysteresis, evidenced by semielliptical shapes in regression plots of soil

temperature and soil respiration (see examples in Riveros-Iregui et al. (2007); Bahn et

al. (2008); Carbone and Vargas (2008). These ellipses result from phase lags between

the diel signals of soil temperature and soil respiration, but there is no consensus on

what causes phase lags, or how best to analyze lagged data in order to determine

the temperature sensitivity of soil respiration (Pavelka et al., 2007; Graf et al., 2008;

Gaumont-Guay et al., 2008).

Two main lines of reasoning have been proposed to explain the origins of phase

lags. The first is the covariate argument, that environmental factors which oscillate

out of phase with soil temperature, such as carbon supply from recent photosynthate,

modify CO2 emissions (Tang et al., 2005a; Stoy et al., 2007; Vargas and Allen, 2008;

Kuzyakov and Gavrichkova, 2010). The second is the heat transport argument,

that soil temperature measured at an arbitrary depth is out of sync with surface

efflux, due to shifts in the phase and amplitude of soil temperature with depth

(Pavelka et al., 2007; Graf et al., 2008). This argument is based on the fact that

soil CO2 production in an integrated response a to nonuniform temperature profile,

so temperatures measured at discrete soil depths are likely to differ in both magnitude

and phase from the average temperature forcing soil CO2 production. The covariate

and heat-transport explanations are not mutually exclusive, and both factors are

likely to play important roles in diel soil respiration dynamics. An additional factor

that has not been discussed extensively is that gas diffusion through soil imposes a

lag between the time of CO2 production at depth and release from the soil surface.

An excellent example of how these potential explanations can act simultaneously

is the multiple influences that soil moisture can have on diel soil respiration patterns.

Lags between soil respiration and temperature, and the semielliptical forms produced

when these variables are plotted against each other, have been shown to vary

seasonally with soil moisture (Tang et al., 2005a; Riveros-Iregui et al., 2007; Carbone

and Vargas, 2008; Vargas and Allen, 2008). All of the processes mentioned above

- substrate supply, heat transport, and CO2 diffusion - are influenced by soil
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moisture and can provide partial explanations for seasonal changes in diel hysteresis.

Additionally, hysteresis patterns can also change day-to-day under conditions where

soil moisture is fairly constant, and so diel influences from factors not wholly related

to moisture should also be considered, such as photosynthetic carbon supply (Liu

et al., 2006; Bahn et al., 2009), and disturbances such as atmospheric turbulence

(Flechard et al., 2007).

Having multiple drivers which vary on a diel basis complicates the goal of measur-

ing the temperature sensitivity of respiration in situ. Determining the temperature

response of surface flux requires first disentangling the effects of temperature from

other diel environmental drivers, and second, relating surface flux rates to nonuniform

CO2 production and temperature profiles. This study aimed to provide a conceptual

framework and a modelling tool for addressing both parts of this process.

To evaluate the influences of temperature on surface flux in the absence of any

other controlling factors, the theoretical diel relationship between soil temperature

and surface flux resulting from purely physical transport processes was determined.

Using basic principles of gas diffusion and heat transport, the expected lag times

and hysteresis patterns between soil temperature and surface flux were simulated.

A series of sensitivity analyses were then performed to determine the impacts on

lag times of variations in soil physical factors, such as thermal diffusivity and gas

diffusivity, and environmental factors, such as air temperature variation. To show

the challenges and possibilities for distinguishing temperature from other diel signals,

increasingly complex field scenarios were simulated, modelling simultaneous changes

in temperature and other environmental variables, including atmospheric CO2 and

carbon substrate supply. These simulations demonstrate how both physical and

biological drivers might influence hysteresis patterns under field conditions.

To understand how transport processes impact calculations of the temperature

sensitivity of soil respiration, simulations to examine the accuracy of Q10 values

(see Appendix D1 for a description of the Q10 concept) calculated from regressions

of surface flux and soil temperature were also used. Several shortcomings at diel

timescales were identified with this commonly used regression approach and potential

alternatives are suggested.
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6.4 Methods

6.4.1 Model Description

The one-dimensional soil CO2 transport model described by Nickerson and Risk

(2009a) was modified so that it had the following functionality: (1) a CO2 transport

component governed by Fick’s First law of diffusion, (2) a heat transport component

that shifts and dampens oscillating air temperatures with increasing soil depth, and

(3) a simple CO2 production function that adjusts production rate in each soil layer

by the depth and temperature of the layer. The modeled environment assumes a

well-mixed atmospheric boundary layer and a soil profile of length L (m) that is

divided into 100 uniform layers. Each layer has specific values for total porosity,

volumetric water content, and air-filled porosity. Air-filled porosity is used in turn

to calculate both gas diffusivity (DCO2) and thermal diffusivity (DT ), based on

empirical relationships from the literature (details below). DCO2 and DT , along

with CO2 and temperature gradients, determine the rate of CO2 and heat transport,

respectively. For the purposes of these instructive simulations, soil physical properties

and diffusivities were assumed to be constant throughout the soil profile. The CO2

transport component of the model allows gas exchange between neighbouring soil

layers following concentration gradients. Flux rates between layers are determined

with the discrete, one-dimensional form of Fick’s First Law:

Fij = Dij
ΔCij

Δzij
(6.1)

where Dij is the effective CO2 diffusion coefficient between two soil layers (layer i

and layer j), ΔCij is the difference in layer CO2 concentrations (μmol m−3), and Δzij

is the difference in the depths (m) of the two layers. Temperature corrections for

diffusivity are calculated for each layer at each model time step (1 s) as follows:

Di = D0

(
Ti

T0

)1.75

(6.2)

where D0 is soil diffusivity at reference temperature T0 (273 K) and Ti is the ambient

temperature (K) of layer i. At each model time step, a new CO2 concentration in

each layer (Ci) is calculated as function of the layer depth:

Ci(z, t) =
Ci(z, t− 1)θ · L/N + F (z − 1)− F (z) + γ(z)

θ · L/N (6.3)
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where Ci(z, t-1) is the layer concentration at the previous time step, θ is the soil

air-filled pore space, F(z-1) is flux from the layer below (which is generally positive,

representing a flux in, but the sign depends on concentration gradients), F(z) is the

flux from the present layer, γ(z) is layer CO2 production (μmol m−3 s−1), L is the total

depth of the soil column and N is the total number of soil layers. Unless otherwise

noted, biological CO2 production decreases with soil depth according to the following

exponential function (Nickerson and Risk, 2009a):

γ(z, Tave) =
Γ0

L∑
z=0

exp
(

−z
dp

)exp
(−z

dp

)
(6.4)

where Tave is the average temperature of the atmosphere and profile, Γ0 is total basal

soil production at the average temperature (μmol m−3 s−1), z is the layer depth, and

dp is the exponential folding layer, or the layer at which the proportion of total soil

production remaining is 1/e (0.37). By manipulating dp, CO2 production can be

confined mostly to shallow soil layers, or spread more evenly across the soil profile. A

basal value for total soil CO2 production is defined by the user and partitioned with

Eqn (4) to give layer-specific basal production. At each time step, layer production

is adjusted in response to the current layer soil temperature T(z,T) using a modified

vant Hoff relationship:

γ(z, T ) = γ(z, Tave)×Q10
((T (z,t)−Tave)/10) (6.5)

The heat transport component of the model approximates air and soil temperature

as sinusoidal curves (Hillel, 1998), where soil temperature is shifted and damped from

the air temperature curve as a function of depth:

T (0, t) = Tave + A0sin(ωt) (6.6)

T (z, t) = Tave + A0[sin(ωt− z/dT )]e
−z/dT (6.7)

where T(0,t) is the temperature at the soil surface (z=0), A0 is the amplitude of the

surface temperature fluctuation (1/2 of the total daily range), and ω is the radial

frequency, which converts time to radians. For a sine wave oscillating on a period of

1 day (86,400s), ω = 2/86,400. The constant dT is the thermal damping depth, and
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is defined as the depth at which temperature amplitude decreases to the fraction 1/e.

Thermal damping depth (m) is related to thermal diffusivity (DT ) as follows:

dT =
√
2DT/ω (6.8)

One should note that the two parameters in the heat transport equations which

are impacted by environment are diel air temperature amplitude (A0), and thermal

diffusivity (DT ).

6.4.2 Model Implementation

Simulations were performed to examine (1) the impacts of model parameters on lag

times and hysteresis patterns and (2) how lags affect calculation of soil respiration

temperature sensitivity. A set of default soil physical and environmental conditions

were defined for simulations (Table 1), based on measurements of a sandy loam soil

from the HJ Andrews Experimental Forest in the western Cascades of Oregon, USA

(44.21N, 122.21W). Further description of the site and soil is provided by Pypker

et al. (2008). Default environmental conditions are characteristic of early summer.

For sensitivity analyses, each of these parameters was varied across a large range of

realistic values. Soil depth was modeled as 100cm for all scenarios.

Realistic values for DCO2 at different soil moisture contents were modeled using the

relationship described by Moldrup et al. (2000), which expresses soil gas diffusivity

as a function of air-filled porosity and soil moisture release characteristics:

DP = D0 × (2ε3100 + 0.04ε100)

(
ε

ε100

)2+3/b

(6.9)

where DP is soil gas diffusivity, D0 is gas diffusivity in free air (1.39×10−5 m2 s−1

for CO2 at 273K and 1 atm), ε is the ambient air-filled porosity, ε100 is the air-

filled porosity at -100cm H2O tension (∼10 kPa), and b is the slope from a log plot

relating volumetric water content to soil water potential. Coefficients determined

from 12 intact soil cores taken from the HJ Andrews Experimental Forest were used.

Moisture-release coefficients were determined by treating cores on pressure plates at

pressures ranging from 10 to 50 kPa.

To parameterize DT at different moisture levels, a published dataset for a sandy-

loam soil of DT measurements from intact soil cores across air-filled porosities ranging
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0-0.60 (Ochsner et al., 2001) was used. To interpolate between measured porosities

the data were fit with a second-order polynomial.

Simulations were initiated with a spin-up period for modeled CO2 flux to stabilize.

The spin-up period was deemed sufficiently long when daily maximum soil surface

flux values were constant for at least 5 consecutive model days. To minimize spin-up

time, simulations were initialized with the steady-state solution proposed by Cerling

et al. (1991) for a uniform profile. The model was solved by Euler integration with

a computation time step for all simulations of 1 s, and model output was recorded

every 300 s.

Two synthetic tests were conducted to examine the performance of the CO2

transport component under steady-state and transient conditions. The steady-state

test served to assess numerical errors associated with discretizing the soil profile into

layers. This test entailed modelling uniform production profiles across a range of gas

diffusivities, and comparing the modeled concentration profiles to Cerling’s steady-

state solution. Soil concentration errors due to discretization were found to be <0.5%

across all diffusivity levels. The transient test examined time lag errors related to

iterating the model in discrete time steps. CO2 concentration was varied at the

upper boundary layer (atmosphere) as a sinusoidal wave, and compared the phase

lags between peak CO2 concentrations in the atmosphere and soil with the theoretical

phase lag described by (Beltrami, 1996):

δ =
z

2

√
τ

π ×DCO2

(6.10)

where δ is the phase lag (s), z is soil depth (m), τ is the period over which atmospheric

CO2 oscillates (1 day or 86 400 s), and DCO2 is the effective CO2 diffusivity of soil

(m2 s−1).

6.4.3 Comparison of apparent and actual Q10 values

These results examined how varying model parameters affected calculation of Q10

values with a widely used regression approach, which relates the natural logarithm of

surface flux to soil temperature at an arbitrary depth (Pavelka et al., 2007):

ln(R) = αT + β (6.11)
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where R is surface flux, T is soil temperature, and α and β are coefficients estimated

from linear least squares regression. The Q10 of surface flux was calculated as:

Q10 = e10α (6.12)

These Q10 values from post hoc calculations are termed apparent Q10 values to

contrast them with the input Q10 used to parameterize the model (generally 2.0). It

should be noted that in these simulations a small amount of diel variation in surface

flux resulted from the temperature sensitivity of CO2 diffusivity [Eqn (2)], rather than

from the temperature sensitivity of CO2 production. The variation in surface flux

resulting from the temperature sensitivity of DCO2 was negligible, however, accounting

for o < ±1% change in respiration when temperature was varied ±15◦C over a 24 h

period (see Appendix C for more details).

6.5 Results

6.5.1 Impacts of Transport-Related Lags on Regressions of Surface Flux

and Soil Temperature

Owing to the attenuation and phase shift of soil temperatures with increasing

depth, the relationship between modeled surface flux and soil temperature varied

with soil temperature measurement depth (Fig. 6.1). Plots of surface flux against

soil temperature produced hysteresis loops which changed in three respects with

increasing depth: their rotational direction (see arrows in Fig. 6.1), their roundness

or narrowness (minor radius), and the orientation of their principal axes. All

three of these qualities were functions of the lag time between surface flux and soil

temperature. At depths where soil temperature reached a daily maximum before

surface flux (e.g. at soil depths above 5 cm in Fig. 6.1), hysteresis loops rotated

clockwise, while at deeper depths where soil temperatures peaked after surface efflux,

the loops rotated counter clockwise.

The narrowness, or minor radius, of hysteresis loops, as well as the orientation,

can be described as functions of lag time using principles of harmonic motions. As

adapted from Beltrami (1996), two sine waves that are offset by a lag give the equation
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of an ellipse when superimposed perpendicularly:

R = RA
T

TA

cos(δ) +RA

√(
1− T 2

TA

)
sin(δ) (6.13)

where RA and TA are the amplitudes of respiration rate and temperature, respectively,

R and T are instantaneous respiration rate and temperature, respectively, and δ is

the lag, or the difference in phase between the temperature and respiration waves

(expressed in radians). When the lag is a full period (equivalent to 0 or 24h), the

expression of an ellipse simplifies to a straight line with positive slope. For a 1/2

period (12 h), the expression simplifies to a straight line with negative slope. For

lags of 1/4 period (6 h), the result will be a horizontal ellipse. The results show

it is possible to observe any of these orientations within a soil profile. Lags up to

and exceeding 24 h occurred for deep reference soil temperatures, particularly at low

thermal diffusivities, which slow propagation of temperature through the soil. With

a reference soil temperature at 30 cm depth, lags exceeded a full 24 h period when

values of DT became <2×10−7 m2 s−1.

Even at soil depths where there was no time lag between temperature and surface

flux, regressions did not produce close estimates of respiration temperature sensitivity.

For the example in Fig. 6.1, surface flux was nearly synchronized with 5 cm soil

temperature and little hysteresis was apparent. However, the least squares estimate

of Q10 was 1.53, which is substantially smaller than the actual Q10 of 2.0 used to

parameterize the model, shown in gray. The closest approximation of the input Q10

occurred at 15cm depth, despite pronounced hysteresis at this depth. This depth also

is not associated with an area where most production occurs. The production profile

for this simulation declined exponentially with depth, with more than two-thirds of

CO2 production occurring above 10 cm (dp=10 cm). There was no discrete soil depth

where temperature was synchronized with surface flux and approximated the correct

Q10 value.

It was found that in general, the strength of correlation (R2) between surface

flux and soil temperature measured at an arbitrary depth was strongly influenced by

transport-related lags (Fig. 6.2a), and R2 was a poor statistic for predicting what soil

depth would return an accurate Q10 (Fig. 6.2b). To examine the influence of lag time

on R2 and Q10 values estimated from regressions of surface flux and soil temperature,
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thermal diffusivity was varied in the model, which as described below was the model

parameter with the largest impact on lag time (Fig. 6.4a). Regressions between

surface flux and soil temperature were then examined using reference depths of 5, 10,

15, and 20 cm. R2 was found to have a predictable and regular relationship with lag

time, regardless of the reference temperature depth (Fig. 6.2a). R2 peaked at 0 and

12 h lag, which is the when the expression for an ellipse simplifies to a straight line,

and reached a minimum at 6 and 18h lag, which is when the expression produces a

horizontal ellipse. As described above [Eqn (13)], the narrowness, or minor radius of

hysteresis loops can be described as a function of lag time, and as hysteresis loops

become more round the strength of correlation decreases, and as they become more

narrow the strength of correlation increases.

The apparent Q10 values calculated from regressions were also related to lag time,

but the form of the relationship was different from the form of the R2 relationship

(Fig. 6.2b). As a result, the conditions providing the highest R2 values did not

produce the most accurate Q10 values. The most accurate Q10 estimates coincided

with conditions which produced lag times of 34 h, and corresponded with a wide range

of R2 values. The Q10 and lag relationship differed slightly for each reference depth

because the slope of least squares regression, and therefore the Q10, is also influenced

by the amplitude of soil temperature variation at the reference soil depth [Eqn (13)].

Attempting to remove the lag by shifting surface flux data to be in-phase with

soil temperature data before calculating the regression did not systematically improve

estimates of Q10 values (Fig. 6.2c). Calculated Q10 values increased exponentially

with the magnitude of the phase adjustment. For adjustments exceeding a few

hours, this approach produced Q10 values many times greater than the Q10 used

to parameterize the model. This indicates that knowing the lag time that is due to

heat and gas transport does not readily help to determine meaningful Q10 values.

Even after adjusting for transport-related lags, the problem remains that no single

reference soil depth consistently approximates the average temperature across the

whole soil production profile.

These examples demonstrate that it is best to consider temperatures across the

production profile to understand temperaturerespiration relationships; however, for

practical purposes, temperature measurements in field studies are often restricted to
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one or a few discrete soil depths. In order to strengthen conceptual links between

processes that take place across the entire soil production profile, and patterns that

may be observed in field data, for the remainder of this article most results are shown

using an arbitrary soil temperature depth of 10 cm. Also, because the simulations

use an exponential relationship between temperature and CO2 production, the time

offsets between daily maximum respiration and temperature differ slightly from the

time offsets between minimum values. For simplicity, lag times between maxima are

reported, and it is noted when trends differ for lag times between minima.

6.5.2 Sensitivity of Lag Time to Thermal Diffusivity

Thermal diffusivity (DT ) influenced the speed with which changes in air temperature

propagated through soil, and the depth to which diel variations in air temperature

were detectable (Fig. 6.3). As DT was increased in the model, changes in air

temperature propagated through soil more quickly, which shortened lags between

soil temperatures and surface flux. Variations in DT had a larger effect on lag times

than any other single factor that was examined, although the effect was nonlinear

(Fig. 6.4a). Lag times varied sixfold for values of DT within the range of 1-10−7

m2 s−1, which is the approximate range for mineral soils experiencing normal field

moisture levels (Ochsner et al., 2001). Lag times increased substantially for lower DT

values in the range of 1-10−8 m2 s−1, which corresponds with the range for organic

soils (Hillel, 1998).

6.5.3 Sensitivity to CO2 Diffusivity, Production Depth

In contrast to DT , large changes in simulated DCO2 had a relatively small effect on

lags between surface flux and soil temperature (Fig. 6.4a), but DCO2 nevertheless had

unique and complex impacts that are important for interpreting temperaturerespira-

tion relationships. Lags were found to occur not only between surface flux and soil

temperature, but also between soil CO2 concentrations and temperature measured at

the same depth (Fig. 6.5a). zLags between soil CO2 and temperature at the same

depth were particularly pronounced at low DCO2 . Low gas diffusivity increased the

residence time of soil CO2, causing delayed responses in CO2 concentration to soil

temperature changes. While lags between CO2 concentration and soil temperature
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decreased as DCO2 was increased in the model, lags between surface flux and soil tem-

perature sometimes showed the opposite response. DCO2 impacts on surface flux lags

depended on both the distribution of CO2 production, and the depth of the reference

soil temperature. When production was concentrated near the surface (Fig. 6.5b),

the phase of the surface flux sine wave shifted closer to the waves of near-surface

temperatures as DCO2 increased, but also shifted farther away from the waves of deep

soil temperatures. At reference soil depths near the surface, lags between surface flux

and soil temperature decreased with increasing DCO2 , but at deeper reference depths

lags increased. In contrast, when CO2 production was uniformly distributed through-

out the soil (Fig. 6.5c), a greater proportion of CO2 came from deep soil layers, and

increasing DCO2 caused the phase of the surface flux sine wave to shift closer to deep

soil temperatures and to shift farther from air and near-surface temperature.

The sensitivity of lags to variations in production depth when DCO2 was held

constant was also explored. Figure 6.4a shows changes in the depth of CO2 production

with respect to the exponential folding depth, dp, where a higher dp indicates

production is spread more evenly across the soil profile and a lower dp indicates

production is confined more to the shallow subsurface. Changes in production within

the shallow subsurface (e.g. an increase in dp from 5-10 cm) had greater impacts on

lag time than changes in production deeper within the soil (e.g. an increase in dp from

60 to 70 cm), because most diel variability in soil temperature occurred at shallow

depths. Even at very high DT , diel temperature oscillations occurred primarily within

the top few centimetres of soil. For example, for the maximum DT plotted in Fig.

6.4a (DT=9×10−7 m2 s−1), temperature amplitude decreases to approximately one-

third by 16cm depth. CO2 production deep in the soil profile varied little throughout

the day because it experienced a relatively constant temperature environment, so

increasing production from deep soil did little to shift diel respiration oscillations.

6.5.4 Sensitivity to Basal Respiration Rate and Other Environmental

Variables

Further sensitivity analysis revealed the general principle that variables which caused

nonuniform changes in temperature or respiration across the soil profile tended to

impact lag times. For example, changing the diel amplitude of air temperature (A0)
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tended to impact lags by altering temperature variation at shallow soil depths to a

greater extent than deeper soil depths. Also, changing the temperature sensitivity of

CO2 production by altering Q10 in the model affected lags by altering the proportional

contribution from soils of different temperatures (Fig. 6.4b). See also Appendix C. In

contrast, increases in the basal CO2 production rate did not influence lags. Changing

basal production rate alone did not alter the proportional contribution from each soil

layer to surface flux.

6.5.5 Effects of Soil Moisture on Phase Lags

To model the physical effects of soil moisture on lags, both DT and DCO2 were allowed

to vary simultaneously as functions of air-filled porosity (Fig. 6.6a and b). DT and

DCO2 have different relationships with soil moisture: heat propagates more quickly

through water than through air-filled pore spaces, whereas CO2 propagates more

quickly through air-filled pores than through water. As simulated soil moisture was

decreased, this caused an increase in DCO2 and a decrease in DT , but both had the

same effect of increasing lag time between surface flux and 10 cm soil temperature

(Fig. 6.6a), for reasons described above. As the lag time between surface flux and

10 cm soil temperature increased under dry conditions, hysteresis loops also became

less linear and more elliptical in shape.

To demonstrate some of the potential impacts of moisture on biological activity,

an additional level of complexity was added to the moisture simulation by decreasing

basal CO2 production rate as a linear function of soil dryness (Fig. 6.6c and d). While

this simple linear approximation may not be realistic for very high soil moistures, it

is likely to represent respiration responses to drier soil moisture conditions. As soil

moisture was decreased in the model, the diel amplitude of surface flux decreased,

and hysteresis appeared to become more linear and horizontal (Fig. 6.6d). This

occurred as a result of the magnitude and daily range of respiration changing, rather

than a change in the orientation of the ellipses. Lags, which control the shape and

orientation of hysteresis loops, remained unaffected by altered production rates (Fig.

6.6c). As mentioned above, simulated changes in basal production rate alone did not

affect lag times unless the distribution of production was also changed.
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6.5.6 Diel Variation in Atmospheric CO2

Concentrations of atmospheric CO2 within and near plant canopies often vary on a

diel basis, due to plant gas exchange taking up CO2 during the day and releasing

CO2 at night (Liu et al., 2006). Diel oscillations in atmospheric CO2 were simulated

as a sinusoidal wave with a daily range of 50 ppm. Data from the HJ Andrews

Experimental Forest indicated that daily minimum CO2 concentration at the soil

surface may be lagged from maximum temperature by as much as ±5 h, so it was

hypothesized that diel changes in atmospheric CO2 could modify surface flux and

contribute to diel hysteresis between surface flux and temperature. Simulations

indicated, however, that atmospheric CO2 has a negligible effect on flux rates,

particularly when compared with effects of temperature variation. When air and

soil temperature were held constant, varying atmospheric CO2 alone changed surface

flux rates by <0.5%. In contrast, when diel temperatures varied even moderately, CO2

production required little temperature sensitivity to swamp the effects of atmospheric

CO2 variations.

6.5.7 Changing Substrate Supply

Several lines of evidence have indicated close links between canopy carbon supply

and soil respiration rates, including phloem girdling studies (Högberg et al., 2001;

Tedeschi et al., 2006), studies across natural gradients of root activity (Tang et al.,

2005b), lag analyses between canopy variables and soil respired δ13CO2 (Fessenden

and Ehleringer, 2003; McDowell et al., 2004; Ekblad et al., 2005; Kodoma et al.,

2008), and isotopic labeling studies of photosynthate (Hogberg et al., 2008; Bahn et

al., 2009). Simulations were performed to show the potential impacts of diel variations

in subsurface photosynthate supply on hysteresis in the respiration vs. temperature

relationship. There is much uncertainty regarding the specifics of phloem loading

to roots and how much respiration responds to fluctuations in carbon supply, and

a simple approach of modelling diel variation in photosynthate supply as a linear

function of photosynthetic active radiation (PAR) was used, increasing basal soil

CO2 production rate from 1.5 μmol m2 s−1 at night to 3 μmol m2 s−1 in response

to peak PAR over a 12 h photoperiod (Fig. 6.7a). As phloem transport may delay

the supply of carbon substrates belowground, a range of time offsets between peak
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PAR and peak subsurface photosynthate supply (626 h) were also simulated. Some

studies have suggested lags in soil respiration responses of less than a day (Tang

et al., 2005b), while others have suggested lags ranging 18 days (Högberg et al.,

2001; McDowell et al., 2004; Mencuccini and Holtta, 2010); however, for illustrative

purposes this analysis focused on potential short-term responses to photosynthesis

over the course of approximately 1 day. Because the timing and magnitude of impacts

from photosynthetic carbon supply are likely to vary substantially (Kuzyakov and

Gavrichkova, 2010), the goal was to emphasize only the gross patterns that could

result from the combined influences from photosynthetic carbon supply and physical

transport processes.

Diel variations in substrate supply substantially modified surface flux and pro-

duced hysteresis relationships with complex shapes (Fig. 6.7b). Although the shapes

were quite variable depending on the timing of peak substrate supply, there were some

consistencies among the curves that may be useful for interpreting field data. The

hysteresis loops were consistently flatter on the bottom, corresponding with periods

when PAR-dependent substrate supply ceased and respiration responded only to soil

temperature. For large time offsets between substrate supply and soil temperature,

soil respiration also exhibited double peaks over the course of the day, peaking once in

response to maximum carbon supply and again in response to maximum temperature

(Fig. 6.7a).

6.6 Discussion

The heat and CO2 transport model described here demonstrates that purely physical

drivers can have strong influences on diel dynamics of surface flux, and if transport-

related lags are not accounted for, these influences may obfuscate the interpretation

of the temperature sensitivity of soil respiration. Interpreting diel dynamics has two

distinct but related challenges, discussed below: first, distinguishing the effects of

temperature variation from other factors, and second, determining the temperature

sensitivity of respiration given nonuniform soil temperature and production profiles.



127

6.6.1 Effects of Soil Moisture

Soil moisture can have multiple biological and physical influences on soil respiration,

making it challenging to distinguish temperature and non-temperature influences

on soil respiration across moisture conditions. Potential impacts of moisture on

diel respiration dynamics both with and without biological responses to moisture

were examined. When only soil physical processes were represented in the model,

decreasing soil moisture caused phase lags between surface flux and soil temperature

to increase, and also caused diel hysteresis to become more pronounced (Fig. 6.6a

and b). These purely physical trends are consistent with field observations in several

studies. Under oak canopies, Tang et al. (2005b) observed increasing lag times

between surface flux and soil temperature at 8 cm depth as soils dried, although

they attributed the lag to the influence of tree photosynthesis on respiration of the

rhizosphere rather than to gas and temperature transport processes (discussed more

below). Similarly, in mixed conifer forests (Vargas and Allen, 2008) and in shrub

ecosystems (Carbone et al., 2008), the periods of most pronounced diel hysteresis

coincided with the driest parts of the growing season.

The results from the these field studies seem to conflict with findings of Riveros-

Iregui et al. (2007), who observed less pronounced hysteresis between soil CO2

concentrations and temperature at 20cm depth as soil dried. However, transport-

related lags could occur not only between surface flux and soil temperature, but

also in the type of measurements made by Riveros-Iregui et al. (2007), between

CO2 concentrations and soil temperatures measured at the same depth (Fig. 6.5a).

Lags between soil CO2 and temperature at the same depth consistently decreased

as DCO2 was increased in the model, opposite of how lags between surface flux and

shallow soil temperatures behaved (Fig. 6.5b). In addition, results showed a potential

biological explanation for decreased hysteresis with drying. When CO2 production

declined at low moistures, the magnitude and diel range of surface flux and subsurface

concentrations decreased (Fig. 6.6c and d), which caused hysteresis to appear less

pronounced and more linear at low moisture.

These examples demonstrate the difficulty of teasing apart moisture-dependent

biological and physical processes that are potential drivers of diel respiration patterns.

For example, it would be logical to interpret an increase in lag between surface flux
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and soil temperature as the soil dries as a product of substrate limitations (Carbone

et al., 2008). Substrate limitations are indeed coupled with soil moisture, since low

moisture can reduce canopy production and allocation of photosynthate belowground

(Irvine et al., 2002, 2005), and also reduce diffusion of carbon substrates through soil

(Davidson et al., 2006b). But increasing lags can also result from moisture influences

on DT and DCO2 (Fig. 6.6a), so it is unlikely that changes in lag times and diel

hysteresis would be due to substrate limitations alone. Similarly, declines in the

amplitude and apparent temperature sensitivity of surface flux with decreasing soil

moisture have been attributed to reduced substrate supply, although heat transport

effects produce similar results (Fig. 6.6b).

6.6.2 Detecting Effects of Factors Other than Temperature on Diel

Surface Flux Patterns

Numerical simulations provide a theoretical limit to the impact of soil physical

processes on lag times. Phase lags between surface flux and a reference temperature

at 10cm depth were found to be between 1 and 4h for mineral soils across a wide

range of soil physical and environmental conditions (Figs 4 and 6). Lag times greater

than this may be indicative of other biological factors influencing soil respiration.

For example, Tang et al. (2005b), found an approximately four hour lag between soil

surface flux and temperature at 8 cm depth under an oak tree canopy, and no lag in

an adjacent area of dead annual grasses. This large difference in lag times is unlikely

to be a result of physical processes alone, since soil temperature data indicate DT

was similar in the two locations. As Tang et al. (2005b) concluded, photosynthetic

carbon supply may have influenced the different diel patterns in these two locations.

Asymmetrical time series or hysteresis patterns also provide a tool for detecting

impacts of environmental factors other than temperature. The simulations of diel

changes in substrate supply (Fig. 6.7) demonstrated that asymmetrical hysteresis

patterns can develop in response to processes that are limited to a portion of the

day only, such as photosynthesis. This example also demonstrated that double peaks

can form in diel time series of surface flux when peak carbon supply is offset by a

long period from peak temperature. Carbone et al. (2008) also observed daily double

peaks in field measurements of shrub and grassland ecosystems, particularly during
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parts of the growing season when soil respiration was most active. Asymmetrical diel

patterns such as these cannot be accounted for by temperature alone and must be

attributed to influences from more than one factor.

At a minimum, by measuring both air and soil temperature, or still better,

measuring soil temperature at more than one depth, one can calculate soil thermal

diffusivity to obtain a rough estimate of theoretical lags between soil temperature and

surface flux due to heat transport. The time difference between peak temperatures

measured at several soil depths can be used to constrain DT (Beltrami, 1996), which

was shown to influence expected lag times more than any other single factor examined.

Even without more detailed information on other parameters, an estimate of DT can

provide a rough approximation of expected lag times (e.g. Fig. 6.4). Because soil

moisture has a large influence on DT , such estimates may be particularly helpful for

researchers trying to account for changes in diel respiration-temperature relationships

over a range of moisture conditions.

The heat and gas transport model used in this study can be extended to simulate

field studies, and may provide an approach to tease apart influences of temperature

from other factors that have diel periodicity. Detailed environmental data and soil

physical parameters are required to drive the model; however, such data are becoming

increasingly available. The transport equations are limited, however, to conditions

where soil heat transport is dominated by conduction and CO2 transport is dominated

by diffusion. More complex transport functions would be required to simulate heat

transport in flows of soil water, or to simulate mass flow of CO2 in response to

pressure gradients. The model also emphasizes physical processes, and was less

rigorous for representing biological relationships. The approach for simulating diel

variation in photosynthetic carbon supply was simplistic compared to the vegetation-

specific model of phloem transport by Mencuccini and Holtta (2010), but could be

readily coupled to such plant physiological models.

6.6.3 Impacts of Diel Dynamics on Interpretation of Temperature

Sensitivity

A related issue to distinguishing temperature and non- temperature respiration

responses is describing the temperature sensitivity of soil respiration from diel
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datasets. Without any change to the true temperature sensitivity of soil respiration,

phase lags can alter the orientation of regressions between surface flux and soil

temperature, and impact least squares fits to the data. The fact that the apparent

temperature sensitivity of soil respiration differs depending on the depth where

temperature is measured has been described by others (Pavelka et al., 2007; Graf

et al., 2008). Less widely appreciated, perhaps, is the fact that Q10 estimates are

related to the orientation of hysteresis loops, and can themselves be described as

functions of lag times [Eqn (13) and Fig. 6.2].

There are several inherent problems with estimating respiration temperature

sensitivity by regressing surface flux and soil temperature. The first problem is

identifying an appropriate soil temperature reference depth, because R2 relates

primarily to how close the phases of surface flux and soil temperature are to one

another (Fig. 6.2a), and does not predict the depth which returns the most accurate

Q10 value. Furthermore, the depth where soil temperature produces the most accurate

Q10 can be below the portion of the soil profile where most CO2 production occurs

(Fig. 6.1). Neither the depth where R2 is highest nor the depth where apparent Q10 is

most accurate have mechanistic significance, they are coincidentally associated with

phase lags that produce interesting ellipses when surface flux and soil temperature

are plotted perpendicularly. Using transport models, it may be possible to predict

the depth that produces the most accurate Q10 value. Graf et al. (2008) attempted

this approach to determine the depth where Q10 should be measured, using a physical

model of soil respiration similar to the one presented here. In simulations spanning

several model years, they examined the sensitivity of Q10 uncertainty to soil physical

and environmental parameters. Their simulations demonstrated two important points

that are consistent with the results from diel simulations: that shallow depths

underestimate Q10 values, and that the depth of maximum correlation between surface

flux and soil temperature is different than the depth returning the input Q10. These

results suggest that transport effects do not only create analysis challenges in diel

datasets, but at longer timescales as well.

The underlying problem with estimating temperature sensitivity from surface flux

is that surface flux is an integrated response to temperature across the soil profile,

not just to soil temperatures at a single depth. (Reichstein et al., 2005) presented a
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potential alternative for estimating soil respiration Q10 values, by using a statistical

model that represents surface flux as the summation of multiple fluxes from different

depths, and includes soil temperature measured at each depth. Using temperatures

from two depths, the authors were able to explain more than 95% of the diel variation

in surface flux data, as compared with only 80% when using soil temperature from

a single depth. The multiple-source model also calculated higher Q10 values than

a single-source model. Results from this study and Graf et al. (2008) indicate Q10

values are generally underestimated with a single, shallow reference temperature, so

the dual source model may estimate Q10 more accurately.

An alternative approach used by (Risk et al., 2008a) involved quantifying CO2

production within the soil profile, and estimating temperature sensitivity by com-

paring production and temperature at the same depth. Fluxes within the soil can

be determined from changes in CO2 concentration over time. Soil profiling systems

that are well-suited to this approach are becoming more widespread, and future work

should further assess the potential for this approach and its limitations under non-

steady-state conditions.

Even these alternative approaches are not immune, however, to influences from

environmental variables other than temperature. Given that factors other than

temperature are likely to influence diel patterns of soil respiration under field

conditions, caution is recommended in interpreting any apparent relationship between

soil respiration and temperature at diel timescales as a true measure of temperature

sensitivity.

In conclusion, high-frequency soil respiration measurements have important po-

tential for identifying influences from multiple environmental factors. However, heat

and gas transport creates lags between surface flux and soil temperature that can

easily be misinterpreted and obscure the direct impacts of temperature. Analysis

approaches that represent surface flux as the summation of fluxes across a nonuni-

form soil profile may provide a means for handling transport-related lags and more

accurately determining the temperature sensitivity of soil respiration.
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Table 6.1: Default parameters used for model simulations. Deviations from these
values are noted in the text or figures.

Parameter Default Value
Soil Porosity 0.65 (v/v)
Air Filled Porosity (Θ) 0.35 (v/v)
Thermal Diffusivity (DT ) 6.41 ×10−7 m2 s−1

Gas Diffusivity (DCO2) 1.29 ×10−6 m2 s−1

Production exponential folding depth (dp) 10 cm
Q10 2
Average air and soil temperature (Tave) 15 ◦C
Air temperature amplitude (A0) 7.5 ◦C
Total basal CO2 production 1.5 μmol m−2 s−1

Atmospheric CO2 385 ppm

Figure 6.1: Diel hysteresis between surface flux and soil temperature at several depths,
and apparent Q10 values calculated from least squares regression (see text for details).
Solid points show time = 12 h and arrows indicate the direction of hysteresis over
time. Gray line represents the fitted mean that would produce an apparent Q10 equal
to the input value of 2. DT=5×10−7 m2 s−1 (same data as bottom panel of Fig. 6.3).
Negative lags indicate surface flux reaching a maximum before temperature whereas
positive lags indicate temperature peaking first.
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Figure 6.2: Impact of phase lags on R2 and apparent Q10 calculated from regressions
of surface flux and soil temperature. (a) R2 for regressions with soil temperature at
reference depths of 5 cm (circle), 10cm (trangle), 15cm (diamond), and 20cm (square).
Lag time was varied by changing thermal diffusivity from 1×10−8 to 9×10−7 m2 s−1,
as in Fig. 6.4a. (b) Apparent Q10 as a function of phase lag, normalized by the actual
Q10 used to parameterize the model. (c) Same as (b), but surface flux data was shifted
to be in-phase with soil temperature before calculating apparent Q10. Apparent Q10

approached infinity with increasing phase lag, so only normalized values <2.5 are
shown for clarity.
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Figure 6.3: Effect of thermal diffusivity, DT , on soil temperatures at several depths
(solid lines) and surface CO2 flux (dotted line). Soil temperature depths from darkest
to lightest are: soil surface, 10, 20, and 30cm depth. See Table 1 for values of other
input parameters.
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Figure 6.4: Sensitivity of lag time to soil and environmental parameters. (a) Thermal
diffusivity, DT (circle); CO2 diffusivity, DCO2 (diamond); and exponential folding
depth for CO2 production, dp (triangle). (b) Basal total CO2 production, Γ0 (open
circle); Q10 temperature sensitivity (cross); and diel air temperature amplitude, A0

(triangle).
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Figure 6.5: Effect of CO2 diffusivity on soil CO2 concentrations and surface fluxes.
(a) CO2 concentration at 10 cm depth for three levels of DCO2 : 5×10−7 (solid gray),
1×10−6 (dotted gray), 5×10−6 (dashed gray). Air temperature (solid black) and 10
cm soil temperature (dashed black) are also shown. (b) Same as (a) except gray lines
represent surface CO2 flux. (c) Same as (b) except CO2 production was uniformly
distributed across soil profile, rather than decreasing exponentially with depth.
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Figure 6.6: Potential responses of soil respiration to diel changes in photosynthate
supply. (a) Diel changes in photosynthetic active radiation (PAR) (dashed black),
air temperature (dashed gray), 10cm soil temperature (solid gray), and surface CO2

flux (solid black). In this example, subsurface carbon supply peaked 16 h after PAR.
(b) Hysteresis between surface flux and 10 cm soil temperature for various offsets
between peak PAR and peak subsurface carbon supply: 16 h offset [solid black, same
as in (a)], 20 h offset (dashed dark gray), and 26 h offset (dot-dashed light gray).
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Figure 6.7: (a) Effect of moisture on thermal diffusivity (circle), CO2 diffusivity
(diamond), and the lag time between surface flux and 10cm soil temperature (square)
for a uniform sandy-loam soil. (b) Surface flux hysteresis for moisture-dependent
conditions shown in (a). From lightest to darkest: 5%, 15%, 25%, 35%, 45%, and
55% water content (v/v). (c) Changes in total basal CO2 production (open circle)
were added to simulations, but had no effect on lag times (square). (d) Corresponding
surface flux hysteresis. From lightest to darkest: 5-55% water content (v/v), as in
(b).



Chapter 7

Using Production Weighted Heat to Disentangle the

Environmental Sensitivities of Soil Respiration

7.1 Preamble

This chapter presents a ground-up theoretical analysis of the interpretation of the

temperature sensitivity of soil respiration, with the intention of avoiding some of

the pitfalls discussed in the previous chapter. Authorship on this manuscript is as

follows: Nick Nickerson, Claire Phillips, Jon Martin and Dave Risk. I developed the

theory and performed the modelling and data interpretation and wrote the bulk of

the manuscript. Claire Phillips worked with me on the initial theory and some of the

analyses of the data. Jon Martin provided field data from a previous publication to

test the theory on, and provided feedback on the manuscript in general. Dave Risk

was supervisor to this work. The chapter is currently in preparation for submission

to Journal of Geophysical Research - Biogeosciences.

7.2 Abstract

Balances between carbon emission from soil respiration and uptake by photosynthesis

play an important role in regulating global climate. While the processes that

govern photosynthesis are well understood, the understanding of soil respiration is

lacking and researchers pay little attention to the physical aspects of the soil which

may have a significant influence on the understanding of respiration measurements.

Traditional approaches for interpretation of soil respiration data have been shown

to produce poor results, in some cases as a consequence of not considering soil

physical processes, such as heat transport, in the data interpretation. We take a

ground-up theoretical approach that considers the effect of heat transport on soil

respiration data. Results indicate that much of the soil-physics driven biases in

soil respiration data interpretation can be eliminated by consideration of soil heat

139



140

transport, in particular by calculating the weighted average soil heat otherwise known

as production weighted heat (Hpw). This Hpw analytical approach is applied to

simulated soil respiration data as well as an extensive field data set which each

demonstrate its improvement over the status-quo and potential drawbacks. Future

extension of this approach to interpreting field data will likely take the form of

more complex numerical optimization, which will cope better with less-idealized

experimental field data sets.

7.3 Introduction

It has long been recognized that an incomplete knowledge of the biological, chemical

and physical complexities of the soil system hampers our ability to accurately model

soil respiration, and thus the ability to accurately predict the future impact of these

emissions on the earth’s climate system (Kirschbaum, 1995; Trumbore et al., 1996;

Schlesinger and Andrews, 2000; Davidson et al., 2000, 2006b; Knorr et al., 2005)

. While many researchers have focused on understanding the essential biological

processes (Schimel and Weintraub, 2003; Davidson et al., 2012), fewer have dedicated

time to understanding the associated soil physics, which ultimately influence the

supply of substrate, as well as govern the heat, moisture and gas transport processes

that are crucial to the function of these biological systems (Graf et al., 2008; Subke

and Bahn, 2010; Phillips et al., 2011).

Biochemical temperature sensitivity, which may control up to 80% of the variation

in heterotrophic soil respiration (Lloyd and Taylor, 1994; Davidson et al., 1998), is

unfortunately one of the most difficult climate forcings to understand in − situ. In

part, this difficulty stems from uncertainties in the timings and magnitudes of nutrient

and substrate supply (Stoy et al., 2007; Martin et al., 2012), but is also in part caused

by the poor understanding or neglect of heat and gas transport within the soil. A

prime example of this is the prevalent use of a single temperature measurement

at an arbitrary depth within the soil profile to estimate temperature-respiration

relationships (Graf et al., 2008; Phillips et al., 2011). While this method may work in

laboratory experiments where the soil temperature is homogeneous and could offer a

reasonable first-order approximation for the form of the relationship in − situ, it does

not take into account the reality that the temperature throughout the soil profile is
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heterogeneous in both space and time as a result of heat transfer processes. Recently,

with the introduction of respiration measurement techniques with high temporal

resolution (Savage et al., 2008), this heterogeneity problem has risen into clearer view,

largely because these heat and gas transport related complications are considerably

more apparent in short term observations (i.e. diel). Recent research has shown

that heat and gas transport in the soil are, at least in part, responsible for hysteresis

loops that have been noted in multiple diel temperature-respiration studies to date

(Carbone and Vargas, 2008; Carbone et al., 2008; Vargas and Allen, 2008a; Phillips

et al., 2011).

If single-depth temperature measurements are not the ideal regressor then what

should be used for soil respiration studies? Considering the problem from a soil-

profile standpoint, it is understood that hetereotrophic organisms are distributed

with depth in the soil (the actual distribution does not matter for now) (Davidson

et al., 2006a; Tang et al., 2003, 2005a). Similarly, temperature fluctuations in the

atmosphere propagate through the soil, with the amplitude of the signal decreasing

with depth, and signal phase shifting linearly (i.e. peak soil temperature at depth

z1 occurs before peak soil temperature depth z2, assuming z1<z2) (Beltrami, 1996;

Smerdon et al., 2009). So each depth interval of heterotophic activity experiences

a damped and phase shifted temperature signal that drives respiration. Soil flux,

measured at the soil surface, is the sum of respiratory activity at all soil depths.

Logically it follows that an appropriate regressor for soil respiration measurements is

the sum of soil temperature over all depths, or the soil heat. The heat metric has been

proposed before by Risk et al. (2002b), who showed that the soil heat method out

performed the single-temperature metric in terms of goodness-of-fit using soil CO2

gradient data, however there have been few studies that have since used soil heat

or considered its applicability to soil respiration studies. Hypotheses for this work

are that soil heat is: 1) The mathematically appropriate regressor and, 2) Will out

perform any single-depth soil temperature for estimating biochemical temperature

sensitivity.

While the most direct approach to test these hypotheses would be to take

in − situ measurements, there is unfortunately no a priori knowledge about what

the environmental responses should be, nor is there a method to separate the effect
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of temperature sensitivity from other covarying environmental factors (Martin et

al., 2012). Modeled soil systems offer a pseudoreality in which to understand some

of the more fundamental aspects of soil respiration. Here the basic theory behind

heterotrophic soil respiration processes is presented, with a focus on temperature

response, and from this the appropriate soil heat-based regressor is drawn, which is

termed production weighted heat (Hpw). Using a numerically-modeled soil system,

that includes both heat and gas transport, we test the applicability of Hpw under a

variety of model conditions. Finally, the Hpw method was applied to a portion of a

comprehensive soil respiration and temperature data set that spans more than 100

days of uninterrupted measurement.(Martin et al., 2012).

7.4 Theory

Consider an idealized soil in which CO2 is produced (P) as a function of both depth

(z) and temperature (T):

P (z, T ) = Γ(z)Ψ(T (z)) (7.1)

where Γ(z) is the distribution of production with depth at a fixed temperature and

Ψ(T(z)) is the temperature function which modifies Γ(z) (i.e. Ψ(T(z)) may be the

Q10 function).

Starting with the most basic case, one can assume that each depth in the soil

profile produces CO2 at the same rate such that Γ(z)=K, where K is some constant.

Similarly one can assume that the response of production to temperature is linear,

such that:

Ψ(T (z)) = νT (z) (7.2)

where ν is the slope of the linear function that defines the temperature sensitivity of

respiration. These assumptions yield the CO2 production function:

Pl(z, T ) = KνT (z) (7.3)

Assuming that all CO2 produced in the soil profile exits the soil via the soil surface

instantaneously (neglecting gas diffusion for now), the surface flux can be determined

by integration of Eq. 7.2:

F = Kν

zmax∫
z=0

T (z)dz (7.4)
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where z=0 is the soil surface and zmax is the maximum depth to which CO2 is

produced. This example is somewhat trivial since it is easily seen that to regain

the temperature sensitivity, ν, one must divide surface flux by the product of K and

depth integrated temperature (or alternatively, regress flux against the product of

K and depth integrated temperature), but it provides motive for use of the same

approach with more complicated production functions.

Expanding from this simple case, multiple studies have found that the distribu-

tion of CO2 production with depth is approximately exponential (Risk et al., 2002a,b;

Davidson and Trumbore, 1995; Davidson et al., 2006a), with CO2 production decreas-

ing with increasing depth because of changing substrate supply, expressed as:

Γ(z) = Ae−z/dp (7.5)

where A is some constant that describes the respiration magnitude and Dp is the

e-folding depth of production (63% of respiration occurs above the e-folding depth

and 37% below).

Similarly for Ψ(T(z)), many field and laboratory studies have found an exponential

relationship between temperature and CO2 production, commonly expressed using the

Q10 relationship (Davidson et al., 2006b):

Ψ(T (z)) = ΨrefQ
T (z)−Tref

10
10 (7.6)

where Ψref is the respiration rate at the reference temperature (Tref ).

Combining Equations 7.2 and 7.3 yields the specific production function (Ps(z,T)):

Ps(z, T ) = βe−z/dp

(
Q

T (z)−Tref
10

10

)
(7.7)

where β is a constant that combines A and Ψref . Integration of the above equation

with respect to depth gives the surface flux of CO2. Unfortunately there is no closed

form solution to this integral for arbitrary T(z), which means a specific T(z) function

must be assumed to continue with the derivation. For simplicity the analytical

solution for a sinusoidal temperature propagating through the soil was chosen (Hillel,

1982; Beltrami, 1996):

T (z) = T0 +ΔTsin(ωt− zdT )e
−zdT (7.8)
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where T0 is the mean temperature, ΔT is the amplitude of the sinusoidal temperature

swings, ω is the angular frequency of the sinusoid, t is time and dT is the thermal

damping depth, defined as:

dT =

√
ω

2κT

(7.9)

where κT is the thermal diffusivity. It should be noted that for the solution given in

Eq. 7.8, sums of solutions are also solutions, in other words, multiple terms may be

added to the equation to describe two or more oscillation frequencies (i.e., daily and

yearly). Substitution of Eq. 7.6 into Eq. 7.4 yields a specific function for T(z) which

means the integral of Eq. 7.4 can be evaluated. In this case however, the double

exponential in the Q10 function does not yield an analytical solution to the equation,

but rather the integral must be numerically computed.

In the original simple example, where Γ(z) was constant with depth, the temper-

ature sensitivity was regained by dividing by the depth integrated temperature (see

Equation 7.4) because at constant temperature each soil depth contributes equally

to the total efflux. In the new, more complex model, each depth does not contribute

equally and this must be accounted for by finding the integral temperature weighted

by the normalized production function:

Hpw =

zmax∫
z=0

T (z)βne
−z/dpdz (7.10)

where βn is the normalized equivalent of β. For the reminder of this manuscript,

Eq. 7.10 will be referred to as the production weighted heat, or Hpw. Again by

extension of the result for the linear case (Eq. 7.4) to this more complicated system

it is hypothesized that the true temperature sensitivity should be given by regressing

flux against Hpw.

7.5 Methods

7.5.1 Model

Model Implementation

As was mentioned in section 2 these equations must be integrated numerically. To

test the hypothesis that the temperature sensitivity should be given by regressing
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flux against Hpw, a numerical integration code was written to solve surface flux (F)

and Hpw using Reimann summation with z-steps of 5×10−4 m. These data were then

regressed using the R Nonlinear Least Squares (NLS) function to yield estimates of

Q10 assuming an exponential relationship between F and Hpw of the form:

F = B1(Q
∗
10)

Hpw
10 (7.11)

where B1 is some parameter that expresses the basal respiration rate and Q∗
10 is the

NLS estimated value for the true Q10.

Before integrating Equations 7.7 (which implicitly includes Eq. 7.8 and 7.9) and

7.10, a range of possible parameters were defined and within that range randomly

sampled sets of parameters to arrive at final solutions to the integrals. These

parameter ranges are listed in Table 1, below. Note that two modes of oscillation

are included in the temperature functions (Eq. 7.8 and 7.9), one that represents the

yearly temperature oscillation (denoted with subscript y) and one that represents

the daily temperature variation (denoted with subscript d). Parameters that were

fixed at a single value included the Q10 (Q10=2) and basal surface flux (F=1 at a

homogeneous soil temperature of 0 ◦C, although the distribution of production in the

subsurface will vary depending on dp). In order to avoid confusion, when the results

of this analytical (but numerically integrated) model are presented, it will be referred

to as the Base Model.

Diffusion Model

While the theory presented previously outlines considerations of gas production and

thermal dependence, soil gas transport was neglected in these solutions. To examine

the potential effects of gas diffusivity regimes, a numerical one-dimensional soil gas

diffusion model was used. Briefly, the diffusion model contained exactly the same

production and heat transport equations as were presented in the Theory section

above, but once gas was produced it was transported via Fick’s law from the depth

of production to the soil surface where it was emitted as surface flux. For a more

detailed overview of the diffusion model, please see Nickerson and Risk (2009a) or

Phillips et al. (2011).
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7.5.2 Field Data

Field Site

Field data was collected from a mature Ponderosa pine forest in the Deschutes

National Forest, OR, USA (44.452 N, 121.557W, 1253 m), part of the Ameriflux

network of eddy covariance flux sites (Ameriflux site code: USME-2). Soil respiration

was measured within 100 m of the eddy flux tower using a LI-COR LI-8100 and LI-

8150 multiplexer unit. Four chambers were multiplied to the system, C1 was 0.6 m

from a mature ponderosa pine tree, C2 and C3 were interspersed in bitterbrush and

trees and were 1.2 and 1.8 m from the base of the nearest tree, respectively, and C4 was

isolated from trees (3.4 m from the base of the nearest tree) in a bitterbrush clearing.

Soil respiration was logger hourly, with a 3-minute measurement cycle (including

a 30s dead band and 30s purge between chambers). Soil meteorological data were

collected using standard AmeriFlux guidelines (http://public.ornl.gov/ameriflux/).

Soil temperature was measured using thermocouples at 2, 3, 8, 16, 32 and 64 cm

depths. Volumetric soil moisture was measured at 10, 20, 30, 50, 70, 100, 130 and

160 cm depths using three Envirosmart probes (Sentek Sensor Technologies, Stepney,

SA, Australia). Data were logged every 30min using a Campbell Scientific 10x logger

(Campbell Scientific Inc., Logan, UT, USA). Data from this site has been presented

and analyzed previously in Martin et al. (2012).

7.6 Results & Discussion

7.6.1 Base Model

To initially test the hypothesis that production weighted heat is an appropriate

regressor to estimate Q10 140 random-parameter realizations of one year of soil flux

and temperature data were simulated. The resulting flux data were then regressed

against Hpw to yield estimates of Q10. Using the full year of data, the mean estimate

for these 140 realizations was Q∗
10 = 2.01 (σ=0.01). Shown in Figure 7.1(a) is an

example of one of these simulations, including time series for surface flux, soil heat

content (simply the integral of temperature with respect to depth) and Hpw. Figure

7.1(b) shows the resulting Flux vs. Hpw curve for the time series data in Figure

7.1(a). For comparison Q10 was also calculated by the traditional method, using an
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arbitrarily chosen measurement of soil temperature at 5 cm. The resulting mean Q10

estimate was 1.83 (σ=0.14), with the distribution of Q10 estimates over all 140 runs

shown in Figure 7.2(a).

Estimation of Q10 using diel timescale data, a period over which it has generally

been difficult to estimate temperature sensitivity because of hysteresis effects (see

Phillips et al. (2011)), was also considered. Diel regressions using Hpw also yielded

excellent results for the value of Q∗
10, with the mean value for 70 randomly sampled

simulations being Q∗
10=2.00 (σ=0.01). Again, for comparison Q∗

10 was calculated for

the same set of simulations assuming an arbitrary temperature measurement depth

of 5 cm and found a mean Q∗
10=1.69 (σ=0.20), with the distribution of Q∗

10 shown in

Figure 7.2(b).

These base model simulations yielded excellent results for Q10 estimates, both

on annual and diurnal time scales. When compared to the standard method of

using an arbitrary measurement depth for estimation of Q10 the Hpw method provides

much more closely constrained estimates over all model conditions. Of course, the

resulting distribution for the arbitrary case will change depending on which depth is

chosen for the temperature measurement (Graf et al., 2008), but in all cases the Hpw

method should perform better because it is not biased by the diffusion of heat into

the subsurface.

7.6.2 Non-Uniform Q10

It is, of course, unreasonable to assume that Q10 in the field will be homogeneous

with respect to depth. Given this, the theory presented in Section 2.1 was modified

to accommodate a linear Q10 distribution:

Qlin
10 (z) =

(
Qbot

10 −Qtop
10

zmax

)
z +Qtop

10 (7.12)

where Qtop
10 is the Q10 value at the soil surface and Qbot

10 is the Q10 value at the soil

base, z=zmax.

Simulations and subsequent regressions produced values for Q10 which were

intermediate between Qbot
10 and Qtop

10 . In this case, since the total soil CO2 production

is measured as surface flux, the resulting Q10 estimates should represent the average



148

Q10 for all CO2 produced in the soil profile. This can be expressed as follows:

Qavg
10 =

zmax∫
z=0

βne
−z/dp

((
Qbot

10 −Qtop
10

zmax

)
z +Qtop

10

)
dz (7.13)

where Qavg
10 is the production weighted average Q10 value.

Figure 7.3 shows the resultant Q10 estimates for 50 random parameter sets with

the expected value (Eq. 7.13) on the x-axis of the chart. In general, the estimated

Q10 values were less than the expected values with the average deviation (Qdev) being

around -0.1 (Qavg
10 - Q∗

10).

Sensitivity analysis with this more complicated linear Q10 model revealed several

parameter sensitivities, seen in Figure 7.4. First, the relationship between Qdev

and both yearly and daily temperature amplitude is shown in Figure 7.4(a). It

becomes clear that as the daily amplitude approaches zero so does the deviation from

the Qavg
10 value, suggesting that the source of error is the diel temperature cycles.

Similarly as the yearly temperature amplitude approaches zero the error increases,

again suggesting that the diel signal is biasing the Q10 estimate. Bias sensitivities

also occurred for the damping depth parameter, shown in Figure 7.4(b), and the

thermal diffusivity (Figure 7.4(c)). In both cases it is assumed the magnitude of

the diel signal is responsible for the misestimate of Q10, but the other parameters

exacerbate the problem to a small degree. Several of the more biased model runs

were examined to confirm the hypothesis that diel signals caused these biases. In

essence, what was found is that when the daily signal is significant compared to

the yearly signal, a diel hysteresis effect is created, caused by the varying Q10 with

depth. This diel hysteresis causes the regression to become biased, as it does in

typical flux vs. temperature data (Phillips et al., 2011), and also in temperature vs.

temperature data in heat diffusion analyses (Smerdon et al., 2009). Further analysis

of the bias using homogenous temperature profiles in the modeled soil showed that

the heterogenous Q10 with depth used in these model simulations also causes the final

output (that is the flux and Hpw data which are regressed) to have a slight bias away

from being perfectly exponential, which also accounts for a portion of the bias seen in

the sensitivity tests above. If the values of Qbot
10 and Qtop

10 are set equal to each other

(homogeneous Q10), this non-perfect exponential bias is eliminated.
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7.6.3 Gas Diffusion Model

While gas diffusion is not likely to be the main source of hysteresis in traditional

flux vs. temperature data (Phillips et al., 2011), it should still have some effect on

the surface flux signal as it controls the rate of CO2 transport from the subsurface.

This suggests that it should also affect the estimated Q10 gained using the production

weighted heat (Hpw). To examine the gas diffusion influence, a series of numerical

simulations were run with varying soil air-filled pore space and gas diffusivities, listed

in Table 2.

Results from these simulations were predictable, in that regressions of flux vs. Hpw

at high gas diffusivities yielded good results for estimated Q10, when considering the

full year of flux data (Figure 7.5). As gas diffusivities decreased, and the time for CO2

to diffuse from the site of production to the surface increased, the performance of the

Hpw regressions suffered. Decreases in the gas diffusivity cause increased hysteresis

effects on both a diel and yearly scale, although the diel effects should be larger

considering the characteristic gas diffusion times should be on the order of hours to

days (Phillips et al., 2011). Because of this, the effect of LOESS smoothing (Locally

Weighted Scatterplot Smoothing) the data to eliminate daily cycles was examined

(also shown in Figure 7.5), however the LOESS procedure did not significantly

improve the estimate of Q10 because of the supra-diel diffusion hysteresis effects.

The resulting relationship between gas diffusivity and Q∗
10 for the parameter set used

in these simulations (see Table 2 caption) is shown in Figure 7.6. The shape (i.e.

exponential rise to max) of the relationship is expected to hold under other parameter

combinations, although the exact values for Q∗
10 will be distinct for each parameter

combination.

The diel Hpw estimates of Q10 in the gas diffusivity runs were also examined.

As was expected, diel estimates of Q10 were biased more heavily by gas diffusion

than yearly estimates with the closest to true Q10 value being 1.81 (σ=0.01) at the

largest effective diffusivity of 8.63×10−6 m2 s−1 (shown in Figure 7.6(b)). The time

series data for dial Q10 as a function of the day of year (DOY) shows a periodic

behaviour in the Q10 signal with the maximum and minimum values of Q10 preceding

the maximum and minimum annual values for air temperature and soil heat. Again,

for comparison, in each of the gas-diffusion runs the Q10 was calculated assuming
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an arbitrary temperature measurement depth of 5 cm. This data is shown both in

Figures 7.6a,b for comparison to the Hpw estimated Q10 values.

7.6.4 Estimating Production Weighted Heat (Hpw)

Analysis and consideration of this model data has shown that two distinct prob-

lems arise when trying to estimate Hpw using data collected in laboratory or field

experiments: 1) Estimating the soil temperature depth profile through time, and; 2)

Estimating the shape of the production profile.

Estimating the soil heat profile can be done in several ways. Perhaps the most

straight forward is by direct measurement of the soil temperature at many soil

depths. It is difficult to estimate the spatial density at which this must be done

to yield accurate heat content estimates, and for Hpw the density of measurement

also depends on the production profile shape. For example if a large percentage of

flux is produced in the top 2-3 cm of soil, then the thermistor density there would have

to be considerably higher than deeper in the soil profile. Methods based on fibre optic

temperature sensors may be the most likely candidates for the direct measurement

method (Selker et al., 2006), although the spatial resolution of distributed fibre optic

systems is not yet refined to the required resolution for this heat profile application.

Current limitations using traditional thermistor based approaches lie largely in the

size of equipment and accurate positioning in the soil profile relative to the soil surface.

Alternatively, the soil temperatures could be measured at discrete depth intervals

and then interpolated or fitted using a physically based thermal transfer model

(Beltrami, 2001). This approach allows interpolation at as fine a scale as the user

defines, but obviously suffers from other problems related to model parameterization

and simplified heat transport physics. For the model approach it is critical that

field sites are set up such that the skin temperature, that is the temperature at the

soil atmosphere interface, is accurately estimated as this can often be considerably

different that the surface air temperature due to direct radiation and latent heat

effects (Smerdon et al., 2004). Additionally, at least two (preferably many more) in

soil sensors are required to estimate the second order derivative of the heat profile for

model parameterization and fitting purposes.

Secondly, and more critical to estimating the value of Hpw is the estimation
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of the shape of the production profile, as it can strongly modify the production-

weighted heat content. The only real methods to do this are via the flux gradient

approaches (Risk et al., 2002a,b; Tang et al., 2003, 2005a), where the soil pore space

gas concentrations and gas diffusivities are used to estimate production over discrete

depth intervals. To obtain the required density of points it would be relatively easy

to interpolate over this profile with a fitting function, be it a polynomial, spline or

any other characteristic function. The major difficulty comes in estimating the soil

gas diffusivity, which is the least certain parameter in the flux gradient approach

and can therefore significantly skew results if mis-estimated. Several methods for

estimating diffusivity are available, including mathematical models (McCarthy et

al., 1995; Moldrup et al., 2000), inversion of data (Koehler et al., 2010), and direct

measurement (Risk et al., 2008b).

7.6.5 Field Data

Again, while field data is not the ideal way to prove a methodological approach,

it is ultimately where the approach will be applied and provide benefit to the

understanding of soil respiration processes. Using measured temperatures at the

site as constraints, the soil profile temperatures were modeled using a standard

1D conductive heat transport model (1 cm model layers). A good correspondence

between modeled and measured soil temperatures was found with slopes of modeled

vs measured soil temperatures of 0.99 (r2=0.95) and 0.86 (r2=0.92) for 8 and 32 cm

soil depths, respectively. These modeled temperatures were then integrated to obtain

estimates of the soil heat content for the calculation of Hpw. It was assumed that

the production profile at the site was exponential, having the same form as Equation

7.5. Multiple Hpw realizations were calculated by allowing the e-folding depth of

production to vary between 1-100 cm in 1 cm increments. Each Hpw estimate was

then regressed against soil flux from each chamber (C1, C2, C3, C4) and chose the

Hpw estimate that provided the highest Pearson correlation coefficient as the correct

estimate of Hpw at the site. This regression method was tested against the model

data presented in the previous section and was reliable at reproducing the correct

damping depth to within 1 cm (i.e. the resolution of the fitting algorithm). Gaseous

diffusion contributions to Hpw estimates for this site were assumed to be negligible,
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as the diffusion coefficients at the site have be previously estimated to be quite high

(4.5×10−6 to 1.8×10−5 m2 s−1) (Martin et al., 2012).

Estimates of e-folding depth at the site ranged from 0.21 m to 0.11 m, yielding

Q10 estimates ranging from 1.68 to 2.33 and basal respiration (T=0◦C) estimates

ranging from 0.66-1.92 (Figure 7.7). Sites that were closest to trees typically had

higher basal respiration values but there was no significant correlation between basal

respiration and distance from nearest tree. Distance to the nearest tree and e-folding

depth were negatively correlated (r2=0.69; slope p-value=0.11) suggesting that more

respiration is occurring near the surface of the soil as the distance from trees is

increased, likely due to a decrease in the proportion of root respiration in total

soil respiration. Calculation of Q10 using production weighted heat, in its current

form, assumes no autotrophic components because autotrophic respiration is likely

responsive to aboveground conditions that are not included in the Hpw formulation

(although the case could be made that if the autotrophic component was responsive

to soil temperature at discrete depths the Hpw approach could work). Initial results

(and field placement) suggest chamber 4 is likely the least influenced by autotrophic

respiration and therefore it will be the focus for the remainder of the analysis.

Comparing time series of soil moisture and flux events it was noted that there

were several occasions where flux was increased significantly by moisture pulses (e.g.

Birch effect, Jarvis et al. (2006)). These data were hand filtered (removing obvious

moisture-flux spikes) to determine if the Hpw regressions improved in the absence of

moisture effects. The result was a slightly deeper damping depth for respiration (0.14

m), slightly inflated Q10 value of 2.53 and decreased basal respiration (0.54 μmol m−2

s−1). The correlation coefficient improved from 0.67 to 0.74 in the moisture filtered

case. Despite the removal of the large majority of data that appeared to be affected by

moisture pulses, there was still considerable spread of data during the warmest periods

recorded in the data set. Most of this spread seems to result from data collected in

July, where temperatures were high and fluxes were at their peak. Despite similar

temperature ranges occurring later in the summer, a steadily decreasing soil moisture

content appears to be affecting the temperature response of flux (Figure 7.8). This

result suggests that there is, not surprisingly, some component of the modeled flux vs.

temperature relationship that is controlled by soil water content which is currently
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not embodied in the Hpw formulation.

7.7 Recommendations & Conclusions

Estimation of the temperature sensitivity of heterotrophic respiration can be improved

through the use of the Hpw approach. Not only does the approach yield more accurate

estimates of modeled temperature sensitivity, it is also arguably the most theoretically

robust analytical temperature-flux model available. There are still complications

to the use of the method, including estimating of the soil heat using field data,

constraining the shape of the biological CO2 production profile, including the effects

of gas diffusivity and the impact of soil moisture, and complications related to the

presence of autotrophic activity in the data (which is not included in the current

model because of the aboveground influences on autotrophic respiration). Obviously

one does not expect the current analytical model to be able to cope with all of

these issues, and thus it is presented as a “second-order” approach to the problem

of estimating the environmental sensitivities of respiration. Ultimately the most

useful methods will include a combination of the Hpw approach and process-based

descriptions of the other physical and biological soil processes that control surface

flux. This approach could eventually take the form of a fully-coupled model where

parameterization is accomplished via field measurements and computational inversion

algorithms (i.e. Metropolis Monte Carlo). This more flexible model structure will also

likely be more cross applicable to field conditions ranging from desert to rainforest,

assuming of course the physics and biology are accurately described.
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Table 7.1: Equation parameters and parameter ranges used in integrations of Eq. 7.7
and 7.10.

Parameter Range
DT 1 - 900 ×10−8 m2 s−1

dp 0.01 - 0.40 m
T0 0-20 ◦C
ΔTy 2-20 ◦C
ΔTd 2-15 ◦C
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Figure 7.1: (a) Time series plot for surface flux, production weighted heat and
unweighted soil heat content. Note that the production weighting shifts the heat
curve back to correlate in time with flux leading to a non-hysteretic regression. (b)
Final flux (y-axis; μmol m−2 s−1) vs. Hpw (x-axis; ◦C) relationship for the time series
data shown in (a).

(a) (b)

Figure 7.2: Distribution of yearly (a) and diel (b) Q10 estimates for an arbitrary
temperature measurement depth of 5 cm.
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Figure 7.3: Comparison of expected (Qavg
10 ) and regression estimated (Q∗

10) values for
a linear Q10 profile with respect to depth (Eq. 7.12). Data were generated by random
assignment of model parameters within the range specified in Table 1. In the linear
Q10 vs. depth function, Q10 values at the soil surface (Q

top
10 ) and at depth (Qbot

10 ) were
assigned randomly with values between 2 and 3.

(a) (b) (c)

Figure 7.4: Sensitivity of the Q10 deviation (Qdev) to yearly (grey circles) and daily
(black squares) temperature amplitudes, damping depth (dp), and thermal diffusivity
(DT ). Data were generated by random assignment of model parameters within the
range specified in Table 1.
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Figure 7.5: Estimates of Q10 with soil gas diffusion considering yearly data with 24h
LOESS smoothing (triangles) and without LOESS smoothing (squares). Effective
diffusivity (Deff ) in units of m2 s−1.

Figure 7.6: (a) Timeseries of Q10 estimates for low diffusivity (black lines,
Deff=9.94×10−8 m2 s−1) and high diffusivity (gray lines, Deff=8.63×10−6 m2 s−1) for
both the Hpw (solid line) and standard approach (T5cm, dotted line). (b) Estimated
Q10 over a range of diffusivities for the Hpw (diamonds) and standard approach (T5cm,
crosses).
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Figure 7.7: Soil flux vs. Hpw estimates for the 4 chambers deployed at the Deschutes
National Forest field site. Chamber 1 had the closest tree proximity (0.6 m), followed
by Chamber 2, 3 and finally Chamber 4 which had the highest distance from trees at
3.4m. The relatively good fit of the data in Chamber 4 is attributed to the decreased
presence of autotrophic respiration in the total respiration measurements.
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Figure 7.8: Timeseries of soil flux (black line), soil temperature (8 cm, grey line) and
soil VWC (10 cm, blue line) which clearly demonstrates the effect that soil moisture
is having on the measured flux time series which is affecting the performance of the
Hpw regressor.



Chapter 8

Challenges in Determining the Environmental Sensitivity of

Soil Respiration: Data Interpretation and the Role of

Isotopic Data

8.1 Preamble

This chapter presents a conceptual model for data interpretation based on the research

presented in other chapters of this thesis and discusses the future uses of isotopic data

in soil respiration modelling. I am the primary author on the manuscript and have

performed all analysis and writing. Dave Risk is supervisor of this work. This chapter

has not been published, but is intended for journal submission at a later date.

8.2 Abstract

Some soil respiration studies suggest that physical controls on the soil influence the

measurement and interpretation of soil respiration data as much or more than biolog-

ical drivers. Inclusion of complex physical and biological processes in soil respiration

models requires a move away from statistical approaches using simple equations and

toward process-based models that incorporate complex system behaviours. However,

these process-based modelling approaches require a higher degree of parameteriza-

tion and significantly more measured field data as model constraints. Here a concept

termed “Soil Process Detail” is presented that relates a model′s complexity to the

amount of information required to produce reliable and accurate model results. This

framework clearly shows the utility of process-based models but also accounts for

the tradeoff between model realism and supplementary information requirements.

Finally, the role of soil gas isotopologue measurements in informing process-based

models is also discussed. These isotopic measurements hold the key to increasing

model information and better constraining model results.

160
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8.3 Introduction

Atmospheric concentrations of greenhouse gases (GHGs) play an extremely important

role in regulating Earth’s climate system (IPCC, 2001). Carbon dioxide (CO2),

which is produced primarily by aerobic respiration and consumed by photosynthetic

activity, is arguably the most well studied GHG to date. While it is agreed that the

processes underlying photosynthetic uptake of CO2 by plants are well understood,

much of the literature suggests that a process-based understanding of soil respiration

is lacking (Davidson et al., 2006b). Researchers have made many great strides toward

understanding the fundamental soil biology and ecology (Schimel and Weintraub,

2003; Tang et al., 2005a; Risk et al., 2008a; Davidson et al., 2012), developing robust

methodologies for measuring GHG exchanges (Davidson et al., 2002; Subke et al.,

2004; Livingston et al., 2005; Senevirathna et al., 2007; Risk et al., 2008b), and

adopting more complex mathematical techniques for analysis and predictive modelling

(Pumpanen et al., 2003; Reichstein et al., 2005; Ryan and Law, 2005; Livingston et

al., 2005; Graf et al., 2008). To date, much of this research has focused on the

biological properties of the soil system, as the soil organisms are ultimately the

producers of CO2. However, there are many physical processes that control the

transport of decomposable substrate (Davidson et al., 2012), nutrient supply (Schimel

and Weintraub, 2003), the local-environment (i.e. temperature and moisture) (Xu et

al., 2004; Wei et al., 2010; Falloon et al., 2011; Moyano et al., 2012; Suseela et al., 2012)

as well as the eventual emission of the produced gas to the atmosphere (i.e. diffusion

and advection) (McCarthy et al., 1995; Moldrup et al., 2000; Kayler et al., 2010;

Bowling and Massman, 2011). While researchers acknowledge these complexities

they have not, until recently, received as much attention as the biological aspects.

These physical considerations affect the fundamental soil system dynamics, and

therefore impact the measurement and interpretation of soil respiration data (Liv-

ingston et al., 2005; Phillips et al., 2010, 2011). Recognizing the importance of soil

physics in soil respiration studies is one step toward developing more robust models

that can be used to predict soil respiration dynamics across space and through time.

However, the inclusion of these physical processes, as well as more complex biological

processes, in soil respiration models requires a move away from statistical approaches
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using simple equations and toward process-based models that can incorporate com-

plex system behaviours. These process-based modelling approaches require a higher

degree of parameterization using measured field data in order to function properly.

Here, we present two concepts that could increase the ease and accuracy of future

modelling efforts, which are not normally considered. The first concept is that of Soil

Process Detail, or the relevancy of constraining information to models that aim to

estimate soil parameters and future behaviour. The second concept is that of isotopic

data integration.

Soil Process Detail relates a model′s complexity to the amount of information

required to produce reliable and accurate model results. This conceptual framework

is intended to help researchers better understand how increases in model complexity

need to be matched with an increased amount of information used for model

parameterization. Ultimately process-based approaches will lead to more robust,

more transferrable models but without consideration of Soil Process Detail, process-

based models are likely to produced biased results leading to misinterpretation and

misunderstanding of soil respiration dynamics. This being said, even when models are

well formulated, they must be fed relevant data in order to appropriately constrain

parameters and produce robust results. As a follow-up to the concept of Soil

Process Detail, the application of isotopic data to challenges in understanding soil

respiration is discussed. While isotopic tracing of C through the soil system has been

commonplace for many years (Cerling et al., 1991; Amundson et al., 1998; Rochette

et al., 1999; Högberg et al., 2001; Formanek and Ambus, 2004), the relatively recent

development of accurate, high-resolution, field-deployable laser-based techniques is

opening up new avenues of research that are particularly exciting for soil respiration

modelling. In these models, isotopic data can be used to further constrain model

parameters to offer a more robust understanding of soil respiration at the process

level than can be achieved using bulk gas emissions data alone.

The balance of this manuscript will introduce and provide examples of how

increasing Soil Process Detail can help to further constrain models, and will discuss

the possible avenues through which isotopic data might be integrated into process

based models in order to improve their overall predictive ability.
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8.4 Soil Respiration Modelling & Soil Process Detail

8.4.1 Background

In their 2006 paper, Davidson et al. note that the majority of currently used soil

respiration models still rely on chemical thermodynamics equations developed in the

19th century (Arrhenius, 1889; van’t Hoff, 1898), or modifications thereof. While

theoretically the underlying chemical reactions which eventually lead to respiration

should follow these classical thermodynamics equations, there is the obvious caveat

that the biological systems are significantly more complex and rely on numerous

internal and external processes to mediate respiration. This complexity has been

recognized for many years and the recent significant increase in data temporal density

and quality has further highlighted the need for more complex models to describe the

wealth of new data (Richardson et al., 2006b; Davidson et al., 2012). For reference,

Table 1 presents a brief overview of some commonly used respiration models and the

predictive variables included in their formulation.

These respiration models can be broadly split into two categories; empirical/statistical

models (e.g. Linear, Polynomial, Fourier) and process based models (e.g. Q10, Lloyd

and Taylor, Enzyme Kinetics). In general, the statistical models are quite robust for

reproducing site and measurement period specific data patterns and gap filling pro-

cedures but are perhaps less useful for prediction of future respiration. This is largely

because the model environmental sensitivities that are critical for predictive reasons

are generally poorly formulated or convoluted into other variables. An excellent ex-

ample of this convolution is the use of Julian Day in the Neural Network Model (H,

Table 1), which could be a proxy for temperature, substrate supply, phenology and a

host of other time-variant parameters. On the other hand, process based models of

respiration are likely to offer far greater predictive value being more robust through

time and across space (more transferrable) because of their bottom-up approach and

the inclusion of observable thermodynamics and enzyme reactions. This makes them

less likely to break down when being used to extrapolate into future climates and also

makes process based models the ideal approach for better understanding the nature of

and interactions between heterotrophic and autotrophic respiration processes in-situ,

both at short and long time scales.
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However, even if we assume that process based models are the most robust

approach for interpreting and extrapolating respiration data, it should be recognized

that there are multiple dimensions to the problem of model selection or formulation.

Arguably as important as the problem of biological model selection is the choice

of the level of detail to include for non-biological soil processes, for example soil

temperature, moisture or gas diffusion. From here on, we will use the term Soil

Process Detail (SPD) to refer to the level of information used in the description of

the driving (independent) variables for the biological respiration model. We will also

refer to biological respiration models on a continuum from empirical to process based;

again assuming well parameterized process based models are the optimum.

These two definitions allow us to construct a conceptual phase-space that can be

used to evaluate the utility (which we will loosely define as the predictive power,

or predictive ability) of a model. Model utility relates to a models ability to

accurately describe actual biological, chemical and physical processes and thus its

ability to extrapolate (predict) soil respiration measurement across space and time.

To place this in context, consider the well-known Q10 model for respiration (Figure

1). This model has a relatively low SPD as it is only a function of temperature, and

traditionally only a single arbitrary temperature measurement is used as input. In

contrast, at the same point on the empirical-to-process-based axis of Figure 1, sits

the Linear Combination Q10 model proposed by (Reichstein et al., 2005); but, this

model has a higher SPD because it allows for input of the soil temperature at multiple

depths, creating a fuller description of the soil physical environment. Still further up

the Soil Process Detail axis sits the Production Weighted Heat approach of (Nickerson

et al., 2014) which allows for a complete description of the soil temperature profile,

converging on the maximum information line of Figure 1 and arguably providing a

more realistic SPD than the biological model (assuming the Q10 model is a simplified

version of real respiration processes). Note that as we moved up along the SPD axis

of the plot toward the maximum information line we crossed into a new utility tier

indicating the model will likely have better predictive power.

Consider for example the Dual Arrhenius and Michaelis-Menten (DAMM) model

proposed by Davidson et al. (2012) in which soil temperature, moisture and soil

pore space characteristics are implicit to the model structure. In order to accurately
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employ this model in-situ, there should be full and accurate descriptions of the

soil temperature, moisture and pore space (air-filled, water-filled and total) as a

function of both depth and time in order to minimize error in the predicted model

environmental sensitivities and therefore maximize the predictive ability of the model.

If this full description is not present, the model will fall into a lower utility category,

even though it is on the higher end of the process-based portion of the scale. On the

other hand, it is much easier for this model to move up through utility tiers because

the utility gradient is steepest on the process-based end of the phase-space (i.e. only

a few measurements of soil temperature, pore space, etc. would allow the DAMM

model to easily surpass a statistical model in utility).

While the idea of Soil Process Detail may still be somewhat abstract, in the

following section, we will show a practical example of the importance of increasing

the Soil Process Detail for allowing accurate estimation of biological environmental

sensitivities. Accurately estimating these sensitivities, or model parameters, is critical

to ensuring that utility is maximized. Without accurate estimates, models will not

have predictive power over time, nor will they be transferrable from location to

location.

8.4.2 Soil Process Detail - A Practical Example

The importance of sufficient SPD can be most directly demonstrated through analysis

of simulated respiration data, which offers a controllable pseudo-reality in which to

test the concept. In this simulation, we assume the soil is a many-layered system

with layer specific temperatures and CO2 production rate (Phillips et al., 2011).

Determination of the total soil production is achieved by numerical integration of

the layer specific production equations. We make several assumptions about the

behaviour of the biological respiration, first that it follows a Q10 behavior (Model D

in Table 1), second that it is distributed exponentially with depth and, third that

the Q10 parameter is depth invariant (Phillips et al., 2011). To evaluate the effect of

various simulation parameters on each of the approaches presented below, we analyzed

90 randomized instances of the model, allowing for a reasonably accurate statistical

evaluation of each approach under varying climate and soil conditions. Further detail

on the simulations, including the randomized parameter approach, can be found in
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Nickerson et al. (2014) and (Phillips et al., 2011).

Conveniently, as was mentioned in the discussion above, there are three methods

(D,I,K, Table 1) that use Q10 descriptions of biological processes (i.e. have the

same value on the empirical to process based scale) but differ in the level of Soil

Process Detail (SPD) used in the method formulations. This allows us to evaluate

the importance of increasing soil level detail directly, without convolution by variant

biological behaviours.

Frequently researchers use the standard Q10 formulation (Model D, Table 1, Figure

1) with regression approaches to correlate air or soil temperature at a single arbitrary

depth with soil respiration (usually both parameters are measured at the same

temporal frequency). The Q10 model parameter estimates can be determined either

by linearization of the function and subsequent linear regression, or by non-linear

regression approaches. In this example we have processed simulated soil respiration

data (90 randomized instances) with the Q10 function by linearization and regression

of the transformed flux vs. soil temperature measured at various arbitrary depths.

Shown in Figure 2 are the resulting estimates for Q10 using arbitrary soil temperatures

as the independent variable in the Q10 regressions. Note first that no soil depth

accurately predicts the modeled Q10 in all model instances (i.e. the histograms have

a significant standard deviation in all cases). In some cases the correct Q10 is included

within the spread of the histogram. This is expected to happen, as was shown by

Graf et al. (2008), and results from an optimal selection of temperature depth such

that the true Q10 is recovered. This optimum is predictable, given knowledge of

the soil production profile and thermal regime but this approach offers a heuristic

method of Q10 determination only (Phillips et al., 2011), and furthermore one that

will change with changes in soil conditions that affect the CO2 production and thermal

conductivity.

Moving along the Soil Process Detail scale, we next demonstrate the ability

of the linear combination Q10 approach proposed by Reichstein et al. (2005) to

predict an accurate Q10. The form of this equation is presented in Table 1 (Linear

Combination Q10) and the parameter estimates can be determined by non-linear

regression approaches. We applied this approach to the same set of 90 model instances

used above, increasing the number of temperatures used from one (which should
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yield the same result as the standard regression approach, Figure 3) to a total of 6

temperatures distributed from 0 cm to 32 cm in the soil (0.00 m, 0.02 m, 0.04 m,

0.08 m, 0.16 m, 0.32 m). Note that after 6 independent variables were included in the

regression equation, the solution became over parameterized and would not converge

(i.e. the data do not provide enough information to the model for a unique set of

parameters to be realized). As the number of soil temperatures included in the model

was increased, the Reichstein et al. (2005) approach showed a gradual convergence

on the true Q10, and a tightening of the distribution.

Interestingly, simultaneous with the Q10 convergence in the Reichstein et al. (2005)

approach, we also note a loosening of the models ability to accurately predict the basal

respiration (θ1, θ3, ... θ2i+1, Table 1, Equation I) rate of the soil layers. Despite the

fact that the simulation was parameterized with an exponential basal production vs.

depth function, the Reichstein approach showed no systematic improvement in the

prediction of the depth-dependent basal respiration estimates (Rn, Model I, Table 1).

Fitting algorithm-driven adjustments (related to the numerical approach used in non-

linear curve fitting) in the basal respiration estimates appeared to occur in an attempt

to match the phase of respiration with the phase of the combined temperature data,

as the number of temperatures used in the model increased. Note that Reichstein et

al. (2005) had predicted this would happen with the model, as it is fully expected

based solely on the mathematical curve-fitting approach. Even though the Reichstein

et al. (2005) approach was unable to accurately estimate basal respiration rates, it

continued to offer increasingly good estimates of Q10 with increasing Soil Process

Detail (i.e. increasing number of temperatures included in the regression), as was

expected based on the SPD conceptual framework outlined earlier. Readers should

be aware that the simulations used here do not include error in the results, and

thus the maximum number of soil depths that could be included before the model

became ill-constrained is probably much higher than could be obtained using in-situ

soil respiration and temperature data.

Finally, using the same set of 90 simulation instances, we tested the hypothesis

that a continuing increase in Soil Process Detail would further enhance the stability

and accuracy of the Q10 estimate by using the (Nickerson et al., 2013) production

weighted heat approach. Perhaps not surprisingly, in a simulation where soil
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temperatures are the only driving factor, the model which included the most complete

description of the soil temperature profile in both space and time also yielded the

most accurate Q10 estimates (Figure 4). Further analysis of the data set showed no

sensitivities to any of the model input parameters and confirmed that the variation

(σ=0.003) observed in the histogram in Figure 4 can be accounted for by numerical

rounding errors in the simulation and subsequent fitting procedures.

8.4.3 Summary

Improving biological modelling of soil respiration, in particular moving toward

process-based models of biological systems, is key in better understanding soil

respiration. That being said, an improvement in the biological description of the

system should be complimented by a similar improvement in the physical description

of the system.

Computational tools are now at a stage where they can be used with relative ease

to model these more complex systems, as is evidenced by the recent surge of complex

model-data fusion, and these computational tools require sufficient SPD to adequately

constrain parameters. While environmental measurements and interpolation of theses

measurements using physical models (i.e. numerical heat transport and water

transport models) helps increase SPD, eventually a limit will be reached where

measurements of bulk trace gas emissions will no longer contain adequate information.

In this instance, isotopic tools can be used to augment these bulk trace gas flux

measurements and help enhance the predictive power of soil respiration models. In

the next section we will briefly discuss these isotopic methods, why the time is ripe to

move towards more isotopic measurements in soil science and how they have helped

and can continue to help inform the next generation of process based soil respiration

models.

8.5 The New Role of Isotopic Data

Measurement and analysis of bulk greenhouse gas data has significantly enhanced our

understanding of the fundamental biological, chemical and environmental processes

controlling soil respiration. However, there are many questions that bulk gas

measurements cannot answer because of the limited amount of information they
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contain. Researchers have routinely used isotopic data to answer these more probing

questions for several decades now, with excellent results (Cerling et al., 1991; Högberg

et al., 2001; Formanek and Ambus, 2004; Bahn et al., 2009; Phillips et al., 2010;

Albanito et al., 2012; Goffin et al., 2014). Isotopic studies are relatively sparse

compared to bulk gas studies due to the overhead imposed by sampling for and

measurement using Isotope Ratio Mass Spectrometry (IRMS). However, a new

generation of spectroscopic instruments is offering the ability to measure isotopic

gases in-situ with high-temporal resolution, which is opening up many new doors for

soil respiration research (Midwood and Millard, 2011). We strongly believe that these

high-resolution high-accuracy isotopic measurements are the next step in enhancing

our process based understanding of soil respiration, both from heterotrophic and

autotrophic organisms.

From a biological perspective, perhaps the most exciting prospect offered by the

measurement of isotopes is the potential to separate autotrophic and heterotrophic

respiration in-situ and with minimal disturbance to the natural system (Subke et

al., 2006). Researchers have routinely used isotopic techniques to partition soil

respiration into individual components (Formanek and Ambus, 2004; Albanito et

al., 2012). In general this is made possible either by the natural difference in

the isotopic signature of CO2 respired by autotrophic and heterotrophic organisms

(caused by differing biochemical processes) or by applying an isotopic label, either

to the soil organic matter pool or canopy atmosphere which propagates through

the atmosphere-plant-soil system creating distinctive isotopic signatures for each

respiration source (Subke et al., 2009). The application of high-resolution, high-

accuracy laser based systems in these partitioning studies promises excellent results.

For example, the ability to detect changes in isotopic signature on timescales of

minutes to hours is unprecedented in partitioning studies, which in many cases are

fortunate to have a single measurement on a daily basis. This opens a whole avenue

of research studying diurnal timescale changes in the proportions of autotrophic and

heterotrophic respiration, caused by availability of light, vapour pressure deficit and

a host of other covarying environmental drivers. The ability to detect changes in

bulk gases at these timescales arguably caused a paradigm shift in the understanding

and interpretation of bulk CO2 respiration (Riveros-Iregui et al., 2007; Carbone and
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Vargas, 2008; Risk and Kellman, 2008; Phillips et al., 2011), so it is not unreasonable

to speculate that the same will be true of our understanding of short timescale isotopic

processes.

On a similar thread, these laser-based systems have recently been applied to

collect and analyze subsurface (soil pore) gases in order to construct a depth-resolved

understanding of soil processes (Parent et al., 2013; Goffin et al., 2014). This type

of research has been done for many years in bulk CO2 research using solid-state

CO2 sensors (Tang et al., 2003; Xu et al., 2004). What is most compelling about

these new subsurface methods is the potential to use them in conjunction with

natural abundance or tracer techniques to partition heterotrophic and autotrophic

respiration as a function of time and depth in the soil, in an attempt to correlate

the various respiratory sources with variables such as rooting density or soil organic

matter content (Goffin et al., 2014). These depth-dependent measurements are a

critical input for process-based models that include diffusive processes and other time-

lags between production of CO2 in the subsurface and its eventual emission into the

atmosphere which have generally been neglected (Nickerson and Risk, 2009a; Subke

et al., 2009). The inclusion of depth-resolved isotopic partitioning data in additional

bulk gas measurements is a critical next step in better understanding respiratory lags

in the soil and accurately representing them in ecosystem model structure.

From a soil physics perspective, the measurement of isotopes brings an interest-

ing new possibility to the table. For many years, researchers have been concerned

about the potential for natural and artificially-induced advection of soil gases in en-

vironments where high wind and highly variable pressure gradients exist (Hutchinson

and Livingston, 2001; Takle et al., 2004; Massman, 2006; Reicosky et al., 2008).

These advective gas fluxes cause significant bias in measurements of soil gas fluxes,

which are often assumed to happen under strictly diffusive conditions. Until recently

these events were either tracked using differential pressure sensing equipment, or went

largely unnoticed. Recent work by Bowling and Massman (2011) shows the potential

for isotopic data to detect these advection events. Because advective transport does

not fractionate against heavy isotopes (but diffusion does) one can use isotopic data

to detect and quantify the effects of advection on total soil gas transport. While

this is useful in all environments, it is of particular interest to researchers working in
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snow-covered regions, where advective movement of CO2 may represent a significant

portion of the winter and annual CO2 fluxes (Massman, 2006; Bowling and Massman,

2011).

While these isotopic studies are extremely interesting from an experimental

standpoint what is more exciting is the potential for these measurements to help

constrain soil respiration models. As was mentioned, the measurement of bulk gas

fluxes when augmented with soil process data, such as temperature and moisture

contents and transport, provide important constraints of soil respiration model

parameters. However, a critical missing component in constraining these models is the

timing, magnitude and source location (e.g. depth) of heterotrophic and autotrophic

respiration in the soil profile and how this gas is eventually transported from the soil

to the atmosphere. The current lack of this information from the field observations

and experiments means that modellers must make various assumptions that may or

may not be true of the soil system thereby hampering our ability to fully understand

the processes that drive soil respiration from both major components.

8.6 Conclusions

While it is likely that biological descriptions of respiration processes will continue

to evolve over the coming years, there is a strong need for the soil physics and

mathematical interpretive framework to evolve alongside. Without this tandem

development our process-based understanding of soil respiration process will always

be lacking. Consideration of Soil Process Detail when formulating and implementing

process-based models will ultimately help reduce or exclude biased results that may

lead to poor interpretation or misunderstanding of soil respiration processes. From a

field and laboratory measurement perspective, one of the most critical next steps to

improving both the biological and physical understanding of soil respiration processes

is to utilize isotopic data to its fullest extent. By combining process-based approaches

with isotopic data, researchers will have the ability to probe the dynamics of soil

respiration with more detail and accuracy than can be accomplished using bulk gas

measurements alone.
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Figure 8.1: Conceptual framework for the optimization of Soil Process Detail (SPD)
populated with several commonly used soil respiration models from Table 1. No
models SPD can ever exceed the maximum information line, which is defined by
the number of soil processes included in the model structure (for example the Q10

model (D, Table 1) only considers soil temperature, so when soil temperature is fully
described in space and time the model will reach the maximum information line).
Contours indicate increasing model utility (with increasing redness), defined as the
predictive power, or predictive ability of a model.
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Figure 8.2: Estimates of the Q10 temperature sensitivity (actual Q10=2.0) of soil respi-
ration for 90 random simulation instances for six arbitrary temperature measurement
depths. Note that these simulations show an optimum depth of 16 cm, consistent with
the work of Graf et al. (2008), but this optimum is not stable at all soil parameter
combinations, as is evident based on the large spread in the Q10 distribution.
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Figure 8.3: Estimates of the Q10 temperature sensitivity (actual Q10=2.0) of soil
respiration for 90 random simulation instances for linear combinations of up to 6 soil
temperature measurement depths using the Reichstein et al. (2005) model. As the
number of soil depths used in the model increases the estimated Q10 converges to the
actual Q10, however as the model grows so does the potential for over fitting.
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Figure 8.4: Estimates of the Q10 temperature sensitivity (actual Q10=2.0) of soil
respiration for 90 random simulation instances for the Production Weighted Heat
approach of Nickerson et al. (2014). Note that the variation in the histogram can be
accounted for by rounding errors in the simulation and fitting algorithms.



Chapter 9

Conclusions

9.1 Conclusions

This thesis aimed to evaluate the impact that physical considerations - mainly heat

and gas transport - have on the study of GHG emissions, with a focus on CO2 and

its carbon isotopologues. This goal was accomplished in two distinct parts, the first

looking mainly at methodologies that are likely to become widely-used in the near

future, and the second looking at using novel methods to avoid problems inherent in

soil GHG emissions interpretation and modelling.

In this thesis several new measurement methods were developed for the soil respi-

ration research community that emphasize high-temporal resolution and the reduction

of bias in measurements of soil respiration and isotopologue fluxes. High-temporal

resolution datasets have become more commonplace over the past decade, and have

been extremely important in understanding soil respiration and in particular short

time-scale respiration processes. Methods such as Forced Diffusion (FD) and subsur-

face approaches will hopefully allow more researchers to gather high-frequency mea-

surements and further develop our understanding of soil respiration at these short

timescales where individual soil processes and environmental responses are most ap-

parent. Similarly, while robust new methods for soil respiration studies are important,

it is also critical to understand both the new and old methods in detail to ensure that

no biases or systematic errors are present in data gathered by these methods. The

analysis of methods for systematic biases was an integral part of this thesis, and

will hopefully guide others in their selection and study of respiration measurement

methods. Finally, much of the methods related research focussed on measuring iso-

topologue fluxes from the soil, and this is for good reason. Natural abundance and

tracer isotopic studies are powerful tools for understanding ecosystem processes in

greater detail, but the differences in isotopic signature for the various soil processes

can often be quite small. This makes identification and correction for method related
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bias extremely important. Ultimately these isotopologue measurements will allow re-

searchers to take the process-based understanding of soil respiration processes to the

next level, but this transition will be severely-hampered by methodological problems

if careful consideration is not taken in isotopologue applications.

While measurement methods are extremely important, the ultimate goal of soil

respiration studies is to develop a process-based understanding of the soil system,

and the processes that lead to soil gas emissions. It was not until recently, with

the application of high-resolution measurement techniques, that researchers began

to obviously see the effect that soil physics was having on soil respiration data

interpretation. Even then these effects were not clear to many researchers, who

often used soil biology to explain many behaviours that are likely physical in nature.

The use of physically based models in this thesis helped us show clearly the impacts

that soil physical processes may be having on soil respiration data, and thus its

interpretation. These simple models are able to explain many behaviours observed

in laboratory and field based studies of soil respiration, and provide an excellent

building block for the future study of soil respiration. Ultimately researchers want

to understand the biology behind soil respiration, and stripping away these physical

layers will be crucial in that understanding. The production weighted heat approach

was the beginning of that process, but it is clear that more complex methods will

need to be developed to finish the task. There is a strong need now to move

toward other interpretative methods. Analytical and statistical approaches for soil

respiration interpretation and modelling offer a good first order estimate in many

cases, but to truly understand soil processes more complex numerical process-based

models are needed. The soil respiration research community has taken steps in this

direction, with ever increasing interest in model-data fusion approaches and numerical

modelling. Much of the research presented in this thesis regarding heat and gas

diffusion is likely to help form the base-level of these models.

Finally, soil physics was a major focus of this thesis and the complex physical

nature of the soil system means that there are many windows of opportunity ahead.

Even within the relatively narrow window of gas and heat diffusion that was studied

here there are many processes that were unconsidered, for example direct radiation,

self heating of soil by biological activity, aqueous gas diffusion and coupled diffusion



179

processes. Other physical aspects such as water transport (both by percolation and

evapotranspiration) and soil structure considerations (horizonation, pore distribu-

tions, fracture networks, soil aggregates, clay content, mineral distribution) will also

undoubtedly be important in future process-based models of soil respiration. While

the thesis may be biased to understanding the soil physics, it is also undeniably im-

portant to continue to carefully study the soil biology and chemistry carefully as well.

Because of the tight linkages between all soil processes, only a combined approach

using all three aspects of the soil can be expected to yield the desired process-based

understanding of soils.

9.2 Future Directions

While I have considered many methodological approaches in this thesis, there are

many more which require further understanding and likely still many things to

understand about the methods developed and presented herein. I strongly believe

that this understanding should be informed by theoretical, laboratory and field-based

approaches. Each approach has its strengths and weaknesses, and it is only though

the combination of all three that researchers can hope to reveal all of the nuances of a

method and evaluate its applicability for scientific research. While the availability of

many methods is useful for tackling complex problems, there is also an increasing need

to focus on data quality control and quality assurance, which can be complicated by

the many-methods approach to soil respiration monitoring. Ultimately a balance has

to be struck between the practicalities of field research and the need for comparable

and accurate data sets for meta-analyses and respiration modelling.

For soil respiration modelling and interpretation, it will be important in future

research to consider the soil physics but also to consider the purpose of the modelling.

I would like to see a move away from statistical modelling to process-based models,

because these process-based models are ultimately more robust across both space

and time. This robustness will also help us understand fundamental differences in

the biology, physics and chemistry from ecosystem to ecosystem. For example if

a process based model that is well-suited to boreal forests is applied to a tropical

ecosystem and fails, then it will be relatively easier to pull apart the model processes

and see which assumptions are being violated. This move towards process based
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models will also need a better understanding of the soil physics. In this thesis I have

unfortunately only scratched the surface of the complex physical processes that occur

in the soil system. If this research were continued, the first new topics I would like to

address are: 1) Including the effects of soil moisture in the models presented in this

thesis; 2) Implementing algorithms for model optimization and testing the improved

model against field data from various regions, and; 3) Continuing to work on the

understanding and application of isotopic methods as these are likely to lead to an

increased ability to optimize soil respiration models.
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Appendix C

Interpreting Diel Hysteresis Between Soil Respiration and

Temperature

This supporting information provides an expanded explanation of the impacts of diel

temperature range and Q10 on phase lags between surface flux and soil temperature.

As the diel air temperature variation (A0) was increased in the model, shallow

soil depths experienced bigger variations in temperature than deep soil layers, since

temperature oscillations damped with depth. Furthermore, high temperatures had

a greater effect on CO2 production than low temperatures, due to the exponential

relationship between CO2 production and temperature. The combination of higher

temperature maxima at shallow depths and greater sensitivity of production to high

temperatures resulted in shallow depths contributing proportionately more CO2 to

surface flux than deep soil layers as A0 was increased in the model. As a consequence,

it was also observed that peak surface flux shifted closer to peak temperatures

measured at soil depths of 5cm and less. While lags between surface flux and shallow

soil temperatures decreased with larger values of A0, lags between peak surface flux

and deeper soil temperatures (10cm and deeper) increased, because deeper soil layers
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contributed proportionately less CO2 to surface flux (Figure C.1). In contrast, lag

times between daily minimum surface flux and minimum soil temperature tended to

exhibit the reverse trend. Shallow soil layers experienced more extreme minimum

values with increasing values of A0, and contributed proportionately less CO2 to

surface flux than deeper soil layers at temperature minimums.

Based on these observations, one might also expect that increasing the sensitivity

of CO2 production to temperature would have similar effects as increasing A0:

decreasing the lag between peak surface flux and near-surface temperatures (5 cm and

less), and increasing the lag between peak surface flux and deeper soil temperatures

(10 cm and greater). THe simulations supported this prediction in part (Figure C.2);

however, changing Q10 did not produce a monotonic change in lag time. The lag

between surface flux and 10 cm soil temperature initially decreased between Q10 values

1-1.4, before increasing slightly between Q10 values 1.4-3. For Q10 values close to 1

(production has little temperature sensitivity), surface flux exhibited a small amount

of temperature sensitivity due to temperature dependence of the DCO2 parameter.

At fairly low Q10 values, however, these small changes in DCO2 were obscured by

temperature-dependent changes in production.
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Figure C.1: Effect of A0 on lag times between surface flux and temperature at the
soil surface, and at 10cm and 20cm depth. Circles show lag times between the daily
maxima of surface flux and temperature. Triangles show lag times between the daily
minima of surface flux and temperature. Negative lag times (between surface flux and
air temperature) indicate a peak in temperature prior to a surface flux, and positive
lag times (for 10 and 20 cm temperature measurement depths) indicate a peak in
temperature after surface flux.
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Figure C.2: Time series for surface flux at several Q10 values, in comparison to air and
soil temperatures. Air temperature (black), 10 cm soil temperature (dashed black),
and surface CO2 flux for various Q10 values (grey lines). Q10 values from dark to light
grey: 1, 1.2,1.4, 2, 2.4.



Appendix D

Expanded Definitions of Commonly Used Concepts

D.1 Q10 Temperature Sensitivity

The parameter Q10 is a multiplier used to describe the increase in a reaction rate (e.g.

the increase in soil respiration) given a 10K change in temperature. For example if

a biological respiration system has a Q10 equal to 2, the rate of respiration will

double for every 10K rise in temperature. The functional form for the Q10 equation

and its variants can be found in Table 8.1. The concept of Q10 comes from chemical

thermodynamics and is functionally equivalent to the Arrhenius equation (Arrhenius,

1889).

D.2 Keeling Plot, Keeling Intercept

The Keeling Plot and Keeling Intercept are C-isotope specific forms of a generalized

two end-member mixing model introduced by C.D. Keeling (Keeling, 1958). The

approach assumes there are two sources of CO2 that are mixing in the environment

in question. The background, usually atmospheric CO2, mixes with the second source,
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typically respiratory:

CM = CB + CS (D.1)

where CM is the total concentration of the mixture, CB is the concentration of the

background source and CS is the concentration of the second source in the mixture.

As this concentration mixing occurs, the isotopic composition of the mixture is

described as:

δMCM = δBCB + δSCS (D.2)

where δM is the isotopic signature of the mix, δB is the isotopic signature of the

background and δS is the isotopic signature of the source. The equations are

combined to estimate δS, the source isotopic signature, based on prior knowledge

of the background and measurements of the mixture between source and background:

δM = CB(δB − δS)(1/CM) + δS (D.3)

Based on Equation D3, we can see now that linear regression of δM (y-axis) against

1/CM (x-axis) will yield δS (the y-intercept of the linear regression). This y-intercept

is referred to as the Keeling Intercept or Keeling Plot Intercept. The graph which

shows the linear fit between δM and 1/CM is referred to as the Keeling Plot.
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E.1 Forced Diffusion Soil Flux: A New Technique for Continuous
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E.2 Iso-FD: A Novel Method for Measuring the Isotopic Signature of

Soil Flux
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