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Abstract

A graph property P is defined to be any subset of G , the class of all finite graphs,

such that P is closed under isomorphism and {K0, K1} ⊆ P. We define a new

polynomial which is a generating function for the number of P-subgraphs of a graph

G of size i. We call this polynomial the P-generating polynomial of a graph G and it

is defined by νP(G, x) =
n∑

i=0

βix
i where βi is the number of induced subgraphs of G of

order i with property P. We provide some results about computing νP(G◦H, x) for

various graph operations ◦ and properties P. For general properties P we consider

the problem of determining the nature and location of the roots of νP(G, x). We

show that for a graph G there are many fractals that arise from studying the roots of

P-generating polynomials of certain supergraphs of G and properties P that behave

similarly under substitution. These fractals are studied and shown to be the Julia set

of νP(G, x)− 1. We conclude with a few open problems and possible future research

directions.
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Chapter 1

Introduction

1.1 Background

For us, all graphs G are finite and simple. We will let V (G) and E(G) denote the

set of vertices and the set of edges respectively. For vertices u, v ∈ V (G) we say

u is adjacent to v and write u ∼G v or v ∼G u if they are joined by an edge, i.e.

uv ∈ E(G). We write u �G v if there is no edge between u and v. For all u ∈ V (G),

NG(u) = {v : u ∼G v} is the open neighbourhood of u and NG[u] = NG(u) ∪ {u}
is the closed neighbourhood of u. Also for u ∈ V (G), degG(u) = |N(u)| is the

degree of u, δ(G) = min{degG(u) : u ∈ V (G)} and Δ(G) = max{degG(u) : u ∈
V (G)}. If it is clear from context that the graph we are referring to is G then we

drop the subscript “G” in the above notations. If deg(u) = k for all u ∈ V (G) we

say that G is k-regular.

We say that a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A graph H is an induced subgraph of G if H is a subgraph of G and {u, v} ⊆ V (H)

and uv ∈ E(G) implies uv ∈ E(H). We write H �G for H an induced subgraph of

G. The clique number of a graph G is the size of the largest complete subgraph

of G, denoted ω(G). An independent set of a graph G is a subset S of V (G) such

that the graph induced on S has no edges. The independence number of a graph

G, denoted α(G) is the size of the largest independent set of G. We will exclusively

work with induced subgraphs in this work and so when we say subgraph from this

point forward we mean induced subgraph. Given graphs G and H, the disjoint

union of G and H, denoted G ∪ H, is the graph on vertex set V (G) ∪ V (H) and

1
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edge set E(G) ∪ E(H). The graph join of G and H, denoted G +H, is the graph

on vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{uv : u ∈ V (G), v ∈ V (H)}.
We let K0 denote the empty graph, the graph such that V (K0) = ∅. Any notation

and other relevant background on basic graph theory can be found in West’s book [43].

Graph properties will play a central role in this thesis so we take the time to develop

the necessary background. Let G denote the class of all finite graphs. A property

P is a subset of G , closed under isomorphism, that contains the empty graph K0

and the singleton K1. A property P is a nontrivial property if P 
= G . A graph

is said to be a P-graph if G has property P and we write G ∈ P. If H � G and

H ∈ P, then H is called a P-subgraph of G. The complement of a property

P is the set P = {G : G ∈ P}. It is very important to note that P does not

correspond to the class G \ P as might be expected, indeed the latter is not even a

property as it does not contain K0 and K1.

If G ∈ P implies H ∈ P for all H�G, then P is called a hereditary property.

An example of a property that is not hereditary is {G : δ(G) = Δ(G)}, i.e. regularity.
We will exclusively work with hereditary properties in this thesis and so property and

hereditary property are sometimes used interchangeably. For a fixed graph G of order

at least 2, we define the set −G to be the set of all graphs which do not contain an

induced copy of G, i.e. −G = {H ∈ G : G � H}. Properties of the form −G are

called elementary and are easily seen to be hereditary. Graphs with property −G

are said to be G-free. We often describe properties as a finite or infinite intersection

of elementary properties, for example, the hereditary property of bipartiteness can

be described by
⋂
k≥1

−C2k+1. In fact, all hereditary properties P may be described

as
⋂
G �∈P

−G and uniquely so if the G’s are minimal in the partial order � (these give

a unique list of forbidden induced subgraphs for P). It is for this reason that in this
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thesis, with respect to the partial order �, the graphs used to describe intersections of

elementary properties will always be assumed to be minimal and hence incomparable

with respect to �. For example,
⋂
j≥2

−Kj would never be written since K2 �Ki for

all i ≥ 2, this would be simply described as −K2. This is mainly a technical detail

but will be of some consequence later and ensures that forbidden subgraph properties

are uniquely written. Finally, we say that a property
⋂
i∈I

−Gi is connected if Gi is

connected for each i.

1.2 Graph Polynomials

A variety of polynomials have arisen from the study of colourings in the literature.

The study can be traced back to 1912 when Birkhoff first defined, for planar graphs,

the chromatic polynomial [7] in an attempt to prove the Four Colour Conjecture.

Of course, he was unsuccessful but his work paved the way for studying graphs by

means of polynomials. There have been many graph polynomials that have arisen

since then with some of the most widely studied being the chromatic, independence,

matching, and matching-generating polynomials [7,25,27,31]. There are various other

polynomials that are related to chromatic theory that are not as widely studied, for

example the polynomials studied by Brenti [9]. The independence and matching-

generating polynomials are generating polynomials for the number of independent

sets and number of matchings of a graph, respectively, and it is from the former that

we draw our inspiration for the polynomial defined in the next section and studied for

the remainder of this thesis. We define the independence polynomial of a graph now,

as we will often look at generalizing results proved for the independence polynomial.

Definition 1.2.1 The independence polynomial of a graph G, I(G, x) is defined

as follows:
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I(G, x) =

|V (G)|∑
i=0

six
i,

where si is the number of independent sets of G of size i.

Results that have been of interest for the independence polynomial of a graph

include computing I(G, x) for large families of graphs, computing I(G ◦H, x) where

◦ is a graph operation such as union, join, Cartesian product, etc., finding recur-

rences, and locating the roots [12, 14–17, 21–25, 29–31, 39, 40]. The reader is di-

rected to Levit’s [31] survey on independence polynomials which provides an ex-

cellent introduction to the theory of independence polynomials despite being slightly

dated. In fact, finding the roots of the independence polynomial of a graph and

other graph polynomials has been of considerable interest over the past few decades

with the following references containing results on locating roots of graph polyno-

mials [9–12, 14–17, 27, 28, 31], just to name a few. It may appear, at least initially,

that the roots of a graph polynomial do not contain important information about the

graph but they do, and indeed the roots are of interest and certain families of graphs

can yield interesting graph theoretic results. For example, the roots of the character-

istic polynomial of a graph are the eigenvalues of its adjacency matrix, which contain

lots of information about the graph [6]. We will not be studying characteristic poly-

nomials in this work, but mention the roots as it motivates drawing the connection

between the roots of other graph polynomial roots and the graph itself.

Now that we have briefly considered what directions have been explored when

studying graph polynomials, we are ready to define a new polynomial and study it

in a similar fashion to those previously defined.
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1.3 P -Generating Polynomial Definition and Examples

We look at the problem of counting the number of subgraphs of a given graph G with

a certain graph property P. The following definition will be the central focus of the

rest of the thesis.

Definition 1.3.1 The P-generating polynomial of a graph G, denoted, νP(G, x),

is defined as:

νP(G, x) =
n∑

i=0

αix
i

where n = |V (G)| and αi is the number of induced P-subgraphs of G on i vertices.

Every graph has exactly one P-subgraph of size 0, namely the empty graphK0 and

hence the P-generating polynomial always has constant term 1. When P = −K2,

νP(G, x) is simply the independence polynomial of G; thus νP(G, x) generalizes the

independence polynomial. If P is a hereditary property and G has property P,

then by the definition of a hereditary property every induced subgraph of G is also a

P-graph and thus

νP(G, x) =
n∑

i=0

(
n

i

)
xi = (1 + x)n.

In fact the coefficient of xk in νP(G, x) is bounded above by
(
n
k

)
and below by 0.

We list a few examples with a brief justification for each to give the reader a feel for

these polynomials.
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ν−P4(P7, x) = x6 + 12x5 + 31x4 + 35x3 + 21x2 + 7x+ 1 (1.1)

ν−C5(P4, x) = (1 + x)4 (1.2)

ν−P4(P4 ∪ P4, x) = 16x6 + 48x5 + 68x4 + 56x3 + 28x2 + 8x+ 1 (1.3)

ν−G(G, x) = (1 + x)n − xn (1.4)

(1.5)

Refer to Figure 1.1 as we justify (1.1). The coefficient of xi for i ≤ 3 is simply
(
7
i

)
as no graph on fewer than 4 vertices may contain P4. To calculate the coefficient of

x4 we will count the number of induced P4’s in P7 and subtract that number from
(
7
4

)
.

The P4’s of P7 are exactly the graphs induced on the vertex sets {i, i+1, i+2, i+3}
for i = 1, 2, 3, 4 and so there are

(
7
4

) − 4 = 21 subgraphs of P7 with property −P4.

To calculate the coefficient of x5 we again count the subgraphs of P7 are not −P4-

graphs and subtract the total from
(
7
5

)
. We know that there are exactly 4 distinct

P4’s within P7, and for each P4 there are exactly 3 subgraphs of order 5 containing it.

The subgraphs of order 5 isomorphic to P4 ∪K1 are all distinct but the 3 subgraphs

isomorphic to P5 are all counted twice which leaves 4 · 3− 3 = 9 subgraphs of P7 that

contain a copy of P4. Therefore the coefficient of x5 in (1.1) is
(
7
5

) − 9 = 12. The

coefficient of x6 is 1 since any subgraph of P7 other than {1, 2, 3, 5, 6, 7} must have

at least 4 consecutive vertex labels and therefore a copy of P4. The coefficient of x7

is zero since P7 is not a −P4-graph.

Figure 1.1: P7
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The justification for (1.2) was mentioned in general above since P4 ∈ −C5. In fact,

for any property −G where |V (G)| = n, and for all graphs H such that |V (H)| < n,

ν−G(H, x) = (1 + x)|V (H)|.

The calculation of (1.3) is more involved and we will do it now with combinatorics

but it can be done in an easier way with results that we present later. The coefficient

of xi is calculated by counting the number of ways to choose m ≤ 3 from one of

the components and l ≤ 3 from the other for all (l,m) such that l + m = 4. The

coefficient of x4 is
(
4
2

)2
+ 2

(
4
3

)(
4
1

)
= 68, of x5 is 2

(
4
3

)(
4
2

)
= 48, and of x6 is

(
4
3

)2
= 16.

Any subgraph of P4 ∪ P4 on at least 7 vertices must contain one of the copies of P4

leaving the remaining coefficients 0.

The calculation of (1.4) simply follows from the fact that the only subgraph of G

that contains a copy of G is, of course, G itself. This specific example will be useful

for our work on locating the roots of P-generating polynomials.

For more examples, Appendix A contains νP(G, x) for P = −K3 and P = −P3

for all connected graphs with |V (G)| ≤ 5.

We feel that the study of P-generating polynomials is important to the field of

graph theory, in particular to the study of graphical enumeration and comparing

graphs. Harary and Palmer [26] wrote an entire book on enumerating certain graphs

which has always been an intriguing question, as graph theory and combinatorics are

so tightly intertwined. With a better understanding of P-generating polynomials

we will be able to better understand the structure of many graphs by means of their

P-subgraphs. For example, we may compare two large networks by the ratio of −P4-

subgraphs or each size to the order of each network. The problem of comparing very

large graphs has become increasingly important as modelling large real life or online

networks has become very important [34]. Better understanding of P-generating

polynomials for different properties P will give a better idea of the substructures
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contained within very large networks and can be used to compute densities that can

be compared with the observed network.

We conclude this introductory section with the following straightforward but useful

result:

Observation 1.3.2 νP(G, x) = νP(G, x).

Proof. By the definition of the complement of a property, H is a P-subgraph of G

if and only if H is a P-subgraph of G and so for n ∈ N the number of P-subgraphs

of G of order n is equal to the number of P-subgraphs of G of order n. �



Chapter 2

P-Generating Polynomials of Products

When computing any graph polynomials of product graphs it is of interest to find the

relationships with the graph polynomials of the smaller factor graphs. For example,

ν−K2(G1 ∪G2, x) = ν−K2(G1, x) · ν−K2(G2, x)

and

ν−K2(G1 +G2, x) = ν−K2(G1, x) + ν−K2(G2, x)− 1

for vertex disjoint graphs G1 and G2 (see [31], for example). We will look at gener-

alizing these two results to further properties in this section as well as generalizing

a very interesting result about graph substitution and the independence polynomial

due to Brown et al. [14].

We begin considering the disjoint union and graph join of graphs as they are the

most elementary products.

2.1 Graph Join and Disjoint Union

We begin with an example. An easy calculation verifies that

ν−K2
(K2 ∪K2, x) = 1 + 4x+ 2x2,

9
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but

ν−K2
(K2, x) = (1 + x)2

so

ν−K2
(K2 ∪K2, x) 
= ν−K2

(K2, x) · ν−K2
(K2, x).

The next proposition answers the question: For which properties does the multipli-

cation rule hold for all graphs with respect to disjoint union?

Proposition 2.1.1 P is a connected hereditary property if and only if for all graphs

G and H, νP(G ∪H, x) = νP(G, x) · νP(H, x).

Proof. Suppose P is a connected hereditary property. Let H ′ be any P-subgraph

of H and G′ be any P-subgraph of G. Since P is a connected hereditary property it

follows that H ′∪G′ is also a P-subgraph of G∪H. Also, for any P-subgraph, F , of

G∪H, H ∩F is a P-graph and G∩F is a P-graph since P is hereditary. Therefore

all P-subgraphs of G∪H are of the form G′∪H ′ where G′ and H ′ are P-subgraphs

of G and H respectively. Therefore, the generating function, νP(G ∪ H), for the

number of P-subgraph of G ∪H is given by the product of the generating function

for G with the generating function for H. I.e: νP(G ∪H, x) = νP(G, x) · νP (H, x).

Conversely, suppose P is not connected. Since P is hereditary, we express P

as
n⋂

i=1

−Fi and since P is not connected by assumption there exists a Fi that is

disconnected. Let F ′i and F ′′i be a partition of Fi such that there are no edges

between vertices in F ′i and F ′′i . Note that since Fm � Fn for n 
= m, (as all graphs

in property expressions are assumed to be minimal), both F ′i and F ′′i are in P, so
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νP(F ′i , x) = (1 + x)|V (F ′
i )| and νP(F ′′i , x) = (1 + x)|V (F ′′

i )|. Now,

νP(F ′i ∪ F ′′i , x) = νP(Fi, x)


= (1 + x)|V (Fi)|

= (1 + x)|V (F ′
i )|+|V (F ′′

i )|

= νP(F ′i , x) · νP(F ′′i , x)

�

Corollary 2.1.2 P is a hereditary property such that P is connected if and only if

for all graphs G and H, νP(G+H, x) = νP(G, x) · νP(H, x).

Proof. We know that G+H = G ∪H, and from Proposition 2.1.1 that

νP(G+H, x) = νP(G ∪H, x) = νP(G, x) · νP(H, x).

The rest of the proof follows from Observation 1.3.2.

�

We see that Proposition 2.1.1 generalizes the result mentioned at the beginning

of this section for the independence polynomial of a graph to all P-generating poly-

nomials for which P is a connected hereditary property. Corollary 2.1.2 gives us a

result for properties P that are closed under the join operation, but there are other

properties that are not closed with respect to the join operation that we wish to have

results for. One class of properties of particular interest that Corollary 2.1.2 excludes
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is the properties −Kn for n ≥ 3. Although the simple result from Corollary 2.1.2

does not hold, we do have the following result:

Proposition 2.1.3 If G and H are graphs, then

ν−Kl
(G+H, x) = ν−Kl

(G, x) + ν−Kl
(H, x)− 1 +

l−2∑
i=1

(
(ν−Kl−i

(G, x)− 1)(ν−Ki+1
(H, x)− ν−Ki

(H, x))
)

(It should be noted that we abuse notation here allowing ν−K1 to be defined although

all properties must contain K1. This is simply for convenience here and ν−K1(G, x) =

1 for all graphs G, which is what would be expected if −K1 was indeed a property.)

Proof. The first three factors on the right hand side give the number of ways

we may select a −Kl-subgraph with vertices from exactly one of G and H, sub-

tracting 1 to account for counting the empty graph twice. What is left to count

is the number of −Kl-subgraphs of G with vertices from both G and H. Since

ω(G+H) = ω(G)+ω(H), for any −Kl-subgraph, G
′+H ′, of G+H where V (G′) is a

non-empty subset of V (G) and V (H ′) is a non-empty subset of V (H), it must be the

case that ω(G′) + ω(H ′) ≤ l − 1. So we must count all non-empty −Kl−i-subgraphs

of G and all non-empty subgraphs of H with clique number exactly i for i ≥ 1. Now,

the generating function for all non-empty −Kl−i-subgraphs of G is ν−Kl−i
(G, x) − 1

and the generating function for all non-empty subgraphs of H with clique number

exactly i is ν−Ki+1
(H, x)−ν−Ki

(H, x). Summing over the possible combinations gives

the desired result.

�

To illustrate, we will now use Proposition 2.1.3 to calculate the −K4-generating

polynomial of C4 + P3:
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ν−K4(C4 + P3, x) = ν−K4(C4, x) + ν−K4(P3, x)− 1+

2∑
i=1

(
(ν−K4−i

(C4, x)− 1)(ν−Ki+1
(P3, x)− ν−Ki

(P3, x))
)

= (1 + x)4 + (1 + x)3 − 1 + (ν−K3(C4, x)− 1)(ν−K2(P3, x)− 1)+

(ν−K2(C4, x)− 1)(ν−K3(P3, x)− ν−K2(P3, x))

= x4 + 5x3 + 9x2 + 7x+ 1 + ((1 + x)4 − 1)(x2 + 3x)+

(2x2 + 4x)((1 + x)3 − (x2 + 3x+ 1))

= x6 + 9x5 + 27x4 + 35x3 + 21x2 + 7x+ 1.

Proposition 2.1.4 νP(G1 + G2, x) = νP(G1, x) + νP(G2, x) − 1 for all graphs G1

and G2 if and only if P ⊆ −K2.

Proof. Suppose νP(G1 +G2, x) = νP(G1, x) + νP(G2, x)− 1 for all graphs G1 and

G2. Therefore,

νP(K2, x) = νP(K1 +K1, x)

= νP(K1, x) + νP(K1, x)− 1

= 1 + x+ 1 + x− 1

= 1 + 2x.

Therefore, K2 
∈ P so P ⊆ −K2.
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Conversely, suppose that −K2 ⊆ P. Therefore, P = −K2 ∩ −Kn for some

n ≥ 2. Now, no subgraph of G1 + G2 which contains vertices from both G1 and

G2 will be a P-graph as it will contain a K2. Therefore, the only P-subgraphs

of G1 + G2 are the P-subgraphs of G1 and the P-subgraphs of G2, which gives

νP(G1 +G2, x) = νP(G1, x) + νP(G2, x)− 1.

�

2.2 Substitution

We now look at a more involved product known as the lexicographic product or

graph substitution. Given graphs G and H such that V (G) = {v1, v2, ..., vn} and

V (H) = {u1, u2, ..., uk}, the lexicographic product which we will denoted G[H] is

defined as follows: V (G[H]) = V (G) × V (H) and (vi, ul) ∼ (vj, um) if vi ∼G vj or

i = j and ul ∼H um. The lexicographic product G[H] can be thought of as substitut-

ing all vertices of G with copies of H and joining the copies of H where edges where

present in G. This intuitive way of understanding the product is why it is usually

referred to as graph substitution. It should also be noted that the lexicographic prod-

uct is also referred to as the composition of graphs by some authors and therefore

denoted G ◦ H. It is easily seen that graph substitution is associative and so we

may write Gk for a k-fold substitution of G with itself. Substitution is not however

commutative, consider G = K2[Kn] and H = Kn[K2]. Noting that K2[F ] = F + F

for all graphs F , we see that G is the graph Kn,n which is connected, but H is n

disjoint K2’s which is disconnected and therefore the two graphs are not isomorphic.

There is also the notation of a generalized graph substitution where for each vertex vi

(i = 1, ..., n) of a graph G we substitute a graph Hi. The distinction here is that the

Hi’s are not necessarily isomorphic. We write this as G[H1, H2, ..., Hn]. To simplify
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this notation when we wish to only substitute a graph H for a single vertex v of G,

we write G[v → H]. Refer to Figure 2.1 for an example of graph substitution.

Figure 2.1: P3[P3]

We can now state the theorem by Brown et al. [14] that serves as motivation for

a large portion of this section.

Theorem 2.2.1 [14] For disjoint graphs G and H,

ν−K2(G[H], x) = ν−K2(G, ν−K2(H, x)− 1).

This theorem gives a recurrence for ν−K2 that is of particular interest not only

when computing ν−K2(G[H], x), as it simplifies the problem, but when determining

the nature and location of the roots of ν−K2(G[H], x). We will talk about the roots

of νP(G, x) in Chapter 3 for various hereditary properties P and one of the most

interesting topics will be the nature of the roots of the P-generating polynomial of
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the k-fold substitution of G with itself.

We now turn our attention to certain properties that behave similarly under the

substitution operation, i.e. we are looking for certain properties that will generalize

Theorem 2.2.1. For general hereditary properties −G, Theorem 2.2.1 does not gen-

eralize, as the following example illustrates.

Let P be the elementary hereditary property −K3 and we compute νP(K2[K2], x)

by Proposition 2.1.3 since K2[K2] = K2 +K2 = K4.

ν−K3(K2[K2], x) = ν−K3(K2, x) + ν−K3(K2, x)− 1 + (ν−K2(K2, x)− 1)(ν−K2(K2, x)− 1)
)

= (1 + x)2 + (1 + x)2 − 1 + (1 + 2x− 1)(1 + 2x− 1)

= 1 + 4x+ 6x2

However, ν−K3(K2, νK3(K2, x) − 1) = (1 + x)4 which overcounts significantly.

Therefore Theorem 2.2.1 does not generalize for P = −K3. The reason is that

−K3 is not closed under substitution, K2 has property −K3 but K2[K2] does not.

So in generalizing Theorem 2.2.1, we will need to know which properties are closed

under substitution. We formalize this with the following definition:

Definition 2.2.2 For a hereditary property P we say that P is closed under sub-

stitution if the graph A[B1, B2, ..., B|A|] has property P whenever A,B1, B2, ..., B|A|

are P-graphs.

Definition 2.2.2 also leads to the following Observation and Corollary:



17

Observation 2.2.3 If P is a hereditary property, then every nonempty P-subgraph

of G[H] may be expressed in the form A[B1, ..., B|G|] where A is a nonempty P-

subgraph of G and the B′is are all nonempty P-subgraphs of H.

Proof. Suppose F 
= K0, F ∈ P, and F�G[H]. We know that F = G′[H ′
1, ..., H

′
|G′|]

for some nonempty G′ � G and nonempty H ′
i � H, i = 1, 2, ..., |G′|. Now, G′ � F

since H ′
is are nonempty, and since P is hereditary, G′ ∈ P. Also, H ′

i � F for

i = 1, 2, ..., |G′| since G′ is nonempty, so H ′
i ∈ P for each i since P is hereditary. �

Note that the hypothesis for Observation 2.2.3 does not require P to be closed

under substitution. Note also that we exclude the empty graph from Observation

2.2.3 because the empty graph may be expressed as A[K0] and K0[B], where neither

A nor B have to be P-graphs. Therefore, the extreme case is where all P-graphs

retain property P when subject to substitution with other P graphs.

Corollary 2.2.4 Let P be closed under substitution and G and H be any nonempty

graphs. If F is any nonempty induced subgraph of G[H], then F ∈ P if and only if

F may be expressed as A[B1, B2, ..., B|A|] where A is a nonempty induced P-subgraph

of G and the Bi’s are all nonempty induced P-subgraphs of H.

Properties P that are closed under substitution lead to nice results for P-

generating polynomials, but checking for closure under substitution of a given prop-

erty using only the definition is difficult. The following definition and lemma will

allow us to use results from the literature to determine whether a finite property P

is closed under substitution in polynomial time.

Definition 2.2.5 [42] For a graph G we say that a set S is a module if S ⊂ V (G),

|S| ≥ 2, and for all u, v ∈ S, N(u) \ S = N(v) \ S.
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We say a graph is module-free if it does not contain a module. An example of a

module is any independent set with at least two vertices in the graph Kn,n for n ≥ 2.

Lemma 2.2.6 P =
⋂
i∈I

−Gi, I ⊆ N is closed under substitution if and only if each

Gi is module-free for i ∈ I

Proof. Suppose P =
⋂
i∈I

−Gi and suppose for some i, Gi contains a module. Let

G be this graph containing a module S, and let H be the graph induced by S. Now,

H � G since S 
= V (G), so H ∈ P since the Gi’s are minimal by definition, (any

induced proper subgraph of G has property P). Now, the induced proper subgraph

of G constructed by replacing H with a single vertex v must be a P-subgraph of G.

But now, since P is closed under substitution, it follows that G = G′[v → H] ∈ P

which is a contradiction.

Conversely, suppose that the G′is are module-free but P is not closed under substi-

tution. So there exist graphs H,S1, S2, ..., S|H| ∈ P such that H[S1, S2, ..., S|H|] 
∈ P.

Thus there exists a Gi such that Gi
∼= H[S ′1, ..., S

′
|H|] where S

′
j � Sj (possibly empty)

for j = 1, 2, ..., |H|. If |S ′j| ≤ 1 for j = 1, 2, ..., |H|, then H[S ′1, ..., S
′
|H|] � H and

therefore has property P which is a contradiction. So for some j, |S ′j| ≥ 2. But now

S ′j is a module of Gi which contradicts our assumption.

�

By Lemma 2.2.6, to check that P =
⋂
i∈I

−Gi is closed under substitution, we only

need to check that Gi is module-free for each i so P is closed under substitution if

and only if each −Gi is. Tedder, Habbib, and Paul [42] present a linear (in |V (Gi)|)
time algorithm that determines whether each Gi is module-free. Some examples of

properties that are closed under substitution (with proofs to follow) are −Cn for
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n ≥ 5, −Pn for n = 2 and n ≥ 4, their complements, and intersections with each

other.

We are now ready to prove the major theorem of this section, the generalization

of Theorem 2.2.1.

Theorem 2.2.7 P is closed under substitution if and only if

νP(G[H], x) = νP(G, νP(H, x)− 1)

for all graphs G and H.

Proof. Suppose P is closed under substitution. By Corollary 2.2.4, the nonempty

induced subgraphs of G[H] of size l are all obtained by taking a nonempty subgraph

of G, G′, with property P and substituting for each vertex vi of G′ a nonempty

subgraph of H, H ′
i, with property P such that

∑|G′|
i=1 |H ′

i| = l. Therefore the number

of P-subgraphs of G[H] of size l is given by the coefficient of xl in

|G|∑
k=0

gk

( |H|∑
j=1

hjxj

)
(2.1)

where gk is the number of P-subgraphs of G of size k and hj is the number of

P-subgraphs of H of size j. But (2.1) is equal to νP(G, νP(H, x)− 1) by definition.

Conversely, Observation 2.2.3 implies that for any positive integer l, the number of

P-subgraphs of G[H] of order l is bounded above by the number of ways to make a

subgraph of order l using graph substitution of P-subgraphs of G and P-subgraphs

of H. But this number is the coefficient of xl in νP(G, νP(H, x)−1) which is equal to

νP(G[H], x) by assumption. Therefore, G′[H1, H2, ..., H|V (G)|] is a P-graph whenever
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G′ is a P-subgraph of G and each Hi is a P-subgraph of H. Thus, P is closed

under substitution. �

Theorem 2.2.7 is of interest in its own right, but has applications to finding the

roots of νP(G[H], x) that are very elegant and will be discussed in detail in Chapter 3.

Before moving to the roots, we will look further at module-free graphs. The following

observation will be useful and follows directly from the definition of a module and

the graph complement.

Observation 2.2.8 G is module-free if and only if G is module-free.

Lemma 2.2.9 If G or G is a disconnected graph and |V (G)| ≥ 3, then G contains

a module.

Proof. By Observation 2.2.8, we suppose without loss of generality that G is a

disconnected graph on at least 3 vertices with connected components G1, G2, ..., Gm

m ≥ 2. If |V (Gi)| ≥ 2 for some i ∈ {1, 2, ...,m}, then for all u, v ∈ V (Gi), N(u) \
V (Gi) = N(u) \ V (Gi) = ∅. Therefore Gi is a module of G. If |V (Gi)| = 1 for

i = 1, 2, ...,m, then m ≥ 3 and S = V (G1) ∪ V (G2) is a module of G. �

Lemma 2.2.10 The properties −Cn and −Cn are closed under substitution for n ≥
5.

Proof. Suppose n ≥ 5 and let V (Cn) = {v0, v1, ..., vn−1} such that E(Cn) = {vivj :
i = j ± 1 (mod n)}. Suppose that there exists a set S ⊂ V (Cn) such that S is a

module. Since Cn is connected and S ⊂ V (Cn), there must be a vertex u 
∈ S, such

that u is adjacent to a vertex in S. Without loss of generality, suppose that u = v0

and v1 ∈ S. Since S is a module it must contain at least one more vertex, and since

v0 ∈ N(v1) \ S, it follows that S also contains the vertex vn−1. Now, if v2 
∈ S,
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then (N(vn−1) \ S) 
= (N(v1) \ S) since vn−1 � v2 as n ≥ 5 and if v2 ∈ S, then

(N(v2) \ S) 
= (N(v1) \ S), which both contradict S being a module. Therefore Cn

is module-free and so by Lemma 2.2.6 −Cn is closed under substitution for n ≥ 5.

Finally, by Observation 2.2.8, −Cn is closed under substitution for n ≥ 5.

�

A similar argument to Lemma 2.2.10 shows the following observation:

Observation 2.2.11 The properties −Pn and −Pn are closed under substitution for

n ≥ 4.

We say that a graph is chordal if it contains no induced cycles of length 4 or

greater, in our notation,
⋂
n≥4

−Cn. Chordal graphs are of significant interest for many

problems like colouring and many graph algorithms can be made more efficient when

the input is reduced to chordal graphs [35, 37]. The chordal property is not closed

under substitution since −C4 is not closed under substitution but a very similar

property is, namely, forbidding all cycles on 5 or greater vertices. This class of

graphs properly contains chordal graphs as well as the hereditary property perfection

which has been the subject of much interest for graph theorists.

A perfect graph is defined as a graph for which every induced subgraph has chro-

matic number equal to its clique number. In 1960, Berge conjectured that a graph

is perfect if and only if its complement is perfect and that a graph is perfect if and

only if it does not contain C2n+1 or C2n+1 as an induced subgraph, the former known

as the weak perfect graph conjecture and the latter known as the strong perfect

graph conjecture [41]. The weak perfect graph conjecture was proved in 1972 by

Lovász [32, 33, 41] but it wasn’t until 2002 that the strong perfect graph conjecture

was proved and even then was not finalized and published until 2006 by Chudnovsky,

Robertson, Seymour, and Thomas [19,41].
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Corollary 2.2.12 The perfection property, P =
⋂
n≥2

(−C2n+1 ∩ −C2n+1

)
is closed

under substitution.

Proof. This Corollary follows directly from Lemma 2.2.10, Observation 2.2.8, and

Lemma 2.2.6. �



Chapter 3

Roots of P-Generating Polynomials

The problem of finding roots of graph polynomials has attracted considerable atten-

tion. In this chapter, we look at different methods for finding the roots of νP(G, x)

for different graphs G and properties P using some of the techniques from Chapter

2 to simplify the problem. In fact, some of the most interesting work of this chapter

and thesis as a whole comes from Theorem 2.2.7 as it relates to finding the roots of

graphs under substitution with themselves many times over. This process will lead

to a fractal-like object and provides an elegant relation between the k-fold substi-

tution of a graph with itself as k gets very large and the roots of its P-generating

polynomials for all properties P that are closed under substitution.

Figure 3.1: Roots of ν−K3(G, x) for all G such that |V (G)| = 7

We start this chapter with an example of locating the roots of P-generating

polynomials to give a feel of the problem and how limiting processes arise. Consider

23
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the graph G = Kn1,n2,...,nk
k ≥ 3. Any subgraph of Kn1,n2,...,nk

that contains vertices

from more than 2 of the partite sets will contain a triangle. So

ν−K3(Kn1,n2,...,nk
, x) = 1 +

k∑
i=1

(ν−K3(Kni
, x)− 1) +

∑
i<j

(ν−K3(Kni,nj
, x)− 1)

= 1 +
k∑

i=1

((1 + x)ni − 1) +
∑
i<j

(
((1 + x)ni − 1)((1 + x)nj − 1)

)

In general, the roots of ν−K3(Kn1,...,nk
, x) will be difficult to find, but in the case

where n1 = n2 = ... = nk = n the roots are attainable by elementary methods.

Let G be the complete regular k-partite graph (k ≥ 3) Kn,n,...,n. From the formula

above, we obtain:

ν−K3(Kn,n,...,n, x) = 1 + k((1 + x)n − 1) +

(
k

2

)
((1 + x)n)− 1)2 (3.1)

This is a quadratic in ((1 + x)n − 1), so applying the quadratic formula gives the

following expression for the roots:

(1 + x)n =
k − 2

k − 1
± i

√
k2 − 2k

k(k − 1)
.

Now, we find all possible values for x by taking the n-th roots which gives,

x = r
1
n exp

(
i

(
θ + 2lπ

n

))
− 1,
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for l = 0, 1, 2, ...n− 1, where r =
√

1− 2
k
and θ = arctan(

√
1− 2

k

k−2 ). These roots will

be circles of radius r
1
n centred at Re(z) = −1 in the complex plane. Moreover, we

claim that if Roots(n) is the set of limit points of the roots of ν−K3(Kn,n,...,n, x), then

lim
n→∞

Roots(n) = {z ∈ C : |z − 1| = 1}.

To prove this, we will make use of a powerful theorem due to Bereha et al. [5]

which was later extended by Brown and Hickman [13] that will leave us with only

elementary arguments to complete the proof.

Theorem 3.0.13 [5, 13] For a family of functions {fn(x) : n ∈ N} of the form

fn(x) =
∑k

i=1 αi(x)λi(x)
n such that no αi(x) is identically zero and for no pair i 
= j

does λi(x) = ωλi(x) for some ω ∈ C with |ω| = 1, then z ∈ C is a limit of the roots

(z ∈ lim
n→∞

Roots(fn)) if and only if either:

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus)

than the others; or

(ii) for some j , λj(z) has modulus strictly greater than all the other λi(z), and

αj(z) = 0

In order to apply Theorem 3.0.13, we must return to (3.1) and simply the expres-

sion further to obtain:

ν−K3(Kn,n,...,n, x) = 1 + k(1 + x)n − k +

(
k

2

)
((1 + x)2n − 2(1 + x)n + 1) (3.2)

=

(
1 +

(
k

2

)
− k

)
1n +

(
k − 2

(
k

2

))
(1 + x)n +

(
k

2

)(
(1 + x)2

)n
(3.3)

From (3.3), we see that with α1(x) = 1 +
(
k
2

) − k, λ1(x) = 1, α2(x) = k − 2
(
k
2

)
,

λ2(x) = 1+x, α3(x) =
(
k
2

)
, and λ3(x) = (1+x)2, the polynomial is now in the form of
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the polynomial in the hypothesis of Theorem 3.0.13. To satisfy the hypothesis of the

theorem, we must have k ≥ 3 which it is assumed to be and is no loss of information

since for k ≤ 2, the polynomial is simply (1+x)kn which has no mystery surrounding

its roots. Now, since k ≥ 3, we see that

α1(x) = 1 +
k2 − 3k

2

≥ 1 + 0 = 1

α2(x) = k − k2 − k

= −k2

≤ −9

α3(x) =

(
k

2

)

≥ 3.

So no αi(x) is identically zero. Also, there exists no ω ∈ C with |ω| = 1 such

that for i 
= j, λi(x) = ωλj(x), therefore we may apply Theorem 3.0.13. Note that

the αi(x)’s are all constant in our case, and we just showed that none are identically

zero, thus αi(z) 
= 0 for all z ∈ C and i = 1, 2, 3. Therefore (ii) can never be satisfied,

so we focus our efforts to determining when (i) is satisfied. This leads to 4 possible

cases:

Case 1: |1| = |1 + x| > |(1 + x)2|. This is never satisfied as |1| = |1 + x| implies

|(1 + x)2| = |1 + x|2 = 1.

Case 2: |1| = |(1 + x)2| > |1 + x|. By the same argument as Case 1, this can

never be satisfied.
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Case 3: |1 + x| = |(1 + x)2| > 1. Here, if |1 + x| = |(1 + x)2| = |1 + x|2 > 1, then

it follows by dividing |1 + x| from both sides that |1 + x| = 1.

Case 4: |1| = |1 + x| = |(1 + x)2|. This case is satisfied exactly when 1 = |1 + x|.

So by Theorem 3.0.13, lim
n→∞

Roots(n) = {z ∈ C : |z + 1| = 1}, the circle of unit ra-
dius centred at z = −1.

We now look at the specific example of complete tripartite graphs G = Kn,n,n. We

see, from above, that

ν−K3(Kn,n,n, x) = 1 + 3((1 + x)n − 1) + 3((1 + x)n − 1)2.

By the above comments, the roots of ν−K3(Kn,n,n, x) are

x =
( 1√

3

) 1
n
e
±i
(

π
6n

+ 2kπ
n

)
− 1 for k = 0, 1, 2, ..., n− 1.

So for every integer n ≥ 1, the roots of ν−K3(Kn,n,n, x) lie on the circle in the

complex plane

|x+ 1| =
( 1√

3

) 1
n
.

As n → ∞, the radius increases to 1. Below is a plot of the roots of the

ν−K3(Kn,n,n, x) for n = 1, 2, ..., 20 and the limiting circle:
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Figure 3.2: Roots of ν−K3(Kn,n,n, x) for n = 1 to n = 20

3.1 P-generating Polynomials with Only Real Roots

We now look to make more general comments about the roots of P-generating poly-

nomials. If P is a hereditary property and G has property P, then

νP(G, x) =
n∑

i=0

(
n

i

)
xi = (1 + x)n

.

In this case it is obvious that −1 is the only root. For example, the triangle-

free subgraph generating polynomial of the complete bipartite graph, Kn,m is simply

(1 + x)m+n. So for every hereditary property P, there exists a graph G such that

νP(G, x) has only real roots. A natural question that arises from this observation is,

for which hereditary properties P does νP(G, x) have all real roots for all graphs G?

We can completely answer this question.
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Theorem 3.1.1 For a hereditary property P, νP(G, x) has only real roots for all

graphs G if and only if P = G or P = −K2 ∩ −K2.

Proof. For P = −K2 ∩−K2, νP(G, x) = 1 + (|V (G)|) x where G is any graph. In

this case all roots of νP(G, x) are real. Now for P = G , νP(G, x) = (1 + x)|V (G)| for

all graphs G, which has all real roots.

Now suppose P 
= −K2 ∩ −K2 and P 
= G . Let P =
⋂
i∈I

−Gi where I ⊆ N. Let

−Gk ∈ P such that |V (Gk)| is minimum.

Since |V (Gk)| is minimum with respect to P, every proper subgraph of Gk has

property P. Let |V (Gk)| = n and consider νP(Gk, x).

νP(Gk, x) =
n−1∑
i=0

(
n

i

)
xi = (1 + x)n − xn.

Case 1: |V (Gk)| ≥ 3

Now,

(1 + x)n − xn = 0( x

1 + x

)n

= 1

x

1 + x
= ω where ω is an nth-root of unity (ω 
= 1)

ω

1− ω
= x. (∗)

Let a, b ∈ R such that ω = a+ ib. Therefore a2 + b2 = 1. So from (*), we obtain:
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x =
a+ ib

(1− a)− ib

=
a+ ib

(1− a)− ib
· (1− a) + ib

(1− a) + ib

=
a− a2 − b2 + ib(a+ (1− a))

a2 − 2a+ 1 + b2

= −1

2
+

b

2(1− a)
i

So all roots of νP(Gk, x) lie on the line Re(x) = −1
2
in the complex plane. The

roots of νP(Gk, x) are all real if and only if b = 0 for all choices of ω, but for n ≥ 3,

there are choices of ω for which b = Im(ω) 
= 0. We have shown that if |V (Gk)| ≥ 3,

then νP(Gk, x) has a nonreal root.

Case 2: Gk = K2 or Gk = K2 and P 
= −K2 ∩ −K2.

Suppose Gk = K2. If P = −K2, then, P = −K2. Consider the graph K3,3, we

see that νP(K3,3, x) = ν−K2(K3+K3, x) = 2((1+x)3)−1 by Proposition 2.1.4, which

has nonreal roots. And by Observation 1.3.2, νP(K3,3, x) = νP(K3,3, x) which was

just shown to have a non-real root.

Now, if P 
= −K2, then it must be the case that P = −K2 ∩ −Kj, j ∈ N, since

all Gi’s containing an edge will be forbidden by −K2. Since P 
= −K2 ∩ −K2, it

follows that j ≥ 3. But now,

νP(Kj, x) =

j−1∑
i=0

(
j

i

)
xi = (1 + x)j − xj,

which has a non-real root by the argument for Case 1. And similarly, if P 
= −K2,

then P = −K2∩Kj for some j ≥ 3 and we obtain νP(Kj, x) having a non-real root.



31

Case 2 ensures that if Gk = K2 or Gk = K2 and P 
= −K2 ∩−K2, then there exists

a graph such that its P-generating polynomial has a nonreal root.

Since {K0, K1} ⊆ P for all graph properties by definition, we have considered all

hereditary properties and thus the proof is complete.

�

3.2 Background on Iteration Theory

Now that we have answered some general questions about the nature of the roots

of νP(G, x) we will delve deeper into the study of the roots for certain properties.

The properties that we will consider are properties that are closed under substitution

and the graphs that we will consider are k-fold lexicographic products of graphs with

themselves. In doing this we may use Theorem 2.2.7 to describe what happens to the

roots as k gets large. This will involve extensive use of results from iteration theory,

so we give some background on the notation and theory.

We will be working exclusively with polynomials, so we consider the field of com-

plex numbers C together with the usual modulus metric, | · |. While we develop most

of the necessary theory here, any other relevant background can be found in [4, 8].

For us, f will always denote a polynomial with real (integer, in fact) coefficients, but

much of the theory is not limited to polynomials. We let f ◦k denote the map obtained

by the k-fold composition of f with itself, f ◦0 be the identity map, and f ◦(−1) be the

set-valued inverse of f , i.e. f ◦(−1)(z) = {w ∈ C : f(w) = z}, with f ◦(−k) being the

k-fold composition of f ◦(−1) with itself. For a set S ⊆ C, we let f(S) = {f(s) : s ∈ S}
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and f ◦(−1)(S) = {w ∈ C : f(w) ∈ S}.

For a point z0 ∈ C, the forward orbit with respect to a function f is the set,

O+(z0) = {f ◦k(z0)}∞k=0 and the backward orbit is the set O−(z0) =
∞⋃
k=0

f ◦−k(z0).

Much of iteration theory, and almost all of what we will require, arises from studying

the forward and backward orbits of complex numbers. The study of forward orbits

of different points for specific polynomials leads to the following very important sets.

Definition 3.2.1 [4] If f is a polynomial, the filled Julia set, denoted K(f) is

the set of all points in C that have bounded (in modulus) forward orbits. The Julia

set of f , denoted J(f), is the boundary of K(f), i.e. J(f) = ∂K(f). The Fatou

set of f , denoted F (f) is the complement of J(f) in C.

It is important to note that F (f) is an open subset of (C, | · |) and J(f) is com-

pact [4].

An exceptional point of a function is a point in which the backward orbit is

finite. Polynomials have at most one exceptional point and if one exists it must lie in

the Fatou set. The following result presented by Beardon [4] shows that the backward

orbits of non-exceptional points contain the Julia set and will be useful later on.

Theorem 3.2.2 [4] If f is a polynomial of degree at least 2, then

(i) if z0 is non-exceptional, then J(f) ⊆ Cl(O−(z0)), and

(ii) if z0 ∈ J(f), then J(f) = Cl(O−(z0)).

(Cl(A) denotes the topological closure of the set A, i.e. A together with its limit

points.)

A point z0 ∈ C is called a periodic point of a polynomial f if there exists a

positive integer k such that f ◦k(z0) = z0. If k = 1, z0 is called a fixed point of
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f . The least such k, provided one exists, is the period of z0. Forward orbits of

periodic points are called cycles of f and properties of cycles will play an important

role in developing our theory. For a periodic point z0 with period k, the multiplier

of the cycle is the number λ =
(
f ◦k

)′
(z0). The multiplier of the cycle provides a

characterization of cycles into four types:

(i) Attracting cycles have 0 < |λ| < 1 (if |λ| = 0 the cycle is called super attract-

ing),

(ii) Repelling cycles have |λ| > 1,

(iii) Rationally indifferent cycles have λ a root of unity,

(iv) Irrationally indifferent cycles have |λ| = 1 but not a root of unity.

Attracting cycles are contained in F (f), rationally indifferent and repelling cycles

are contained in J(f), the latter being dense in J(f), and irrationally indifferent

cycles may be contained in either F (f) or J(f). These facts are basic but nontrivial

and the details may be found in [4].

We will need to determine whether the sets f ◦−k(z0) converge. For convergence

we will use the Hausdorff metric which measures the distance between two compact

subsets of a metric space (M, d) in the following manner, if A and B are compact

subsets of (M, d), then the Hausdorff distance between A and B is given by

h(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

As we will only be working with the metric space (C, | · |),

h(A,B) = max{max
a∈A

min
b∈B

|a− b|,max
b∈B

min
a∈A

|a− b|}.
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Note that we may use max and min rather than sup and inf since the sets are

compact. Using the Hausdorff metric will allow us to take advantage of a result

due to Hickman [28] that will be valuable to us, but we must first present one more

definition.

Definition 3.2.3 [4] A Siegel disk is the maximal open connected subset of F (f)

containing a fixed point z0 with an irrationally indifferent cycle.

Siegel disks lie in the Fatou set of f and do not need to be discussed beyond this

fact for our work. As in [15], we note that since attracting cycles are also contained

in F (f) which is disjoint from J(f), f ◦(−k)(z0) → J(F ) as k → ∞ for all z0 ∈ J(f).

Theorem 3.2.4 [28] Let f be a polynomial and z0 be a point which does not lie in

any attracting cycle or Siegel disk of f . Then

lim
k→∞

f ◦−k(z0) = J(f),

where the limit is taken with respect to the Hausdorff metric on compact subsets of

(C, | · |).

Note that f ◦(−k)(z0) is finite for all k and therefore compact.

3.3 The P-fractal of a Graph

In this section we look at the roots of νP(G, x) where G can be obtained by means

of graph substitution of smaller graphs. We will rely heavily on Theorem 2.2.7 and

are motivated and guided by the work of Brown, Hickman, and Nowakowski [14,15].

In [15], the independence fractal of a graph was introduced and much of the work

needed to establish the theory behind the independence fractal will generalize to

P-generating polynomials for properties P closed under substitution. This leads
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to the P-fractal of a graph, and hence associates with each graph many fractals.

We define the reduced P-generating polynomial of a graph G, denoted fP(G, x), by

fP(G, x) = νP(G, x)−1. As each graph has only one subgraph on 0 vertices, namely

the empty graph, the reduced P-generating polynomial really has the same amount

of information as the P-generating polynomial. The advantage of the reduced version

is that fP(Gk, x) = f ◦kP (G, x) for P closed under substitution, where f ◦kP denotes

the k-fold composition of fP with itself (recall that Gk is the k-fold lexicographic

product of G with itself). This follows easily from Theorem 2.2.7 and gives us an

easier way to characterize the roots of fP(Gk, x) as k → ∞. We will see later that

the limiting root set of νP(Gk, x) will usually be the same as that of fP(Gk, x) and

when it is not, the limiting root set of fP(Gk, x) is the more interesting object anyway.

We are now ready to develop the theory of the P-fractal of a graph for prop-

erties P closed under substitution. It will be given as a limit of the roots of

fP(Gk, x) as k tends to infinity. Let the set Roots(fP(G, x)) denote the set of all

roots of fP(G, x). We wish to show that Roots
(
f ◦kP (G, x)

) ⊆Roots
(
f ◦k+1

P (G, x)
)
for

all k ≥ 1. Note that fP(G, 0) = 0 and fP(G2, x) = fP(G, fP(G, x)) and therefore

Roots(fP(G, x)) ⊆Roots(f ◦2P (G, x)). Now suppose

Roots
(
f ◦kP (G, x)

) ⊆ Roots
(
f ◦k+1

P (G, x)
)

for all k ≤ n − 1. Recall f ◦n+1
P (G, x) = fP(G, f ◦nP (G, x)). If r ∈ Roots(f ◦nP (G, x)),

then
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f ◦n+1
P (G, r) = fP(G, f ◦nP (G, r))

= fP(G, 0)

= 0.

So r ∈ Roots(f ◦n+1
P (G, x)). It follows that Roots(f ◦nP (G, x)) ⊆Roots

(
f ◦n+1

P (G, x)
)

and so by induction, Roots
(
f ◦kP (G, x)

) ⊆Roots
(
f ◦k+1

P (G, x)
)
for all k ≥ 1.

Definition 3.3.1 For a property P that is closed under substitution, the P-fractal

of a graph G is the set,

F(G,P) = lim
k→∞

Roots(fP(Gk, x)).

It is reasonable to suspect that Definition 3.3.1 may not be meaningful as the

convergence of the limit is not obvious. Theorem 3.3.2 ensures that the definition is

meaningful and that the object defined is indeed fractal-like. From Theorem 2.2.7

and the fact that Roots
(
f ◦kP (G, x)

) ⊆Roots
(
f ◦k+1

P (G, x)
)
for all k ≥ 1, it follows that

F(G,P) = lim
k→∞

f
◦(−k)
P (G, 0).

ForK1 the situation is that, fP(K1, x) = x for all properties P,(recall {K0, K1} ⊆
P by definition), and therefore, F(K1,P) = {0}.

Theorem 3.3.2 For a graph G 
= K1 and property P that is closed under substitu-

tion, the P-fractal of G is exactly J(fP(G, x)).

Proof. If deg(fP(G, x)) = 1, then fP(G, x) = nx where n = |V (G)| ≥ 2, since

K1 ∈ P. By Theorem 2.2.7, fP(Gk, x) = nkx. Now all nonzero numbers have

unbounded forward orbit, so J(fP(G, x)) = {0} which is clearly equal to F(G,P).
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If deg(fP(G, x)) ≥ 2, then 0 is a fixed point of fP(G, x) with multiplier f ′P(G, 0) =

n ≥ 2 and so 0 is a repelling fixed point of fP(G, x). Hence 0 ∈ J(fP(G, x)) by the

comments following the definition of a cycle and so we may apply Theorem 3.2.4 to

obtain

lim
k→∞

f
◦(−k)
P (G, 0) = J(fP(G, x)).

From earlier comments, limk→∞ f
◦(−k)
P (G, 0) = F(G,P) which completes the

proof. �

What we have been concerned with for the majority of this work is νP(G, x) and

so we draw the connection between the P-fractal of a graph and the set

R(G,P) = lim
k→∞

Roots
(
νP(Gk, x)

)
.

Note that νP(G, x) = fP(G, x) + 1 and so

lim
k→∞

Roots
(
νP(Gk, x)

)
= lim

k→∞
f
◦(−k)
P (G,−1).

We state Theorem 3.2.14 in Hickman’s PhD. Thesis [28] regarding the sets F (G) =

lim
k→∞

Roots(I(G, x)) and I(G) = lim
k→∞

Roots(I(G, x) − 1) which are referred to as the

independence attractor and independence fractal respectively, as it will help us bridge

the gap.

Theorem 3.3.3 [28] Let G be a graph with at least one edge, and denote by η(G)

the multiplicity of −1 as a root of I(G, x). Set fG = I(G, x)− 1.

(i) If η(G) ≤ 1, then I(G) = J(fG), the Julia set of fG.
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(ii) If η(G) ≥ 1, then

I(G) = Cl

(⋃
k≥1

Roots((I(Gk, x))

)
= Cl

(⋃
k≥1

f
◦(−k)
G (−1)

)
.

In case (ii), I(Gk, x) is divisible by
(
I(Gk−1, x)

)η(G)
for each k ≥ 2, and

lim
k→∞

(
(Roots(I(Gk, x)) \Roots(I(Gk−1, x))

)
= lim

k→∞
Roots

(
I(Gk, x)

(I(Gk−1, x))η(G)

)
= J(fG).

Further, for η(G) > 1, I(G) is partitioned by the set,
⋃

k≥1 Roots(I(Gk, x)), and

its accumulation points, J(fG).

This Theorem is proved in enough generality to hold for R(G,P) for any prop-

erty P by simply changing the terms specific to independence. What this theorem

tells us, in our terminology, is that for a graph G such that G 
∈ P, if η is the

multiplicity of −1 as a root of νP(G, x), then R(G,P) = J(fP(G, x)) if η ≤ 1 and

J(fP(G, x)) ⊆ R(G,P) if η ≥ 2. It further says that in the case where η ≥ 2,

Roots(νP(Gk, x)) ⊆Roots(νP(Gk+1, x)) and that as k → ∞,

Roots(νP(Gk+1, x)) \ Roots(νP(Gk, x)) → J(fP(G, x)).

In fact, R(G,P) = Cl(
⋃

k≥1 Roots(νP(Gk, x))). Hickman’s proof of the theo-

rem involves some technical details which we will not include since the Julia set of

fP(G, x) is what we end up interested in and we have found a connection with the

roots of the reduced P-generating polynomial and this set.
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Figure 3.3: Approximation of F(P7,−P7)

As Brown et al. [15] consider for P = −K2, we wish to know for which graphs and

properties is F(G,P) connected and for which is it disconnected. Other questions

that arise are about the relations between P-fractals for a graph G for different prop-

erties P. Are there different properties, P and Q, for which F(G,P) = F(G,Q)?

Are there different graphs G and H for which F(G,P) = F(H,P) for certain prop-

erties P?

3.3.1 Connectivity of P-fractal

A separation of a set S is a pair R, T of disjoint nonempty open subsets of S

such that R ∪ T = S [36]. If there exists a separation the set is disconnected

and connected if no separation exists [36]. We say S is totally disconnected if

the only connected subsets of S are one-point sets [36]. Beardon [4] gives a complete

characterization of when the Julia set of a polynomial of degree at least 2 is connected

and when it is totally disconnected.

Theorem 3.3.4 [4] If f is a polynomial of degree at least 2, then

(i) J(f) is connected if and only if O+(z0) is bounded in modulus for all critical points

z0,
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(ii) J(f) is totally disconnected if O+(z0) is unbounded in modulus for each of its

critical points z0.

For example, f−C5(C5, x) = 5x + 10x2 + 10x3 + 5x4 is an unbounded increasing

function that lies above the x-axis (when plotted on R × R) from [1,+∞), so to

show that the forward orbit of a point z0 is unbounded we must only show that

for some k ∈ N, f ◦k−C5
(C5, z0) is a positive real number greater than 1. The critical

points of f−C5(C5, x) can be easily verified to be −1
2
+ i

2
, −1

2
− i

2
, and −1

2
. Now,

f ◦2−C5

(
C5,−1

2
− i

2

)
= f ◦2−C5

(
C5,−1

2
+

i

2

)
=

525

256
which is a rational number larger

than 1, so O+(−1
2
+ i

2
) and O+(−1

2
− i

2
) are unbounded. Therefore, Theorem 3.3.4

assures us that F(C5,−C5) is disconnected. In fact, it is totally disconnected as

f ◦5−C5
(C5,−1

2
) ≈ 9013 and so the forward orbits of all critical points of f−C5(C5, x)

are unbounded. F(C5,−C5) can be seen in Figure 3.4, it is easy to see that it is

disconnected, but without Theorem 3.3.4, it would be difficult to say for certain that

it is actually totally disconnected.

Figure 3.4: Approximation of F(C5,−C5) in C.

On the other hand, F(P3,−K2) was shown in [15] to be connected as can be seen

in Figure 3.5.
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Figure 3.5: Approximation of F(P3,−K2) in C.

3.3.2 Comparing P-fractals

In this section we wish to compare P-fractals for different graphs, and for different

properties the different fractals that can be generated by the same graph. We know

that for independence polynomials, nonisomorphic graphs can have equal indepen-

dence polynomials [18]. For example, the graphs in Figure 3.6 are nonisomorphic but

both have independence polynomial 1 + 4x+ 2x2.

Figure 3.6: Graphs with equal independence polynomial
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In our general case, for most properties P there are nonisomorphic graphs G

and H on the same number of vertices such that νP(G, x) = νP(H, x) = (1 + x)n.

For example, the graphs C4 and K4 are both −K5-graphs and so both have −K5-

generating polynomial equal to (1 + x)4. However, this yields a very uninteresting

P-fractal. Recalling Observation 1.3.2, we can remark that for every graph G and

property P =
⋂
n∈I

−Gn such that Gn is module-free for each n, then F(G,P) =

F(G,P). Moreover, if Gn is self-complementary for each n, then P = P and so

F(G,P) = F(G,P). Thus, for every graph G, there exists a property P such that

the P-fractal is the same as the P-fractal of G. Some properties that satisfy being

closed under substitution and self-complementary are −P4, −C5, and −G where G

is the graph in Figure 3.7.

Figure 3.7: A self-complementary and module-free graph on 5 vertices

Consider the graph on 5 vertices, pictured in Figure 3.8.

Figure 3.8: A graph and its complement on 5 vertices
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If G is either graph in Figure 3.8, then ν−P4(G, x) = 1 + 5x + 10x2 + 10x3 + 3x4

which gives the −P4-fractal that is pictured in Figure 3.9

Figure 3.9: Approximation of F(G,−P4) where G is either graph in Figure 3.8

The benefit of the P-fractal theory is that for each graph we have associated many

fractals. We consider the graph C6 and the fractals associated with it for properties

−K2, −K2, −P4, −P5 and −C6. The following figures illustrate these fractals.

Figure 3.10: Approximation of F(C6,−K2) in C

Figure 3.11: Approximation of F(C6,−K2) in C
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Figure 3.12: Approximation of F(C6,−P4) in C

Figure 3.13: Approximation of F(C6,−P5) in C
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Figure 3.14: Approximation of F(C6,−C6) in C

We have seen that the roots of νP(G, x) can have nonzero imaginary part, but

we wish to know if for certain properties closed under substitution P and graphs

G, F(G,P) ⊆ R. Since the coefficients of νP(G, x) are all nonnegative integers, if

F(G,P) is real, it will lie on the ray (−∞, 0]. For the property P = −K2∩−K2, we

have νP(G, x) = 1+nx where n = |V (G)| for all graphs G. In this case, F(G,P) =

{0} = R(G,P) and is of little interest. On the other hand, we know that for a

graph with property P, νP(G, x) = (1 + x)n and so R(G,P) = {−1} which is not

interesting, but fP(Gk, x) = (1 + x)n
k − 1 and in [15, 28] it is shown that F(G,P)

is the circle |z + 1| = 1 . We show that for each graph G on at least 4 vertices such

that α(G) = 2 or α(G) = 2 that there exists a property P such that F(G,P) lies

entirely on the real line.

Proposition 3.3.5 The Julia set of a quadratic polynomial f = mx2 + nx, m ≥ 1

and n ≥ 4 is contained in the interval
[
− n

m
, 0
]
.

Proof. We prove thatf ◦(−k)(0) =Roots
(
f ◦k(0)

) ⊆ [− n
m
, 0
]
by induction on k and

then the result will follow from Theorem 3.2.4 that J(f) ⊆ [− n
m
, 0
]
since f ′(0) =

n > 1. Now for k = 1, Roots(f) =
{
0,− n

m

} ⊆ [− n
m
, 0
]
. Suppose Roots(f ◦k(x)) ⊆[− n

m
, 0
]
for some k ≥ 1. Now since f ◦(k+1) = f ◦k(f), it follows that
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Roots
(
f ◦k+1

)
=

⋃
r∈ Roots(f◦k)

{s ∈ C : f(s)− r = 0} .

Now for all r ∈ Roots(f ◦k), the roots of f(x)− r are given by the quadratic formula:

s1 =
−n+

√
n2 + 4mr

2m
and s2 =

−n−√
n2 + 4mr

2m
.

We first note that the discriminant of f(x)− r is n2 + 4(m)(r) and since r ≥ − n
m

by assumption, the discriminant is at least 0 and so s1 and s2 are real for all such r.

Also, we have that s2 ≤ s1, so we show that − n
m

≤ s2 and s1 ≤ 0 to complete the

proof. Now,

n2 ≥ n2 + 4mr (since r ≤ 0)

=⇒ n ≥
√
n2 + 4mr

=⇒ 0 ≥ −n+
√
n2 + 4mr

2m
= s1

Also,

n2 ≥ n2 + 4mr (since r ≤ 0)

=⇒ −n ≤ −
√
n2 + 4mr

=⇒ −2n ≤ −n−
√
n2 + 4mr

=⇒ − n

m
≤ −n−√

n2 + 4mr

2m
= s2

Therefore, f ◦(−k)(0) ⊆ [− n
m
, 0
]
for all k ≥ 1 and since

[− n
m
, 0
]
is a compact subset

of (C, | · |), it follows that

J(f) = lim
k→∞

f ◦(−k)(0) ⊆
[
− n

m
, 0
]
.
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�

Corollary 3.3.6 For a graph G on at least 4 vertices, if there exists a property P

that is closed under substitution such that νP(G, x) = 1 + nx + mx2, m 
= 0, then

F(G,P) ⊆
[
− n

m
, 0
]
.

Proof. The proof follows directly from the fact that F(G,P) = J(f) and Propo-

sition 3.3.5. �

A specific case of Corollary 3.3.6 was considered for the independence fractal of a

graph in [15] which showed that the independence fractal of a graph with indepen-

dence number 2, n 
= 3 vertices, and m non-edges has independence fractal in the

line segment
[− n

m
, 0
]
. In fact they show that for n = 3 the real part of the indepen-

dence fractal is also contained in
[− n

m
, 0
]
while the imaginary part of the indepen-

dence fractal is contained in
[
−
√
3

m
,
√
3

m

]
. While the property P =

⋂
|V (G)|=3

−G gives

a quadratic reduced P-generating polynomial satisfying the hypothesis of Proposi-

tion 3.3.5, direct checking shows that no graphs on 3 vertices are module-free and

so by Lemma 2.2.6, P is not closed under substitution. Hence, Theorem 2.2.7 can-

not be applied to generate a P-fractal. In fact, since no graphs on 3 vertices are

module-free, it follows that for every graph G on at least 3 vertices and property

P that is closed under substitution, the coefficient of x3 in νP(G, x) is at least 1 if

P 
∈ {−K2,−K2,−K2 ∩ −K2}. Therefore, the only new property and graphs that

Corollary 3.3.6 gives us real P-fractals for is the property P = −K2 and graphs G,

|V (G)| 
= 3 such that α(G) = 2, i.e. graphs for which every induced subgraph on

more than 2 vertices contains a pair of vertices that are not adjacent.

Theorem 3.3.7 For a graph G on n 
= 3 vertices with m edges such that α(G) = 2

and property P = −K2, the P-fractal of G is contained entirely in the real line

segment
[− n

m
, 0
]
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Proof. The proof follows from Theorem 4.1 in [15] whose result is stated in the

previous paragraph and the fact that νP(G, x) = νP(G, x). �

Beyond the properties −K2 and −K2 determining whether the P-fractal is a

subset of R is difficult as we cannot exploit the quadratic formula.

3.4 A Word on Properties Not Closed Under Substitution

We have seen that when P is closed under substitution that R(G,P) is usually a

fractal-like object, but what does R(G,P) look like when P is not closed under

substitution? This is a more difficult problem to answer because we cannot exploit

Theorem 2.2.7 to calculate the P-generating polynomial for Gk and results for the

reduced P-generating polynomial to find the roots. We suspect that there exists a

property P not closed under substitution and a graph G such that R(G,P) is not

a fractal although the only results we present here do lead to fractals. We will not

spend much time on this question as it becomes very difficult to calculate νP(Gk, x)

for a general k. We consider properties −Km for m ≥ 3 and the graphs Kn because

we can calculate ν−Km(K
k
n, x) for a general k with little effort. Note that any proper

subset of V (Km) with at least 2 vertices forms a module and so by Lemma 2.2.6, −Km

is not closed under substitution. If n = 1, then ν−Km(K
k
1 , x) = ν−Km(K1, x) = 1 + x

and so we suppose that n ≥ 2 for the remainder of this section. We will require the

following result due from Barbeau [2] to show what R(Kn,−Km) will look like.

Theorem 3.4.1 [2] If n ≥ 1 and ai is a positive real number for 0 ≤ i ≤ n, then

(i) The polynomial g(x) = −a0− a1x− ...− an−1xn−1+ anx
n has a unique positive

real zero r, and

(ii) every root w of the polynomial f(x) = a0 + a1x+ a2x
2 + ...+ an−1xn−1 + anx

n

satisfies |w| ≤ r.
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Theorem 3.4.2 For all n ≥ 2 and m ≥ 3, R(Kn,−Km) = {0}.

Proof. Suppose n ≥ 2 and m ≥ 3. Note that Kk
n = Knk and so for each

n ≥ 2 and m ≥ 3, there exists a k sufficiently large such that nk ≥ m and so

ν−Km(K
l
n, x) =

m−1∑
i=0

(
nl

i

)
xi for all l ≥ k. Let gl(x) =

(
nl

m− 1

)
xm−1 −

m−2∑
i=0

(
nl

i

)
xi.

Now suppose l is sufficiently large so that nl > m and thus,

gl

(
1√
nl

)
=

(
nl

m− 1

)(
1√
nl

)m−1
−
(

nl

m− 2

)(
1√
n
l

)m−2

− ...− nl

(
1√
n
l

)
− 1

The right hand side of the equation above is a polynomial of degreem−1 in
√
nl and as

l → ∞,
√
nl → ∞ which dominates the rest ensuring that gl

(
1√
nl

)
> 0. Now since

gl(x) is continuous for all l, gl(0) = −1 and gl

(
1√
n
l

)
> 0 for sufficiently large l, gl(r) =

0 for some 0 < r < 1√
n
l by the Intermediate Value Theorem. Now by Theorem 3.4.1,

we know that gl(x) has a unique positive root. Finally by Theorem 3.4.1, all roots

w of ν−Km(K
l
n, x) satisfy |w| < r and so for sufficiently large l, |w| < r <

1√
n
l
→ 0.

Therefore R(Kn,−Km) = {0}. �



Chapter 4

Conclusion/Open Problems

We have introduced the P-generating polynomial of a graph and studied the be-

haviour of certain properties under graph products. We considered the problem of

finding the roots of P-generating polynomials which led to the P-fractal of a graph

for properties that are closed under substitution. There are many questions and di-

rections that remain open for future study. We present a brief discussion of these here.

Problem 1: We have only considered graph join, union, and substitution as they

relate to P-generating polynomials of graphs but there are many other products that

would be of interest to consider in the light of P-generating polynomials. Some in

particular would be the Cartesian, Categorical, Kronecker, and Strong product.

Problem 2: We have looked at many properties in an attempt to provide some

general results, but an extensive study of specific properties would be beneficial. The

study of the independence polynomial has lead to many interesting results and so

a look at νP(G, x) for other specific properties P would likely be interesting. El-

ementary properties that could be of interest are the properties −Cn and −Pk for

n ≥ 5 and k ≥ 4 as we have shown that these properties are closed under substitution

and therefore can be used to generate fractals. We also showed that the property

of perfection P =
⋂∞

n≥2
(−C2n+1 ∩ −C2n+1

)
is closed under substitution and can

therefore be used to generate P-fractals. Other properties that are not closed under

substitution would also be of interest and could lead to nice results other than the

50
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P-fractals. A good starting place would be properties −G where |V (G)| = 3. In

Appendix A we have provided a table that explicitly gives ν−K3(G, x) and ν−P3(G, x)

for all connected graphs on 5 and fewer vertices.

Problem 3: Studying the behaviour of P-fractals for certain families of graphs and

properties that have similar structures is open. Specific families of P-fractals and

graphs that we have observed to have similar structures are the families, F(P2n,−P2n)

and F(P2n+1,−P2n+1) for n ≥ 2. Refer to Figure 4.1 and note the similarity in the

fractals and Figure 4.2 to see them all plotted together.
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Figure 4.1: Approximations of F(P5,−P5) top left, F(P7,−P7) top right, F(P9,−P9)
bottom left, F(P11,−P11) bottom right.
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Figure 4.2: Approximations of F(P2n+1,−P2n+1) n = 2, 3, 4, 5

Figure 4.3 shows the even paths and Figure 4.4 shows them plotted together.

Again note the similar structure.
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Figure 4.3: Approximations of F(P4,−P4) top left, F(P6,−P6) top right, F(P8,−P8)
bottom left, F(P10,−P10) bottom right
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Figure 4.4: Approximations of F(P2n,−P2n) n = 2, 3, 4, 5

Problem 4: A multivariate and more general version of the P-generating polyno-

mial may be defined for labelled graphs and has potential to lead to an interesting

and deeper theory of counting all subgraphs with a certain property. Consider the

following definition.

Definition 4.0.3 The labelled P-generating polynomial of a graph G with ver-

tex set {v1, ..., vn} is denoted νP(G; x1, x2, ..., xn) and defined by:

νP(G; x1, x2, ..., xn) =
n∑

i=1

n∏
j=i

x
εj
j

where ε ∈ {0, 1} such that
∑n

j=i εj = i and the graph induced on {vi : εj = 1} is a

P-graph.

The advantage of studying the labelled P-generating polynomial over the P-

generating polynomial is that the labelled P-generating polynomial keeps track of
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which vertices belong to the P-subgraphs of the graph. This is important informa-

tion that could lead to extended results for P-generating polynomials of product

graphs for properties P that are not closed with respect to the product. By setting

x1 = x2 = ... = xn = x in the labelled P-generating polynomial, it is easy to see that

we receive the P-generating polynomial and so results for the labelled P-generating

polynomial can easily be applied to the special case of the P-generating polynomial.

One disadvantage of the labelled P-generating polynomial is that it is not in-

variant under isomorphism. This is not a significant problem as the labelled P-

generating polynomials of isomorphic graphs will differ by at most a permutation of

the indices on the variables. Another disadvantage is that calculating the labelled

P-generating polynomial is a more complicated problem than calculating the P-

generating polynomial. Again, the difference in difficulties is not great enough to

dismiss the labelled P-generating polynomial. The most significant disadvantage of

the labelled P-generating polynomial is that the problem of finding the zeros is far

more “complex” than finding the roots of the P-generating polynomial. To solve for

the zeros of the labelled P-generating polynomials would require results on mono-

mial ideals and extensive use of Gröbner basis theory. As a good portion of our work

focused on finding the roots of P-generating polynomials which we saw is a difficult

problem in and of itself, we decided to leave a study of the labelled P-generating

polynomial for a future work.

Problem 5: For which properties P are the roots of νP(G, x) bounded? Certainly

for P = G , in this case, the roots of νP(G, x) all belong to the set {−1}. Also, for

P = −K2 ∩ −K2, all roots lie on the line segment [0, 1]. We provide one more class

of properties for which the roots of the P-generating polynomial are bounded. For

this we will require the well known Eneström-Kakeya Theorem.
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Theorem 4.0.4 (Eneström-Kakeya) [1] If f(x) =
∑n

i=0 aiz
i such that 0 < a0 ≤

a1 ≤ ... ≤ an, then the roots of f(x) lie in the disk |z| ≤ 1.

Consider the property P = {G ∈ G : |V (G)| < k} for a fixed k ≥ 3. Now for all

graphs G such that n = |V (G)| ≥ 2k, we know that νP(G, x) =
k−1∑
i=1

(
n

i

)
xi and since

n ≥ 2k, the coefficients are non-decreasing with constant term 1. Thus, by Theorem

4.0.4, the roots of νP(G, x) are bounded by 1 for graphs on at least 2k vertices. There

are a finite number of roots that arise from νP(H, x) for graphs H on less than 2k

vertices, and so the roots of the P-generating polynomial are bounded. This leads to

infinitely many properties for which the roots are bounded, however, for elementary

properties the problem remains open. Brown et al. [14] show that for P = −K2, the

roots of νP(G, x) are unbounded and their closure is in fact the entire complex plane.

Problem 6: For which properties P is the closure of the roots of νP(G, x) the entire

plane? As we mentioned above, Brown et al. [14] show that for P = −K2 that is

indeed the case. It is certainly not the case for properties P for which the roots are

bounded and so this question is closely related to Problem 5. Appendix B contains

a table that shows the roots of νP(G, x) for all graphs G of order at most 7 with

respect to properties −K3 and −P3.
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Appendix A

G ν−K3(G, x) ν−P3(G, x)

1 + x 1 + x

(1 + x)2 (1 + x)2

(1 + x)3 3x2 + 3x+ 1
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3x2 + 3x+ 1 (1 + x)3

(1 + x)4 x3 + 6x2 + 4x+ 1

(1 + x)4 2x3 + 6x2 + 4x+ 1

3x3 + 6x2 + 4x+ 1 2x3 + 6x2 + 4x+ 1
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(1 + x)4 6x2 + 4x+ 1

2x3 + 6x2 + 4x+ 1 2x3 + 6x2 + 4x+ 1

6x2 + 4x+ 1 (1 + x)4

(1 + x)5 x4 + 4x3 + 10x2 + 5x+ 1
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(1 + x)5 x4 + 6x3 + 10x2 + 5x+ 1

3x4 + 9x3 + 10x2 + 5x+ 1 x4 + 5x3 + 10x2 + 5x+ 1

3x4 + 9x3 + 10x2 + 5x+ 1 6x3 + 10x2 + 5x+ 1

(1 + x)5 4x3 + 10x2 + 5x+ 1
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2x4 + 8x3 + 10x2 + 5x+ 1 5x3 + 10x2 + 5x+ 1

(1 + x)5 x3 + 10x2 + 5x+ 1

2x4 + 7x3 + 10x2 + 5x+ 1 4x3 + 10x2 + 5x+ 1

(1 + x)5 x4 + 7x3 + 10x2 + 5x+ 1



66

3x4 + 9x3 + 10x2 + 5x+ 1 2x4 + 7x3 + 10x2 + 5x+ 1

x4 + 8x3 + 10x2 + 5x+ 1 x4 + 6x3 + 10x2 + 5x+ 1

2x4 + 8x3 + 10x2 + 5x+ 1 x4 + 6x3 + 10x2 + 5x+ 1

6x3 + 10x2 + 5x+ 1 2x4 + 7x3 + 10x2 + 5x+ 1
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(1 + x)5 5x3 + 10x2 + 5x+ 1

3x4 + 9x3 + 10x2 + 5x+ 1 4x3 + 10x2 + 5x+ 1

x4 + 7x3 + 10x2 + 5x+ 1 5x3 + 10x2 + 5x+ 1

5x3 + 10x2 + 5x+ 1 x4 + 6x3 + 10x2 + 5x+ 1
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2x4 + 8x3 + 10x2 + 5x+ 1 3x3 + 10x2 + 5x+ 1

x4 + 6x3 + 10x2 + 5x+ 1 4x3 + 10x2 + 5x+ 1

3x3 + 10x2 + 5x+ 1 2x4 + 7x3 + 10x2 + 5x+ 1

10x2 + 5x+ 1 (1 + x)5

Table A.1: νP(G, x) for P = −K3, P = −P3, G con-

nected order at most 5



Appendix B

|V (G)| Roots of ν−K3(G, x) Roots of ν−P3(G, x)

3
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4

5

6
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7*

Table B.1: Roots of νP(G, x) for P = −K3, P = −P3,

and |V (G)| ≤ 7

* The image for ν−P3(G, x), |V (G)| = 7 is approximate


