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[1] There are several lines of evidence that suggest that thermal pressurization (TP) of pore
fluid within a low-permeability fault core may play the key role in the development of
earthquake slip. To elucidate effects of TP on spontaneous fault slip, we consider
solutions for a steadily propagating slip pulse on a fault with a constant sliding friction,
the level of which may reflect other thermally-activated processes at the rupture front
(such as the flash heating on asperities). Upon arrival of the pulse front, essentially
undrained-adiabatic TP takes place during the initial slip acceleration from the locked
state with a corresponding reduction of the fault strength. With passage of time, the
diminishing rate of heating (due to the reduced fault strength) and increasing rate of
hydrothermal diffusion from the shear zone offset TP and result in partial recovery of the
strength, slip deceleration and eventual locking and healing of the slip. We show that the
rupture speed vr decreases with thickness h of the principal shear zone. For lab-constrained
values of fault-gouge parameters, the TP-pulse solution predicts seismic (vr � km/s) slip on
a millimeter-to-cm thin principal shear zone; and aseismic slip with vr � 10 km/day and
slip rates 1–2 orders above the plate rate on a relatively thick (h � 1 m) shear zone. These
and other predictions of the TP-pulse model are consistent with the independent sets of
observational constraints for large crustal and subduction interplate earthquakes, and slow
slip transients (North Cascadia), respectively. Locking of the slip soon after the
diffusive transport of the heat and pore fluid becomes efficient significantly limits the
maximum co-seismic temperature rise to values well below previous theoretical estimates.
As a result, the onset of macroscopic melting and some of thermal decomposition
reactions, recently suggested to explain strong co-seismic fault weakening, are precluded
over much of the seismogenic zone.
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1. Introduction

[2] In recent years, a self-consistent hypothesis of low-
heat, low-stress operation of earthquake slip on statically-
strong but dynamically-weak faults [Lapusta and Rice,
2003b; Rice, 2006; Noda et al., 2009] has been put for-
ward in general agreement with the three important obser-
vations for some of well-studied mature faults: 1) low ratio
tb/�s0 � 0.06–0.4 of the background shear stress tb to the
ambient level of the effective normal stress �s0 resolved onto
the fault plane [e.g., Townend and Zoback, 2004]; 2) high
static (interseismic) strength of fault rocks, t/�s0 � 0.6–0.9,
based on laboratory friction experiments at very low slip
rates [Byerlee, 1978]; and 3) low average level of the
co-seismic fault strength t/�s0 ≲ 0.1 as suggested by the lack
of detectable heat flow anomalies near major fault zones
[Brune et al., 1969; Lachenbruch and Sass, 1980], assuming

�s0 � 100 MPa at the midseismogenic depth, and conspicu-
ous absence of pseudotachylytes in natural faults exhumed
from seismogenic depth [e.g., Sibson and Toy, 2006].
[3] In this hypothesis, ruptures nucleate on small patches

that are either statically weak, or more likely subjected to a
locally peaked background stress. The ruptures then propa-
gate out along the fault driven by a much lower, average
background stress, with such propagation enabled by strong
fault weakening process(es) activated during dynamic slip.
This dynamic weakening can be a result of a number of
physical processes activated by fault frictional heating with
slip, depending on gouge properties and prevailing fault
conditions [e.g., Rice, 2006; Di Toro et al., 2011, and
references therein], with the most ubiquitous ones being
thermal pressurization (TP) of pore fluid [Sibson, 1973] and
flash heating (FH) at microscopic asperity contacts [Rice,
1999, 2006].
[4] Building on earlier work [Lachenbruch, 1980; Mase

and Smith, 1987], recent analytical studies of co-seismic
TP in the approximation of kinematic slip and constant fault
sliding friction, and constrained with lab-derived properties
of fault gouge [Rice, 2006; Rempel and Rice, 2006; Noda
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and Shimamoto, 2005] provided strong support to the
hypothesis. They showed that TP may result in near com-
plete loss of fault strength at large slip, which in turn may
limit the temperature rise to values short of the melting
threshold in seismogenic crust. The predicted fracture
energy and characteristic slip weakening distance in the
earthquake slip were found to be in plausible agreement with
the seismological estimates.
[5] A number of concurrent numerical studies of sponta-

neous dynamic slip with thermal pressurization [Andrews,
2002; Bizzarri and Cocco, 2006a, 2006b; Noda and
Lapusta, 2010] and, in some cases, also accounting for the
flash heating [Noda et al., 2009], provided further validation
of the hypothesis. The latter showed that the FH and TP
favor the pulse mode of earthquake rupture at low levels of
the background stress. However, these solutions have faced
strong computational challenges related to the need to
accurately resolve various physical processes over a wide
range of temporal, spatial, and slip scales, e.g., slip distances
associated with evolution of the state of the frictional contact
are �asperity size (10 s micrometers), diffusion of heat and
pore fluid takes place on the scale �millimeters to cms, and
stress perturbations on the rupture scale �kms (see Noda

et al. [2009] for discussion), and, thus, have been limited
in scope to a number of numerical examples.
[6] In this paper we attempt to study the TP effect during

spontaneous elastodynamic slip within the constraints of a
simplified model which, on one hand, is tractable by ana-
lytical and/or efficient numerical methods, and, on the other
hand, retains the essential features of the phenomena
reviewed in the above. The model that we use is of a spon-
taneous, steadily propagating slip pulse driven by a uniform
background stress under the assumption of a constant sliding
friction (friction along the slipping patch) (Figure 1). As in
the now standard model of thermal pressurization, slip is
accommodated within a saturated gouge layer of a fixed
thickness, which is heated by frictional heat and pressurized
by the thermal expansion of the pore fluid under conditions
when the drainage of the fluid and the heat from the shear
zone is limited on the timescale of the slip (Figure 2).
[7] The choice of the self-healing slip-pulse mode for

rupture propagation is motivated by the strong seismological
evidence [Heaton, 1990] that ruptures tend to propagate as
pulses with a slip duration (risetime) much shorter than the
total event duration. The pulse-mode has also been linked
theoretically to low levels of the background, driving stress
[Zheng and Rice, 1998; Noda et al., 2009] as often inferred

Figure 1. Sketch of a slip pulse and corresponding stress evolution.

Figure 2. Sketch of a frictionally-heated, saturated fault shear zone.

GARAGASH: SLIP PULSE WITH THERMAL PRESSURIZATION B04314B04314

2 of 37



for major faults. The constant sliding friction may be an
appropriate description under the circumstances that the
other dynamic fault weakening processes (e.g., FH) have not
yet been activated (i.e., the slip rates are below the FH onset
rate [Rice, 2006; Beeler et al., 2008]), or, quite to the
opposite, FH has been activated due to dramatic slip accel-
eration very near the front of the propagating rupture, which
effectively reduced the friction to a nominal (low) dynamic
level that is maintained over the majority of the slipping
patch with the exception of the trailing edge [Noda et al.,
2009]. We note here that FH does require significant local-
ization of slip (to ensure sufficiently high slip rates at the
asperity/grain scale), and therefore is not a certain quantity
during the dynamic slip. Although, evidence for a requisite
level of seismic slip localization has been observed in
exhumed fault zones [e.g., Chester et al., 2004] and from
theoretical analysis of distributed slip [Platt et al., 2010;
J. R. Rice and J.W. Rudnicki, unpublished manuscript, 2006].
[8] Our simple model does not account for any of the

previously-proposed slip-healing mechanisms, including
velocity-weakening friction [Cochard and Madariaga,
1994; Perrin et al., 1995; Beeler and Tullis, 1996; Zheng
and Rice, 1998; Noda et al., 2009], heterogeneities/barriers
along the fault plane [e.g., Day, 1982; Johnson, 1990], and a
material contrast across it [Andrews and Ben-Zion, 1997].
Yet, we suggest that the pore fluid and heat transport from
the heated zone alone can sufficiently offset the pressuriza-
tion (most pronounced during the initial undrained-adiabatic
response of the gouge) over the duration of slip in the pulse,
in order to partially restrengthen the slipping fault, lock the
slip, and insure restrengthening rates in the wake of the pulse
that are higher than the rate of elastic stress rebound (as
necessary for the slip to stay “healed” there). This new slip
healing mechanism might have been observed in numerical
solutions of Noda et al. [2009] and Noda and Lapusta
[2010], yet has not been acknowledged by these authors,
due to, presumably, attributing it to the velocity-weakening
nature of the friction constitutive law in their treatments.
[9] This paper is organized as follows. In sections 2 and 3

we formulate the proposed model of a steady TP pulse
propagation with a constant sliding friction, discuss the
corresponding background on the thermal pressurization
modeling and pertinent range of fault parameters, and lay
down the argument for the possible self-healing nature of
these pulses. Section 4 deals with the asymptotic solutions
for small-slip pulses that are borne under conditions when
the background shear stress is close to the nominal fault
strength, tb/t0 ≈ 1. (The existence of these solutions indi-
cates that the smallness of background stress may not be
necessary prerequisite for the pulse-like mode of rupture
propagation). It is in this case that we first explore the range
of TP pulse solutions as a function of the slip duration, and
show that the pulse with the maximum slip duration, set by
the timescale of hydrothermal diffusion across the shear
zone, possesses the intrinsic self-healing property. The pulses
with shorter slip durations (the shortest one corresponding
to the undrained-adiabatic conditions everywhere along the
pulse), if exist in nature, have to be “healed” by other
physical processes, mentioned in the above and not
accounted for explicitly in the model. Section 5 presents the
general TP pulse solution as a function of the background
stress tb/t0 ≤ 1 in the two bounding regimes corresponding

to the undrained-adiabatic slip and the partially-drained,
self-healing slip, respectively. Section 6 is concerned with
the large-slip limit of these solutions realized under small
background stress, tb/t0 ≪ 1.
[10] Section 7 discusses the important features of the

presented TP pulse solutions, constraints set on them by
observations, and the implications for seismogenesis. In
sections 7.1 and 7.2, we show that the issue of the principal
shear zone thickness is critical for defining the main prop-
erties of a spontaneous TP slip pulse. Specifically, we pre-
dict that shear zones that are relatively thin, cm or less, can
only support dynamic rupture pulse propagation at �km/s,
while sufficiently thick (�meter) zones favor aseismic slip
pulses propagating at speeds �kms/day that are representa-
tive of slow slip transients observed in the transitional zone
of subduction megathrusts (see review by Schwartz and
Rokosky [2007]). (The latter observation is further explored
in section 7.7, where we contrast the properties of aseismic
TP pulses with the main spatio/temporal characteristics of
along-strike propagation of slow slip transients on the
Northern Cascadia subduction interface [Dragert et al.,
2001], and argue that TP may be one of the dominant
mechanisms governing the slow slip). Sections 7.4 and 7.5
discuss the two related issues, 1) the well-defined slip scale
over which most of the fault strength weakening takes place
during what is essentially the undrained-adiabatic, initial
phase of the pulse before the diffusive transport becomes
efficient; and 2) the peak temperature rise, that is much
smaller than otherwise anticipated in the kinematic solutions
[Rempel and Rice, 2006], and generally insufficient to allow
for macroscopic melting and some of thermal decomposition
reactions that have been suggested recently as candidates for
strong co-seismic fault weakening. Section 7.6 presents
matching of the TP-model predictions with the data for sets
of crustal and large subduction interplate earthquakes. We
summarize the findings of our study in section 8.

2. Model

[11] A fault zone parallel to the y = 0 plane is sheared at
the rate _g = _g(y, t) (Figure 2). The ‘net’ slip velocity V(t) and
a characteristic thickness h of the region, centered about y =
0, where most of the slip is localized to are defined as

V tð Þ ¼
Z ∞

�∞
_g y; tð Þdy and h ¼ V tð Þ

_g 0; tð Þ ; ð1Þ

respectively. h is time-independent for shear distributions
with uniform temporal dependence, i.e. when _g(y, t)/ _g(0, t) is
a function of y only. Formally, this class of distributions can
then be defined in terms of an arbitrary function g as,

_g y; tð Þ ¼ V tð Þ
h

g
y

h

� �
; with g 0ð Þ ¼

Z ∞

�∞
g sð Þds ¼ 1: ð2Þ

For a uniform shear distribution over a region of thickness h,
g(s) = 1 when |s| ≤ 0.5 and 0 when |s| > 0.5. For a Gaussian
shear distribution, g(s) = exp(�ps2), which is equivalent to
the notation used by Andrews [2002] and Rice [2006] when
their thickness parameter w is set to h/

ffiffiffiffiffiffi
2p

p
.

[12] By mechanical equilibrium, the shear t and the nor-
mal s stresses are uniform across the fault zone, while the
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value of s is also unchanged with the slip: t = t(t) and s =
const. For the duration of slip t is equal to the frictional
strength tf,

tf ¼ f s � pð Þ ¼ f s; ð3Þ

in which f is the friction coefficient, p is the pore pressure,
and �s is the effective normal stress. Generally, pore pressure
is non-uniform across the fault, p = p(y, t), in response to the
non-uniformly distributed shear heating rate and pore fluid
diffusion. As the result, applying t = tf across the shear zone
requires to explicitly account for the dependence of f on
(among other things) an a priori unknown shear rate _g (y, t)
[Platt et al., 2010]. Instead, a simplified approach is usually
adopted [Andrews, 2002; Rice, 2006; Rempel and Rice,
2006; Bizzarri and Cocco, 2006a; Noda et al., 2009],
when (i) f is considered a function of the ‘net’ fault variables
only (e.g., slip velocity or slip); (ii) all variables in (3) are
evaluated at the midplane y = 0, where maximum pressuri-
zation is anticipated, and (iii) particular form of spatial dis-
tribution of shear, uncoupled from the solution, is postulated
as a part of the fault model. Homogeneous and Gaussian
shear distributions localized in a narrow region of invariant
thickness h have been previously considered for faults dur-
ing earthquake slip, while observational [e.g.,Wibberley and
Shimamoto, 2003; Chester and Chester, 1998; Chester et al.,
2004; Rice, 2006] and theoretical [Platt et al., 2010] con-
straints are used to estimate h. Values of h in the cm to sub-
mm range, and as low as �100 mm, have been suggested for
seismic slip on mature faults, possibly, as the result of severe
slip localization [Platt et al., 2010]. On the other hand, much
larger values of h are not ruled out at slow slip on mature
faults with a well-developed gouge, as in earthquake nucle-
ation or aseismic slip transients.
[13] Although the friction coefficient f is generally a

function of the slip process, which is inherently dependent
on physical processes activated by the fault slip, a constant
friction approximation is used in this study. This approxi-
mation can be justified in two distinct cases.
[14] First, when the actual variation of fault friction in the

course of the slip is small (for example when the slip and/or
slip rate are small), and the corresponding impact on the fault
strength (3) is negligible compared to that of the changes of
the effective stress (pore pressure) due, in the context of this
work, to the thermal pressurization effects. In this case, and,
say, for statically strong faults, the constant fault friction can
be approximated by Byerlee’s values fp ≈ 0.6–0.8.
[15] Second, when the changes of the friction coefficient

in the course of slip are not small but localized near the
rupture advancing front and the trailing edge (for a pulse-
like rupture). Numerical simulation of slip on statically-
strong but dynamically weak faults [Noda et al., 2009],
whose weakening is governed by thermal pressurization
(changes to the effective normal stress) and flash heating on
asperities (changes to the friction coefficient) [Rice, 2006;
Beeler et al., 2008], show that the reduction of the friction
coefficient takes place in a extremely thin zone near the
rupture front over slip distances dFH � 10 s to 100 s mm
associated with the evolving state of frictional contact. (The
increase of the friction coefficient from the dynamic back to
the static value at the trailing edge of a self-healing pulse in
the simulations of Noda et al. [2009] occurred within a

similarly thin end zone). In this case, the friction coefficient
can be approximated away from the rupture edge by its
dynamically-reduced value, reported fw ≈ 0.1–0.25 for
crustal rocks [Beeler et al., 2008; Hirose and Bystricky,
2007; Kohli et al., 2011]. In this scenario we will assume
that the fracture energy associated with the reduction of the
friction coefficient from the static fp to dynamic fw value is
negligible compared to other energy sinks (in our case the
fracture energy associated with TP). We re-evaluate this
assumption once we establish the corresponding slip-pulse
solutions.

2.1. Thermal Pressurization of Pore Fluid

[16] Shear heating of the fault and associated pore fluid
pressurization is governed by equations of energy and fluid
balance together with the corresponding transport laws [e.g.,
Rice, 2006]:

rc _Q ¼ t tð Þ _g t; yð Þ � ∂qh
∂y

; qh ¼ �K
∂Q
∂y

; ð4Þ

rf b _p � L _Q
� � ¼ � ∂qf

∂y
; qf ¼ �rf

k

hf

∂p
∂y

; ð5Þ

where rc is the volumetric heat capacity of the fault material,
b is the fluid storage coefficient, L is the fluid thermal
pressurization factor, and K and k/hf are the thermal and
hydraulic conductivities in the respective expressions for the
energy, qh, and fluid mass, qf, fluxes normal to the fault
(Figure 2). The fluxes along the fault have been neglected on
the assumption that the shear zone thickness h, as well as,
thickness of induced thermal and hydrological boundary
layers are small compared to the slipping patch dimensions.
Additionally, we have assumed that the inelastic dilation
[Segall and Rice, 1995, 2006] within the shear zone is either
negligible or is localized to the advancing front of the rup-
ture, in which case its effect can be accounted for by using
an effective (reduced) value of the ambient pore pressure p0
ahead of the main rupture slip [e.g., Rice, 2006].
[17] Rempel and Rice [2006] and Vredevoogd et al. [2007]

observed that the effect of non-linearity of (4) and (5) due to
the temperature and pressure dependence of fault material
parameters, is small, more so when the path-averaged values
of these parameters were used. Consequently, we adopt a
linearized version of (4) and (5):

_Q ¼ t tð Þ _g t; yð Þ
rc

þ ath
∂2Q
∂y2

; _p � L _Q ¼ ahy
∂2p
∂y2

; ð6Þ

where ath = K/(rc) and ahy = k/(hfb) are the thermal and
hydraulic diffusivities, respectively.
[18] From the onset of slip at a given location along the

fault, t ≥ 0, the rise of temperature and fluid pressure induced
by the shear heating within the localized shear zone of
thickness h is continually redistributed by diffusive transport
of heat and fluid mass over thermal and hydrological
boundary layers � ffiffiffiffiffiffiffiffiffiffi

4atht
p

and
ffiffiffiffiffiffiffiffiffiffiffi
4ahyt

p
, respectively

(Figure 2). During the early-time, undrained response of the
shear zone, these boundary layers are small,

ffiffiffiffiffiffiffi
4at

p
≪ h, where

a = (
ffiffiffiffiffiffi
ath

p
+

ffiffiffiffiffiffiffiahy
p

)2 is a lumped hydro-thermal diffusivity,
and diffusion of both the heat and the pore fluid on the scale
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of the wet, shear-heated zone is negligible. (The term
drainage is used in this paper in relation to both the pore fluid
and the heat transport, and, thus, the term undrained is used
in the forthcoming interchangeably with the commonly used
“undrained-adiabatic”). Time integration of (6) at y = 0,
while neglecting the transport terms, and use of (1) lead to the
following expressions [Lachenbruch, 1980]:

t ≪ T ∗ : Q 0; tð Þ �Q0 ¼ p 0; tð Þ � p0
L

¼ 1

rch

Z t

0
t t ′ð ÞV t ′ð Þdt ′; ð7Þ

where T* = h2/(4a) is a hydro-thermal diffusion timescale;
and Q0 and p0 are the ambient values of Q and p. The
corresponding fault constitutive relation follows from (3),
(7), and the identity tV ≡ tfV:

f �s0 � tf tð Þ ¼ 1

dc

Z t

0
tf t ′ð ÞV t ′ð Þdt ′; dc ¼ rc

f L
h

� �
; ð8Þ

where dc is the characteristic slip weakening distance
[Lachenbruch, 1980] and �s0 = s� p0 is the ambient effective
stress.
[19] Rice [2006, Table 2, and references therein], based on

the study of the Medium Tectonic Line (MTL) fault zone by
Wibberley and Shimamoto [2003], estimated the hydrother-
mal properties of the fault gouge within the principal shear
zone at the ambient conditions at the mid-seismogenic depth
of 7 km: rc = 2.7 MJ/m3 K, ath = 0.7 mm2/s, ahy = 0.86 to
3.52 mm2/s, L = 0.98 to 0.34 MPa/�C, where the bounds of
the ranges refer to the “intact elastic” and the “highly dam-
aged” fault walls conditions, respectively. For the former
case, we note the estimates of the hydrothermal diffusion
timescale T* ≈ (h/(4 mm))2 s and the characteristic slip
weakening distance dc ≈ (3/f )h, which further suggests T* ≈
0.6 ms to 160 s and dc ≈ 2 mm to 1 m for shear zone
thickness h within the range from 100 mm to 50 mm, and f ≈
0.15. These values are of note, since, as we further find, T*
and dc actually scale the slip duration and the total slip,
respectively, on a self-healing rupture pulse in the constant
friction model as long as the background (driving) stress is
not exceedingly small compared to the nominal strength. We
further note that Rice’s ahy-range corresponds to the low-
end value of the gouge permeability, k � 10�20 m2, and
higher values, by one-to-two orders of magnitude, are not
unwarranted [Faulkner and Rutter, 2000; Wibberley and
Shimamoto, 2003; Noda and Shimamoto, 2005; Mizoguchi
et al., 2008; Tanikawa and Shimamoto, 2009]. Under the
undrained conditions, t ≪ T*, (8) suggests exponentially fast
degradation of fault strength over slip distance �dc. If T*
scales the slip duration, we observe that pulses with average
slip rate in excess of dc/T* ≈ 3 to 0.006 m/s for the above
h-range are likely to result in a near complete loss of the
dynamic fault strength.
[20] The large-time, drained shear zone response is

attained if slip at a given location along the fault is sustained
long enough, t ≫ T*. Under this condition, the shear zone is
much thinner than the hydro-thermal boundary layer, sug-
gesting the “slip on a mathematical plane” approximation,
h → 0, [Mase and Smith, 1987; Lee and Delaney, 1987;
Rice, 2006]:

t ≫ T ∗ : _g y; tð Þ ¼ V tð ÞdDirac yð Þ; ð9Þ

where dDirac(y) is the Dirac delta function. The temperature
change in this problem when a unit rate of shear heating, t(t)
V(t)/(rc) = 1, is ‘turned on’ at t = 0 defines the Green’s
function [Carslaw and Jaeger, 1959]

G y; t;athð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4patht

p exp � y2

4atht

� �
: ð10Þ

The general solution can then be obtained by superposition
in the form a convolution integral in time with kernel (10)
[Rice, 2006], the specific form of which for the tempera-
ture and pressure changes at y = 0 is

t ≫ T ∗ : Q 0; tð Þ �Q0 ¼
ffiffiffiffiffiffi
a
ath

r
p 0; tð Þ � p0

L

¼ 1

rc

Z t

0

t t ′ð ÞV t ′ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4path t � t ′ð Þp dt ′: ð11Þ

The corresponding fault constitutive relation can be written
as

f �s0 � tf tð Þ ¼ 1

d∗

Z t

0

tf t ′ð ÞV t ′ð Þdt ′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p t � t ′ð Þ=t∗p ; d∗ ¼ rc

f L

ffiffiffiffiffiffiffiffiffiffi
4at∗

p� �
ð12Þ

where t* and d* are characteristic time and slip, respectively.
Similarly to the role of dc under the undrained conditions,
(8), d* provides a measure of the fault slip over which
pressurization-induced fault weakening becomes important
under the drained shear zone conditions. However, the req-
uisite slip weakening distance d* depends on the time t*
over which this slip is accumulated, while dc does not. Rice
[2006] considers a kinematic slip process, in which fault
slips indefinitely with constant V and f from the moment of
the slip onset. In this case, t* = d*/V, which leads to the
expression d* = (rc/fL)2(4a/V) for the kinematic slip
weakening distance (see Rice’s L*). The corresponding
analytical solution of (12), tf = f�s0 exp(d/d*) erfc(

ffiffiffiffiffiffiffiffiffiffi
d=d∗

p
),

predicts the progressive fault weakening over all scales of
the kinematic slip d = Vt, both small and large compared to
d* [Rice, 2006], with the infinite rate of weakening attained
at the vanishing values of slip. This fault-weakening style is
distinctively different from the undrained weakening, with a
well-defined slip weakening scale, Lachenbruch’s [1980] dc.
As we will show, it is the latter that represents the slip-
weakening in a spontaneous TP rupture pulse.
[21] As opposed to the early- and large- time regimes of

fault slip discussed above, the intermediate slip regime, t �
T*, with a partially-drained shear zone, actually depends on
a particular distribution of shear across the shear zone with
small but finite characteristic thickness h. The solution to
diffusion equation (6) in this general case can be expressed
as a convolution in both time and space utilizing Green’s
function (10). Corresponding solution for the temperature
and pressure change at y = 0 [Rice, 2006] can be written for
the class of shear distributions (2) as follows

Q 0; tð Þ �Q0 ¼ 1

rch

Z t

0
t t ′ð ÞV t ′ð ÞA t � t ′

Tth

� �
dt ′; ð13Þ

p 0; tð Þ � p0
L

¼ 1

rch

Z t

0
t t ′ð ÞV t ′ð ÞK t � t ′

T ∗
;
ahy

ath

� �
dt ′; ð14Þ
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where Tth = h2/(4ath) and T* = h2/(4a) are diffusion time-
scales, and the normalized convolution kernels A and K are
defined in Appendix A, (A1) and (A2). Corresponding
expression for the fault constitutive law follows as

f �s0 � tf tð Þ ¼ 1

dc

Z t

0
tf t ′ð ÞV t ′ð ÞK t � t ′

T ∗
;
ahy

ath

� �
dt ′: ð15Þ

[22] Evaluation of K for different shear distributions (e.g.,
uniform and Gaussian), and different values of the diffu-
sivity ratio ahy/ath shows a maximum 20% variation of K
with each factor. Similarly limited dependence of the slip
solutions on these two factors is to be expected. Further-
more, it is not difficult to show based on the definition (A2)
and property ∂A(z, c)/∂z ≥ 0 established in the Appendix A
that the minimum (maximum) value of the diffusivities’
ratio, i.e., ahy/ath = 1 (ahy/ath = 0 or ∞), corresponds to the
kernel K’s maximum (minimum), i.e., K(z, {0, ∞}) ≤ K(z,
c) ≤ K(z, 1) for all z ≥ 0 and c ≥ 0. Consequently, the ahy =
ath case corresponds to the maximum TP effect for a fixed
value of the lump diffusivity parameter a = (

ffiffiffiffiffiffi
ath

p
+

ffiffiffiffiffiffiffiahy
p

)2.
[23] The early-time ((7) and (8)) and large-time ((11) and

(12)) asymptotic expressions of the fault response can be
recovered from (13)–(15) and the kernels’ asymptotics
(Appendix A): A(0) = K(0) = 1 and A(z) = K(z; �) = 1/

ffiffiffiffiffiffi
pz

p
when z → ∞.

2.2. Steady-State Elastodynamic Slip Pulse

[24] We consider a spontaneous elastodynamic slip pulse
confined to a patch of length L that propagates unilaterally
with a constant velocity vr along a 2-D fault loaded by a
uniform background stress tb (Figure 1). This type of a self-
healing rupture with a steady-state space-time dependence
has been previously considered by Freund [1979], Perrin
et al. [1995], Broberg [1999], and Rice et al. [2005] among
others in the context of various slip-weakening strength
models. Slip velocity V and shear stress t on the fault plane
are functions of a single variable: the coordinate x in the
reference system moving with the rupture tip, or, alterna-
tively, the time t = x/vr from the onset of slip at a fixed
location along the fault. For a sub-sonic anti-plane (Mode III)
or in-plane (Mode II) rupture pulse, V and t are related by the
elastodynamic integral equation [Weertman, 1980]

t xð Þ � tb ¼ �m
2pvr

Z L

0

V x′ð Þdx′
x′� x

; with V xð Þ ¼ vr
dd
dx

: ð16Þ

Here �m = m F(vr/cs) is an apparent shear modulus which is
monotonically decreasing with vr from the quasi-static value
= m for mode III and m/(1 � n) for mode II (with n being
Poisson’s ratio), to zero when vr is approaching the shear
speed cs (mode III) or the Rayleigh speed cR (mode II)
[Kostrov and Nikitin, 1970; Rice, 1980]. Specifically, F =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr=csð Þ2

q
for mode III, and a lengthier expression for

mode II can be found in the work by Rice et al. [2005,
equation (11)].
[25] The stress t is equal (less than) the strength tf along

the slipping (locked) part of the fault:

t ¼ tf x ∈ 0; L½ �ð Þ; t < tf x ∉ 0; L½ �ð Þ: ð17Þ

Ahead of the rupture front, tf(x ≤ 0) = f�s0. Behind the
rupture front, including both the slipping and locked parts,
tf(x > 0) is given by constitutive law (15) or one of its
asymptotes.
[26] When no back slip is allowed, differentiation of (16)

outside of the slipping patch suggests that dt/dx > 0 there
[e.g., Perrin et al., 1995]. Thus, the stress is rising from the
background value tb ahead of the rupture up to the strength
level t0 (>tb) at the rupture edge, followed by cumulative
weakening over the duration of slip to a certain dynamic
stress level tL (<tb) at the pulse’s trailing edge, and
rebounding back to tb past the trailing edge (Figure 1).
[27] We seek further insight into the stress/strength chan-

ges behind the advancing edge of the rupture by differenti-
ating the fault constitutive relation (15) in time (t > 0):

dtf
dt

¼ df

dt
�s0 � 1

dc
tfV � 1

dc

Z t

0
tf t ′ð ÞV t ′ð ÞK′

t � t ′

T ∗
;
ahy

ath

� �
dt ′

T ∗
;

ð18Þ

where K′(z; �) = ∂K/∂z. The first term in (18) corresponds to
the direct effect of the friction change onto the strength
change. The rate of tf change along the patch, dtf/dx = (1/vr)
(dtf/dt), is always bounded on the assumption of bounded
df/dt. The negative second term in (18) corresponds to the
instantaneous (undrained) fault weakening with the slip. The
positive third term in (18) (in view of K′ < 0, Appendix A)
corresponds to the fault strengthening due to the hydro-
thermal diffusion from the pressurized and heated shear
zone. When changes of f are neglected along the slipping
patch (or these changes due to the onset/cessation of slip
take place over negligibly small zones near the patch ends),
the adiabatic-undrained weakening (dtf/dx < 0) dominates
the fault response in the immediate vicinity of the rupture
edge; while the diffusive strengthening (dtf/dx > 0) dom-
inates the response in the vicinity to the trailing edge due to
the vanishing 2nd term in (18). We note that non-monotonic
character of stress changes along a slipping patch also arises
in other physically-motivated models of dynamic fault
weakening (e.g., flash-heating on asperities [Rice, 2006;
Noda et al., 2009]). We show next that it is a prerequisite for
intrinsic self-healing of the slip for steadily propagating
elastodynamic pulses.
[28] Asymptotic considerations of the elastodynamic

equation (16) near the patch edges (Appendix B) show that,
in general, the slip velocity vanishes as the square root of the
distance from an edge, and the shear stress rate along the
locked parts of the fault is singular at the edges. Specifically,
at the trailing edge, (B3) gives V(x) � vr(kL/�m)

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p
and

dt/dx � kL/(4
ffiffiffiffiffiffiffiffiffiffiffi
x� L

p
) with kL given by (B4) when the

trailing edge is approached from the slipping and locked
sides, respectively. From (18), the strength recovery rate dtf/
dx > 0 behind the trailing edge can be driven by frictional
aging [e.g., Perrin et al., 1995] (if the 1st term in (18) is
positive), and/or by pore pressure dissipation (the 3rd term in
(18)). Since this rate is bounded at x = L, the fault healing
requires that the rate of stress rebound dt/dx there is non-
singular, or, according to (B3) and (B4),

kL ≡ � 4

p
ffiffiffi
L

p
Z L

0

ffiffiffiffiffiffiffiffiffiffiffi
x

L� x

r
dt
dx

dx ¼ 0: ð19Þ
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Under this condition, V(x)� (L� x)3/2 as x→ L�, and dt/dx
is not only bounded, but is also continuous at the trailing
edge, dt/dx = dtf/dx at x = L. Consequently, locked slip
immediately behind the trailing edge now requires

d2t=dx2 < d2tf=dx2 as x→Lþ: ð20Þ

It is not difficult to see, by differentiating (B1), that d2t/
dx2 = �∞ as x → L+. On the other hand, differentiating (18)
and using the V-asymptotics with kL = 0 and properties of the
kernel K stated in Appendix A, one can show that d2tf/dx

2 is
bounded in the same limit. Thus, condition (20) for locked
slip in the immediate vicinity of the trailing edge is satisfied
automatically when (19) is. We do not furnish a general
proof that (19) is also a sufficient condition for locked slip at
finite distances behind the trailing edge, but do observe that
it is the case for the self-healing pulse solutions developed in
this work.
2.2.1. Physical Relevance of Pulse Solutions With and
Without Intrinsic Slip Healing
[29] Freund [1979], Heaton [1990], Nielsen and Madariaga

[2003], and Rice et al. [2005] among others considered slip-
pulse models where no specific physics was included to
explicitly model the healing process, or, in fact, validate that
the locked slip condition is satisfied behind the rupture pulse.
Nevertheless, these solutions have been very useful in study-
ing characteristic features of pulse-like ruptures and related
scaling constraints [e.g., Heaton, 1990; Rice et al., 2005]. In
this paper, we do not aim at accounting for all healing
mechanisms that may be physically relevant. Notably, we do
not explicitly consider the dependence of friction coefficient
on the rate and state of slip, which can alone generate self-
healing pulses [Perrin et al., 1995; Rubin and Ampuero,
2009]. Yet, we account for a slip healing process driven by
the pore pressure and temperature diffusion away from the
shear zone, which, as we show, does generate the unique self-
healing pulse solution for a fixed value of background stress.
This solution is the physically relevant one if the model
assumption (that of constant sliding friction) is approximately
valid, and if the pore pressure diffusion is indeed the dominant
slip-healing mechanism. From this perspective, the slip-pulse
solutions of our model that do not have the intrinsic slip
healing property, i.e., do not satisfy constraint (19), may still
be relevant approximations of the solutions to more physically
complete models that possess the intrinsic healing feature,
and, thus, are not a priori discarded. An example of such “non-
healing”, but possibly relevant, pulse solution within our
model is the undrained-adiabatic pulse.

3. Slip-Pulse Equations for Constant Friction and
Method of Solution

[30] We focus on the slip-pulse solutions under the
assumption of a constant friction along the slipping part of
the fault, f(x) = f0, x ∈ (0, L). One can rewrite the elasto-
dynamic equation (16) in terms of the normalized slip rate
V/Vc, slip d/dc, and coordinate x/L as,

L

Lc

t xð Þ
t0

� tb

t0

� �
¼ 1

2p

Z L

0

V x′ð Þ
Vc

dx′

x′� x
with

V xð Þ
Vc

¼ d d=dcð Þ
d x=Lð Þ :

ð21Þ

Here Lc and Vc are characteristic values defined by

Lc ¼ �m
t0

dc �m ¼ m F vr=csð Þð Þ; Vc ¼ dc
T

ð22Þ

and T = L/vr is the slip duration (dislocation rise time).
The fault constitutive equation (15) with f = f0 = t0/�s0 is:

1� tf xð Þ
t0

¼
Z x

0

tf x′ð Þ
t0

V x′ð Þ
Vc

K T

T ∗
x� x′

L
;
ahy

ath

� �
dx′

L
; ð23Þ

the undrained-adiabatic limit of which is given by the
exponential slip-weakening law

T ≪ T ∗ : tf xð Þ=t0 ¼ exp �d xð Þ=dcð Þ: ð24Þ

[31] It is shown in the next section that solution d(x) of
equations (21)–(23) and (17) in the limit of small (d ≪ dc),
undrained (T≪ T*) slip exists only for a specific value of the
normalized pulse length L/Lc, and that this solution is
unique. We presume by continuity that the unique solution
exists for the entire range of problem parameters (although
no rigorous proof is furnished here).
[32] The scaling of the governing equations suggests that

the solution for the normalized distributions, d/dc, V/Vc, and
t/t0 versus x/L, and for the normalized patch length L/Lc are
a function of the normalized background loading tb/t0,
pulse duration T/T*, and the diffusivity ratio ahy/ath. In
other words, for a given loading tb/t0 of a fault with fixed
ahy/ath, there exist a multitude of pulse solutions with dif-
ferent rupture velocity vr parameterized by the pulse dura-
tion T/T*. It is an additional physical constraint, such as the
intrinsic slip healing property, (19), that would allow the
fault to select a unique slip-pulse solution.
[33] Once the slip solution of (21) and (23) is known, the

normalized pressure and temperature perturbations on the
fault can be calculated from

p xð Þ � p0
�s0

¼ 1� tf xð Þ
t0

; ð25Þ

Q xð Þ �Q0

�s0=L
¼
Z x

0

tf x′ð Þ
t0

V x′ð Þ
Vc

A T

Tth

x� x′

L

� �
dx′

L
; ð26Þ

respectively. (Here (26) is a normalized form of (13)). In the
undrained limit, tf(x) is given by (24), and the normalized
pressure/temperature perturbations (25) and (26) are
identical.
[34] In the following sections 4–6, we discuss details of

various numerical and analytical slip-pulse solutions. The
numerical approach relies on the expansion of the slip-rate
distribution into the series of Chebyshev polynomials with
appropriate asymptotics (B3) at the rupture ends; which then
allows the evaluation of the elasticity equation (21) for the
corresponding stress series expansion. Using the slip-rate
and the stress expansions to evaluate the constitutive law
(23) at a number of collocation points along the patch allows
us to solve for the expansion coefficients and the normalized
length of the patch. Appendix D presents the details of the
method and its specializations to the various limiting cases
of interest here.
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[35] Section 4 considers a small-slip solution, when the
fault is stressed almost to its maximum strength (t0 � tb ≪
t0), as a function of the normalized slip-pulse duration T/T*.
It is in this limiting case of the fault loading, we show for the
first time that a slip-pulse solution exists in a finite range of
pulse duration, 0 ≤ T/T* ≤ (T/T*)s.h., where the lower and
upper bounds correspond to the undrained and the partially-
drained, self-healing slip solutions, respectively. Existence
of the upper bound implies the nonexistence of a steady slip
pulse on a plane (i.e., pulse with a drained shear zone, T/T*
≫ 1) in the model with a constant friction along the slipping
patch. The results for the two bounding solutions are pre-
sented in section 5 for a range of the background stress.
Section 6 follows with a detailed investigation of the large
slip limit of these solutions when the background stress is
low compared to the maximum fault strength (tb ≪ t0).
[36] The numerical solutions for a partially-drained slip

pulse assume a Gaussian shear distribution across the fault
zone.

4. Small Slip Pulse (t0 � tb ≪ t0)

[37] When the background shear stress is close to the
maximum fault strength, t0 � tb ≪ t0, the fault weakening
during a slip event is expected to be small. This suggests that
the corresponding slip and its rate are also small. Conse-
quently, the constitutive law (23) can be linearized by
replacing the shear heating rate tfV with t0V under the
integral.

4.1. Undrained-Adiabatic Limit (T ≪ T*)

[38] In this limit, the slip-weakening law (24) reduces to
tf(x)/t0 ≃ 1 � d(x)/dc. Using the latter to evaluate (21) along
the patch (t = tf), and dividing the result by a small
parameter � ≡ (t0 � tb)/t0 ≪ 1, we obtain a linear integral
equation

L

Lc
1� d xð Þ

�dc

� �
¼ 1

2p

Z L

0

V x′ð Þ
�Vc

dx′

x′� x
: ð27Þ

This confirms that the slip and slip rate are small, O(�)
fractions of the characteristic values dc and Vc, respectively.
It is shown in Appendix C that the solution of (27) for patch
length L and slip rate V(x) is unique, and is mathematically
related to the solution of auxiliary eigen problem considered
by Uenishi and Rice [2003]. This solution is given by L ≃
1.158 Lc and the distributions of the slip rate, slip, and stress
shown in Figure 4 (marked by T/T* = 0). V(x) is symmetric
with respect to the center of the patch, x = L/2. This, in turn,
corresponds to the antisymmetry of 1 � d(x)/(�dc) and t �
tb, and suggests the exact expressions for the total slip and
the dynamic stress drop, respectively:

dL ¼ 2 1� tb

t0

� �
dc; tb � tL ¼ t0 � tb: ð28Þ

4.2. General Case

[39] The normalized length of the slipping patch and the
total accumulated slip are shown in Figure 3 for two
bounding values of the diffusion ratio, ahy/ath = 1 (black

lines) and ahy/ath = 0 (gray lines), respectively. (Note, that
due to the symmetry of the kernel in (23), K(�, c) = K(�, 1/c)
where c = ahy/ath, the normalized solution with ahy/ath = ∞
is identical to the one with ahy/ath = 0). Figure 3 shows that
the maximum variation of the small-slip solution with the
diffusivities’ ratio is about 20%, which is in-line with the
extent of the kernel K dependence on ahy/ath. Larger con-
trast between the thermal and hydraulic diffusivities within
the fault zone results in somewhat larger slip accommodated
on a larger slipping patch over a shorter slip duration (i.e., at
higher overall slip velocity).
[40] The solution’s lower bound corresponds to the

undrained solution discussed above, while the partially-
drained, self-healing pulse corresponds to the maximum slip
duration, which is a finite multiple of the characteristic dif-
fusion time: Ts.h. ≃ 2.536 T* for ahy/ath = 1 and 2.047 T* for
ahy/ath = {0, ∞}. Attempted solutions with T > Ts.h. result in
a non-physical backslip near the trailing edge of the rupture.
Consequently, the slip pulse on a plane when T ≫ T* does
not exist in the model with a constant fault friction. A gen-
eral proof of this conjecture not limited by the small slip
assumption and is given in Appendix E.
[41] Distributions of the slip velocity, slip, and stress in

the pulse solution for ahy/ath = 1 are shown in Figure 4 for
various values of the normalized pulse duration. We observe
that higher values of the maximum slip rate are achieved
closer to the advancing edge of the rupture with the
increasing drainage of the shear zone, i.e., increasing nor-
malized slip duration T/T*, while slip rates slower than in the
undrained solution are predicted closer to the trailing edge
(Figure 4a). This results in higher initial rates of fault
weakening for higher values of T/T*, which changes to
strengthening as the trailing edge is approached (Figure 4c)
and diffusion overcomes the diminished effect of shear
heating (due to diminished shear stress), resulting in pore
pressure dissipation. This is consistent with the observed
maximum temperature that is reached at intermediate dis-
tance along the patch (Figure 4d), and, consequently, does
not correspond to the maximum level of accumulated slip
(reached at the trailing edge).

5. General Slip-Pulse Solution

[42] As seen from the analysis of a small-slip pulse, the
solution is bounded by the (i) undrained solution, and (ii)
partially-drained, self-healing slip solution, that correspond
to the minimum and the maximum slip duration, respec-
tively. The minimum (undrained slip) duration is undeter-
mined within the model of a fault with a constant friction,
other than that it is small compared to the diffusion timescale
T*. The maximum (self-healing slip) duration is a multiple
of T*, the value of which is defined as a function of the
background stress normalized by the nominal strength.
General results pertaining to the normalized form of the two
bounding solutions as a function of tb/t0 are presented next.

5.1. Normalized Slip, Slip Duration, and Pulse Size

[43] Figure 5 shows the normalized slip duration T/T*
(Figure 5a), length of the slipping patch L/Lc (Figure 5b),
and total slip dL/dc (Figure 5c). We observe that the slip
duration in the self-healing pulse indeed scales with the
hydrothermal diffusion timescale T* when background

GARAGASH: SLIP PULSE WITH THERMAL PRESSURIZATION B04314B04314

8 of 37



stress is a moderate fraction of the strength. This scaling
breaks down for small values of tb/t0, when T/T* becomes
very small while the total accumulated slip dL/dc (Figure 5c)
large, in what is further referred to as the large-slip solution.
The corresponding large-slip asymptotic solution is devel-
oped in section 6, and is given, in the first approximation, by
the undrained solution characterized by diverging normal-
ized slip dL/dc ≈ (tb/t0)

�1 and normalized patch size L/Lc ≈
(ptb/t0)

�2, and, for the self-healing pulse, vanishing slip
duration T/T* ∝ (tb/t0)

2/3 (where the coefficient of pro-
portionality is O(1)). In the other limit, when the background
stress is large, tb/t0 ≈ 1, the solutions approach the small-
slip asymptotic solution (section 4), which corresponds to
the maximum slip duration and the minimum (but finite)
patch size and the vanishing slip. The effect of the diffu-
sivities’ ratio, as discussed above for the small-slip limit, is
to diminish the slip duration and increase the patch size and
the slip.
[44] As already anticipated from the small-slip solution

(section 4), more slip is accumulated in a partially-drained
pulse than in the undrained one at the same background
stress level (Figure 5c). A similar observation can be made
regarding the size of the patch over which this slip is accu-
mulated. Although, the rupture velocity is indeterminate in
the undrained solution (due to the indeterminacy of the
corresponding slip duration), it should be higher than that of
the partially-drained pulse (see section 7.1), which therefore
would result in smaller values of the characteristic length
Lc = (mdc/t0)F(vr), (22), for the undrained pulse. Conse-
quently, (L/Lc)

part.dr. > (L/Lc)
und (Figure 5b) implies the

same inequality for L.

5.2. Development of Slip, Stress, Pore Pressure, and
Temperature in the Pulse

[45] Profiles of the normalized slip rate (1 � tb/t0)
�1 V/Vc

(a–b), slip (1 � tb/t0)
�1 d/dc (c–d), shear stress t/t0 and

strength tf/t0 (e–f), and the temperature rise (Q � Q0)/(�s0/
L) (g–h) along the fault plane in the undrained pulse and the
partially-drained, self-healing pulse with ahy/ath = 1 are
shown in Figure 6 for various values of the normalized
background stress tb/t0. The self-healing pulse solution with
ahy/ath = 0, ∞ is shown in Figure S2 in the auxiliary
material.1

[46] We first acknowledge the similarity of the undrained
pulse (left) and partially-drained, self-healing pulse (right)
solutions, which underscores the fact that the solutions are
identical in the vicinity of the advancing rupture front, where
response is essentially undrained. The differences in the two
solutions develop further away from the advancing front
where the falling efficiency of the thermal pressurization
(with decreasing shear stress) is overcome by the fluid and
heat exchange with the fault surroundings in the latter case.
This similarity is manifested in distributions of slip
(Figures 6c and 6d) and of the rate of slip accumulation
along the normalized length of the patch (Figures 6a and 6b)
in the two solutions, with somewhat larger values in the
partially-drained case.
[47] Note that the characteristic slip rate Vc that is used to

scale V is defined in terms of the slip duration, Vc = dc/T,
and, therefore, varies with the background stress in the par-
tially-drained pulse solution, and is indeterminate in the
undrained pulse solution. Since the slip in the undrained
pulse develops over much shorter times and distances than in
the partially-drained one, the absolute value of the slip rate
would have to be much higher for those pulses.
[48] Both pulse solutions predict asymmetric slip rate

distributions characterized by very high normalized rates
near the advancing tip when the background stress is small.
This localization of the slip rate can be further gauged from

Figure 3. Small slip solution: normalized slipping patch and total slip versus normalized slip duration.
Black and gray lines correspond to ahy/ath = 1 and ahy/ath = 0, ∞, respectively.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JB008889.
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the contrast between the maximum Vmax and the average
〈V〉 = dL/T values of the slip rate, which can be estimated
based on the asymptotic solution of section 6 as Vmax/〈V〉 ≈
0.1376 (tb/t0)

�1 for tb ≪ t0 in the entire range of drainage
conditions (from the undrained to the partially-drained,
self-healing).
[49] Evolution of the stress/strength along the slipping

patch is characterized by the initial undrained weakening,
followed, in the case of the partially-drained pulse, by the
partial strengthening. In the latter case, the distance behind
the advancing edge of the pulse (Lbreak) and the slip value
(dbreak) corresponding to the minimum dynamic stress
(tbreak) (see also Figure 1) are shown in Figures 5b and 5c,
respectively, by dotted lines. As discussed earlier, it is the
partial restrengthening of the fault in a partially-drained
pulse that allows for the healing of slip in its wake (x/L > 1 in
Figure 6f), as manifested by faster recovery of the strength
(long-dashed line) than that of the stress (solid line). The
extent of the fault dynamic weakening is moderated by the
ratio of the driving stress to the nominal strength, such that
more weakening is required to drive a pulse at a lower

background stress, and near complete dynamic loss of fault
traction is observed for tb/t0 ≲ 0.1.
[50] Evolution of the normalized pore fluid pressure is the

mirror image of that of the normalized stress, (25), i.e., the
fault weakening corresponds to the fluid pressurization, and
the fault restrengthening to the decreasing pore pressure due
to the diffusive transport away from the fault. The normal-
ized temperature rise develops similarly to that of the pore
pressure (Figures 6g and 6h), and exactly so when ahy/ath =
0. For ahy/ath > 0, the heat diffusion “lags behind” that of
the pore pressure, such that, for example, the onset of the
cooling in a partially-drained, self-healing pulse takes place
after the onset of the depressurization (the fault restrength-
ening), see Figures 6f and 6h for ahy/ath = 1, and Figure S3
in the auxiliary material for other values of the diffusivity
ratio.
[51] The peak temperature rise along the pulse, Qpeak �

Q0, takes place at the peak (intermediate) value of the slip
for the undrained (partially-drained) pulse. Qpeak � Q0 is
seen to increase with decreasing magnitude of the back-
ground stress up to the maximum value closely

Figure 4. Small slip solution with ahy = ath: profiles of the (a) normalized slip velocity, (b) slip, (c) devi-
ation of the stress from the background level, and (d) temperature rise for various values of the slip dura-
tion, T/T* = {0, 0.3, 0.6,…, 2.4, 2.5357}. (Slip and slip velocity are shown within the slipping patch only.)

GARAGASH: SLIP PULSE WITH THERMAL PRESSURIZATION B04314B04314

10 of 37



approximated by �s 0/L. More detailed investigation (see
Figure S4 in the auxiliary material) actually shows that the
maximum magnitude of the peak temperature rise corre-
sponds to a small, but finite value of tb/t0, and which

increases slightly with the diffusivity ratio: (t
b

t0
, Qpeak�Q0

�s0=L
) ≈

(0, 1), (0.08, 1.021), and (0.26, 1.129) for ahy/ath = 0, 1,
and ∞, respectively.

5.3. Fracture Energy

[52] For continuous fault slip-weakening (e.g., the
undrained pulse, Figure 6e), the fracture energy can be
estimated as the area under the t versus d curve and above
the minimum dynamic stress line, t = tL [Ida, 1972; Palmer
and Rice, 1973]. In this case, the fracture energy can be
simply expressed as the product of the dynamic stress drop
and the total slip, G = (tb � tL)dL. The normalized stress
drop and fracture energy of the undrained slip pulse are
shown in Figures 7a and 7b, respectively, by dashed lines.
G varies between the maximum value t0dc corresponding to
the vanishing background stress tb ≪ t0 (based on the
complete dynamic loss of the fault strength) and the mini-
mum value 2 (1 � tb/t0)

2 t0dc when tb ≈ t0, (28).
[53] In a more general case, when the initial slip-weaken-

ing response may be followed by slip-strengthening (such as
the case of the partially-drained, self-healing pulse,
Figure 6f), the definition of fracture energy can be general-
ized, following Tinti et al. [2005] (using their “breakdown
work Wb”),

G ¼
Z Lbreak

0
t � tbreakð ÞV dx ð29Þ

where, as before, Lbreak = distance from the rupture edge
where the stress is at its minimum dynamic value tbreak
(Figure 1). The stress drop and fracture energy of the self-
healing slip pulse are shown in Figures 7a and 7b, respec-
tively, by solid lines. It is interesting to point out that the
fracture energy of the self-healing pulse can be closely
approximated by the classical formulae (dynamic stress
drop � slip), if understood in terms of the maximum values
incurred during the pulse, i.e., G ≈ (tb � tbreak)dL, see the
corresponding dotted line in Figure 7b.
[54] Rice et al. [2005] furnished the analytical solution to

the model of a steady pulse driven by a prescribed, linear
stress drop with the distance from the advancing tip, down to
a certain residual dynamic level. They have used this solu-
tion to constrain the fracture energy scaling with the pulse
parameters: 1/p ≤ G/(�mdL

2/L) ≤ 2/p, where the lower bound
corresponds to the instantaneous dynamic stress drop (at the
advancing tip) and the upper bound corresponds to gradual
weakening over the entire pulse length. Our solutions for the
spontaneous TP slip pulses land further support to this
scaling: Figure 8 shows that Rice et al.’s lower bound for the
scaled fracture energy (1/p) is recovered from our solutions
in the large slip limit (tb ≪ t0), while the upper bounds in

Figure 5. (a) Scaled slip duration, (b) slipping patch, and
(c) total slip versus background stress in the undrained pulse
solution (dashed) and the partially-drained, self-healing
pulse solutions (solid) with ahy/ath = 1 and {0, ∞}, respec-
tively. Slip duration T is undetermined in the undrained solu-
tion, while T/T* = 0 since T* → ∞ in this limit. Dotted lines
in Figures 5b and 5c correspond to the scaled distance from
the rupture edge and the slip value, respectively, when the
stress is at its minimum t = tbreak in the partially-drained,
self-healing pulse. The top and bottom curves in the sets of
solid and dotted lines in Figures 5b and 5c correspond to
ahy/ath = 1 and {0, ∞}, respectively.
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our solutions are attained in the small slip limit (tb ≈ t0), and
are somewhat smaller than 2/p. The stress drop in a spon-
taneous slip-pulse solution (like the ones considered in this
work) develops in response to a particular fault constitutive
response, and is usually nonlinear with the distance along
the pulse. Details of this spatial distribution (i) are inconse-
quential when the drop is localized to a vicinity of the
advancing tip (thus, the exact agreement of the lower bound
values of the scaled fracture energy), and (ii) do matter when
the drop is distributed along the pulse (thus, differing values
for the upper bound).
[55] Finally, we note that the fracture energy of the par-

tially-drained, self-healing TP pulses depends ever so
slightly on the diffusivity ratio ahy/ath to be noticeable in
Figure 7b: maximum variation (≈3%) takes place in the
small slip limit, where the asymptotic solution gives (1� tb/
t0)

�2(G/t0dc) ≈ 1.635 and 1.69 for ahy/ath = 1 and {0, ∞},
respectively. When scaled with the slip and the patch length

(Figure 8), the fracture energy is independent of ahy/ath to
the precision of the numerical solution.

6. Large Slip Pulse (tb ≪ t0)

6.1. Undrained-Adiabatic Boundary Layer at the
Advancing Tip

[56] When the background stress is small compared to the
nominal strength (tb ≪ t0), the dynamic stress drop is
complete and the corresponding fast slip growth and shear
strength reduction are mostly confined to a boundary layer
(BL) near the advancing tip of the rupture. The BL approx-
imation corresponds to the problem of a semi-infinite rupture
(L/Lc → ∞) driven by vanishing background stress (tb/t0 →
0). Corresponding asymptotic form of the elastodynamic
equation (16) is

tBL xð Þ
t0

¼ 1

2p

Z ∞

0

VBL x′ð Þ
t0=�mð Þvr

dx′

x′� x
; ð30Þ

Figure 6. Profiles of (a and b) normalized slip velocity, (c and d) slip, (e and f) stress and strength
(long-dash lines), and (g and h) temperature rise in the undrained pulse (Figures 6a, 6c, 6e, and 6g)
and the partially-drained, self-healing pulse with ahy = ath (Figures 6b, 6d, 6f, and 6h) for various
values of the background stress, tb/t0 = {0.1, 0.2, …, 1}. Small-slip asymptotic solutions correspond
to tb/t0 = 1. Large-slip asymptotic solutions are shown by short-dash lines for tb/t0 = 0.1, 0.2.
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where the superscript refers to the BL approximation. The
normalized relation between the slip and the slip rate, 2nd in
(21), can be rewritten in the scaling suggested by (30) as

VBL xð Þ
t0=�mð Þvr ¼

d dBL=dc
� �
d x=Lcð Þ : ð31Þ

Scaling of equations (30)–(31) together with the undrained
law (24) suggests that the normalized field variables

~V ¼ VBL

t0=�mð Þvr ;
~d ¼ dBL

dc
; ~t ¼ tBL

t0
ð32Þ

are of order unity within the BL with the spatial scale x � Lc.
[57] Vanishing shear strength outside of the crack tip

boundary layer (x ≫ Lc) leads to the condition characterized
in fracture mechanics as the “small scale yielding” [Rice,
1968]. It states that the slip outside of the immediate
vicinity of the rupture front (x ≫ Lc) can be described by
the classical inverse square root singularity solution, dBL =
(K/�m)

ffiffiffiffiffiffiffiffiffiffi
8x=p

p
, where K =

ffiffiffiffiffiffiffiffiffi
2�mG

p
is the stress intensity factor

required to propagate the crack. Upon evaluating the fracture
energy based on the undrained constitutive law (24) and the

assumption of large slip resulting in the complete loss of
strength, G =

R
0
∞ tf dd = t0dc, one can express the far field

asymptotics for the slip and slip rate, (31), as

x ≫ Lc :
dBL

dc
¼ 4ffiffiffi

p
p

ffiffiffiffiffi
x

Lc

r
;

VBL

t0=�mð Þvr ¼
2ffiffiffi
p

p
ffiffiffiffiffi
Lc
x

r
: ð33Þ

[58] The BL solution for the normalized slip rate, slip,
and stress, (32), as a function of the normalized coordinate
~x = x/Lc, is obtained in section F1 and shown in Figure 9.
Dashed lines represent asymptotic behavior of the slip rate
in the near field, ~V = 1.848

ffiffiffiffiffiffiffiffiffi
x=Lc

p
(x ≪ Lc), and the far

field, ~V = 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Lc=px

p
(x≫ Lc). The corresponding far field slip

asymptote ~d≃ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
x=pLc

p
suggests that ~d is large when x≫ Lc,

and the normalized stress ~t = exp(�~d ), (24) with (32), is
exponentially small outside of the tip boundary layer of
thickness Lc.
[59] An important implication of this boundary layer

solution is that the details of the fast, large slip rate changes
near the advancing tip (x � Lc) of a large-slip rupture oper-
ating at small background stress can be simply modeled by

Figure 6. (continued)
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the inverse square root singularity (33) on the scale of the
rupture (x � L ≫ Lc). Two such solutions corresponding to a
large-slip rupture pulse under the undrained conditions and
the partially-drained, self-healing slip conditions, respec-
tively, are discussed next.

6.2. Undrained-Adiabatic Large-Slip Solution

[60] According to section B3, the slip rate and shear
stress distributions along the finite rupture pulse character-
ized by the complete stress drop localized to the tip bound-
ary layer is simply given by the BL solution multiplied byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=L

p
, (B9). This correction factor is irrelevant for the

stress, which is exponentially small outside of the boundary
layer. For the slip velocity, in view of the scaling identity
(L/Lc)Vc = (t0/�m)vr, we have

V

Vc
¼ L

Lc

ffiffiffiffiffiffiffiffiffiffiffi
1� x

L

r
~V

x

Lc

� �
ð34Þ

where ~V (x/Lc) is given in Figure 9a. (The slip distribution
follows by integration). The solution outside of the boundary
layer (outer solution) follows from (34) with (33),

Lc ≪ x ≤ L :
V

Vc
¼ 2ffiffiffi

p
p

ffiffiffiffiffi
L

Lc

r ffiffiffiffiffiffiffiffiffiffiffi
L� x

x

r
ð35Þ

A useful analytical scaling of the background stress and the
total slip with the pulse size in the large-slip, undrained
solution

1

tb=t0
¼

ffiffiffiffiffiffiffiffi
p
L

Lc

r
¼ dL

dc
ð36Þ

is recovered from (B11), tb/t0 = 0.5~V (L/Lc), evaluated using
the far filed asymptote of ~V (~x), and from the integration of
(35), respectively.

6.3. Partially-Drained, Large-Slip Solution

[61] As seen from the asymptotic and numerical solutions
for the undrained pulse with tb ≪ t0, the large, rapid slip
within the boundary layer at the advancing rupture tip pro-
duces a near complete loss of the fault strength (see, e.g., the
stress profile for tb/t0 = 0.1 in Figure 6e), and the loss of the
shear heating power. As the result of the diminished TP rate,
the pore fluid and/or heat drainage (when allowed for) is

Figure 7. (a) Normalized dynamic stress drop at the trailing edge (tb � tL)/t0 and (b) normalized frac-
ture energy G/t0dc versus background stress in the undrained pulse solution and the partially-drained, self-
healing pulse solutions with ahy/ath = 1 and {0, ∞}. Dotted lines in Figure 7a show the maximum value of
the normalized dynamic stress drop along the slipping patch, (tb � tbreak)/t0, in the partially-drained solu-
tions. Dotted lines in Figure 7b show normalized quantities related to the fracture energy, as defined in the
graph. The fracture energy parameters of the partially-drained solutions plotted in Figure 7b are approxi-
mately independent of ahy/ath.

Figure 8. Scaled fracture energy G/(�mdL
2/L) versus back-

ground stress.
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expected to cause a small, gradual dissipation of the pore
pressure from a high, near-lithostatic value immediately
behind the advancing tip BL, and the corresponding small
recovery of the fault strength with the increasing distance
from the advancing tip. This behavior is apparent in the
numerical solution for the partially-drained, self-healing
pulse at, for example, tb/t0 = 0.1 (Figure 6f). Although
deviation from the undrained conditions and the strength
recovery away from the advancing tip of the rupture are
small in large slip events, they are expected to govern the
slip healing and, therefore, duration of the pulse under the
stated conditions.
[62] Let us decompose the slip rate and the shear stress in

the partially-drained, large-slip pulse into the undrained
value and its perturbation due to the hydrothermal diffusion,
respectively,

V xð Þ ¼ V und xð Þ þDV xð Þ; t xð Þ ¼ tund xð Þ þDt xð Þ; ð37Þ

where V und(x) is given by (34) and tund(x) = t0 exp
(�dund(x)/dc), (24). Since t

und is exponentially small outside
of the boundary layer at the advancing tip, perturbation
Dt(x) is expected to be dominant there (yet still much
smaller than the nominal stress level t0), i.e.

Lc ≪ x ≤ L : t xð Þ ≃ Dt xð Þ ≪ t0: ð38Þ

The perturbation DV(x) is expected to be small compared to
Vund(x) everywhere along the pulse with the exception of the
trailing edge. Indeed, the slip healing requires that V(x)
vanish as (L � x)3/2 when x → L, and, therefore, DV(x) ≃
�Vund(x) ≃ (vr/�m )kL

und
ffiffiffiffiffiffiffiffiffiffiffi
L� x

p
for x near L, where kL

und =
(2/

ffiffiffi
p

p
) t0

ffiffiffiffiffi
Lc

p
/L > 0 is recovered from (35).

[63] These considerations suggest that the perturbation of
the undrained solution introduced by the hydrothermal dif-
fusion is localized to a boundary layer near the trailing edge
of the pulse. In the following, we develop an asymptotic
expression for the fault constitutive law under nearly

undrained conditions, which we then use to formulate and
solve the equations governing the BL at the trailing tip. The
overall asymptotic solution (37) for the large-slip, self-
healing rupture pulse is also presented.
6.3.1. Asymptotic Form of the Constitutive Law
[64] For a nearly undrained pulse (T ≪ T*), the convolu-

tion kernel in the fault constitutive law (23) can be expanded
into Taylor series, K(z; ahy/ath) ≃ 1 + K′(0; ahy/ath)z where
z ≪ 1 and the prime denotes the partial derivative in the first
argument. Differentiating the resulting expression for (23) in
x/L, we obtain

� dtf
dx=L

¼ tf
V

Vc
� k

T

T ∗
1

dc

Z d

0
tf dd ð39Þ

where k ≡ �K′(0; ahy/ath) = �A′(0)(ahy + ath)/a, (A2), and
prime denotes the derivative in the first argument. The sec-
ond term in the right hand side of (39), when non-zero,
represents the non-trivial, first-order diffusion correction to
the otherwise undrained fault response. It can be shown from
(A1) that A′(0) = g″(0)/4, which, for example, suggests that
k > 0 for all shear distributions which are concave at y = 0,
g″(0) < 0. For the Gaussian distribution, g″(0) = �2p, and
k = p/4 (ahy/ath = 1) or p/2 (ahy/ath = 0, ∞). (We note that
this analysis would have to be revised for shear distributions
with g″(0) = 0, such as a uniform shear distribution).
[65] The constitutive law (39) can be simplified by

approximating the integral in the right hand side to the first
order,

R
0
d tf dd/dc ≃ t0(1 � exp(�d/dc)), and limiting the

considerations to large slip, d ≫ dc:

Lc ≪ x ≤ L : � dtf=t0
dx=L

¼ tf
t0

V

Vc
� k

T

T ∗
: ð40Þ

Similar considerations for the temperature, (26), yield

1

�s0=L
d Q�Q0ð Þ

dx=L
¼ tf

t0
V

Vc
� kth

T

T ∗
; ð41Þ

Figure 9. Boundary layer near the advancing tip in the large-slip, undrained solution: variation of (a) the
normalized slip velocity and (b) the normalized stress and slip with the distance from the tip x = 0. The
near and far field slip velocity asymptotes are shown by dashed lines.
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where kth ≡ �A′(0) ath/a. Eliminating the heating term tfV/
(t0Vc) between (40) and (41) and integrating gives the
relation between the temperature change and the strength:

Lc ≪ x ≤ L :
Q xð Þ �Q0

�s0=L
¼ 1� tf xð Þ

t0
þ khy

T

T ∗
x

L
; ð42Þ

where khy ≡ �A′(0) ahy/a. In (42), the x/L → 0 limit cor-
responds to the undrained conditions immediately outside of
the advancing tip BL.
6.3.2. Boundary Layer at the Trailing Tip and Overall
Solution
[66] Let us now consider the perturbed solution (37) and

its background stress value tb as a function of the patch
length L. Representing tb as the sum of the undrained value
(tb)und = (pL/Lc)

�1/2, the 1st in (36), and the perturbation
Dtb,

tb ¼ tb
� �und þDtb; with Dtb ¼ 1

p

Z L

0

Dt x′ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′ L� x′ð Þp dx′;

ð43Þ

where the Dtb-expression is based on (B7) and (37). In
view of (37) and (43), the elastodynamic equation (21)
becomes

L

Lc

Dt xð Þ
t0

�Dtb

t0

� �
¼ 1

2p

Z L

0

DV x′ð Þ
Vc

dx′

x′� x
: ð44Þ

[67] For a perturbation localized to a BL near the trailing
tip, L � x ≪ L, the 2nd in (43) suggests that Dtb ≪ Dt(x)
there. Changing to the coordinate system X = L � x moving
with the trailing tip, passing to the BL approximation in (44),
and neglecting Dtb, we have

L

Lc

DtBL Xð Þ
t0

¼ � 1

2p

Z ∞

0

DVBL X ′ð Þ
Vc

dX ′

X ′� X
; X ¼ L� xð Þ; ð45Þ

where the superscript refers to the BL approximation.
[68] On the other hand, the asymptotic form of the con-

stitutive law (40) applied within the boundary layer (X ≪ L)
can be written with the help of (37) and (38) as

dDtBL=t0
dX=L

¼ DtBL

t0
V und þDVBL

Vc
� k

T

T ∗
ð46Þ

where V und/Vc ≃ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X=pLc

p
in the vicinity of the trailing tip,

(35). The terms in the right hand side of (46) correspond to
the rates of weakening and strengthening of the fault due to
the shear heating and the hydrothermal diffusion, respec-
tively, and the left hand side is the normalized rate of stress
change with distance from the trailing tip.
[69] Order of magnitude estimates of the stress-rate and

the shear-heating rate in (46) show that they are comparable
at distances X � (L/Lc)

�1/3 L ≪ L from the trailing tip. The
latter range defines the BL spatial extent. The BL scaling of
the slip velocity and stress perturbations then follows from
the self-healing requirement, DVBL � �V und, and the elasto-
dynamics equation (45), respectively: DVBL � (L/Lc)

1/3 Vc

and DtBL � (L/Lc)
�2/3 t0. Further comparison of the dif-

fusion term to the other terms in (46) suggests the scaling for
the slip duration: T � (L/Lc)

�1/3 T*.

[70] The solution for the normalized slip rate, and shear
stress perturbations

DV̂ ¼ L

Lc

� ��1=3 DVBL

Vc
; Dt̂ ¼ L

Lc

� �2=3 DtBL

t0
; ð47Þ

as a function of the normalized distance from the tip

X̂ ¼ L� x

L=Lcð Þ�1=3L
ð48Þ

is obtained in section F2 and shown in Figure 10. The
corresponding values of the slip duration and the stress
perturbation at the trailing edge in this solution are:

T

T ∗
≃
0:3727

k
L

Lc

� ��1=3

;
DtL
t0

≃0:7583
L

Lc

� ��2=3

: ð49Þ

[71] The overall perturbation solution, valid along the
entire extent of the pulse, is given in terms of the BL solution
as (see section B3)

DV ;Dtf g ¼
ffiffiffiffiffiffiffiffi
x=L

p
� DVBL;DtBL
	 


: ð50Þ

A simpler form of this solution valid outside of the trailing
tip BL (i.e., the outer solution, (L/Lc)

�1/3 L ≪ L � x ≤ L) can
be obtained by replacing the BL solution in (50) with its far-
field asymptote, which normalized form is given by (F11).
Omitting the explicit expressions for brevity, we note the
resulting estimates DV/Vc � (L/Lc)

1/6 ln (L/Lc) and Dt/t0 �
(L/Lc)

�5/6 for the slip rate and stress perturbations, respec-
tively, away from the rupture tips.
[72] Adopting expression (B11) to the trailing tip BL,

Dtb ≃ �0.5(�m /vr) DVBL(0), and using (47) with (F11),
allows

Dtb

t0
≃

L

Lc

� ��5=6

0:035 ln
L

Lc
þ 0:5045

� �
: ð51Þ

Substitution of this expression in (43) yields an asymptotic
expression of tb in terms of L, the inverted form of which
is

L

Lc
¼ 1

p tb=t0ð Þ2 �
0:1158 ln tb=t0

� �� 0:7675

tb=t0ð Þ4=3
: ð52Þ

Here the 2nd term in the right hand side corresponds to
drainage perturbation to the otherwise undrained solution
(the 1st term).
[73] The large-slip asymptotic solution is shown in

Figure 6 by short-dash lines for two values of the back-
ground stress, tb/t0 = 0.1, 0.2. We observe that the asymp-
totics provides an excellent approximation to the numerical
solutions for the slip rate (Figures 6a and 6b), slip
(Figures 6c and 6d), and stress (Figures 6e and 6f) for both
the undrained pulse and partially-drained, self-healing pulse,
respectively. The asymptotic solution for the temperature in
the partially-drained pulse (Figure 6h) is not as accurate for
these values of tb. This betrays the dependence of the large-
slip asymptotics of the temperature (42) on the slip duration,
which asymptotic expression, the 1st in (49), is only accurate
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for much smaller values of tb ≲ 0.02t0 (can be shown from
comparison of the asymptotics with the numerical solution
in Figure 5a).

7. Discussion and Observational Constraints

7.1. Rupture Speed of Self-Healing Pulse and Its
Dependence on Shear Zone Thickness

[74] An implicit expression for the rupture velocity (L/T)
of the partially-drained, self-healing slip pulse can be
obtained from the normalized solutions for L/Lc and T/T* as
a function of tb/t0 (Figure 5), and the definition of Lc, (22):

vr=v∗
F vr=csð Þ ¼ V tb=t0

� �
with V ≡

L=Lc
T=T ∗

; ð53Þ

where

v∗ ¼ m
t0

dc
T ∗

¼ m
t0

rc
f L

4a
h

ð54Þ

is a characteristic rupture speed. The left hand side of (53) is
monotonically increasing function of vr from zero at vr = 0 to
the infinity at vr = the mode-specific limiting value (cs or cR).
The right hand side V has a formal meaning of the normal-
ized rupture velocity in the quasi-static limit, since

vr=cs ≪ 1 : vr=v∗ ¼ F 0ð ÞV tb=t0
� � ð55Þ

where F(0) = 1 and 1/(1 � n) for mode III and II ruptures,
respectively. Function V (tb/t0), shown by a heavy line in
Figure 11a for ahy/ath = 1, is decreasing with the value of
the background stress, from the infinite value at tb/t0 = 0
to the minimum value of order unity at tb/t0 = 1. The
corresponding asymptotics,

V ≈ 0:458 tb=t0
� ��8=3

tb ≪ t0
� �

; V ≈ 0:924 tb ≈ t0
� �

;

ð56Þ

are recovered from the large-slip ((36) and (49)) and the
small-slip (Figure 3) asymptotic solutions for ahy/ath = 1.
The rupture velocity of the self-healing pulse increases with
the diffusivities’ contrast by the maximum factor between 2
(when tb ≪ t0) to 1.38 (when tb ≈ t0) attained at ahy/ath =
0, ∞ (see also auxiliary material).
[75] Figure 11a illustrates the departure of the normalized

rupture velocity vr/v* from the quasi-static limit (55), shown
by a heavy line, for various fixed values of the ratio of the
shear to the characteristic speed (cs/v*). In the case with cs/
v* = 10, we track the increase of the mode III rupture speed
with decreasing magnitude of the background stress by
points “a” through “e”, corresponding to a set of values of vr/
cs from 0.1 to 0.9. The sonic rupture speed is reached
asymptotically for vanishing background stress - see the
intercept of the mode III vr/v*-curve with the vertical axis at
the value of cs/v*.
[76] The ratio cs/v*, when greater than unity, sets the range

of possible values of the rupture speed, such that vr scales
with v* at larger values of tb/t0 (close to 1), and with cs at
smaller tb/t0 (Figure 11a). Therefore, when cs/v* ≫ 1, slow,
quasi-static rupture pulses are becoming first possible in the
tb ≈ t0, small-slip limit, while the larger is the value of cs/v*
the wider is the range of the background stress (below the
nominal strength) in which the TP slip pulses propagate
aseismically. For example, a pulse propagating quasi-stati-
cally at 10% of the shear speed or less would require the
background stress in excess of 96% (35%) of the nominal
strength for cs/v* = 10 (cs/v* = 100), see Figure 11a. On the
other hand, when cs/v* ≲ 1, i.e., v* is larger than or of the
same order of magnitude as cs, seismic TP pulses are pre-
dicted in the entire range of the driving stress.
[77] Writing cs/v* = h/hdyna where

hdyna ¼ m
t0

rc
f L

4a
cs

ð57Þ

denotes a characteristic shear zone thickness, the above
observations about the rupture speed variability with the

Figure 10. Boundary layer near the trailing tip in the large-slip, partially-drained solution: variation of
the normalized perturbations of the (a) slip velocity and (b) stress with the distance from the tip x = L.
Dashed lines show the near (F8) and far (F11) field asymptotics.
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ratio cs/v* can be rephrased in terms of h/hdyna. Specifically,
one can state that thick shear zones, h ≫ hdyna, can support
aseismic slip transients for large enough ratio of the back-
ground stress to the nominal strength (tb/t0 ≤ 1), while thin
shear zones, h ≲ hdyna, can only harbor seismic rupture pulses.
[78] What are representative values of the threshold

thickness hdyna of a principal slip zone and of the charac-
teristic rupture speed v*? Using Byerlee’s friction f = 0.7, the
estimate of the hydraulic parameters for elastic fault walls at
7 km depth [Rice, 2006, Table 2], ahy = 0.86 mm2/s and L =
1 MPa/�C, together with �s0 = 126 MPa, rc = 2.7 MPa/�C,
ath = 0.7 mm2/s, m = 30 GPa, and cs = 3 km/s, we get hdyna ≈
5 mm and v* ≈ (16 m/s) (1 mm/h). Consequently, for this
values of fault parameters we observe that critically-stressed
faults (tb ≈ t0) would favor slow slip pulses with vr � v* <
1% of the shear speed if the principal shear zone is at least
half-a-millimeter thick. The choice of Byerlee’s friction is
justified with a degree of certainty for slow slip events
(SSEs), as well as for seismic ruptures under conditions
when no strong dynamic friction-weakening is activated by
the slip.
[79] The scaling of these results for hdyna and v* with the

most uncertain parameters is

hdyna
v∗

� �
¼

5 mm

16
m

s

1 mm

h

� �8<
:

9=
; 0:7

f

� �2 1 MPa=�C
L

� �

� a
3:1 mm2=s

� �
: ð58Þ

For example, using a dynamically-reduced value of friction
f = 0.25, and the estimate of the hydraulic parameters for
damaged fault walls [Rice, 2006, Table 2], ahy = 3.52 mm2/s
and L = 0.34 MPa/�C, while all else is the same, leads to

hdyna ≈ 300 mm and v* ≈ (891 m/s) (1 mm/h). In this case,
h � decimeter or more would be required for aseismic slip
for tb ≈ t0. On the other hand, limiting h to the maximum of
few cms (the upper bound in the observations of inferred
principal shear zones of large earthquakes on mature faults
[e.g.,Ma et al., 2006; Boullier et al., 2009]) or less precludes
aseismic slip-pulse propagation in the entire range of the
driving stress, and is therefore consistent with the assumed
dynamically reduced friction and the fault walls damaged by
rapid slip propagation.

7.2. Size of Self-Healing Pulse

[80] Two equivalent expressions for the slipping patch
length L can be obtained based on the normalized solutions
forL ≡ L/Lc andT ≡ T/T* as a function of tb/t0 (Figures 5b
and 5a), respectively:

L

L∗
¼ F vr=csð ÞL tb=t0

� �
and

L

L∗∗
¼ vr=csð ÞT tb=t0

� �
; ð59Þ

where

L∗ ¼ m
t0

dc ¼ m
t0

rc
f L

h; L∗∗ ¼ csT ∗ ¼ csh2

4a
ð60Þ

are the two corresponding patch lengthscales simply related
by L**/L* = cs/v*. Using either one of the two expressions
in (59) together with the vr-solution (Figure 11a), we plot the
normalized length of the pulse L/L* versus background
stress tb/t0 in Figure 11b for various fixed values of the
shear-to-characteristic speed ratio cs/v* (as in Figure 11a).
Figure 11b illustrates the departure of the pulse length
from the quasi-static limit (shown by a heavy line, L/L* =
F(0)L (tb/t0)) with the diminishing background stress and
increasing rupture speed. (The latter exemplified for the case

Figure 11. Partially-drained, self-healing pulse with ahy = ath: (a) normalized rupture velocity vr/F(0)v*
and (b) slipping patch L/L* versus background stress tb/t0 for various values of ratio cs/v* for mode III
(F(0) = 1) and mode II (F(0) = 4/3, dashed lines) cracks. Heavy solid and heavy dotted lines show the
limits of quasi-static and near-sonic (Figure 11b only) rupture propagation. In view of v* ∝ 1/h, ratio
cs/v* = h/hdyna can also be interpreted as the normalized shear zone thickness with hdyna = (m/t0)(rc/fL)
(4a/cs). Quasi-static rupture pulses can only exist on “thick” shear zones (h ≫ hdyna), where they are fur-
ther favored at larger background stress.
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with cs/v* = 10 by points “a” through “e”). As the back-
ground stress becomes small compared to the nominal
strength, the rupture speed approaches the sonic value and
the corresponding limit of the pulse length L/L** = T (tb/t0)
follows from the 2nd in (59) by setting vr = cs for a mode III
pulse. (Analogous expression, adjusted by the factor cR/cs, is
valid for a mode II, near-sonic pulse). The near-sonic
asymptote is exemplified in Figure 11b for the cases with
cs/v* = 10 and 100 by a heavy dotted line.
[81] Therefore, the size L of the slipping patch scales with

L* in the quasi-static and with L** in the near-sonic propa-
gation regimes, which, according to definitions in (60),
implies linear and quadratic scaling of L with the principal
slip zone thickness h, respectively. Since the corresponding
asymptotic expressions predict decreasing (∝L ) and
increasing (∝T ) patch size with the background stress
(tb/t0), the maximum patch size is achieved at small-to-
intermediate values of tb/t0, as seen in Figure 11b, and
corresponds to subsonic dynamic rupture with vr/cs of
roughly 0.7 to 0.8 (see the contour-line with vr/cs = 0.75 for
mode III crack, Figure 11b). Under these conditions, using
F(vr/cs) � vr/cs � 1 together with the asymptotics L �
(tb/t0)

�2, (36), and T � (tb/t0)
2/3, (49), in the respective

expressions for L in (59), and subsequently eliminating tb/t0
between them, we can obtain the following scaling for the
maximum patch size:

Lmax � L∗∗3=4L∗1=4 ¼ cs
4a

� �3=4 m
t0

rc
f L

� �1=4

h7=4 ð61Þ

Figure 12 shows the rupture velocity of the mode II pulse,
normalized by cs, versus the patch size in the Lmax-scaling,
L/(L**3/4 L*1/4), for various fixed values of cs/v* = h/hdyna.
Figure 12 validates the maximum patch scaling (61), by

showing that (i) Lmax/(L**
3/4 L*1/4) is O(1) irrespective of

value of the shear zone thickness h/hdyna, and, furthermore,
confined to a narrow range between 1.05 and 0.45 for
h/hdyna ≥ 10; and (ii) the maximum predicted patch size
correlates well with the average subsonic values of rupture
speed inferred from seismological observations (see the
shaded area in Figure 12).
[82] Using the estimate of the fault parameters for elastic

fault walls (see section 7.1) together with f = 0.7, we can
obtain L* ≈ 1.3 m � (h/1 mm) and Lmax � 66 m �
(h/1 mm)7/4 from (60) and (61), respectively. (We also note
that the Lmax-scaling does not change appreciably when the
estimate of hydraulic parameters for damaged fault walls
(see also section 7.1) is used instead, together with a reduced
f = 0.25). Then, a dynamically slipping patch �1 km long at
low background stress would suggest a few mm-thick shear
zone (Lmax-scaling). On the other hand, a similarly-sized,
slow slip transient operating at tb ≈ t0 would require a
meter-thick shear zone (L*-scaling).

7.3. Constant Friction Model for Earthquake Slip?

[83] Statically-strong faults that operate at low stress level
tb/�s0 � 0.1–0.2 require existence of strong dynamic weak-
ening processes, of which the flash heating (FH) on asperi-
ties and the thermal pressurization (TP) are likely the two
most universal ones [Rice, 2006; Noda et al., 2009]. The
classical rate-and-state dependence of the fault friction
inferred from laboratory observations at below-seismic rates
[Dieterich, 1979; Blanpied et al., 1991], can account for
only a small fraction (less than 10% of the peak friction
value fp � 0.7–0.8) of the required fault weakening. Thus,
the classical rate-and-state effects are likely to be dwarfed by
the FH and TP processes during a mature rupture charac-
terized by large slip rates and large accumulated slip. This
assertion is further supported by dynamic rupture calcula-
tions that account for the classical rate-and-state friction
dependence, the FH, and the TP [Noda et al., 2009]. (This
situation is expected to be different in the absence of strong
dynamic weakening, such as in slow slip events [e.g., Liu
and Rice, 2007], and/or during the nucleation of earth-
quake slip [Dieterich, 1992; Lapusta and Rice, 2003a; Rubin
and Ampuero, 2005, 2009]).
[84] Numerical solutions of Noda et al. [2009] show the

evidence that the FH weakening is likely to be localized in a
very small region near the tip of advancing rupture, as the
most of the corresponding friction drop from the static fp to
the dynamic fw � 0.1–0.2 value takes place over very small
slip distances dFH � 0.01–1 mm associated with the evo-
lution of the frictional contact. The low-end value of the
dFH-range (0.01 mm) is comparable to the asperity size
[Noda et al., 2009]. The high-end value (1 mm) is reported
by Kohli et al. [2011] based on the velocity-stepping
experiments at coseismic slip rates in serpentinite, and
interpreted by these authors as the slip distance over which
the severe localization of the sheared gouge layer takes
place, as required for the onset of the FH at asperities
contacts. The FH part of the fracture energy can, therefore,
be estimated as GFH � ( fp � fw)�s0dFH � 10�3 – 0.1 MJ/m2,
and is likely to be much smaller than the seismologically-
inferred values of the fracture energy of large earthquakes,
G � 0.1–10 MJ/m2 [e.g., Rice et al., 2005; Tinti et al.,
2005; Abercrombie and Rice, 2005], and our estimates of

Figure 12. Partially-drained, self-healing, mode II pulse
with ahy = ath: normalized rupture velocity vr/cs versus the
scaled size of the slipping patch (in the Lmax-scaling) for var-
ious values of h/hdyna (=cs/v*). The small- and large-slip
asymptotic solutions are shown by dotted lines. Shaded area
corresponds to the rupture speed range (vr/cs = 0.69 � 0.14)
for earthquakes in Table 1, and is roughly correlated with the
maximum predicted pulse size.
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the fracture energy associated with the thermal pressuriza-
tion, GTP � fw�s0dc � 1–10 MJ/m2 (based on the range of dc
� 0.1–1 m, see section 7.6).
[85] The constant (dynamically-reduced) friction model is,

therefore, deemed a reasonable approximation for earth-
quake ruptures with average slip rates that are sufficiently
higher than the FH-activation threshold Vw � 0.1 m/s [Rice,
2006; Beeler et al., 2008; Kohli et al., 2011]. We note in
passing that when the GFH is not negligible in the fracture
energy balance, an appropriate slip-rate singularity would
need to be introduced at the advancing rupture tip if the
constant friction model is to be used. This, for example, may
be the case when the background stress exceeds the nominal
fault strength in the constant friction formulation, tb > t0 =
fw�s0.

7.4. Slip Weakening Distance in a TP Pulse

[86] In order to examine the nature of fault strength
weakening with slip in a TP pulse solution, we plot in
Figure 13 the dependence of the strength on the slip in the
partially-drained, self-healing TP pulses for different values
of the driving stress tb/t0, as obtained from the corresponding
spatio/temporal distributions in Figures 6d and 6f. As already
hinted in the discussion of slip development during a TP
pulse (section 5.2), Figure 13 clearly illustrates that the most
of the dynamic strength loss takes place during largely
undrained pressurization process (shown by the dashed line),
which is purely slip-controlled, with the well-defined char-
acteristic slip distance given by the Lachenbruch’s [1980] dc.
(We note that this behavior is very different from the TP
model of slip on a plane, when the shear zone thickness is
neglected [Rice, 2006], which is characterized by progressive
weakening on all slip scales). The extent of the weakening
process in a TP rupture pulse (i.e., the breakdown values of
slip and stress) is controlled by the ability of the diffusive

heat and pore fluid transport to offset the pressurization, and
is the function of the driving stress to the nominal strength
ratio (Figure 13).
[87] The breakdown slip dbreak can be identified with the

critical slip weakening distance Dc that is usually introduced
in the literature in the context of a linear slip-weakening
model [e.g., Ida, 1972]. The breakdown slip in the TP pulse
solution strongly correlates with the total slip, dbreak/dL ≈
0.7–0.9 when dL/dc is not very large (tb/t0 ≳ 0.15, see the
inset of Figure 13). In the large-slip case (tb/t0 ≲ 0.15)
characterized by the complete loss of dynamic strength, the
breakdown slip is capped at dbreak � 10 dc (Figure 5c). These
dbreak-estimates with independently constrained values of the
Lachenbruch’s [1980] dc � few mms to a meter are con-
sistent with (i) seismologically inferred values of Dc in the
range of decimeters to meters for moderate-to-large earth-
quakes [e.g., Tinti et al., 2005; Mikumo et al., 2003, and
references therein], and (ii) correlation between Dc and the
total slip observed in many of these studies.

7.5. Melting?

[88] As discussed in the above, the spontaneous dynamic
TP pulse solution never approaches the state with a fully-
drained shear zone, when the approximation of slip on a
mathematical plane (i.e., when the shear zone thickness is
negligible) [Rice, 2006] would be valid. This is the conse-
quence of locking of the slip soon after the diffusion trans-
port of the heat and pore fluid becomes efficient and a
relatively small amount of fault restrengthening is realized.
As the result, the maximum temperature rise in a spontane-
ous rupture pulse is smaller (and sometimes significantly so)
than the estimates from the kinematic slip solutions (for a
fault slipping at constant velocity and friction), in which the
hydrothermal regime necessarily evolves from the undrained

Figure 13. Strength versus slip in the partially-drained, self-healing pulse solution with ahy = ath for
various values of the background stress (increment 0.1). The inset shows the breakdown slip (dbreak =
Dc) as the fraction of the total pulse slip (dL) versus the background stress.
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to the fully-drained regime for large enough slip [Rempel
and Rice, 2006; Rice, 2006; Noda and Shimamoto, 2005].
[89] Indeed, the peak temperature rise in a TP pulse can be

at most the value closely approximated by the undrained,
large-slip solution, i.e., DQpeak ≲ �s0/L. (The actual upper
bound is a factor of 1 to 1.129 times �s0/L, depending on the
value ahy/ath). On the other hand, the peak temperature rise
in the kinematic slip solution is bounded by the asymptotics
of large slip on a mathematical plane, DQpeak ≤ (1 +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahy=ath

p
)(�s 0/L) [Rempel and Rice, 2006; Rice, 2006].

Therefore, the kinematic slip solution can over-predict the
temperature rise by a factor �2 when ahy/ath ≈ 1 (e.g., the
estimate of Rice [2006] for the MTL fault gouge at 7 km
depth assuming elastic fault walls), or by a significantly
larger factor when ahy ≫ ath (e.g., the estimate ahy/ath ≈ 5
of Rice [2006] for damaged fault walls). This is illustrated in
Figure 14, which shows the peak temperatures achieved in a
self-healing slip pulse (solid lines) and in the kinematic slip
on a plane (dashed lines) solutions as a function of the total
slip accumulated in the pulse, for two different estimates of
hydraulic parameters assuming elastic and damaged fault
walls conditions, respectively, at the midseismogenic depth
of 7 km (�s0 = 126 MPa and Q0 = 210�C). The solution for
the temperature rise during the kinematic slip on a plane

[Rice, 2006, equation (24)] shown by dashed lines in
Figure 14 has been evaluated using the total slip dL and the
average slip rate dL/T values from the pulse solution (which
led to the expression (dL/dc)

2/(T/T*) for the normalized
kinematic slip distance in Rice’s equation (24)).
[90] The significant implication of our analysis of spon-

taneous, self-healing TP pulses is that melting, as well as,
other thermally-activated fault processes that have been
recently linked to strong dynamic fault weakening in rotary
shear experiments [e.g., Di Toro et al., 2011, and references
therein] are less likely to occur during earthquake slip on
mature faults than the kinematic slip solution [Rempel and
Rice, 2006] would have it. It is evident from Figure 14 that
the maximum-possible temperature rise �126�C (370�C)
that can be achieved during a large-slip pulse assuming
elastic (damaged) fault walls would elevate the absolute
temperature at the midseismogenic depth to �336�C
(580�C). TP pulses of arbitrary magnitude therefore remain
relatively cool and far removed from melting temperatures
�1000�C. (The kinematic slip solution, however, predicts
melting for large enough slip under the damaged fault walls
conditions). Similarly, a number of representative thermal
decomposition reactions with the onset temperature�550�C -
dehydration of kaolinite in clay-rich gouge [Brantut et al.,
2008], dehydration of antigorite-serpentinite [Hirose and

Figure 14. Peak temperature in the partially-drained, self-healing pulse as a function of the normalized
total slip for two different estimates of hydraulic parameters corresponding to elastic (ahy/ath ≈ 1 and
L = 1 MPa/�C) and damaged (ahy/ath ≫ 1 and L = 0.34 MPa/�C) fault walls at the depth of 7 km,
respectively, and the ambient state with �s0 = 126 MPa and Q0 = 210�C. (Note the actual slip value at
which the peak temperature is attained within the pulse is ≤ the total slip accumulated during the pulse.)
Dashed lines show the solutions for the kinematic slip on a plane [Rice, 2006, equation (24)] at a con-
stant slip velocity equal to the average value in the corresponding dynamic pulse solution (where finite
“damaged” value ahy/ath = 5 is used). The colored vertical bars show the measure of maximum possible
temperature rise (�s0/L) for the two sets of fault conditions. The representative temperatures for the onset
of melting �1000�C and thermal decomposition (kaolinite/antigorite dehydration, dolomite decarbon-
ation) �550�C are indicated by dotted lines. The faint-colored thick line shows the peak temperature
rise in the TP pulse for a “mixed-value” estimate of parameters (ahy/ath ≈ 1 from the elastic-walls estimate
and L = 0.34 MPa/�C from the damaged-walls estimate). Together with the prediction for damaged walls
(thick red line), it is indicative of the limited dependence of the peak temperature on the contrast between
the hydraulic and thermal diffusivities.
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Bystricky, 2007; Kohli et al., 2011], and decarbonation in
dolomite-bearing gouges [De Paola et al., 2011] - are ruled
out for TP slip pulses under elastic fault walls conditions, and
are barely probed in moderate-to-large slip pulses (dL/dc ≳ 1)
when damaged fault walls are assumed (Figure 14).
[91] One can use Figure 14 to estimate the depth below

which the critical temperature for a selected decomposition
process may be reached coseismically by simply shifting the
predicted peak co-seismic temperature curve up to reflect
increase of the ambient temperature with depth. Implicit in
this exercise is the assumption that the ambient effective
stress does not change appreciably with depth below 7 km,
which is consistent with the hypothesis [e.g., Rice, 1992]
that pore pressure tracks the lithostatic gradient below
midcrustal depth. Using 27�C/km geothermal gradient, the
onset of macroscopic melting (decarbonation/dehydration)
is placed for large slip pulses at 31.5 km (15 km) depth for
the “elastic” and at 22.5 km (6 km) for “damaged” fault
walls conditions.
[92] We note that although our theoretical analysis plays

down the likelihood of macroscopic melting and thermal
decomposition for the assumed range of fault gouge para-
meters (mainly that of the thermal pressurization factor L), it
does not contradict the possibility of short-lived, excessive
temperature rises borne at grain/asperity contacts (flash
heating) that can result in melting/thermal decomposition on
the microscopic scale. Such microscopic phenomena (which
nevertheless can result in dramatic weakening of the sliding
friction) have been evidenced in rotary shear experiments
where the bulk temperature increase, as measured by
thermo-couples near the principal shear zone and/or mod-
eled by FEM, has been below the relevant reaction temper-
ature, yet the reaction products were observed in the
mineralogical analysis of the slid gouge [e.g., Hirose and
Bystricky, 2007; Brantut et al., 2008; Kohli et al., 2011].

7.6. Observational Constraints: Earthquakes

[93] Although spatio-temporal characteristics of earth-
quake slip inferred from seismic signal inversions are highly
variable, an attempt is made to compare the steady slip-pulse
solutions for a simplified fault model developed here to the
space/time averages of earthquake data. This comparison
may help to assess the relevance of the underlying fault
model and its assumptions on one hand, and to probe the
constitutive parameters of the dynamic fault slip on the
other.
[94] We use a compilation (Table 1) of well-studied and

constrained, large-to-great earthquakes (5.7 ≤ Mw ≤ 8.8),
with several published kinematic models for each event. The
core of the compilation are the events studied by Heaton
[1990], Tinti et al. [2005], and Cocco and Tinti [2008].
The latter two studies including estimates of the fracture
energy, with some of the recent well-studied great subduc-
tion interplate events and large crustal events also added.
The choice of particular kinematic models was constrained
by the availability of published data on the spatial distribu-
tions of slip, rise time, and arrival time, obtained from the
WWW data repositories and/or directly from the published
manuscripts. These finite fault model data were processed to
obtain the average earthquake source parameters shown in
Table 1.

[95] We note that a small number of inversions in the
compilation (the Denali, Landers, and Parkfield events) are
characterized by highly heterogeneous rupture velocity and
possible episodic supershear [Asano et al., 2005; Wald and
Heaton, 1994; Custodio et al., 2009]. Contrasting the fault-
averaged data from these events to steady slip-pulse solu-
tions may be somewhat dubious, (unless, as in the case of
the Parkfield here, the average is taken over a part of the
fault with a diminished rupture heterogeneity). For example,
the normalized value of the slipping patch length, L/Lc, for
the Denali earthquake is too large to even appear within the
range plotted in Figure 15a (discussed below), owing to a
near-sonic value of the fault-average rupture velocity, which
results in a vanishing characteristic patch size in our model,
Lc → 0. The main reason for including these three events in
the compilation is to contrast their fracture energy G esti-
mates with the TP-model predictions, as, at least in the
undrained limit, G, when expressed as a function of the slip,
is independent of rupture model’s assumptions (e.g., steady
versus unsteady propagation, pulse versus expanding crack,
etc.). The fracture energy comparisons can therefore help
constrain the impact of the TP processes on the studied
events, even when the applicability of the steady, sub-sonic
rupture pulse model is questionable.
7.6.1. Inferred Characteristic Slip dc and Time T*
Scales, Stress and Nominal Strength
[96] Since the background stress is not readily inferred

from a kinematic inversion of seismological data, we repre-
sent the TP slip-pulse solution for the normalized patch
length L/Lc, fracture energy G/t0dc, and pulse duration T/T*
as a function of the total slip and contrast it with the earth-
quake data in Figures 15a, 15b, and 15c, respectively. The
two sets of curves in Figures 15a and 15b correspond to the
characteristic fault slip-weakening distance of dc = 1.2 m and
0.1 m, respectively: the dashed lines correspond to the
undrained pulse solution, while the gray bands correspond to
the partially-drained, self-healing pulse solution with 0 ≤
ahy/ath < ∞. The model predictions for different values of dc
can be obtained by translation along a line with slope 1 in the
log-log scale of Figures 15a and 15b, which allows to
identify the boundary (shown by a dotted line) with the
region where no TP pulse solutions exist. The scaled earth-
quake data in Figures 15a and 15b have been obtained from
the data in Table 1 using corresponding values of the
apparent dynamic modulus �m(vr) = mF(vr), calculated for the
Mode II and III ruptures; the nominal fault strength, t0 = f�s0
with a weakened friction f = 0.25 (representing, e.g., the
flash heating); and �s 0 based on the lithostatic/hydrostatic
gradients and the event’s median depth, while capped at
126 MPa. We note that the imposed upper bound on the
ambient normal effective stress is consistent with the
hypothesis of elevated interseismic pore pressure along
active faults in a deeper part of the seismogenic zone [Rice,
1992]. The corresponding range of variation for the events in
Table 1 is �s 0 ≈ 56–126 MPa, and, for the corresponding
nominal strength, t0 ≈ 14–32 MPa.
[97] We mention in passing that low nominal strength t0 =

f�s0 is essential in matching the scaled data with the pulse
solution predictions in Figures 15a and 15b. Thus, the
assumed low friction value (0.25) is not required for the
matching as long as the cap value of the ambient effective
stress can be reduced within reason. For example, a similar
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quality match to that in Figures 15a and 15b can be obtained
by using f = 0.6 and �s0 = 50 MPa for all events (see auxiliary
material), the latter is still within (on the lower-end of) a
possible range of the ambient effective stress in the seis-
mogenic crust.
[98] Figure 15a suggests that the relation between the

scaled size of the rupture pulse and the accumulated slip for
the most part of the considered crustal events can be rea-
sonably bounded by the TP pulse solutions (in the range set
by the undrained and the partially-drained, self-healing

pulses, respectively) with the unique value of the slip weak-
ening distance, dc ≈ 1.2 m. Remarkably, this value represents
the multitude of crustal events spanning nearly two orders of
magnitude of slip, from about 0.1 to 5 m (d/dc � 0.1–4), and
the corresponding range of the TP pulse behavior, -from the
small-slip pulse asymptotics with L/Lc ≈ 1–3, independent
of slip, to the beginning of the transition to the large-slip
pulse asymptote characterized by strong dependence on
the slip, L/Lc ≈ p�1(d/dc)

2. Corresponding range of the
normalized background stress in the TP pulse (Figure 5c)

Table 1. Earthquake Source Parametersa

Event
Mo

(1018Nm)
Depth
(km)

ffiffiffi
S

p
b

(km)
cs

(km/s)
vr

(km/s)
Tc

(s)
L

(km)

�d
(m)

dmax

(m)
Gd

(MJ/m2) Reference to Kinematic Modele

Maule ’10 16700 10–65 312 4.7 2.3f 18 42 2.4 14 – A. Sladen and S. Owengg

Nias-Simeulue ’05 10000 4–59 275 4.5 2 18 37 2 15 – Konca et al. [2007]
Pisco ’07 1210 3–76 99 4.7 2.6f 13 33 1.8 – – 1
Fault 1 364 32–76 63 4.7 2.5f 7.9 20 1.3 – –
Fault 2 844 8–31 76 4.7 2.8f 15 41 2.1 – –

Michoacan ’85 1500 6–40 155 3.7 2.6 5 13 1.7 6.5 – 2, Mendoza and Hartzell [1988]
Benkulu ’07 5130 3–98 208 4.7 2.65f 6.8 18 1.7 9.6 – Konca et al. [2008]
Pagai Island ’07 1100 8–57 130 4.7 2.3f 3.3 7.5 0.92 6 – Konca et al. [2008]
Chi-Chi ’99 470 0–20 58 3.4 2.5 3.5 8.8 4.5 20 – Ma et al. [2001]
Denali ’02 757 0–18 73 3.6 3.3 6.7 22 4.1 11 41.4 Asano et al. [2005]
Kashmir ’05 282 0–17 50 3.5 2 3.5 7 3.4 10 – Avouac et al. [2006]
Landers’92 77 0–15 33 3.5 2.7 3.5 9.4 2.1 7.9 40.5 Wald and Heaton [1994]
Hector Mine ’99 63 0–16 32 3.6 1.9 3 5.6 1.8 7 81.2 Ji et al. [2002]
Fault 1 26 0–13 21 3.6 1.8 3 5.5 1.7 7 –
Fault 2 23 0–16 17 3.6 1.8 3.15 5.7 2.3 6.8 –
Fault 3 14 0–11 17 3.6 2.1 2.5 5.2 1.4 5 –

San Fernando ’71 7 3–16 12 3.5 2.8 0.8 2.2 1.4 2.5 – 2, Heaton [1982]
Loma Prieta ’89 30 2–20 26 3.6 2.7 1.25 3.2 1.3 4.9 – Wald et al. [1991]
W. Tottori ’00 20 1–18 24 3.5 1.8 2.5 4.5 1 2.8 14.3 3
Northridge ’94 12 5–20 20 3.6 3 0.92 2.8 0.85 3.2 11.5 Wald et al. [1996]
Fukuoka ’05 11.5 1–19 22 3.5 2.1 1.9 4 0.76 2.7 10.7 Asano and Iwata [2006]
Superst. Hill ’87 (3) 3.5 1–12 13 3.2 2.4 0.77 1.8 0.7 1.9 – Wald et al. [1990]
Superst. Hill ’87 (2) 0.91 1–12 7.4 3.2 2.4 0.72 1.7 0.6 2.7 – Wald et al. [1990]
Superst. Hill ’87 (1) 0.44 1–12 5.9 3.2 2.4 0.71 1.7 0.46 1 – Wald et al. [1990]
Kobe ’95 24 0–20 35 3.5 2.8 1.64 4.5 0.63 3.5 3.32 Wald [1996]
Borah Peak ’83 23 1–21 37 3.5 2.9 0.6 1.7 0.52 1.5 – 2, Mendoza and Hartzell [1988]
Imperial Valley ’79 5 0–11 19 3.1 2.6 1 2.6 0.5 1.8 3.64 2, Hartzell and Heaton [1983]
Colfiorito ’97 (Oct) 0.65 3–7 7 3.1 2.3 1 2.3 0.52 0.77 2.22 4
Colfiorito ’97 (0940) 1 1–6 9.7 3.1 1.8 1 1.8 0.44 1.4 1.94 4
Colfiorito ’97 (0033) 0.44 3–7 6.6 3.1 2.2 1 2.2 0.4 0.64 0.8 4
Morgan Hill ’84 2.1 1–12 13 3.1 2.8 0.3 0.84 0.45 1 – 2, Hartzell and Heaton [1986]
Morgan Hill ’84 2.7 3–13 16 3.5 2.78 0.2 0.56 0.33 2.3 2.72 Beroza and Spudich [1988]
Coyote Lake ’79 0.35 3–10 6.3 3.3 2.8 0.5 1.4 0.31 1.2 – 2, Liu and Helmberger [1983]
N. Palm Springs ’86 1.8 4–15 17 3.8 3 0.4 1.2 0.16 0.45 – 2, Hartzell [1989]
Parkfield ’04 1.1 1–14 19 3.6h 3i 1.06i 3.2 0.09 0.45 0.42 Custodio et al. [2009]

aMo, seismic moment; depth range; S, slipped fault area; cs, shear wave speed in the main source region; vr, rupture propagation speed; T, duration of slip
(rise time); L, length of the slipping patch = vrT; �d, average slip in the wake of the pulse = Mo/mS, assuming m = rcs

2 and r = 2700 kg/m3 for all but few
relatively deeper events (Maule, Nias-Simeulue, Pisco, Benkulu, and Pagai Island, r = 3200 kg/m3); dmax, maximum slip; G, fracture energy.

bS values calculated from the kinematic slip model’s data available from the Web sites of M. Mai, D. Wald, and A. Sladen (http://www.seismo.ethz.ch/
static/srcmod/, http://earthquake.usgs.gov/regional/sca/slipmodels.php, and http://www.tectonics.caltech.edu/sliphistory/, respectively).

cT values are the average slip duration over subfaults with significant slip: the lower significant slip bound is �d/3 for all events but the Maule, Nias-
Simeulue, and Pisco (2 m); and the Benkulu and Pagai Island (est. 0.75 m based on Konca et al. [2008]). For inversions with multiple (≥3) time
windows, we partition slip episode(s) on a subfault by discounting time windows with negligible slip (<10% of the maximum window slip), and then
choosing the longest continuous slip episode from the remaining time-windows. For the Kashmir event, we use median of the 2–5 s range [Avouac
et al., 2006].

dG values by Tinti et al. [2005, 2008] and Cocco and Tinti [2008] (their average breakdown work).
eReferences to kinematic slip models are 1, Sladen et al. [2010], model with 38 s time delay of the rupture front between the two fault segments; 2,

Heaton [1990]; 3, H. Sekiguchi (unpublished manuscript, 2002) as reported by Tinti et al. [2005]; 4, preliminary model of Hernandez et al. [2004] as
reported by Tinti et al. [2005]; and other references as noted within Table 1.

fAverage value of vr estimated from arrival time contours provided in the references.
gA. Sladen and S. Owen (Preliminary model combining teleseismic and GPS data 02/27/2010 (Mw 8.8), Chile, 2010, available at http://www.tectonics.

caltech.edu/slip_history/2010_chile).
hValue of cs on the SW-side of the fault in a bimaterial crustal model (cs = 3.3 km/s on the NE-side).
iAverage values in the area of significant slip to NW of the hypocenter (10–20 km) in the inversion with otherwise highly heterogenous rupture velocity

and possible supershear (3.5 km/s) in the hypocentral region [Custodio et al., 2009]. Quoted vr value (3 km/s) is in line with the direct observation of
coseismic surface displacement pulses [Borcherdt et al., 2006] and dynamic modeling [Ma et al., 2008].
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is tb/t0 ≈ 0.95–0.3 (where the higher value corresponds
to the lower slip), and, thus, tb ≈ 30–10 MPa when t0 ≈
32 MPa. This range is in agreement with the stress esti-
mates for major crustal faults, for example, Townend and
Zoback [2004] estimate for southern and central California
part of the San Andreas fault, tb/�s0 ≈ 0.2–0.3 and tb/�s0 ≈
0.06, respectively, which translates to tb ≈ 25–38 and
tb ≈ 8 MPa at the 7 km median depth of the seismogenic
crust (�s0 ≈ 126 MPa).
[99] The subduction megathrusts in our compilation are

well modeled by the TP pulse solutions with dc ≈ 0.1 m,

specifically, its large-slip pulse asymptotics, d/dc ≈ 10–25
(Figure 15a). This suggests practically complete dynamic
stress drop for these events and the background stress �5–
10% of the nominal dynamic strength (Figure 5c), or tb ≈
1.6–3.2 MPa (t0 ≈ 32 MPa). This, very low estimate of the
driving stress is consistent with (i) seismological estimates
of the static stress drop if it represents complete stress
release; and (ii) very low level of megathrust coupling, tb <
10 MPa, predicted from analysis of focal mechanisms of
small crustal (forearc) earthquakes and lack of the heat flow
anomaly [Wang et al., 1995; Magee and Zoback, 1993].

Figure 15. (a) Normalized slipping patch length L/Lc, (b) normalized fracture energy G/t0dc, and (c) slip
duration T in seconds as functions of total slip dL in meters for the earthquake catalog in Table 1. Friction
f = 0.25, effective normal stress �s0 = minimum of (18 MPa/km) � (median depth) and 126 MPa, and two
different values of the slip-weakening distance dc = 1.2 m and dc = 0.1 m, respectively, are used to nor-
malize the data. Gray bands show the partially-drained, self-healing pulse solution, which lower (upper)
bound in Figure 15a corresponds to ahy/ath = 1 ({0, ∞}), and the reverse of that in Figure 15c, while
dashed lines show the undrained pulse solution. Values of the diffusion timescale, T* = 0.5 s and T* =
2 s when dc = 1.2 m, and T* = 150 s when dc = 0.1 m, are used in Figure 15c to plot the slip duration
in the partially-drained pulse solution. The interpretation of the used values of slip (dc) and time (T*)
scales in terms of the slip zone thickness and thermo-hydrological parameters of the fault is given in
the text.
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[100] The comparison of averaged duration of earthquake
slip with the TP self-healing pulse model predictions
(Figure 15c) for selected values of the diffusion timescale
T* = h2/4a shows that, unlike dc, there is no well-defined
value of T* for a particular earthquake type: the crustal
earthquake data suggests a range T* ≈ 0.3–3 s for TP pulses
with dc ≈ 1.2 m; and the subduction megathrust data suggest
T* ≈ 75–150 s for pulses with dc ≈ 0.1 m. Furthermore, the
data shows a trend for the duration to increase with the
amount of slip, whereas the TP pulse solution with fixed T*
shows the opposite tendency. This state of affairs may
indicate either that the slip duration is set by some other
mechanism of fault restrengthening with diminishing rate of
slip; or that the event-average values of the width of the
principal shear zone h and/or the two least-constrained
hydraulic parameters, ahy and L, may vary significantly
between different fault zones (or even between different
events on the same fault). We don’t have a facility to dis-
criminate between these possibilities, and will assume the
latter going forward.
7.6.2. Inferred Shear Zone Width and Hydraulic
Parameters
[101] Using the order of magnitude estimates T* � 1 s for

crustal and T* � 100 s for subduction interplate events, we
can show that h has to exceed 1.7 mm and 17 mm, respec-
tively. The latter values correspond to the lower bound
defined by the limit h = 2

ffiffiffiffiffiffiffiffiffiffiffiffi
athT ∗

p
when ahy ≪ ath and ath ≈

0.7 mm2/s. Setting, for example, h ≈ 10 mm for crustal
events with dc = 1.2 m results in ahy � 17 mm2/s and L =
(rc/f )(h/dc) ≈ 0.1 MPa/�C, -the values that are within a
factor of 2 to 3 from those suggested by Rice [2006] for
the MTL gouge and damaged fault walls, and similar to the
values considered by Noda and Lapusta [2010] based on the
experimental study by Tanikawa and Shimamoto [2009] of
the gouge from inferred principal slip zone of the Chelungpu
fault. The estimated value of L may allow for macroscopic
melting at the maximum possible temperature rise ��s0/L �
1260�C attained for crustal earthquakes with moderate-
to-large average slip d/dc ≳ 2 (e.g., Chi-Chi, Hector
Mine, Landers, and Kashmir events with dc � 1 m).
Increasing shear zone thickness to h ≈ 25 mm would
result in ahy � 130 mm2/s and L ≈ 0.23 MPa/�C, and
preclude melting at arbitrary value of the slip.
[102] On the other hand, using h ≈ 25 mm for subduction

megathrusts leads to ahy � 0.2 mm2/s and L ≈ 2.7 MPa/�C.
There is a lack of information on hydraulic properties of
subduction faults in order to assess the relevance of the
inferred values directly. Indirectly, the inferred ahy-value is
about four times lower than the lower-end estimate for crustal
faults (recall the estimate of Rice [2006] for elastic fault
walls), and orders of magnitude higher than the exceedingly
low values based on the permeability estimates put forward
by Audet et al. [2009] in order to explain the near-lithostatic
pore pressure inferred for the part of subducting slab under-
going metamorphic dehydration. On the other hand, the
obtained L value appears to be too large. Indeed, the upper
bound of the pressurization factor can be estimated from the
pore fluid properties alone when infinitely stiff gouge
matrix is assumed, as L < lf /bf ≈ 1.8 MPa/�C, where
thermal expansivity lf � 0.7 � 10�3/�C and compressibility
bf � 0.39 � 10�3/MPa values of the supercritical water at

400�C and 450 MPa were used. The latter ambient temper-
ature/pressure conditions represent the 20 km depth along
the North Cascadia subducting interface [Hacker et al.,
2003], assuming that the pore pressure tracks the lithostatic
stress there (�s0 = sn � p0 � 100 MPa). (As a side comment,
the upper bound estimate for L in the crustal settings, using
hydrothermal conditions at 7 km depth [Rice, 2006], is
practically the same (�1.7 MPa/�C) as the one for sub-
ducting slabs.)
[103] The unrealistically large value of L = (rc/f )(h/dc)

estimated for subduction megathrust events with f = 0.25
and dc = 0.1 m can be lowered, if a thinner, and practically
impermeable shear zone is assumed, e.g., taking the mini-
mum possible h ≈ 17 mm yields ahy ≈ 0 (�10�4 mm2/s) and
L ≈ 1.8 MPa/�C. Since these estimates still correspond to
very restrictive fault conditions, we also explore the possi-
bility that the seismic slip in subduction megathrusts oper-
ates at a higher friction than assumed in the above. As
already pointed out, a similar quality fit of the data to the
pulse model with a higher friction value (f = 0.6) and the
same dc = 0.1 m is obtained if the ambient effective stress is
capped at a lower value (�s0 = 50 MPa), such that the nominal
strength t0 = f�s0 is approximately unchanged (see auxiliary
material). Now, using h ≈ 25 mm in the pulse model with
f = 0.6 and dc = 0.1 m, we estimate a more reasonable value
L ≈ 1.1 MPa/�C and ahy � 0.2 mm2/s the same as before.
7.6.3. Inferred Fracture Energy
[104] Finally, we look at the comparison of the seismo-

logical estimates of the fracture energy for a number of
crustal events [Tinti et al., 2005, 2008; Cocco and Tinti,
2008] with the TP pulse model predictions, Figure 15b.
Seismological estimates of G place all energy dissipation in
the fault zone (which, besides the fracture energy of the
principal slip zone, may include dissipation in inelastic
deformation/damage of the gouge/rock outside of the prin-
cipal slip zone) onto principal slip plane. As the result, a
theoretical estimate of G that is based on a model that does
not take into account the extra sources of dissipation outside
of the principal slip zone, such as the TP pulse model con-
sidered in this study, but otherwise matches the inferred slip
on the fault plane and the slipping patch size, can be viewed
as a lower bound to a seismological estimate. This, indeed,
appears to be so in Figure 15b, where the theoretical pre-
dictions are consistently less, by an average factor of 1.8,
than the data.
[105] The maximum fracture energy of a TP pulse, t0dc, is

achieved in the large-slip limit (d ≫ dc) that is characterized
by the nearly complete dynamic stress drop. For the inferred
values of dc, G ≲ 38 MJ/m2 for the crustal events and G ≈ 3
MJ/m2 for the great subduction megathrust events in this
study. At present, the only available (to our knowledge)
seismological estimates of fracture energy of subduction
interplate events are for the amended fracture energy G′
(based on the static stress drop, the intensity of seismic
radiation, and the average slip), which is smaller/larger than
G by the product of the dynamic stress undershoot/overshoot
onto the earthquake slip [Abercrombie and Rice, 2005]. For
example, based on the study of Venkataraman and Kanamori
[2004] of eight large subduction interplate earthquakes, we
can obtain the average rangeG′ ≈ 2.4� 1.5MJ/m2, where the
lower and upper bounds correspond to the averages based on
the minimum and maximum estimates of the static stress
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drop used by Venkataraman and Kanamori [2004], respec-
tively. This range is rather narrow and, given uncertainty of
seismological estimates, is remarkably close to our 3 MJ/m2

estimate inferred for subduction megathrusts from the inde-
pendently constrained TP pulse solution.

7.7. Observational Constraints: Slow Slip Events

[106] A partially-drained, TP pulse solution predicts quasi-
static rupture propagation for thick principal shear zones,
h ≫ hdyna, (57), and also, but not necessarily, small total
accumulated slip (tb ≈ t0), see Figure 11. It is, therefore, of
interest to investigate the role of the thermal pressurization
during the Slow Slip Events (SSEs), -transient aseismic slip
observed in many subduction zones below the seismogenic,
locked zone [e.g., Schwartz and Rokosky, 2007, and refer-
ences therein], and whether the spatio-temporal development
of SSEs can be explained by this mechanism. In the fol-
lowing, we first contrast the appropriately constrained TP
pulse solution with the main characteristics of the silent slip
events regularly occurring with period of 13–16 months on
the northern Cascadia thrust interface [Dragert et al., 2001,
2004]; and, then discuss how TP favors against other phys-
ical mechanisms that have been discussed in connection to
the aseismic slip transients.
[107] We consider two events from the series of regularly

occurring SSEs on the northern Cascadia megathrust, that
took place in summers of 1998 and 1999, respectively, and
are characterized by large along-strike runout distances
�300 km. The forward models of these events [Dragert et
al., 2001, 2004], as well as the kinematic inversion of the
time-series of the slow ground motions of the 1999 event
[McGuire and Segall, 2003], suggest that these SSEs
nucleated at the depth of 30–35 km along the subduction
thrust interface, propagated updip and downdip over the
depth range of roughly 25–40 km (120 to 192 km along the
interface dipping at 12�), and then propagated along-strike in
the NW direction (’99 event) or bi-directionally, in NW and
SE directions, (’98 event) with the speed of 5–17 km/day.
High-end speed value (15 km/day) represents roughly the
first 200 km of the along-strike propagation in the ’99 event
(which then slowed down, or stepped over) and the entire
along-strike run-out distance of the ’98 event [Dragert et al.,
2004]. The total accumulated slip in the forward models is
2.3–3 cm uniform along-strike and from about 30 to 40 km
depth along the interface, and tapers linearly to zero from 30
to 25 km depth [Dragert et al., 2001, 2004]. The surface
displacement anomaly, that signaled a SSE at depth, lasted
for 6–14 days at any one GPS location [Dragert et al.,
2001], suggesting pulse-like propagation of these SSEs in
the along-strike direction. Since duration of slip at depth has
to be shorter than its surface signal [e.g., Liu and Rice,
2007], we assume the low-end value (T = 6 days) for the
average slip duration at the thrust interface, which together
with the propagation speed estimate (vr = 15 km/day) yields
the average size of the actively slipping patch traveling
along-strike, L = 90 km. The pulse-like nature of these SSEs
in the along-strike direction has been also confirmed by
McGuire and Segall [2003] from the inferred slip time-
transients of the ’99 event, which prompted these authors to
note on the similarity of the SSE propagation mode to that
often observed for the earthquake slip [Heaton, 1990].

[108] The partially-drained, TP pulse solution in the small-
slip regime (tb/t0 ≈ 1) for the pulse length L/Lc = L/(dc�m/t0) ≈
2.34 and duration T/T* ≈ 2.54 (see Figure 3 for ahy/ath = 1),
limited to quasi-static rupture speed (�m = m), allows to esti-
mate the characteristic slip weakening distance dc ≈ 3.87 (t0
� 104/m) m and timescale T* ≈ 3.54 days in the TP pulse
model. We use these estimates to place constraints on the
largely uncertain values of the hydraulic parameters ahy and
L of the gouge, on the thickness of the sheared gouge h, and
on the ambient value of the effective stress �s 0, while
assuming plausible values for some of the better-constrained
parameters (m = 30 GPa, f = 0.7, rc = 2.7 MPa/K, ath =
0.7 mm2/s). The result is shown in Figure 16 as the relations
of ahy (a) and h (b) to the product L�s0, that are ought to be
roughly satisfied were the partially-drained, TP pulse solu-
tion to match the observed SSEs’ characteristics.
[109] Several recent studies suggest that large quantities of

water stored in the hydrous minerals in subducting oceanic
crust are released by metamorphic dehydration at depth of
the SSEs’ source area to the effect of raising the pore pres-
sure there to near-lithostatic values [Kodaira et al., 2004;
Shelly et al., 2006; Audet et al., 2009]. Based on the slab
fluid production rate �0.1 mm/yr [Hyndman and Peacock,
2003], Audet et al. [2009] estimate that very low perme-
ability of the �1 to 1000 m thick subduction interface, k �
10�25 to 10�22 m2, is required in order to sustain the near-
lithostatic pore pressure there. Corresponding values of the
hydraulic diffusivity (ahy � 10�5–10�2 mm2/s for assumed
bulk compressibility of the fault gouge �0.1/GPa and a
dynamic viscosity of water ≈10�4 Pa s at the temperature
and near-lithostatic pore pressure for the Cascadia SSE’s
median depth of 32.5 km, see the caption of Figure 16) are
much smaller than the thermal one (ath � 0.7 mm2/s). This
constrains the TP pulse solution to L�s 0 ≈ 3.3 MPa2/�C
(vertical asymptote in Figure 16a) and h ≈ 0.77 m
(Figure 16b). We note that the TP pulse solution with ahy/
ath = 0 would be more appropriate in this example than the
one with ahy/ath = 1 used in Figure 16, but the predictions
when using the former (L�s0 ≈ 4.0 MPa2/�C and h ≈ 0.84 m)
are not very different. Assuming a plausible range for L
between 1 and 0.3 MPa/�C, our estimates for L�s0 suggest a
range of the effective, fault-normal stress �s0 � 3–10 MPa
that is consistent with near-lithostatic pore pressure.
[110] It is conceivable that the gouge within the sheared

zone �1 m may develop permeability in excess of the
extremely small values suggested by Audet et al. [2009].
(Note that a shear zone with increased permeability is likely
to be thin compared to the thickness of the subduction
interface to significantly perturb/dissipate the near-lithostatic
pore pressure there). In this case and due to the lack of
information on the hydraulic properties of sheared fault
gouge from subduction megathrusts, we use the data of
Wibberley [2002] and Wibberley and Shimamoto [2003] for
an ultracataclastic clayey gouge from the principal slip zone
of the MTL fault to exemplify 1) what the relevant values of
ahy, L, and h for a TP-driven SSE might be were the MTL
gouge properties similar to those from the subduction inter-
face, and 2) whether the predictions of the TP pulse solution
in this case are still consistent with the inferred near-litho-
static values of the ambient pore pressure. The dependence
of ahy and L on the effective confining stress �sc = sc � p0
for the unloading path from �sc

max = 180 MPa is shown in
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Figure 16a by gray line and gray top axis, respectively. Here,
we use �sc/�s0 ≈ 1.5 (a value representing the range ≈1.2 to 1.7
for a thrust fault with f = 0.7) to convert between the effec-
tive confining and the fault-normal stresses. The assumed
value of �s c

max is likely at the lower end, that is consistent
with the notion of elevated interseismic pore pressure along
active faults in the seismogenic zone [Rice, 1992], of a
possible range�180 to 700 MPa of the peak confining stress
experienced by the subducting slab before the unloading by
the pore pressure increase due to the onset of metamorphic
dehydration at depth �25 km. (The high end value

corresponds to the lithostatic/hydrostatic gradients at the top
of the dehydration region). In order to infer ahy along
unloading paths from different values of (�sc)max, we fit the
Wibberley’s [2002] unloading data by a power law k ≈
kmin(�sc

max)(�sc
max/�sc)

0.74 for �sc ≤ �sc
max, where kmin(�sc) ≈ 4.4 �

10�10 � ((1 MPa)/�s c)
5.0 m2 is the power-law fit to the

Wibberley’s [2002] loading data (see Figure S7 in the
auxiliary material). When extrapolated to �sc

max ≥ 180 MPa,
these approximations indicate almost three order of magni-
tude of the permeability drop for the suggested �sc

max - range.
Neglecting the dependence of other poromechanical

Figure 16. Constraints on the gouge hydraulic parameters ahy and L, the shear zone thickness h, and the
fault-normal effective stress �s0 from matching the small-slip, partially-drained TP pulse solution for the
slipping patch length and duration (Figure 3, ahy/ath = 1), with the observed L = 90 km and T = 6 days
for the ’98–’99 Cascadia SSEs [Dragert et al., 2001, 2004]: (a) ahy and (b) h versus L�s0. (Assumed values
for the other parameters are m = 30 GPa, cs = 3 km/s, f = 0.7, rc = 2.7 MPa/�C, ath = 0.7 mm2/s.) Gray
lines and top axes in Figure 16a show the dependence of ahy = k/(n(bf + bn)hf) and L = (lf � ln)/(bf +
bn) of the ultracataclasite gouge from the Median Tectonic Line (MTL) Fault Zone on the effective con-
fining stress �sc (≈1.5�s0 for a thrust fault with f = 0.7), evaluated from the data of gouge F2xb [Wibberley,
2002] for unloading from (�s c)max = 180 MPa at room temperature. Specifically, we use Table 3 of
Wibberley [2002] for the permeability k; Table 1 and Appendix A of Rice [2006] for the porosity n,
and the pore space pressure and thermal expansivities, bn and ln, respectively; and the values of the pore
fluid compressibility, bf ≈ 0.25/GPa, thermal expansivity, lf ≈ 0.5 � 10�3/�C, and dynamic viscosity, hf ≈
10�4 Pa s, for the supercritical H2O at the temperature Q0 = 520�C (thermal model of Hacker et al. [2003])
and the near-lithostatic pore pressure p0 ≈ 900 MPa at the events’ median depth 32.5 km along the top of
the subducting slab.
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parameters that enter the expressions for ahy and L on the
virgin consolidation stress �sc

max, when compared to that of k,
the inferred ahy of the MTL-type gouge is shown in
Figure 16a (gray lines) for several values of �sc

max within the
suggested range. Juxtaposition of the latter ahy dependency
with that in the constrained TP pulse model (heavy line)
suggests that the North Cascadia SSEs can operate over a
wide range of the MTL-like hydraulic diffusivity ahy � 1 to
10�3 mm2/s corresponding to �sc

max � 180 to 700 MPa, while
the corresponding ranges of L ≈ 0.43 to 0.35 MPa/�C, of the
effective fault-normal stress �s0 ≈ 17 to 10 MPa, and of
the shear zone thickness h ≈ 1.7 to 0.79 m (Figure 16b) are
quite narrow.
7.7.1. Thermal Pressurization Versus the Rate- and
State-Dependent Friction Mechanism
[111] We have shown in the above that the TP pulse

solution with independently constrained gouge parameters
can describe the basic spatio-temporal features of the slow
slip propagation and is also consistent with near-lithostatic
level of the pore pressure inferred seismologically at the
source of the slow slip. This suggests that thermal pressuri-
zation may, indeed, be one of or the dominant mechanism at
the SSE source. Contrary to that, Segall et al. [2010], based
on the analysis of Segall and Rice [2006], estimate for the
range of slip velocities (up to 2–3 orders of magnitude above
the plate velocity) corresponding to aseismic slip transients
that the TP effects on the fault strength are likely negligible
compared to those of the rate-and-state dependence of the
fault friction. This apparent contradiction can be reconciled,
by noting that these and other similar estimates [Garagash
et al., 2005] are based on two assumptions, which validity
for the aseismic slip is questionable.
[112] The 1st is of a thin, sub-mm thick shear zone, that is

relevant to seismic slip on mature faults [e.g., Rice, 2006,
and references therein], but has no pervasive evidence to be
valid for slow slip. J. R. Rice and J. W. Rudnicki (unpub-
lished manuscript, 2006) and Platt et al. [2010] provide a
theoretical upper-bound to the thickness of the gouge zone
where the shear is localized (assuming velocity-strengthen-
ing gouge friction and the TP framework), which is consis-
tent with our estimates of a meter-thick shear zone harboring
slow slip (Figure 16b).
[113] The 2nd concerns the typically assumed magnitude

∣a � b∣ � 5 � 10�3 of the steady-state friction dependence
on the slip velocity, df = (a � b)dV/V, that is representative
of both locked (seismogenic) and creeping (stable) parts of
the fault [Blanpied et al., 1998], respectively, but may be an
overestimated for the transitional part of the fault with near-
neutral friction, where SSEs are observed. Indeed, based on
the recent study of gabbro friction under hydrothermal
conditions [He et al., 2007], the velocity-neutral friction
(a� b = 0) corresponds to 517�C or the 31.8 km depth along
the northern Cascadia subduction interface [Hacker et al.,
2003], and, as first pointed out by Liu and Rice [2009],
ties it to the SSE source. Based on the data of He et al.
[2007], one can obtain the average value a � b ≈ 6 � 10�4

over the frictionally-stable part of the slipped interface
(31.8 to 40 km depth), and, approximately the same value
for the average magnitude |a� b| ≈ 6.3 � 10�4 over the entire
slipped interface (25–40 km depth). (This estimate is halved
when only the half of the slipped interface centered around
the neutral-friction depth, i.e., 28–36 km depth range, is

considered). We, therefore, conclude that the effect of the
friction rate-dependence at the SSE source may be an order
of magnitude smaller than suggested earlier by Segall et al.
[2010].
[114] The average and the maximum loss of the dynamic

strength in the TP, small-slip pulse solution (Figure 4c) are
fDp ≈ 1.13 (t0 � tb) and 1.6 (t0 � tb), respectively.
Combining the pulse solutions for the total slip and the patch
length (Figure 3) as dL/L ≈ 1.16 (t0 � tb)/m and using it in
the expression for the average dynamic strength loss, one can
estimate fDp ≈ 8.8 kPa for the Cascadia SSEs. On the other
hand, the average magnitude of the friction coefficient
change due to the inferred velocity-dependence over the
slipped interface can be estimated as |Df| = |a� b| ln(V/Vpl) ≈
2.4 � 10�3 (using V = 4.5 mm/day, Vpl = 38 mm/yr, and
|a� b| = 6.3 � 10�4), which translates to |Df|�s0 ≈ 2.4 to 24 kPa
for the magnitude of the strength change when �s0 � 1 to
10 MPa is assumed.
[115] Recent 2D simulations of slow slip transients that

neglect the TP [Liu and Rice, 2007, 2009; Segall et al.,
2010] show that the velocity-strengthening of the gouge
friction with depth may control the down-dip propagation
of slow slip, while the up-dip boundary of the region with
lithostatic pore pressure or/and gouge dilatancy [Segall et al.,
2010] may define the up-dip extent of the slip. Our estimates
for the along-strike slip propagation show that the effects of
the thermal pressurization (fDp) and of the friction changes
with the slip velocity (|Df|�s 0), respectively, on the gouge
strength are comparable within the range of �s0 constrained by
near-lithostatic values of the pore pressure at the SSE source,
while the thermal pressurization dominates at the low-end of
this range. It therefore appears that while some friction rate-
weakening may be required to nucleate the SSE in the first
place, thermal pressurization mechanism has to be included
in realistic models of dynamics of aseismic slip transients,
as long as the source of the transients is linked to the con-
ditionally-stable part of the interface (with near velocity-
neutral friction).

8. Summary and Conclusions

[116] 1. We have studied spontaneous, steady propagation
of a rupture pulse driven by thermal pressurization of the
pore fluid on a fault loaded by uniform background stress,
assuming a constant friction along the slipping patch. The
corresponding family of the TP pulse solutions is parame-
terized by the magnitude of the background shear stress
normalized by the nominal strength (tb/t0), and the slip
duration normalized by the characteristic time for hydro-
thermal diffusion across the shear zone (T/T*). The hydro-
mechanical response of the fault to a TP rupture pulse is
weakly dependent on the contrast between the hydraulic and
thermal diffusivities, and, to the first order, depends only on
the lumped hydro-thermal diffusivity a = (

ffiffiffiffiffiffiffiahy
p

+
ffiffiffiffiffiffi
ath

p
)2

via the characteristic timescale T* = h2/4a.
[117] 2. The multitude of pulse solutions are bounded by

the undrained-adiabatic pulse solution, corresponding to the
minimum slip duration T ≪ T*, on one hand, and by the
partially-drained, self-healing pulse solution corresponding
to the maximum slip duration, T � T* (T � (tb/t0)

2/3 T*
when tb/t0 ≪ 1), on the other hand. For all pulse solutions,
the initial acceleration of slip with the passage of the rupture
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front takes place due to the undrained-adiabatic TP and
related reduction of the fault strength. With the passage of
time and slip, diminishing rate of heating (due to the
reduction of the fault strength) and increasing rate of
hydrothermal diffusive transport of heat and pore fluid from
the shear-heated zone (partially-drained pulse) offset TP,
and result in slip deceleration, partial recovery of the
strength, and eventual locking of the slip. The partially-
drained pulse with the maximum slip duration set by the
hydrothermal diffusion timescale T* possesses an intrinsic
self-healing property, i.e., the recovery of the fault strength
(by pore pressure diffusion) after the passage of the pulse
takes place faster than the elastic rebound of the shear stress.
[118] 3. Strong velocity weakening friction, or heteroge-

neity of stress and strength along the fault, or material
properties across it are, therefore, not necessary to explain
the occurrence of self-healing rupture pulses with properties
(rupture velocity, slipping patch size, slip duration, fracture
energy) consistent with seismological observations [e.g.,
Heaton, 1990]. If such other healing mechanisms are pres-
ent, they can be responsible for existence of slip pulses
which are “too short” to be healed by the hydrothermal dif-
fusion alone (e.g., undrained-adiabatic TP pulse).
[119] 4. Locking of the slip soon after the diffusion trans-

port of the heat and pore fluid becomes efficient (T ≲ T*) in
our pulse solutions indicates that the conditions within the
principal shear zone never approach co-seismically the fully-
drained conditions, synonymous with the assumption of
negligible shear zone thickness in models of slip on a
mathematical plane [e.g., Rice, 2006]. This has important
implications for the characteristic slip weakening distance of
earthquake rupture and in moderating the temperature rise in
the course of the slip.
[120] 5. Most of the fault weakening in a TP slip pulse

takes place during the incipient, undrained-adiabatic pres-
surization process, which is purely slip-controlled, with the
well-defined Lachenbruch’s [1980] characteristic slip dis-
tance dc = rch/fL. The extent of the weakening (the break-
down values of the slip and the stress) as well as the total slip
in the pulse are controlled by tb/t0. The lower the back-
ground stress is to the nominal strength, the larger is the total
accrued slip and the more complete is the dynamic loss of
fault strength required to drive the pulse, and are further
moderated by T/T*.
[121] 6. The end-member behavior of the TP weakening

with tb/t0 is given by the asymptotic solutions for the small-
slip, small-weakening pulse with tb/t0 ≈ 1 and the large-slip,
large-weakening pulse with tb/t0 ≪ 1, respectively, for
which a variety of important analytical results, that con-
strained otherwise numerical solution in intermediate range
of tb/t0, is obtained.
[122] 7. If the pulse-like mode of earthquake rupture

comes to be expected for tb/t0 ≪ 1 for a variety of fault
constitutive models [e.g., Perrin et al., 1995; Zheng and
Rice, 1998; Noda et al., 2009], it is the enlarging crack-
like rupture mode that has been more commonly observed in
numerical simulations of spontaneous dynamic rupture at
larger values of background stress [Noda et al., 2009]. Thus,
it appears that the existence of pulse solutions for tb/t0 � 1
conclusively shown in this study is a new result. Since these
solutions are for a steadily propagating rupture pulses, they
bear no information on the nucleation process that may lead

to their realization in nature. This is a subject for future
work.
[123] 8. The predicted temperature rise during a self-

healing TP pulse is bounded by �s0/L� 50 to 300�C, which is
smaller (significantly so for larger slip) than values previ-
ously suggested by kinematic slip solutions [e.g., Rice,
2006]. As a result, bulk gouge melting and, to lesser
degree, some thermal decomposition reactions (gouge
dehydration, decarbonation, etc.) are not likely during seis-
mic slip pulses driven by thermal pressurization. A self-
consistent picture emerges, where (i) generally small stress
level at which mature fault zones operate (as discussed in
section 7.6) favors the pulse-like over the crack-like mode of
seismic rupture [e.g., Zheng and Rice, 1998; Noda et al.,
2009; this study], as further supported by seismological
observations [Heaton, 1990]; while (ii) the pulse-like nature
of the earthquake slip appears to be essential in keeping the
fault temperature well below melting temperatures (this
study), as supported by relatively scarcity of geological
observations of macroscopic melting in exhumed mature
fault zones [e.g., Sibson and Toy, 2006].
[124] 9. Matching of the earthquake data for the length of

the slipping patch and the total slip with the predictions of
slip-pulse solutions suggests that both mature crustal faults
and subduction megathrusts have a similar nominal dynamic
strength t0 = f�s0 � 30 MPa (before the onset of the TP),
and different magnitudes of driving stress, namely, �10 to
30 MPa for crustal events (where lower value corresponds to
a larger slip event) and very low �1 to 3 MPa for large
subduction events.
[125] 10. The matching does not single out a particular

level of dynamic friction during seismic slip, since equally
good match is achieved when f = 0.25 with �s0 ≲ 126 MPa
(“<” corresponds to events roughly shallower than 7 km),
and when f = 0.6 with �s0 ≈ 50 MPa. Both cases correspond
to roughly the same nominal strength t0, and the two values
of �s0 = sn � p0 represent bounds of a possible range of the
effective stress in the crust where the pore pressure tracks the
lithostatic stress [e.g., Rice, 1992].
[126] 11. Remarkably, all crustal earthquakes in this study

(spanning nearly two orders of magnitude of seismically
accrued slip) correspond to the unique value of the charac-
teristic slip weakening distance dc ≈ 1 m, while all large
subduction interplate events in the compilation are roughly
represented by dc ≈ 0.1 m. These estimates together with the
estimates of the diffusion timescale T* (�1 s for crustal and
�100 s for subduction events obtained from matching the
observed and modeled slip duration) allows to infer the
nominal thickness of the principal shear zone�10 to 30 mm,
and hydraulic properties of the gouge that are roughly con-
sistent with the estimates put forward by Rice [2006,
Table 2] for elastic fault walls conditions (subduction events
in this study) and for damaged fault walls conditions (crustal
events in this study), respectively.
[127] 12. Rupture velocity of a TP pulse is a function of

the shear zone thickness. We find that “thick” shear zones,
h ≫ hdyna, where hdyna = (m/t0)(rc/fL)(4a/cs), can support
aseismic TP pulses propagating at a fraction hdyna/h of the
shear speed, while “thin” shear zones, h � hdyna or thinner,
can only harbor seismic slip.
[128] 13. For plausible range of fault parameters, hdyna is

between 10 s to 100 s of micrometers, suggesting that slow
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slip transients propagating at 1 to 10 km/day may occur in
the form of a TP slip pulse accommodated by a meter-thick
shear zone. We verify that this is, indeed, a possibility by
contrasting the predictions for aseismic, small-slip TP pulses
operating at seismologically-constrained, near-lithostatic
pore pressure with the observations (slip duration at a given
fault location, propagation speed, and the inferred total slip)
for along-strike propagation of the North Cascadia slow slip
events of ’98–99 [Dragert et al., 2001]. Furthermore, we
show that the effect of thermal pressurization on the strength
of the subduction interface is comparable to or exceeds that
of the rate-dependence of friction, previously suggested as a
mechanism for aseismic transients [e.g., Liu and Rice, 2009;
Segall et al., 2010], if the frictional properties of gabbro [He
et al., 2007] under the hydrothermal conditions for the North
Cascadia slab [Hacker et al., 2003] are used.
[129] 14. The results of these studies point to the impor-

tance of the principal shear zone thickness during a slip
event and its possible change with the slip rate [e.g., Platt
et al., 2010]. The predicted seismic and aseismic TP pulses
operate on shear zones of very different thickness. The
insight into how stable creep or a slow slip event may tran-
sition into a seismic rupture and how an earthquake rupture
“selects” its principal shear zone, which is shown to largely
define the TP slip dynamics, may require addressing the slip
localization as a phenomena concurrent to the development
of transient slip, and therefore coupled to other relevant
source mechanisms (thermal pressurization, flash heating,
etc).

Appendix A: Convolution Kernels

[130] The solution of the diffusion equation (6) for the
temperature and pressure changes on the y = 0 plane [Rice,
2006, Appendix B] can be written in the form (13) and
(14), which makes use of the normalized convolution ker-
nels for the temperature,

A zð Þ ¼ 1ffiffiffi
p

p
Z ∞

�∞
g s

ffiffiffi
z

p� �
exp �s2
� �

ds; z ¼ t � t ′

Tth

� �
; ðA1Þ

and for the pressure,

K z;cð Þ ¼ ahyA ahyz=a
� �� athA athz=að Þ

ahy � ath
; z ¼ t � t ′

T ∗

� �
;

ðA2Þ

where g(y/h) is the normalized shear distribution function,
(2), ahy/a = (1 + c�1/2)�2, ath/a = (1 + c1/2)�2, and c ≡ ahy/
ath.
[131] The z → 0 asymptotics, A(0) = 1, follows from the

integration of (A1) and the use of the constraint g(0) = 1.
The z → ∞ asymptotics, A(z) = 1/

ffiffiffiffiffiffi
pz

p
, is recovered by the

change of the integration variable in (A1) to s
ffiffiffi
z

p
and the use

of the constraint
R
�∞
∞ g(s)ds = 1. Corresponding asymptotic

expressions for the kernel K(z; c), (A2), are identical to the
above expressions for A(z).
[132] For a class of shear distributions centered about the

midplane y = 0 and monotonically decreasing with the dis-
tance from it (g(s) = g(�s) > 0 and g′(s > 0) ≤ 0), kernels A
and K are everywhere positive, monotonically decreasing
functions of their argument.

[133] Indeed, positiveness of A(z) follows from its defi-
nition (A1), while the derivative of A, evaluated as,

A′ zð Þ ¼ 1

2
ffiffiffiffiffiffi
pz

p
Z ∞

�∞
g ′ s

ffiffiffi
z

p� �
s exp �s2

� �
ds; ðA3Þ

is negative for all z ≥ 0, since g′(s
ffiffiffi
z

p
) s/

ffiffiffi
z

p
≤ 0 for all s.

[134] To establish the same properties for K(z; c), we first
notice that based on (A1) and (A3)

A wzð Þ ¼ 1ffiffiffi
p

p
Z ∞

�∞
g s

ffiffiffi
z

p� � exp �s2=wð Þffiffiffi
w

p ds;

A′ wzð Þ ¼ 1

2
ffiffiffiffiffiffi
pz

p
Z ∞

�∞
g ′ s

ffiffiffi
z

p� � exp �s2=wð Þ
w3=2

sds;

for any w > 0. Kernel K, (A2), and its derivative can then be
expressed as

K z;cð Þ ¼ 1ffiffiffi
p

p
Z ∞

�∞
g s

ffiffiffi
z

p� �
Y s;cð Þds; ðA4Þ

K′ z;cð Þ ¼ 1

2
ffiffiffiffiffiffi
pz

p
Z ∞

�∞
g ′ s

ffiffiffi
z

p� �
s Y s;cð Þds; ðA5Þ

respectively, where function

Y s;cð Þ ¼ a
ahy � ath

�
ffiffiffiffiffiffiffi
ahy

a

r
exp � a

ahy
s2

� �
�

ffiffiffiffiffiffi
ath

a

r
exp � a

ath
s2

� �� �

is strictly positive for all positive a’s. The stated properties
of K then follow from (A4) and (A5).

Appendix B: Properties of Elastodynamic
Integral (21)

B1. Asymptotics Near the Rupture Ends

[135] Since the slip velocity vanishes at the rupture tips,
the integral in (21) can be evaluated by parts:

t xð Þ ¼ tb � �m
2pvr

Z L

0

dV x′ð Þ
dx′

ln x′� xj j dx′

Differentiation of the above in x leads to

dt
dx

¼ �m
2pvr

Z L

0

dV x′ð Þ
dx′

dx′

x′� x
ðB1Þ

Since dt/dx = dtf/dx along the slipping patch and dtf /dx is
bounded (see discussion of (18) in the main text), the well-
known inversion of (B1) [Bilby and Eshelby, 1968; Rice,
1968]

dV xð Þ
dx

¼ � 2vr
p�m

Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′ L� x′ð Þ
x L� xð Þ

s
dt
dx′

dx′

x′� x
0 < x < Lð Þ ðB2Þ
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allows to find the tip asymptotics of the slip velocity in the
form

X → 0þ : V xð Þ ¼ vr
k
ffiffiffiffi
X

p

�m
ðB3Þ

where X = x and k = k0 for the advancing tip asymptote; X =
L � x and k = kL for the trailing tip asymptote; and k’s are
defined by

k0; kLf g ¼ � 4

p
ffiffiffi
L

p
Z L

0

ffiffiffiffiffiffiffiffiffiffiffi
L� x

x

r
;

ffiffiffiffiffiffiffiffiffiffiffi
x

L� x

r( )
dt
dx

dx: ðB4Þ

These two coefficients, denoted as the stress-rate intensity
factors, quantify the strength of a stress-rate tip singularity.
The latter can be recovered from analysis of (B1) with (B3),
analogous to the classical fracture mechanics treatment
[Muskhelishvili, 1977; Rice, 1968], as follows

X → 0� :
dt
dx

¼ k

4
ffiffiffiffiffiffiffiffi�X

p : ðB5Þ

B2. Inversion and Stress Distribution Constraints

[136] Integration of (B2) in x and subsequent evaluation of
the integral in the right hand side by parts results in an
inversion of the original elastodynamic equation (16) along
the slipping patch, 0 < x < L:

V xð Þ ¼ � 2

p
vr
�m

Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x L� xð Þ
x′ L� x′ð Þ

s
t x′ð Þ dx′

x′� x
: ðB6Þ

The validity of (B6) as an inversion of (16) hinges upon the
vanishing slip velocity at the tips, which, upon revisiting
(21), imposes a single constraint on background stress tb

relative to the stress distribution along the slip pulse,

Z L

0

tb � t x′ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′ L� x′ð Þp dx′ ¼ 0: ðB7Þ

We note that for a crack-like rupture (not considered in this
work), slip is zero at both tips of the slipping patch (and not
just at one of them, as is the case for a pulse), which then
requires a constraint additional to (B7) to ensure vanishing
slip-rate at both tips [Rice, 1968].

B3. Boundary Layer Approximation

[137] Consider a particular solution of the elastodynamic
equation (B6) characterized by the negligible stress, t ≪ t0,
outside of the immediate vicinity of one of the tips. Without
loss of generality, we consider such a boundary layer at the
advancing tip, x = 0. Equation (B6), rewritten here as

V xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=L

p ¼ � 2

p
vr
�m

Z L

0

ffiffiffiffi
x

x′

r
t x′ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x′=L

p dx′

x′� x
; ðB8Þ

reduces within the boundary layer, x ≪ L, to

VBL xð Þ ¼ � 2

p
vr
�m

Z ∞

0

ffiffiffiffi
x

x′

r
tBL x′ð Þ dx′

x′� x
ðB9Þ

The superscript “BL” was introduced in (B9) to differentiate
its solution, which is applicable within the BL, from the
overall solution, which encompasses the entire crack, 0 ≤ x ≤
L. The overall solution affords a simple expression in terms
of the BL solution of (B9):

V xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� x

L

r
VBL xð Þ; t xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� x

L

r
t BL xð Þ: ðB10Þ

[138] Comparing the integral in (B7) to that in (B8) eval-
uated as x → L, a useful relation between tb and L can be
established:

tb≃
1

2

�m
vr
VBL Lð Þ ðB11Þ

[139] Equations (B8)–(B11) are readily adopted to the case
of a boundary layer at the trailing tip, x = L, by means of a
transformation: x → L � x and V → �V.

Appendix C: Small Slip Considerations for
Undrained Pulse

[140] Integration of the linearized equation (27) by parts
and subsequent differentiation result in the auxiliary
problem:

L

Lc

V xð Þ
�Vc

¼ � 1

2p

Z L

0

d V=�Vcð Þ
d x′=Lð Þ

dx′

x′� x
: ðC1Þ

Normalized patch length L/Lc and slip velocity V(x)/�Vc

can be regarded as the eigenvalue and eigenfunction of
equation (C1), respectively. A mathematically equivalent
eigen problem has been solved by Uenishi and Rice [2003],
see their Appendix B. They show that there exists an infinite
discrete set of positive eigenvalues and corresponding set
of alternating even and odd eigen functions. Only a single
eigensolution out of this set is non-negative and therefore
physically admissible (we consider ruptures with no back-
slip). The corresponding eigenvalue is L/Lc ≃ 1.158 and the
eigenfunction is symmetric about x = L/2 and defined up to
an arbitrary multiple C by V(x)/�Vc = C n0(2x/L � 1). Nor-
malized function n0(X), |X| < 1, is given, to sufficient accu-
racy, by Uenishi and Rice [2003], n0(X) ≃ (0.925 � 0.308
X2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p
. To find the prefactor C, we turn to the original

equation (27), which suggests that 1 � d(x)/(�dc) is anti-
symmetric about x = L/2 for a symmetric V(x). Conse-
quently, d(L/2) = d(L)/2 = �dc. Expressing the latter equality
in terms of the slip rate leads to a constraint

Z L

0

V xð Þ
�Vc

dx

L
¼ 2; ðC2Þ

which evaluation for the above eigensolution yields C ≃ 3.
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[141] The solution for the normalized slip rate and slip is
shown in its finality in Figures 4a and 4b (marked by T/T* =
0). The numerical value of the maximum slip rate (at x = L/2)
is Vmax/�Vc ≃ 2.775. We note that this solution can also be
obtained directly from (27) using the numerical method of
Appendix D.

Appendix D: Solution by Chebyshev Polynomials

[142] Elastodynamic equation (21) lands itself to the
solution by means of expansion into a series of the Cheby-
shev’s polynomials [Erdogan et al., 1973]. Upon mapping
x = 2(x/L) � 1 of the slipping patch x ∈ (0, L) onto x ∈
(�1, 1), a solution of (21), which satisfies the tip asymptotics
(B3), is furnished by

V xð Þ
Vc

¼
X∞
n¼1

Bn sin nq; q ¼ arccosxð Þ ðD1Þ

t xð Þ
t0

� tb

t0
¼ � 1

2L=Lc

X∞
n¼1

Bncos nq ðD2Þ

where Bn are arbitrary expansion coefficients. The
corresponding expression for the normalized slip follows
from integration of (D1):

d xð Þ
dc

¼ B1

4

sin2q
2

þ p� q
� �

þ
X∞
n¼2

Bn

4

sin nþ 1ð Þq
nþ 1

� sin n� 1ð Þq
n� 1

� �
:

ðD3Þ

[143] Using (D1) and (D2) to evaluate tV, and substituting
the result for tfV under the integral in the fault constitutive
equation (23) leads to

1� tf xð Þ
t0

¼ tb

t0

X∞
n¼1

Bnyn x;
T

T∗

� �

� 1

2L=Lc

X∞
n;m¼1 n≥mð Þ

BnBmynþm x;
T

T∗

� �
; ðD4Þ

where

yn x;
T

T∗

� �
≡
1

2

Z x

�1
sinnq′ K T

T ∗
x � x ′
2

;
ahy

ath

� �
dx ′; ðD5Þ

and q′ = arccos x′. We note that, apart from the undrained
case, see (D7) below, functions yn (x, T/T*) have to be
evaluated numerically.
[144] Corresponding expressions for the stress-rate inten-

sity factors, (B4), can be evaluated as

k0; kLf g
t0=

ffiffiffi
L

p ¼ 2

L=Lc

X∞
n¼1

�1ð Þn; 1f gnBn: ðD6Þ

[145] Equating series expansions for t, (D2), and tf, (D4),
truncated to the first N terms, and evaluating the result at
N + 1 collocation points xk (k = 1, .., N + 1), cos((N + 1)
q(xk)) = 0, along the patch yields the system of N + 1 alge-
braic equations. The latter is solved numerically for the
patch L/Lc and expansion coefficients B1, .., BN. The result-
ing numerical solution is parameterized by the slip duration

T/T*, the background stress tb/t0, and the diffusivity ratio
ahy/ath.
[146] Further notes on implementation of the numerical

method for particular cases considered in this study are as
follows.
[147] 1. In the undrained limit (T/T*→ 0), the convolution

kernel is K(0) = 1, and functions yn, (D5), in the strength’s
expansion (D4) are evaluated analytically:

yn x; 0ð Þ ¼
1

4
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
þ p� q

� �
; n ¼ 1

1

2 n2 � 1ð Þ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
cosnq� x sinnq

� �
; n > 1

8>><
>>:

ðD7Þ

The numerical solution is carried out in the range of tb/t0 ∈
[0.03, 0.99] with N = 56 terms in the truncated series. When
tb/t0 is not small (>0.1), only few terms (N = 2 to 10) in the
series result in a sufficiently accurate solution, see the plot of

an integral measure E = ((t0 � tb)L)�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR L
0 t � tfð Þ2dx

q
of

the numerical error as a function of tb/t0 for various N in
Figure D1a. The quality of the numerical solution degen-
erates with the decreasing tb/t0 due to the increasing local-
ization of the slip rate and of the stress gradient into a small
region near the rupture edge, Figures 6a and 6e; and there-
fore an increasing number of terms N is required to maintain
the accuracy of the numerical solution. This underscores the
importance of the large-slip asymptotic solution (section 6)
which can be evaluated for arbitrarily small tb/t0.
[148] 2. In the self-healing, partially-drained slip limit, the

solution is obtained as a subset of the general solution by
invoking the intrinsic healing condition, kL = 0, with kL
given by (D6). The numerical solution is obtained in the
range of tb/t0 ∈ [0.06, 0.99] using N = 76 terms in the
truncated series. A similar deterioration of the numerical
accuracy with decreasing tb/t0 is observed, where an accu-
rate solution requires only a few terms in the series for
moderate values of tb/t0, and up to the maximum number
used here, N = 76, when tb/t0 drops below 0.1 (Figure D1b).
[149] 3. In the small slip limit (� = (t0 � tb)/t0 ≪ 1), the

normalized slip rate V/Vc and its expansion (D1) coefficients
Bn are O(�). Consequently, the 2nd sum in the strength
expansion (D4) is negligible, O(�2). Dividing the stress (D2)
and the linearized strength expansions through �, we have

t xð Þ � tb

t0 � tb
¼ � 1

2L=Lc

X∞
n¼1

Bn

�
cosnq ðD8Þ

1� tf xð Þ � tb

t0 � tb
¼
X∞
n¼1

Bn

�
yn x;

T

T∗

� �
ðD9Þ

Numerical solution for L/Lc and the scaled coefficients Bn/�
in truncated series (D8) and (D9) follows the same path as in
the general case, and is carried out in the range of T/T*
between zero and the maximum value corresponding to the
self-healing limit, using N = 22 terms in the truncated series.
We note that a sufficiently accurate solution requires
between N = 2 to 5 terms in the entire range of T/T* (with the
largest N in the case of self-healing pulse). In the case of
self-healing pulse, first five expansion coefficients are
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B0,…,4/� = {3.660, �4.981, �0.308, 2.527, �0.917} and
{3.805, �5.628, 0.307, 2.781, �1.316} when ahy/ath = 1
and 0 or ∞, respectively.

Appendix E: Non-Existence of a Slip Pulse on a
Plane With a Constant Friction

[150] We show here that existence of a slip pulse on a
plane (the thickness h of the shear zone is neglected) with a
constant friction would require backslip (V < 0) near the
trailing edge of the rupture.
[151] Integrating constitutive equation (12) by parts and

differentiating the result in time t = x/vr leads to:

dtf
dx

¼ �
ffiffiffi
L

p

d∗
1

vr

Z x

0

d tfVð Þ
dx′

dx′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p x� x′ð Þp :

Substituting dtf/dx for dt/dx in (B4) and changing the order
of integration in the resulting double integral, we obtain an
expression for the stress-rate intensity factor at the trailing
edge, as follows

kL ¼ 4

pd∗vr

Z L

0

d tfVð Þ
dx′

dx′

Z L

x′

ffiffiffiffiffiffiffiffiffiffiffi
x

L� x

r
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p x� x′ð Þp :

Carrying out the integration in x and then integrating by
parts in x′ leads to the final expression

kL ¼ � 4

p3=2d∗
ffiffiffi
L

p
vr

Z L

0
tf x′ð ÞV x′ð ÞF 1� x′=Lð Þdx′;

where F(x) ≡ (K(x) � E(x))/x, and K and E are the complete
elliptic integrals of the first and second kind, respectively
[Abramowitz and Stegun, 1964]. Function F(x) is positive
for all x ∈ [0, 1] and the shear heating rate tfV is non-

negative. Thus, kL < 0 and the slip rate near the trailing
edge, V(x) � vr(kL/�m)

ffiffiffiffiffiffiffiffiffiffiffi
L� x

p
, (B3), is negative.

Appendix F: Large Slip Considerations
F1. Boundary Layer at the Advancing Tip

[152] The method of solution relies on the inversion (B9)
of the BL elastodynamic equation (30). Using the scaling
(32), this inversion can be written in the normalized form

~V ~xð Þ ¼ � 2

p

Z ∞

0

ffiffiffi
~x

s

r
~t sð Þds
s� ~x

with ~x ¼ x

Lc
: ðF1Þ

Integrating (F1) by parts, we obtain

~V ~xð Þ ¼ � 2

p

Z ∞

0
ln

ffiffiffi
~x

p þ ffiffi
s

pffiffiffi
~x

p � ffiffi
s

p










 d~tds ds; ðF2Þ

and the near field asymptote of the slip rate,

~x→0 : ~V ~xð Þ ¼ ~k 0
ffiffiffi
~x

p
; ~k 0≡� 4

p

Z ∞

0

d~t sð Þ
ds

dsffiffi
s

p : ðF3Þ

We note that this asymptote can be obtained directly from
the tip asymptotics of the finite crack (B3) and (B4) by
evaluating expression (B4) for k0 in the limit L → ∞ and
using the scaling (32). As the result, ~k 0, as defined in (F3),
attains the meaning of the normalized stress-rate intensity
factor at the advancing tip, ~k0 = k0

ffiffiffiffiffi
Lc

p
/t0.

[153] We now seek numerical solution for ~V (~x) and d~t/d~x
governed by the elastodynamics equation (F2) and the fol-
lowing reduction of the undrained constitutive law,

~V ~xð Þ ¼ � 1

~t ~xð Þ
d~t
d~x

; with ~t ~xð Þ ¼ 1þ
Z x

0

d~t
d~x

d~x; ðF4Þ

obtained from the differentiation of ~t(~x) = exp(�~d(~x)), (24)
in scaling (32), and the use of ~V (~x) = d~d /d~x, (31).

Figure D1. A measure E of the numerical error in (a) the undrained pulse and (b) the partially-drained,
self-healing pulse with ahy = ath solutions as a function of the background stress t

b/t0, for various number
N of terms in the truncated Chebyshev series (D1)–(D4).
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[154] Let us consider a discretization of the semi-infinite
crack into n + 1 elements, 0 = ~x1 < … < ~xn+1 < ~xn+2 = ∞. A
piece-wise constant approximation for the stress rate is
adopted over the intermediate elements, d~t/d~x = ~t′j, ~x ∈ (~xj,
~xj+1), j = 2, .., n; while the near-field, d~t/d~x = �~k0

ffiffiffi
~x

p
, and

the far-field, d~t /d~x ≃ 0 (exponentially small), asymptotes
are used in the bounding elements, (0, ~x2) and (~xn+1, ∞),
respectively. Evaluation of the corresponding approxima-
tions of (F2),

~V ~xð Þ ¼ �~k 0C1 ~xð Þ þ
Xn
j¼2

~t ′jCj ~xð Þ ðF5Þ

with

Cj ~xð Þ ≡ � 2

p

Z ~xjþ1

~xj

ln

ffiffiffi
~x

p þ ffiffi
s

pffiffiffi
~x

p � ffiffi
s

p











ffiffi
s

p
; j ¼ 1

1; j > 1

� �
ds;

and (F4), respectively, at a set of points ~x i+1/2 within the
intermediate elements (~xi, ~xi+1), i = 2, .., n, results in a set of
n � 1 algebraic equations in terms of the unknown values
of the stress-rate ~t ′2, .., ~t ′n.
[155] We used ~x2 = 0.001, ~xn+1 = 100, n = 201, logarithmic

(log10) spacing of nodes ~xi (2 < i < n + 1), and ~xi+1/2 ≡ffiffiffiffiffiffiffiffiffiffiffiffi
~xi~xiþ1

p
to obtain ~k0 ≃ 1.848, (F3), and the normalized

distributions of the slip rate, slip, and stress shown in
Figure 9. Additional calculations with the increased den-
sity of grid points and/or different thresholds ~x2 and ~xn+1
of the asymptotic regions show that the reported solution
is accurate to at least four significant digits.

F2. Boundary Layer at the Trailing Tip

[156] Similarly to the advancing tip considerations
(section F1), the method of solution in the trailing tip
boundary layer relies on the inversion of the corresponding
elastodynamic equation (45). This inversion is obtained
from (B6) by evoking the transformation x → L � x,
VBL → �DVBL, and tBL → DtBL (see section B3), and is
written in the normalized form

DV̂ X̂
� � ¼ 2

p

Z ∞

0

ffiffiffiffi
X̂

s

s
Dt̂ sð Þds
s� X̂

with X̂ ¼ L� x

L=Lcð Þ�1=3L
; ðF6Þ

where the normalized perturbations DV̂ and Dt̂ are defined
in (47) and (48).
[157] The normalized form of the BL approximation of the

fault constitutive law, (46), is given by

T̂ ¼ Dt̂ 2
ffiffiffiffiffiffiffiffiffi
X̂ =p

q
þDV̂

� �
� dDt̂

dX̂
; ðF7Þ

where T̂ ≡ k(L/Lc)
1/3 T/T* is the normalized slip duration.

[158] The near field asymptote of DV̂ is recovered from
(F6), after integrating it by parts and passing to the limit
X̂ → 0,

X̂→0 : DV̂ ¼ Dk̂ L
ffiffiffiffi
X̂

p
; Dk̂ L≡

4

p

Z ∞

0

dDt̂
ds

dsffiffi
s

p ðF8Þ

Here Dk̂L = DkL L/(t0
ffiffiffiffiffi
Lc

p
) is the normalized perturbation

of the stress-rate intensity factor kL = kL
und + DkL at the

trailing tip. Evaluating the self-healing condition (kL = 0)
in the normalized form, we find

2=
ffiffiffi
p

p þDk̂ L ¼ 0 ðF9Þ

The near field asymptotics of the constitutive law (F7)
with (F8) and (F9) is

X̂→0 :
dDt̂
dX̂

¼ �T̂ : ðF10Þ

[159] The far field asymptotics of the BL solution can be
obtained (see section F3) in the form

X̂→∞ : Dt̂ ¼ T̂

2
ffiffiffiffiffiffiffiffiffi
X̂ =p

q þ O
ln X̂

X̂
3=2

 !
; DV̂ ¼ �T̂

ln X̂ffiffiffiffiffiffiffi
pX̂

p þ Bffiffiffiffi
X̂

p :

ðF11Þ

[160] For the numerical solution of the BL equations at the
trailing tip, (F6) and (F7), we use a modification of the
method applied to the BL at the advancing tip in section F1.
Specifically, the numerical treatment of equation (F6) is
identical to that of (F1) upon a transformation (X̂ → ~x, DV̂
→�~V , andDt̂→ ~t) and the use of the appropriate set of the
near and far field asymptotics, (F11). Upon discretization of
the semi-infinite crack in n + 1 elements, 0 = X̂ 1 < … <
X̂n+1 < X̂n+2 = ∞, we adopt a piece-wise constant
approximation for the stress-rate perturbation in the inter-
mediate elements, dDt̂ /dX̂ = Dt̂ ′j with X̂ from (X̂ j, X̂ j+1)
and j = 2, .., n; and use the near-field, dDt̂/dX̂ = �T̂ , and
the far-field, dDt̂/dX̂ = �(

ffiffiffi
p

p
/4) T̂ X̂ �3/2, approximations

in the bounding elements (0, X̂ 2) and (X̂ n+1, ∞), respec-
tively. Integrating (F6) by parts and using the stress-rate
approximation, we have

DV̂ X̂
� � ¼ �T̂ C1 X̂

� �þXn
j¼2

Dt̂ ′
j Cj X̂

� �� ffiffiffi
p

p
4

T̂ Cnþ1 X̂
� �
ðF12Þ

with

Cj X̂
� �

≡
2

p

Z X̂ jþ1

X̂ j

ln

ffiffiffiffi
X̂

p
þ ffiffi

s
pffiffiffiffi

X̂
p

� ffiffi
s

p












 1; j < nþ 1
s�3=2; j ¼ nþ 1

� �
ds:

[161] Using (F12) and the approximation of Dt̂ (X̂ ) =
�R∞X̂ (dDt̂/dX̂ )dX̂ to evaluate (F7) at a set sample points
X̂ i+1/2 ∈ (X̂ i, X̂ i+1), i = 2, .., n, we obtain a system of n � 1
algebraic equations, which, when complimented by the self-
healing condition (F9), Dk̂ L = �2/

ffiffiffi
p

p
, with Dk̂ L evaluated

from (F8), allows to solve for the n unknownsDt̂′2, ..,Dt̂′n,
and T̂ , respectively.
[162] We use X̂ 2 = 0.001, X̂ n+1 = 1000, n = 201, the log-

arithmic (log10) spacing of nodes X̂ i (2 < i < n + 1), and X̂ i+1/2 ≡
(X̂ i X̂ i+1)

1/2 to obtain the following solution (with the four
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significant digits of precision): T̂ ≃ 0.3727,Dt̂(0) ≃ 0.7584,
B ≃ �1.009, (F14), and the normalized distributions shown
in Figure 10.

F3. Derivation of (F11)

[163] The leading term in the Dt̂ -expansion, (F11), fol-
lows from (F7) and the requirement of vanishing DV̂ and
dDt̂ /dX̂ away from the trailing tip.
[164] In order to establish the leading term in the DV̂ -

expansion, (F11), let us decompose the elasticity integral
(F6) into the two integrals over a finite (0, X̂ *) and an infinite
(X̂ *, ∞) range, respectively, with large enough X̂ *, so that the

approximation Dt̂ ≃ (
ffiffiffi
p

p
/2)T̂ /

ffiffiffiffî
X

p
holds for all X̂ from

(X̂ *, ∞). Evaluating the integrals in the said decomposition
for X̂ ≫ X̂ * we have

DV̂ X̂
� �

≃� 2

p

Z X*

0

Dt̂ sð Þdsffiffi
s

p
� �

1ffiffiffiffi
X̂

p � T̂
ln X̂ =X̂*
� �
ffiffiffiffiffiffiffi
pX̂

p :

This establishes the leading asymptotic term in the DV̂ -
expansion, (F11), and suggests the form of the next term.
[165] In order to establish the next term in the DV̂ -

expansion, we first notice that

Z ∞

0

ffiffiffiffi
X̂

s

s ffiffi
s

p
1þ s

ds

s� X̂
¼ �

ffiffiffiffi
X̂

p
1þ X̂

ln X̂ ¼ � ln X̂ffiffiffiffî
X

p þ O
ln X̂

X̂
3=2

 !
:

Thus, for X̂ ≫ 1, we can establish

DV̂ X̂
� � ¼ �T̂

ln X̂ffiffiffiffiffiffiffiffi
p X̂

p
þ 2

p

Z ∞

0

ffiffiffiffi
X̂

s

s
Dt̂ sð Þ �

ffiffiffi
p

p
T̂

2

ffiffi
s

p
1þ s

� �
ds

s� X̂
þ O

ln X̂

X̂
3=2

 !
:

ðF13Þ

The latter integral’s asymptotic expression = B/
ffiffiffiffî
X

p
with

B ¼ � 2

p

Z ∞

0

Dt̂ sð Þffiffi
s

p �
ffiffiffi
p

p
2

T̂
1

1þ s

� �
ds: ðF14Þ

The integral in (F14) is converging based on the asymptotic
behavior of the integrand, which is O(1/

ffiffi
s

p
) for s → 0 and

o(1/s) for s → ∞.
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