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Abstract

Competitive Diffusion is a recently introduced game-theoretic model for the spread of

information through social networks. The model is a game on a graph with external

players trying to reach the most vertices. In this thesis, we consider the safe game

of Competitive Diffusion. This is the game where one player tries to optimize his

gain as before, while his opponents’ objectives are to minimize the first player’s gain.

This leads to a safety value for the player, i.e. an optimal minimal expected gain no

matter the strategies of the opponents.

We discuss safe strategies and present some bounds on the safety value in the

two-player version of the game on various graphs. The results are almost entirely on

the safe game on trees, including the special cases of paths, spiders and complete trees

but also consist of some preliminary studies of the safe game on three other simple

graphs. Our main result consists of a Centroidal Safe Strategy (CSS) Algorithm

which suggests a safe strategy for a player on any centroidal tree, a tree which has

one vertex as centroid, and gives its associated guaranteed gain.
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Chapter 1

Introduction

Whether we think of Facebook, Twitter or Google+, amongst many other examples of

on-line social networks, it does not take too much observation of our surroundings to

realize that they are gaining significance in the life of people around us. Within these

on-line networks, information, ideas and influence spread from users to users. The

spreading of influence is not surprising. The tendency of individuals to resemble one

another is a phenomenon that has long been discussed in psychology and sociology.

Thus, just as certain toys can become popular amongst kids at school, as political

views can become similar within communities or as technologies can become common

amongst co-workers, influence occurs in on-line social networks. That is, users of

networks can adopt ideas or products based on the choices of their neighbours in

the network. Furthermore, influences in on-line social networks can be significant

since they do not have regional limitations. On-line social networks provide direct

connections to other people no matter the distance of separation or the frequency of

encounters in real life.

This can have implications in various contexts. For instance, companies or agen-

cies see this interconnection between people as a useful tool in the launch of new

technologies. They can advertise newly developed products by targeting a small

number of users of a network and relying on the spread of rumours for their infor-

mation to reach the other users. This is also known as ”viral-marketing”. The goal

of the companies is to find the initial set of users that will result in the largest span.

However, since companies have rivals, the diffusion of products or technologies in

social networks is not as simple as one idea spreading from user to user. It rather

consists of many conflicting ideas spreading simultaneously. These ideas are compet-

ing against each other to take over the largest part of the network. An interesting

way to study this type of diffusion is to consider it in a game-theoretic setting. The

Competitive Diffusion model introduced recently in [1] has such a setting. In this

1
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model, the companies are considered to be players outside a network that play a

game in which winning consists of reaching the most users. The model reduces to

a game on a graph where the players, with distinct colours, choose a starting ver-

tex. Then, the diffusion of colours occurs step-wise in a first-come, first-served basis.

That is, vertices, once coloured, will colour each of their adjacent vertices in the next

step and vertices adopt the first colour that reaches them. According to the authors,

their game-theoretic model is the first having players outside the network. Other

game-theoretic models have considered players as the users of the network with the

choice of adopting different products, but this is a completely different game. The

decentralized game-theoretic setting of the model lends a new point of focus to the

study of diffusion in social networks.

This thesis will focus on the concept of safe game for the Competitive Diffusion

on particular graphs. When a player chooses a strategy in the safe game, he asks

himself what would be the worst payoff he could receive. In other words, he always

assumes that his opponents are out to get him. Thus, the safe game has one player

with a goal of maximizing his personal gain while the other players’ goals are to limit

the gain to the first player instead of maximizing their own. This setting provides

safe strategies which have a minimal expected gain no matter the strategies of the

opponents. This is interesting in many cases. For example, consider, once again, the

diffusion of products from rival companies on a social network. It is likely that a

company does not know the marketing strategies of the other companies. In presence

of uncertainty, many companies can see a safe strategy as a good choice because it

provides knowledge on the worst that could happen. Knowledge of the worst case

reduces the risk associated to a decision since the outcome can only be better than

assumed. In particular, safe strategies are to be considered by companies which are

not risk takers, small companies which cannot afford to take the risk of not getting

information about their product to at least a few buyers and companies which feel

that their opponents are out to get them. All in all, there is no doubt that the presence

of uncertainty about other players is likely to be the case in real life situations and

so the safe strategies suggested in this thesis are great available options.

The goal of this chapter is to define the concept of safe game along with some other

notions in game theory, linear programming and graph theory essential for the next
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chapters. A reader already familiar with some of these areas of mathematics could

skip the corresponding sections and proceed to Chapter 2 where the Competitive

Diffusion will be defined more precisely and some examples of the notions will be

given in the point of view of the game considered.

1.1 Related Work

Social networks are a research topic in various fields including mathematics and com-

puter science but also sociology and economics. One can find numerous articles in

each of these fields as well as books which combine the views of the different fields

(see [12] and [9]). In sociology and economics, we study the characteristic interac-

tions and behaviors of individuals and groups of a social network. From mathematics

and computer science comes models that attempt to represent processes in the social

networks taking into account these interactions and behaviors. One process being

modelled is the diffusion of information or technologies throughout the social net-

work. This process is usually referred to as a ”mouth-to-mouth” process, meaning

that users learn about the information through their connected peers.

In models for the spread of information, social networks are represented by graphs

with vertices corresponding to the users of the network and edges corresponding to

links between the users in the network. The vertices, which are initially inactive,

become activated once they adopt an idea. There are two general rules for this

process. One is that the tendency of a vertex to adopt an idea should increase

as more of his neighbours become activated and the other one forces a vertex that

becomes activated to stay that way throughout the rest of the process. There are

mainly two types of diffusion models i.e. threshold models and cascade models.

In threshold models, vertices become activated once they surpass a certain thresh-

old. The core of these models is the Linear Threshold Model. In this model, a vertex

v is influenced by each of its neighbours, w, by a weight bv,w, where the weights bv,w

are such that ∑
w a neighbour of v

bu,w ≤ 1. (1.1)

That is, the extend to which a vertex is influenced by a neighbour is represented by

the weight of the edge that connects the vertex to its neighbour. Weights are rescaled
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so that the total weight of all edges incident with a vertex never exceeds 1. Thus, the

weights can be interpreted as probabilities. Moreover, each vertex v has a threshold

θv uniformly and randomly chosen from the interval [0, 1]. The different possible

values for the weights and the thresholds of the vertices translate the fact that some

people are more easily influenced than others. Given an initial set of active vertices,

the diffusion progresses in steps; any vertex v for which the total weight of its active

neighbours is at least θv becomes activated. In other words, after each step,

∑
w an active neighbour of v

bu,w (1.2)

is computed for every inactive vertex v. The vertices for which this value reaches its

designated threshold become activated in the current step.

In cascade models, as a vertex becomes activated, it activates each of its neigh-

bours with a given probability. The core of these models is the Independent Cascade

Model. In this model, we also start with an initial set of activated vertices. Then,

the diffusion progresses in steps where a vertex v that becomes activated, in turns,

tries to activate each of its neighbours, w and succeeds with a probability pv,w. The

probabilities pv,w are parameters of the model. An important aspect of the process is

that, once a vertex succeeds or fails in activating its neighbours, it does not attempt

again for the rest of the process. In particular, the Competitive Diffusion from [1] on

which this thesis is focused is a cascade model where the probability of activating a

neighbour is 1.

Moreover, the study of diffusion models is divided into several settings. One of

them is an optimization problem. In this setting, the diffusion process can be thought

of as a fire that spreads through the network. The course of the fire can follow either

a threshold or cascade model of diffusion. The problem consists of determining where

to set the fire so that a maximum number of vertices get burned. In other words,

we are looking for the set of initial influenced users which will bring a greater overall

influence throughout the network. One can find results on this problem in [14], [4]

and [25]. In these articles, we also find variations of this problem. For instance, we

can have more than one product being diffused on the same network. In this case,

the optimization is in the point of view of the last person choosing where to light

his fire, once he knows where the others have been lit. This setting resembles the
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Competitive Diffusion of [1] by having a point of focus outside the social network.

However, it is not regarded as a game-theoretic setting where players simultaneously

choose strategies and live the outcome.

Another approach to study diffusion models is a game-theoretic one. First, we

have what are called network coordination games. In these games, the players are

the users of the network. They receive payoffs in relation to the similitude with their

neighbours in the adoption of products or ideas. For example, consider the network

coordination game in which each vertex has a choice between two possible products,

A and B. If the vertices v and w are adjacent in the network, we can have payoffs as

follows

• If both the vertex v and the vertex w adopt the product A, they each get a

payoff of α > 0;

• If both the vertex v and the vertex w adopt the product B, they each receive a

payoff of β > 0;

• If the vertex v and the vertex w adopt distinct products, they receive a payoff

of 0.

Choosing technologies is an example of a real life situation where this could occur.

It is advantageous for a person to have technological devices which are compatible

with the ones of his friends. Moreover, the larger number of friends with whom

he’s compatible, the larger the reward. Thus, the resulting payoff of a vertex, v will

be the sum of payoff over all its edges. Knowing the values of α and β, we can

calculate the fraction of neighbours of v needed to cause him to change products.

That is, the fraction of neighbours which would result in a higher resulting payoff if

he switches. Thus, the diffusion in this model has vertices switching products once

it is to their advantage. Many questions on this model have been looked at such as

finding the set of initial vertices which should be chosen by a new product B trying

to influence its way through a network which is initially influenced by the product A,

describing the Nash equilibria of coexistence between products A and B and studying

the characteristics of clusters which break the spread of influence. Much literature

concerning these games can be found in [11], [6] and [27]. In these articles, one can also

observe variations in the number of products to be chosen from, the added possibility
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of the users to adopt two products with additional cost and distinct values of payoffs,

α and β, for each user. The difference between these models and the Competitive

Diffusion of [1] is clearly the position of the players in the game.

Alternatively, there are the game-theoretic settings in which the players are con-

sidered to be outside the social networks. They choose initial users to influence and

their goal is to reach the most users. The Competitive Diffusion of [1] (see also

erratum [31]) is known to be the first model of this sort. In their article, the au-

thors discuss the relationship between the diameter of the graph and the existence

of pure Nash equilibria. In [30], the existence of a Nash equilibrium for this game

on trees is shown. Moreover, [29] considers the model of Competitive Diffusion on

a recently proposed model for on-line social networks and discusses the existence of

Nash equilibria.

Since the appearance of the Competitive Diffusion, a couple of generalizations

have been looked at. [10] and [34] both generalize the Competitive Diffusion model

by having the players in the game-theoretic setting outside the network, but with

different diffusion processes. In [10], the agents choose an allocation of budgeted

seeds over the vertices and the diffusion process is stochastic. The influence of a user

is divided into two parts. First, a switching function, in terms of the number of his

neighbours which have adopted either one of the products, gives the probability of a

user of adopting a product. Then, there is a selection function, which is conditional

upon switching and which gives the probability of the user adopting a product given

the proportion of his neighbours with it. The diffusion is divided in discrete time

frames where all inactivated vertices either update simultanously or are randomly

chosen to update. The authors consider mixed strategies for the players. That is, the

players assign probabilities to each possible distribution of seeds on the vertices of

the graph, given the total number of seeds in their budget. The authors explore the

existence of mixed Nash equilibria with different switching and selection functions.

In [34], the agents choose an initial set of k vertices and the diffusion is a threshold

model. The model includes two tie-breaking criterions, one for when a vertex is

initially chosen by two players and one for when a vertex is eligible to adopt more

than one product in the diffusion process. The tie-breaking criterions used are a

common reputation ordering of the products, i.e. a product with a higher reputation
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being adopted over one with a lower reputation. Here, the authors study the existence

of pure Nash equilibria for different variations of the threshold model.

The focus in all these articles is finding and describing Nash equilibria. A Nash

equilibrium is a state in which all the players know the strategies of the other play-

ers and no player can increase his personal gain by changing his strategy while his

opponents keep theirs unchanged. Thus, we assume that each player has the full

information on what his opponents are doing. In real life situations, this is improb-

able. In contrast, the safe game has players with no knowledge of their opponent’s

strategies. In fact, when adopting a strategy, a player assumes the worst possible out-

come. This gives safe strategies with guaranteed gains no matter the strategies of the

opponents. Hence, the game is more representative of real life situations. The study

of the Competitive Diffusion in a safe game setting shows relevance and constitutes

the point of focus of this thesis.

Parallel to the game-theoretic setting, we also have Voronoi games (see for example

[7], [21]). In these games, the players or facilities choose locations in the space and

points or customers that are closest to the facilities are the players’ payoffs. The

version of this game which seems the most analogous to the Competitive Diffusion is

the Voronoi game on graphs (see [32] and [2]). Here, the players take turns choosing

vacant vertices on a graph to occupy. This is repeated for n rounds. The distance

between two vertices is the number of edges in the shortest path between them. As

the game progresses, the vertices are being dominated by the nearest occupied vertex.

In the end, the payoffs of the players is the total number of vertices they dominate.

Although being similar, the Competitive Diffusion brings a more complex diffusion

process than assigning the vertices to the players only based on distances in the graph.

The game-theoretic setting of the Competitive Diffusion of [1] where the players

are considered to be outside the network is still a new concept that lends a new point

of focus for the study of diffusion models through social networks.

1.2 Notions in Game Theory

Game theory is a branch of mathematics that analyzes strategies for individuals in

competitive situations where their outcome depends on the actions of their opponents.

One can find many books introducing the basic notions of game theory (e.g., [3]), but
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all the necessary concepts for this thesis will be presented in the following sections.

1.2.1 Games and Strategies

We should start by defining a game in the sense of classical game theory.

Definition 1.1. A game involves a number of players, a set of strategies for each

player and a payoff that quantitatively describes the outcome of each play of the game

in terms of the amount that each player wins or loses.

Definition 1.2. A pure strategy of a player is a strategy that completely defines

how a player will play in a game. The set of pure strategies available to a player is

called a player’s strategy set.

Let us consider as an example, a simple two-player game: Matching Pennies.

Example 1.3. In the game Matching Pennies, both players have a penny that they

must secretly turn heads or tails. The players then reveal their choice at the same

time. If the pennies match (both being heads or both being tails), Player 1 wins a

point and Player 2 loses a point. If the pennies do not match (one penny is head and

the other is tail) Player 2 wins a point and Player 1 loses a point.

In this game, there are two pure strategies available to both players: turning the

penny heads or turning the penny tails. Thus, the strategy set of both players is:

{Heads,Tails}.

Suppose we have a two-player game and the players are called Player 1 (She) and

Player 2 (He). Say Player 1 has a choice amongst n possible strategies and Player 2

has a choice amongst m possible strategies. Let aij and bij be the payoffs of Player

1 and Player 2 respectively if Player 1 chooses the pure strategy i, 1 ≤ i ≤ n and

Player 2 chooses the pure strategy j, 1 ≤ j ≤ m. Then {aij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
and {bij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} are two collections of numbers that can be arranged

in matrices to form the payoff or game matrices of each player.

Definition 1.4. The game matrix of a player is a matrix A = (aij), 1 ≤ i ≤ n,

1 ≤ j ≤ m of real numbers such that the entry aij represents his payoff if he chooses

to play the strategy associated to row i and his opponent chooses to play the strategy

associated to column j.
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Example 1.5. In the game Matching Pennies described in Example 1.3, the game

matrices of Player 1 and Player 2 are

A =

Heads Tails

Heads

Tails

(
1 −1

−1 1

)
, B =

Heads Tails

Heads

Tails

(
−1 1

1 −1

)
.

Definition 1.6. A zero-sum game is a game with two or more players, in which

the gain of one player balances the loss of the other players and vice-versa. That is,

in a play of a zero-sum game with k players, if the payoff to a player is g1 and the

payoffs to his opponents are g2, g3,...,gk, for k ∈ Z, then
∑k

i=1 gi = 0.

In a two-player zero-sum game, whatever one player wins, the other loses so if aij

is Player 1’s payoff when Player 1 plays the strategy associated to row i and Player

2 plays the strategy associated to row j, then −aij is Player 2’s payoff for the same

play. This means that in the case of a zero-sum game, the game matrices of Player 1

and Player 2 are related i.e. B = −A. Thus, all the information on the payoffs can

be determined from the game matrix of Player 1.

Example 1.7. The game Matching Pennies described in Example 1.3 is a zero-sum

game. Thus, the game matrices presented in Example 1.5 have the property A = −B.

Definition 1.8. A mixed strategy for a player is a vector X = (x1, x2, ..., xn) such

that xi ≥ 0 for all 1 ≤ i ≤ n and
∑n

i=1 xi = 1. The entry xi in the vector is the

probability that the pure strategy associated to row i of the game matrix will be

chosen by the player.

Example 1.9. A mixed strategy for Player 1 in the game Matching Pennies described

in Example 1.3 could be X =
(
2
3
, 1
3

)
, i.e. choosing to turn her penny Heads with

probability 2
3
and Tails with probability 1

3
.

Let us denote the set of mixed strategies available to a player from a strategy set

of k pure strategies by Sk = {(z1, z2, ..., zk) | zi ≥ 0, 1 ≤ i ≤ k,
∑k

i=1 zi = 1}.

Remark 1.10. Pure strategies are part of the set of mixed strategies, Sk. Precisely, a

pure strategy is of the form ei = (0, ..., 0, 1, 0, ..., 0), 1 ≤ i ≤ k, where the probability

of 1 in the ith position corresponds to the row i or the column i always being played

by the player.
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When considering mixed strategies, the payoffs of the players become expected

payoffs or gains.

Definition 1.11. Consider the two-player game with A as the game matrix for Player

1. Suppose Player 1 chooses the mixed strategy X ∈ Sn and Player 2 chooses inde-

pendently the mixed strategy Y ∈ Sm. The expected payoff of Player 1 is

E(X, Y ) =
n∑

i=1

m∑
j=1

aij · P (Player 1 chooses i and Player 2 chooses j)

=
n∑

i=1

m∑
j=1

xiaijyj = XAY T .

(1.3)

where Y T is the transpose of the vector Y .

The expected gain of Player 1, E(X, Y ) is what Player 1 can expect to receive

when the game is played many times with the strategies X and Y .

Example 1.12. In the game Matching Pennies described in Example 1.3, suppose

Player 1 chooses the mixed strategy X =
(
2
3
, 1
3

)
while Player 2 chooses the mixed

strategy Y =
(
3
4
, 1
4

)
. Player 1’s expected gain can be calculated with the formula

from the previous definition:

E(X, Y ) =
(

2
3

1
3

) (
1 −1

−1 1

) (
3
4

1
4

)
= 1

6
.

Now, let us consider the expression of the expected gain in the previous definition

if one or both players choose a mixed strategy equivalent to a pure strategy.

Remark 1.13. Let A be the game matrix of Player 1 in a two-player game and let iA

denote the ith row of A and Aj denote the jth column of A. Consider the following

two cases, in which the expression for the expected gain can be simplified:

(i) One player chooses a mixed strategy equivalent to a pure strategy.

If Player 1 chooses a mixed strategy ei = (0, ..., 0, 1, 0, ..., 0) with the entry

1 being the ith component and Player 2 chooses the mixed strategy Y , the

expected payoff of Player 1 is

E(ei, Y ) = iAY
T =

m∑
j=1

aijyj. (1.4)
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Similarly, if Player 2 chooses the mixed strategy ej = (0, ..., 0, 1, 0, ..., 0) with

the entry 1 being the jth component and Player 1 chooses the mixed strategy

X, the expected payoff of Player 1 is

E(X, ej) = XAj =
n∑

i=1

xiaij. (1.5)

(ii) Both players choose mixed strategies equivalent to pure strategies.

If Player 1 chooses the mixed strategy ei = (0, ..., 0, 1, 0, ..., 0) with the en-

try 1 being the ith component and Player 2 chooses the mixed strategy ej =

(0, ..., 0, 1, 0, ..., 0) with the entry 1 being the jth component, the expected payoff

of Player 1 is

E(ei, ej) = aij. (1.6)

The next lemma will be useful when calculating expected gains throughout the

next chapters. In words, the lemma states that all pure strategies against a mixed

strategy is as good as a mixed strategy against a mixed strategy. This means that

if an inequality holds for the expected gain of Player 1 with a mixed strategy X no

matter the pure strategy Player 2 chooses, then the result will hold even if Player 2

uses an arbitrary mixed strategy. Due to its importance in the next chapters and to

the shortness of the argument, we also include the proof from [1].

Lemma 1.14. Let X ∈ Sn be a mixed strategy for Player 1 and α be a number such

that E(X, ej) ≥ α for all j, then we also have E(X, Y ) ≥ α for any Y ∈ Sm.

Proof. E(X, ej) ≥ α ⇒ ∑n
i=1 xiaij ≥ α. If we multiply both sides by yj ≥ 0 and sum

on j, we have:

E(X, Y ) =
∑
j

∑
i

xiaijyj ≥
∑
j

αyj = α (1.7)

since
∑

j yj = 1.

Example 1.15. Consider the mixed strategy X =
(
2
3
, 1
3

)
for Player 1 in the game

Matching Pennies described in Example 1.3. If Player 2 chooses Heads, the expected

gain of Player 1 is:

E(X, e1) =
∑2

i=1 xiai1 =
(

2
3

1
3

) (
1

−1

)
= 1/3
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If Player 2 chooses Tails, the expected gain of Player 1 is:

E(X, e2) =
∑2

i=1 xiai2 =
(

2
3

1
3

) (
−1

1

)
= −1/3

Thus, the expected gain of Player 1 is at least −1
3
no matter the choice of pure

strategy for Player 2 and therefore, Player 1 will have an expected gain of at least

−1
3
no matter the mixed strategy chosen by Player 2.

In Example 1.12, we saw that when Player 2 chooses the mixed strategy Y =
(
3
4
, 1
4

)
,

the expected gain of Player 1 is 1
6
which is greater than −1

3
.

1.2.2 Nash Equilibria

Other than the obvious interest in finding the winner, finding a stable solution in

which each player is satisfied is an important part of the analysis of a game. This

stable solution is called the Nash equilibrium, defined in words as follows:

Definition 1.16. A Nash equilibrium for a game with two or more players is a

set of chosen strategies and the corresponding payoffs for which every player knows

the equilibrium strategies of the other players and no player can increase his personal

gain by changing his strategy when the others keeps theirs unchanged.

Let us now work towards giving a mathematical definition of this concept when

considering mixed strategies. In a game, the goal of each of the players is to maximize

their personal expected payoff. A saddle point in mixed strategies is a pair of strategies

in a zero-sum game for which the payoffs to the players are optimal.

Definition 1.17. A saddle point in mixed strategies is a pair of mixed strategies

(X∗, Y ∗) that satisfies

E(X, Y ∗) ≤ E(X∗, Y ∗) ≤ E(X∗, Y ) for all X ∈ Sn, Y ∈ Sm. (1.8)

The existence of a saddle point may or may not exist in every case with pure

strategies. With mixed strategies, it is a known result from von Neumann’s Minimax

Theorem that a saddle point always exists.
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Theorem 1.18. For any n×m matrix A,

min
Y ∈Sm

max
X∈Sn

XAY T = max
X∈Sn

min
Y ∈Sm

XAY T (1.9)

and this value is called the value of the game, value(A). Moreover, there always

exists at least one saddle point (X∗, Y ∗), X∗ ∈ Sn, Y
∗ ∈ Sm, such that

E(X, Y ∗) ≤ E(X∗, Y ∗) = value(A) ≤ E(X∗, Y ) for all X ∈ Sn, Y ∈ Sm. (1.10)

Proof. For proof, see [3].

Example 1.19. The game Matching Pennies described in Example 1.3 is a zero-

sum game. (X∗, Y ∗) where X∗ = (1
2
, 1
2
) and Y ∗ = (1

2
, 1
2
) is a saddle point in mixed

strategies and the value of the game is 0.

When the game considered is not zero-sum, there are two expressions for the

expected gain: E1(X, Y ) and E2(X, Y ) are respectively the expected payoffs of Player

1 and Player 2 when Player 1 chooses the mixed strategy X and Player 2 chooses the

mixed strategy Y. In this case, the concept of optimal play is due to John Nash, so

we have the concept of a Nash equilibrium.

Definition 1.20. A pair of mixed strategies (X∗, Y ∗), X∗ ∈ Sn, Y
∗ ∈ Sm is a Nash

equilibrium if

E1(X, Y ∗) ≤ E1(X
∗, Y ∗), for all X ∈ Sn

and E2(X
∗, Y ) ≤ E2(X

∗, Y ∗), for all Y ∈ Sm.
(1.11)

If (X∗, Y ∗) is a Nash equilibrium, then E1(X
∗, Y ∗) and E2(X

∗, Y ∗) are the optimal

payoffs to Player 1 and Player 2 respectively.

In matrix form, (X∗, Y ∗), X∗ ∈ Sn, Y
∗ ∈ Sm is a Nash equilibrium if

E1(X
∗, Y ∗) = X∗AY ∗T ≥ XAY ∗T for every X ∈ Sn

and E2(X
∗, Y ∗) = X∗AY ∗T ≥ X∗AY T for every Y ∈ Sm.

(1.12)

As with the saddle points, a Nash equilibrium may or may not exist in every

case with pure strategies, but the Nash Theorem of game theory states that if we

allow mixed strategies, all games with a finite number of pure strategies has a Nash

equilibrium (see [23],[24]).
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Example 1.21. Consider a modification to the payoffs in the game Matching Pennies

described in Example 1.3. Suppose the game matrices of Player 1 and Player 2 are

A =

(
2 −1

−1 1

)
and B =

(
1 −1

−1 2

)
.

This version of the game is not zero-sum. X∗ = (3
5
, 2
5
) and Y ∗ = (2

5
, 3
5
) is a mixed Nash

equilibrium where the optimal payoffs to Player 1 and Player 2 are E1(X
∗, Y ∗) = 1

5

and E2(X
∗, Y ∗) = 1

5
.

1.2.3 Safe Games

In a two-player zero-sum game, whatever one player wins, the other player loses.

Thus, while maximizing his personal payoff, a player also minimizes the payoff to his

opponent. Hence, players want to choose strategies that will maximize their individual

payoffs. In the case of non zero-sum games, this is not necessarily the case and so

choosing a strategy is more complex. On that account, the concept of safe game,

where players consider worst-case scenarios associated to their strategies, becomes

interesting. When adopting a safe strategy in a safe game, a player asks himself what

is the worst payoff he could get using this strategy; he finds his payoff in the situation

where his opponent happens to choose the strategy which causes the greatest harm.

In other words, the payoff that Player 1 can be guaranteed to receive is obtained by

assuming that Player 2 is actually trying to minimize Player 1’s payoff rather than

maximizing his own. This leads to a minimal expected payoff, a useful information in

a game where there is uncertainty about the other players. In real life situations, like

the competitive diffusion of rival companies, being unsure of our opponents is likely

to be the case.

Consider the two-player bimatrix game (A,B) where A is the game matrix of

Player 1 and B is the game matrix of Player 2. To get the optimal guaranteed gains

for the players, the games from the two matrices are considered separately. Matrix A

is considered as the matrix for a zero-sum game with Player 1 against Player 2 where

Player 1 (the row player) wants to maximize her personal gain, while Player 2 (the

column player) wants to minimize the payoff to Player 1. In a zero-sum game, recall

that the value of the game is the optimal payoffs to the players. Thus, the safety

value of Player 1 is value(A). Similarly, matrix BT is considered as the matrix of a
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zero-sum game of Player 2 (the row player) against Player 1 (the column player), so

Player 2’s safety value is value(BT ). More formerly, we have:

Definition 1.22. In the bimatrix game (A,B), the safety value for Player 1 is

value(A) and the safety value for Player 2 is value(BT ).

Furthermore, if A has the saddle point (XA, Y A), then XA is called the maxmin

strategy for Player 1 and Y A is called the minmax strategy for Player 2.

Similarly, if BT has the saddle point (XBT
, Y BT

), then XBT
is themaxmin strategy

for Player 2 and Y BT
is called the minmax strategy for Player 1.

Remark 1.23. If (X∗, Y ∗) is a Nash equilibrium for the bimatrix game (A,B), then

E1(X
∗, Y ∗) = X∗AY ∗T ≥ value(A) and E2(X

∗, Y ∗) = X∗AY ∗T ≥ value(BT ).

Example 1.24. Consider the variation of the game Matching Pennies in Example

1.21 where the game matrix of Player 1 is

A =

(
2 −1

−1 1

)
.

Let us consider the safe game in the point of view of Player 1, i.e. let us consider

the zero-sum game of the matrix A, where Player 1 wants to maximize her personal

gain, while Player 2 wants to minimize the payoff to Player 1. Let X = (x, 1− x) be

a mixed strategy for Player 1. From Lemma 1.14, we know that Player 1’s expected

gain against any mixed strategy Y of Player 2 is greater than or equal to the minimum

of her gain over all the pure strategies for Player 2. If Player 2 chooses Heads, the

expected gain of Player 1 is 2x − (1 − x) = 3x − 1. If Player 2 chooses Tails the

expected gain of Player 1 is −x+ (1− x) = 1− 2x.

The intersection point of the two equations represented in the graph of Figure 1.1,

maxx min{1−2x, 3x−1}, is at x = 2
5
. Thus, Player 1’s maxmin strategy is X = (2

5
, 3
5
)

and her safety value is 1
5
.

1.3 Notions in Linear Programming

In the presence of a zero-sum game, linear programming is one approach to solving

game matrices. In the last section, we saw that getting the safety value and optimal

safe strategies of the players in the safe game of a bimatrix game (A,B), involved
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Figure 1.1: Expected gains of Player 1 in Example 1.24 when Player 2 choosesHeads
or Tails.
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separately solving the matrices as zero-sum games, regardless of the original game

being zero-sum or not. Hence, the methods of linear programming will be useful to

provide solutions to specific examples of the safe game of Competitive Diffusion.

Linear programming is a mathematical method for optimizing a linear objective

function subject to constraints defined as linear equalities or inequalities. The follow-

ing sections will define a linear programming problem and explain how the safe game

can be solved with linear programming. Further details and examples of linear pro-

gramming problems along with applications in game theory can be found in various

books (e.g. [3],[33]).

1.3.1 Definition of a Linear Programming Problem

A linear programming problem is an optimization of a linear objective function subject

to constraints defined as linear equalities or inequalities. Mathematically, we have:

Definition 1.25. A linear programming problem is defined as

maximize cTX

subject to AX ≤ b (1.13)

X ≥ 0

where X is the column vector of variables to be determined, c and b are column

vectors of coefficients known from the problem, A is a matrix of coefficients also

known from the problem and cT is the matrix transposition of c.

The definition of the problem above is the standard form of a linear programming

problem, where the goal is to maximize a function with constraints ≤ and where the

variables of the vector X are positive.

Remark 1.26. Minimization problems, other forms of constraints as well as nega-

tive variables can all be rewritten in standard form. For minimization problems, it

suffices to consider the maximization of the negative of the objective function. A

linear equality constraint, aX = b, is equivalent to the pair of inequalities aX ≤ b

and −aX ≤ −b and constraints with inequalities ≥ can be switched by taking the

negative of the coefficients. Lastly, when a variable x is not restricted to be positive,
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one can introduce two new variables, x′ and x′′ such that x′ ≥ 0, x′′ ≥ 0 and replace

x by x′ − x′′.

Every linear programming problem as a primal problem has a dual problem.

Definition 1.27. The dual problem of the linear programming problem from Defi-

nition 1.25 is defined as follows:

minimize bTY

subject to ATY ≥ c (1.14)

Y ≥ 0

where the column vectors b and c as well as the matrix A are unchanged and Y is a

new column vector of variables.

An important theorem concerning the primal and dual linear problems is the

theorem of duality (see [33]).

Theorem 1.28 (Duality Theorem). If either the primal problem:

Maximize cTX, subject to AX ≤ b and X ≥ 0

or the dual problem:

Minimize bTY , subject to ATY ≥ c and Y ≥ 0

has a finite optimal solution, then so does the other problem and the objective functions

are equal, i.e. max cTX = min bTY .

The theorem of duality also indirectly states that any feasible solution to the dual

problem is an upper bound to the optimal solution of the primal problem while any

feasible solution to the primal problem is a lower bound to the optimal solution of

the dual problem.

Note that it is possible for a linear programming problem to be unbounded or

infeasible.
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1.3.2 Solving the Safe Game with Linear Programming

We will now show how the problem of finding the safety value of Player 1 as well

as her optimal safe strategy in a two-player game can be translated into a linear

programming problem.

Suppose two players play a game where there are n pure strategies available to

both players. Let X = (x1, ..., xn) be a mixed strategy for Player 1 represented by

a column vector, X, and let A = (aij) be the game matrix of Player 1. If AT is

the transpose of the game matrix A, then ATX is a vector of n entries with the

jth entry,
∑n

i=1 aijxi corresponding to E(X, ej). From Lemma 1.14, we know that if

E(X, ej) ≥ α for all j, then E(X, Y ) ≥ α for all Y ∈ Sn. Thus, with the strategy

X, Player 1 can be assured an expected gain greater than or equal to minj E(X, ej).

Therefore, finding the optimal safe strategy is finding the values of {xi | 1 ≤ i ≤ n}
such that minj E(X, ej) is maximized. This can be translated to the following:

maximize v

subject to ATX ≥ v (1.15)

with x1 + x2 + ...+ xn = 1

and x1, x2, ..., xn ≥ 0

where v is a variable corresponding to the minimal expected gain. If we introduce

the column vectors X ′ = (x1, x2, ..., xn, v) and c = (0, 0, ..., 0, 1), this problem is

equivalent to

maximize cTX ′

subject to

−a11x1 −a21x2 −... −an1xn +v ≤ 0

−a12x1 −a22x2 −... −an2xn +v ≤ 0

... ... ... ... ... ...

−a1nx1 −a2nx2 −... −annxn +v ≤ 0

x1 +x2 +... +xn +0v = 1

(1.16)

and x1, x2, ..., xn ≥ 0
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which is a linear programming problem in standard form.

Moreover, we can derive the dual problem:

minimize bTY ′

subject to

−a11y1 −a12y2 −... −a1nyn +V ≥ 0

−a21y1 −a22y2 −... −a2nyn +V ≥ 0

... ... ... ... ... ...

−an1y1 −an2y2 −... −annyn +V ≥ 0

y1 +y2 +... +yn +0V = 1

(1.17)

and y1, y2, ..., yn ≥ 0

where Y ′ = (y1, y2, ..., yn, V ) and b = (0, 0, ..., 0, 1) are column vectors. If we intro-

duce the column vector Y = (y1, y2, ..., yn), this dual problem is equivalent to

minimize V

subject to AY ≤ V (1.18)

with y1 + y2 + ...+ yn = 1

and y1, y2, ..., yn ≥ 0

which translate to finding a mixed strategy for Player 2, Y = (y1, y2, ..., yn), such that

the maximum gain that Player 1 can get considering all of her possible pure strategies

is minimized. In other words, finding the optimal mixed strategy Y = (y1, y2, ...yn)

for Player 2 such that maxi E(ei, Y ) is minimized.

From the theorem of duality, we know that if there exists a mixed strategy for

Player 1 such that her minimal expected gain is maximized, then there also exists

a mixed strategy for Player 2 such that the maximum expected gain of Player 1

is minimized. Moreover, these gains coincide and are precisely the safety value for

Player 1 in the game. The safety value and the optimal safe strategy of Player 1 can

be obtained by means of linear programming methods with the help of a mathematical

programming language such as MATLAB® [19].

Furthermore, the theorem of duality indirectly states that any feasible solution of

the primal is a lower bound of the dual and any feasible solution of the dual is an
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upper bound of the primal. This said, the minimal gain with any safe strategy for

Player 1 is a lower bound on her safety value and Player 1’s maximal gain against any

mixed strategy for Player 2 is an upper bound. This will be a useful tool in the study

of the safe game of Competitive Diffusion. While linear programming can provide

the safety value and the optimal safe strategy of Player 1 for a two-player game, it

requires the game matrix. Determining the game matrix of games can be a lot of

work. Therefore, finding strategies for Player 1 and Player 2 that tightly bound the

safety value is a better approach.

1.4 Notions in Graph Theory

Graph Theory is a branch of mathematics that studies the properties and applications

of graphs.

Definition 1.29. A graph G = (V,E) is a mathematical structure consisting of two

finite sets V and E, their elements called vertices and edges respectively. Each edge

is associated to one or two vertices, called its endpoint(s). Furthermore, we call a

vertex in the graph joined by an edge to v a neighbour of v.

The structure of nodes and connections in graphs makes them useful models in

various applications, including social networks. Social networks can be modelled by

undirected graphs where the vertices correspond to the users of the network and edges

represent links between two users. In fact, the game model of Competitive Diffusion,

which will be described formally in the next chapter, is essentially a game on a graph.

Thus, we will define a few families of graphs and some notions in graph theory that

will be useful in the analysis of the game.

1.4.1 Common Graphs

Definition 1.30. A path is a graph in which the number of vertices is one more

than the number of edges and where the graph can be drawn so that all its vertices

and edges lie on a straight line. A path graph with n vertices is denoted Pn.

Example 1.31. See Figure 1.2 (a).
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… 

(a) Path graph with n vertices, Pn. (b) Cycle graph with n = 6 vertices, C6.

(c) Spider graph, S, with 10 vertices; 3 legs
each having 3 vertices.

(d) Binary tree of height 3.

(e) Ternary tree of height 2. (f) Complete graph, K5.

  

(g) Bipartite graph.

  

(h) Complete bipartite graph.

Figure 1.2: Examples of common graphs.
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Definition 1.32. A cycle is either a single vertex with a self-loop or a graph in

which the number of vertices and edges are equal and the graph can be drawn so

that all its vertices and edges lie on a single circle. A cycle graph with n vertices is

denoted Cn.

Example 1.33. See Figure 1.2 (b).

A graph G is said to be connected if between every pair u and v of vertices of

G, there exists an alternating sequence of vertices and edges from u to v in G. A

path in a graph G is an alternating sequence of vertices and edges adjacent in G

with no repeated vertices. A cycle in a graph G is an alternating sequence of vertices

and edges adjacent in G that begins and ends with the same vertex but has no other

repeated vertices.

Definition 1.34. A tree is a connected graph that has no cycle.

Definition 1.35. A spider with n vertices, S, is a tree with one and only one vertex

of degree exceeding 2. The vertex of the spider with degree exceeding 2 is called the

body of the spider and any branch at the body of the spider is called a leg of the

spider. (Note that the legs of the spider are none other than non-trivial paths, see

[26]).

Example 1.36. See Figure 1.2 (c).

Definition 1.37. A rooted tree is a tree with a designated vertex called the root.

Each edge is considered to be directed away from the root.

A rooted tree imposes a hierarchy on the vertices according to their distance from

the root. We can talk of the depth of a vertex v, that is, the distance from the

root to v, and the parent and children of v, that is the vertex preceding v on the

path from the root to v and the vertices succeeding v, respectively. Furthermore,

the height of the tree is the length of the longest path from the root. Lastly, there

are the leaves of the tree, particularly the vertices having no children or of degree

1 versus the internal vertices of the tree, which are the vertices that have at least

one child.

Definition 1.38. An m-ary tree (m ≥ 2) is a rooted tree in which every vertex has

at most m children and in which at least one vertex has exactly m children.
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Definition 1.39. A complete m-ary tree is an m-ary tree in which every internal

vertex has exactly m children and all leaves have the same depth.

Example 1.40. See Figure 1.2 (d) and (e).

Definition 1.41. A complete graph is a graph in which every pair of vertices is

joined by an edge. A complete graph on n vertices is denoted by Kn.

Example 1.42. See Figure 1.2 (f).

Definition 1.43. A bipartite graph is a graphG whose vertices V can be partitioned

into two subsets U and W such that every edge of G has one endpoint in U and one

endpoint in W .

Example 1.44. See Figure 1.2 (g).

Definition 1.45. A complete bipartite graph is a bipartite graph in which all the

vertices in one of the bipartition subsets are joined to all the vertices of the other

bipartition subset. A complete bipartite graph that has m vertices in one of its

bipartite subsets and n vertices in the other bipartite subset is denoted Km,n.

Example 1.46. See Figure 1.2 (h).

1.4.2 Properties of Trees

Definition 1.47. A maximal sub-tree of a graph G is a subgraph of G which is a

tree and cannot be extended without creating a cycle.

Definition 1.48. A branch of a tree Tn at a vertex v is a maximal sub-tree of Tn

which has v as a leaf. Correspondingly, the weight of the vertex v, w(v), is the

maximum number of edges in any branch of v. Furthermore, the centroid of Tn is

the set of centroid vertices, vertices which have the minimal weight in Tn (See [22]).

Example 1.49. Consider the tree with 15 vertices from Figure 1.3(a), T15 . In Figure

1.3(b), the vertex circled has three branches represented by the vertices coloured in

Yellow, Green and Blue. The branch with Blue vertices has the maximum number

of edges, 8. Thus, the weight assigned to the vertex circled is 8. Similarly, in Figure
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(a) Tree with 15 vertices, T15.

 
 
 

 
 
 

(b) Vertex in T15 with weight 8.

(c) Vertex in T15 with weight 7.

 

  

    

        

(d) Weights in T15.

Figure 1.3: Example of weights and centroid of a tree.
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1.3(c), the vertex circled has two branches represented by the vertices coloured in

Purple and Red. Both branches have 7 edges, thus this is the weight assigned to the

vertex circled. In a similar manner, the weights can be assigned to the other vertices

of T15 and we get the weights in Figure 1.3(d). The minimal weight in T15 is 7 and

thus, the top vertex of T15 is the centroid since it is the only vertex with weight 7.

Theorem 1.50. There are at most two centroid vertices in a tree and if two centroid

vertices exist, they are adjacent. Moreover, a tree with two centroid vertices has an

even number of vertices and the weight of each centroid vertex is n
2
.

Proof. See [15].

Theorem 1.51. Let v be a vertex in Tn with k branches having n1, n2, ..., nk edges.

Then, v is a centroid vertex of Tn if and only if ni ≤ n
2
for 1 ≤ i ≤ k.

Proof. See [13].

Definition 1.52. A centroidal tree is a tree which has only one vertex in its

centroid. On the other hand, a bicentroidal tree is a tree which has two vertices in

its centroid.



Chapter 2

Competitive Diffusion

Now that we have defined the necessary notions, let us return our focus to Competitive

Diffusion (see [1]), a game on a graph. Recall that Competitive Diffusion is a game-

theoretic model for the diffusion of technologies, advertisement or other influences in

social networks. It has players outside the network, like rival companies with a goal

of reaching the most users.

2.1 Definition of the game

Let G be a graph on n vertices and suppose there are p players, P1, ..., Pp each having a

distinct assigned colour (not white or grey). The strategy of each player is to choose a

vertex in G as their starting vertex. The game begins by colouring each of the starting

vertices of the players and then proceeding to the diffusion of the colours through G

as follows: at each wave of diffusion, a vertex that has one or more neighbours with

a certain colour inherits that colour while a vertex that has two neighbours with

different colors turns grey. The grey concept translates the assumption that if the

information about two companies reaches a user at the same time, they cancel each

other. The diffusion finishes when all the vertices have either inherited a colour, have

turned grey or are forced to stay white being blocked off by grey vertices. In the end,

the gain of the players is the number of vertices with their assigned colour and clearly,

the winner of the game is the player that has the greatest gain. We should note that

if two or more players have the same starting vertex, then this vertex immediately

turns grey.

While the game can be played with any finite number of players, this thesis will

concentrate on the two-player version of the game. In the following, the two players

will be called Player 1 (She) and Player 2 (He).

Example 2.1. Suppose two players, Player 1 and Player 2, play the game Competi-

tive Diffusion on the graph G with 8 vertices in Figure 2.1(a). Let Player 1 have the

27
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(a) Graph G.

 

 

 

 

 

 

 
 

(b) Starting vertices of Player 1 (Yellow) and
Player 2 (Blue).

 

 

 

 

 

 

 
 

(c) After 1st wave of diffusion.

 

 

 

 

 

 

 
 

(d) After 2nd wave of diffusion.

Figure 2.1: Example of a two-player Competitive Diffusion game.

assigned colour Yellow and Player 2 have the assigned colour Blue. Suppose Player 1

chooses the vertex v1 and Player 2 chooses the vertex v5 as shown in Figure 2.1(b).

After the first wave of diffusion, the vertices that get coloured are represented in Fig-

ure 2.1(c). Note that the vertex v4, a neighbour of v1 and v5 has turned grey. After

the second wave of diffusion (see Figure 2.1(d)), the diffusion is done. All vertices

have either inherited a colour, have turned grey or forced to stay white being blocked

off by grey vertices (see for instance the vertex v8 in Figure 2.1(d)). In the end, the

gain of Player 1 is 4 vertices and the gain of Player 2 is 2 vertices, thus the winner is

Player 1.

2.2 Strategies

We now introduce the terms and notations that will be used throughout the rest

of this thesis for the strategies of the players. In the following, we suppose Player
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1 and Player 2 play the game Competitive Diffusion on a graph G with n vertices

{v1, v2, ..., vn}.
The definition of the game states that the strategy of a player is to choose a

starting vertex. These are the pure strategies of the players (see Definition 1.2).

Hence, there are precisely n available pure strategies to the players when the game is

played on the graph G, one for each possible starting vertex.

Recall from Definition 1.8 that a mixed strategy for a player is a vector with

each element corresponding to the probability of the player choosing a specific pure

strategy. For the game Competitive Diffusion, a mixed strategy for a player is a vector

X = (x1, x2, ..., xn) where xi equals the probability that the vertex vi, 1 ≤ i ≤ n, is

chosen by the player. Correspondingly, we define the game matrix of Player 1 (see

Definition 1.4) for the game Competitive Diffusion.

Definition 2.2. In the game Competitive Diffusion, the game matrix of Player 1

on the graph G is denoted by AG. Moreover, if AG = (aij), then the entry aij of the

matrix is the payoff to Player 1 when her strategy is to choose the vertex vi and the

strategy of Player 2 is to choose the vertex vj.

Accordingly, the expected gain of Player 1 when she plays the mixed strategy X

and Player 2 plays the mixed strategy Y is denoted by Gain(G,X, Y ) for the game

Competitive Diffusion on the graph G. The expected gain, as in Definition 1.11, is

equal to

Gain(G,X, Y ) = XAGY
T (2.1)

where AG is the game matrix of Player 1 on the graph G and Y T is the transpose of

the vector Y .

Now, when one or both players choose mixed strategies equivalent to pure strate-

gies we will use the following notation.

Definition 2.3. Let vk, 1 ≤ k ≤ n, be a vertex in the graph G. The mixed strategy

where a player chooses the vertex vk with probability 1 and the other vertices with

probability 0 is denoted by Z(vk). That is, Z(vk) = (z1, z2, ..., zn) with

zi =

⎧⎨
⎩1, if i = k

0, otherwise.
(2.2)
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Thus, if u and v are two vertices of the graph G, then Gain(G,Z(u), Z(v)) is the

expected gain of Player 1 when she chooses the vertex u and Player 2 chooses the

vertex v.

2.3 Preliminary Results: Nash Equilibrium

Other than the obvious interest of finding the winner, finding a stable solution in

which each player is satisfied is an important part of the analysis of a game. Pure

Nash equilibria for the two-player game of Competitive Diffusion have been looked at

for graphs including paths, cycles and trees by [5]. They can be summarized in the

following results.

Theorem 2.4. In a two-player game on a path with n vertices, the set of possible

Nash equilibria is determined as below:

(i) If n is even, then the two adjacent vertices in the middle form the only possible

Nash equilibrium, and the equilibrium payoffs are equal and are (n+ 1)/2.

(i) If n is odd, then any two vertices in the middle (i.e., we have two possibilities,

the central vertex and one of its neighbours) form a Nash equilibrium, and the

equilibrium payoffs are equal and are �n/2�.

Theorem 2.5. In a two-player game on a tree Tn with centroid C(Tn), the only

possible pure Nash equilibria are determined as follows:

(i) If C(Tn) = {c1, c2}, then C(Tn) is the equilibrium and the equilibrium payoffs

are equal to n
2
.

(ii) If C(Tn) = {c}, then {c, v} is the equilibrium where v is a neighbour of c on a

branch at c with the maximum number of edges and the equilibrium payoffs are

n− w(v) and w(v) respectively.

Theorem 2.6. In a two-player game on a cycle Cn with n vertices, the set of possible

Nash equilibria is determined as below:

(i) If n is odd, then every two vertices on Cn, form a Nash equilibrium, and the

payoffs are equal to n−1
2
.
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Figure 2.2: Example of a graph which does not admit a pure Nash equilibrium for
the two-player game of Competitive Diffusion.

(ii) If n is even, then two vertices on Cn form a Nash equilibrium if and only if,

they are of even distance, and the equilibrium payoffs are equal to n
2
.

The gains in the pure Nash equilibrium will serve as comparison points for the

safety value of the safe game. Despite these results, a pure Nash equilibrium does not

necessarily exist for the two-player Competitive Diffusion on every graph. In [31], the

authors present the graph of Figure 2.2 as an example for which the two-player game

of Competitive Diffusion does not admit a pure Nash equilibrium.

2.4 Safe Game

The next chapters will concentrate on the safe game of the two-player Competitive

Diffusion on various graphs. Recall from Section 1.2.3, that in the safe game a player

asks himself what is the worst payoff he could get with a given strategy. Since the two

players have the same strategy set, we will only consider the safe game in the point of

view of Player 1. Thus, we consider the zero-sum game of Player 1 against Player 2

where Player 1 (the row player) wants to maximize her personal gain while Player 2

(the column player) wants to minimize the payoff to Player 1. In the physical sense of

the game, this means that instead of caring just for the vertices of his colour, Player

2 cares for the total number of vertices that are his colour, grey or white. While it

could happen that an opposing strategy for Player 2 would minimize Player 1’s payoff

and simultaneously give Player 2 the highest payoff, it does not need to be the case.
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Thus, the safe game is not equivalent to the game where both players are trying to

maximize their personal payoffs. The following is a simple example of this.

Example 2.7. Suppose Player 1 and Player 2 play the game Competitive Diffusion

on a graph G with n vertices. Let u be a vertex in G. If the strategy of Player 1 is

Z(u), i.e. choosing the vertex u with probability 1, then the best strategy for Player

2, in the concept of the safe game, is to also adopt the strategy Z(u) so that the

payoff to Player 1 is minimized to 0. In this case, however, the payoff to Player 2 is

also zero while if Player 2 chooses another vertex in G, his gain is at least 1. Thus,

minimizing Player 1’s payoff does not result in Player 2’s highest payoff.

In the following definitions, we consider the two-player game of Competitive Dif-

fusion on a graph G. Recall from Definition 1.22 that the safety value of Player 1 is

the optimal guaranteed payoff of Player 1, or what is called the value of the game.

Definition 2.8. The safety value for Player 1 in the game of Competitive Diffusion

is

value(AG) = min
Y ∈Sn

max
X∈Sn

XAGY
T . (2.3)

Definition 2.9. A safe strategy X for Player 1 is a mixed strategy of Player 1

adopted in a safe game setting. Correspondingly, the guaranteed gain of Player

1 with the strategy X, GGain(G,X), is the minimal gain that Player 1 could receive

with the strategy X, i.e.

GGain(G,X) = min
Y ∈Sn

XAGY
T . (2.4)

From Lemma 1.14, we know that if an inequality on the expected gain holds for

all pure strategies, then it will also hold no matter the mixed strategy. Thus, we also

have the following:

GGain(G,X) = min
y

Gain(G,X,Z(y)) (2.5)

where y ∈ V (G) and Z(y) is the vector as defined in Definition 2.3. In other words,

the guaranteed gain of Player 1 with the strategy X on the graph G is the minimal

payoff she can receive over all the possible starting vertices for Player 2 in G.
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Definition 2.10. An opposing strategy Y for Player 2 is a mixed strategy for

Player 2 in the safe game setting. Correspondingly, the maximal gain of Player 1

against the strategy Y is the maximal gain that Player 1 could receive when Player

2 chooses the strategy Y , i.e.

MGain(G, Y ) = max
X∈Sn

XAGY
T . (2.6)

Again using the Lemma 1.14, we have

MGain(G, Y ) = max
x

Gain(G,Z(x), Y ) (2.7)

where x ∈ V (G) and Z(x) is the vector as defined in Definition 2.3. In other words,

the maximal gain of Player 1 against the opposing strategy Y of Player 2 on the

graph G is the maximal gain she can receive over all of the possible starting vertices

in G.

2.5 Linear Programming

As it was explained in Section 1.3.2, linear programming is a method that can solve

the game matrix to get the safety value of Player 1 along with a maxmin strategy for

Player 1 and a minmax strategy for Player 2. However, in order to use this method,

the game matrix needs to be determined. In the game of Competitive Diffusion on a

graph with n vertices, there are n pure strategies available to both players, thus n2

entries in the game matrix. Determining all these payoffs is tedious work. Thus, linear

programming will only be useful to solve a few specific examples. In the general case,

we will use the fact that any feasible solution of the primal is a lower bound of the

dual and any feasible solution of the dual is an upper bound on the primal. This being

the case, the guaranteed gain with any safe strategy for Player 1 is a lower bound on

the safety value while the maximal gain of Player 1 against a strategy of Player 2 is

an upper bound on the safety value. Mathematically, we have the following:

min
y∈V (G)

Gain(G,X,Z(y)) ≤ min
Y ∈Sn

max
X∈Sn

XAGY
T ≤ max

x∈V (G)
Gain(G,Z(x), Y ) (2.8)

which is equivalent to

GGain(G,X) ≤ value(AG) ≤ MGain(G, Y ). (2.9)
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where value(AG) is the safety value of Player 1 on the graph G and GGain(G,X)

and MGain(G, Y ) are respectively the guaranteed gain and maximal gain of Player

1 as defined in Definitions 2.9 and 2.10. In the following chapters, we will try to find

strategies so that these bounds are tight. In other words, we want to find good safe

strategies for Player 1 and good opposing strategies for Player 2.

Note: In the following chapters, the computations and simplifications were performed

with the use of MATLAB® [19], Maple™, a trademark of Waterloo Maple Inc. [16]

and Mathematica® [18].



Chapter 3

Paths and Spiders

In this chapter, we will study the two-player safe game of Competitive Diffusion on

path graphs, Pn and spider graphs, S. Other than being interesting, the results of

the study of special cases of trees, i.e. the paths and spiders in this chapter and the

complete trees in the next chapter, will help gain insight into the safe game on trees

in general in Chapter 5.

3.1 Paths

Recall from Definition 1.30 that a path graph with n vertices, Pn, is a graph that can

be drawn so that all its vertices and edges lie on a straight line. Let the vertices of

the path be labelled from v1 to vn, as shown in Figure 3.1. Recall from Definition

2.3, that the mixed strategy for which a player chooses a vertex vk with probability

1 is denoted by Z(vk).

3.1.1 Game Matrix and Examples

Since the structure of Pn is simple, the game matrix of Player 1 in the two-player

game can be determined.

Theorem 3.1. In the two-player game of Competitive Diffusion on a path, Pn, let

the strategy of Player 1 be choosing the vertex vi, 1 ≤ i ≤ n, and the strategy of

Player 2 be choosing the vertex vj, 1 ≤ j ≤ n.

… 
         

Figure 3.1: Labelling of the vertices on a path graph.

35
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The game matrix of Player 1 is APn = (πij|n) where

πij|n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
� i+j−1

2
�, if i < j

0, if i = j

n− � i+j
2
�, if i > j.

(3.1)

Note: In the following, πij|n will represent the payoff of Player 1 when she chooses

the vertex vi and when Player 2 chooses the vertex vj, 1 ≤ i, j ≤ n on a path with

n vertices. When n is clear from the context, πij|n might be referred simply as πij.

Moreover, by symmetry, this is also the game matrix for Player 2.

Proof. There are three cases to consider.

(i) When i = j, the two players have the same starting vertex. Thus, the vertex

immediately turns grey and the gain of Player 1 is zero.

(ii) When i < j, the vertex vi of Player 1 is to the left of the vertex vj of Player

2 on the path. There are i − 1 vertices to the left of vi and j − i − 1 vertices

between the vertices vi and vj. If j− i−1 is even, both players will gain exactly

half of the vertices in between the starting vertices, i.e. j−i−1
2

. If j − i − 1 is

odd, each player will gain j−i−2
2

vertices and the vertex in the middle will turn

grey. Thus, the total gain of Player 1 is
⌊
i+j−1

2

⌋
, the sum of the i − 1 vertices

on the left of vi, the vertex vi and the
⌊
j−i−1

2

⌋
vertices in between.

(iii) When i > j, the vertex vi of Player 1 is more to the right than the vertex vj of

Player 2 on the path. There are n − i vertices to the right of vi and i − j − 1

vertices between the vertices vi and vj. Similarly to the case when i < j, the

gain of Player 1 in between the starting vertices will be
⌊
i−j−1

2

⌋
. Thus, Player

1’s total gain will be n− ⌊
i+j
2

⌋
, the sum of the n− i vertices, the vertex vi and

the
⌊
i−j−1

2

⌋
vertices in between.

With the game matrix in hand, we can use the methods of linear programming,

as explained in Section 1.3.2, to determine the safety value of Player 1 along with the
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maxmin strategy of Player 1 and the minmax strategy of Player 2 on paths of specific

lengths.

Example 3.2. On a path, Pn, with 12 vertices, the safety value of Player 1 is 4.4194.

The maxmin strategy of Player 1 is:

vi, i : 1 2 3 4 5 6 7 8 9 10 11 12

XA = (0.0000, 0.0000, 0.0000, 0.3226, 0.1129, 0.0645, 0.0645, 0.1129, 0.3226, 0.0000, 0.0000, 0.0000)

The minmax strategy of Player 2 is:

vj , j : 1 2 3 4 5 6 7 8 9 10 11 12

Y A = (0.0000, 0.0000, 0.0000, 0.0269, 0.1720, 0.3011, 0.3011, 0.1720, 0.0269, 0.0000, 0.0000, 0.0000)

Example 3.3. On a path, Pn, with 13 vertices the safety value of Player 1 is 4.8387.

The maxmin strategy of Player 1 is:

vi, i : 1 2 3 4 5 6 7 8 9 10 11 12 13

XA = (0.0000, 0.0000, 0.0000, 0.0000, 0.2903, 0.1613, 0.0968, 0.1613, 0.12903, 0.0000, 0.0000, 0.0000, 0.0000)

The minmax strategy of Player 2 is:

vj ,j : 1 2 3 4 5 6 7 8 9 10 11 12 13

Y A = (0.0000, 0.0000, 0.0000, 0.0000, 0.1014, 0.2442, 0.3088, 0.2442, 0.1014, 0.0000, 0.0000, 0.0000, 0.0000)

As we can see from the examples, the probabilities in the maxmin and minmax

strategies are symmetric with respect to the middle of the path and the positive

probabilities are near the center of the path. We are looking to get an idea of the

safety value of Player 1 on Pn as n gets large. This remark will motivate the definition

of the strategy CP (k) for paths in the next section.

3.1.2 Bounds on the Safety Value with the Strategy CP (k)

Motivated by the structure of the maxmin and minmax strategies of the examples in

the last section, let us define a mixed strategy for a player on a path, Pn.

Definition 3.4. Let the strategy CP (k) be a mixed strategy where a player chooses

a vertex from a set of central vertices with equal probability.
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If n is even, the set consists of the 2k central vertices of the path, i.e. the

strategy CP (k) = (z1, z2, ..., zn) where

zi =

⎧⎨
⎩0, if 1 ≤ i < n

2
− k + 1 or n

2
+ k < i ≤ n

1
2k
, if n

2
− k + 1 ≤ i ≤ n

2
+ k

(3.2)

and k ∈ {1, 2, ..., n
2
}.

If n is odd, the set consists of the 2k − 1 central vertices of the path, i.e. the

strategy CP (k) = (z1, z2, ..., zn) where

zi =

⎧⎨
⎩0, if 1 ≤ i < n+1

2
− k + 1 or n+1

2
+ k − 1 < i ≤ n

1
2k−1

, if n+1
2

− k + 1 ≤ i ≤ n+1
2

+ k − 1
(3.3)

and k ∈ {1, 2, ..., n
2
}.

Recall from Section 2.5, that we have the following bound on the safety value of

Player 1:

GGain(G,X) ≤ Safety Value of Player 1 on G ≤ MGain(G, Y ) (3.4)

where X is any safe strategy for Player 1 and Y is any opposing strategy for Player

2. Thus, we can consider the strategy CP (k) as a safe strategy for Player 1 and as

an opposing strategy for Player 2 to get bounds on the safety value of Player 1 on a

path. This leads to the following result.

Theorem 3.5. In the two-player Competitive Diffusion game on Pn, the safety value

of Player 1 is between n
2
−

√
n
2

+O(1) and n
2
−

√
n

2
√
3
+O(1) as n → ∞.

In order to prove this theorem, let us consider some lemmas on the guaranteed

gain of Player 1 with the strategy CP (k) and the maximal gain of Player 1 when

Player 2 has the strategy CP (k) as opposing strategy.

Lemma 3.6. The guaranteed gain of Player 1 with the safe strategy CP (k) on a path

with n vertices is

(i) n even:

GGain(Pn, CP (k)) =
n

2
− n

4k
− k

4
− 1

4
+

1

2k
(3.5)
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(ii) n odd:

GGain(Pn, CP (k)) =

⎧⎨
⎩

2kn−2n−k2+2
2(2k−1)

, if k is even

2kn−2n−k2+1
2(2k−1)

, if k is odd.
(3.6)

Proof. Recall from Definition 2.9, that the guaranteed gain of Player 1 with the mixed

strategy CP (k) on the graph Pn is

GGain(Pn, CP (k)) = min
j

Gain(Pn, CP (k), Z(vj)) (3.7)

where 1 ≤ j ≤ n. In other words, it is the minimal expected gain that Player 1 can

get over all the possible starting vertices for Player 2. Since the gain of Player 1 and

the strategy CP (k) are symmetric with respect to the middle of the path, we only

need to consider the vertices on one half of the path as possible starting vertices for

Player 2. Moreover, the expected gain of Player 1 when Player 2 chooses a vertex vj

with 1 ≤ j ≤ n is:

Gain(Pn, CP (k), Z(vj)) =
n∑

i=1

ziπij (3.8)

where πij is the entry of game matrix of Player 1 from Theorem 3.1 and zi is the ith

component of CP (k). Let us consider the cases when n is even and odd separately.

(i) n even:

The strategy CP (k) from Definition 3.4 for n even is CP (k) = (z1, z2, ..., zn)

where

zi =

⎧⎨
⎩0, if 1 ≤ i < n

2
− k + 1 or n

2
+ k < i ≤ n

1
2k
, if n

2
− k + 1 ≤ i ≤ n

2
+ k

(3.9)

and k ∈ {1, 2, ..., n
2
}.

… … … … … … 
       

Figure 3.2: Illustration 1 in the proof of Lemma 3.6.

We can replace the values of zi in (3.8) to get

Gain(Pn, CP (k), Z(vj)) =
1

2k

n
2
+k∑

i=n
2
−k+1

πij. (3.10)
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Suppose the vertex vj is on the left half of the path, i.e. 1 ≤ j ≤ n
2
.

(a) If 1 ≤ j ≤ n
2
− k then i > j for all n

2
− k + 1 ≤ i ≤ n

2
+ k. Replacing the

expression πij for i > j, we have

Gain(Pn, CP (k), Z(vj)) =
1

2k

n
2
+k∑

i=n
2
−k+1

(
n−

⌊
i+ j

2

⌋)
. (3.11)

Hence, the expected gain of Player 1 decreases with j, and so the minimum if

1 ≤ j ≤ n
2
− k is with j = n

2
− k;

Gain
(
Pn, CP (k), Z

(
vn

2
−k

))
=

1

2k

n
2
+k∑

i=n
2
−k+1

(
n−

⌊
i+ n

2
− k

2

⌋)
. (3.12)

Expanding the summation, we get

Gain(Pn, CP (k), Z
(
vn

2
−k

)
) =

1

2k

(
n−

⌊
n− 2k + 1

2

⌋
+ n−

⌊
n− 2k + 2

2

⌋

+n−
⌊
n− 2k + 3

2

⌋
+ ...+ n−

⌊
n− 1

2

⌋
+ n−

⌊n
2

⌋)
.

(3.13)

Since n is even, the floor functions can be reduced and we have

Gain(Pn, CP (k), Z
(
vn

2
−k

)
) =

1

2k

(
n−

(n
2
− k

)
+ n−

(n
2
− k + 1

)
+n−

(n
2
− k + 1

)
+ ...+ n−

(n
2
− 1

)
+ n−

(n
2

))
.

(3.14)

This is equivalent to

Gain(Pn, CP (k), Z
(
vn

2
−k

)
) =

1

2k

(
2k

(n
2

)
+ 2

k−1∑
l=1

l + k

)
. (3.15)

Finally, we have

Gain(Pn, CP (k), Z
(
vn

2
−k

)
) =

n

2
+

k

2
(3.16)

since
∑k−1

l=1 l = (k−1)k
2

.

(b) If n
2
−k+1 ≤ j ≤ n

2
, then for n

2
−k+1 ≤ i ≤ j−1, i < j and for j+1 ≤ i ≤ n

2
+k,

i > j. Replacing the expressions of πij in (3.10) gives

Gain(Pn, CP (k), Z(vj)) =
1

2k

⎡
⎣ j−1∑

i=n
2
−k+1

⌊
i+ j − 1

2

⌋
+

n
2
+k∑

i=j+1

(
n−

⌊
i+ j

2

⌋)⎤
⎦ .

(3.17)
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… … … … … … 

Figure 3.3: Illustration 2 in the proof of Lemma 3.6.

In order to simplify (3.17), let us determine the sum of the term i = u, n
2
−k+1 ≤

u ≤ j − 1 in the first summation with the term i = n − u + 1 in the second

summation:

πu,j + πn−u+1,j =

⌊
u+ j − 1

2

⌋
+ n−

⌊
n− u+ 1 + j

2

⌋
(3.18)

where n
2
−k+1 ≤ u ≤ j− 1. To simplify this expression, we can use �x+m� =

�x� + m where m is an integer and consider the possible parities for u and j.

We get

πu,j + πn−u+1,j =
n

2
+ u− 1,

n

2
− k + 1 ≤ u ≤ j − 1. (3.19)

Similarly, let us sum the terms i = u, j + 1 ≤ u ≤ n
2
and i = n − u + 1 in the

second summation of (3.17),

πu,j + πn−u+1,j = 2n−
⌊
u+ j

2

⌋
−

⌊
n− u+ 1 + j

2

⌋
(3.20)

where j + 1 ≤ u ≤ n
2
. After simplification, we have

πu,j + πn−u+1,j =
3n

2
− j, j + 1 ≤ u ≤ n

2
. (3.21)

(b.1) When j = n
2
− k + 1, replacing (3.21) in (3.17), gives

Gain
(
Pn, CP (k), Z

(
vn

2
−k+1

))
=

1

2k

⎡
⎣ n

2∑
i=n

2
−k+2

(
3n

2
− j

)
+

(
n−

⌊
n+ 1

2

⌋)⎤
⎦

(3.22)

which can be simplified to

Gain
(
Pn, CP (k), Z

(
vn

2
−k+1

))
=

n

2
− n

4k
+

1

2k
+

k

2
− 1. (3.23)
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(b.2) When n
2
− k + 1 < j < n

2
, replacing (3.19) and (3.21) in (3.17), gives

Gain(Pn, CP (k), Z(vj)) =
1

2k

⎡
⎣ j−1∑

i=n
2
−k+1

(n
2
+ i− 1

)
+

n
2∑

i=j+1

(
3n

2
− j

)

+

(
n−

⌊
n− j + 1 + j

2

⌋)] (3.24)

which can be simplified to

Gain(Pn, CP (k), Z(vj)) =
1

2k

(−3jn

2
− 3j

2
+ 1 +

3n2

8
+ kn− k

2
+

3j2

2
− n

4
− k2

2

)
(3.25)

where n
2
−k+1 < j < n

2
. We can determine that this expected gain is minimized

with j = n
2
− 1 and the corresponding gain is

Gain(Pn, CP (k), Z(vn
2
)) =

n

2
− n

2k
+

2

k
− k

4
− 1

4
. (3.26)

(b.3) When j = n
2
, replacing (3.19) in (3.17) gives

Gain
(
Pn, CP (k), Z

(
vn

2
−1

))
=

1

2k

⎡
⎣ n

2
−1∑

i=n
2
−k+1

(n
2
+ i− 1

)
+

(
n−

⌊
n+ 1

2

⌋)⎤
⎦

(3.27)

which can be simplified to

Gain
(
Pn, CP (k), Z

(
vn

2

))
=

n

2
− n

4k
+

1

2k
− k

4
− 1

4
. (3.28)

The expected gain from (3.28) is less than the expected gain when Player 2

chooses the vertex vn
2
−k (see (3.16)), when Player 2 chooses the vertex vn

2
−k+1

(see (3.23)) and when Player 2 chooses the vertex vn
2
−1 (see (3.26)). Therefore,

the minimal expected gain that Player 1 can get with the strategy CP (k) is

when Player 2 chooses the vertex vn
2
or symmetrically the vertex vn

2
+1. Thus,

the guaranteed gain of Player 1 with the strategy CP (k) on Pn, n even is

GGain(Pn, CP (k)) =
n

2
− n

4k
+

1

2k
− k

4
− 1

4
. (3.29)
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(ii) n odd:

The strategy CP (k) from Definition 3.4 for n odd is CP (k) = (z1, z2, ..., zn)

where

zi =

⎧⎨
⎩0, if 1 ≤ i < n+1

2
− k + 1 or n+1

2
+ k − 1 < i ≤ n

1
2k−1

, if n+1
2

− k + 1 ≤ i ≤ n+1
2

+ k − 1
(3.30)

and k ∈ {1, 2, ..., n
2
}.

… … … … … … 

     

Figure 3.4: Illustration 3 in the proof of Lemma 3.6.

We can replace the values of zi in (3.8) to get

Gain(Pn, CP (k), Z(vj)) =
1

2k − 1

n+1
2

+k−1∑
i=n+1

2
−k+1

πij. (3.31)

Suppose the vertex vj is on the left half of the path, i.e. 1 ≤ j ≤ n+1
2
. In a

similar manner as with n even, we can determine the expected gain of Player 1

for the following cases:

… … … … … … 

   

     

Figure 3.5: Illustration 4 in the proof of Lemma 3.6.

(a) 1 ≤ j ≤ n+1
2

− k

(b) n+1
2

− k + 1 ≤ j ≤ n−1
2

(b.1) j = n+1
2

− k + 1

(b.2) n+1
2

− k + 1 < j < n−1
2

(b.3) j = n−1
2
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(c) j = n+1
2
.

We use the following formulas obtained by grouping the terms in pairs similarly

as with n even:

πu,j + πn−u+1,j =

⎧⎪⎨
⎪⎩

n−1
2 + u− 1, if u+ j is even

n−1
2 + u, if u+ j is odd

n+ 1

2
− k+ 1 ≤ u ≤ j − 1

(3.32)

and

πu,j + πn−u+1,j =

⎧⎨
⎩

3n+1
2

− j − 1, if u+ j is even

3n+1
2

− j, if u+ j is odd
j + 1 ≤ u ≤ n− 1

2
.

(3.33)

We determine that the minimum expected gain is case (c), i.e. when Player 2

chooses the vertex vn+1
2

for which the expected gain of Player 1 is

GGain
(
Pn, CP (k), Z

(
vn+1

2

))
=

⎧⎨
⎩

2kn−2n−k2+2
2(2k−1)

, if k is even

2kn−2n−k2+1
2(2k−1)

, if k is odd.
(3.34)

Thus, the guaranteed gain of Player 1 with the strategy CP (k) on Pn, n odd is

GGain(Pn, CP (k)) =

⎧⎨
⎩

2kn−2n−k2+2
2(2k−1)

, if k is even

2kn−2n−k2+1
2(2k−1)

, if k is odd.
(3.35)

Now that we have an expression for the guaranteed gain of Player 1 with the

strategy CP (k), we want to maximize her guaranteed gain over k.

Lemma 3.7. The optimal guaranteed gain of Player 1 with the safe strategy CP (k)

on Pn is GGain(Pn, CP (k
∗)) = n

2
−

√
n
2

+ O(1) (n → ∞) where k∗ =
√
n + O(1)

(n → ∞) is the optimal integer k.

Proof. We will prove the cases when n is even and odd separately.

(i) n even: From Lemma 3.6, we have the guaranteed gain of Player 1 with the

strategy CP (k) on Pn, n even:

GGain(Pn, CP (k)) =
n

2
− n

4k
− k

4
− 1

4
+

1

2k
(3.36)
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We want to maximize the guaranteed gain over k for n fixed. Let us define

f(x) = n
2
− n

4x
− x

4
− 1

4
+ 1

2x
, so that f(k) = GGain(Pn, CP (k)) whenever k is a

positive integer. Using the derivative tests, we can maximize f(x) over x in the

interval [1,∞). f(x) is a rational function and so is continuous at every point

at which it is defined, i.e. at every point except x = 0. Thus, f(x) is continuous

on the interval [1,∞). Moreover, we have

df(x)

dx
=

n

4x2
− 1

2x2
− 1

4
(3.37)

and
df(x)

dx
= 0 ⇒ x = −√

n− 2,
√
n− 2. (3.38)

Therefore, the only critical point in the interval [1,∞) is x =
√
n− 2. Further-

more, we have df(x)
dx

> 0 for 1 ≤ x <
√
n− 2 and df(x)

dx
< 0 for

√
n− 2 < x.

Thus, f(x) reaches a maximum at x∗ =
√
n− 2 =

√
n + O(1). Hence, k∗, the

integer maximizing f(x), is either �x∗� or �x∗�. Thus, k∗ ∈ [x∗ − 1, x∗ + 1] and

so we have k∗ =
√
n+O(1). Evaluating the function f(x) at x = k∗ gives

f(k∗) = f(
√
n+O(1)) =

n

2
− n

4(
√
n+O(1))

− (
√
n+O(1))

4
− 1

4

+
1

2(
√
n+O(1))

(3.39)

From the expansion of the Taylor series, we know that

(1 + x)α = 1 + αx+O(x2) (3.40)

for x small and α ∈ Q. Thus,

(
√
n+O(1))−1 =

1√
n

(
1 +

O(1)√
n

)−1

=
1√
n

(
1− O(1)√

n
+O

(
1

n

))
. (3.41)

Using this to expand the terms of (3.39), we have

f(k∗) = f(
√
n+O(1)) =

n

2
−

√
n

2
+O(1). (3.42)

Furthermore, since f(k) = GGain(Pn, CP (k)) whenever k is a positive integer,

the optimal guaranteed gain is

GGain(Pn, C(k∗)) =
n

2
−

√
n

2
+O(1) (n → ∞). (3.43)
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(ii) n odd: From Lemma 3.6, we have the guaranteed gain of Player 1 with the

strategy CP (k) on Pn, n odd:

GGain(Pn, CP (k)) =

⎧⎨
⎩

2kn−2n−k2+2
2(2k−1)

, if k is even

2kn−2n−k2+1
2(2k−1)

, if k is odd.
(3.44)

We want to maximize the gain over k for n fixed. The proof is similar to the

one for n even, defining the functions

g1(x) =
2xn− 2n− x2 + 2

2(2x− 1)
and g2(x) =

2xn− 2n− x2 + 1

2(2x− 1)
(3.45)

and considering that g1(x) = g2(x) +O(1) (x → ∞).

We now need a couple of lemmas on the maximal gain of Player 1 when Player 2

adopts the strategy CP (k) on Pn.

Lemma 3.8. The maximal gain of Player 1 when Player 2 uses the opposing strategy

CP (k) on a path with n vertices is:

(i) n even:

MGain(Pn, CP (k)) = max

{
n

2
− k

2
+

1

2
,
n

2
− n

4k
+

k

4
− 1

4

}
(3.46)

(ii) n odd:

MGain(Pn, CP (k)) =

max

⎧⎨
⎩n

2
− 1

2
− k2

2k − 1
+

k

2k − 1
,

⎧⎨
⎩

2kn−2n−2k+k2+2
2(2k−1)

, if k is even

2kn−2n−2k+k2+1
2(2k−1)

, if k is odd

⎫⎬
⎭

⎫⎬
⎭ .

(3.47)

Proof. Recall from Definition 2.10, that the maximal gain of Player 1 when Player 2

has the strategy CP (k) as opposing strategy is

MGain(Pn, CP (k)) = max
i

Gain(Pn, Z(vi), CP (k)) (3.48)

where 1 ≤ i ≤ n. In other words, it is the maximal expected gain Player 1 can get

over all her possible starting vertices. Again, since the gain of Player 1 on the path
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and the strategy CP (k) are symmetric with respect to the middle of the path, we

only need to consider the vertices on one half of the path as possible starting vertices

for Player 1. Moreover, the expected gain of Player 1 when she chooses a vertex vi,

1 ≤ i ≤ n is

Gain(Pn, Z(vi), CP (k)) =
n∑

j=1

πijzj (3.49)

where πij are the entries of the game matrix of Player 1 from Theorem 3.1 and zj is

the jth element in the vector of the mixed strategy CP (k). Thus, this proof is similar

to the proof of Lemma 3.6 except that we consider the possible starting vertices for

Player 1 and that we are looking for the maximum expected gain. Let us consider

the cases when n is even and odd separately.

(i) n even:

The strategy CP (k) from Definition 3.4 for n even is CP (k) = (z1, z2, ..., zn)

where

zj =

⎧⎨
⎩0, if 1 ≤ j < n

2
− k + 1 or n

2
+ k < j ≤ n

1
2k
, if n

2
− k + 1 ≤ j ≤ n

2
+ k

(3.50)

and k ∈ {1, 2, ..., n
2
}.

… … … … … … 
       

Figure 3.6: Illustration 1 in the proof of Lemma 3.8.

We can replace the values of zj in (3.49) to get

Gain(Pn, Z(vi), CP (k)) =
1

2k

n
2
+k∑

j=n
2
−k+1

πij. (3.51)

Suppose the vertex vi is on the left half of the path, i.e. 1 ≤ i ≤ n
2
. We

determine the expected gain of Player 1 for the following cases:
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… … … … … … 

       

   

Figure 3.7: Illustration 2 in the proof of Lemma 3.8.

(a) 1 ≤ i ≤ n
2
− k

(b) n
2
− k + 1 ≤ i ≤ n

2

(b.1) i = n
2
− k + 1

(b.2) n
2
− k + 1 < i < n

2

(b.3) i = n
2
.

To simplify the expected gains, we use the following formulas obtained by group-

ing the terms in pairs similarly as in the proof of Lemma 3.6:

πi,u + πi,n−u+1 =
3n

2
− u

n

2
− k + 1 ≤ u ≤ i− 1 (3.52)

and

πi,u + πi,n−u+1 =
n

2
+ i− 1 i+ 1 ≤ u ≤ n

2
. (3.53)

In the end, comparing the expected gains from the different cases, we determine

that the maximal expected gain of Player 1 when Player 2 has the strategy CP (k)

is the maximum of two expressions, one from case (a) (when she chooses the

vertex vn
2
−k or symmetrically, the vertex vn

2
+k+1) and the other from case (b.3)

(when she chooses the vertex vn
2
or symmetrically, the vertex vn

2
+1). Thus, the

maximal expected gain of Player 1 is

MGain(Pn, CP (k)) = max

{
n

2
− k

2
+

1

2
,
n

2
− n

4k
+

k

4
− 1

4

}
(3.54)

(ii) n odd:

The strategy CP (k) from Definition 3.4 for n odd is CP (k) = (z1, z2, ..., zn)

where

zj =

⎧⎨
⎩0, if 1 ≤ j < n+1

2
− k + 1 or n+1

2
+ k − 1 < j ≤ n

1
2k−1

, if n+1
2

− k + 1 ≤ j ≤ n+2
2

+ k − 1
. (3.55)
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… … … … … … 

     

Figure 3.8: Illustration 3 in the proof of Lemma 3.8.

We can replace the values of zj in (3.49) to get

Gain(Pn, Z(vi), CP (k)) =
1

2k − 1

n+1
2

+k−1∑
j=n+1

2
−k+1

πij. (3.56)

Suppose the vertex vi is on the left half of the path, i.e. 1 ≤ i ≤ n+1
2
. In a

similar manner as with n even, we can determine the expected gain of Player 1

for the following cases:

… … … … … … 
   

     

Figure 3.9: Illustration 4 in the proof of Lemma 3.8.

(a) 1 ≤ i ≤ n+1
2

− k

(b) n+1
2

− k + 1 ≤ i ≤ n−1
2

(b.1) i = n+1
2

− k + 1

(b.2) n+1
2

− k + 1 < i < n−1
2

(b.3) i = n−1
2

(c) i = n+1
2
.

To simplify the expected gains, we use the following formulas obtained by group-

ing the terms in pairs:

πi,u+πi,n−u+1 =

⎧⎨
⎩

3n+1
2

− u− 1, if i+ u is even

3n+1
2

− u, if i+ u is odd

n+ 1

2
−k+1 ≤ u ≤ i−1

(3.57)
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and

πi,u + πi,n−u+1 =

⎧⎨
⎩

n−1
2

+ i− 1, if i+ u is even

n−1
2

+ i, if i+ u is odd
i+ 1 ≤ u ≤ n− 1

2
.

(3.58)

Similarly as for n even, the expected gain of Player 1 is the maximum of case (a)

and (c), i.e. when she chooses the vertex vn+1
2

−k (or symmetrically, the vertex

vn+1
2

+k+1) and when she chooses the vertex vn+1
2
;

MGain(Pn, CP (k)) =

max

⎧⎨
⎩n

2
+

k

2k − 1
− k2

2k − 1
− 1

2
,

⎧⎨
⎩

2kn−2n−2k+k2+2
2(2k−1)

, if k is even

2kn−2n−2k+k2+1
2(2k−1)

, if k is odd

⎫⎬
⎭

⎫⎬
⎭ .

(3.59)

Now that we have an expression for the maximal gain of Player 1 against the

strategy CP (k), Player 2 wants to minimize this maximal gain over k.

Lemma 3.9. The optimal maximal gain of Player 1 when Player 2 uses the opposing

strategy CP (k) on Pn with n even and n odd is MGain(Pn, C(k∗)) = n
2
−

√
n

2
√
3
+O(1)

(n → ∞) where k∗ =
√
n√
3
+O(1) (n → ∞) is the optimal integer k.

Proof. We will prove the cases when n is even and odd separately.

(i) n even: From Lemma 3.8 we have the maximal gain of Player 1 when Player 2

uses the strategy CP (k) on Pn, n even;

MGain(Pn, CP (k)) = max

{
n

2
− k

2
+

1

2
,
n

2
− n

4k
+

k

4
− 1

4

}
. (3.60)

We want to minimize the maximal gain of Player 1 over k for n fixed. Let

us define two functions, f(x) = n
2
− x

2
+ 1

2
and g(x) = n

2
− n

4x
+ x

4
− 1

4
such

that max{f(k), g(k)} = MGain(Pn, CP (k)) whenever k is a positive integer.

The function f(x) decreases with x and g(x) increases with x. Thus, their

intersecting point x∗ = 1
2
+

√
9+12n
6

=
√
n√
3
+ O(1) is the point x for which the

maximum of the two functions f(x) and g(x) is minimized. In other words,
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the intersection point of the two functions is the argminx{max{f(x), g(x)}}.
Hence, the integer k∗ = argmink{max{f(k), g(k)}}, where k is an integer, is

either �x∗� or �x∗�. Thus, k∗ ∈ [x∗ − 1, x∗ + 1] and so we have k∗ =
√
n√
3
+O(1).

Evaluating the functions f(x) and g(x) at x = k∗ gives

f(k∗) = f

(√
n√
3
+O(1)

)
=

n

2
−

(√
n√
3
+O(1)

)
2

+
1

2

=
n

2
−

√
n

2
√
3
+O(1)

(3.61)

and

g(k∗) = g

(√
n√
3
+O(1)

)
=

n

2
− n

4
(√

n√
3
+O(1)

) +

(√
n√
3
+O(1)

)
4

− 1

4

=
n

2
−

√
n

2
√
3
+O(1).

(3.62)

Since max{f(k), g(k)} = MGain(Pn, CP (k)) whenever k is a positive integer,

the maximal expected gain of Player 1 is

MGain(Pn, C(k∗)) =
n

2
−

√
n√
3
+O(1) (n → ∞). (3.63)

(ii) n odd: From Lemma 3.8 we have the maximal gain of Player 1 against Player

2 with the strategy CP (k) on Pn, n odd;

MGain(Pn, CP (k))

= max

⎧⎨
⎩n

2
− 1

2
− k2

2k − 1
+

k

2k − 1
,

⎧⎨
⎩

2kn−2n−2k+k2+2
2(2k−1)

, if k is even

2kn−2n−2k+k2+1
2(2k−1)

, if k is odd

⎫⎬
⎭

⎫⎬
⎭ .

(3.64)

We want to minimize the gain over k for n fixed. The proof is similar to the

one for n even, defining the functions

f(x) =
n

2
− 1

2
− x2

2x− 1
+

x

2x− 1
, (3.65)

g1(x) =
2xn− 2n− 2x+ x2 + 2

2(2x− 1)
(3.66)
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and

g2(x) =
2xn− 2n− 2x+ x2 + 1

2(2x− 1)
. (3.67)

and considering that g1(x) = g2(x) +O(1) (x → ∞).

Now, we have the necessary results to prove Theorem 3.5.

Proof. (Theorem 3.5) Recall from (3.4),

GGain(G,X) ≤ Safety Value of Player 1 on G ≤ MGain(G, Y ) (3.68)

That is, the guaranteed gain of Player 1 with any safe strategy X is a lower bound

on the safety value and the maximal gain of Player 1 against any opposing strategy

Y for Player 2 is an upper bound on the safety value. In particular, the strategies X

and Y can be the mixed strategy CP (k) and from Lemmas 3.7 and 3.9, we have

GGain(Pn, CP (k), CP (k)) =
n

2
−

√
n

2
+O(1) ≤ Safety Value of Player 1 on Pn

≤ MGain(G, Y ) =
n

2
−

√
n√
3
+O(1).

(3.69)

Let us compare the bounds on the safety value with the payoffs in the pure Nash

equilibrium for paths from Theorem 2.4.

Theorem 3.10. For paths, Pn, the asymptotic value of the safety value for Player 1

approaches the best possible gain of any player in a Nash equilibrium, n
2
as n tends to

infinity.

Proof. This result directly follows from evaluating the limits of the bounds in Theorem

3.5 as n → ∞.

This is an interesting result since with a safe strategy, one expects his gain to be

lower due to the fact that it is an assured expected gain. However, as we can see

from the Theorem 3.10, we are assured an asymptotic gain as high as we could hope

in any Nash equilibrium situation on a path.
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Lower bound Proportion Upper bound Proportion Difference Proportion
on safety value of n on safety value of n between bounds of n

+O(1) +O(1) +O(1)
n even

10 3.42 0.342 4.09 0.409 0.67 0.067
20 7.76 0.388 8.71 0.436 0.95 0.048
50 21.46 0.429 22.96 0.459 1.49 0.030
100 45.00 0.450 47.11 0.471 2.11 0.021
1000 484.19 0.484 490.87 0.490 6.68 0.007
10000 4950.00 0.495 4971.13 0.497 21.13 0.002

n odd
11 3.84 0.349 4.54 0.413 0.70 0.064
21 8.21 0.391 9.18 0.437 0.97 0.046
51 21.93 0.430 23.44 0.460 1.51 0.030
101 45.48 0.450 47.60 0.471 2.12 0.021
1001 484.68 0.484 491.37 0.491 6.69 0.007
10001 4950.50 0.495 4971.63 0.497 21.13 0.002

Table 3.1: Bounds on the safety value of Player 1 on Pn for specific values of n.

With this in mind, we could wonder if the asymptotic behaviour of the safety

value is always related to the payoffs in the Nash equilibrium. However, we will see

in the next chapter, that it is not true for all trees.

To finish the section on paths, Table 3.1 gives for specific values of n even and odd

the bounds on the safety value of Player 1 calculated with the expressions in Theorem

3.5. We see that when n grows, the difference between the bounds as a proportion of

n approaches 0 and the bounds themselves approach n
2
.

3.2 Spiders

Recall from Definition 1.35 that a spider is a graph with one vertex of degree exceeding

2 called the body of the spider to which are attached non-trivial paths called the legs

of the spider. Let us denote the m legs of a spider S by {s1, s2, ..., sm} and their

lengths respectively by {l(s1), l(s2), ..., l(sm)}. We will label a vertex vi in S by an

ordered pair (Id, Is) where Id is the number of edges from the vertex vi to the body

of the spider and where Is ∈ {s1, s2, ..., sm} is the leg the vertex belongs to. By

convention, the body of the spider will be identified by the ordered pair (0, 0) (see

Figure 3.10). Since all the vertices in a leg of the spider are at a distinct distance

from the body of the spider, their identification is well defined.

Furthermore, recall from Definition 2.3, that the mixed strategy for which a player

chooses a vertex vi with probability 1 is denoted by Z(vi). For spiders, it can equiv-

alently be denoted by Z((Id, Is)) if the vertex vi is identified by the ordered pair
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Figure 3.10: Labelling of the vertices in a spider with 3 legs.

(Id, Is). In order to simplify the notation, we will write Z(Id, Is) instead of Z((Id, Is))

as it should not create any confusion.

3.2.1 Pure Nash Equilibrium

Since spiders are trees, we have the two-player pure Nash equilibrium from Theorem

2.5.

Proposition 3.11. The centroid of a spider S with m ≥ 3 legs each having l vertices

is its body.

Proof. Let b be the body of the spider S and consider the branches at b. There are

m of them and they each have l vertices. Since, l ≤ n
2
for m ≥ 3 we have from

Theorem 1.51 that b is a centroid vertex. Moreover, we know from Theorem 1.50

that if two centroid vertices exist in a tree, they are adjacent. Thus, the only possible

other centroid vertex would be the first vertex on one of the legs. However, the first

vertices of the legs have a branch with n − l ≥ n
2
edges and thus are not centroid

vertices by Theorem 1.51. Therefore, the centroid of S is its body.

Corollary 3.12. In the two-player game of Competitive Diffusion on a spider, S,

with m legs each having l vertices, a pure Nash equilibrium is attained when one

player has the body of the spider as starting vertex and the other player has a vertex
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adjacent to the body of the spider as starting vertex. Moreover, the payoffs of the

players are respectively (m− 1)l + 1 and l.

Proof. This result immediately follows from Theorem 2.5 having proved in Proposi-

tion 3.11 that the body of the spider is the centroid.

3.2.2 Game Matrix and Examples

The game matrix of Player 1 in the two-player game on S can also be determined

knowing the game matrix for paths (see Theorem 3.1).

Theorem 3.13. In the two-player game of Competitive Diffusion on a spider, S, let

the strategy of Player 1 be choosing a vertex (Id, Is) and the strategy of Player 2 be

choosing a vertex (Jd, Js). The game matrix of Player 1 is AS = (a(Id,Is),(Jd,Js)) where

a(Id,Is),(Jd,Js) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Is = Js and Id = Jd

πId,Jd |l(Id) + n− l(Is), if Is = Js and Id < Jd,

Id, Jd 
= 0

πId,Jd |l(Id), if Is = Js and Id > Jd,

Id, Jd 
= 0

πl(Is)−Id+1,l(Is)+Jd+1

∣∣
l(Is)+l(Js)+1

if Is 
= Js and Id < Jd,

+n− l(Is)− l(Js)− 1, Id, Jd 
= 0

πl(Is)−Id+1,l(Is)+Jd+1

∣∣
l(Is)+l(Js)+1,

if Is 
= Js and Id ≥ Jd,

Id, Jd 
= 0

π1,Jd+1|l(Js)+1 + n− l(Js)− 1, if (Is, Id) = (0, 0) and Jd 
= 0

πId+1,1|l(Is)+1, if (Js, Jd) = (0, 0) and Id 
= 0

(3.70)

where πi,j|n are the entries in the game matrix of Player 1 on Pn as determined in

Theorem 3.1.

Proof. There are a few cases to consider.

(i) If Is = Js and Id = Jd, the two players have the same starting vertex since the

vertices are uniquely identified by the ordered pairs. Thus, the gain of Player 1

is zero.
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(ii) If Is = Js and Id 
= Jd, both non zero, the chosen vertices of Player 1 and

Player 2 are on the same leg of S. In this case, the payoffs are the same as on

a path having l(Is) vertices with Player 1 choosing the vertex vID and Player 2

choosing the vertex vJD with the exception that the player claiming the vertex

v1 has an additional gain of n− l(Is) corresponding to the vertices in the other

legs and the body of the spider. Thus,

a(Id,Is),(Jd,Js) =

⎧⎨
⎩πId,Jd |l(Id) + n− l(Is), if Id < Jd

πId,Jd |l(Is), if Id > Jd.
(3.71)

(iii) If Is 
= Js and both are not zero, then the chosen vertices of Player 1 and Player

2 are on different legs of S. In this case, the payoffs are the same as on a path

having l(Is) + l(Js) + 1 vertices with Player 1 choosing the vertex vl(Is)−Id+1

and Player 2 choosing the vertex vl(Is)+Jd+1 with the exception that the player

claiming the body of the spider has an additional gain of n − l(Is) − l(Js) − 1

corresponding to the vertices in the other legs of the spider. Thus,

a(Id,Is),(Jd,Js) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
πl(Is)−Id+1,l(Is)+Jd+1

∣∣
l(Is)+l(Js)+1

+n− l(Is)− l(Js)− 1, if Id < Jd

πl(Is)−Id+1,l(Is)+Jd+1

∣∣
l(Is)+l(Js)+1,

if Id ≥ Jd.

(3.72)

(iv) If Is 
= Js and Is = 0 or Js = 0, then one of the players chooses the body of the

spider and the other player chooses a vertex on one leg. If Js = 0, the payoff

to Player 1 is the same as on a path having l(Is) + 1 vertices with Player 1

choosing the vertex vId+1 and Player 2 choosing the vertex v1. If Is = 0, the

payoff to Player 1 is the same as on a path having l(Js)+1 vertices with Player

1 choosing the vertex v1 and Player 2 choosing the vertex vJd+1 plus n− l(Js)−1

vertices on the other legs. Thus,

a(Id,Is),(Jd,Js) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
π1,Jd+1|l(Js)+1

+n− l(Js)− 1, if (Is, Id) = (0, 0) and Jd 
= 0

πId+1,1|l(Is)+1, if (Js, Jd) = (0, 0) and Id 
= 0

. (3.73)
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Replacing the values for πij|n from Theorem 3.1 when the spider has legs with

equal length, the expression of the game matrix can be simplified to the following.

Corollary 3.14. In the two-player game of Competitive Diffusion on a spider, S,

with m legs each having l vertices, let the strategy of Player 1 be choosing a vertex

(Id, Is) and the strategy of Player 2 be choosing a vertex (Jd, Js). The game matrix

of Player 1 is AS = (a(Id,Is),(Jd,Js)) where a(Id,Is),(Jd,Js) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Is = Js and Id = Jd⌊
Id+Jd−1

2

⌋
+ n− l, if Is = Js and Id < Jd, Id, Id 
= 0

l − ⌊
Id+Jd

2

⌋
, if Is = Js and Id > Jd, Id, Jd 
= 0⌊−Id+Jd+1

2

⌋
+ n− l − 1, if Is 
= Js and Id < Jd, Id, Jd 
= 0

l +
⌊−Id+Jd+1

2

⌋
, if Is 
= Js and Id > Jd, Id, Jd 
= 0

l, if Is 
= Js and Id = Jd, Id, Jd 
= 0⌊
1+Jd
2

⌋
+ n− l − 1, if (Is, Id) = (0, 0) and Jd 
= 0

l − ⌊
Id
2

⌋
, if (Js, Jd) = (0, 0) and Id 
= 0.

(3.74)

Proof. This is simply the same expression as Theorem 3.13 with all the lengths of

legs replaced by l and the corresponding expressions of πij|n from Theorem 3.1.

With the game matrix in hand, we can again use the methods of linear program-

ming as it was explained in Section 1.3.2 to determine the safety value of Player 1

along with the maxmin strategy of Player 1 and the minmax strategy of Player 2 on

a spider with legs having the same number of vertices.

Example 3.15. On a spider S with 3 legs each having 10 vertices, the safety value

of Player 1 is 9.1643. The maxmin strategy of Player 1 is XA = (x1, x2, ..., xn) where

xi, the probability of choosing the vertex vi = (Id, Is) for Id ∈ {1, 2, ..., 10} and

Is ∈ {s1, s2, s3}, is:

xi : Distance from the body of the spider : Id

Is 0 1 2 3 4 5 6 7 8 9 10

Body of the spider 0.0060 - - - - - - - - - -

s1 - 0.0566 0.2766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

s2 - 0.0566 0.2766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

s3 - 0.0566 0.2766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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The minmax strategy of Player 2 is Y A = (y1, y2, ..., yn) where yj, the probability of

choosing the vertex vj = (Jd, Js) for Jd ∈ {1, 2, ..., 10} and Js ∈ {s1, s2, s3}, is:
yj : Distance from the body of the spider Jd

Js 0 1 2 3 4 5 6 7 8 9 10

Body of the spider 0.5636 - - - - - - - - - -

s1 - 0.1314 0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

s2 - 0.1314 0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

s3 - 0.1314 0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

As we can see from the example, the probabilities in the maxmin and minmax

strategies are the same on each of the three legs and the positive probabilities are

near the body of the spider.

3.2.3 Bounds on Safety Value with the Strategy CS1(k)

Motivated by the structure of the maxmin and minmax strategies of Example 3.15,

let us define a mixed strategy for a player on a spider, S, with m legs each having l

vertices.

Definition 3.16. Let the strategy CS1(k) be a mixed strategy where a player chooses

a vertex from a set of central vertices with equal probability. The set consists of the

body of the spider and the first k vertices of the m legs, i.e. the strategy CS1(k) =

(z1, z2, ..., zn) where zi, the probability of choosing the vertex vi = (Id, Is) where

Id ∈ {1, 2, ..., l} and Is ∈ {s1, s2, ..., sm}, or Id = 0 and Is = 0 is:

zi =

⎧⎨
⎩0, if k < Id ≤ l

1
mk+1

, if 0 ≤ Id ≤ k
(3.75)

and k ∈ {0, 1, ..., l}.
In a similar manner to paths, we can consider the strategy CS1(k) as a safe strategy

for Player 1 and as an opposing strategy for Player 2 to get bounds on the safety value

of Player 1 on a spider with legs of equal length. This leads to the following result.

Theorem 3.17. In the two-player Competitive Diffusion on S with m legs each having

l vertices, the safety value of Player 1 is between l −
√
l√
m
+O(1) (l → ∞) and l.

In order to prove this theorem, let us consider some lemmas on the guaranteed

gain of Player 1 with the safe strategy CS1(k) and the maximal gain of Player 1

against the strategy CS1(k).
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Lemma 3.18. The guaranteed gain of Player 1 with the safe strategy CS1(k) on a

spider, S, with m legs each having l vertices is

GGain(S,CS1(k)) =

⎧⎪⎨
⎪⎩

m
mk+1

(
kl − k2

4

)
, if k is even

m
mk+1

(
kl − k2

4
+ 1

4

)
, if k is odd.

(3.76)

Proof. From Definition 2.9, we have the guaranteed gain of Player 1 with the mixed

strategy CS1(k) on S;

GGain(S,CS1(k)) = min
j

Gain(S,CS1(k), Z(vj)) (3.77)

where 1 ≤ j ≤ n. In other words, it is the minimal expected gain Player 1 can get

over all the possible starting vertices of Player 2. Due to symmetry, we only need to

consider the body of the spider and the vertices on one of the legs of S as possible

starting vertices for Player 2. Moreover, the expected gain of Player 1 when Player 2

chooses a vertex vj = (Jd, Js) is

Gain(S,CS1(k), Z(Jd, Js)) =
n∑

i=1

ziavi,(Jd,Js) (3.78)

where avi,(Jd,Js) is equivalent to the entry of the game matrix of Player 1 from Corollary

3.14 when Player 1 chooses the vertex vi = (Id, Is) and Player 2 chooses the vertex

(Jd, Js), a(Id,Is),(Jd,Js), and where zi is the ith component of the strategy CS1(k). We

can replace the value of zi from Definition 3.16 to get

Gain(S,CS1(k), Z(Jd, Js)) =
1

mk + 1

[
a(0,0),(Jd,Js) +

m∑
Is=1

k∑
Id=1

a(Id,Is),(Jd,Js)

]
. (3.79)

(a) If vj = (Jd, Js) with Jd > k and Js 
= 0, replacing the expression of a(Id,Is),(Jd,Js)

from Corollary 3.14 in (3.79), we have

Gain(S,CS1(k), Z(Jd, Js)) =
1

mk + 1

[⌊
1 + Jd

2

⌋
+ n− l − 1

+
k∑

Id=1

(⌊
Id + Jd − 1

2

⌋
+ n− l

)

+
m∑

Is=1,Is �=Js

k∑
Id=1

(⌊−Id + Jd + 1

2

⌋
+ n− l − 1

)]
.

(3.80)
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We see that the expected gain increases with Jd, so that the minimum for Jd > k

is Jd = k+1. Replacing Jd, expanding the summations and considering that n =

ml + 1, the expected gain can be simplified to Gain(S,CS1(k), Z(k + 1, Js)) =

⎧⎨
⎩

4k+2k2−4l−2km+k2m−4klm+4n+4kmn
4(mk+1)

, if k is even

4k+2k2−4l−2km+k2m−4klm+4n+4kmn+m−2
4(mk+1)

, if k is odd
(3.81)

(b) If vj = (Jd, Js) with Jd = 0 and Js = 0, replacing the expression of a(Id,Is),(Jd,Js)

from Corollary 3.14 in (3.79), we have

Gain(S,CS1(k), Z(0, 0)) =
1

mk + 1

[
m

k∑
Id=1

(
l + 1−

⌊
Id + 2

2

⌋)]
(3.82)

which can be simplified by expanding the summation to

Gain(S,CS1(k), Z(0, 0)) =

⎧⎪⎨
⎪⎩

m
mk+1

(
kl − k2

4

)
, if k is even

m
mk+1

(
kl − k2

4
+ 1

4

)
, if k is odd.

(3.83)

(c) If vj = (Jd, Js) with 1 ≤ Jd ≤ k and Js 
= 0;

(c.1) If Jd = 1, replacing the expression of a(Id,Is),(Jd,Js) from Corollary 3.14 in (3.79),

we have

Gain(S,CS1(k), Z(1, Js)) =
1

mk + 1

[
n− l +

k∑
Id=2

(
l −

⌊
Id + 1

2

⌋)

+(m− 1)

(
l +

k∑
Id=2

(
l +

⌊−Id + 2

2

⌋))] (3.84)

which can be simplified to

Gain(S,CS1(k), Z(1, Js)) =

⎧⎨
⎩

4n+4lkm+2km−k2m−4k−8l+4
4(1+km)

, if k is even

4n+4lkm+2km−k2m−4k−8l+4+m
4(1+km)

, if k is odd.

(3.85)

Considering the different cases, we can determine that this gain is greater than

the one from (3.83).
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(c.2) If 1 < Jd < k, replacing the expression of a(Id,Is),(Jd,Js) from Corollary 3.14 in

(3.79), we have

Gain(S,CS1(k), Z(Jd, Js)) =
1

mk + 1

[⌊
1 + Jd

2

⌋
+ n− l − 1

+

Jd−1∑
Id=1

(⌊
Id + Jd − 1

2

⌋
+ n− l

)
+

k∑
Id=Jd+1

(
l −

⌊
Id + Jd

2

⌋)

+
m∑

Is=1,Is �=Js

(
Jd−1∑
Id=1

(⌊−Id + Jd + 1

2

⌋
+ n− l − 1

)
+ l

+
k∑

Id=Jd+1

(
l +

⌊−Id + Jd + 1

2

⌋))]
(3.86)

We want to show that this expected gain is greater than the one from case

(b) where Player 2 chooses the body of the spider as starting vertex. Note

that the vertices (Id, Is) of Player 1 for which a(Id,Is),(Jd,Js) < a(Id,Is),(0,0) are

{(Id, Is) | Jd ≤ Id ≤ k and Is = Js}. Thus, by choosing the vertex (Jd, Js)

instead of (0, 0), Player 2 only reduces the payoff to Player 1 on these vertices.

Furthermore,

k∑
Id=Jd

(
a(Is,Id),(Js,Jd) − a(Is,Id),(0,0)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

J2
d

2
− Jdk

2
− k

4
+ Jd

4
, if Jd is even and k is even

J2
d

2
− Jdk

2
− k

4
+ Jd

4
− 1

4
, if Jd is even and k is odd

J2
d

2
− Jdk

2
+ k

4
− Jd

4
+ 1

4
, if Jd is odd and k is even

J2
d

2
− Jdk

2
+ k

4
− Jd

4
, if Jd is odd and k is odd.

(3.87)

On the other hand, we have the following:

a(0,0),(Jd,Js) − a(0,0),(0,0) ≥ n− l ≥ (m− 1)l, (3.88)

for Is = 0,
l∑

Id=1

(
a(Id,Is),(Jd,Js) − a(Id,Is),(0,0)

) ≥ 0 (3.89)

for Is 
= Js, Is 
= 0 and

Jd−1∑
Id=1

(
a(Id,Is),(Jd,Js) − a(Id,Is),(0,0)

) ≥
Jd−1∑
Id=1

(n− 2l) ≥ (Jd − 1)(m− 2)l (3.90)
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for Is = Js, Is 
= 0.

Grouping these equations, we have

(mk + 1) [Gain(S,CS1(k), Z(Jd, Js))−Gain(S,CS1(k), Z(0, 0))]

= a(0,0),(Jd,Js) − a(0,0),(0,0) +
m∑

Is=1

k∑
Id=1

(
a(Id,Is),(Jd,Js) − a(Id,Is),(0,0)

)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J2
d

2
− Jdk

2
− k

4
+ Jd

4
+ (m− 1)l + (Jd − 1)(m− 2)l,

if Jd is even and k is even

J2
d

2
− Jdk

2
− k

4
+ Jd

4
− 1

4
+ (m− 1)l + (Jd − 1)(m− 2)l,

if Jd is even and k is odd

J2
d

2
− Jdk

2
+ k

4
− Jd

4
+ 1

4
+ (m− 1)l + (Jd − 1)(m− 2)l,

if Jd is odd and k is even

J2
d

2
− Jdk

2
+ k

4
− Jd

4
+ (m− 1)l + (Jd − 1)(m− 2)l,

if Jd is odd and k is odd.

(3.91)

Considering separately the cases from (3.91), we can show that the difference

is always positive. Thus, the expected gain of Player 1 when Player 2 chooses

a vertex vj = (Jd, Js) with Js 
= 0 and 1 < Jd < k is greater than when Player

2 chooses the body of the spider.

(c.3) If Jd = k, replacing the expression of a(Id,Is),(Jd,Js) from Corollary 3.14 in (3.79),

we have

Gain(S,CS1(k), Z(k, Js)) =
1

mk + 1

[⌊
1 + k

2

⌋
+ n− l − 1

+
k−1∑
Id=1

(⌊
Id + k − 1

2

⌋
+ n− l

)

+(m− 1)

(
k−1∑
Id=1

(⌊−Id + k + 1

2

⌋
+ n− l − 1

)
+ l

)]
.

(3.92)

Similarly as in case (c.2), we can show that this expected gain is greater than

the one where Player 2 chooses the body of the spider. The payoff to Player

1 increases on all the vertices except (Id, Is) = (k, Js) for which the payoff
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decreases by l − ⌊
k
2

⌋
. On the other hand, the payoff on (0, 0), increases by⌊

k
2

⌋
+ n− l and ⌊

k

2

⌋
+ n− l > l −

⌊
k

2

⌋
(3.93)

since n− l > l. Therefore, the expected gain is greater than the one from (3.83).

Finally, the expected gain when Player 2 chooses the body of the spider (see

(3.83)) is less than the expected gain when Player 2 chooses a vertex (Jd, Js)

with Jd = k + 1 and Js 
= 0 (see (3.81)). Therefore, the minimal gain that

Player 1 can get with the strategy CS1(k) is when Player 2 chooses the body of

the spider. Thus, the guaranteed gain of Player 1 with the strategy CS1(k) on

S with m arms each having l vertices is

GGain(S,CS1(k)) =

⎧⎪⎨
⎪⎩

m
mk+1

(
kl − k2

4

)
, if k is even

m
mk+1

(
kl − k2

4
+ 1

4

)
, if k is odd.

(3.94)

Now that we have an expression for the guaranteed gain of Player 1 with the

strategy CS1(k), we want to maximize her guaranteed gain over k.

Lemma 3.19. The optimal guaranteed gain of Player 1 with the safe strategy CS1(k)

on S with m legs each having l vertices is GGain(S,CS1(k
∗)) = l−

√
l√
m
+O(1) (l → ∞)

where k∗ = 2
√
l√

m
+O(1) (l → ∞) is the optimal integer k.

Proof. From Lemma 3.18, we have the guaranteed gain of Player 1 with the strategy

CS1(k) on S with m legs each having l vertices:

GGain(S,CS1(k)) =

⎧⎪⎨
⎪⎩

m
mk+1

(
kl − k2

4

)
, if k is even

m
mk+1

(
kl − k2

4
+ 1

4

)
, if k is odd.

(3.95)

We want to maximize the guaranteed gain over k for m and l fixed. This is done in

a similar manner as in the proof of Lemma 3.7, defining the functions

g1(x) =
m

mx+ 1

(
xl − x2

4

)
(3.96)

and

g2(x) =
m

mx+ 1

(
xl − x2

4
+

1

4

)
(3.97)

and considering that g2(x) = g1(x) +O(1) (x → ∞).
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Remark 3.20. When m, the number of legs of a spider with legs each having l

vertices, tends to infinity, Player 1’s guaranteed gain with the strategy CS1(k) with

k = 1 approaches l.

Proof. From Lemma 3.18, we know that Player 1’s guaranteed gain when she adopts

the safe strategy CS1(k) on a spider with legs each having l vertices is

GGain(S,CS1(k)) =

⎧⎨
⎩

m
mk+1

(kl − k2

4
), if k is even

m
mk+1

(kl − k2

4
+ 1

4
), if k is odd

(3.98)

If k = 1, we have

GGain(S,CS1(k = 1)) =

(
m

m+ 1

)
l =

(
1− 1

m+ 1

)
l ≈ l (3.99)

when m tends to infinity.

We now need a lemma on the maximal gain of Player 2 when Player 2 adopts the

strategy CS1(k) on S.

Lemma 3.21. The optimal maximal gain of Player 1 when Player 2 uses the opposing

strategy CS1(k) on S with m legs each having l vertices is MGain(S,CS1(k
∗)) = l

where k∗ = 0 is the optimal integer k.

Proof. It is clear that if Player 2 adopts the strategy CS1(k) with k = 0, i.e. Player

2 chooses to start with the body of the spider, then the maximum gain that Player 1

can get is l, the number of vertices in a leg.

If Player 2 adopts the strategy CS1(k) with k 
= 0, then the expected gain of Player

1 when she chooses the body of the spider is

Gain(S, Z(0, 0), CS1(k)) ≥
(

1

mk + 1

)
0 +

mk

mk + 1
((m− 1)l + 1)

=
mk(lm− l + 1)

mk + 1

> l

(3.100)

for m ≥ 3, l ≥ 1 and k ≥ 1. Thus, the optimal strategy CS1(k) for Player 2 is

k = 0.

We now have the necessary results to prove Theorem 3.17.
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Proof. (Theorem 3.17) This proof is essentially the same as for Theorem 3.5 having

the guaranteed gain from Lemma 3.19 and the maximal gain from Lemma 3.21.

Let us compare the bounds on the safety value with the payoffs in the pure Nash

equilibrium for spider with legs of equal length from Corollary 3.12.

Theorem 3.22. For a spider S with m ≥ 3 arms each having l vertices, the safety

value of Player 1 asymptotically approaches the worst of the two gains in the two-

player pure Nash equilibrium as the number of vertices in the legs, l, tends to infinity.

Proof. This result directly follows from evaluating the limits of the bounds in Theorem

3.17 when l tends to infinity.

Again, we have that the asymptotic safety value is related to the payoffs in the

pure Nash equilibrium.

3.2.4 Bounds on Safety Value with the Strategy CS2(k)

With the purpose of tightening the bounds on the safety value of Player 1 from

Theorem 3.17 of the last section, we suggest the following strategy CS2(k). It is

a modified version of the strategy CS1(k) of Definition 3.16. In the new strategy,

the probability of choosing the body of the spider is distinct from the probability of

choosing the first k vertices on the legs.

Definition 3.23. Let the strategy CS2(k) be a mixed strategy on a spider, S, with

m legs each having l vertices where CS2(k) = (z1, z2, ..., zn) and zi, the probability of

choosing the vertex vi = (Id, Is), with Id ∈ {1, 2, ....l} and Is ∈ {s1, s2, ..., } or Id = 0

and Is = 0, is

zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0, if k < Id ≤ l

β = (m−1)l+1
km2l+km−lkm+l−k

, if 0 < Id ≤ k

α = l−k
km2l+km−lkm+l−k

, if Id = 0

(3.101)

and k ∈ {1, 2, ..., l}.

As an example, Figure 3.11 illustrates the strategy CS2(k) with k = 2. That is, the

strategy where the body is chosen with probability α, the first two vertices on each

leg are chosen with probability β and the other vertices are chosen with probability
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… 

 

Figure 3.11: Illustration of the strategy CS2(k) with k = 2 on a spider with 3 legs.

0, where α and β are as defined in (3.101). We can consider the strategy CS2(k) as a

safe strategy for Player 1 on a spider with legs of equal length to improve the lower

bound on the safety value of Player 1. This leads to the following:

Theorem 3.24. In the two-player game of Competitive Diffusion on a spider, S, with

m legs each having l vertices, the safety value of Player 1 is between l−
√
l√

m(m−1)
+O(1)

(l → ∞) and l.

In order to prove this theorem, we will consider some lemmas on the guaranteed

gain of Player 1 with the safe strategy CS2(k). Before proceeding, let us first check

that this new bound, l −
√
l√

m(m−1)
+ O(1) (l → ∞), is tighter than the one from

Theorem 3.17, l −
√
l√
m
+O(1) (l → ∞). The bound is tighter if

l −
√
l√

m(m− 1)
≥ l −

√
l√
m

(3.102)

and this is verified for m ≥ 3 and l ≥ 1.

Lemma 3.25. Considering the strategy CS2(k) as a safe strategy for Player 1 on a

spider, S, with m legs each having l vertices, we get

GGain(S,CS2) =

⎧⎪⎨
⎪⎩
mβ

(
kl − k2

4

)
, if k is even

mβ
(
kl − k2

4
+ 1

4

)
, if k is odd

(3.103)
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where β is the probability that Player 1 chooses one of the first k vertices in one of

the legs as in Definition 3.23.

Proof. Similarly as in the proof of Lemma 3.18, we have that the guaranteed gain of

Player 1 is

GGain(S,CS2(k)) = min
j

Gain(S,CS2(k), Z(vj)). (3.104)

Furthermore, the expected gain of Player 1 when Player 2 chooses a vertex vj =

(Jd, Js) is

Gain(S,CS2(k), Z(Jd, Js)) = α · a(0,0),(Jd,Js) + β

m∑
Is=1

k∑
Id=1

a(Id,Is),(Jd,Js) (3.105)

where aij is the entry of the game matrix of Player 1 from Corollary 3.14 and

α =
l − k

km2l + km− lkm+ l − k
, β =

(m− 1)l + 1

km2l + km− lkm+ l − k
(3.106)

are respectively the probability of choosing the body of the spider and the probability

of choosing one of the first k vertices on the legs as defined in Definition 3.23. We

have three cases to consider:

(a) If vj = (Jd, Js) with Jd > k and Js 
= 0, then

Gain(S,CS2(k), Z(Jd, Js)) ≥ n− l > l (3.107)

since a(Id,Is),(Jd,Js) ≥ n− l for all Id ∈ {0, 1, ..k}.

(b) If Jd = 0 and Js = 0, i.e. Player 2 chooses the body of the spider, replacing the

expression of a(Id,Is),(Jd,Js) from Corollary 3.14 in (3.105), we have:

Gain(S,CS2(k), Z(0, 0)) = mβ

k∑
Id=1

(
l + 1−

⌊
Id + 1

2

⌋)

=

⎧⎪⎨
⎪⎩
mβ

(
kl − k2

4

)
, if k is even

mβ
(
kl − k2

4
+ 1

4

)
, if k is odd

(3.108)

by (3.83).
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(c) If 1 ≤ Jd ≤ k and Js 
= 0;

(c.1) If Jd = 1, replacing the expression of a(Id,Is),(Jd,Js) from Corollary 3.14 in (3.105)

gives

Gain(S,CS2, Z(1, Js)) = α(n− l) + β

k∑
Id=2

(
l −

⌊
Id + 1

2

⌋)

+ (m− 1)β

(
l +

k∑
Id=2

(
l +

⌊−Id + 2

2

⌋)) (3.109)

which can be simplified to

Gain(S,CS2, Z(1, Js)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(n− l) + (m− 1)βl +mβ
(
kl − k2

4
− l + k

2

)
,

if k is even

α(n− l) + (m− 1)βl +mβ
(
kl − k2

4
− l + k

2
− 1

4

)
,

if k is odd.

(3.110)

Considering the different cases, we can determine that this gain is greater than

the one from (3.108) with k > 1,m ≥ 3.

(c.2) If 1 < Jd < k, we have that

Gain(S,CS2(k), Z(Jd, Js))−Gain(S,CS2(k), Z((0, 0)))

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(m− 1)l + β
(

J2
d

2
− Jdk

2
− k

4
+ Jd

4
+ (Jd − 1)(m− 2)l

)
,

if Jd is even and k is even

α(m− 1)l + β
(

J2
d

2
− Jdk

2
− k

4
+ Jd

4
− 1

4
+ (Jd − 1)(m− 2)l

)
,

if Jd is even and k is odd

α(m− 1)l + β
(

J2
d

2
− Jdk

2
+ k

4
− Jd

4
+ 1

4
+ (Jd − 1)(m− 2)l

)
,

if Jd is odd and k is even

α(m− 1)l + β
(

J2
d

2
− Jdk

2
+ k

4
− Jd

4
+ (Jd − 1)(m− 2)l

)
,

if Jd is odd and k is odd.

(3.111)

using the inequalities (3.87), (3.88), (3.89) and (3.90) from the proof of Lemma

3.18. Considering the cases separately, we can show that the difference is always
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positive. Thus, the expected gain of Player 1 when Player 2 chooses a vertex

vj = (Jd, Js) with 1 < Jd < k and Js 
= 0 is greater than when Player 2 chooses

the body of the spider.

(c.3) If Jd = k, we can show in a similar manner as case (c.2) that the expected

gain is greater than the one when Player 2 chooses the body of the spider. The

payoff to Player 1 increases on all the vertices except when (Id, Is) = (k, Js) for

which the payoff decreases by l − ⌊
k
2

⌋ ≤ l. The payoffs for all other vertices

on which Player 1 has a positive probability were less than or equal to l when

Player 2 chose the body of the spider and are now at least n − l. Thus, these

payoffs increase by at least n− 2l > (m− 2)l and so

Gain(S,CS2(k), Z(k, Js))−Gain(S,CS2(k), Z(0, 0))

≥ (1− β)(m− 2)l − βl ≥ 0
(3.112)

since m ≥ 3.

Finally, after considering all the cases, we see that the expected gain when

Player 2 chooses the body of the spider (see (3.108)) is the minimal expected

gain of Player 1. Therefore,

GGain(S,CS2) =

⎧⎪⎨
⎪⎩
mβ

(
kl − k2

4

)
, if k is even

mβ
(
kl − k2

4
+ 1

4

)
, if k is odd

(3.113)

Now that we have an expression for the guaranteed gain of Player 1 with the

strategy CS2(k), we want to maximize her guaranteed gain over k.

Lemma 3.26. The optimal guaranteed gain of Player 1 with the strategy CS2(k) on

a spider, S, with m legs each having l vertices is

GGain(S,CS2(k
∗)) = l −

√
l√

m(m− 1)
+O(1) (l → ∞) (3.114)

where k∗ = 2
√
l√

m(m−1)
+O(1) (l → ∞) is the optimal integer k.
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Proof. From Lemma 3.25, we have the guaranteed gain of Player 1 with the strategy

CS2(k) on S with m legs each having l vertices:

GGain(S,CS2(k)) =

⎧⎪⎨
⎪⎩
mβ

(
kl − k2

4

)
, if k is even

mβ
(
kl − k2

4
+ 1

4

)
, if k is odd

(3.115)

where β is the probability as defined in Definition 3.23. Replacing β, we have

GGain(S,CS2(k)) =

⎧⎪⎨
⎪⎩
m

(
(m−1)l+1

km2l+km−lkm+l−k

) (
kl − k2

4

)
, if k is even

m
(

(m−1)l+1
km2l+km−lkm+l−k

) (
kl − k2

4
+ 1

4

)
, if k is odd

(3.116)

We want to maximize the guaranteed gain over k for m and l fixed. This is done in

a similar manner as in the proof of Lemma 3.7, defining the functions

g1(x) = m

(
(m− 1)l + 1

xm2l + xm− lxm+ l − x

) (
xl − x2

4

)
(3.117)

and

g2(x) = m

(
(m− 1)l + 1

xm2l + xm− lxm+ l − x

) (
xl − x2

4
+

1

4

)
, (3.118)

considering that g2(x) = g1(x) + O(1) (x → ∞) and that g1(x) reaches a maximum

at x∗ = 2
√
l√

m(m−1)
+O(1) (l → ∞).

We can now prove Theorem 3.24.

Proof. (Theorem 3.24) For the lower bound, the proof is the same as Theorem 3.5,

having the guaranteed gain from Lemma 3.26. The upper bound l is simply taken

from Theorem 3.17.

As a last point, let us explain quickly how the probabilities of α and β were

suggested since similar ideas will be used to suggest mixed strategies for the players

in the next chapters. Consider a mixed strategy X for Player 1 on S where the

probability of choosing the body of the spider is α, the probability of choosing each

of the first k vertices on the legs of S is β and the probability of choosing the other

vertices is zero. If Player 2 chooses the body of the spider, then

Gain(S,X,Z(0, 0)) ≥ α · 0 + (1− α)(l − k) (3.119)
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since a(Id,Is),(0,0) = l − ⌊
Id
2

⌋ ≥ (l − k) for 1 ≤ Id ≤ k. On the other hand, if Player 2

chooses a vertex (Jd, Js) with 1 ≤ Jd ≤ k,

Gain(S,X,Z(Jd, Js)) ≥ α(n− l) + (1− α− β)(l − k) (3.120)

since a(0,0),(Jd,Js) =
⌊
1+Jd
2

⌋
+ n − l − 1 ≥ (n − l) and a(Id,Is),(Jd,Js) ≥ (l − k) for the

other cases (see Corollary 3.14).

Since Player 1 does not want to give Player 2 an advantage of choosing the body

of the spider over another vertex on which she assigns a positive probability, it makes

sense to equate these two expected gains and solve for α and β using α + kmβ = 1.

The solution of α and β is precisely the expressions in Definition 3.23. This idea of

considering the expected gain in two scenarios and determining the probabilities that

makes them equal, will be used to suggest strategies to the players for the game of

Competitive Diffusion on Complete Trees in the next chapter.



Chapter 4

Complete Trees

In this chapter, we will study the two-player safe game of Competitive Diffusion on

complete trees. Recall from Definition 1.39 that a complete m-ary tree of height h,

T (m,h) is a rooted tree in which all the internal vertices have m children and all the

leaves have depth h. Therefore, the number of vertices in T (m,h) is n = mh+1−1
m−1

.

4.1 Pure Nash Equilibrium

Since we have the two-player pure Nash equilibrium for trees in Theorem 2.5 in terms

of the centroid, we only need to determine what is the centroid of a complete m-ary

tree.

Proposition 4.1. The centroid of a complete m-ary tree of height h, which has

n = mh+1−1
m−1

vertices, is the root of the tree and the weight of the centroid is mh−1
m−1

.

Proof. Let r be the root of T (m,h) and consider the branches at r (see Definition

1.48). There are m of them and they each have n−1
m

edges. Since n−1
m

≤ n
2
for m ≥ 2,

we have from Theorem 1.51, that r is a centroid vertex. Moreover, we know from

Theorem 1.50 that if two centroid vertices exist, they are adjacent. Thus, the only

possible other centroid vertex would be a vertex in level 1. However, the vertices in

level 1 have a branch with (m − 1)
(
n−1
m

)
+ 1 ≥ n

2
edges and thus are not centroid

vertices by Theorem 1.51. Therefore, the centroid of a complete m-ary tree of height

h is the root and its weight is n−1
m

= mh−1
m−1

since n = mh+1−1
m−1

.

Corollary 4.2. In the two-player game of Competitive Diffusion on a complete m-

ary tree of height h, a pure Nash equilibrium is attained when one player has the root

of the tree as starting vertex and the other player has one of the vertices in level 1.

Moreover, the payoffs to the players are mh and mh−1
m−1

respectively.

Proof. This result immediately follows from Theorem 2.5 having proved in Proposi-

tion 4.1 that the root is the centroid.
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4.2 Safety Value of Player 1 on Complete m-ary trees

Let us consider strategies which have positive probabilities on the root and the vertices

in the first level of T (m,h). Following a similar idea as with the strategy CS2(k) on

spiders, we can assume that Player 1 chooses the root of the tree with probability α

and the vertices in level 1 each with probability β. We can then determine Player 1’s

expected gains when Player 2 chooses the root and when Player 2 chooses a vertex

in level 1. Then, we can force the two expected gains to be equal by solving for α

and β knowing that α+mβ = 1. Similarly, we can assume that Player 2 chooses the

root of the tree with probability α and the vertices in level 1 each with probability

β, determining Player 1’s expected gains when she chooses the root and when she

chooses a vertex in level 1. Again, we can force the two expected gains to be equal

by solving for α and β knowing that α + mβ = 1. This leads to the following two

suggested strategies.

Let us identify a vertex vi chosen by Player 1 as an ordered pair (Id, Ie) where Id

is the distance of the vertex to the root or equivalently the level of the vertex and Ie

is the position of the vertex in level Id if the vertices are numbered from left to right

by {0, 1, 2, ...,mId − 1} (see Figure 4.1). By convention, the root of the tree will be

identified by the ordered pair (0, 0). Similarly, a vertex vj of Player 2 will be denoted

by (Jd, Je).

Note that with this notation, one could determine if a vertex vi = (Id, Ie) is a

descendant of a vertex vj = (Jd, Je) by checking if

Ie ∈ {JemId−Jd , Jem
Id−Jd +mId−Jd − 1} (4.1)

or not. Furthermore, recall from Definition 2.3, that the mixed strategy for which

a player chooses a vertex vi with probability 1 is denoted by Z(vi). For complete

trees, it can equivalently be denoted by Z((Id, Ie)) if the vertex vi is identified by the

ordered pair (Id, Ie). In order to simplify the notation, we will write Z(Id, Ie) instead

of Z((Id, Ie)) as it should not create any confusion.
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Figure 4.1: Labelling of the vertices in a complete tree.

Definition 4.3. Let the strategy μ1 be a mixed strategy on T (m,h) where

μ1 = (x1, x2, ..., xn) and xi, the probability of choosing the vertex vi = (Id, Ie), is

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α = mh−1

mh+2−mh+1+mh−1
, if Id = 0

β = (m−1)mh

mh+2−mh+1+mh−1
, if Id = 1

0, if 2 ≤ Id ≤ h

(4.2)

for 1 ≤ i ≤ n.

Definition 4.4. Let the strategy μ2 be a mixed strategy on T (m,h) where

μ2 = (y1, y2, ..., yn) and yj, the probability of choosing a vertex vj = (Jd, Je), is

yj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α = (m−1)(mh+1−mh+1)

mh+2−mh+1+mh−1
, if Jd = 0

β = mh−1
mh+2−mh+1+mh−1

, if Jd = 1

0, if 2 ≤ Jd ≤ h

(4.3)

for 1 ≤ j ≤ n.

We consider the strategy μ1 as a safe strategy for Player 1 on T (m,h) and the

strategy μ2 as an opposing strategy for Player 2 on T (m,h). This leads to the following

results:
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Theorem 4.5. In the two-player game of Competitive Diffusion on the complete

m-ary tree of height h, T (m,h), the safety value of Player 1 is

(n− 1)((m− 1)n+ 1)

n(m2 −m+ 1) +m− 1
(4.4)

where n = mh+1−1
m−1

.

In order to prove this theorem, we will consider some lemmas on the guaranteed

gain of Player 1 with the safe strategy μ1 and the maximal gain of Player 1 when

Player 2 has the opposing strategy μ2.

Lemma 4.6. The guaranteed gain of Player 1 with the strategy μ1 on a complete

m-ary tree of height h is

GGain(T (m,h), μ1) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.5)

Proof. From Definition 2.9, we have that the guaranteed gain of Player 1 with the

mixed strategy μ1 on T (m,h) is

GGain(T (m,h), μ1) = min
j

Gain(T (m,h), μ1, Z(vj)) (4.6)

where 1 ≤ j ≤ n. Due to symmetry in T (m,h) and in the strategy μ1, we only

need to consider the root of the tree and one vertex of each level as possible starting

vertices for Player 2.

(a) If vj = (0, 0), i.e. Player 2 chooses the root of the tree, the expected gain of

Player 1 is

Gain(T (m,h), μ1, Z(0, 0)) = α ·Gain (T (m,h), Z(0, 0), Z(0, 0))

+ β

m−1∑
Ie=0

Gain(T (m,h), Z(1, Ie), Z(0, 0)).
(4.7)

Since

Gain (T (m,h), Z(0, 0), Z(0, 0)) = 0 (4.8)

and

Gain(T (m,h), Z(1, Ie), Z(0, 0)) =
h−1∑
k=0

mk =
mh − 1

m− 1
, (4.9)
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for 0 ≤ Ie ≤ m− 1, we have

Gain(T (m,h), μ1, Z(0, 0)) = α · 0 +mβ

(
mh − 1

m− 1

)
. (4.10)

Replacing the values of α and β from Definition 4.3 gives

Gain(T (m,h), μ1, Z(0, 0)) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.11)

(b) If vj = (Jd, Je) with Jd = 1, 0 ≤ Je ≤ m− 1,

Gain(T (m,h), μ1, Z(1, Je)) = α ·Gain (T (m,h), Z(0, 0), Z(1, Je))

+ β

m−1∑
Ie=0

Gain(T (m,h), Z(1, Ie), Z(1, Je)).
(4.12)

Since

Gain (T (m,h), Z(0, 0), Z(1, Je)) = (m− 1)

(
mh − 1

m− 1

)
+ 1 = mh (4.13)

and

Gain(T (m,h), Z(1, Ie), Z(1, Je)) =
mh − 1

m− 1
, (4.14)

for 0 ≤ Ie ≤ m− 1, Ie 
= Je we have

Gain(T (m,h), μ1, Z(1, Je)) = αmh + (m− 1)β

(
mh − 1

m− 1

)
. (4.15)

Replacing the values of α and β from Definition 4.3 gives

Gain(T (m,h), μ1, Z(Jd, Je)) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.16)

(c) If vj = (Jd, Je) with 2 ≤ Jd ≤ h,

Gain(T (m,h), μ1, Z(Jd, Je)) = α ·Gain (T (m,h), Z(0, 0), Z(Jd, Je))

+ β

m−1∑
Ie=0

Gain(T (m,h), Z(1, Ie), Z(Jd, Je)).
(4.17)

Gain (T (m,h), Z(0, 0), Z(Jd, Je)) ≥ mh and Gain(T (m,h), Z(1, Ie), Z(Jd, Je))

≥ mh since Player 2’s starting vertex is further from the root than (0, 0) and
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(1, Ie) for 0 ≤ Ie ≤ m− 1. Therefore, the payoff to Player 1 will be at least the

number of vertices in m− 1 of the m branches. Thus,

Gain(T (m,h), μ1, Z(Jd, Je)) ≥ αmh + β

m−1∑
Ie=0

mh = mh. (4.18)

Since mh > mh+1(mh−1)
mh+2−mh+1+mh−1

, the guaranteed gain of Player 1 is

GGain(T (m,h), μ1) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.19)

Lemma 4.7. The maximal gain of Player 1 when Player 2 uses the opposing strategy

μ2 on an m-ary tree of height h is

MGain(T (m,h), μ2) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
(4.20)

Proof. Recall from Definition 2.10 that the maximal gain of Player 1 against the

strategy μ2 for Player 2 is

MGain(T (m,h), μ2) = max
i

Gain(T (m,h), Z(vi), μ2) (4.21)

where 1 ≤ i ≤ n. In other words, it is the maximal expected gain Player 1 can get

over all her possible starting vertices. Again, because of symmetry, we only need to

consider the root of the tree and one vertex of each level as possible starting vertices

for Player 1.

(a) If vi = (0, 0), i.e. Player 1 chooses the root of the tree as starting vertex, her

expected gain is

Gain(T (m,h), Z(0, 0), μ2) = α ·Gain(T (m,h), Z(0, 0), Z(0, 0))

+ β

m−1∑
Je=0

Gain(T (m,h), Z(0, 0), Z(1, Je)).
(4.22)

Since Gain(T (m,h), Z(0, 0), Z(0, 0)) = 0 and Gain(T (m,h), Z(0, 0), Z(1, Je))

= (m− 1)
∑h−1

k=0 m
k = mh, for 0 ≤ Je ≤ m− 1, we have

Gain(T (m,h), Z(0, 0), μ2) = α · 0 +mβmh. (4.23)

Replacing the values of α and β from Definition 4.4 gives

Gain(T (m,h), Z(0, 0), μ2) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
(4.24)
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(b) If vi = (Id, Ie) with Id = 1, 0 ≤ Ie ≤ m− 1,

Gain(T (m,h), Z(1, Ie), μ2) = α ·Gain(T (m,h), Z(1, Ie), Z(0, 0))

+ β

m−1∑
Je=0

Gain(T (m,h), Z(1, Ie), Z(1, Je)).
(4.25)

Since

Gain(T (m,h), Z(1, Ie), Z(0, 0)) =
mh − 1

m− 1
(4.26)

and

Gain(T (m,h), Z(1, Ie), Z(1, Je)) =
mh − 1

m− 1
(4.27)

for 0 ≤ Je ≤ m− 1, Je 
= Ie, we have

Gain(T (m,h), Z(1, Ie), μ2) = α

(
mh − 1

m− 1

)
+ (m− 1)β

(
mh − 1

m− 1

)
. (4.28)

Replacing the values of α and β from Definition 4.4 gives

Gain(T (m,h), Z(1, Ie), μ2) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.29)

(c) If vi = (Id, Ie) with 2 ≤ Id ≤ h,

Gain(T (m,h), Z(Id, Ie), μ2) = α ·Gain(T (m,h), Z(Id, Ie), Z(0, 0))

+ β

m−1∑
Je=0

Gain(T (m,h), Z(Id, Ie), Z(1, Je)).
(4.30)

However, we have

Gain(T (m,h), Z(Id, Ie), Z(0, 0)) ≤ mh−1 − 1

m− 1
(4.31)

and

Gain(T (m,h), Z(Id, Ie), Z(1, Je)) ≤ mh−1 − 1

m− 1
, if vi is a descendant of vj

(4.32)

since in these cases, Player 1’s payoff is less than or equal to the number of

vertices in a subtree of the m-ary tree with the root at level 2. Moreover,

Gain(T (m,h), Z(Id, Ie), Z(1, Je)) ≤ mh − 1

m− 1
, if vi is not a descendant of vj

(4.33)
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since in this case, the payoff to Player 1 is less than or equal to the number of

vertices in a subtree of the m-ary tree with the root at level 1. Thus,

Gain(T (m,h), Z(Id, Ie), μ2) ≤ (α + β)

(
mh−1 − 1

m− 1

)
+ (m− 1)β

(
mh − 1

m− 1

)
.

(4.34)

Replacing the values of α and β from Definition 4.4 gives

Gain(T (m,h), Z(Id, Ie), μ2) ≤ 2m2h+1 − 3m2h + 2m2h−1 +mh − 2mh−1 −mh+2 + 1

(m− 1)(mh+2 −mh+1 +mh− 1)

<
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
.

(4.35)

Therefore, the maximal gain of Player 1 against the strategy μ2 is

MGain(T (m,h), μ2) =
mh+1(mh − 1)

mh+2 −mh+1 +mh − 1
. (4.36)

We now prove Theorem 4.5.

Proof. (Theorem 4.5) This proof is essentially the same as the proof of Theorem

3.5 having the guaranteed gain from Lemma 4.6 and the maximal gain from Lemma

4.7 except that in this case, the bounds are equal. Thus, we have that the safety

value of Player 1 is exactly mh+1(mh−1)
mh+2−mh+1+mh−1

. Since n = mh+1−1
m−1

, this is equivalent in

terms of n and m to (n−1)((m−1)n+1)
n(m2−m+1)+m−1

.

Let us compare the bounds on the safety value with the payoffs in the pure Nash

equilibrium described in Corollary 4.2.

Theorem 4.8. For a complete m-ary tree of height h with n = mh+1−1
m−1

vertices, the

safety value of Player 1 is asymptotically
(

m−1
m2−m+1

)
n + O(1) (n → ∞) as the total

number of vertices, n, tends to infinity and m is constant.

Proof. This result immediately follows from evaluating the limit of the safety value

of Theorem 4.5 as n tends to infinity and m is constant.

In contrast to the path and the spider with legs of equal length, the safety value

is not asymptotically equal to the payoffs in the pure Nash equilibrium which are
(m−1)n+1

m
=

(
m−1
m

)
n+O(1) (n → ∞) and n−1

m
=

(
1
m

)
n+O(1) (n → ∞).
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4.3 Special Case: Binary Tree

In the safe game of the two-player Competitive Diffusion on a complete binary tree,

the safety value of Player 1 is asymptotically n
3
+O(1) (n → ∞) whereas the payoffs

in the pure Nash equilibrium are n+1
2

and n−1
2
. Here, the payoffs in the pure Nash

equilibrium are the same as the ones for paths with an odd number of vertices.

Moreover, for paths, we had that the asymptotic safety value approaches n
2
+ O(1)

(n → ∞). However this is not the case for the complete binary tree. The reason for

this lies in the structure of the branches of the root. On the path, as the number

of vertices increases, there are more and more vertices near the middle of the path

on which the payoff is at least n
2
+ O(1) (n → ∞) no matter the chosen vertex of

the opponent given that it is not the same one. Thus, Player 1 can use this to her

advantage by choosing a strategy that has positive probabilities on these vertices.

With a large number of them, the probability that Player 2 chooses the exact same

one is small and therefore, the guaranteed gain of Player 1 approaches n
2
+ O(1)

as n tends to infinity. On the other hand, increasing the number of vertices in the

binary tree does not increase the number of vertices which are attractive to choose as

starting vertex. Choosing a vertex in level 2 gives a payoff of only ≈ n
4
when Player

2 chooses the root, no matter the height of the tree. Thus, the attractive vertices to

choose from remain the root and the vertices of level 1. In this case, Player 1 cannot

distribute the probabilities on more vertices to reduce the chance of being caught by

Player 2 without causing a significant reduction of her expected payoff.

4.4 Special Case: Ternary Tree

In the safe game of the two-player Competitive Diffusion on a complete ternary tree,

the safety value of Player 1 is asymptotically 2n
7
+O(1) (n → ∞) whereas the payoffs

in the pure Nash equilibrium are 2n+1
3

and n−1
3
. Compared to the complete binary

tree, the asymptotic safety value of Player 1 is closer to the worst of the two payoffs

in the pure Nash equilibrium. This will also be the case with complete trees of higher

degree as the difference(
n− 1

m

)
−

((
m− 1

m2 −m+ 1

)
n+O(1)

)
=

(
1

m(m2 −m+ 1)

)
n+O(1) (n → ∞)

(4.37)
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approaches zero as m tends to infinity.



Chapter 5

Trees in General

In this chapter, we study the two-player safe game of Competitive Diffusion on trees

in general. Recall from Definition 1.34 that a tree is any graph that contains no cycles.

Hence, the paths, spiders and complete trees of Chapters 3 and 4 are specific cases

of trees. This chapter presents a general approach to determine a safe strategy for

Player 1 on any tree. Recall from Definition 1.48 and Theorem 1.50, that the centroid

of a tree is the set of vertices with the minimal weight and it consists of either a single

vertex (centroidal tree) or two adjacent vertices (bicentroidal tree). Moreover, given a

tree with n vertices, the weights of the vertices and correspondingly the centroid of the

tree can be determined by a linear time algorithm (see for example [13]). Therefore,

in the following, we will assume that we know the weights of the vertices of any given

tree as well as its centroid. Furthermore, we will consider two different classes for the

trees, the centroidal trees and the bicentroidal trees.

5.1 Weights of the Vertices in a Tree

First, let us start with a few observations on the weights of the vertices in a tree.

Notation 5.1. Let v be a vertex in a tree with n vertices. Recall from Definition 1.48

that the weight of v, i.e. the number of edges in the largest branch at v, is denoted

by w(v). Moreover, we will denote n− w(v) by w(v).

Lemma 5.2. Let v be a vertex not part of the centroid of a tree T with n vertices.

The weight of the vertex v is the number of edges in the branch at v in which lies the

centroid of T .

Proof. Recall from Definition 1.48 that the weight of the vertex v is the maximum

number of edges in any branch at v. By way of contradiction, suppose that B, the

branch at v in which lies the centroid, is not the branch with the maximum number

of edges and let c be a vertex in the centroid.
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… …  

Figure 5.1: Illustration in the proof of Lemma 5.2.

Since the weight of a vertex is the maximum number of edges in one of its branches,

we have

w(c) ≥ n− |B|. (5.1)

On the other hand, since B is not the branch at v with the maximum number of

edges, we have

w(v) ≤ n− |B|. (5.2)

Thus,

n− |B| ≤ w(c) ≤ w(v) ≤ n− |B| (5.3)

since the centroid is the vertex with the minimal weight in T . Hence,

w(c) = w(v) (5.4)

which is a contradiction since v is not a vertex in the centroid of T . Thus, the branch

B is the branch at v with the maximum number of edges and hence the weight of v

is precisely the number of edges in B.

Lemma 5.3. If v is a vertex not part of the centroid of a tree T with n vertices, then

w(v) > w(v) (5.5)

where w(v) = n− w(v).

Proof. From Theorem 1.51, we know that a vertex is a centroid vertex if and only if

all of its branches have less than or equal to n
2
vertices. Thus, if v is not a centroid



84

vertex, at least one of its branches must have more than n
2
vertices. Since w(v) is the

number of edges in the largest branch at v, we must have

w(v) >
n

2
. (5.6)

This is equivalent to

2w(v) > n ⇔ w(v) > n− w(v). (5.7)

Lemma 5.4. Consider a tree on n vertices T with centroid C(T ) = {c} if T is

centroidal, or centroid C(T ) = {c1, c2} if T is bicentroidal. Let v1, v2 be two adjacent

vertices not part of the centroid of T such there is a v2 − v1 − c path in T if T is

centroidal or a v2−v1−ci path in T if T is bicentroidal where ci ∈ {c1, c2} is the vertex

in the centroid with the minimal distance to v1. Let N(v1, v2) be the total number of

vertices on branches of v1 other than the one in which lies the centroid and the one

in which lies the vertex v2. We have N(v1, v2) = w(v2)− w(v1)− 1.

Proof. We know from Lemma 5.2 that the weights of v1 and v2 are the number of

edges in the branches in which lies the centroid.

 …  
… 

 

Figure 5.2: Illustration in the proof of Lemma 5.4.

Since the path from v2 to the centroid is through the vertex v1, the branch at

v2 in which lies the centroid includes the edges in the branch at v1 in which lies the

centroid. Therefore,

w(v2) = w(v1) +N(v1, v2) + 1. (5.8)
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where N(v1, v2) is the number of edges in the branches at v1 other than the one in

which lies the centroid and the one in which lies the vertex v2 and where the +1

corresponds to the edge v1 − v2. Rearranging, we have

N(v1, v2) = w(v2)− w(v1)− 1. (5.9)

5.2 Centroidal Trees

Let us start by studying the Competitive Diffusion on centroidal trees. A centroidal

tree with n vertices, CT (n), has one vertex as centroid and n− 1 vertices distributed

amongst branches at the centroid.

5.2.1 Types of Branches at the Centroid

We will distinguish three different types of branches at the centroid.

Definition 5.5. A thick branch at the centroid is a branch for which we have

w2 ≥ n− w1 +
w2

1

n
(5.10)

where w2 is the second lowest weight in the branch and w1 is the lowest weight in the

branch.

Definition 5.6. A medium branch at the centroid is a branch for which we have

w2 < n− w1 +
w2

1

n
and w3 ≥ n− w2 +

w2
2 + (w2 − w1)

2

n+ (w2 − w1)
(5.11)

where w3 is the third lowest weight in the branch, w2 is the second lowest weight in

the branch and w1 is the lowest weight in the branch.

Definition 5.7. A thin branch at the centroid is a branch for which we have

w2 < n− w1 +
w2

1

n
and w3 < n− w2 +

w2
2 + (w2 − w1)

2

n+ (w2 − w1)
(5.12)

where w3 is the third lowest weight in the branch, w2 is the second lowest weight in

the branch and w1 is the lowest weight in the branch.
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(a) Path. (b) Spider.

(c) Complete m-ary tree.

Figure 5.3: Example of branches in graphs.

The idea behind the distinction of these branches comes from the previous chap-

ters. A thick branch represents a branch that is closest to being ”complete-tree-like”.

It is comparable to the branches of a complete tree (see Figure 5.3 (c)) where there is

a positive probability in Player 1’s safe strategy only on the first vertex of the branch.

On the other hand, we have branches that are closest to being ”path-like”. These in-

clude the branches of paths (see Figure 5.3 (a)) and spiders (see Figure 5.3 (b)) where

the positive probabilities in Player 1’s safe strategy are distributed along the branch

up to a certain distance. Thus, the medium branches will be branches on which we

have positive probabilities on the first two vertices with the lowest weights, while the

thin branches will be branches on which we include positive probabilities on the first

three vertices with the lowest weights. In the case that a branch at the centroid is a

path, a better safe strategy for Player 1 is likely to be obtained by including positive

probabilities on more than the first three vertices with the lowest weights. However,

the possible configurations of the first k vertices with the lowest weights in a branch

at the centroid, multiplies as k increases. Thus, in this thesis, we limit ourselves to

three vertices. Nevertheless, one should keep in mind that for a specific example, the
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Figure 5.4: Illustration in the proof of Lemma 5.8.

arguments and results that follow could be generalized to include positive probabil-

ities on more vertices in the branches. As we go along, we will discuss the types of

trees for which this might be beneficial.

Let us study the possible configurations of the three vertices with the lowest

weights in a branch at the centroid.

Lemma 5.8. Consider a branch at the centroid in a centroidal tree with n vertices,

CT (n). The vertex with the lowest weight in the branch is the one adjacent to the

centroid and the vertex with the second lowest weight is a vertex adjacent to the first.

Proof. Let B be a branch at the centroid in CT (n) with u as the vertex adjacent to

the centroid and the vertices t1, t2, ..., td adjacent to u (see Figure 5.4). From Lemma

5.2, we know that the weight of a vertex is precisely the number of edges in the branch

in which lies the centroid. Thus, u is the vertex in B with the minimal weight since

for any other vertex, v, in B, the edges in the branch at u in which lies the centroid

are a subset of the edges in the branch at v in which lies the centroid. Now, suppose

the vertex with the second lowest weight, v, is not adjacent to u, i.e. not one of the

vertices ti for 1 ≤ i ≤ d. Considering the centroid as the root of a rooted tree, we

have that v is a descendant of one of the vertices ti, 1 ≤ i ≤ d, say tk. In this case,

the weight of v needs to be larger than tk since the branch at v in which lies the
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(a) First configuration with w(u) < w(t) ≤
w(s).

  

 

 

…
 

… 

…
 

(b) Second configuration with w(u) < w(t) ≤
w(s).

Figure 5.5: Possible configurations of the three vertices with lowest weight in a
branch at the centroid of a centroidal tree.

centroid also includes the edges in the branch at tk in which lies the centroid. This

is a contradiction to the fact that v is the vertex with the second lowest weight in B.

Thus, v needs to be adjacent to u.

From Lemma 5.8, we know that the vertex with the lowest weight is adjacent to

the centroid and a vertex with the second lowest weight is adjacent to the first vertex.

That being said, there are two possibilities for the the next vertex with the lowest

weight i.e. the next vertex with the lowest weight can be a vertex adjacent to either

the first or second vertex with lowest weight in the branch (see Figure 5.5.)

Consider mixed strategies for Player 1 where she chooses with a positive prob-

ability only the centroid and some of the three vertices with the lowest weights in

a branch at the centroid. If the branch has the configuration (a) of Figure 5.5, we

suggest three possible strategies for Player 1, τ1, τ2 and τ3 (see Figure 5.6). The

strategy τ1, represented in Figure 5.6 (a) has Player 1 assigning a probability α on

the centroid, a probability β on the vertex with the lowest weight, u, a probability
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(a) Mixed strategy τ1.
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(b) Mixed strategy τ2.
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(c) Mixed strategy τ3.

Figure 5.6: Safe strategies of Player 1 on a branch of a centroidal tree with configu-
ration (a) of Figure 5.5.
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(a) Mixed strategy τ4.
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(b) Mixed strategy τ2.
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(c) Mixed strategy τ3.

Figure 5.7: Safe strategies of Player 1 on a branch of a centroidal tree with configu-
ration (b) of Figure 5.5.
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γ on the vertex with the second lowest weight, t, a probability δ on the next vertex

with the lowest weight, s, and a probability zero on all the other vertices. Following

a similar idea as with the strategy CS2(k) for the spiders and the strategies μ1 and

μ2 for the complete trees, we can determine the expected gains of Player 1 if Player

2 chooses the centroid, the vertex u, the vertex t and the vertex s and force these

expected gains to be equal by solving for α, β, γ and δ, knowing that α+β+γ+δ = 1.

This leads to the following mixed strategy and expected gain.

Definition 5.9. Let τ1 be a mixed strategy on a centroidal tree CT (n) with centroid

vertex c and a branch at the centroid, B, with the configuration of Figure 5.6 (a).

We define τ1 = (x1, x2, ..., xn) where xi, the probability of choosing the vertex vi, is

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vi = c

β =
(

w(t)(w(u)w(s)+(w(t)−w(s))(w(t)−w(u)))
w(s)w(u)w(t)+w(s)w(t)(w(s)−w(t))

)
α, if vi = u

γ =
(

w(t)
w(t)

)
β, if vi = t

δ =
(

w(s)
w(s)

)
γ +

(
w(t)−w(u)

w(s)

)
α, if vi = s

0, otherwise.

(5.13)

with α, β, γ and δ known by solving α + β + γ + δ = 1 and where u, t and s are

respectively the first, second and third vertices with the lowest weights in B.

Lemma 5.10. Consider the two-player game of Competitive Diffusion on a centroidal

tree CT (n) with centroid vertex c and a branch at the centroid, B, with the configu-

ration of Figure 5.6 (a). The expected gains of Player 1 when she chooses the mixed

strategy τ1 and Player 2 chooses the mixed strategies Z(c), Z(u), Z(t) and Z(s) are

equal and are

w(t)(w(t)(n2 − w(u)w(t) + w(t)2 − w(s)(w(u)− w(u) + w(t)))

n3 − n2(w(u) + w(s)) + nw(u)(w(u) + w(s))− w(t)(w(u)− w(s))(w(u)− w(t) + w(s))

(5.14)

where u, t and s are respectively the first, second and third vertices with the lowest

weights in B.

Proof. The expected gain of Player 1 with the strategy τ1 on the centroidal tree CT (n)
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if Player 2 chooses a vertex vj for 1 ≤ j ≤ n is

Gain(CT (n),τ1, Z(vj)) = α ·Gain(CT (n), Z(c), Z(vj))

+ β ·Gain(CT (n), Z(u), Z(vj)) + γ ·Gain(CT (n), Z(t), Z(vj))

+ δ ·Gain(CT (n), Z(s), Z(vj))

(5.15)

where α, β, γ and δ are defined as in Definition 5.9.

(a) If vj = c, i.e. Player 2 chooses the centroid, then (5.15) becomes

Gain(CT (n), τ1, Z(c)) = α · 0 + β · w(u) + γ · w(t) + δ · w(t) (5.16)

Replacing the values of α, β, γ and δ known from solving α + β + γ + δ = 1

gives

Gain(CT (n), τ1, Z(c)) =

w(t)(w(t)(n2 − w(u)w(t) + w(t)2 − w(s)(w(u)− w(u) + w(t)))

n3 − n2(w(u) + w(s)) + nw(u)(w(u) + w(s))− w(t)(w(u)− w(s))(w(u)− w(t) + w(s))
.

(5.17)

(b) If vj = u, i.e. Player 2 chooses the vertex with the lowest weight in the branch

B, (5.15) becomes

Gain(CT (n), τ1, Z(u)) = α · w(u) + β · 0 + γ · w(t) + δ · w(s) (5.18)

Replacing the values of α, β, γ and δ know from solving α+β+ γ+ δ = 1 gives

Gain(CT (n), τ1, Z(u)) =

w(t)(w(t)(n2 − w(u)w(t) + w(t)2 − w(s)(w(u)− w(u) + w(t)))

n3 − n2(w(u) + w(s)) + nw(u)(w(u) + w(s))− w(t)(w(u)− w(s))(w(u)− w(t) + w(s))
.

(5.19)

(c) If vj = t, i.e. Player 2 chooses a vertex with the second lowest weight in the

branch B, (5.15) becomes

Gain(CT (n), τ1, Z(t)) = α · w(u) + β · w(t) + γ · 0 + δ · w(s) (5.20)

Replacing the values of α, β, γ and δ know from solving α+β+ γ+ δ = 1 gives
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Gain(CT (n), τ1, Z(t)) =

w(t)(w(t)(n2 − w(u)w(t) + w(t)2 − w(s)(w(u)− w(u) + w(t)))

n3 − n2(w(u) + w(s)) + nw(u)(w(u) + w(s))− w(t)(w(u)− w(s))(w(u)− w(t) + w(s))
.

(5.21)

(d) If vj = s, i.e. Player 2 chooses the third vertex with the lowest weight in the

branch B, (5.15) becomes

Gain(CT (n), τ1, Z(s)) = α · w(t) + β · w(t) + γ · w(s) + δ · 0 (5.22)

Replacing the values of α, β, γ and δ know from solving α+β+ γ+ δ = 1 gives

Gain(CT (n), τ1, Z(s)) =

w(t)(w(t)(n2 − w(u)w(t) + w(t)2 − w(s)(w(u)− w(u) + w(t))w(s))

n3 − n2(w(u) + w(s)) + nw(u)(w(u) + w(s))− w(t)(w(u)− w(s))(w(u)− w(t) + w(s))
.

(5.23)

In a similar manner, we define the mixed strategies τ2 and τ3 of Figure 5.6 (b)

and (c) with their associated expected gains.

Definition 5.11. Let τ2 be a mixed strategy on a centroidal tree CT (n) with centroid

vertex c and a branch at the centroid, B, with the configuration of Figure 5.6 (b).

We define τ2 = (x1, x2, ..., xn) where xi, the probability of choosing the vertex vi, is

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vi = c

β =
(

w(u)
w(u)

)
α, if vi = u

γ =
(

w(t)
w(t)

)
β, if vi = t

δ = 0, if vi = s

0, otherwise.

(5.24)

with α, β and γ known by solving α+β+γ = 1 and where u, t and s are respectively

the first, second and third vertices with the lowest weights in B.

Lemma 5.12. Consider the two-player game of Competitive Diffusion on a centroidal

tree CT (n) with centroid vertex c and a branch at the centroid, B, with the configu-

ration of Figure 5.6 (b). The expected gains of Player 1 when she chooses the mixed
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strategy τ2 and Player 2 chooses the mixed strategies Z(c), Z(u) and Z(t) are equal

and are

w(u)w(u)w(t) + w(u)w(t)w(t)

n2 − nw(t) + w(u)w(t)
(5.25)

where u and t are respectively the first and second vertices with the lowest weights in

B.

Proof. This proof follows the same ideas as the proof of Lemma 5.10.

Definition 5.13. Let τ3 be a mixed strategy on a centroidal tree CT (n) with centroid

vertex c and a branch at the centroid, B, with the configuration of Figure 5.6 (c).

We define τ3 = (x1, x2, ..., xn) where xi, the probability of choosing the vertex vi, is

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vi = c

β =
(

w(u)
w(u)

)
α, if vi = u

γ = 0, if vi = t

δ = 0, if vi = s

0, otherwise.

(5.26)

with α and β known by solving α + β = 1 and where u, t and s are respectively the

first, second and third vertices with the lowest weights in B.

Lemma 5.14. Consider the two-player game of Competitive Diffusion on a centroidal

tree CT (n) with centroid vertex c and a branch at the centroid, B, with the configu-

ration of Figure 5.6 (c). The expected gains of Player 1 when she chooses the mixed

strategy τ3 and Player 2 chooses the mixed strategies Z(c) and Z(u) are equal and are

w(u)w(u)

n
(5.27)

where u is the vertex with the lowest weight in B.

Proof. This proof follows the same ideas as the proof of Lemma 5.10.

On the other hand, if a branch at the centroid has the configuration (b) of Figure

5.5, we also suggest three possible mixed strategies for Player 1. However, two of

them are equivalent to ones already defined (see Figure 5.7). Let us define the new

strategy τ4 obtained in a similar manner as the others.



95

Definition 5.15. Let τ4 be a mixed strategy on a centroidal tree CT (n) with centroid

vertex c and a branch at the centroid, B, with the configuration of Figure 5.7 (a).

We define τ4 = (x1, x2, ..., xn) where xi, the probability of choosing the vertex vi, is

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vi = c

β =
(

w(u)
w(u)

)
α, if vi = u

γ1 =
(

w(t)
w(t)

)
β, if vi = t

γ2 =
(

w(s)
w(s)

)
β, if vi = s

0, otherwise.

(5.28)

with α, β, γ1 and γ2 known by solving α + β + γ1 + γ2 = 1 and where u, t and s are

respectively the first, second and third vertices with the lowest weights in B.

Lemma 5.16. Consider the two-player game of Competitive Diffusion on a centroidal

tree CT (n) with centroid vertex c and a branch at the centroid, B, with the configu-

ration of Figure 5.7 (a). The expected gains of Player 1 when she chooses the mixed

strategy τ4 and Player 2 chooses the mixed strategies Z(c), Z(u), Z(t) and Z(s) are

equal and are

w(u)w(t)w(s)(w(u) + w(t) + w(s))

n3 − 2w(u)w(t)w(s)− n2(w(t) + w(s)) + n(w(t)w(s) + w(u)w(t) + w(u)w(s))

(5.29)

where u, t and s are respectively the first, second and third vertices with the lowest

weights in B.

Proof. This proof follows the same ideas as the proof of Lemma 5.10.

By comparing the expected gains (5.14), (5.25), (5.27) and (5.29) we can determine

the following:

• The expected gain with the strategy τ3 (5.27) is always greater than the expected

gain with the strategy τ4 (5.29).

• The expected gain with the strategy τ2 (5.25) is greater than the expected gain

with the strategy τ3 (5.27) if w(t) < w(u) + w(u)2

n
.
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• The expected gain with the strategy τ1 (5.14) is greater than the expected

gain with the strategy τ2 (5.25) if w(t) < w(u) + w(u)2

n
and w(s) < w(t) +

w(t)2+(w(t)−w(u))2

n+(w(t)−w(u))
.

In other words, on a thin branch, the expected gain of Player 1 is greater with the

strategy τ1, on a medium branch, the expected gain of Player 1 is greater with the

strategy τ2 while on a thick branch, the expected gain of Player 1 is greater with the

strategy τ3. This suggests a safe strategy for Player 1 which has positive probabilities

on some of the branches at the centroid and in which the distribution of probabilities

are defined dependently on the branches being thick, medium or thin.

5.2.2 Centroidal Safe Strategy (CSS) Algorithm

To determine the branches on which there should be a positive probability in the

safe strategy of Player 1, we consider a stepwise algorithm. The algorithm starts

by having positive probabilities on one of the branches at the centroid and adds

positive probabilities on other branches one at a time. Branches are added until

the expected gain of Player 1 when Player 2 chooses the centroid can no longer be

increased by adding some positive probabilities on the remaining branches. Thus, the

algorithm consists of two important elements: the order in which the branches should

be included and the time when the algorithm should stop adding positive probabilities

on some new branches. On that note, we have the following lemmas.

Lemma 5.17. Consider a centroidal tree CT (n) with vertices {v1, v2, ..., vn}. Suppose
we have a mixed strategy for Player 1 on CT (n), σ = (x1, x2, ..., xn) where xi is the

probability of choosing the vertex vi and specifically

xi =

⎧⎨
⎩α, if vi = c

0, if vi ∈ B
(5.30)

with 0 < α < 1 and B, a thick branch at the centroid. Suppose we add probabilities

in terms of α on the vertices of B as described in (5.26). That is, we form a vector
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Q = (q1, q2, ..., qn) such that

qi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
β =

(
w(u)
w(u)

)
α, if vi = u

0, if vi ∈ B and vi 
= u

xi, if vi 
∈ B

(5.31)

where u is the vertex with the lowest weight in B. Let σ′ = (x′
1, x

′
2, ..., x

′
n) be a scale

down of the vector Q where,

x′
i =

qi∑n
i=1 qi

. (5.32)

Consider σ′ as a new mixed strategy for Player 1. Then, we have

Gain(CT (n), σ
′, Z(c)) ≥ Gain(CT (n), σ, Z(c)) (5.33)

if and only if

w(u) ≥ Gain(CT (n), σ, Z(c)). (5.34)

Moreover,

Gain(CT (n), σ
′, Z(c)) ≤ w(u) (5.35)

that is, the new expected gain does not surpass w(u).

Proof. Suppose the centroid c corresponds to the vertex v1 of CT (n). The expected

gain of Player 1 with the strategy σ when Player 2 chooses the centroid is

Gain(CT (n), σ, Z(c)) = α · 0 +
n∑

i=2

xi ·Gain(CT (n), Z(vi), Z(c)) (5.36)

Now, suppose there are m vertices in the branch B and that they correspond to the

vertices {v2, v3, ..., vm+1} of CT (n). Let the vertex v2 be specifically the vertex u. The

expected gain of Player 1 with the strategy σ′ when Player 2 chooses the centroid is

Gain(CT (n), σ
′, Z(c)) =

n∑
i=1

x′
i ·Gain(CT (n), Z(vi), Z(c)). (5.37)

Replacing the values of x′
i from (5.32) gives

Gain(CT (n), σ
′, Z(c)) =

n∑
i=1

qi∑n
i=1 qi

·Gain(CT (n), Z(vi), Z(c)). (5.38)
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Since qi = xi for 1 ≤ i ≤ n, i 
= 2 and q2 =
w(u)
w(u)

, we have

Gain(CT (n), σ
′, Z(c)) =

1∑n
i=1 qi

(
α · 0 +

(
w(u)

w(u)

)
·Gain(CT (n), Z(u), Z(c))

+
n∑

i=3

xi ·Gain(CT (n), Z(vi), Z(c))

)
.

(5.39)

Moreover, x2 = 0, since initially, there was no positive probabilities on the vertices of

the branch B. Thus,

Gain(CT (n), σ
′, Z(c)) =

1∑n
i=1 qi

((
w(u)

w(u)

)
·Gain(CT (n), Z(u), Z(c))

+Gain(CT (n), σ, Z(c))
)
.

(5.40)

Therefore,

Gain(CT (n), σ
′, Z(c)) ≥ Gain(CT (n), σ, Z(c))

⇔ 1∑n
i=1 qi

((
w(u)

w(u)

)
·Gain(CT (n), Z(u), Z(c))

)
≥(∑n

i=1 qi − 1∑n
i=1 qi

)
Gain(CT (n), σ, Z(c)).

(5.41)

This can be simplified to

Gain(CT (n), Z(u), Z(c)) ≥ Gain(CT (n), σ, Z(c)) (5.42)

since
∑n

i=1 qi − 1 = w(u)
w(u)

. Finally, recall from Lemma 5.2, that w(u) is the number of

edges in the branch at u in which lies the centroid. Thus, there are w(u) vertices in

the branch B and so Gain(CT (n), Z(u), Z(c)) = w(u).

Lastly, if Gain(CT (n), Z(u), Z(c)) ≥ Gain(CT (n), σ, Z(c)), we can deduce from

(5.40) that

Gain(CT (n), σ
′, Z(c)) ≤ Gain(CT (n), Z(u), Z(c)) = w(u) (5.43)

since

0 <
1∑n
i=1 qi

(
w(u)

w(u)

)
< 1 and 0 <

1∑n
i=1 qi

< 1. (5.44)
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Lemma 5.18. Consider a centroidal tree CT (n) with vertices {v1, v2, ..., vn}. Suppose
we have a mixed strategy for Player 1 on CT (n), σ = (x1, x2, ..., xn), where xi is the

probability of choosing the vertex vi and specifically

xi =

⎧⎨
⎩α, if vi = c

0, if vi ∈ B
(5.45)

with 0 < α < 1 and B, a medium branch at the centroid. Suppose we add probabilities

in terms of α on the vertices of B as described in (5.24). That is, we have a vector

Q = (q1, q2, ..., qn) such that

qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β =
(

w(u)
w(u)

)
α, if vi = u

γ =
(

w(t)
w(t)

)
β, if vi = t

0, if vi ∈ B and vi 
= u, t

xi, if vi 
∈ B

(5.46)

where u and t are the first and second vertices with the lowest weights in B. Let

σ′ = (x′
1, x

′
2, ..., x

′
n) be a scale down of the vector Q where,

x′
i =

qi∑n
i=1 qi

. (5.47)

Consider σ′ as a new mixed strategy for Player 1. Then, we have

Gain(CT (n), σ
′, Z(c)) ≥ Gain(CT (n), σ, Z(c)) (5.48)

if and only if (
w(t)

n

)
w(u) +

(
w(t)

n

)
w(t) ≥ Gain(CT (n), σ, Z(c)). (5.49)

Moreover,

Gain(CT (n), σ
′, Z(c)) ≤

(
w(t)

n

)
w(u) +

(
w(t)

n

)
w(t). (5.50)

Proof. This proof follows the same ideas as the proof of Lemma 5.17.

Lemma 5.19. Consider a centroidal tree CT (n) with vertices {v1, v2, ..., vn}. Suppose
we have a mixed strategy for Player 1 on CT (n), σ = (x1, x2, ..., xn), where xi is the

probability of choosing the vertex vi and specifically

xi =

⎧⎨
⎩α, if vi = c

0, if vi ∈ B
(5.51)
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with 0 < α < 1 and B, a thin branch at the centroid. Suppose we add probabilities

in terms of α on the vertices of B as described in (5.13). That is, we have a vector

Q = (q1, q2, ..., qn) such that

qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β =
(

w(t)(w(u)w(s)+(w(t)−w(s))(w(t)−w(u)))
w(s)w(u)w(t)+w(s)w(t)(w(s)−w(t))

)
α, if vi = u

γ =
(

w(t)
w(t)

)
β, if vi = t

δ =
(

w(s)
w(s)

)
γ +

(
w(t)−w(u)

w(s)

)
α, if vi = s

0, if vi ∈ B and vi 
= u, t, s

xi, if vi 
∈ B

(5.52)

where u, t and s are respectively the first, second and third vertices with the lowest

weights in B. Let σ′ = (x′
1, x

′
2, ..., x

′
n) be a scale down of the vector Q where,

x′
i =

qi∑n
i=1 qi

. (5.53)

Consider σ′ as a new strategy for Player 1. We have

Gain(CT (n), σ
′, Z(c)) ≥ Gain(CT (n), σ, Z(c)) (5.54)

if and only if

w(t)w(t)(n2 − nw(s)− w(s)w(t) + w(t)2 + 2w(s)w(u)− w(t)w(u))

nw(t)w(s) + w(u)w(t)(−n+ w(s) + w(t)) + w(t)w(u)2

≥ Gain(CT (n), σ, Z(c)).

(5.55)

Moreover,

Gain(CT (n), σ
′, Z(c)) ≤

w(t)w(t)(n2 − nw(s)− w(s)w(t) + w(t)2 + 2w(s)w(u)− w(t)w(u))

nw(t)w(s) + w(u)w(t)(−n+ w(s) + w(t)) + w(t)w(u)2
.

(5.56)

Proof. This proof follows the same ideas as the proof of Lemma 5.17.

We now have conditions that permit us to determine if adding positive probabili-

ties on the vertices of a branch increases the expected gain of Player 1 when Player 2

chooses the centroid. However, we must decide which branch should be added first if

two or more branches satisfy the conditions. To do this, we first define the criterion

of a branch. The criterion of a branch is dependant of the type of branch and cor-

responds respectively to the equations (5.34), (5.49) and (5.55) in the Lemmas 5.17,
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5.18 and 5.19. Thus, we will have that the expected gain of Player 1 can be increased

by adding positive probabilities on the vertices of a branch if and only if its criterion

is greater than the current expected gain.

Definition 5.20. For a branch at the centroid B in a centroidal tree CT (n), we define

the criterion of B, Cr(B), as

Cr(B) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
w(u), if B is a thick branch(

w(t)
n

)
w(u) +

(
w(t)
n

)
w(t), if B is a medium branch

w(t)w(t)(n2−nw(s)−w(s)w(t)+w(t)2+2w(s)w(u)−w(t)w(u))
nw(t)w(s)+w(u)w(t)(−n+w(s)+w(t))+w(t)w(u)2

, if B is a thin branch

(5.57)

where u is the vertex with the lowest weight in the branch B, t is the vertex with the

second lowest weight in the branch B and s is the next vertex with the lowest weight

in the branch B. By assumption, a branch that has less than three vertices will be

assigned a criterion of 0.

We now argue the ordering of the branches in the algorithm. Let Bi and Bj be

two branches at the centroid in a centroidal tree CT (n) with vertices {v1, v2, ..., vn}.
Suppose we have a mixed strategy for Player 1 on CT (n), σ = (x1, x2, ..., xn), where

xk, the probability of choosing the vertex vk, is

xk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α, if vk = c

0, if vk ∈ Bi or vk ∈ Bj

εk · α, for vk otherwise

(5.58)

where α is such that α+
∑

k εk ·α = 1 and 0 ≤ εk ≤ 1. The expected gain of Player 1

with the strategy σ when Player 2 chooses the centroid is Gain(CT (n), σ, Z(c)). Sup-

pose Cr(Bi) ≥ Cr(Bj) ≥ Gain(CT (n), σ, Z(c)). Since the criterion of both branches

is greater than the current expected gain, we know by Lemmas 5.17, 5.18 and 5.19,

that adding some positive probabilities on either branches will increase the expected

gain of Player 1. Thus, we have two scenarios.

(i) If we start by adding some probabilities on the branch Bj to get the mixed

strategy σj = (y1, y2, ..., yn) where, yk, the probability of choosing the vertex vk

is:
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(a) If Bj is a thin branch

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bi

βj =
(
w(tj)(w(uj)w(sj)+(w(tj)−w(sj))(w(tj)−w(uj)))

w(sj)w(uj)w(tj)+w(sj)w(tj)(w(sj)−w(tj))

)
α, if vk = uj ∈ Bj

γj =
(
w(tj)
w(tj)

)
βj , if vk = tj ∈ Bj

δj =
(
w(sj)
w(sj)

)
γj +

(
w(tj)−w(uj)

w(sj)

)
α, if vk = sj ∈ Bj

0, if vk ∈ Bj , vk 
= uj , tj , sj

εk · α, for vk otherwise.

(5.59)

with α such that α+ βj + γj + δj +
∑

k εk ·α = 1, where the εk’s are unchanged

and where uj, tj and sj are respectively the vertices with the first, second and

third lowest weights in Bj. The probabilities on the branch Bj are as in (5.13)

of the strategy τ1.

(b) If Bj is a medium branch

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bi

βj =
(

w(uj)

w(uj)

)
α, if vk = uj ∈ Bj

γj =
(

w(tj)

w(tj)

)
βj, if vk = tj ∈ Bj

0, if vk ∈ Bj, vk 
= uj, tj

εk · α, for vk otherwise.

(5.60)

with α such that α+ βj + γj +
∑

k εk ·α = 1, where the εk’s are unchanged and

where uj and tj are respectively the first and second vertices with lowest weights

in Bj. The probabilities on the branch Bj are as in (5.24) of the strategy τ2.
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(c) If Bj is a thick branch

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bi

βj =
(

w(uj)

w(uj)

)
α, if vk = uj ∈ Bj

0, if vk ∈ Bj, vk 
= uj

εk · α, for vk otherwise.

(5.61)

with α such that α+βj+
∑

k εk ·α = 1, where the εk’s are unchanged and where

uj is the vertex with the lowest weight in Bj. The probabilities on the branch

Bj are as described in (5.26) of the strategy τ3.

The new expected gain of Player 1 when Player 2 chooses the centroid is

Gain(CT (n), σj, Z(c)).

(ii) On the other hand, if we start by adding some probabilities on the branch Bi to

get the mixed strategy σi = (z1, z2, ..., zn) where, zk, the probability of choosing

the vertex vk is:

(a) If Bi is a thin branch

zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bj

βi =
(
w(ti)(w(ui)w(si)+(w(ti)−w(si))(w(ti)−w(ui)))

w(si)w(ui)w(ti)+w(si)w(ti)(w(si)−w(ti))

)
α, if vk = ui ∈ Bi

γi =
(
w(ti)
w(ti)

)
βi, if vk = ti ∈ Bi

δi =
(
w(si)
w(si)

)
γi +

(
w(ti)−w(ui)

w(si)

)
α, if vk = si ∈ Bi

0, if vk ∈ Bi, vk 
= ui, ti, si

εk · α, for vk otherwise.

(5.62)

with α such that α+ βi + γi + δi +
∑

k εk · α = 1, where the εk’s are unchanged

and where ui, ti and si are respectively the vertices with the first, second and

third lowest weights in Bi. The probabilities on the branch Bi are as in (5.13)

of the strategy τ1.
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(b) If Bi is a medium branch

zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bj

βi =
(

w(ui)
w(ui)

)
α, if vk = ui ∈ Bi

γi =
(

w(ti)
w(ti)

)
, if vk = ti ∈ Bi

0, if vk ∈ Bi, vk 
= ui, ti

εk · α, for vk otherwise.

(5.63)

with α such that α+ βi + γi +
∑

k εk · α = 1, where the εk’s are unchanged and

where ui and ti are respectively the vertices with the first and second lowest

weights in Bi. The probabilities on the branch Bi are as in (5.24) of the strategy

τ2.

(c) If Bi is a thick branch

zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, if vk = c

0, if vk ∈ Bj

βi =
(

w(ui)
w(ui)

)
α, if vk = ui ∈ Bi

0, if vk ∈ Bi, vk 
= ui

εk · α, for vk otherwise.

(5.64)

with α such that α+βi+
∑

k εk ·α = 1, where the εk’s are unchanged and where

ui is the vertex with the lowest weight in Bi. The probabilities on the branch

Bi are as in (5.26) of the strategy τ3.

The new expected gain of Player 1 when Player 2 chooses the centroid is

Gain(CT (n), σi, Z(c)).

Now, we know by Lemmas 5.17, 5.18 and 5.19 that

Gain(CT (n), σj, Z(c)) ≤ Cr(Bj)

and

Gain(CT (n), σi, Z(c)) ≤ Cr(Bi).
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In the first scenario, since Cr(Bi) ≥ Cr(Bj), we have Cr(Bi) ≥ Gain(CT (n), σj, Z(c)).

Therefore, adding to the strategy σj, some positive probabilities on the vertices of

the branch Bi and scaling down the probabilities will increase the expected gain of

Player 1. In the second scenario, Cr(Bj) might or might not be greater than or equal

to Gain(CT (n), σi, Z(c)). If it is, then adding to the strategy σi, some positive prob-

abilities on the vertices of the branch Bj will result in the same final expected gain

as in scenario 1. If Cr(Bj) < Gain(CT (n), σi, Z(c)), then we should not add positive

probabilities on the branch Bj since it will decrease the expected gain to Player 1.

Thus, the resulting expected gain following the second scenario is either greater or

equivalent to the resulting expected gain following the first scenario. For this reason,

it is always advantageous to include some positive probabilities on the branch with

the largest criterion first.

These observations are summarized in the heuristic algorithm, Centroidal Safe

Strategy (CSS) Algorithm, represented in Figure 5.8 and defined as follows.

Algorithm 5.21. Centroidal Safe Strategy (CSS) Algorithm

INPUT: Centroidal tree with d branches at the centroid for which all the weights

of the vertices are known.

STEP 1: Order the branches {B1, B2, ..., Bd} such that Cr(Bi) ≥ Cr(Bi+1) for all

1 ≤ i ≤ d− 1, where Cr(Bi) is the criterion of the branch Bi as defined in Definition

5.20.

STEP 2:

(a) Start with i = 1 and consider the branch B1. Let u1, t1, s1 be the vertices of B1

such that w(u1) < w(t1) ≤ w(s1) ≤ w(rk) for all other vertices rk in B1. Form

a safe strategy for Player 1, σ1, in which the centroid is chosen with probability

α and the vertices in the branch B1 are chosen with probabilities that depend

on the branch B1 being thick, medium or thin.
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(i) If B1 is a thin branch, the probabilities are

• β1 =

(
w(t1)(w(u1)w(s1) + (w(t1)− w(s1))(w(t1)− w(u1)))

w(s1)w(u1)w(t1) + w(s1)w(t1)(w(s1)− w(t1))

)
α on u1

• γ1 =

(
w(t1)

w(t1)

)
β1 on t1

• δ1 =

(
w(s1)

w(s1)

)
γ1 +

(
w(t1)− w(u1)

w(s1)

)
α on s1

• 0 on the other vertices of B1.

(5.65)

(ii) If B1 is a medium branch, the probabilities are

• β1 =

(
w(u1)

w(u1)

)
α on u1

• γ1 =

(
w(t1)

w(t1)

)
β1 on t1

• δ1 = 0 on s1

• 0 on the other vertices of B1.

(5.66)

(iii) If B1 is a thick branch, the probabilities are

• β1 =

(
w(u1)

w(u1)

)
α on u1

• γ1 = 0 on t1

• δ1 = 0 on s1

• 0 on the other vertices of B1.

(5.67)

Skip to STEP 3.

(b) Consider the branch Bi. Let ui, ti, si be the vertices of Bi such that w(ui) <

w(ti) ≤ w(si) ≤ w(rk) for all other vertices rk in Bi. Form a safe strategy for

Player 1, σi, in which the centroid is chosen with probability α, the probabilities

on the vertices of the branches Bk, 1 ≤ k < i are the same in terms of α as in

the strategy σi−1 and the probabilities on the vertices in the branch Bi depend

on the branch Bi being thick, medium or thin.
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(i) If Bi is a thin branch, the probabilities are

• βi =

(
w(ti)(w(ui)w(si) + (w(ti)− w(si))(w(ti)− w(ui)))

w(si)w(ui)w(ti) + w(si)w(ti)(w(si)− w(ti))

)
α on ui

• γi =

(
w(ti)

w(ti)

)
βi on ti

• δi =

(
w(si)

w(si)

)
γi +

(
w(ti)− w(ui)

w(si)

)
α on si

• 0 on the other vertices of Bi.

(5.68)

(ii) If Bi is a medium branch, the probabilities are

• βi =

(
w(ui)

w(ui)

)
α on ui

• γi =

(
w(ti)

w(ti)

)
βi on ti

• δi = 0 on si

• 0 on the other vertices of Bi.

(5.69)

(iii) If Bi is a thick branch, the probabilities are

• βi =

(
w(ui)

w(ui)

)
α on ui

• γi = 0 on ti

• δi = 0 on si

• 0 on the other vertices of Bi.

(5.70)

STEP 3: Determine α by solving α +
∑i

j=1 (βj + γj + δj) = 1 and calculate the

expected gain of Player 1 with the strategy σi when Player 2 chooses to start with

the centroid,

Gain(CT (n), σi, Z(c)) = α · 0 +
i∑

j=1

(βi · w(ui) + γi · w(ti) + δi · w(ti)) . (5.71)

STEP 4:

(a) If i < d, verify Cr(Bi+1) ≥ Gain(CT (n), σi, Z(c)).
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– If it is true, go to STEP 2 (b) with i = i+1. That is, consider another safe

strategy for Player 1, σi+1, where positive probabilities on some vertices in

the next branch of the ordering are included.

– If it is false, then the expected gain of Player 1 cannot be increased by

adding more branches. The algorithm stops and σi is the resulting safe

strategy for Player 1.

(b) If i = d, there are no more branches at the centroid that can be added. Thus,

the algorithm stops and σi is the resulting safe strategy for Player 1.

OUTPUT: Safe strategy for Player 1, σi, with guaranteed gain

GGain(CT (n), σi) = Gain(CT (n), σi, Z(c)). (5.72)

Note that in STEP 2 of the algorithm, the probabilities that are added on the

vertices of the branch Bi are equivalent to the distribution of the probabilities on a

branch at the centroid in the strategies τ3, τ2 and τ1 (see (5.13), (5.24) and (5.26)),

respectively when Bi is thin, medium or thick.

As a final point, there is one result from the algorithm left to be proved. The

following theorem shows that the expected gain of Player 1 with the strategy σk

when Player 2 chooses the centroid is in fact the minimal gain that Player 1 can get

with the strategy σk so we have

GGain(CT (n), σk) = Gain(cT (n), σk, Z(c)). (5.73)

Theorem 5.22. Let CT (n) be a centroidal tree with d branches at the centroid. Sup-

pose we apply the algorithm described in Figure 5.8 to CT (n) and we get the mixed

strategy σk of Player 1 as output. Then,

GGain(CT (n), σk) = Gain(CT (n), σk, Z(c)) (5.74)

where c is the centroid of CT (n).

Proof. The mixed strategy σk has positive probabilities on vertices of the branches

B1, B2, ..., Bk. From this set of branches, suppose there are k1 thick branches,
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Figure 5.8: Representation of the CSS Algorithm giving a safe strategy for Player 1
along with its guaranteed gain on a centroidal tree CT (n).
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{iThk
1 , iThk

2 , ..., iThk
k1

} ∈ {1, 2, 3, ..., k},

k2 medium branches,

{iMed
1 , iMed

2 , ..., iMed
k2

} ∈ {1, 2, 3, ..., k},

and k3 thin branches,

{iThn
1 , iThn

2 , ..., iThn
k3

} ∈ {1, 2, 3, ..., k}

such that k1 + k2 + k3 = k.

The algorithm defines the strategy σk as having the probabilities

• α on the centroid c

•

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βi =
(

w(ui)
w(ui)

)
α on ui

γi = 0 on ti if Bi is a thick branch

δi = 0 on si

•

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
βi =

(
w(ui)
w(ui)

)
α on ui

γi =
(

w(ti)
w(ti)

)
β on ti if Bi is a medium branch

δ = 0 on si

•

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βi =
(

w(ti)(w(ui)w(si)+(w(ti)−w(si))(w(ti)−w(ui)))
w(si)w(ui)w(ti)+w(si)w(ti)(w(si)−w(ti))

)
α on ui

γi =
(

w(ti)
w(ti)

)
βi on ti if Bi is a thin branch

δi =
(

w(si)
w(si)

)
γi +

(
w(ti)−w(ui)

w(si)

)
α on si

• 0 on all the other vertices

(5.75)

where ui, ti and si are the vertices of Bi such that w(ui) < w(ti) ≤ w(si) ≤ w(ri) for

all other vertices ri in Bi and where α is such that α +
∑k

i=1(βi + γi + δi) = 1.

If Player 2 chooses to start with the centroid c, the expected gain of Player 1 with
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the strategy σk is

Gain(CT (n), σk, Z(c)) = α · 0 +
iThk
k1∑

j=iThk
1

βj · w(uj) +

iMed
k2∑

j=iMed
1

(βj · w(uj) + γj · w(tj))

+

iThn
k3∑

j=iThn
1

(βj · w(uj) + γj · w(tj) + δj · w(tj)) .

(5.76)

If Player 2 chooses to start with a vertex ur in Br where Br is a thin branch, then

r ∈ {iThn
1 , iThn

2 , ..., iThn
k3

},

and the expected gain of Player 1 with the strategy σk is

Gain(CT (n), σk, Z(ur)) = α · w(ur) +

iThk
k1∑

j=iThk
1

βj · w(uj)

+

iMed
k2∑

j=iMed
1

(βj · w(uj) + γj · w(uj))

+ βr · 0 + γr · w(tr) + δr · w(sr)

+

iThn
k2∑

j=iThn
1 , j �=r

(βj · w(uj) + γj · w(uj) + δj · w(tj)) .

(5.77)

Now, observe that

w(uj) > w(tj) (5.78)

for all j ∈ {1, 2, ..., k}, since w(uj) < w(tj). Moreover,

βr · w(ur) + δr · w(tr) = α · w(ur) + δr · w(sr) (5.79)

by the definition of βr. Thus, the expected gain (5.77) is greater than or equal to

Gain(CT (n), σk, c) of (5.76).

If Player 2 chooses to start with a vertex tr in Br where Br is a thin branch, then

r ∈ {iThn
1 , iThn

2 , ..., iThn
k3

},
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and the expected gain of Player 1 with the strategy σk is

Gain(CT (n), σk, Z(tr)) = α · w(ur) +

iThk
k1∑

j=iThk
1

βj · w(ur)

+

iMed
k2∑

j=iMed
1

(βj · w(ur) + γj · w(uj))

+ βr · w(tr) + γr · 0 + δr · w(sr)

+

iThn
k3∑

j=iThn
1 , j �=r

(βj · w(ur) + γj · w(uj) + δj · w(uj)) .

(5.80)

Now, observe that

w(ur) > w(uj) (5.81)

for all j ∈ {1, 2, ...k}. If j 
= r, it is clear since the branch at ur in which lies the

centroid includes the edges in the branch at the centroid in which lies uj. If j = r,

we have the result by Lemma 5.3. Moreover,

βr · w(tr) = γr · w(tr) (5.82)

by the definition of γr. Thus, the expected gain (5.80) is greater than or equal to

Gain(CT (n), σk, ur) of (5.76).

If Player 2 chooses to start with a vertex sr in Br where Br is a thin branch, then

r ∈ {iThn
1 , iThn

2 , ..., iThn
k3

},
and the expected gain of Player 1 with the strategy σk is

Gain(CT (n), σk, Z(sr)) = α · w(tr) +
iThk
k1∑

j=iThk
1

βj · w(ur)

+

iMed
k2∑

j=iMed
1

(βj · w(ur) + γj · w(ur))

+ βr · w(tr) + γr · w(sr) + δr · 0

+

iThn
k3∑

j=iThn
1 , j �=r

(βj · w(ur) + γj · w(ur) + δj · w(uj)) .

(5.83)
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This expected gain is greater than or equal to Gain(CT (n), σk, tr) by (5.81) and since

α · w(ur) + δr · w(sr) = α · w(tr) + γ · w(sr) (5.84)

by the definition of δr.

If Player 2 chooses to start with a vertex vj in Br, where Br is a thin branch and

vj 
= ur, tr, sr, the payoff to Player 1 on all vertices not part of the branch Br can

only increase since Player 2’s starting vertex is at a greater distance. Specifically, the

payoff to Player 1 on the centroid is now at least w(ur). Moreover, let us regard the

centroid as the root of the tree.

If vj is a descendant of ur but not of tr and sr then

Gain(CT (n), Z(ur), Z(vj)) ≥ w(ur)

Gain(CT (n), Z(tr), Z(vj)) ≥ w(tr)

Gain(CT (n), Z(sr), Z(vj)) ≥ w(sr).

(5.85)

If vj is a descendant of ur and tr but not of sr then

Gain(CT (n), Z(ur), Z(vj)) ≥ w(ur)

Gain(CT (n), Z(tr), Z(vj)) ≥ w(tr)

Gain(CT (n), Z(sr), Z(vj)) ≥ w(sr).

(5.86)

If vj is a descendant of ur, tr and sr, then

Gain(CT (n), Z(ur), Z(vj)) ≥ w(ur)

Gain(CT (n), Z(tr), Z(vj)) ≥ w(tr)

Gain(CT (n), Z(sr), Z(vj)) ≥ w(sr).

(5.87)

In all these cases, since w(v) > w(v) for any vertex v other than the centroid by

Lemma 5.3, we have

α ·Gain(CT (n), Z(c), Z(vj)) + βr ·Gain(CT (n), Z(ur), Z(vj))

+ γr ·Gain(CT (n), Z(tr), Z(vj)) + δr ·Gain(CT (n), Z(sr), Z(vj))

≥ α · w(ur) + βr · w(ur) + γr · w(tr) + δr · w(sr)
> α · w(ur) + γr · w(tr) + δr · w(sr)
= βr · w(ur) + γr · w(tr) + δr · w(tr)

(5.88)
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since βr · w(ur) + δr · w(tr) = α · w(ur) + δr · w(sr) by (5.79). Now,

Gain(CT (n), Z(c), Z(c)) = 0,

Gain(CT (n), Z(ur), Z(c)) = w(ur),

Gain(CT (n), Z(tr), Z(c)) = w(tr) and

Gain(CT (n), Z(sr), Z(c)) = w(tr),

(5.89)

so

βr · w(ur) + γr · w(tr) + δr · w(tr)
= α ·Gain(CT (n), Z(c), Z(c)) + βr ·Gain(CT (n), Z(ur), Z(c))

+ γr ·Gain(CT (n), Z(tr), Z(c)) + δr ·Gain(CT (n), Z(sr), Z(c)).

(5.90)

Thus, the expected gain of Player 1 when Player 2 chooses the vertex vj is greater

than or equal to the expected gain of Player 1 when Player 2 chooses the centroid.

Similarly, we can show that the expected gain of Player 1 when Player 2 chooses to

start with a vertex in Br, where Br, 1 ≤ r ≤ k, is a medium branch or thick branch

is greater than the expected gain of Player 1 when Player 2 chooses to start with the

centroid.

If Player 2 chooses to start with a vertex in a branch Bi, i > k instead of the

centroid, Player 1’s payoff on the vertices in the branches {B1, B2, ..., Bk} can only

increase since Player 2’s starting vertex is at a greater distance. Player 1’s payoff on

the centroid, being zero when Player 2 chooses the centroid, also increases. Thus, the

expected gain of Player 1 is again greater.

To sum up, the expected gain of Player 1 with the strategy σk is minimal when

Player 2 chooses the centroid, thus, it is equal to the guaranteed gain of Player 1 with

the strategy σk.

In the following sections, we will apply the CSS Algorithm 5.21 to different cases

of centroidal trees in order to compare the guaranteed gain of the safe strategy of

Player 1 from the CSS Algorithm with the safety value of Player 1.

5.2.3 Special Case: Centroidal Trees with Only Thick Branches

Let CT (n) be a centroidal tree with d thick branches at the centroid. If we apply the

CSS Algorithm 5.21 to CT (n), we obtain a safe strategy for Player 1, σk, where the
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probabilities on the branches Bi, 1 ≤ i ≤ k ≤ d, are distributed as

• α on the centroid,

• βi =
(

w(ui)
w(ui)

)
α on the vertex with the lowest weight in the branch Bi for 1 ≤

i ≤ k and

• 0 on all the other vertices,

where α is such that α+
∑k

i=1 βi = 1. The following lemma gives Player 1’s guaranteed

gain with the strategy σk.

Lemma 5.23. The guaranteed gain of Player 1 with the strategy σk determined by

applying the CSS Algorithm 5.21 on CT (n) with only thick branches is

GGain(CT (n), σk) =

∑k
i=1 w(ui)

1 +
∑k

i=1
w(ui)
w(ui)

(5.91)

where ui is the vertex with the lowest weight in the branch Bi for 1 ≤ i ≤ k.

Proof. From Theorem 5.22, we know

GGain(CT (n), σk) = Gain(CT (n), σk, Z(c)) (5.92)

where c is the centroid of CT (n), that is, the guaranteed gain of Player 1 is equal to

the expected gain of Player 1 when Player 2 chooses the centroid. Moreover,

Gain(CT (n), σk, Z(c)) = α · 0 +
k∑

i=1

βi · w(ui) (5.93)

where ui is the vertex with the lowest weight in the branch at the centroid Bi, 1 ≤
i ≤ k. Replacing the values of βi in (5.93), we have

Gain(CT (n), σk, Z(c)) = α
k∑

i=1

w(ui). (5.94)

Solving α +
∑k

i=1 βi = 1 for α gives

α =
1

1 +
∑k

i=1
w(ui)
w(ui)

. (5.95)

Thus,

GGain(CT (n), σk) =

∑k
i=1 w(ui)

1 +
∑k

i=1
w(ui)
w(ui)

. (5.96)
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In order to evaluate the proximity of the guaranteed gain obtained with the safe

strategy from the CSS Algorithm 5.21 to the safety value of Player 1 on a centroidal

tree with only thick branches, let us define an opposing strategy for Player 2. Re-

member that the maximal gain of Player 1 against an opposing strategy for Player 2

is an upper bound on the safety value.

Definition 5.24. Let the strategy ζ1 be a mixed strategy on CT (n) with only thick

branches where ζ1 = (y1, y2, ..., yn) and yj, the probability of choosing the vertex vj is

yj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = β1

(
w(u1)
w(u1)

+
∑k

i=2
w(ui)−w(u1)

w(ui)

)
+

∑k
i=2

(w(u1)−w(ui))(w(ui)−w(u1))
w(ui)w(u1)

, if vj = c

β1, if vj = u1

βi =
(

w(u1)
w(ui)

)
β1 +

(
w(u1)−w(ui)

w(ui)

)
, if vj = ui, for 2 ≤ i ≤ k

0, otherwise

(5.97)

with α, βi, 1 ≤ i ≤ k known by solving α+
∑k

i=1 βi = 1. Here c is the centroid, ui is

the vertex with the lowest weight in the branch Bi, 1 ≤ i ≤ k, and {B1, B2, ..., Bk}
are the same k branches as in the strategy σk. Note that all the probabilities are in

terms of β1.

Let us consider the strategy ζ1 as an opposing strategy for Player 2 and determine

Player 1’s maximal gain against ζ1, i.e. the maximal gain Player 1 can receive over

all her possible starting vertices when Player 2 chooses the mixed strategy ζ1.

Lemma 5.25. The maximal gain of Player 1 when Player 2 uses the opposing strategy

ζ1 on CT (n) is

MGain(CT (n), ζ1) = w(u1)

− w(u1)

1 +
∑k

i=1
w(ui)
w(ui)

+
∑k

i=2(w(u1)− w(ui))
(
1 + w(ui)−w(u1)

w(ui)w(u1)

) . (5.98)

Proof. Recall from Definition 2.10 that the maximal gain of Player 1 against the

strategy ζ1 for Player 2 is

MGain(CT (n), ζ1) = max
r

Gain(CT (n), Z(vr), ζ1) (5.99)
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where 1 ≤ r ≤ n. In other words, it is the maximal expected gain Player 1 can get

over all her possible starting vertices.

(a) If vr = c, i.e. Player 1 chooses the centroid c as starting vertex, her expected

gain is

Gain(CT (n), Z(c), ζ1) = α ·Gain(CT (n), Z(c), Z(c))

+
k∑

i=1

βi ·Gain(CT (n), Z(c), Z(ui)).
(5.100)

Since Gain(CT (n), Z(c), Z(c)) = 0 and Gain(CT (n), Z(c), Z(ui)) = w(ui), we

have

Gain(CT (n), Z(c), ζ1) =
k∑

i=1

βiw(ui). (5.101)

Replacing the values of βi, 2 ≤ i ≤ k gives

Gain(CT (n), Z(c), ζ1) = β1 · w(u1) +
k∑

i=2

((
w(u1)

w(ui)

)
β1 +

w(u1)− w(ui)

w(ui)

)
w(ui).

(5.102)

Solving α +
∑k

i=1 βi = 1 for β1 gives

β1 =
1

1 +
∑k

i=1
w(ui)
w(ui)

+
∑k

i=2(w(u1)− w(ui))
(
1 + w(ui)−w(u1)

w(ui)w(u1)

) . (5.103)

If we replace β1 in (5.102) and simplify, we have

Gain(CT (n), Z(c), ζ1) = w(u1)

− w(u1)

1 +
∑k

i=1
w(ui)
w(ui)

+
∑k

i=2(w(u1)− w(ui))
(
1 + w(ui)−w(u1)

w(ui)w(u1)

) .
(5.104)

(b) If vr = ui, i.e. Player 1 chooses a vertex ui, 1 ≤ i ≤ k, her expected gain is

Gain(CT (n), Z(ui), ζ1) = α ·Gain(CT (n), Z(ur), Z(c))

+
k∑

i=1

βi ·Gain(CT (n), Z(ur), Z(ui)).
(5.105)
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Since Gain(CT (n), Z(ur), Z(c)) = w(ur), Gain(CT (n), Z(ur), Z(ui)) = w(ui) if

i 
= r, and Gain(CT (n), Z(ur), Z(ui)) = 0 if i = r, we have

Gain(CT (n), Z(ui), ζ1) = α · w(ur) +
k∑

i=1, i �=r

βi · w(ur)

= (1− βr) · w(ur).

(5.106)

Replacing the value of βr gives

Gain(CT (n), Z(ui), ζ1) =

(
1−

((
w(u1)

w(ur)

)
β1 +

w(u1)− w(ur)

w(ur)

))
· w(ur). (5.107)

After simplifications, we have

Gain(CT (n), Z(ui), ζ1) = (1− β1) · w(u1) (5.108)

which is equivalent to

Gain(CT (n), Z(ui), ζ1) = w(u1)

− w(u1)

1 +
∑k

i=1
w(ui)
w(ui)

+
∑k

i=2(w(u1)− w(ui))
(
1 + w(ui)−w(u1)

w(ui)w(u1)

)
(5.109)

if we replace the value of β1.

(c) If vr ∈ Br with r > k, the expected gain of Player 1 is

Gain(CT (n), Z(vr), ζ1) = α ·Gain(CT (n), Z(vr), Z(c))

+
k∑

i=1

βi ·Gain(CT (n), Z(vr), Z(ui)).
(5.110)

Furthermore,

Gain(CT (n), Z(vr), Z(c)) ≤ w(ur) and Gain(CT (n), Z(vr), Z(ui)) ≤ w(ur)

where ur is the vertex with the lowest weight in the branch Br. Thus,

Gain(CT (n), Z(vr), ζ1) ≤ α · w(ur) +
k∑

i=1

βi · w(ur) = w(ur). (5.111)

This gain is less than the guaranteed gain of Player 1 with the strategy σk

since otherwise, w(ur) ≥ GGain(CT (n), σk) would mean that the branch Br
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satisfies the condition to continue the CSS Algorithm 5.21 to a new strategy

σk+1 including some positive probabilities on the branch Br. Thus, w(ur) <

GGain(CT (n), σk) ≤ Safety value of Player 1 on CT (n) ≤ MGain(CT (n), ζ1).

That is, the gain of Player 1 if she chooses a vertex in a branch other than

{B1, B2, ..., Bk} is not the maximal gain.

(d) If vr = tr where tr is the vertex with the second lowest weight in the branch Br,

1 ≤ r ≤ k, the expected gain of Player 1 is

Gain(CT (n), Z(tr), ζ1) = α ·Gain(CT (n), Z(tr), Z(c))

+
k∑

i=1

βi ·Gain(CT (n), Z(tr), Z(ui)).
(5.112)

Since Gain(CT (n), Z(tr), Z(c)) = w(tr), Gain(CT (n), Z(tr), Z(ui)) = w(ur) if

i 
= r and Gain(CT (n), Z(tr), Z(ui)) = w(tr) if i = r,

Gain(CT (n), Z(tr), ζ1) = α · w(tr) + βr · w(tr) +
k∑

i=1, i �=r

βi · w(ur). (5.113)

This gain is less than Gain(CT (n), Z(ur), ζ1) of (5.106) since

α ≥
(

w(tr)

w(tr)− w(ur)

)
βr. (5.114)

(e) If vr is a vertex in the branch Br, vr 
= ur, tr, the expected gain of Player 1 is

Gain(CT (n), Z(vr), ζ1) = α ·Gain(CT (n), Z(vr), Z(c))

+
k∑

i=1

βi ·Gain(CT (n), Z(vr), Z(ui)).
(5.115)

Let us regard the centroid as the root of the tree.

If vr is a descendant of ur but not of tr, then

Gain(CT (n), Z(vr), Z(c)) ≤ w(vr) ≤ w(tr)

Gain(CT (n), Z(vr), Z(ur)) ≤ w(vr) ≤ w(tr)

Gain(CT (n), Z(vr), Z(ui)) ≤ w(ur).

(5.116)
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If vr is descendant of ur and tr, then

Gain(CT (n), Z(vr), Z(c)) ≤ w(tr)

Gain(CT (n), Z(vr), Z(ur)) ≤ w(tr)

Gain(CT (n), Z(vr), Z(ui)) ≤ w(ur).

(5.117)

Thus,

Gain(CT (n), Z(vr), ζ1) ≤ α · w(tr) + βr · w(tr) +
k∑

i=1, i �=r

βi · w(ur)

= Gain(CT (n), Z(tr), ζ1).

(5.118)

Therefore, the maximal gain of Player 1 against the strategy ζ1 is

MGain(CT (n), ζ1) = w(u1)

− w(u1)

1 +
∑k

i=1
w(ui)
w(ui)

+
∑k

i=2(w(u1)− w(ui))
(
1 + w(ui)−w(u1)

w(ui)w(u1)

) .
(5.119)

Theorem 5.26. In the two-player safe game of Competitive Diffusion on a centroidal

tree with only thick branches, CT (n), the safety value of Player 1 is between

∑k
i=1 w(ui)

1+
∑k

i=1
w(ui)

w(ui)

and

w(u1)− w(u1)

1+
∑k

i=1
w(ui)

w(ui)
+
∑k

i=2(w(u1)−w(ui))
(
1+

w(ui)−w(u1)

w(ui)w(u1)

) .

Proof. This proof is the same as the proof of Theorem 3.5 having the guaranteed gain

from Lemma 5.23 and the maximal gain from Lemma 5.25.

Note: These bounds on the safety value remain true on trees for which the algorithm

stops adding positive probabilities before any medium or thin branches are reached.

Corollary 5.27. In the two-player safe game of Competitive Diffusion on a centroidal

tree, CT (n), for which the strategy σk obtained by the CSS Algorithm 5.21 has positive

probabilities only on the thick branch B1, the safety value of Player 1 is
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w(u1)− w(u1)2

n
.

Moreover, the guaranteed gain of the safe strategy for Player 1 obtained by the CSS

Algorithm reaches the safety value.

Proof. This result directly follows from evaluating the lower bound and upper bound

on the safety value of Theorem 5.26 with k = 1.

Corollary 5.28. In the two-player safe game of Competitive Diffusion on a centroidal

tree, CT (n), with d branches, all of them being thick and w(u1) = w(u2) = ... = w(ud),

the safety value of Player 1 is

dw(u1)w(u1)

dw(u1) + w(u1)
. (5.120)

Moreover, the guaranteed gain of the safe strategy for Player 1 obtained by the CSS

Algorithm reaches the safety value.

Proof. We know from Lemma 5.17 that when the algorithm adds positive probability

on a thick branch Bi, the resulting guaranteed gain does not surpass the criterion of

Bi, w(ui). Thus, if w(u1) = w(u2) = ... = w(ud), the criterion of the next branch

will always be greater than the current expected gain and so the algorithm will add

positive probabilities on all the branches of CT (n). Thus, the corollary directly follows

from evaluating the lower bound and upper bound on the safety value of Theorem

5.26 with w(u1) = w(u2) = ... = w(ud) and with k = d.

Note: If CT (n) has k thick branches with w(u1) = w(u2) = ... = w(uk) and the

algorithm does not include positive probabilities on the other branches of CT (n),

the guaranteed gain with the safe strategy from the CSS Algorithm 5.21 reaches the

safety value of
kw(u1)w(u1)

kw(u1) + w(u1)
. (5.121)

5.2.4 Special Case: Paths, Spiders and Complete Trees Revisited

In this section, we apply the CSS Algorithm 5.21 to the special cases of Paths, Spiders

and Complete Trees in order to evaluate the performance of the algorithm on these

centroidal trees. We hope that the algorithm gives a safe strategy for Player 1 with a

guaranteed gain at least as good as the guaranteed gains associated to the strategies

presented in Chapters 3 and 4.
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Complete Trees

Let us start with the complete trees. Let T (m,h) be a complete m-ary tree of height

h with n = mh+1−1
m−1

vertices. We know by Proposition 4.1 that the root of T (m,h)

is the centroid. Thus T (m,h) has m branches at the centroid. The following lemma

shows that the branches at the centroid of T (m,h) are thick branches.

Lemma 5.29. The branches at the centroid of T (m,h), a complete m-ary tree of

height h, are thick branches.

Proof. Being a complete m-ary tree, T (m,h) has m branches at its centroid or corre-

spondingly its root. These branches all have the same number of vertices, n−1
m

, and

all have the same configuration. For them to be thick branches, they need to respect

the condition from Definition 5.5,

w2 ≥ n− w1 +
w2

1

n
(5.122)

where w2 is the second lowest weight in the branch and w1 is the lowest weight in the

branch. From Lemma 5.8, we know that the lowest weight in a branch at the root of

T (m,h) is the weight of the vertex adjacent to the root and the second lowest weight

is the weight of a vertex adjacent to the first, so a vertex in level 2. The weight of a

vertex adjacent to the root is

w1 = (m− 1)

(
n− 1

m

)
+ 1 =

nm− n+ 1

m
(5.123)

and the weight of a vertex in level 2 is

w2 = (m− 1)

(
n− 1

m

)
+ 1 + (m− 1)

( n−1
m

− 1

m

)
+ 1 =

nm− n+ 1

m
+

nm− n+ 1

m2
.

(5.124)

Furthermore, w1 and w2 satisfy(5.122) for m ≥ 2. Thus, the branches at the centroid

of T (m,h) are thick branches.

Now that we know that all the branches in T (m,h) are thick branches, we can use

the results of Section 5.2.3. Since the branches all have the same number of vertices,

Corollary 5.28 tells us that the guaranteed gain with the strategy obtained from the

CSS Algorithm 5.21 reaches the safety value of

dw(u1)w(u1)

dw(u1) + w(u1)
. (5.125)
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Replacing w(u1) and d = m gives

m
(
n− (

nm−n+1
m

)) (
nm−n+1

m

)
m

(
nm−n+1

m
)
)
+

(
n− (

nm−n+1
m

)) =
(nm− n+ 1)(n− 1)

m(nm− n+ 1) + n− 1
. (5.126)

Therefore, the CSS Algorithm 5.21 performs ideally on complete trees. The strategy

μ1 of Section 4.2 also had a guaranteed gain of this safety value.

Spiders

Let S be a spider with m legs each having l vertices. Since the legs of the spiders are

paths, the branches at the centroid of S are thin branches. Furthermore, the three

lowest weights in the branches are:

w1 =

(
m− 1

m

)
(n− 1) + 1, w2 =

(
m− 1

m

)
(n− 1) + 2,

and w3 =

(
m− 1

m

)
(n− 1) + 3.

(5.127)

From Lemma 5.19, we know that when the CSS Algorithm 5.21 adds positive prob-

abilities on a thin branch Bi, the resulting guaranteed gain does not surpass the

criterion of Bi. Furthermore, the branches of S all have the same criterion since their

three lowest weights are equal. Thus, on a spider with legs of equal length, the algo-

rithm only stops once it has included positive probabilities on all the branches. Let

the safe strategy from the output of the algorithm be denoted by σm. The strategy

σm has probabilities

• α on the centroid,

• βi =
(

w(ti)(w(ui)w(si)+(w(ti)−w(si))(w(ti)−w(ui)))
w(si)w(ui)w(ti)+w(si)w(ti)(w(si)−w(ti))

)
α on ui

• γi =
(

w(ti)
w(ti)

)
βi on ti

• δi =
(

w(si)
w(si)

)
γi +

(
w(ti)−w(ui)

w(si)

)
α on si

• 0 on the other vertices of Bi

for 1 ≤ i ≤ m, where w(ui) = w1, w(ti) = w2 and w(si) = w3 and where ui, ti and si

are the first three vertices in the leg, Bi, of the spider. From Theorem 5.22, we know

that the resulting guaranteed gain is

GGain(S, σm) = Gain(S, σm, Z(c)) (5.128)
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where c is the centroid of S and Z(c) is the mixed strategy that chooses the centroid

c with probability 1 and all the other vertices with probability 0. Furthermore,

Gain(S, σm, Z(c)) = α · 0 +
m∑
i=1

(βi · (n− w1) + γi · (n− w2) + δi · (n− w2)) .

(5.129)

Now for l fixed, the guaranteed gain with the resulting safe strategy from the CSS

algorithm on a spider with legs of equal length should increase with the number of

legs m. As the number of legs of the spider increases, there are more vertices near

the body on which Player 1 can disperse positive probabilities. In fact, if mα is the

probability on the body in the resulting strategy σm for a spider with m legs and

m+1α is the probability on the body in the resulting strategy σm+1 for a spider with

m + 1 legs, we can verify that (1 − m+1α) > (1 − mα). Moreover, when Player 2

chooses the body, the payoff to Player 1 on any of the vertices, other than the body,

on which she assigns a positive probability is l or l − 1, no matter the total number

of legs in the spider. Thus, as a worst case scenario, we consider spiders which have

only three legs. In this case, (5.129) becomes

Gain(S, σ3, Z(c)) = α · 0 + 3 (β · (n− w1) + γ · (n− w2) + δ · (n− w2)) (5.130)

with α, β, γ and δ known from solving α + 3(β + γ + δ) = 1. Here are a couple of

numerical examples.

Example 5.30. In a spider S with 3 legs each having 50 vertices, the total number

of vertices, n, is 151 and the three lowest weights of the branches are w1 = 101,

w2 = 102 and w3 = 103. Solving α+3(β+ γ+ δ) = 1 and replacing in (5.129) gives a

guaranteed gain of 48.17. Moreover, we know from Lemma 3.21 that the safety value

of Player 1 is less than or equal to 50. Thus, we have a maximum difference of 1.83

between the guaranteed gain with the safe strategy from the CSS Algorithm and the

optimal guaranteed gain. This difference is 1.21% of n.

Example 5.31. In a spider S with 3 legs each having 1000 vertices, the total number

of vertices, n, is 3001 and the three lowest weights of the branches are w1 = 2001,

w2 = 2002 and w3 = 2003. Solving α+3(β+γ+ δ) = 1 and replacing in (5.129) gives

a guaranteed gain of 976.094. Moreover, we know from Lemma 3.21 that the safety
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value of Player 1 is less than or equal to 1000. Thus, we have a maximum difference

of 23.9 between the guaranteed gain with the safe strategy from the CSS Algorithm

and the optimal guaranteed gain. This difference 0.79% of n.

We can see from the examples that as n grows, the guaranteed gain seems to

approach the upper bound on the safety value, l. On that account, replacing w1, w2

and w3 of (5.127) and the solved values for α, β, γ and δ in (5.130), we have

Gain(S, σ3, Z(c)) =
14n

43
+O(1) (n → ∞) (5.131)

for n large. The upper bound on the safety value, on the other hand, is l = n
3
+O(1).

That gives a difference of 1
129

n + O(1) where 1
129

= 0.00775. For n > 1000, this

difference is greater than the one obtained with the strategy CS2(k) from Theorem

3.24, which was
√

l
m(m−1)

+O(1) =
√

n
18

+O(1) (n → ∞). However, a difference of

0.00775n+O(1) (n → ∞) is not unreasonable and the difference should only become

better with more legs in the spider. Moreover, we suspect that a smaller difference

would be achieved by generalizing the strategy from the CSS Algorithm to include

probabilities on more vertices in the branches, since the legs of the spider are paths.

Paths

Let Pn be a path with n vertices, n odd, for Pn to be a centroidal tree. In a path,

both branches at the centroid have n−1
2

vertices and the three lowest weights in the

branches are

w1 =

(
n− 1

2

)
+ 1, w2 =

(
n− 1

2

)
+ 2, and w3 =

(
n− 1

2

)
+ 3. (5.132)

Similarly as with the spiders, the CSS Algorithm 5.21 will include positive probabil-

ities on both branches of the path and the resulting guaranteed gain will be

Gain(S, σ2, Z(c)) = α · 0 + 2 (β · (n− w1) + γ · (n− w2) + δ · (n− w2)) (5.133)

with α, β, γ and δ known from solving α+ 2(β + γ + δ) = 1. Replacing the values of

w1, w2, w3, α, β, γ and δ gives

Gain(S, σ2, Z(c)) =
3n

7
+O(1) (n → ∞) (5.134)
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for n large. On the other hand, the upper bound on the safety value from Theorem

3.5 is n
2
−

√
n√
3
+ O(1) (n → ∞). That gives a difference of n

14
−

√
n√
3
+ O(1). For

n > 100, this difference is greater than the one obtained with the strategy CS1(k)

from Theorem 3.5 which was
√
n

(
1√
2
− 1√

3

)
+ O(1) (n → ∞). However, again we

suspect that a smaller difference would be achieved by generalizing the strategy from

the algorithm to include probabilities on more vertices.

Analysing the performance of the algorithm on paths, spiders and complete trees

reinforces our initial suspicion of its possible excellent performance on thick branches

but weaker performance on path branches. The following section will assess the

performance of the algorithm on random trees which have diverse proportions of

thick, medium and thin branches.

5.2.5 Centroidal Safe Strategy Algorithm Performance Assessment on

Trees in General

In this section, we apply the CSS Algorithm 5.21 to a variety of trees to appraise the

guaranteed gain of the safe strategy from the output of the algorithm. To do so, we

will need an upper bound on the safety value and we will evaluate the proximity of

the guaranteed gain to this upper bound. Recall that the maximal gain of Player 1

against any mixed strategy of Player 2 is an upper bound on the safety value. Thus,

we will suggest an opposing strategy for Player 2. However, we make this suggestion

unscrupulously since in the end we have no real interest in the strategy of Player

2. Hence, a simple strategy is satisfactory as long as it allows us to evaluate the

reliability of the guaranteed gain with the safe strategy of the CSS Algorithm 5.21.

Centroidal Opposing Strategy Algorithm

For the strategy of Player 2 we also suggest a stepwise algorithm, Centroidal Oppos-

ing Strategy (COS) Algorithm, which includes two major steps. First, consider

that Player 2 chooses to start with the centroid. In this case, the maximal gain of

Player 1 is the number of vertices in the largest branch at the centroid and it is

achieved when Player 1 chooses the corresponding vertex adjacent to the centroid.

To reduce this payoff to Player 1, Player 2 can disperse some positive probabilities

on the first vertices of the largest branches. Hence, the first step of the algorithm
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consists of determining these branches and the opposing strategy of Player 2 which

gives the same expected gain to Player 1 no matter if she chooses the centroid or

the first vertex in one of these branches. After this step, the maximal gain of Player

1 against the suggested opposing strategy for Player 2 is achieved on either one of

the vertices on which Player 2 assigns a positive probability or on a vertex with the

second lowest weight in one of the largest branches. Hence, the second step of the

algorithm consists of determining the expected gain of Player 1 on the second vertices

in the branches. The ones which give a higher payoff to Player 1 are added in the

distribution of the positive probabilities in the opposing strategy for Player 2. In the

end, the maximal gain of Player 1 is the maximum amongst her expected gains when

she chooses a vertex on which Player 2 assigns a positive probability and when she

chooses a vertex on which Player 2 assigns a probability of zero. These steps are

summarized in the heuristic algorithm defined below.

Algorithm 5.32. Centroidal Opposing Strategy (COS) Algorithm

INPUT: Centroidal tree with d branches at the centroid for which all the weights

of the vertices are known, CT (n).

STEP 1: Include some positive probabilities in the opposing strategy of Player 2

on some vertices adjacent to the centroid.

(a) Order the branches {B1, B2, ..., Bd} such that the number of vertices in the

branch Bi is greater than the number of vertices in the branch Bi+1. (Or

equivalently, w(ui) > w(ui+1) where uj is vertex with the lowest weight in the

branch Bj).

(b) Start with i = 1 and let the opposing strategy of Player 2, ξ1,0, be choosing

the centroid with probability α and the vertex u1 with probability β1. Solve

Gain(CT (n), Z(c), ξ1,0) = Gain(CT (n), Z(u1), ξ1,0) for α and β1, knowing α +

β1 = 1.

(c) While w(ui+1) > Gain(CT (n), Z(c), ξ1,0), increase i to i+1 and let the opposing

strategy of Player 2, ξi+1,0 be choosing the centroid with probability α and the
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vertex uj with probability βj for 1 ≤ j ≤ i + 1 where uj is the vertex with the

lowest weight in the branch Bj. Solve

Gain(CT (n), Z(c), ξi+1,0) = Gain(CT (n), Z(u1), ξi+1,0)

= Gain(CT (n), Z(u2), ξi+1,0)

= ...

= Gain(CT (n), Z(ui+1), ξi+1,0)

for α, β1, ... , βi+1, knowing α +
∑i+1

j=1 βj = 1.

STEP 2: Include some positive probabilities in the opposing strategy of Player 2

on some vertices at distance 2 from the centroid.

(a) Suppose STEP 1 finishes with i = k. Calculate the expected gains of Player

1, Gain(CT (n), Z(tj), ξk,0), when she chooses a second vertex with the lowest

weight, tj, in the branches Bj, 1 ≤ j ≤ k.

(b) Consider Gain(CT (n), Z(tr), ξk,0) = max{Gain(CT (n), Z(tj), ξk,0), 1 ≤ j ≤ k}.
If Gain(CT (n), Z(tr), ξk,0) > Gain(CT (n), Z(c), ξk,0), let the opposing strategy

of Player 2, ξk,1 be choosing the centroid with probability α, the vertex uj with

probability βj, 1 ≤ j ≤ k and the vertex tr with probability γr. Solve

Gain(CT (n), Z(c), ξk,1) = Gain(CT (n), Z(u1), ξk,1)

= Gain(CT (n), Z(u2), ξk,1)

= ...

= Gain(CT (n), Z(uk), ξk,1)

= Gain(CT (n), Z(tr), ξk,1)

for α, β1, ... , βk, γr, knowing α +
∑i+1

j=1 βj + γr = 1. On the other hand, if

Gain(CT (n), Z(tr), ξk,0) < Gain(CT (n), Z(c), ξk,0), skip to STEP 3.

(c) Repeat step (b), calculating the expected gains at each step, until

max{Gain(CT (n), Z(tj), ξk,l), 1 ≤ j ≤ k} < Gain(CT (n), Z(c), ξk,l)
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where l is the number of times the step (b) is repeated, that is, the number

of vertices at distance 2 from the centroid on which Player 2 assigns a positive

probability.

Moreover, if at some point, solving for α, βj, 1 ≤ j ≤ k and γi, 1 ≤ i ≤ l ≤ k

gives negative values, stop adding probabilities and go to STEP 3.

STEP 3: If l = 0 or l > 0 and all the probabilities in the resulting opposing

strategy for Player 2, ξk,l, are positive, calculate the maximal gain of Player 1 against

the strategy ξk,l of Player 2. If l > 0 and some negative probabilities exists, calculate

the maximal gain of Player 1 against the strategy ξk,l−1 of Player 2.

OUTPUT: Maximal gain of Player 1 against an opposing strategy for Player 2 on

CT (n) that can serve as an upper bound on the safety value of Player 1 in the two

player game of Competitive Diffusion on CT (n).

A few clarifications on the algorithm are needed. The first one is concerning

calculating the various expected gains of Player 1 against the strategy ξk,l of Player

2. On that account, we have the following formulas.

NOTE: In what follows, ui and ti will represent respectively the vertices with the

lowest and second lowest weights in the branch Bi.

(i) When Player 1 chooses the centroid:

Gain(CT (n), Z(c), ξk,l) = α · 0 +
k∑

i=1

βi · w(ui) +

kl∑
j=k1

γj · w(uj) (5.135)

where {k1, ..., kl} ∈ {1, ..., k}. When l = 0, i.e. when the strategy of Player

2 does not include positive probabilities on vertices at distance 2 from the

centroid, the third term is omitted from the calculation of the expected gain.

(ii) When Player 1 chooses a vertex uq and the strategy ξk,l of Player 2 has a positive
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probability of choosing the vertex uq:

Gain(CT (n), Z(uq), ξk,l) = α · w(uq) + βq · 0 +
k∑

i=1,i �=q

βi · w(uq)

+ γq · w(tq) +
kl∑

j=k1,j �=q

γj · w(uj)

(5.136)

where {k1, ..., kj} ∈ {1, ..., k} and where γq might be zero. When l = 0, the

forth and fifth terms are omitted from the calculation of the expected gain.

(iii) When Player 1 chooses a vertex tq and the strategy ξk,l of Player 2 has a positive

probability of choosing the vertex uq:

Gain(CT (n), Z(tq), ξk,l) = α · w(tq) + βq · w(tq) +
k∑

i=1,i �=q

βi · w(uq)

+ γq · 0 +
kl∑

j=k1,j �=q

γj · w(uq)

(5.137)

where kj ∈ {1, ..., k} and where γq might be zero.

Secondly, in STEP 2 (c) we verify the resulting opposing strategy for Player 2, ξk,l

for any negative probabilities. The negative probabilities could arise because of the

order in which Player 2 forces positive probabilities on vertices, the position of the

vertices with respect to the centroid or the payoffs on the vertices. At each step, we

are forcing the expected gain of Player 1 to be equal whether she chooses the vertex v

or any other vertices on which Player 2 chooses with a positive probability. In certain

scenarios, it could become impossible to equal the expected gains without negative

contributions. Perhaps, the negative probabilities could have been avoided with a

different ordering of vertices added to the opposing strategy of Player 2 or a different

distribution of the probabilities on the vertices. However, finding a better ordering

or distribution is tedious work and was considered not being worth it. Nevertheless,

these occurrences need to be fixed and to do so, we consider the opposing strategy for

Player 2 before any negative probabilities arise. Admittedly, this does not give the

optimal opposing strategy for Player 2, but again, we do not care for the opposing

strategy of Player 2 except to judge the guaranteed gain of Player 1 with the CSS

Algorithm.
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Lastly, the maximal gain of Player 1 against the strategy ξk,l needs to be deter-

mined. There a few possibilities for the vertex on which Player 1 reaches her maximal

gain against the strategy ξk,l of Player 2. These all need to be checked. The vertex

could be:

(i) A vertex which Player 2 chooses with positive probability. The expected gains

on all of these vertices are equal by the definition of the strategy ξk,l. Hence,

only one needs to be considered, say the centroid. In this case, the expected

gain of Player 1 can be determined by (5.135).

(ii) The vertex, ul+1 in the branch Bl+1, where {B1, B2, ..., Bd} is the same ordering

of the branches as in STEP 1 of the COS Algorithm 5.32 and where Bl is the

last branch on which Player 2 has positive probabilities. The expected gain on

this vertex can be determined by

Gain(CT (n), Z(ul+1), ξk,l) = α · w(ul+1) +
k∑

i=1

βi · w(ul+1) +

kl∑
j=k1

γj · w(uj)

(5.138)

where {k1, ..., kl} ∈ {1, 2, ..., k} are the l branches for which Player 2 chooses a

vertex with the second lowest weight with a positive probability. The expected

gain of Player 1 when she chooses a vertex ur, r > l + 1 is less than this since

w(ur) < w(ul+1). It is also clear that choosing a vertex at a distance greater

than or equal to 2 from the centroid in the branches {Bl+1, ..., Bd} will give a

smaller expected gain to Player 1.

(iii) The vertex tr in the branch Br with r 
∈ {k1, k2, ..., kl}, that is, the second

vertex with the lowest weight in a branch for which Player 2 only chooses the

first vertex with a positive probability. In this case the expected gain of Player

1 is

Gain(CT (n), Z(tr), ξk,l) = α · w(tr) + βr · w(tr) +
k∑

i=1,i �=r

βi · w(ur)

+

kl∑
j=k1

γj · w(ur)

(5.139)
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where {k1, ..., kl} ∈ {1, 2, ..., k} are the l branches for which Player 2 chooses

a vertex with the second lowest weight with a positive probability. It is clear

that choosing vertices other than ur and tr in the branch Br will give smaller

expected gains to Player 1.

(iv) A vertex vr in the branch Br with r ∈ {k1, k2, ..., kl}, that is, a vertex other than

ur and tr in a branch for which Player 2 chooses the first and second vertices

with positive probability. If Player 2 chooses the centroid, the maximal payoff

to Player 1 is no more than w(tr). w(tr) is achieved when vr is adjacent to tr or

if tr and vr are both descendants of ur and w(tr) = w(vr). If Player 2 chooses

the vertex ur or tr, the maximal payoff to Player 1 is no more than w(sr) no

matter if sr is a descend of tr and ur or only ur, where sr is the third vertex

with the lowest weight in the branch Br. If Player 2 chooses a vertex at distance

1 or 2 from the centroid on another branch, the maximal payoff to Player 1 is

no more than w(ur) since the chosen vertex vr cannot be closer to the centroid

than the chosen vertex of Player 2. Thus,

Gain(CT (n), Z(vr), ξk,l) ≤ α · w(tr) + βr · w(sr) +
k∑

i=1,i �=r

βi · w(ur)

+ γr · w(sr) +
kl∑

j=k1

γj · w(ur)

(5.140)

Consequently, the maximal gain of Player 1 against the strategy ξk,l is less than

or equal to the maximum of all these cases. This maximum is the value of the output

of the algorithm, to be used as an upper bound of the safety value of Player 1 on

CT (n).

Now that we have the COS Algorithm 5.32 to determine an upper bound for the

safety value of Player 1 on a centroidal tree CT (n), we want to apply it along with the

CSS Algorithm 5.21 to evaluate the quality of the guaranteed gain with the suggested

safe strategy on various examples.

Generating Examples of Centroidal Trees

In this section we are going to discuss two methods that were used to generate ex-

amples of centroidal trees. First, we need a couple of lemmas.
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Lemma 5.33. In a centroidal tree CT (n) with d branches at the centroid, if the largest

branch at the centroid, B1, has n1 vertices, then the total number of vertices in the

other branches, {B2, B3, ..., Bd} must be greater than or equal to n1.

Proof. The reason this needs to be true comes from the fact that the centroid is the

vertex with the lowest weight in CT (n). If the largest branch at the centroid has n1

vertices, this weight is n1. Consider the vertex u1 adjacent to the centroid in the

branch B1. By Lemma 5.2, we know that the weight of u1 is the number of edges in

the branch at u1 in which lies the centroid. Hence, the weight of u1 is
∑d

i=2 ni + 1

where ni is the number of vertices in the branch Bi. Since the weight of u1 needs to

be greater than the weight of the centroid, we have

d∑
i=2

ni + 1 > n1 ⇔
d∑

i=2

ni ≥ n1. (5.141)

Lemma 5.34. Consider a branch at the centroid in a centroidal tree CT (n), B, with

lowest weight w1, second lowest weight w2 and third lowest weight w3. The second

lowest weight can be equal to the third lowest weight if and only if

w2 − w1 − 1 ≥ n− w2. (5.142)

Proof. Let u be the vertex with the lowest weight, t be the vertex with the second

lowest weight and s be the third vertex with the lowest weight. First note that if

w(s) = w(t), s cannot be a descendant of t and so s and t are both adjacent to u, by

Lemma 5.8. (See Figure 5.9).

Let D be the number of vertices in B which are descendants of neither t or s, E be

the number of vertices which are descendants of t but not of s and F be the number

of vertices which are descendants of s but not of t. By Lemma 5.2, the weights of the

vertices s and t are

w(s) = w(u) +D + E + 2 and w(t) = w(u) +D + F + 2. (5.143)

If w(s) = w(t), then we have E = F . Now, recall from Lemma 5.4 that N(u, s) is the

number of edges in the branches at u other than the one in which lies the centroid and
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Figure 5.9: Illustration in the proof of Lemma 5.34.

the one in which lies the vertex s. Moreover, N(u, s) = w(s)−w(u)− 1 = D+E+1.

Furthermore, E = F = w(t)− 1 = w(s)− 1. Thus,

w(s)− w(u)− 1 = D + n− w(s).

Since D needs to be greater than or equal to zero, this is equivalent to

w(s)− w(u)− 1 ≥ n− w(s).

The centroidal tree examples on which we will apply the CSS Algorithm 5.21 and the

COS Algorithm 5.32 were determined randomly by two methods.

Method 1:

- Fixed parameters: number of branches at the centroid, d, and number

of vertices in the largest branch at the centroid, n1.

- Randomized parameters: number of vertices in the other branches and

lowest three weights in the branches.

The randomization in this method is obtained by a function in MATLAB® [19].
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randi([imin,imax],1):[20] returns an integer value drawn from the discrete

uniform distribution on the interval [imin,imax].

First, the number of vertices in the branches are randomized. The interval of

possible values for the number of vertices in the other branches is [1, n1] with the

extra condition on the last branch that the total number of vertices in the branches

B2, B3, ..., Bd must be greater than or equal to n1 because of Lemma 5.33. In other

words, the number of vertices in the last branch being determined is a random number

of the interval
[
max

{
1, n1 −

∑d−1
i=2 ni

}
, n1

]
where ni is the number of vertices in the

ith branch determined.

After, the lowest three weights in the branches are randomized. In the branch Bi,

let ui be the vertex with the lowest weight, ti be the vertex with the second lowest

weight and si be the third vertex with the lowest weight. The weight of ui is fixed to

the value n−ni. The weight of ti can be any integer in the interval [n−ni+1, n−1]. If

the weight of ti is n−ni+1, then all the other vertices in the branch are descendants

of ti and if the weight of ti is n−1, then all the other vertices in the branch, including

si, are leaves of the tree. The possible weights of si depend on the weight of ti. By

Lemma 5.34, if w(ti) − w(ui) − 1 ≥ w(ti), then the weight of si can be any integer

in the interval [w(ti), n− 1]. Otherwise, the weight of si is an integer in the interval

[w(ti) + 1, n− 1].

Method 2:

- Fixed parameters: total number of vertices, n.

- Randomized parameters: tree structure.

The randomization in this method is obtained by a function of Maple™ in the Graph-

Theory[RandomGraphs] subpackage [16].

RandomTree(n):[17] creates a random tree on n vertices.

The process of RandomTree(n) is stated as follows: ”Starting with the empty undi-

rected graph T on n vertices, edges are chosen uniformly at random and inserted into

T if they do do not create a cycle. This is repeated until T has n− 1 edges.” [17]
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Once the tree is created, the weights of the vertices and the centroid is deter-

mined. Moreover, since we want examples of centroidal trees, if the tree created is

bicentroidal, the example is rejected.

With Method 1, we generated 20,000 examples of centroidal trees for each pair

of fixed parameters (d, n1) where d ∈ {2, 3, 5, 10} and n1 ∈ {100, 1000, 10000}. With

Method 2, we generated 1,000 examples of centroidal trees for each fixed parameter

n, n ∈ {100, 1000}. Following this, the CSS Algorithm 5.21 and the COS Algorithm

5.32 were applied on the examples. The programming codes used to generate the

examples with Method 1 and Method 2 as well as the programming codes of the CSS

and COS algorithms can be found in Appendix A. Afterwards, the difference between

the upper bound from the COS algorithm and the guaranteed gain from the CSS

algorithm was calculated as a proportion of the weight of the centroid. The reason

that the difference was calculated as a proportion of the weight of the centroid and

not the total number of vertices, n, is that we know for sure that the safety value

of Player 1 is not greater than the weight of the centroid. This is the case since the

maximal gain of Player 1 against the mixed strategy of Player 2 when he chooses the

centroid with probability 1, is the weight of the centroid. This said, if we want to

estimate the loss of payoff by using the safe strategy from the CSS Algorithm instead

of the maxmin strategy on a given centroidal tree, the percentage of the weight will

give an estimate smaller than the weight of the centroid. On the other hand, if the

difference is expressed as a proportion of n, we could have a tree with a large amount

of vertices but not necessarily a large centroid weight, for which the estimation of loss

could be bigger than the weight of the centroid, an amount that we are sure Player 1

does not reach.

The statistics of the results can be found in Tables 5.1 and 5.2 as well as in Fig-

ures 5.10, 5.11, 5.12, 5.13 and 5.14. The figures display two types of graphs: the

frequency graph and the cumulative frequency graph. The columns in the frequency

graph represent the number of centroidal trees among the 20,000 examples that have a

difference between the guaranteed gain with the CSS Algorithm and the upper bound

with the COS Algorithm in the intervals [0, 0], (0, 0.01], (0.01, 0.02], ..., (0.29, 0.30] re-

spectively. A column in the cumulative frequency graph represents the number of
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centroidal trees among the 20,000 examples that have a difference between the guar-

anteed gain with the CSS Algorithm and the upper bound with the COS Algorithm

of less than or equal to the corresponding x-axis value.

Remarks

Observing the Tables 5.1 and 5.2 as well as the Figures 5.10, 5.11, 5.12, 5.13 and

5.14, we make the following remarks. In the examples obtained randomly by Method

1, as the number of branches at the centroid increases the average difference between

the upper bound from the COS Algorithm and the guaranteed gain of the CSS Algo-

rithm decreases. Furthermore, the number of examples for which the CSS Algorithm

provides a safe strategy with the optimal guaranteed gain, that is a guaranteed gain

equal to the upper bound of the COS Algorithm, increases. Moreover, examples

which have a difference between the guaranteed gain with the CSS Algorithm and

the upper bound with the COS Algorithm of more than 10% become absent. On the

other hand, as the number of vertices in the largest branch increases with the number

of branches at the centroid constant, we do not see large variations in the average

and maximum differences between the guaranteed gain of the CSS Algorithm and

the upper bound of the COS Algorithm. Yet, in most cases, the variation is a slight

increase. We suspect that this is due to limiting the positive probabilities on three

vertices. It makes sense that this would become more significant as the number of

vertices in the largest branch increases. Overall, the CSS Algorithm gives a guaran-

teed gain nearing the safety value of Player 1 in a large number of the examples from

Method 1.

In the examples obtained randomly by Method 2, the average degree of the cen-

troid is 4.23 and 4.40 respectively for n = 100 and n = 1000 vertices. The average

differences between the guaranteed gain with the CSS Algorithm and the upper bound

with the COS Algorithm, 0.0841 and 0.1257 are larger than the ones of Method 1.

One reason for this could be that in Method 1, the three weights of the branch are

determined randomly and so each possible combination of weights should occur with

the same probability. However, there are different configurations of tree branches

which have the same minimal three weights. While Method 1 provides an analysis

over the range of different possibilities, Method 2 can have some combinations of
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d=2 d=3 d=5 d=10
n1=100 Mean: 0.0441 0.0288 0.0143 0.0046

Standard Deviation: 0.0421 0.0311 0.0203 0.0095
Maximum Observed: 0.2356 0.2698 0.2506 0.0740
Number of zeros: 5114 6747 10087 13760

n1=1000 Mean: 0.0455 0.0292 0.0142 0.0045
Standard Deviation: 0.0440 0.0310 0.0200 0.0093
Maximum Observed: 0.2410 0.2971 0.2396 0.0826
Number of zeros: 5115 6520 10042 13674

n1=10000 Mean: 0.0463 0.0296 0.0143 0.0046
Standard Deviation: 0.0439 0.0316 0.0209 0.0095
Maximum Observed: 0.2480 0.2874 0.2798 0.0787
Number of zeros: 4844 6540 10078 13509

Table 5.1: Statistics on the difference between the upper bound of the COS Algorithm
and the guaranteed gain of the CSS Algorithm as a proportion of the weight of the
centroid in 20,000 centroid tree examples obtained by Method 1 for each pair of
parameters d ∈ {2, 3, 5, 10} and n1 ∈ {100, 1000, 10000}.
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(a) Frequency Graph with n1 = 100. (b) Cumulative Frequency Graph with n1 =
100.

(c) Frequency Graph with n1 = 1000. (d) Cumulative Frequency Graph with n1 =
1000.

(e) Frequency Graph with n1 = 10000. (f) Cumulative Frequency Graph with n1 =
10000.

Figure 5.10: Frequency of the differences between the upper bound of the COS
Algorithm and the guaranteed gain of the CSS Algorithm as a proportion of the
weight of the centroid in 20,000 centroidal tree examples obtained by Method 1 with
d = 2 branches at the centroid and n1 vertices in the largest branch.
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(a) Frequency Graph with n1 = 100. (b) Cumulative Frequency Graph with n1 =
100.

(c) Frequency Graph with n1 = 1000. (d) Cumulative Frequency Graph with n1 =
1000.

(e) Frequency Graph with n1 = 10000. (f) Cumulative Frequency Graph with n1 =
10000.

Figure 5.11: Frequency of the differences between the upper bound of the COS
Algorithm and the guaranteed gain of the CSS Algorithm as a proportion of the
weight of the centroid in 20,000 centroidal tree examples obtained by Method 1 with
d = 3 branches at the centroid and n1 vertices in the largest branch.
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(a) Frequency Graph with n1 = 100. (b) Cumulative Frequency Graph with n1 =
100.

(c) Frequency Graph with n1 = 1000. (d) Cumulative Frequency Graph with n1 =
1000.

(e) Frequency Graph with n1 = 10000. (f) Cumulative Frequency Graph with n1 =
10000.

Figure 5.12: Frequency of the differences between the upper bound of the COS
Algorithm and the guaranteed gain of the CSS Algorithm as a proportion of the
weight of the centroid in 20,000 centroidal tree examples obtained by Method 1 with
d = 5 branches at the centroid and n1 vertices in the largest branch.
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(a) Frequency Graph with n1 = 100. (b) Cumulative Frequency Graph with n1 =
100.

(c) Frequency Graph with n1 = 1000. (d) Cumulative Frequency Graph with n1 =
1000.

(e) Frequency Graph with n1 = 10000. (f) Cumulative Frequency Graph with n1 =
10000.

Figure 5.13: Frequency of the differences between the upper bound of the COS
Algorithm and the guaranteed gain of the CSS Algorithm as a proportion of the
weight of the centroid in 20,000 centroidal tree examples obtained by Method 1 with
d = 10 branches at the centroid and n1 vertices in the largest branch.
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n=100 n=1000
Average d: 4.23 4.40

Minimum d Observed: 3 3
Maximum d Observed: 9 9

Average n1: 44.19 448.29
Minimum n1 Observed: 23 280
Maximum n1 Observed: 49 499

Mean: 0.0841 0.1257
Standard Deviation: 0.0512 0.0526
Maximum Observed: 0.2682 0.2430
Number of zeros: 33 0

Table 5.2: Statistics on the difference between the upper bound of the COS Algorithm
and the guaranteed gain of the CSS Algorithm as a percentage of the weight of the
centroid in 1,000 centroid tree examples obtained by Method 2 for n ∈ {100, 1000}.
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(a) Frequency Graph with n = 100. (b) Cumulative Frequency Graph with n =
100.

(c) Frequency Graph with n = 1000. (d) Cumulative Frequency Graph with n =
1000.

Figure 5.14: Frequency of the differences between the upper bound of the COS
Algorithm and the guaranteed gain of the CSS Algorithm as a proportion of the
weight of the centroid in 1,000 centroidal tree examples obtained by Method 2 with
the total number of vertices, n.
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i 1 2 3
ni 1000 995 34

w(ui) 1030 1035 1994
w(ti) 1039 1402 2003
w(si) 1083 1693 2025

Type of branch Thin Medium Thick
Criterion 993.763 741.535 34.000

Table 5.3: Weights in the centroidal tree of Example 5.35.

weights more often than others if they result from a larger number of possible branch

configurations. In fact, in the 1,000 examples with n = 100, there are 716 examples

for which the branch with the largest criterion is a thin branch. With n = 1000, this

number is 963. With Method 1, on the grand total of 240,000 examples generated,

only 13,706 of them had a thin branch as their branch with the largest criterion. That

is 5.7% compared to 71.6% and 96.3% with Method 2. Since we have observed that

the CSS Algorithm performs better on thick branches than thin branches, the higher

average could result from this. Again, we believe that adding positive probabilities

on more than three vertices in some thin branches could only help. Nevertheless, if

we consider that a difference between the guaranteed gain of the CSS Algorithm and

the upper bound from the COS Algorithm of 15% of the weight of the centroid is

acceptable, then the CSS Algorithm meets our expectations for 88% of the examples

with n = 100 and 64.9% of the examples with n = 1000. Moreover, one should not

forget that this difference can as much be the result of the upper bound with the COS

Algorithm being considerably higher than the safety value. Thus, the proximity of

the guaranteed gain with the CSS Algorithm to the safety value can only be better.

To finish this section, we present two examples of trees for which the difference

between the guaranteed gain with the CSS Algorithm and the upper bound with the

COS Algorithm is greater than the majority. The characteristics in the examples are

common amongst the trees with higher differences. From them, we hope to suggest

possible improvements for the CSS Algorithm 5.21.

Example 5.35. Consider the centroidal tree with 3 branches at the centroid gener-

ated by Method 1 with the number of vertices and lowest three weights of Table 5.3.

When the CSS Algorithm is applied, positive probabilities are added on branch 1,

giving an expected gain of 756.331 to Player 1 when Player 2 chooses to start with the
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centroid. The algorithm then stops since the criterion of the next branch, 741.535, is

smaller than the current expected gain.

In Example 5.35, the algorithm does not add positive probabilities on the second

branch since the criterion is smaller than the current expected gain. However, there

are 995 vertices in the second branch and this number is greater than the current

expected gain. Thus, considered as a thick branch, the criterion of the second branch

would be 995 and so adding positive probabilities as described on thick branch would

increase the current expected gain. Recall that the thick, medium and thin branches

were defined such that the expected gain on the branch when Player 2 chooses the

centroid is greater when the positive probabilities are distributed in a certain way.

How is it possible then, that a medium branch, for which the expected gain on

the branch should be greater when considered as a medium branch, would decrease

the current expected gain if added but would increase the current expected gain if

added as a thick branch? This is the case because the gain on the different types of

branches were calculated when considering the branches isolated, i.e. as the only ones

having positive probabilities. Thus, when considering the branches collectively, the

splitting between the types of branches might not always be optimal. Nevertheless, it

becomes impossible to define branches with numerous possible surroundings. Thus,

considering the branches isolated remains, in our eyes, the best approximation. One

way to correct this might be to add a step to the algorithm which checks any medium

and thin branches with a probability of zero on all their vertices to see if the criterion is

greater than the current expected gain when considered as a medium or a thick branch.

If so, positive probabilities on these branches with the corresponding distributions

could be added. In example 5.35, adding positive probabilities on the second branch

increases the guaranteed gain of Player 1 to 803.839 reducing the difference between

the bounds of 0.2170 to 0.1901.

To evaluate the amelioration in the guaranteed gain this added step might bring,

we included a step which checks any non added medium and thin branches in the ex-

amples generated by Method 2 to see if the criterion of the branches when considered

as thick branches are greater than the current expected gain. We then added some

positive probabilities on the ones that did. The results obtained can be observed in

Figure 5.15. The columns in purple and green for each value in the x-axis are the
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i 1 2 3 4
ni 496 366 135 2

w(ui) 504 634 865 998
w(ti) 505 641 866 999
w(si) 506 687 891 0

Type of branch Thin Thin Medium Thick
Criterion 495.326 360.041 134.134 0

Table 5.4: Weights in the centroidal tree of Example 5.36.

frequencies without the extra step in the algorithm, i.e. precisely the ones of Figure

5.14. The columns in red or blue, represent the change in the frequencies with the

extra step in the algorithm. We see that adding the extra step does reduce the dif-

ference in the bounds on some examples. As a group though, the average difference

in the bounds only decreases from 0.0841 to 0.0791 with n = 100 and from 0.1257 to

0.1237 with n = 1000. Still, this is a possible improvement on the CSS Algorithm.

Example 5.36. Consider the centroidal tree with 4 branches at the centroid gener-

ated by Method 2, with the number of vertices and the lowest three weights of Table

5.4. The tree is also represented in Figure 5.16.

When the CSS Algorithm is applied, positive probabilities are added on the first

branch, B1, giving an expected gain of 374.881 to Player 1 when Player 2 chooses

to start with the centroid. The algorithm then stops since the criterion of the next

branch, 360.041, is smaller than the current expected gain.

When the COS Algorithm is applied, the opposing strategy for Player 2 from the

output, ξ2,2 is α = 0.3182 on the centroid, β1 = 0.2801 on the vertex u1, β2 = 0.1228

on the vertex u2, γ1 = 0.2721 on the vertex t1, γ2 = 0.0067 on the vertex t2 and 0 on

all the other vertices. The expected gains of Player 1 against the strategy ξ2,2 are

(i) Gain(CT (n), ξ2,2, Z(c)) = Gain(CT (n), ξ2,2, Z(u1)) = Gain(CT (n), ξ2,2, Z(u2))

= Gain(CT (n), ξ2,2, Z(t1)) = Gain(CT (n), ξ2,2, Z(t2)) = 360.447

(ii) Gain(CT (n), ξ2,2, Z(u3)) = 238.762

(iii) Gain(CT (n), ξ2,2, Z(u4)) = 142.845

(iv) Gain(CT (n), ξ2,2, Z(v1)) ≤ 494.577
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(a) Frequency Graph with n = 100. (b) Cumulative Frequency Graph with n =
100.

(c) Frequency Graph with n = 1000. (d) Cumulative Frequency Graph with n =
1000.

Figure 5.15: Frequency of the differences between the upper bound of the COS Algo-
rithm and the guaranteed gain of the CSS Algorithm with the added step suggested
from Example 5.35 as a proportion of the weight of the centroid in 1,000 centroidal
tree examples obtained by Method 2 with the total number of vertices, n.

NOTE: The columns in purple and green are the frequencies with the CSS
Algorithm as defined in the Algorithm 5.21, precisely the columns of Figure 5.14.
The columns in red and blue represent the change in the frequencies with the CSS

Algorithm when the step suggested from Example 5.35 is added.
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Figure 5.16: Representation of the centroidal tree in Example 5.36.
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Centroid Branch Bi i = 1 i = 2
α 0.0478 βi 0.0493 0.0515

γi 0.0680 0.0906
δi 0.0947 0.2546
εi 0.1688 -
ηi 0.1747 -

Table 5.5: Mixed strategy for Player 1 on the centroidal tree of Example 5.36.

(v) Gain(CT (n), ξ2,2, Z(v2)) ≤ 356.905

where v1 is any vertex other than u1 and t1 in the branch B1 and v2 is any vertex other

than u2 and t2 in the branch B2. The maximum of these values, 494.577 is the upper

bound on the safety value output from algorithm. Hence, the difference between the

upper bound and the guaranteed gain of Player 1 expressed as a proportion of the

weight of the centroid is 0.2415.

In Example 5.36, the first and second branches at the centroid are thin branches.

Hence, a higher expected gain might be achievable if Player 1 includes positive prob-

abilities on more vertices of these branches. For instance, consider a mixed strategy

for Player 1 where Player 1 incorporates a positive probability of ε1 on the vertex r1

and η1 on the vertex q1 where r1 and q1 are the two next vertices in the branch B1

as shown in Figure 5.16. We can equal the expected gains of Player 1 when Player 2

chooses the centroid, u1, u2, t1, t2, s1, s2, r1 and q1 by solving for α, β1, β2, γ1, γ2,

δ1, δ2, ε1 and η1, knowing that α +
∑2

i=1(βi + γi + δi) + ε1 + η1 = 1. This gives the

mixed strategy described in Table 5.5 with a guaranteed gain of 417.44 when Player

2 chooses the centroid. This higher expected gain reduces the difference between the

guaranteed gain with the CSS Algorithm and the upper bound of the COS Algorithm

of 0.2414 to 0.1555.

Alternatively, the upper bound on the safety value might be lowered if Player 2

also includes probabilities on vertices at distance greater than 2 from the centroid on

which Player 1 still has a high payoff. Notice that the maximal gain of Player 1 against

the opposing strategy ξ2,2 of Player 2 is achieved when Player 1 chooses a vertex other

than u1 and t1 in the branch B1. Therefore, as much as the CSS Algorithm does not

perform at its best on thin branches, we might also be overestimating the maximal

gain of Player 1 against an opposing strategy of Player 2. We believe though, that



151

the difference between the guaranteed gain with the CSS Algorithm and the upper

bound of the COS Algorithm is more due to the former than the latter case since

Player 2 in his opposing strategy, cannot have large positive probabilities on vertices

too far from the centroid without giving a high payoff to Player 1 on the centroid.

All in all, the CSS Algorithm 5.21 provides a safe strategy for Player 1 with a

reasonable guaranteed gain in a lot of instances. Moreover, it seems a good base on

which one could try to incorporate modifications to accommodate the cases on which

it is not optimal.

5.3 Bicentroidal Trees

A bicentroidal tree with n vertices, BT (n), has two adjacent vertices as centroid and

n− 2 vertices distributed equally between the two sides of the centroid. The weight

of both vertices in the centroid is n
2
. A reasoning similar to the thick, medium and

thin branches of the centroidal trees should be translatable to the bicentroidal trees.

However, a few minor modifications might be needed since one centroid vertex is in

the branch at the other centroid vertex. Nevertheless, bicentroidal trees always have

two branches with n
2
vertices, thus an algorithm suggesting a safe strategy for Player

1 should be simpler and so should the analysis of its performance.



Chapter 6

A Few Other Graphs

The chapters 3, 4 and 5 concentrated on the two-player safe game of Competitive

Diffusion on trees, i.e. graphs that do not have cycles. One could ask himself what

could be a safe strategy for Player 1 in the safe game of Competitive Diffusion on a

graph which has one or more cycles. On that account, this chapter gives an introduc-

tion to this study by analysing the two-player safe game of Competitive Diffusion on

a few other simple families of graphs, precisely cycles, complete graphs and complete

bipartite graphs.

6.1 Cycles

Recall from Definition 1.32 that a cycle is a graph that can be drawn so that all its

vertices and edges lie on a single circle. We denote a cycle with n vertices by Cn and

we label the vertices in the cycle in order, so starting from a vertex v1 and ending the

cycle with the vertex vn. Since there is no vertex in a circle that is an advantageous

choice of starting vertex, we define the following mixed strategy for a player on a

cycle Cn in which all the vertices are chosen with equal probability.

Definition 6.1. Let the strategy θC be a mixed strategy on Cn where

θC = (x1, x2, ..., xn)

and xi, the probability of choosing the vertex vi, is
1
n
for all i ∈ {1, 2, ..., n}.

Lemma 6.2. The guaranteed gain of Player 1 with the strategy θC on a cycle with n

vertices Cn is

GGain(Cn, θC) =
n

2
+O(1). (n → ∞) (6.1)

Proof. From Definition 2.9, we have that the guaranteed gain of Player 1 with the

strategy θC is

GGain(Cn, θC) = min
j

Gain(Cn, θC , Z(vj)) (6.2)
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Figure 6.1: Illustration of two paths between the vertices in a cycle.

where 1 ≤ j ≤ n and Z(vj) is the mixed strategy which chooses the vertex vj with

probability 1. Due to the symmetry of the cycle and the strategy θC , the expected

gain of Player 1 will be the same no matter the choice of starting vertex for Player 2.

Thus, we suppose that Player 2 chooses the vertex v1. The expected gain of Player 1

with the strategy θC when Player 2 chooses to start with the vertex v1 is

Gain(Cn, θC , Z(v1)) =
1

n

n∑
i=1

Gain(Cn, Z(vi), Z(v1)) (6.3)

Note that between any two vertices in a cycle there are two paths (see for example

Figure 6.1). When Player 1 chooses the vertex vi, i 
= 1, the two paths are:

• A path with i vertices: v1 − v2 − ...− vi.

• A path with n− i+ 2 vertices: v1 − vn − vn−1 − ...− vi.

We know the payoff of Player 1 on a path from the game matrix in Theorem 3.1.

Thus,

Gain(Cn, Z(vi), Z(v1)) = πi,1|i + πn−i+2,1|n−i+2 − 1 (6.4)

where πi,j|n is the value in the game matrix of a path with n vertices when Player 1

chooses the vertex vi and Player 2 chooses the vertex vj as defined in Theorem 3.1

and where we remove 1 since the vertex vi is counted as a payoff to Player 1 in both

paths. Replacing the expressions for πi,j|n gives

Gain(Cn, Z(vi), Z(v1)) = i−
⌊
i+ 1

2

⌋
+ n− i+ 2−

⌊
n− i+ 3

2

⌋
− 1. (6.5)
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Evaluating for the different parities of n and i, we can simplify to

Gain(Cn, Z(vi), Z(v1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n
2
, if n is even and i is even

n−1
2
, if n is odd and i is even

n−1
2
, if n is odd and i is odd

n
2
− 1, if n is even and i is odd.

(6.6)

Now, if n is even, there are n
2
even i’s in {2, 3, ..., n} and n

2
− 1 odd i’s in {2, 3, ..., n},

whereas if n is odd, there are n−1
2

even i’s in {2, 3, ..., n} and n−1
2

+ 1 odd i’s in

{2, 3, ..., n}. Therefore, if n is even,

Gain(Cn, θC , Z(v1)) =
1

n

(
0 +

(n
2

) (n
2

)
+

(n
2
− 1

) (n
2
− 1

))
(6.7)

which simplifies to

Gain(Cn, θC , Z(v1)) =
n

2
− 1 +

1

n
=

n

2
+O(1) (6.8)

Similarly, if n is odd,

Gain(Cn, θC , Z(v1)) =
n

2
− 1

2
=

n

2
+O(1). (6.9)

Lemma 6.3. The maximal gain of Player 1 on a cycle with n vertices, Cn, when

Player 2 chooses any vertex vj for j ∈ {1, 2, ...n} is

MGain(Cn, Z(vj)) =
n

2
+O(1) (n → ∞). (6.10)

Proof. Recall from Definition 2.10 that the maximal gain of Player 1 when Player 2

chooses the vertex vj is

MGain(Cn, Z(vj)) = max
i

Gain(Cn, Z(vi), Z(vj)) (6.11)

where 1 ≤ i ≤ n. We can always relabel the vertices in the cycle if necessary and

suppose that the chosen vertex by Player 2, vj, is the vertex v1. If Player 1 also

chooses the vertex v1, her gain is zero. On the other hand, if Player 1 chooses a

vertex vi, i ∈ {2, ..., n}, we know from (6.6) that

Gain(Cn, Z(vi), Z(v1)) =
n

2
+O(1). (6.12)

Since this is true for any vertex vi, i ∈ {2, ..., n}, this is the maximal gain of Player

1 on Cn.
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Theorem 6.4. In the two-player Competitive Diffusion game on Cn, the safety value

of Player 1 is n
2
+O(1) (n → ∞).

Proof. This proof is essentially the same as the proof of Theorem 3.5 having the

guaranteed gain from Lemma 6.2 and the maximal gain from Lemma 6.3 except that

in this case, the bounds are equal. Thus, the safety value of Player 1 is exactly

n
2
+O(1)

Let us compare the safety value with the payoffs in the pure Nash equilibrium

described in Theorem 2.6.

Theorem 6.5. For a cycle with n vertices Cn, the safety value of Player 1 is equal

to the gain of any player in a Nash equilibrium n
2
+O(1) (n → ∞).

Proof. This result directly comes from comparing the safety value in Theorem 6.4 to

the payoffs in the Nash equilibrium of Theorem 2.6.

6.2 Complete Graphs

Recall from Definition 1.41 that a complete graph is a graph in which every pair

of vertices is joined by an edge. We denote a complete graph on n vertices by Kn.

Since every edge in the graph is present, there is no vertex in the graph that is an

advantageous choice of starting vertex. Hence, we define the following strategy for

a player on a complete graph Kn in which all the vertices are chosen with equal

probability.

Definition 6.6. Let the strategy θK be a mixed strategy on Kn where

θK = (x1, x2, ..., xn)

and xi, the probability of choosing the vertex vi, is
1
n
for all i ∈ {1, 2, ..., n}.

Lemma 6.7. The guaranteed gain of Player 1 with the strategy θK on a complete

graph with n vertices, Kn is

GGain(Kn, θK) = 1− 1

n
. (6.13)
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Proof. From Definition 2.9, we know that the guaranteed gain of Player 1 with the

strategy θK is

GGain(Kn, θK) = min
j

Gain(Kn, θK , Z(vj)) (6.14)

where 1 ≤ j ≤ n. Due to the symmetry in the complete graph and the strategy θK ,

the expected gain of Player 1 will be the same no matter the choice of starting vertex

for Player 2. Thus, we suppose that Player 2 chooses the vertex v1. The expected

gain of Player 1 with the strategy θK when Player 2 chooses to start with the vertex

v1 is

Gain(Kn, θK , Z(v1)) =
1

n

n∑
i=1

Gain(Kn, Z(vi), Z(v1)). (6.15)

If Player 1 chooses the vertex v1, her gain is zero whereas if Player 1 chooses a vertex

vi with i 
= 1, her gain is 1 since all the other vertices are neighbours of both vi and

v1, all the edges in Kn being present. Thus,

Gain(Kn, θK , Z(v1)) =
1

n
(0 + (n− 1) · 1) . (6.16)

Lemma 6.8. The maximal gain of Player 1 on a complete graph with n vertices, Kn

when Player 2 chooses the strategy θK is

MGain(Kn, θK) = 1− 1

n
(6.17)

Proof. Recall from Definition 2.10 that the maximal gain of Player 1 when Player 2

chooses the strategy θK is

MGain(Kn, θK) = max
i

Gain(Kn, Z(vi), θK) (6.18)

where 1 ≤ i ≤ n. Due to the symmetry in the complete graph and the strategy θK ,

the expected gain of Player 1 will be the same no matter her choice of starting vertex.

Suppose Player 1 chooses the vertex v1. The expected gain of Player 1 is

Gain(Kn, Z(v1), θK) =
1

n

n∑
j=1

Gain(Kn, Z(v1), Z(vj)). (6.19)

When Player 2 also chooses the vertex v1, the payoff to Player 1 is zero. On the other

hand, if Player 2 chooses a vertex vj, j 
= 1, the payoff to Player 1 is 1 since all the



157

other vertices are neighbours of both vj and v1, all the edges in Kn being present.

Thus,

Gain(Kn, Z(v1), θK) =
1

n
(0 + (n− 1) · 1). (6.20)

Theorem 6.9. In the two-player Competitive Diffusion game on Kn, the safety value

of Player 1 is 1− 1
n
.

Proof. This proof is similar to the proof of Theorem 3.5 having the guaranteed gain

from Lemma 6.7 and the maximal gain from Lemma 6.8 of equal value 1− 1
n
.

The complete graphs are not interesting graphs for the two-player Competitive

Diffusion since the gain of both players is always either 0 or 1. However, it informs us

that the number of vertices part of a cluster in a large graph gained by Player 1 would

be negligible when the players choose starting vertices that are at equal distance from

the cluster. For example, consider the portion of a graph representing a social network

in Figure 6.2. If the players choose the starting vertices circled in Blue and Yellow,

they are at equal distance from the cluster circled in Red. Thus, after two waves of

diffusion, the colors of both players will reach a vertex of the cluster. In the following

wave, most of the vertices in the cluster will turn grey since they are neighbours of

vertices in both colors.

6.3 Complete Bipartite Graphs

Recall from Definition 1.45 that a complete bipartite graph is a graph whose vertices

can be partitioned into two subsets U and W such that every vertex in U is joined

to every vertex in W . We denote a complete bipartite graph that has m vertices in

the subset U and n vertices in the subset W by Km,n and we label the vertices in

the subset U by {u1, u2, ..., um} and the vertices in the subset W by {w1, w2, ..., wn}.
Let us consider strategies which have a probability of α on the vertices of the subset

U and β on the vertices of the subset W . Following a similar idea as the strategy

CS2(k) on the spiders and the strategies μ1 and μ2 on the complete trees, we assume

such a strategy for Player 1 and we determine Player 1’s expected gain when Player 2

chooses a vertex in the subset U and when Player 2 chooses a vertex in the subset W .
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Figure 6.2: Example of two players choosing starting vertices at equal distance from
a cluster in a large graph.
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Then, we force the two expected gains to be equal by solving for α and β knowing

that mα + nβ = 1. Similarly, we can assume that Player 2 has a strategy where he

chooses a vertex from the subset U with probability α and a vertex in the subset

W with probability β. We determine Player 1’s expected gains when she chooses a

vertex in the subset U and when she chooses a vertex in the subset W . Again, we can

force the two gains to be equal by solving for α and β knowing that mα + nβ = 1.

This leads to the following two strategies.

Definition 6.10. Let the strategy λ1 be a mixed strategy on Km,n where λ1 =

(x1, x2, ..., xn) and xi, the probability of choosing the vertex vi, is

xi =

⎧⎨
⎩α = mn−2n+1

m2n+mn2+m+n−4mn
, if vi ∈ U

β = mn−2m+1
m2n+mn2+m+n−4mn

, if vi ∈ W
(6.21)

for 1 ≤ i ≤ n.

Definition 6.11. Let the strategy λ2 be a mixed strategy on Km,n where λ1 =

(y1, y2, ..., yn) and yj, the probability of choosing the vertex vj, is

xj =

⎧⎨
⎩α = (n−1)2

m2n+mn2+m+n−4mn
, if vj ∈ U

β = m2−2m+1
m2n+mn2+m+n−4mn

, if vj ∈ W
(6.22)

for 1 ≤ j ≤ n.

We consider the strategy λ1 as a safe strategy for Player 1 onKm,n and the strategy

λ2 as an opposing strategy for Player 2 on Km,n. This leads to the following results:

Theorem 6.12. In the two-player safe game of Competitive Diffusion on the complete

bipartite graph Km,n, the safety value of Player 1 is

(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
(6.23)

In order to prove this theorem, we will consider some lemmas on the guaranteed

gain of Player 1 with the safe strategy λ1 and the maximal gain of Player 1 when

Player 2 has the opposing strategy λ2.

Lemma 6.13. The guaranteed gain of Player 1 with the strategy λ1 on a complete

bipartite graph Km,n is

GGain(Km,n, λ1) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.24)
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Proof. From Definition 2.9, we know that the guaranteed gain of Player 1 with the

strategy λ1 on Km,n is

GGain(Km,n, λ1) = min
j

Gain(Km,n, λ1, Z(vj)) (6.25)

where 1 ≤ j ≤ n and Z(vj) is the mixed strategy which chooses the vertex vj with

probability 1. Since all the edges between the vertices in the bipartition subsets U

and W of Km,n are present, there is no distinction to be made between the vertices

from a given subset. Thus, we only need to consider one vertex from the subset U

and one vertex from the subset W as possible starting vertices for Player 2.

If Player 2 chooses a vertex uj ∈ U = {u1, u2, ..., um}, the expected gain of Player

1 is

Gain(Km,n, λ1, Z(uj)) = α
m∑
i=1

Gain(Km,n, Z(ui), Z(uj))

+ β
n∑

i=1

Gain(Km,n, Z(wi), Z(uj))

(6.26)

where {w1, w2, ..., wn} are the vertices in the subset W and α and β are respectively

the probability of choosing a vertex in the subset U and the probability of choosing

a vertex in the subset W as defined in Definition 6.10. If the two players choose two

different vertices in the same subset, the payoff to Player 1 is 1 since all the vertices

of the other subset are neighbours to both chosen vertices and will turn grey. If the

two players choose vertices in different subsets, then the payoff to Player 1 will be all

the vertices in the subset with the chosen vertex of Player 2 except the one chosen

by Player 2. Thus,

Gain(Km,n, λ1, Z(uj)) = α(0 + (m− 1) · 1) + β(n(m− 1)). (6.27)

Replacing the values of α and β from Definition 6.10 gives

Gain(Km,n, λ1, Z(uj)) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.28)

In a similar manner, we can determine the expected gain of Player 1 when Player 2

chooses a vertex wj ∈ W = {w1, w2, ..., wn} to be

Gain(Km,n, λ1, Z(wj)) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.29)

Since both these gains are equal, this is the guaranteed gain of Player 1 with the

strategy λ1 on Km,n.
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Lemma 6.14. The maximal gain of Player 1 when Player 2 uses the opposing strategy

λ2 on a complete graph Km,n is

MGain(Km,n, λ2) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.30)

Proof. From Definition 2.10, we know that the maximal gain of Player 1 against the

strategy λ2 for Player 2 is

MGain(Km,n, λ2) = max
i

Gain(Km,n, Z(vi), λ2) (6.31)

where 1 ≤ i ≤ n. Again, because of the structure of Km,n, we only need to consider

one vertex from the subset U and one vertex from the subset W as possible starting

vertices for Player 1.

If Player 1 chooses a vertex ui ∈ U = {u1, u2, ..., um}, her expected gain is

Gain(Km,n, ui, λ2) = α
m∑
j=1

Gain(Km,n, Z(ui), Z(uj))

+ β

n∑
j=1

Gain(Km,n, Z(ui), Z(wj))

(6.32)

where {w1, w2, ..., wn} are the vertices in the subset W and α and β are respectively

the probability of choosing a vertices in the subset U and the probability of choosing a

vertex in the subset W as defined in Definition 6.11. Again, if the two players choose

two different vertices in the same subset, the payoff to Player 1 is 1 while if the two

players choose vertices in different subsets, the payoff to Player 1 is 1 less than the

number of vertices in the subset chosen by Player 2. Thus,

Gain(Km,n, Z(ui), λ2) = α(0 + (m− 1)) + β(n(n− 1)). (6.33)

Replacing the values of α and β from Definition 6.11 gives

Gain(Km,n, Z(ui), λ2) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.34)

In a similar manner, we can determine the expected gain of Player 1 when she chooses

a vertex wi ∈ W = {w1, w2, ..., wn} to be

Gain(Km,n, Z(wi), λ2) =
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.35)

Since these gains are equal, this is the maximal gain of Player 1 against the strategy

λ2 of Player 2.



162

  

Figure 6.3: Example of a Complete Bipartite Graph, Km,n with m = 3 and n = 4.

We now prove Theorem 6.3.

Proof. (Theorem 6.3) This proof is essentially the same as the proof of Theorem

3.5 having the guaranteed gain from Lemma 6.13 and the maximal gain from Lemma

6.14 except that in this case, the bounds are equal. Thus, the safety value of Player

1 is exactly
(m− 1)(n− 1)(mn− 1)

m2n+mn2 +m+ n− 4mn
. (6.36)

Example 6.15. For the complete bipartite graph, Km,n represented in Figure 6.3

where m = 3 and n = 4, the safety value of Player 1 is 1.54.

Example 6.16. For the complete bipartite graph, Km,n with m = 100 and n = 100,

the safety value of Player 1 is 50.00 while with m = 50 and n = 150 the safety value

of Player 1 is 37.24.

A similar reasoning could be applied to get the safety value of Player 1 along

with a safe strategy for complete multipartite graphs, graphs whose vertices can be

partitioned into sets such that two vertices are adjacent if and only if they belong to

different sets.



Chapter 7

Conclusion

The main goal of this thesis was to study the two-player safe game of Competitive

Diffusion on trees. The guaranteed gain in the safe game is the minimal expected

gain of a player if he adopts the corresponding safe strategy. Thus, safe strategies are

a good approach in presence of uncertainty in opponents.

Consider, for example, the setting where Competitive Diffusion is a game between

two rival companies who want to advertise their products throughout a social network.

We can easily imagine companies that do not like taking risks, small companies that

cannot afford the chance of not getting information about their product to at least a

few buyers, or companies that think that their opponents are out to get them. In all

these scenarios, a safe strategy can be a good option. For other companies, knowing

the guaranteed gain with a certain safe strategy can be helpful in decision making.

A company might realize that the expected gain assured with the safe strategy is

satisfactory.

We started the study of the safe game of Competitive Diffusion in Chapters 3 and

4 with the two-player game on paths, spiders and complete trees. These are all special

cases of trees. For each, we suggested safe strategies for Player 1 and compared the

guaranteed gains to the safety values by evaluating their proximity to upper bounds

obtained by considering opposing strategies for Player 2. In Chapter 5, we turned

our focus to finding a general safe strategy for trees. Our approach leads to the

Centroidal Safe Strategy Algorithm. The algorithm showed a good performance on

a number of examples; the ones with thick branches at the centroid better than the

ones with thin branches at the centroid. The algorithm perhaps could be improved

by including positive probabilities on more vertices in the branches at the centroid

or by slightly modifying the ordering of the branches and the distribution of the

probabilities. Nevertheless, the algorithm seems a good base to begin the study of

the safe game on bicentroidal trees in future work.
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In Chapter 6, we discussed the safe game of Competitive Diffusion on cycles,

complete graphs and complete bipartite graphs. These are simple and symmetrical

examples of graphs which are not trees. Still, the safe strategies considered in Chapter

6 were optimal. Hence, our common approach of equalling expected gains of the play-

ers to suggest probabilities in strategies shows promise. The notion of the centroid,

however, does not directly translate to graphs that do not have branches but there

exists a generalization, also known as an accretion center (see [28]). Thus, strate-

gies which have positive probabilities near this notion of centroid might be worth

considering on graphs which are not trees. Moreover, there exists discussion on a de-

centralized approach to approximate the location of the centroid without the global

view of the graph environment (see [8]). Using a local view of a graph could be useful

for studying the centroid in complex graphs such as large social networks. Thus, this

approach might be useful in generalizing the study of the safe game of Competitive

Diffusion on social networks. Since the ultimate goal is to transfer the ideas to the

Competitive Diffusion on realistic networks, the suggestions mentioned here are all of

interest for future work on the safe game of Competitive Diffusion.

Lastly, changing the concept of grey vertices is probably the first thing that comes

to mind when thinking of modifying the simple game model of Competitive Diffusion.

It seems unreasonable that a user facing two choices of products, for example, remains

indecisive rather than choosing one of the two products with a certain probability.

However, in the conservative setting of the safe game, the grey vertices are not a bad

concept. They restrict the payoff to Player 1 by eliminating all chances of her gaining

vertices other than the ones she gets to influence before her opponents. This said,

modifying the game model to include a probability of Player 1 gaining other vertices,

would simply increase her safety value. The guaranteed gains that serve as lower

bounds on the safety values for the Competitive Diffusion on the graphs presented,

should to some extent be translatable to the new model. Moreover, considering

models which include a probability of gaining the grey vertices would create large

variations in the gains. In a tree, a vertex that turns grey usually blocks the access to

a branch with a number of vertices. A player that gains this vertex would also gain

the rest of the branch. Thus, the probability of gaining this large group of vertices

would create fluctuations in the expected gains. Overall, the simple cascade model
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in the Competitive Diffusion remains a good conservative model for the safe game,

a concept in game theory to which the newly decentralized game theoretic setting

permits analysis.



Appendix A

Programming Codes

This appendix presents the programming codes used in Chapter 5 to assess the per-

formance of the Centroidal Safe Strategy Algorithm 5.21.

A.1 Generating Centroidal Tree Examples: Method 1

This section presents the MATLAB® [19] programming code used to generate the

examples of centroidal trees with the first method of randomization. Recall from

Section 5.2.5.

Method 1:

- Fixed parameters: number of branches at the centroid, d, and number

of vertices in the largest branch at the centroid, n1.

- Randomized parameters: number of vertices in the other branches and

lowest three weights in the branches.

The randomization in this method is obtained by a function in MATLAB® [19].

randi([imin,imax],1):[20] returns an integer value drawn from the discrete

uniform distribution on the interval [imin,imax].

The generated trees are written in a text file called ”INPUT.txt” created in a

specified directory.
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1 %RANDOMIZATION OF CENTROIDAL TREES WITH METHOD 1.

2

3 %[INPUT]:

4

5 %Specify the text file and directory where the examples generated ...

will be printed.

6 [Results,message]=fopen(fullfile('C:\Users\Celeste\Documents\...
MATLAB','INPUT.txt'),'a');

7

8 %Specify the number of branches at the centroid wanted.

9 d=3;

10

11 %Specify the number of vertices in the largest branch at the ...

centroid.

12 n1=100;

13

14 %Specify the number of examples of centroidal trees wanted.

15 NEx=20000;

16

17 %Loop that creates and prints the examples.

18 for q=1:NEx

19 A=zeros(d,4);

20 A(1,4)=n1;

21

22 %[STEP 1]: Loop that randomizes the number of vertices in the ...

branches 2 to d.

23 for i=2:d

24 %All the branches except the last one can have any number ...

of vertices from 1 to n1.

25 if i<d

26 A(i,4)=randi([1 A(1,4)],1,1);

27 %The number of vertices in the last branch must assure ...

that the sum of the vertices on the branches 2 to d is ...

at least n1.

28 else if i==d

29 s=A(1,4)−sum(A(2:d−1,4));
30 if s>1

31 A(i,4)=randi([s A(1,4)],1,1);
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32 else

33 A(i,4)=randi([1 A(1,4)],1,1);

34 end

35 end

36 end

37 end

38

39 %The total number of vertices is the sum of the number of ...

vertices in the d branches +1 for the centroid.

40 n=sum(A(:,4))+1;

41

42 %[STEP 2]: Loop that randomizes the lowest three weights in ...

the branches.

43 for i=1:d

44 %The first weight of the branch i, w1, is fixed to n−ni.
45 A(i,1)=n−A(i,4);
46 %If the branch i has at least 2 vertices, the second ...

lowest weight, w2, is any integer drawn from the ...

interval [w1+1,n−1]. Otherwise, the second lowest ...

weight stays 0.

47 if A(i,4)≥2

48 A(i,4)=randi([n−A(i,4)+1 n−1],1,1);
49 end

50 %If the branch i has at least 3 vertices, the third lowest...

weight, w3, is any integer drawn from the interval [w2...

,n−1] if w2−w1−1 is greater than or equal to n−w2, else...

[w2+1,n−1]. Otherwise, the third lowest weight stays 0...

.

51 if A(i,4)≥3

52 if A(i,2)−A(i,1)−1≥n−A(i,2)
53 A(i,3)=randi([A(i,2) n−1],1,1);
54 else A(i,3)=randi([A(i,2)+1 n−1],1,1);
55 end

56 end

57 end
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58 %[OUTPUT]: The example is printed on a line in the text file '...

INPUT.txt' with the format [n d w(u 1) w(t 1) w(s 1) ... w(...

u d) w(t d) w(s d)] where u i, t i and s i are respectively...

the vertices with the first, second and third lowest ...

weights in the branch i.

59 fprintf(Results,'%g ', n, d, A(:,1:3)');

60 end

61 fclose(Results);

A.2 Generating Centroidal Tree Examples: Method 2

This section presents the Maple™ programming code used to generate the examples of

centroidal trees with the second method of randomization. Recall from Section 5.2.5.

Method 2:

- Fixed parameters: total number of vertices, n.

- Randomized parameters: tree structure.

The randomization in this method is obtained by a function of Maple™ in the Graph-

Theory[RandomGraphs] subpackage.

The generated trees are written in a text file called ”INPUT.txt” created in a

specified directory.

1 > #RANDOMIZATION OF CENTROIDAL TREES WITH METHOD 2.

2 >

3 > #Load Packages.

4 > with(GraphTheory):

5 > with(RandomGraphs):

6 >

7 > #[INPUT]:

8 >

9 > #Specify the directory and text file where the examples ...

generated will be printed.

10 > currentdir("C:\\Users\\Celeste\\Documents\\MAPLE"):
11 > fd := fopen("INPUT.txt", APPEND):

12 >
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13 > #Specify the number of vertices in the tree wanted.

14 > n := 100:

15 >

16 > #Specify the number of examples of centroidal trees wanted.

17 > NEx := 1000:

18 >

19 > #Loop that creates and prints the examples.

20 > for k from 1 to NEx do

21

22 #[STEP 1]: Generate a random tree with n vertices and list...

the vertices of the tree.

23 T := RandomTree(n):

24 V := {Vertices(T)[]}:
25

26 #Create an array where the weights of the vertices in T ...

will be stored.

27 W := Array(1..1, 1..numelems(V)):

28

29 #[STEP 2]: Loop that determines the weights of all the ...

vertices in the tree.

30 for i from 1 to numelems(V) do

31

32 #Let G be the induced subgraph of T by all the ...

vertices of T except the vertex i and let C be the ...

list of connected components of G. The elements of ...

C represent the branches of T at the vertex i.

33 G := InducedSubgraph(T, V\{i}):
34 C := {ConnectedComponents(G)[]}:
35

36 #Count the number of edges in all the branches at the ...

vertex i and determine the maximum. This is the ...

weight of the vertex i which is stored in the ...

vertex attribute "weight" and the array W.

37 A := Array(1..1, 1..numelems(C)):

38 for j from 1 to numelems(C) do

39 A[1, j] := numelems(C[j]):

40 end do:

41 SetVertexAttribute(T, i, "weight" = max(A)):

42 W[1, i] := GetVertexAttribute(T, i, "weight"):
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43

44 end do:

45

46 #[STEP 3:] Determine the centroid of the tree T, i.e. the ...

vertices with the minimal weight. The variable position...

will hold the vertex number of the centroid and the ...

flag is used to display if a tree is bicentroidal.

47 position := 0:

48 Flag := "Ok":

49

50 for i from 1 to numelems(V) do

51 if W[1, i] = min(W) and position = 0 then

52 position := i:

53 elif W[1, i] = min(W) and position <> 0 then

54 Flag := "Bicentroidal Tree" :

55 end if:

56 end do:

57

58 #[STEP 4]: Determine the number of branches at the ...

centroid, d, and the lowest three weights in the ...

branches at the centroid, stored in an array M. If a ...

branch has only 1 or 2 vertices, only one or two lowest...

weights are stored for that branch.

59 G := InducedSubgraph(T, V\{position}):
60 C := {ConnectedComponents(G)[]}:
61 d := numelems(C):

62 M := Array(1..d, 1..3):

63 for i from 1 to d do

64 B := Array(1..numelems(C[i])):

65 for j from 1 to numelems(C[i]) do

66 B[j] := GetVertexAttribute(T, C[i][j], "weight"):

67 end do:

68 test := min(numelems(B), 3):

69 M[i, 1..test] := sort(B)[1..test]:

70 end do:

71
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72 #[OUTPUT]: If the example is a centroidal tree, it is ...

printed on a line in the text file 'INPUT.txt' with the...

format [n d w(u 1) w(t 1) w(s 1) ... w(u d) w(t d) w(s...

d)] where u i, t i and s i are respectively the ...

vertices with the first, second and third lowest ...

weights in the branch i. If the example is a ...

bicentroidal tree, the example is disregarded and the ...

counter is reduced by 1.

73 if Flag = "Ok" then

74 fprintf(fd, "%g ", n, d):

75 fprintf(fd, "%{n}g \n", M):

76 elif Flag="Bicentroidal Tree" then

77 k:=k−1:
78 end if:

79 end do:

80 fclose(fd):

A.3 Centroidal Safe Strategy Algorithm

This section presents the MATLAB® [19] programming code corresponding to the

CSS Algorithm 5.21. The code reads the ”INPUT.txt” files from Sections A.1 and

A.2, i.e. the centroidal tree examples created by method 1 and 2. The results are

then written in a text file called ”RESULTS.txt” in a specified directory.

1 %CENTROIDAL SAFE STRATEGY ALGORITHM.

2

3 %[INPUT]: Specify the directory and the text file where the ...

examples are read from.

4 [INPUT,message]=fopen(fullfile('C:\Users\Celeste\Documents\MATLAB'...
,'INPUT.txt'),'r');

5

6 %Read a line from text file.

7 tline = fgetl(INPUT);

8

9 %While the line read is not empty.

10 while tline ∼ = −1
11
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12 %[STEP 0]: Convert the information from the text file to n, ...

the number of vertices, d, the number of branches at the ...

centroid, and A, a matrix with the lowest three weights in ...

each branch.

13 temp=textscan(tline,'%f ');

14 n=temp{1}(1,1);
15 d=temp{1}(2,1);
16 A=zeros(d,6);

17 for i=1:d

18 A(i,1:3)=temp{1}(3+3*(i−1):5+3*(i−1),1)';
19 A(i,6)=n−A(i,1);
20 end

21

22 %[STEP 1a]: Loop that determines the type of each branch and ...

calculates its criterion. If a branch has less than 3 ...

vertices, then by convention, its criterion is zero and the...

branch is labelled as a thick branch. A thin branch is ...

identified by the number 1, a medium branch by the number 2...

and a thick branch by the number 3.

23 for i=1:d

24 if A(i,6)<3

25 A(i,4)=3;

26 A(i,5)=0;

27 else if A(i,2)>=n−A(i,1)+(A(i,1))ˆ2/n
28 A(i,4)=3;

29 A(i,5)=n−A(i,1);
30 else if A(i,2)<n−A(i,1)+(A(i,1))ˆ2/n && A(i,3)>=n−...

A(i,2)+(A(i,2)ˆ2+(A(i,2)−A(i,1))ˆ2)/(n+A(i,2)−A...
(i,1))

31 A(i,4)=2;

32 A(i,5)=((n−A(i,2))/n)*(n−A(i,1))+(A(i,2)/n)*(n...
−A(i,2));

33 else if A(i,2)<n−A(i,1)+(A(i,1))ˆ2/n && A(i,3)...

<n−A(i,2)+(A(i,2)ˆ2+(A(i,2)−A(i,1))ˆ2)/(n+A...
(i,2)−A(i,1))

34 A(i,4)=1;
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35 A(i,5)=(A(i,2)*(n−A(i,2))*(nˆ2−n*A(i,3)−A(...
i,3)*A(i,2)+A(i,2)ˆ2+2*A(i,3)*A(i,1)−A(...
i,2)*A(i,1)))/(n*A(i,2)*(n−A(i,3))+A(i...
,1)*A(i,2)*(−n+A(i,3)+A(i,2))+(n−A(i,2)...
)*A(i,1)ˆ2);

36 end

37 end

38 end

39 end

40 end

41

42 %[STEP 1b]: Order the branches at the centroid based on their ...

criterion.

43 B=sortrows(A,−5);
44

45 j=1;

46 SGain=0;

47 EGain=0;

48 SProbAlpha=0;

49 Alpha=0;

50

51 %[STEP 2]: While there are branches remaining and the ...

criterion of the next branch is greater than the current ...

expected gain, add positive probabilities on the next ...

branch and calculate the new expected gain dependently on ...

the new branch being thick, medium or thin.

52 while j<=d && B(j,5)>EGain

53 %[STEP 3a]: Solve α+
∑j

i=1(βj + γj + δj) = 1 for α.

54 if B(j,4)==1

55 SProbAlpha=SProbAlpha+((n−B(j,2))*(B(j,1)*(n−B(j,3))+(...
B(j,2)−B(j,3))*(B(j,2)−B(j,1))))/((n−B(j,3))*(n−B(j...
,1))*(n−B(j,2))+B(j,3)*B(j,2)*(B(j,3)−B(j,2)))+B(j...
,2)/(n−B(j,2))*((n−B(j,2))*(B(j,1)*(n−B(j,3))+(B(j...
,2)−B(j,3))*(B(j,2)−B(j,1))))/((n−B(j,3))*(n−B(j,1)...
)*(n−B(j,2))+B(j,3)*B(j,2)*(B(j,3)−B(j,2)))+B(j,3)/...
(n−B(j,3))*B(j,2)/(n−B(j,2))*((n−B(j,2))*(B(j,1)*(n...
−B(j,3))+(B(j,2)−B(j,3))*(B(j,2)−B(j,1))))/((n−B(j...
,3))*(n−B(j,1))*(n−B(j,2))+B(j,3)*B(j,2)*(B(j,3)−B(...
j,2)))+(B(j,2)−B(j,1))/(n−B(j,3));



175

56 else if B(j,4)==2

57 SProbAlpha=SProbAlpha+B(j,1)/(n−B(j,1))+B(j,2)...
/(n−B(j,2))*B(j,1)/(n−B(j,1));

58 else if B(j,4)==3

59 SProbAlpha=SProbAlpha+B(j,1)/(n−B(j,1));
60 end

61 end

62 end

63 Alpha=1/(1+SProbAlpha);

64 %[STEP 3b]: With the strategy σj , determine the expected ...

gain of Player 1 if Player 2 chooses the centroid.

65 if B(j,4)==1

66 SGain=SGain+((n−B(j,2))*(B(j,1)*(n−B(j,3))+(B(j,2)−B(j...
,3))*(B(j,2)−B(j,1))))/((n−B(j,3))*(n−B(j,1))*(n−B(...
j,2))+B(j,3)*B(j,2)*(B(j,3)−B(j,2)))*(n−B(j,1))+B(j...
,2)/(n−B(j,2))*((n−B(j,2))*(B(j,1)*(n−B(j,3))+(B(j...
,2)−B(j,3))*(B(j,2)−B(j,1))))/((n−B(j,3))*(n−B(j,1)...
)*(n−B(j,2))+B(j,3)*B(j,2)*(B(j,3)−B(j,2)))*(n−B(j...
,2))+B(j,3)/(n−B(j,3))*B(j,2)/(n−B(j,2))*((n−B(j,2)...
)*(B(j,1)*(n−B(j,3))+(B(j,2)−B(j,3))*(B(j,2)−B(j,1)...
)))/((n−B(j,3))*(n−B(j,1))*(n−B(j,2))+B(j,3)*B(j,2)...
*(B(j,3)−B(j,2)))*(n−B(j,2))+(B(j,2)−B(j,1))/(n−B(j...
,3))*(n−B(j,2));

67 else if B(j,4)==2

68 SGain=SGain+B(j,1)/(n−B(j,1))*(n−B(j,1))+B(j,2)/(n...
−B(j,2))*B(j,1)/(n−B(j,1))*(n−B(j,2));

69 else if B(j,4)==3

70 SGain=SGain+B(j,1)/(n−B(j,1))*(n−B(j,1));
71 end

72 end

73 end

74 EGain=Alpha*SGain;

75 j=j+1;

76 end

77

78 %[OUTPUT]: Print the guaranteed gain of Player 1 in the text ...

file 'RESULTS.txt' in the specified directory.

79 [Results,message]=fopen(fullfile('C:\Users\Celeste\Documents\...
MATLAB','RESULTS.txt'),'a');
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80 fprintf(Results,'%g ',EGain);

81 fclose(Results);

82

83 %Read the next example from the text file 'INPUT.txt'.

84 tline = fgetl(INPUT);

85 end

86 fclose(INPUT);

A.4 Centroidal Opposing Strategy Algorithm

This section presents the MATLAB® [19] programming code corresponding to the

COS Algorithm 5.32. The code reads the ”INPUT.txt” files from Sections A.1 and

A.2, i.e. the centroidal tree examples created by method 1 and 2. The results are

then written in a text file called ”RESULTS.txt” in a specified directory.

1 %CENTROIDAL OPPOSING STRATEGY ALGORITHM:

2

3 %[INPUT]: Specify the directory and the text file where the ...

examples are read from.

4 [INPUT,message]=fopen(fullfile('C:\Users\Celeste\Documents\MATLAB'...
,'INPUT.txt'),'r');

5

6 %Read a line from text file.

7 tline = fgetl(INPUT);

8

9 %While the line read is not empty.

10 while tline ∼ = −1
11

12 %[STEP 0a]: Convert the information from the text file to n, ...

the number of vertices, d, the number of branches at the ...

centroid, and A, a matrix with the lowest three weights in ...

each branch.

13 temp=textscan(tline,'%f ');

14 n=temp{1}(1,1);
15 d=temp{1}(2,1);
16 A=zeros(d,6);

17 for i=1:d
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18 A(i,1:3)=temp{1}(3+3*(i−1):5+3*(i−1),1)';
19 A(i,6)=n−A(i,1);
20 end

21

22 %[STEP 0b]: Loop that determines the type of each branch and ...

calculates its criterion. If a branch has less than 3 ...

vertices, then by convention, its criterion is zero and the...

branch is labelled as a thick branch. A thin branch is ...

identified by the number 1, a medium branch by the number 2...

and a thick branch by the number 3.

23 for i=1:d

24 if A(i,6)<3

25 A(i,4)=3;

26 A(i,5)=0;

27 else if A(i,2)>=n−A(i,1)+(A(i,1))ˆ2/n
28 A(i,4)=3;

29 A(i,5)=n−A(i,1);
30 else if A(i,2)<n−A(i,1)+(A(i,1))ˆ2/n && A(i,3)>=n−...

A(i,2)+(A(i,2)ˆ2+(A(i,2)−A(i,1))ˆ2)/(n+A(i,2)−A...
(i,1))

31 A(i,4)=2;

32 A(i,5)=((n−A(i,2))/n)*(n−A(i,1))+(A(i,2)/n)*(n...
−A(i,2));

33 else if A(i,2)<n−A(i,1)+(A(i,1))ˆ2/n && A(i,3)...

<n−A(i,2)+(A(i,2)ˆ2+(A(i,2)−A(i,1))ˆ2)/(n+A...
(i,2)−A(i,1))

34 A(i,4)=1;

35 A(i,5)=(A(i,2)*(n−A(i,2))*(nˆ2−n*A(i,3)−A(...
i,3)*A(i,2)+A(i,2)ˆ2+2*A(i,3)*A(i,1)−A(...
i,2)*A(i,1)))/(n*A(i,2)*(n−A(i,3))+A(i...
,1)*A(i,2)*(−n+A(i,3)+A(i,2))+(n−A(i,2)...
)*A(i,1)ˆ2);

36 end

37 end

38 end

39 end

40 end

41
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42 %[STEP 1]:Include some positive probabilities in the opposing ...

strategy of Player 2 on some vertices adjacent to the ...

centroid.

43

44 %[STEP 1a]: Order the branches at the centroid based on their ...

number of vertices.

45 C=sortrows(A,−6);
46

47 l=1;

48 MEGain=0;

49

50 %[STEP 1b−1c]: While there are branches remaining and the ...

number of vertices in the next branch is greater than the ...

current expected gain, add probability on the first vertex ...

of the next branch and calculate the new expected gain.

51 while l<=d && C(l,6)>MEGain

52

53 %[STEP 1b.0]: Let the opposing strategy of Player 2 be a ...

probability of 'a' on the centroid and 'b1','b2',...,'...

bl' on the first vertices of the l branches.

54 syms a;

55 b=sym('b',[d,1]);

56 var=[a; b(1:l,1)];

57

58 %[STEP 1b.1]: Calculate the payoffs to Player 1 when she ...

and Player 2 choose the vertices amongst the centroid, ...

c, and the first vertices of the l branches, u1, u2...

,..., ul.

59 M=zeros(l+1,l+1);

60 M(1,:)=[0 C(1:l,1)'];

61 for i=2:l+1

62 M(i,:)=[repmat(n−C(i−1,1),1,i−1), 0 , repmat(n−C(i...
−1,1),1,l+1−i)];

63 end

64

65 %[STEP 1b.2]: List the expected gains of Player 1 against ...

the opposing strategy of Player 2 when she chooses the ...

vertices, c, u1, u2,...,ul.

66 equations=sym('eqn',[1,l+1]);
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67 equations(1,1)=a+sum(b(1:l,1))==1;

68 for i=1:l

69 equations(1,i+1)=M(i,:)*var==M(i+1,:)*var;

70 end

71

72 %[STEP 1c.1]: Equal the expected gains of Player 1 by ...

solving for 'a', 'b1', 'b2',...,'bl', knowing a+b1+b2...

+...+bl=1.

73 ListEqns=num2cell(equations);

74 ListVar=num2cell(var);

75 V=solve(ListEqns{:},ListVar{:});
76 Prob=zeros(l+1,1);

77 Prob(1,1)=V.a;

78 for i=1:l

79 Prob(i+1,1)=V.(sprintf('b%d',i));

80 end

81

82 %[STEP 1c.2]: Calculate the expected gain of Player 1 when...

she chooses the centroid.

83 MEGain=M(1,:)*Prob;

84

85 l=l+1;

86 end

87

88 %[STEP 2]: Include some positive probabilities in the opposing...

strategy of Player 2 on some vertices at distance 2 from ...

the centroid.

89

90 %[STEP 2a.1]: Calculate the expected gains of Player 1, when ...

she chooses a second vertex with the lowest weight in the ...

branches 1 to l−1.
91 OGain=zeros(1,l−1);
92 for i=1:l−1
93 OGain(1,i)=(Prob(1,1)+Prob(i+1,1))*(n −C(i,2))+sum(Prob...

([2:i,i+2:l],1))*(n−C(i,1));
94 end

95

96

97 IMEGain=MEGain;
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98 IOGain=OGain;

99 IProb=Prob;

100

101 %[STEP 2a.2]: Order the l−1 branches on which Player 2 has a ...

positive probability on the vertex with the lowest weight ...

by the expected gain of Player 1 when she chooses the ...

second vertex with the lowest weight in the branches.

102 D=[C, [OGain, zeros(1,d−l+1)]'];
103 D=sortrows(D,−7);
104 h=1;

105

106 %[STEP 2b−2c]: While there are branches on which Player 2 has ...

a positive probability on the vertex with the lowest weight...

remaining, the expected gain of Player 1 when she chooses ...

the second vertex with the lowest weight in the next branch...

is greater than the current expected gain and the strategy...

for Player 2 is still legal, add probabilities on the ...

second vertex of the next branch and calculate the new ...

expected gain.

107 while h<=l−1 && D(h,7)>MEGain+0.0001 && sum(Prob<0)==0

108

109 %[STEP 2b.0.1]: Save the maximal gain of P1 against the ...

strategy of Player 2 in the case that adding ...

probability on the second vertex with the lowest weight...

in the next branch creates an invalid strategy for ...

Player 2, i.e. a strategy with negative probabilities.

110 IMEGain=MEGain;

111 IOGain=OGain;

112 IProb=Prob;

113

114 %[STEP 2b.0.2]: Let the opposing strategy of Player 2 be a...

probability of 'a' on the centroid, 'b1', 'b2',...,'b{...
l−1}' on the first vertices of l−1 branches and 'g1','...

g2',...,'gh' on the second vertex of h branches.

115 syms a;

116 b=sym('b',[d,1]);

117 g=sym('g',[d,1]);

118 var=[a; b(1:l−1,1);g(1:h)];
119
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120 %[STEP 2b.1]: Calculate the payoffs to Player 1 when she ...

and Player 2 choose vertices amongst the centroid, the ...

first vertices of the l−1 branches and the second ...

vertices of the h branches.

121 M=zeros(l−1+h+1,l−1+h+1);
122 M(1,:)=[0 D(1:l−1,1)' D(1:h,1)'];

123 for i=2:l−1+1
124 if h−(i−1)>=0
125 test=1;

126 test2=i−2;
127 else if h−(i−1)<0
128 test=0;

129 test2=h;

130 end

131 end

132 M(i,:)=[repmat(n−D(i−1,1),1,i−1), 0 , repmat(n−D(i−1,1),1,...
l−1+1−i),D(1:test2,1)', repmat(D(i−1,2),1,test) , D(i:h...

,1)' ];

133 end

134 for i=l−1+2:l+h
135 M(i,:)=[repmat(n−D(i−(l−1+1),2),1,1),repmat(n−D(i−(l...

−1+1),1),1,i−(l−1+2)),repmat(n−D(i−(l−1+1),2),1,1),...
repmat(n−D(i−(l−1+1),1),1,2*l−i−1),repmat(n−D(i−(l...
−1+1),1),1,i−(l−1+2)),0,repmat(n−D(i−(l−1+1),1),1,l...
+h−i)];

136 end

137

138 %[STEP 2b.2]: List the expected gains of Player 1 against ...

the opposing strategy of Player 2 when she chooses the ...

centroid, the first vertices of the l−1 branches and ...

the second vertices of the h branches.

139 equations=sym('eqn',[1,l+h]);

140 equations(1,1)=a+sum(b(1:l−1,1))+sum(g(1:h,1))==1;
141 for i=1:l+h−1
142 equations(1,i+1)=M(i,:)*var==M(i+1,:)*var;

143 end

144
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145 %[STEP 2c.1]: Equal the expected gains of Player 1 by ...

solving for 'a','b1','b2',...,'b{l−1}','g1','g2',...,'...
gh', knowing a+b1+b2+...+b{l−1}+g1+g2+...+gh=1.

146 ListEqns=num2cell(equations);

147 ListVar=num2cell(var);

148 V=solve(ListEqns{:},ListVar{:});
149 Prob=zeros(l+h,1);

150 Prob(1,1)=V.a;

151 for i=1:l−1
152 Prob(i+1,1)=V.(sprintf('b%d',i));

153 end

154 for i=1:h

155 Prob(l−1+i+1,1)=V.(sprintf('g%d',i));
156 end

157 MEGain=M(2,:)*Prob;

158

159 %[STEP 2c.2]: Calculate the expected gains of Player 1 ...

when she chooses a second vertex with the lowest weight...

in the branches 1 to l−1.
160 OGain=zeros(1,l−1);
161 for i=1:l−1
162 if h−i>=0
163 test=l+i;

164 else if h−i<0
165 test=l+h+1;

166 end

167 end

168 OGain(1,i)=(Prob(1,1)+Prob(i+1,1))*(n−D(i,2))+sum(Prob...
([2:i,i+2:l,l+1:test−1,test+1:l+h],1))*(n−D(i,1));

169 end

170 D(:,7)= [OGain, zeros(1,d−l+1)]';
171

172 h=h+1;

173 end

174
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175 %[STEP 3]: Calculate the maximal gain of Player 1 against the ...

resulting opposing strategy of Player 2. If h = 0 or h > 0 ...

and all the probabilities in the resulting opposing ...

strategy for Player 2, are positive, calculate the maximal ...

gain of Player 1 against the opposing strategy of Player 2 ...

which has positive probabilities on the second vertices of ...

0 or h−1 branches. If h > 0 and some negative probabilities...

exists, calculate the maximal gain of Player 1 against the...

opposing strategy of Player 2 which has positive ...

probabilities on the second vertices in h−2 branches.

176

177 if sum(Prob<0)==0

178 Flag=0;

179 else

180 Flag=1;

181 Prob=[Iprob;0];

182 end

183

184 %[STEP 3a]: Calculate the expected gains of Player 1 on ...

another vertex in a branch where Player 2 has positive ...

probabilities on the first and second vertices with lowest ...

weights.

185 if Flag==0

186 O2Gain=zeros(1,h−1);
187 for i=1:h−1
188 O2Gain(1,i)=Prob(1,1)*(n−D(i,2))+(Prob(i+1,1)+Prob(l+i...

,1))*(n−D(i,3))+sum(Prob([2:i,i+2:l,l+1:l+i−1,l+i...
+1:l+h−1],1))*(n−D(i,1));

189 end

190 else

191 O2Gain=zeros(1,h−2);
192 for i=1:h−2
193 O2Gain(1,i)=Prob(1,1)*(n−D(i,2))+(Prob(i+1,1)+Prob(l+i...

,1))*(n−D(i,3))+sum(Prob([2:i,i+2:l,l+1:l+i−1,l+i...
+1:l+h−1],1))*(n−D(i,1));

194 end

195 end

196
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197 %[STEP 3b]: Calculate the expected gains of Player 1 on the ...

vertices with the lowest weight in branches on which Player...

2 does not assign any positive probabilities.

198 O3Gain=zeros(1,d−l+1);
199 for i=1:d−l+1
200 O3Gain(1,i)=(sum(Prob(1:l,1)))*(n− D(l−1+i,1))+Prob(l+1:l...

+h−1,1)'*D(1:h−1,1);
201 end

202

203 %[OUTPUT]: Print the maximal gain of Player 1 against the ...

resulting opposing strategy of Player 2 in the text file '...

RESULTS.txt' in the specified directory.

204 [Results,message]=fopen(fullfile('C:\Users\Celeste\Documents\...
MATLAB','RESULTS.txt'),'a');

205 if Flag==0

206 fprintf(Results,'%g ',max([MEGain,OGain,O2Gain,O3Gain]));

207 else

208 fprintf(Results,'%g ',max([IMEGain,IOGain,O2Gain,...

O3Gain]));

209 end

210 fclose(Results);

211

212 %Read the next example from the text file 'INPUT.txt'.

213 tline = fgetl(INPUT);

214 end

215 fclose(INPUT);
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