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Abstract

Functional connectivity measures applied to magnetoencephalography (MEG) data have the capacity to elucidate neuronal
networks. However, the task-related modulation of these measures is essential to identifying the functional relevance of the
identified network. In this study, we provide evidence for the efficacy of measuring ‘‘state-related’’ (i.e., task vs. rest) changes
in MEG functional connectivity for revealing a sensorimotor network. We investigate changes in functional connectivity,
measured as cortico-cortical coherence (CCC), between rest blocks and the performance of a visually directed motor task in
a healthy cohort. Task-positive changes in CCC were interpreted in the context of any concomitant modulations in spectral
power. Task-related increases in whole-head CCC relative to the resting state were identified between areas established as
part of the sensorimotor network as well as frontal eye fields and prefrontal cortices, predominantly in the beta and gamma
frequency bands. This study provides evidence for the use of MEG to identify task-specific functionally connected
sensorimotor networks in a non-invasive, patient friendly manner.
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Introduction

Coordinated activity of brain regions is essential for integrating

multiple information streams into a task-specific strategy for

response. Thus, the capacity of the human brain to dynamically

involve brain areas in different networks to facilitate neural

communication is essential [1,2]. Consequently, neural networks

associated with neurological disorder have been shown to be

dysfunctional [3,4,5]. Further work is necessary to elucidate the

mechanisms that coordinate and control functional and patholog-

ical neural networks. Functional connectivity (FC) analysis of non-

invasive neuroimaging is essential for extending our knowledge

about how neural networks are dynamically modulated.

The most common non-invasive neuroimaging techniques for

FC analysis are functional magnetic resonance imaging (fMRI),

electro- and magneto-encephalography (EEG/MEG). MEG has

several advantages for FC analysis over EEG and fMRI. Whole-

head MEG systems provide higher spatial resolution than EEG, as

the magnetic fields detected using MEG are less impacted by the

varying conductivities of tissues within the head than the electric

potentials detected using EEG. In comparison to fMRI, MEG

records a direct correlate of neural activity with high temporal

resolution, while the blood oxygen level dependent (BOLD)

response is a slower, indirect measure of neural activity [6,7]. A

recent study of interest has shown reasonable within-subject

correspondence in networks identified using FC measures derived

from MEG and fMRI data [8]. The fact that data acquired with

MEG reflects the neural activity itself with millisecond resolution

provides a means to better understand the underlying mechanisms

and directionality of neural communication. Importantly, MEG is

a more patient friendly environment with fewer contraindications

than MRI, which is critical when considering applications to

clinical populations.

The goal underlying FC analysis is to quantify the synchrony

between ‘nodes’ in the brain to define a neural network. The

underlying assumption is that synchronized activity in spatially

distinct neural populations is indicative of neural communication

between these areas. Co-activation of both areas by a third neural

population is a plausible alternative explanation. In MEG and

EEG, synchrony between nodes is often expressed as cortico-

cortical coherence (CCC), which measures the consistency over

time of the phase difference between two signals as a function of

frequency [9,10]. In fMRI, connectivity is often expressed as the

temporal correlation in the BOLD response between nodes

[11,12]. Network connectivity measures have proven effective

for revealing a number of neural networks during task perfor-

mance, as well as in the resting state [13,14,15,16,17]. Further,

network connectivity measured using fMRI is known to modulate

between rest and task performance [13]. Of particular importance

for the current study, fMRI studies have consistently shown that

synchrony between brain areas in the sensorimotor (SM) network

is increased during motor tasks, when compared to rest [18,19].

This task-positive or –negative modulation of connectivity is an
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important step forward in FC neuroimaging that provides crucial

evidence for the functional role of a specific network.

While it is well established that MEG-related FC analysis can

identify synchrony during a single task state [8,9,16,20,21,22], the

task-related modulation of MEG FC is essential to identifying the

functional relevance of the identified network. In MEG and EEG,

measures such as CCC can be compared between conditions to

reveal task- or stimulus-related changes in synchrony, which

highlights the nodes in a neural network that have the greatest

functional relevance [23,24]. This solution has been used to study

conditionally relevant changes in brain connectivity on time scales

on the order of one second. Importantly, this approach can also be

applied to compare FC between task states (i.e., state-related),

wherein the ‘‘condition’’ is the task as a whole, enabling

comparative FC analysis to be performed over the course of

minutes. For example, reliable changes in FC between rest states

(i.e., eyes open versus closed) have been shown using mutual

information as a measure of neuronal communication [25]. The

current study investigates comparative synchrony between rest and

the performance of a motor task to reveal a functionally connected

task-positive SM network.

Given the emerging importance of task modulation in

elucidating patterns of network connectivity, the purpose of the

present study was to provide further validation of this state-related

approach to imaging functionally relevant neural networks. To this

end, a group of healthy participants underwent MEG scans while

at rest and during the performance of a visually cued bilateral

motor task. This experimental design provided MEG data during

two states, for which existing resting state fMRI literature would

predict an increase in synchrony for node-pairs in the SM network

during the task state. We compared CCC of anatomically

prescribed node-pairs between rest and the performance of

a motor task. We hypothesized that the pattern of CCC across

the whole-brain would be significantly different between the task

state and rest state. Further, we hypothesized that this change

would manifest as increased CCC during task performance in

functionally relevant nodes of the SM network – specifically,

bilateral primary motor and somatosensory cortices (SI/MI), pre-

motor cortices (PMC), supplementary motor area (SMA), thala-

mus and cerebellum (CB). This result would verify the efficacy of

the FC approach, which enables the non-invasive, patient friendly

investigation of the dynamic role of neural networks in brain

function.

Materials and Methods

Subjects and Task Paradigm
Eight healthy right-handed adults (4 female, age: 2564 years)

participated in the study. Handedness was quantified based on the

Edinburgh Handedness Inventory [26]. Participants provided

written informed consent before being enrolled. The study

received approval from the National Research Council, Capital

District Health Authority and IWK Health Centre research ethics

boards. All participants underwent both MEG functional imaging

and a T1-weighted MRI for anatomical co-registration.

Eight study blocks were completed with each participant. The

first and last blocks were ‘‘rest blocks’’ that provided maximal

contrast to the performance of the motor task. In the rest blocks,

participants were asked to relax with their eyes closed. Resting

block duration was 6 minutes. The second and sixth blocks (‘‘test

blocks’’) required the participant to perform a visually cued

bilateral gripping task that involved controlling the movement of

a cursor towards a target (described below). In the third, fourth

and fifth blocks, participants practiced the bilateral gripping task at

a self-paced rate (‘‘training blocks’’). The seventh block involved

repetition of the test block with a different target location (‘‘flip

block’’). Total duration of the motor task blocks varied across

participants owing to variability in response time. On average,

motor task block duration was approximately 7 minutes. Total

time for the MEG session was approximately 1 hour. Only the

‘‘rest’’ and ‘‘test’’ blocks (four blocks in total) were utilized for the

purposes of the present paper.

During the test blocks, participants performed a visually cued

bilateral gripping task with visual feedback. The goal of the

visuomotor task was to accurately move a cursor towards a target

located a fixed distance (18.5 ‘virtual cm’) and angle (22u above

horizontal) from the initial cursor position. Subjects held two

rubber bulbs (inflation bulbs from a sphygmomanometer), one

each in the left and right hand, which controlled vertical and

horizontal movement of the cursor, respectively. Cursor move-

ment was achieved by gripping the bulbs. The initial change in air

pressure generated when a bulb was squeezed was transmitted

through pneumatic tubing to a corresponding pressure sensor

(model ASCX15DN; Honeywell Sensing and Control, Golden

Valley, MN) that converted air pressure to an output voltage. The

output voltages corresponding to the left and right hand were

translated into horizontal and vertical components of the cursor

movement.

The applied pressure was determined from a 300 ms synchro-

nous sampling epoch of the output voltage from the left and right

bulb (1000 Hz sampling frequency, USB 6251 M-Series Multi-

function DAQ; National Instruments, Austin, TX), 100 ms after

the onset of the gripping action. Consequently, the cursor moved

along the prescribed trajectory, and the participant received visual

feedback regarding the proximity of the cursor to the target

(‘‘Accurate’’, ‘‘Close’’, or ‘‘Inaccurate’’). A 3–4 second rest period

(no visual stimulus) occurred before the start of each trial.

Participants performed 50 trials of the task during the test blocks.

MEG Data Acquisition
Before the session, head position indicator (HPI) coils were

placed on the participant’s forehead (x2) and in front of the ears.

The positions of the coils, three anatomical landmarks (nasion and

left/right pre-auricular points), and a 150-point head shape were

digitized using a Polhemus digitization device (Polhemus In-

corporated, Vermont, USA). Self-adhering Ag/AgCl electrodes

(EasyCap GmbH, Herrsching, Germany) were placed on the

anterior aspect of the participant’s left and right forearm in a bi-

polar configuration (inter-electrode distance of 2 cm) to monitor

muscle activity. The electrodes were positioned to record

electromyography (EMG) of the long flexors of the digits (e.g.,

flexor digitorum superficialis and flexor pollicis longus) during task

performance.

MEG, EMG and pressure bulb output voltages were collected

during the six task and two rest blocks while the subject was seated

in the MEG scanner. The MEG system acquired data from a single

magnetometer and two orthogonal planar gradiometers at 102

locations covering the whole head (Elekta Neuromag Oy, Helsinki,

Finland). All data were acquired continuously on the same

electronics at a sampling rate of 1500 Hz with an inline low-pass

filter at 500 Hz for MEG, EMG, and pressure bulb output

voltage. Head position indicator coils were activated during all

blocks to continuously monitor head movement.

MRI Processing and Region of Interest Selection
Whole-head anatomical images were acquired using 3D T1-

weighted scanning sequences on either a 1.5T (GE Medical

Systems, Waukesha, WI) or 4T (Varian Inc., Palo Alto, USA) MRI
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scanner, based on availability. Co-registration of MEG and MRI

coordinate frames was achieved by identifying the nasion and left/

right pre-auricular points on the MRI image using the MRILab

graphical user interface (Elekta Neuromag Oy, Helsinki, Finland).

The head shape digitization supplied both constraint for, and

verification of, the co-registration. Anatomical MRIs were skull-

stripped [27] and spatially normalized to define the transform

between the MRI and Talairach-Tournoux coordinates [28] using

the FreeSurfer software suite (Martinos Center for Biomedical

Imaging, Massachusetts, USA). A boundary element model of the

brain was also generated for use during MEG source estimation

[29].

Seventy-two seed cortical brain areas, as well as eight seed

locations in the CB, were selected as nodes to establish a shared

coordinate-independent framework for all subjects [30,31]. Table 1

lists the Talairach-Tournoux coordinates of cerebellar nodes. The

coordinates of the other 72 nodes have been previously published

[31]. Figure 1 shows the numbered positions of all 80 nodes

superimposed on a template brain. For each subject, the

Talairach-Tournoux coordinates of these 80 nodes were converted

to the MEG head coordinate system using the transformation

matrices defined during MEG-MRI co-registration and MRI

spatial normalization. These locations defined the nodes for

estimating neuronal activity and completing coherence analysis

using MEG. Node-pairs for coherence analysis were defined as all

3160 possible pair-wise combinations of nodes.

MEG Source Estimation
Continuous HPI data were analyzed to ensure that the head

position was stable over the duration of each rest and task MEG

block. Temporal signal-space separation [32] was used for

environmental noise reduction. MEG data were low-pass filtered

at 100 Hz and down-sampled to 300 Hz to reduce processing time

and data storage use. Dataset lengths were matched by including

only the first 360 seconds of each block. Estimated source activity

for each node (i.e., virtual electrode data) were estimated based on

the MEG vendor-supplied beamformer spatial filter (version 2.1)

[33], using a realistic boundary element head model for

calculation of the forward solution [34,35].

MEG Functional Connectivity Analysis
The virtual electrode data at each node were used to calculate

the coherence along all node-pairs for each task and rest block as

follows. For each block, complex Fourier transforms of the virtual

electrode data were calculated on 1.0 s segments every 0.5 s, after

applying a Hanning window to each segment. Each Fourier

transform contained 256 frequency bins, and generated an

estimate of source amplitude and phase over the data segment.

Only 51 frequency bins between 4 and 64 Hz (a priori frequency

range of interest) were used in further analysis. Magnitude-squared

CCC for each node-pair and frequency bin was calculated using

the complex Fourier transform data, as described elsewhere

[10,36].

Figure 1. Anatomically prescribed nodes for functional connectivity analysis are shown as blue dots on a template brain for
viewing perspective. Numbers associated with cerebellar nodes match the numbers in Table 1.
doi:10.1371/journal.pone.0048682.g001

Table 1. Talairach-Tournoux coordinates of cerebellar nodes.

Node Name Hemisphere X [mm] Y [mm] Z [mm]

73 Dentate Nucleus Left 212 252 224

74 Posterior Lobe Left 230 255 249

75 Cruseus I Left 236 246 226

76 Cruseus II Left 245 245 232

77 Dentate Nucleus Right 12 252 224

78 Posterior Lobe Right 30 255 249

79 Cruseus I Right 36 246 226

80 Cruseus II Right 45 245 232

doi:10.1371/journal.pone.0048682.t001

Task-Positive Sensorimotor Network Connectivity
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PLS Statistical Analysis
Cortico-cortical coherence results for all subjects and blocks in

the 4–64 Hz frequency range were compiled to generate a 4-D

data structure (i.e., 4 blocks x 8 subjects x 51 frequency bins x 3160

node-pairs). Mean-centered partial-least squares (PLS) analysis

[37] was applied to elucidate latent variables (LVs) that

represented significant conditional (i.e., inter-block) differences

evident in the CCC data across the group, including effects related

to task state, training and time in the scanner. A permutation test

with 512 permutations of the inter-block difference tested for

a significant change from the null hypothesis (i.e., CCC in all

blocks is the same) [38].

Latent variables that showed significant differences across the

group were investigated further to reveal which node-pairs and

frequency bins reliably expressed the inter-block difference. For

each LV, a bootstrap approach with 512 iterations estimated the

reliability of the inter-block difference in CCC at each frequency/

node-pair combination across the group as a bootstrap ratio (BSR)

[39]. The sign of each BSR indicated whether the conditional

difference in coherence was expressed in a positive or negative

sense (i.e., greater coherence in one group of blocks or the other).

A threshold BSR was determined as the 99.9th percentile of all

BSR values for the current LV. For each node-pair, the largest (if

any) significant positive or negative BSR was determined in the

frequency bands defined by the following separation of cortical

rhythms; i.e., theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz),

and gamma (32–64 Hz).

For each frequency band and LV, we grouped node-pairs with

supra-threshold positive and negative BSRs separately. We

calculated the node degree – defined as the number of node-

pairs that connect each node to the rest of the network – for each

node in the resultant positive and negative networks [40]. Nodes

with degree of three or more across frequency bands were

tabulated as important nodes in the network.

Virtual Electrode Spectral Power Analysis
Measures of phase synchrony are sensitive to changes in the

signal-to-noise ratio of the signals of interest [41]. As such, we also

investigated the power spectra of all virtual electrode data for

inter-block differences. The power spectrum for each node and

frequency bin was calculated by multiplying the complex Fourier

transform of the virtual electrode data by its complex conjugate.

Spectral power results for all subjects and blocks in the 4–64 Hz

frequency range were compiled to generate a 4-D data structure

(i.e., 4 blocks x 8 subjects x 51 frequency bins x 80 nodes). As with

the CCC data, mean-centered PLS analysis with 512 permutation

and 512 bootstrap iterations [37,38,39] was applied to elucidate

LVs that represented significant inter-block differences evident in

the spectral power across the group, including effects related to

task state, training and time in the scanner. Latent variables that

showed significant differences across the group were investigated

further to reveal on which nodes and frequencies the effect was

reliably expressed. A threshold BSR was determined as the 99th

percentile of all BSR values for the current LV. The interpretation

of all CCC results, in terms of functional connectivity, was

completed in the context of concomitant modulations in spectral

power identified herein.

Results

Inter-Block Changes in Connectivity
Two blocks of MEG data during performance of the task

(‘‘test1’’ and ‘‘test2’’) and two blocks of resting MEG data (‘‘rest1’’

and ‘‘rest2’’) were included in the FC analysis. Inter-block changes

in CCC between estimates of brain activity at the 80 anatomically

prescribed nodes were tested for statistically significant differences

from the null hypothesis (i.e., connectivity is the same across all

blocks). The PLS approach revealed one significant LV across the

group that differentiated CCC between ‘‘task’’ and ‘‘rest’’ blocks

(p,0.005). Thus, the first LV reveals that FC is modulated

between performance of the motor task and rest in this subject

group.

Spatial patterns of connectivity
We further investigated the spectral and spatial pattern of the

task-related change in connectivity. The BSRs for the first LV

were calculated to evaluate the reliability of the task-related

difference across the group between each node-pair and at each

frequency bin. Thus, for the first LV, node-pairs and frequency

bins with positive supra-threshold (i.e., 99.9th percentile) BSRs

reliably showed ‘‘task-positive’’ increases in connectivity. Task-

positive increases in CCC occurred mainly in the beta (16–32 Hz)

and gamma (32–64 Hz) frequency bands.

Axial and coronal maps of supra-threshold positive BSR values

for the first LV (i.e., task-related increase in synchrony) in the beta

(Figure 2) and gamma (Figure 3) bands were generated to reveal

the spatial pattern of task-related connectivity. The BSR values are

plotted as red lines connecting the relevant nodes to indicate

relative increases in coherence during the motor task. The

thickness of the line represents the BSR magnitude, with thicker

lines indicating greater reliability of the effect across the group.

The connectivity maps are superimposed on a 3-D rendered

template MRI to provide viewing perspective. Task-positive

connectivity in the beta and gamma bands exists most densely at

bilateral SI and MI, PMC, SMA, CB, and frontal nodes.

Task-Positive Functionally Connected Nodes
Nodes of the task-positive network with degree of three or

greater (i.e., connections to three or more other nodes) are listed in

Table 2. These nodes include bilateral PMC, SI, MI, SMA, and

CB, which are all associated with SM processing. As well, the

frontal eye fields (FEF) and prefrontal cortices were identified.

These areas are involved in eye movement [42] and executive

control [43,44], respectively, which are important processes for the

performance of the task utilized in this study. A high degree of

task-positive connections to the thalamus (an expected node in the

SM network) was not expressed in the data.

Power Spectra
The PLS approach applied to the virtual electrode power

spectra identified a single inter-block contrast (LV), which

differentiated ‘‘test’’ from ‘‘rest’’ blocks (p,0.005). Thus, both

spectral power and CCC expressed the same inter-block change.

The BSRs for this LV at each node and at each frequency bin –

expressing the reliability of the task-related power difference across

the group– is shown in Figure 4. Task-related changes in signal

power occur predominately in the alpha (decrease) and gamma

(increase) bands. Across supra-threshold nodes and frequency bins

in the gamma band, the average task-related increase in signal

power was 18.760.6% (mean6 standard error). The signal power

was not reliably different between rest and performance of the task

in the beta band (16–32 Hz).

Discussion

When compared with rest, a task-related increase in FC

occurred between brain areas involved in movement and

somatosensation (MI/SI), motor planning (PMC/SMA/CB),

Task-Positive Sensorimotor Network Connectivity
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executive control (PFC) and vision (FEF). Task-positive connec-

tivity manifested as greater CCC mainly in the beta and gamma

frequency ranges. The nodes of this task-positive network include

many components of the SM network defined based on current

resting state [17,18,19,45] and extensive task-related research

[16,46]. The increased coherence between nodes in the SM

network during task as compared to rest parallels findings from FC

studies performed using fMRI [18,19]. We did not find any high

degree task-positive nodes in the thalamus, although this was

expected as MEG reports of thalamic activity are rare, suggesting

the technology may be relatively insensitive to this region of the

brain [47]. Beyond the SM network, FEF and PFC were also

Figure 2. The bootstrap ratios (i.e., reliability; BSR) of task-positive changes in beta (16–32 Hz) band cortico-cortical coherence are
shown. Blue dots indicate anatomically prescribed nodes. Red lines indicate coherence was reliably greater during the task. The thickness of the line
indicates the magnitude of the BSR. Node-pairs with ratios below the 99.9th percentile are not shown. Data are shown on a template brain for
viewing perspective.
doi:10.1371/journal.pone.0048682.g002

Figure 3. The bootstrap ratios (i.e., reliability; BSR) of task-positive changes in gamma (32–64 Hz) band cortico-cortical coherence
are shown. Blue dots indicate anatomically prescribed nodes. Red lines indicate coherence was reliably greater during the task. The thickness of the
line indicates the magnitude of the BSR. Node-pairs with ratios below the 99.9th percentile are not shown. Data are shown on a template brain for
viewing perspective.
doi:10.1371/journal.pone.0048682.g003

Task-Positive Sensorimotor Network Connectivity
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implicated in the task positive network to support the visual aspect

of the task, and the integration of feedback into motor planning.

Thus, our findings provide evidence for the utility of FC MEG

analysis techniques to identify specific task-positive nodes in

a functionally connected network.

While functional connectivity maps can be generated based on

fMRI data, the neurovascular response is non-specific about the

underlying neural mechanisms. Existing electrophysiological

literature provides strong evidence for the predominant role of

synchrony in beta [48,49,50,51] and gamma [52,53,54,55] cortical

oscillations during SM processes. The current work conforms to

these previous findings, showing reliable task-related increases in

CCC in the beta and gamma frequency bands. Coupling

synchrony measures to specific bands of rhythmic neural activity

in this way can only be achieved non-invasively with the high

temporal resolution available via MEG and EEG. Further,

increased beta band FC occurs in the absence of a significant

change in signal power relative to the rest block. Demonstrating

a task-positive increase in FC in the absence of power change

supports the efficacy of this approach to mapping functionally

relevant connections within the SM network [41]. The task-related

increase in gamma band CCC needs to be considered in the

context of the concurrent increase in signal power. Additional

work is necessary to develop measures of neuromagnetic

synchrony that are stable when concomitant changes in signal

power occur.

Combining the mean-centered PLS approach with CCC

calculated for MEG beamformer source estimates at anatomically

based nodes provided an ideal framework for testing our

hypothesis regarding task-related changes in FC. This approach

is gaining traction in the FC neuroimaging field for electrophys-

iological data, and has been applied in an event-related

experimental design, requiring the repetitive presentation of

a stimulus or performance of a task [23,24]. In general, FC

analysis measures synchrony with respect to an ongoing reference

signal such as the activity in a specific brain area, which eliminates

the reliance on an event-related design. Examining FC during

a single task state has been achieved previously with MEG using

CCC and phase locking indices [8,9,16,20,21,22]. Further,

reliable changes in FC between rest states (i.e., eyes open versus

closed) have been shown using mutual information as a measure of

neuronal communication [25]. In the current study, the ‘‘state-

related’’ approach - measuring changes in synchrony between rest

and a specific active task - provides increased specificity in

identifying the task-positive neural network. This approach can be

readily applied to alternative measures of synchrony such as

mutual information or phase locking indices. Thus, the current

work provides further validation of a technique for imaging task-

specific brain networks that may be applicable to a host of tasks

(e.g., navigation, sustained movement, etc.), which have been

difficult to access in the past.

One of the challenges in performing FC analysis in MEG (and

EEG) is source estimation owing to the reduced spatial resolution

of these techniques relative to fMRI. Multiple source estimation

techniques, such as the beamformer spatial filter (employed here)

and minimum norm estimation, face the challenge that it can be

difficult to determine if synchrony between nodes is actually due to

two distinct signals being generated in the brain. An alternative

explanation is that the source analysis technique has not

completely spatially resolved the brain activity at the two distinct

locations. In this case, the source estimates contain traces of the

same MEG sensor signals – termed ‘‘cross-talk’’ – that can lead to

spuriously high levels of coherence between the locations [9]. By

looking at relative changes in coherence rather than absolute

levels, the FC analysis described here provides an avenue to

attenuate ‘‘cross-talk’’, as well as increase specificity to task-related

(i.e., functional) connectivity.

An additional challenge with FC analysis in general is the

requirement to calculate the measures over minutes of data.

Integrating over time is a necessity in FC analysis given the poor

signal-to-noise ratio of the acquired data. This is an inherent

weakness of many neuroimaging measures. For example, event-

Table 2. Task-positive network nodes with high degree are
listed.

Node Hemisphere Degree Band [Hz]

Supplementary Motor Area Left 5 32–64

Ventrolateral Premotor
Cortex

Left 5 16–64

Posterior Cingulate Cortex Midline 5 16–64

Middle Temporal Cortex Right 5 32–64

Dorsolateral Prefrontal
Cortex

Left 4 32–64

Primary Somatosensory
Cortex

Left 4 16–32

Frontal Polar Right 4 32–64

Supplementary Motor Area Right 4 32–64

Dentate Nucleus
(Cerebellum)

Left 3 32–64

Frontal Eye Field Left 3 16–64

Inferior Parietal Cortex Left 3 32–64

Precuneus Left 3 32–64

Dorsomedial prefrontal
cortex

Left 3 32–64

Cruseus I (Cerebellum) Right 3 32–64

Primary Motor Cortex Right 3 16–64

Centrolateral Prefrontal
cortex

Right 3 16–64

Ventrolateral Premotor
cortex

Right 3 4–8

The name of the underlying anatomical structure, as well as node degree and
frequency band is shown.
doi:10.1371/journal.pone.0048682.t002

Figure 4. The bootstrap ratios (i.e., reliability; BSR) of task-
related changes in spectral power are shown for all nodes (x-
axis) and frequency bins (y-axis). A task-related decrease and
increase occurs in the alpha (8–16 Hz) and gamma (32–64 Hz) bands,
respectively. No reliable task-related change in beta (16–32 Hz) band
signal power occurs between rest and performance of the task.
doi:10.1371/journal.pone.0048682.g004

Task-Positive Sensorimotor Network Connectivity
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related analysis will average data across numerous stimulus

repetitions over the course of minutes. The underlying assumption

is that the brain activity is consistent across the measurement

interval. Subjects in the current study were actively engaged in the

visuomotor task for the majority of the task block. Thus, the

increased FC observed during the task block is likely indicative of

changes in neural synchrony that support the performance of the

task.

The results of this study support the use of MEG-based FC

analyses to image task-related changes in neural networks. Further

work however is necessary to validate this approach in other

experimental paradigms, including those examining cognitive

function. In light of several recent studies that show altered

patterns of network connectivity in patients with neurological

deficits before [4,5,56,57] and after treatment [58,59,60], the

potential use of MEG as a tool to monitor and direct treatments to

facilitate recovery is promising. For instance, establishing relation-

ships between network composition and recovery can aid in

guiding treatments designed to restore optimal network connec-

tivity patterns. Additionally, monitoring the changes in network

composition as treatment progresses can provide information

about treatment efficacy and/or patient responsiveness to treat-

ment. The approach described in the current work may prove

useful for monitoring neural networks related to the performance

of tasks critical to rehabilitation and recovery.
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