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ABSTRACT

The authors scale the five-mode model introduced by Lorenz and Krishnamurthy and show how explicit
solutions may be obtained in the limit of small Rossby number by using the method of multiple scales. They
thus obtain a characterization of the *‘slow manifold™ of this model.

1. Introduction

In seeking to do numerical weather prediction, it is
necessary to filter out the short-period gravity waves
(e.g., Baer and Tribbia 1977) in favor of the longer-
term behavior on the Rossby wave timescale. Lorenz
(1986) and Lorenz and Krishnamurthy ( 1987) sought
to understand the basis of this procedure by introducing
a five-mode truncation of the rotating shallow-water
equations. The Lorenz—Krishnamurthy model was

u=—vw+ bvz — au,
v =uw — buz — av + af,
W = =y = aw,
X ==z —.ax,
Z = buy + x— az.

(L.1)

In these equations, u, v, w are Rossby wave modes,
while x and z are gravity wave modes. The coefficients
a, b, fare positive and represent damping, coupling,
and forcing, respectively. It is appropriate to take a and

[ as small, and Lorenz (1992) selected a = 0.02, f

= 0.2, b = 0.5. Based on this, we define

a=e?, f=ce (1.2)
and consider b, ¢ as O(1), while ¢ < 1.

The equations (1.1) admit a steady solution, H,
givenby x = z = u = v — f= w = 0 and representative

of the (unstable if f > ¢*) Hadley circulation. The idea
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is that solutions will generally oscillate about H. If we
neglect a, ffor the moment and also put b = 0, we see
that the Rossby triad (u, v, w) and the gravity dyad (x,
z) oscillate independently, the latter with a period 27,
The Rossby period depends on the amplitude, since if
we put u + iv = Ae“’ then (withb =a = f=0)A
is constant (and arbitrary ). and ¢ satisfies ¢ + A~ sing
= 0, with period (for small ¢) =~ 2= /A.

To make sense, we need A <€ | in order that the
Rossby variables evolve on a long timescale. Specifi-
cally, we now define

u+ iv=eBe™?, x=¢%, (1.3)
whence it follows that (if B and ¢ are real)

z = —e2(£ + &%),

._]_'_,Z.E 9 ¢ 2
w—qu c[3c052+b(£+ef)]. (1.4)

where the rescaling of x is also implied a posteriori by
the assumption that ¢ may be slowly varying. Adopting
these assumptions, we have the equations in the form

b + €*B* sing = 63[2b5§ - {é sin % + ]}rf:]

. 2¢
- f“‘[4b£ & Ec cos %} + 2be"E,
E=f2[—-B+Csin?].
2
. b, . ) ]
§+£=-:}-B‘Smd)—c‘(§+£)—f§. (1.5)

and now £ is the gravity variable, and B and ¢ are the
Rossby amplitude and phase.
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The Hadley state has x = z = 0, and in linearizing
about H, we see from (1.1) that x = z = () is an in-
variant eigenspace, which also contains the (one di-
mensional ) unstable eigenspace. Thus, the unstable
manifold W"(H) (Guckenheimer and Holmes 1983)
of H is contained in an invariant manifold, which is
tangent at H to x = z = 0. Insofar as this implies that
trajectories on W*(H) are slowly varying near H, one
might conjecture that W"(H) is contained in a hypo-
thetical three-dimensional manifold in the five-dimen-
sional phase space, on which trajectories are slowly
varying, and termed the ‘“‘slow manifold” (Leith
1980). Jacobs (1991) showed that a unique three-di-
mensional invariant manifold does exist, which is tan-
gent to x = z = 0 at H; however, it was shown by
Lorenz and Krishnamurthy (1987 ) and Lorenz (1992)
that the trajectory on W*"(H) develops fast oscillations
after a finite time. According to Lorenz (1992), “‘the
question as to just how the slow manifold ought to be
defined seems to be presently unsettled.”

More recently, Boyd (1994 ) has considered the is-
sue. He considers an inviscid limit of (1.1) in which
he puts @ = f= 0; of course, this removes the natural
small parameter from the system. It can be shown that
the reduction corresponding to (1.5) is

¢ + €*B? sing = 2be’,
B =10,

5+§=—§stin¢. (1.6)
The arbitrariness of ¢ is manifested by the arbitrary
value of B, but to be consistent with (1.1), we select
B = O(1). Despite the degeneracy of this simplifica-
tion, we shall see that it is entirely adequate to an un-
derstanding of the full model.

Boyd’s main contribution was in analyzing a further
simplification of (1.6), in which » was put to zero in
(1.6); only [the first of the three (1.6) relations], so
that the Rossby triad is uncoupled and drives the grav-
ity dyad. By virtue of an extraordinary exact solution,
he showed that periodic Rossby waves could excite
gravity waves of exponentially small amplitude. In sec-
tion 2 below, we examine the same question for the full
Lorenz—Krishnamurthy (LK) system. Boyd (1995a)
considered the nature of the slow manifold further and,
in particular, related the study of this “*fuzzy’’ manifold
to the subject of superasymptotic perturbation methods
(Berry 1991).

2. Perturbation analysis

In this section, we address three questions: (i) How
should a slow manifold be usefully defined for the LK
model? (ii) How does the unstable trajectory W"“(H)
from H evolve with time? (iii) Is it the case, as sug-
gested by Boyd (1994), that exponentially small-am-
plitude gravity waves are always excited?

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 10

a. The slow manifold

The slow manifold is associated with solutions that
vary slowly in time. It is then essential to associate this
with the specific limit ¢ = 0 in (1.5). Specifically, we
have the following ansatz: a slow manifold exists if
there are slowly varying solutions ¢(7), B(7), &(7) of
(1.5), where 7 = et, as e = 0. If it exists, it is evidently
of three dimensions.

We put 7 = e, so that (1.5) becomes

& + B sing = —c{gsin % + |}¢'

2 .
+ ez{ZbE" + EC cos Q;} + 4e’bE" + 2be’t,

&

B’ =e[—B+csin%:|,

b . 5
§ =~ =B g — 2HEH B~ F — 6 (21)
where ¢ = d/dr, etc., and we seek asymptotic ex-
pansions of the form

b~y +eh, + -0,

etc. Clearly, the loss of the highest derivatives of £
allows us to prescribe ¢(0), ¢'(0), B(0), and then
£(0) and £7(0) are determined; therefore, the slow
manifold is a three-dimensional subspace of the five-
dimensional phase space.

At leading order, we have B = By is constant,

bq + Bi sindy = 0,

(2.2)

b . .
&= — 2 Bj sindy,

where ¢, satisfies a nonlinear pendulum equation and
is periodic, with energy

(2.3)

l b
-~ ¢¢* — Bl cosdp, = E.

- (2.4)

In particular the unstable trajectory from H has E
= B}, and
¢y = 2 tan "' sinhBy7. (2.5)

Since the leading-order equation is that of a conser-
vative nonlinear oscillator, evolution of E on a slower
time scale is indicated. We put ¥ = e7, so that
= (T, 7). From (2.1),2,

i‘E
dr

=—e{§sin%)+ l}qﬁ'2+

df = —({B —c sin%} .

(2.6)
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so that to leading order, the method of averaging in-
dicates that ¢ is given by (2.4), and B = B(7), E
~ E(7), where

dE

dB T

dF &y dr ~#"/B,
where ¢’ is the average of ¢' over a period of (2.4)
(note that sin($/2) = ¢'?sin(¢/2) = 0 through the
symmetry of ¢ ); hence, to leading order, E and B decay
to zero.

Thus, it seems that an asymptotic description of tra-
Jjectories on a slow manifold can be successfully de-
veloped. The slow manifold itself is defined iteratively
through solving (2.1 ); for £. In particular, H lies on the
slow manifold.

The above analysis is purely formal (and abrupt),
and some comment is in order on the nature of the
expansions, and what is likely to happen at higher or-
der, and at longer time. First, the neglect of €%¢” in
(2.1); is a singular approximation. In particular, this
precludes us from satisfying initial conditions for £ and
&'. This often is resolved by the existence of a boundary
layer: here, however, the neglected term —e’¢” indi-
cates a WKB-type approximation, which simply rep-
resents the fact that, more generally, £ will have a si-
nusoidal component & cos(z + ), but as we are ex-
plicitly seeking the slow manifold in which this
component is absent (to all algebraic orders of ¢), we
see that the regular expansion (2.2) is sufficient to com-
pute this.

The right-hand sides of equations (2.1) are regular
functions provided B # 0, and thus the description of
the solutions above is valid until B becomes small. In
other words, ¢ oscillates on the slow Rossby timescale
T = et, with slowly varying amplitude and phase de-
scribed by (2.4). In fact, writing this equation as

l(,b'l E + B?
2. B? B’

(2.7)

+ (1 —cos) = : (2.8)
we see that the amplitude is controlled by (E + B? )/
B?, with the amplitude tending to zero if (E + B*)/B>
= O and becoming homoclinic [as in (2.5)] if (E
+ B*)/B* = 2. The period of the oscillation (on the
slow 7 = er timescale) is O(1/B). Consideration of
(2.7) indicates that when B becomes small (E + B?)/
B? rapidly approaches 2. Therefore, for small B, the
Rossby wave variable ¢ will approach the homoclinic
trajectory (2.5). However, it is clear that if this happens
the averaging procedure breaks down, and, in particu-
lar, the derivation of (2.7) from (2.6) becomes invalid.

To go beyond this, we note that a distinguished limit
B = ¢€¢""B, ¢ = ¢"%p, + = T/e"? causes a further
approximate reduction to be made when B is small.
This is

P +§:(a -5 - m[zﬁ s 1]4,
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7=} [ B+ ‘“"‘*5] (29)
where B' = dB/d7, and we would deduce that ¢ os-
cillates on the timcscale 7 =0(1), that is, t = O(1/

€”'?), while the amplitudes of ¢ and B relax to the
steady values

B:CID, d)z

which represent the final stable steady state of the sys-
tem. This evolution is also observed numerically (see
below).

2l 2, (2.10)

b. Development of W*(H )

How does this expansion method relate to the unsta-
ble manifold from H? The only difference is that the
averaging method must be modified when W"(H)
passes close to H; this can be done following, for ex-
ample, Fowler (1984). However, as pointed out by Lo-
renz and Krishnamurthy ( 1987) and Boyd (1994), pas-
sage near a stationary point induces gravity waves of
exponentially small (in ) amplitude. Specifically, we
have, for 7 ~ O(1)

¢ ~ 2tan"' sinhByr, B ~ By, (constant). (2.11)
and thus, from (1.6),
£ + & ~ —b*B sechBr tanhBr,  (2.12)

with solution (£ = 0 as 1 -+ —c)

-

b '
£=— [ f secheBs cossds cost
€ L

- f secheBs sinsds Sin!} . (2.13)
and the difference between t = —2c and t = + = is
Af =— f secheBs cossds cost

b’ =
Be? P\ 2Bc
In an asymptotic sense, these exponentially small grav-
ity waves are “*beyond all orders’” of any normal per-
turbation expansion. Nevertheless, they can practically

be quite large. If b = 0.5, B = 1, € = 0.14, then | Af]|
~ 1.2 x 1077; however, if B = 3 then [|Ag|| ~ 0.65.

) cost. (2.14)

c. Exponential asymptotics

As indicated by Boyd ( 1994 ), this result is not con-
strained by the approach toward H, since the general
solution of the periodic solutions of (2.3), can be writ-
ten as a superposition of the heteroclinic solutions.
With
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U+ iV=Be"? W=4¢'/2,

then the periodic solutions of (2.3), are

(2.15)

U=« Z sechla(T — nP)],

n==w%

V=—aX (—1)"tanh[a(T — nP)].

n

W=—a) (—1)"sech[a(T —nP)], (2.16)

where @ = a(By) (and @« = Byas P—=)and P = P(E,
By) is the (Rossby) period. Since ¢ satisfies, from
(I'6 )3!

£+ &= —bUV=R(7), (2.17)

it is clear from the preceding discussion that exponen-
tially small gravity modes are generated by the slow
variation of the Rossby modes. However, as B de-
creases (and thus also u, v, w), the amplification with
time diminishes very rapidly.

More generally, the solution of (2.17) can be written
as

£ élm f R(U)exp[%u)]dU (2.18)

A method for extracting the exponentially small *‘ra-

diative’” component of this solution has been given by

Boyd (1995b). We continue R as an analytic function

in the complex plane. For example, we can do this by
R(U)dU U

defining
1
Pel=g f U-z

and note that F.(z) (=F,Imz > 0)and F_(z) (=F,
Imz < 0) are respectively holomorphic in Imz > 0 and
Imz < O (note that F_(z) = —F.(Z)). We continue
F, and F_ analytically into Imz < 0 and Imz > 0 (note
that the continued functions F. and F_ are not equal);
thenR(z)=(F.(z)— F_(z))/2isan anaiytic function
that equals the prescribed R(7) on z = 7 € R. For
example (trivially), if R = 1/(1 + 72), then by direct
contour integration we find Fy, = i/(z + 1), F. = il(z
—{),and R = 1/(1 + z%) (as we expect).

A steepest-descent path for (2.18) through U = 7 is
given by U = 7 — is, s > 0, and, providing R tends to
zero at = in Imz < 0, we can deform the contour in the
complex U plane, so that (2.18) becomes

£= Re[f R(7T — ieS)e*dS

0

(2.19)

2 8

4+ — Z RJc-vs}hertrr,l] 5 (220)

e =
J

where R has poles at U = 7; — is;, 7, = et;, with I;

< 1, and the corresponding residues are R;. Application
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of Laplace’s method to the integral gives the slow
manifold

E~R(T)—€R"(7) ..., (2.21)
and we see that when the vertical complex time contour
sweeps past a (complex) singularity of R(7) it picks
up an.exponentially small gravity wave. Since, if R has
a singularity at z; , it also has one at z; (by definition of
F. ) and since the only entire function R that is zero at
infinity is zero, we see that any R that can be analyti-
cally continued so that R — 0 at = will have a singularity
in the lower complex half-plane and, thus, eventually
produce gravity waves.

When there is no finite singularity, the situation is
slightly different. For example, if R(7) = e 7", then
its continuation ¢ * has no finite singularities but is
singular at infinity. The steepest descent contour cannot
proceed to 7 — iee, and one has to consider the constant
phase paths of the whole integrand; thus,

ﬁzllm fT exp[qb( ]iU (2.22)
€ —

where ¢(U) = i(7 — U) — eU?. The constant phase
path through U = 7 asymptotes to —o — i/2e if 7 < 0
but to +% — i/2¢ if 7 > 0. In the latter case, defor-
mation of the contour requires inclusion of a steepest-
descent path U = —(i/2¢) + s through the saddle point
of ¢p at U = —i/2e, and as 7 increases through zero, it
picks up the saddle point contribution, which is

(v /€)e "4 sint. This can be compared with the effect
of R(t) = 1/(1 + 7%), where the sweep past 7 = 0
produces the term —(7/e)e ''* sint.

The generation of exponentially small terms in
(2.17) has been studied before, for example by Ma-
hony (1972) and Boyd (1991 ), and is part of the grow-
ing subject of exponential asymptotics (Segur et al.
1991). In particular, methods have been developed for
the asymptotic development beyond all orders of ex-
pressions such as (2.18) (Berry 1991; Boyd 1995b),
although their direct construction from the governing
differential equation is problematic.

3. Discussion

Lorenz (1992) questioned whether a slow manifold
actually existed for his five-mode primitive-equation
model, based on the development of gravity modes on
WH(H). Boyd (1994) suggested that this would gen-
erally be the case, with exponentially small gravity
terms, based on a further-simplified model. What we
have shown is that this conclusion applies also to the
full Lorenz—Krishnamurthy model, in the limit where
e =a'”— 0 while f/e = O(1). The use of a multiple-
timescale perturbation procedure is central to this con-
clusion. Our analysis indicates that the Rossby wave
variables, suitably scaled, are of amplitude O(¢) and
oscillate equivalently to a pendulum on a slow time-
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FiG. 1. Solution of (1.1) starting fromu = x =z =0, v =02, w
= —0.001, near the unstable Hadley fixed point H. The parameter
values used are b = 0.5, a = 0.02, f = 0.2. After the first return near
H, we see the generation of a gravity wave mode of amplitude (by
eye) ~0.0004. The theoretical amplitude [ from (2.11), using (1.1)]
is Az ~ (2nb%B) exp(—=/2Be), which, with B = ¢ = 1.414, is Az
~ 0.00043. This figure shows the damping of the Rosshy wave am-
plitude on the timescale 1 ~ 1/¢® (+ ~ l/e). In seeking to illustrate
our results, we are led to consider an initial condition close to the top
of the “pendulum’™ [see (2.1)], i.e., ¢ = m, ¢’ = 0. This permits the
switching on of the gravity waves to be easily seen when € = 0.14,
but the near-heteroclinic nature of the trajectories causes the subse-
quent pulses to be much smaller, and effectively, what we see is the
first gravity wave being gradually damped.

scale 1 ~ 1/e. Passage through each oscillation gener-
ates an exponentially small gravity wave of period ¢
= 0(1). These oscillations are out of phase with each
other, so that there is no secular buildup in time. Over
alonger timescale 1 ~ O(1/¢?), the Rossby amplitudes
decrease exponentially (like exp[ —O(e’1)]), and the
oscillation periods grow inversely. For times longer
than this, the Rossby periods lengthen to r = O(1/¢*?),
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and the amplitudes decay to a final stable equilibrium
state over a timescale t+ = O(1/¢?). This later devel-
opment is, however, not of principal concern here.

In Fig. 1 we show a representative solution that in-
dicates the sudden acquisition of gravity modes as the
nonlinear pendulum swings through an angle 27. This
figure also reveals the damping over the slower (1
~ 1/e* = 50) timescale, and we see that the strength
of the fast gravity waves is damped similarly. See the
figure caption for further details. Our conclusion thus
follows that of Boyvd (1994): a *‘slow’” manifold can
be constructed via formal power series in the ‘*Rossby
number’’ €. In the vicinity of the fixed point H, these
expansions are limited by the fact that trajectories, par-
ticularly those which approach H, *‘pick up’” a dress-
ing of gravity waves, whose amplitude varies exponen-
tially with —1/¢. While formally these gravity modes
are smaller than O(e") for any N, in practice, they can
be a significant numerical contaminant.
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