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Abstract

Knowledge of NOx (NO2 + NO) emissions is useful to understand processes
affecting air quality and climate change. Emission inventories of surface NOx have
high uncertainties. Satellite remote sensing has enabled measurements of trace
gases in the atmosphere over a large regional and temporal scale. Inverse modeling
of NO2 observations from satellites can be used to improve existing emissions
inventories. This study seeks to understand the difference in two methods of inverse
modeling: the mass balance approach and the adjoint approach using the GEOS-
Chem chemical transport model and its adjoint. Using both synthetic satellite
observations and those derived from the SCIAMACHY satellite instrument, this
paper found that the performance of these two inversions was affected by pixel
smearing and observational error. Smearing reduced the accuracy of the mass
balance approach, while high observational error reduced the accuracy of the
adjoint approach. However, both approaches improved the a priori emissions

estimate.
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Chapter 1 Introduction
1.1 Motivation

Emissions of nitrogen oxides, (NOx =NO and NO3), play a major role in air
quality and climate change. NOj serves as a catalyst for the production of
tropospheric ozone, a greenhouse gas that directly affects the Earth’s radiation
budget [Forster et al, 1997]. Nitrogen dioxide affects human health and mortality
[Burnett et al., 2004]. Sources of NOx emission into the troposphere include fossil
fuel combustion, soil, biomass burning, and lightning. Direct inference of emissions
is impeded by sparse in situ measurements. However, satellites are able to provide
broad spatial and temporal perspectives that should improve our understanding of
emissions.

Researchers aggregate information about NOx emissions, such as fuel and
land use statistics, emissions records, and direct measurements, to create “bottom-
up” emissions inventories. Climate models, which are used in various applications,
rely on these emissions inventories as inputs. But these inventories have a great
deal of uncertainty associated with them. And although there are also uncertainties
in other model parameters, such as chemistry and deposition, emissions
uncertainties can drive the errors in the model. Furthermore, the emissions
inventories are often for previous years and must be scaled in order to reflect

current time periods.



NOy is emitted into the troposphere primarily as nitric oxide (NO). It then
reacts with tropospheric ozone to produce nitrogen dioxide (NOz), which is
subsequently photolysed back to NO. This rapid cycling between the two species
reaches steady- state within minutes. The major sink for NOy in the troposphere is
through oxidation. During the day, the hydroxyl radical is formed through
photolysis and oxidizes NO; to HNOz which is subsequently removed through wet
deposition.

Satellites are able to measure tropospheric NO; concentrations over large
spatial and temporal scales. These measurements can provide a “top-down”
constraint for emissions inventories. Using these satellite measurements of NOz in
combination with knowledge of emissions sources and vertical distribution of NOx
allows for inferences to be made about NOx emissions through inverse modeling.

There have been various methods of inverting NO; satellite measurements
used to improve NOx emissions inventories. Techniques such as a mass balance
approach (e.g. Martin et al., 2003, 2006, Jaegle et al., 2005, Wang et al., 2007) and
multivariate linear regression (e.g. Lin ,2012) have been used to invert NO; vertical
column densities (VCD), creating a “top-down” estimate of NOx emissions that can
be combined with the “bottom-up” or a priori estimate. Both of these techniques
assume that the transport of NOy across spatial grid boxes could be neglected due to
the short life-time of NOx. However sensitivity studies show that non-local sources
contribute to the tropospheric NOz columns, even those averaged over larger spatial
regions (Turner et al., 2012). Four- dimensional variational (4DVAR) data

assimilation and Kalman filters, which take into account feedbacks from non-local



sources of NOz have also been used in inversions (Napelenok et al., 2008, Mijling et
al., 2012, Kurokawa et al., 2009). These data assimilation techniques are
computationally expensive and can take days or even weeks, to solve inversion
problems. The present study seeks to further understand the differences between
the mass balance and 4DVAR methods of NO; inverse modeling and each techniques

advantages and disadvantages.

1.2 Background Information
The following section discusses some background information related to NOx
chemistry, chemical transport models, inverse modeling and the mass balance and

4DVAR techniques.

1.2.1 NOx Chemistry

The primary anthropogenic sources of NOx include combustion of fossil fuels
from power generation, automobiles, and biomass burning. Natural sources include
lightning, forest fires, and soil emissions. NOxis emitted primarily as NO and is

quickly converted into NO in the following cycle:

NO + 03> NO2 + 0; (R1)
02
NO; +hv=> NO + O3 (R2)

The inter-conversion between NO and NO; reaches steady state within minutes.
Reaction R1 has a temperature dependence which results in NO as the dominant
species in the lower troposphere, from the surface to the boundary layer and NO in

the upper troposphere, from the boundary layer to the tropopause.



During the day the primary sink for tropospheric NOy is through oxidation
into nitric acid followed by wet deposition.
NO2 + OH + M> HNO3 + M (R3)
The hydroxyl radical, OH, is produced through photolysis of ozone. Therefore at

night NOx undergoes a different loss mechanism.

NOz + 03> NO3z + 0, (R4)

NO3 + NO2 + M = N20Os + M (R5)
aerosol

N20s5 + H20 - 2HNO3 (R6)

The lifetime of NOxis approximately one day. Because of the short lifetime of NOy,
long range transport can only be achieved through the conversion into the species
peroxyacetylnitrate, known as PAN, CH3COOONO;. When carbonyl compounds in
the atmosphere undergo photochemical oxidation in the presence of NOy, PAN is
formed. This molecule has a lifetime of months at lower temperatures and is not
highly soluble in water. Therefore, PAN can be transported over long distances in
the upper troposphere. At warmer temperatures, PAN decomposes and NO; is
released.

When there is a background of hydrocarbons in the troposphere, NOx
catalyses O3 production. The HO2 radical and the methylperoxy radical, CH30>, are
produced through the carbon monoxide and methane oxidation mechanisms. NO
can react with these species, instead of Oz in reaction R1, to form NO-.

HO2 + NO = OH + NO2 (R7)

CH30; + NO >CH;30 + NO; (R8)



The cycle of reaction R1 andR2 is a null cycle for both NOx and 03, meaning neither
species is produced or lost in the net reaction. However if reaction R7 or R8 were to
occur instead of reaction R1, O3 would be produced.

Although O3 in the stratosphere is important for filtering UV radiation, at the
earth’s surface it is a pollutant. In highly populated areas where both NOx and
hydrocarbons are emitted, surface ozone pollution is a problem. The cycle for ozone
production is initiated by the formation of the hydroxyl radical:

O3 +hv—> 02 + O(1D) (R9)

O('D) +H20 - 20H (R10)
Ozone is photolysed into an oxygen radical in an excited state (01D), which reacts
with water in the atmosphere. The cycle is then propogated by the presence of NOx

and hydrocarbons (where R is an organic group in the hydrocarbon RH).

RH + OH + 02RO, + H,0 (R11)
ROz + NO>RO + NO; (R12)

RO + 02>R’CHO + HO2 (R13)
HO2 + NO = OH + NO; (R14)

The NO2 produced in reactions R12 and R14 subsequently photolyses as shown in
reaction R2 to produce 03. Therefore each repetition of this cycle produces 2 03
molecules. The cycle can be terminated after reactions R13 and R14 in the following
ways:

HOz + HO2—> H202 + 02 (R16)

NO; + OH + M> HNO3 + M (R17)



The more number of cycles that NOx goes through before ultimately converting into
HNO3, the higher amount of ozone produced. From this perspective, NOx can be
seen as a driver for ground level ozone production. This makes understanding of
NOyx emissions especially important to this problem.

Another issue that arises from NOx emissions is aerosol formation. Nitric
acid can condense in the atmosphere when combined with water and substances
such as ammonia. Therefore, it is a precursor for aerosol particles. Aerosol
particles affect the earth’s radiation budget by scattering incoming solar light. They
also provide nuclei for cloud condensation. The clouds that are formed in polluted
areas have a larger albedo, which also decreases the incoming solar radiation.

Aerosols also reduce visibility, creating a haze over the area covered.

1.2.2 Chemical Transport Models (CTMs)

The concentration of a chemical species in the atmosphere is governed by
four processes: emissions, chemistry, transport, and deposition. A chemical
transport model simulates these processes. Emissions are a source of a chemical
species into an atmosphere and may be anthropogenic or biogenic. Chemistry
involves the reactions that cause production or loss of a chemical species. An
example of chemical loss is the oxidation of NO2 by the hydroxyl radical to produce
nitric acid. Transport is the flux of a chemical species due to wind. This can be
caused by horizontal wind (advection) or vertical wind (turbulence). Chemical

transport models assimilate meteorology input, which drives transport. Dry



deposition is when the chemical species directly reacts and remains on the Earth’s

surface. Wet deposition involves scavenging by precipitation.

Fin I:t::ut
e
d[NO,
[dr ]= Z(E+P+Fi")+Z(D+L+FGM)
Souces Stnks

Figure 1.1: A one-box model showing the mass balance solution for the change in
concentration of NOx over time (d[NOx]/dt) as the summation of sources minus the
summation of sinks. Fi, and Fou refer to the transport flux in and out of the box. P
and L refer to the chemical production and loss. E refers to emissions and D refers
to deposition.

Figure 1.1 shows a model that can be used to solve for a chemical species’
concentration. The concentration of a species is the summation of the sources
minus the summation of sinks. If all sources and sinks are known, the concentration
can be solved for. In certain types of chemical transport models, the world is split
into many three-dimensional boxes so a more sophisticated version of this mass-
balance calculation is needed.

Chemical transport models (CTMs) solve for the concentration of a chemical
species using the continuity equation. When the concentration is solved from a

fixed frame of reference, the Eulerian form of the continuity equation is used. The

general form of this continuity equation is:



on
== -VF+P-1 (1)

a—r:ls the partial derivative of the change in concentration with respect to the change

in time and is in the units of molecules*cm3/second. V -Fis the flux divergence
transport in and out of the box, P is the combined rate of chemical production and
emissions and L is the chemical loss and deposition. The CTM solves this equation
numerically, solving for the concentration of a species at a particular time n(X, to +
At) when the initial conditions n(X,t,) are known. The flux divergence is separated
into turbulence and advection. Parameterizations are then used for to allow for a
time averaged turbulent flux. The P and L variables are combined so that now there
are three terms, advection, turbulence, and chemistry. Each of these terms is
integrated separately. Through discretization of the spatial domain over a grid and

by using the above approximations, a numerical solution is achieved.

1.2.3 Inverse Modeling

A chemical transport model solves for the fate of a chemical species, such as
NOz2, given an emissions inventory and information that includes meteorology,
chemical rate constants, and dry and wet deposition rates. This is referred to as a
forward modeling. A simple way to consider this is that the species concentration is
a function of the emissions.

In inverse modeling, observations of a chemical species are used to
determine the initial conditions or parameters, such as emissions. The following

equation applies to the forward model:

y=f() +¢ (2)
8



where x refers to emissions and y is the species concentration. The inverse model
seeks to solve for x given y. Two approaches for inverse modeling, the mass balance

approach and the 4DVAR approach, shall be discussed in the next two subsections.

1.2.4 The Mass Balance Approach

A top-down inference of NOx emissions is made from the observed
tropospheric NO; column concentration (£2,) using mass balance following Leue et
al. (2001). In addition to the observed NO2 columns, which are in the units of
molecules/cm?, information about the lifetime of NOy (7nox) and the ratio of
tropospheric NOx to NO2 columns is needed. This information is determined using a
chemical transport model. The equation for top-down NOx emissions (E¢), for each

observation of NO3 is as follows:

E; = al), (3)
where:
ONox
o= ——tano: (4)
TNOx

The lifetime of NOy is equal to the columns of NOxdivided by the sinks of NOx.
However, invoking a steady-state assumption for NOy, the sinks are equal to the
sources of NOx. The sources of NOyx are emissions, chemical production, and
transport. Neglecting transport and accounting for the fact that all the chemical

processes are implicitly solved for in the model simplifies alpha to:



@ =t (5)

Where the subscript a denotes a priori, or derived from the model.

The top-down and bottom up emissions estimates are then combined
following Martin et al. (2003). Using maximum likelihood and assuming a lognormal
distribution of uncertainties in the top-down and bottom-up emissions, the a

posteriori emissions estimate, E, becomes:

(InEp)(Ingy) 2+ (In Ey)(In g4)?

InE = (Ingg)?+(In g)? (6)

Where €, and ¢ are the uncertainties in the bottom-up and top-down emissions,
respectively.
1.2.5 The 4DVAR (adjoint) approach

The 4DVAR approach is based on Bayes’ theorem, which states that:

P(ylx)P
P(x]y) =" 000 (7

P(x) and P(y)are the probability density functions (pdf) of vectors x and y. P(y |x)is
the probability density of finding y given x and P( x| y )is the probability of finding x
giveny. If P(x) is the pdf for a priori emissions derived from bottom- up sources,
and P(y | x) is the pdf for the observations obtained from the true emissions, then
P(x | y) is the pdf for the a posteriori emissions. P(y)is a normalizing factor.

The 4DVAR approach seeks to minimize a cost function derived from Bayes’
theorem. This cost function accounts for the difference in simulated and observed
NO2, as well as the difference between a priori, and optimized emissions. The
emissions are adjusted via use of linear scaling factors so that:

E' = pE (8)
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whereFE! denotes the optimized emissions, p is the scaling factor and E is the initial
emissions. The following cost function is used (Henze, 2007):

J =35 cea(c = Cons) Sops (¢ = Cons) + 57+ (P = Pa) 7Sy (p = Pa) 9)
In this cost function, c refers to the modeled column, cyps are the columns derived
from the observations, Sops is the error covariance matrix for the observations, p, are
the a priori emissions scaling factors, p are the optimized emissions scaling factors,
Sp is the error covariance matrix of the scaling factors and y; is a regularization
parameter. The regularization parameter allows weighting of the cost function
towards observations or emissions. {2 is the domain, in both time and space. The
variables c and cops are vectors of observations the length of the entire domain. If m
is the length of the vector, then m is equal to the product of the number of grid boxes
for latitude, number of grid boxes for the longitude, and the number of time-steps.
The corresponding vector containing the error variances of the observations would
compose the diagonal of the error covariance matrix. The off-diagonal values in the
error covariance matrix represent the error covariance between observations.

Following (Henze, 2009), the forward model calculates the concentration of

NOg, ¢, at any later time (N) as a function of the initial concentration and emissions

(p)

N =F(p) (10)

Looking at the function from a time step of n to n+1 the function can be written as:

¢ =F(c",p) (11)
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We assume that emissions are independent of the time index. The change in

Cn+1

concentration from time n to time n+1 can be expressed as The sensitivity of

acn '

the concentration at time n+1 to emissions,dc™!/dp would be expressed by the

Jacobian K and can be calculated using the chain rule.

gcnti dcntl gen dclaco
K= 95— ao% 31 300 op (12)
The cost function can now be written as:
1 _ 1 _
] = EZCEQ(KP - Cobs)TSobls (Kp - Cobs) + Eyr (p - pa)TSp 1(p - pa) (13)

and the gradient of the cost function at each point within the domain can be written
as:

Vil (0) = Sops K(KD = Cops) + S5 (0 — Pa) (14)

The adjoint method minimizes the cost function numerically by starting with

an initial guess for the scaling factors (p=pq). The CTM is run forward and then
propagates information backwards. During the backwards propagation the cost
function and its gradients are then calculated. The gradients are then fed into a
steepest descent algorithm which then produces optimized scaling factors. This
process continues until a minimum for the cost function is achieved. Figure 1.2

shows an example of an adjoint run where the cost function has converged.
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Figure 1.2: Cost functions derived at each iteration of a 4DVAR inversion. A
minimum is achieved after26 iterations.

1.2.6 Comparison of Methods

Palmer et al.(2003) defined smearing as the horizontal displacement of the
observed chemical species due to transport. The mass balance approach assumes
transport of NOy to be a negligible source of error, due to its short lifetime.
However, Turner et al. (2012) showed the contribution of non-local sources of NO:

to the column. The 4DVAR method takes into account spatial feedbacks, and should

therefore be able to resolve smearing.

The 4DVAR method assimilates observations while the mass balance
approach averages observations over time. Assimilating observations into the cost

function allows solving for the spatial and temporal feedbacks. An assimilated mass
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balance can be used, such as the one performed by Zhao and Wang (2008), and
would allow for the temporal feedbacks, but would take considerably more time
than the mass balance approach that relies on averaging observations.

The errors are handled differently in the approaches. While both methods
use the bottom-up and observational errors, the mass balance approach allows
error in the modeled columns. The adjoint method assumes that the model columns
are a perfect representation of emissions. Additionally, with the mass balance
approach the errors for the same area over time are added in quadrature and then
normalized by the number of observations. The 4DVAR approach relies on an error

covariance matrix.

1.3 Derivation of Observations
The following section describes how the observations were derived from the

satellite instruments.

1.3.1 Description of Satellite Instruments

SCIAMACHY (SCanning Imaging Absorption spectrometer for Atmospheric
ChartographY), launched in 2002 aboard the Envisat satellite, measures direct and
backscattered radiation at a wavelength range of 240-2380 nm (Bovensmann et al.,
1999). It alternately views the earth from a nadir (downward) or limbic (sideways)
viewing geometry. The spatial resolution is 30-60km and global coverage is
achieved, in the absence of clouds, every 6 days. For this study, NO2 concentrations

were retrieved as tropospheric columns.
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The Global Ozone Monitoring Experiment-2 (GOME-2), aboard the MetOP
satellite is a nadir viewing instrument that contains two spectrometers. GOME-2
covers a wavelength range of 240-790nm. The spatial resolution is 40-80km and

global coverage is achieved in 1 day.

1.3.2 Retrieval Algorithm

The retrieval consists of several steps, following Chance (1998) and Martin et
al,, (2002). First, a spectral fitting using a reference spectrum (Bogumil et al., 2003),
is fit to the backscattered radiance observed from SCIAMACHY at the wavelength
region of 429-452nm (Martin et al., 2006). This produces a slant columns density.
It is called a slant column because of the geometry between the earth, sun, and
satellite. Itis a total column because it contains NO concentrations for the entire
atmosphere. This column also reflects the effects of atmospheric scattering on
SCIAMACHY'’s vertically resolved sensitivity.

The next step of the retrieval is subtraction of the stratospheric column. The
NO2 concentrations over the central Pacific are assumed to be primarily
stratospheric given the lack of sources in the area. Then the corresponding columns
are subtracted for a given latitude and month. The small amounts of tropospheric
NO: in the central Pacific are then corrected for using a chemical transport model
(CTM) simulation (Martin et al., 2006). The error from the spectral fit and the
stratospheric correction is estimated at 1X1015 molecules/cm? (Martin et al., 2004).

An Air Mass Factor (AMF) is then applied to the tropospheric slant columns

to obtain the vertical tropospheric columns as follows:
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=25 (15)

V'™ aMF
where ()sand )y denote slant and vertical column. The Air Mass Factor formulation
is based on Palmer et al,, (2001) is as follows:
AMF = AMF; [" w(2)s(2)dz (16)

The Geometric AMF (AMF¢) solves for the geometry of the sun, earth, and
satellite as a function of the solar zenith angle and the satellite viewing angle. The
scattering weight (w) is the SCIAMACHY’s sensitivity to NO; as a function of altitude
and is determined using the Linearized Discrete Ordinate Radiative Transfer model
(LIDORT), (Spurr, 2002). The shape factor (s) refers to the relative vertical
distribution of NO2 concentrations in the troposphere. Monthly mean shape profiles
from 2006 were provided from CTM simulations.

The retrieval algorithm also takes into account surface reflectivity, aerosols,
and cloud fraction. Monthly surface reflectivity fields are taken from Kleipool et. al
(2008). Monthly local aerosol profiles from a CTM are used to correct for the
extinction by aerosols (Martin et al., 2003). The retrieval has an inability to
distinguish clouds from bright surfaces, such as snow. The Fast Retrieval Scheme
for Cloud Observations (FRESCO+) algorithm is used to determine the fraction of
each scenes in which clouds are present (Wang et al, 2008). This algorithm relies on
the 02 A-band to distinguish clouds and cloud top pressure.

This retrieval algorithm has been validated using in situ measurements taken
from airplanes, as described in Martin et al. (2006). The typical uncertainty for each
measurement has been estimated as 40% from the AMF formulation plus 1x1015

molecules/cm? from the spectral fitting and stratospheric subtraction (Martin et. al,
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2006). Figure 1.3 shows the air mass factor and vertical tropospheric NO2 columns

for November, 2006.

0 0.5 3| 1.5 2 2.5 3 35 4 4.5 5
2
moleculesfcm x 10

Figure 1.3:Air mass factor (top) and vertical tropospheric NO2 columns (bottom) for
November, 2006 derived from SCIAMACHY and gridded to a 4x5° resolution.
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Chapter 2 Modeling Tools
The following subsections describe the chemical transport model, its adjoint,

and the emissions inventory that have been used.

2.1 GEOS-Chem Chemical Transport Model

The GEOS-Chem Chemical Transport Model is used to determine the a priori
emissions and the vertical distribution of NOz concentrations in the mass balance
and for the forward run of the 4DVar method. The model uses assimilated
meteorological fields from NASA’s Goddard Earth Observing System (GEOS-5) and
includes a detailed simulation of ozone-NOx-Hydrocarbon chemistry as well as
aerosols and their precursors (Bey et al., 2001; Park et al., 2004). The gaseous and
aerosol simulations are coupled through the formation of sulfate and nitrate, the
HNO3/NOs3- partitioning of inorganic nitrate, and heterogeneous chemistry including
uptake of N20Os on aerosols (Evans and Jacob, 2005). Photolysis rates in the
troposphere are calculated using the Fast-] algorithm, which accounts for Mie
scattering of clouds (Wild, et al, 2000). The chemical mass balance equations in the
troposphere are integrated every hour. The meteorological data from GEOS-5 has a
6 hour temporal resolution. This study uses version 8-01-01 of the model.
Vertically the model version used has 47 vertical levels up to 0.01hPa and
horizontally the resolution is either 4x5° or 2x2.5° latitude by longitude. In an
online simulation, it solves for the fate of about 120 chemical species and transports
43 tracers. The NOx chemistry has been extensively validated (Martin et al., 2002,

Martin et al., 2006, Hudman, et al. 2007, Lamsal et al., 2008, 2010 ). Figure 2.1 shows
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the surface NOx emissions for November 15-22 and July 15-22, 2006 as derived

from GEOS-Chem.

a prioriNO, emissions November 15-22,2006

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ]

3 1
moleculesfcm™/s % 10

Figure 2.1: A priori NOx emissions for November 15-22, 2006 and July 15-22, 2006
as derived from the GEOS-Chem chemical transport model.

2.2 The GEOS-Chem Adjoint
The GEOS-Chem Adjoint derives the necessary gradients using equations

from the forward model code (Henze, 2007). After the forward model is run, the
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adjoint runs the code backward and calculates the cost function and adjoint forcings.
The Tangent and Adjoint Model Complier (TAMC, Giering and Kaminski, 1998), and
the Kinetic Pre-processor (Sandu et al, 2003, Damian et al.,2002, Daescu et al., 2003)
are used for constructing the adjoint of chemical mechanisms (Henze, 2007). At the
end of the iterations, the gradients are fed into the quasi-Newton L-BFGS-B
optimization routine (Byrd et al., 1995; Zhu et al,. 1994) and new scaling factors are
determined. This process is repeated in subsequent iterations until a minimum of
the cost function is achieved. A full description of the adjoint can be found in Henze
(2007). Figure 2.2 shows the process that occurs in the adjoint model. Figure 2.3
shows an example of how the linear scaling factors and gradients change from the

first to the final iteration.
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Flowchartof GEOS-Chem Adjoint
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Figure 2.2: A schematic showing the GEOS-Chem adjoint process.
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iteration 1 (top), 2 (middle), and 17(bottom) of the GEOS-Chemadjoint.
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2.3 Emissions Inventory

The global anthropogenic NOx emissions inventory is from EDGAR (Olivier, et
al, 2001). Over the following regions the EDGAR emissions inventory is overwritten
by regional inventories: EPA/NEI99 for the US, EMEP for Europe, Streets et. al
(2006) for southeast Asia, BRAVO for Mexico, and CAC for Canada. Biomass burning
emissions are from GFED. The soil NOx emissions inventory is based on the work by
Yeinger and Levy (1995) and Wang (1998). The global biofuel inventory is from
Yeinger and Logan (2003) with overwrites over North America from EPA/NEI99
and over by the Streets et. al (2006) inventory over China and Southeast Asia.
Following Hudman, et al. (2007), the midlatitude lightning source of NOy is
estimated at 1.6 Tg N yr-1. Figure 2.1 shows the a priori NOx emissions derived from

GEOS-Chem for November and July of 2006.
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Chapter 3 Inversion of Observations
This chapter discusses the methods and results from assimilating

observations.

3.1 Four-point perturbation pseudo- observations tests

A “true” NOx emissions dataset and pseudo-observations were created using
GEOS-Chem at a 4°x5° and 2°x2.5° resolution. The standard model was used, but for
simplicity the anthropogenic NOy emissions came only from the global EDGAR
inventory, without the regional overwrites. The surface NOx emissions in grid
boxes over the Ohio Valley, London, Beijing, and Johannesburg were doubled in this
inventory. These areas all have large emissions of NOx. Emission datasets were
created for the time period of Nov 15-22 and July 15-22 with a 15 day spin-up. The
forward model was run to determine the NO2 column concentrations. Synthetic
observations of NO; for these time periods were archived for every hour. To
recover the “true” emissions using both the adjoint and mass balance inversion, we
used the standard model of GEOS-Chem, without the regional overwrites or
perturbation of emissions in the 4 grid boxes. Figure 3.1 shows the “true” emissions
for November and July. These months were chosen to examine the effect of
seasonality on the inversions. Satellite observations are often excluded over snow,
so November was chosen instead of January to reduce occurrences of snow.

Tests were run to look at the effects of seasonality, resolution, number of
observations, and the addition of random error to observations. An iterative mass

balance inversion was also explored, where we performed the mass balance
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inversion several times using the a posteriori emissions from the previous iteration
as the a priori emissions for the subsequent run, following Ghude et al. (2013). The a
posteriori emissions derived (Ea) from each experiment were recovered and the
normalized mean error (NME) bias was calculated using true emissions (Et) and the

following equation (Boylan and Russell, 2006):

NME = YV Er—fal (17)

i=1 Z{\Izl Eg
The results from the GEOS-Chem simulation used in the mass balance
calculation took about 1 hour to produce at a 4x5 resolution. Each result from the

adjoint inversion took about 15-35 iterations at about 2 hours per iteration.
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Figure 3.1 “True” Surface NOx Emissions for November 15-21, 2006 (top) and July
15-21, 2006 (bottom). “True” Emissions refer to GEOS-Chem simulations where
surface NOy in pixels over London (51N, 0.1W), Beijing (40N, 116E), Johannesburg
(26S, 28E), and the Ohio Valley (37N, 89W) have been doubled.
3.1.1 Error Specification

In both inversions the relative error in observations was assumed to be 30%.
The uncertainties NOx surface emissions were designated as follows: 50% for
anthropogenic emissions, 300% for soil and biomass burning, and 200% for biofuel.

The adjoint model assumes that the modeled NO> columns are perfect. The error in

the ratio of modeled columns to a priori emissions was assumed to be 30%, based
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on previous studies (Martin, 2004). This value is incorporated into the mass
balance inversion. However, for consistency, tests were run using the mass balance
inversion where the model was treated as perfect.

The a posteriori inventory in the mass balance is obtained by using a
weighted average between the top-down and bottom-up estimates. In the mass
balance inversion, the errors are used to weight the a posteriori emissions towards
the top- down or bottom up emissions. Figure 3.2 shows the difference between
true emissions and bottom-up and top-down derived emissions for November 15-
21. The top-down emissions derived from the satellite show evidence of smearing
in the pixels adjacent to those where sources were perturbed. Assuming a perfect
modeled column weighs the solution more towards the top- down inventory than an

imperfect column.
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Figure 3.2: Absolute difference between “true” NOx emissions and bottom- up
emissions, true -minus bottom-up (top) and true minus top-down (bottom). “True’
Emissions refer to GEOS-Chem simulations where surface NOy in pixels over
London, Beijing, the Ohio Valley, and Johannesburg have been doubled.

)

Figure 3.3 shows the normalized mean errors for cases in both November and July
and at 4x5 and 2x2.5 resolution. When the errors in the top- down estimate are
lower than the bottom- up, assuming the perfect forward model produces the best
results. However, as in the November case (where NOy lifetime is longer) and at
2x2.5 resolution (where advection distance is shorter), the bottom-up and top-down
errors are similar regardless of whether the errors are assumed for the forward

model.
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Figure 3.3: Normalized mean error for 4-point perturbation tests that invert
pseudo-observations (every hour) of the given time period (556416 observations
for 4x5 resolution and 2,201,472 observations for 2x2.5). The abbreviation apost
refers to a posteriori emissions, mb-perfect to a mass balance inversion with the
forward model treated as perfect, mb-30%error as the mass balance inversion
where a 30% error in the forward model is assumed, and adj as the adjoint

inversion.
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3.1.2 Seasonality
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Figure 3.4: Absolute differences, at a 4x5 resolution, between “top-down” derived
emissions and “truth” (top), Mass Balance Approach and “truth” (middle) and
Absolute Difference between Adjoint Approach and “truth” (bottom) for July15-22,
2006 and January 15-22, 2006 . “True” Emissions refer to GEOS-Chem simulations
where surface NOy in pixels over London, Beijing, Johannesburg, and the Ohio Valley
have been doubled. There are observations for every hour over every grid box.
Observational error is assigned as 30% and forward model is considered perfect.

Figure 3.4 shows the difference in truth and recovered emissions using all
pseudo observations generated for the time periods in July and November- 556,416
pseudo observations for each month. In both cases the adjoint inversion has lower

error than the mass balance inversion by an order of magnitude. This is the case
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with both the top down derived emissions and the a posteriori mass balance
estimates. In November, figure 3.4 shows that the spatial smearing is more evident
in the Northern Hemisphere than for July. During summer months, the lifetime of
NOy is considerably shorter than the winter, where the lack of sunlight slows down
the mechanism for NOx loss. This longer lifetime allows for more transport of NOx
through advection. The errors in the adjoint are consistent throughout July and
November, indicating that smearing is not likely the cause.

A key difference between both methods is that the values generated by the
mass balance are consistently low in the perturbed pixels. Two possible
explanations are nonlinearity in the NO2/NOy ratio or advection of nonlocal NOx.
Martin et al. (2006) explored the NO2 to NOxratio, or alpha value from the mass
balance derivation. They found through sensitivity tests that, in several locations,
the relationship between NOz and surface NOx was relatively linear in GEOS-Chem
simulations. Figure 3.5 shows this relationship in the 4 perturbed areas. The Ohio
Valley has one outlying point which is not understood. Nonetheless, all areas
demonstrate a linear relationship. Thus, nonlinearity can be ruled out as a source of
bias in the 4 regions. The influence from of NOy transport from adjacent regions

seems likely.
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Figure 3.5: NO; columns versus NOx emissions over four areas: Johannesburg(26S,
28E), London(51N, 0W), the Ohio Valley(37N, 89W), and Beijing(40N,116E). Dots
indicate the NOzto NOx ratios derived from different GEOS-Chem simulations for
Nov 15-22, 2006.

A smaller perturbation in emissions of 30% in the four pixels was then
explored. Figure 3.6 shows the results from a simulation where emissions at the
four points were perturbed by 30%. The error in the mass balance is reduced by
about a factor of three, yet the error in the adjoint inversion is similar to before. The

smearing is still an issue in the mass balance inversion but not in the adjoint
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inversion. Again, November has a higher degree of smearing in the mass balance

inversion.
July Novermber
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Figure 3.6: Absolute differences between “top-down” derived emissions and “truth”
(top), Mass Balance Approach and “truth” (middle) and Absolute Difference
between Adjoint Approach and “truth” (bottom). “True” Emissions refer to GEOS-
Chem simulations where surface NOy in pixels over London, Beijing, Johannesburg,
and the Ohio Valley have been increased by 30%. There are observations for every
hour over every grid box. Observational error is assigned as 30% and forward
model is considered perfect.
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3.1.3 Resolution

Figure 3.7 shows the absolute difference between the true emissions and the
a posteriori emissions derived by the mass balance and adjoint inversions at a
2°x2.5° resolution. The error in the bottom-up emissions inventory is expected to
be smaller at this resolution because 4 out of 13104 pixels were perturbed rather
than 4 out of 3312. Itis also expected that the pixel smearing would be higher at
this resolution because the distance between each grid-box is half as much as in the
4x5 resolution. In the mass balance inversion the smearing is evident in the
Northern hemisphere around the 4 perturbed points. The higher resolution also
causes smearing to be evident in the Southern hemisphere, over Johannesburg. The
emissions derived from the adjoint inversion begin to show smearing in the
Northern hemisphere as well, but not to the same extent as the emissions derived
from the mass balance inversion. The normalized mean error from the adjoint
inversion increases with the higher resolution. This indicates that either the adjoint
is less likely to resolve smearing at the higher resolution or that there are increased
feedbacks from other sources such as chemistry and deposition at a higher

resolution.
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Figure 3.7: Absolute Difference between Mass Balance Approach and “truth” (top)
and Absolute Difference between Adjoint Approach and “truth” (bottom) at a 2x2.5
resolution. “True” Emissions refer to GEOS-Chem simulations where surface NOy in
pixels over London, Beijing, Johannesburg, and the Ohio Valley have been doubled.
There are observations for every hour over every grid box for November 15-21,
2006.

3.1.4 Number of Observations

When assimilating satellite data, it is unlikely to have hourly global
observations. The observations are made during the satellite overpass which is
usually once a day. At a 4°x 5° resolution that would be 3312 observations for cloud-

free conditions. The mass balance inversion averages the data in each grid box over
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time. This will smooth some of the random error in observations. In this case, the
synthetic observations are perfect, or without random error so the mass balance is
relatively unaffected by the number of observations. Figure 3.8 shows that the
error in the adjoint inversions decreases with increased observations. Although
reducing the observations increases the normalized mean error in the adjoint
inversion, Figure 3.8 shows that the error is still consistently lower than in the mass
balance inversion. The adjoint inversion uses spatial feedback as well as temporal
feedback so even if there is only one time-step of observations, there is still feedback
from surrounding areas. Figure 3.9 shows that the adjoint method is less effective at
resolving smearing when fewer observations are used because it receives less

feedback from surrounding observations.
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Figure 3.8: Normalized Mean Error (NME) versus number of assimilated
observations for both methods at 4x5 resolution for November 15-21. In the mass

balance approach, a perfect forward model is assumed to maintain consistency
between methods.
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Figure 3.9: Absolute Difference between Mass Balance Approach and “truth” (top)
and Absolute Difference between Adjoint Approach and “truth” (bottom). “True”
Emissions refer to GEOS-Chem simulations where surface NOy in pixels over
London, Beijing, Johannesburg, and the Ohio Valley have been doubled. The
observations in the left slides are for every pixel at 10am on November 21. The
right slides use observations for 10 am, November 15-21.

3.1.5 Iterative Mass Balance

Using an iterative mass balance approach, Kuenen (2006) was able to reduce
the difference between simulated and observed columns. The results lead to the
conclusion that an iterative process compensated for the spatial smearing of NO>
observations. However, Figure 3.10 shows that the iterative process does not

resolve smearing. The process appears to move the recovered emissions more
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towards the “top-down” inventory, which actually exaggerated smearing in
subsequent iterations. Because the “top-down” estimate is weighted more in this
approach, the emissions at the 4 points move closer to “truth” until iteration 4,

where they become greater than the true emissions.

Absolute Difference (mb-truth), November 15-21, 2006 Absolute Difference (mb-truth), November 15-21, 2006

Iteration 4
NME=0.0623

Iteration 2
NME=0.0111

Iteration 5
NME=0.0657

Iteration 3
NME=0.0116

2
A molecules’fcm™s % 10

Figure 3.10: Absolute difference between true emissions and those recovered
during iterative mass balance for November 15-21, 2006. ). “True” Emissions refer
to GEOS-Chem simulations where surface NOx in pixels over London, Beijing,
Johannesburg, and the Ohio Valley have been doubled. There are observations for
every hour over every grid box. Observational error is assigned as 30% and forward
model is considered perfect.

3.1.6 Adding Random Errors to Observations

The previous experiments all dealt with pseudo observations that were
perfectly generated from the forward model. However, in reality, observations will
include some degree of error. So another test was performed, adding uniform

random error of up to 10% into the observations generated by the forward model.
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A set of 23184 random numbers between uniformly distributed between 0.90 and
1.10 with a mean of 1 were generated. Observations from 10am for everyday of the
simulation were used (23184 observations), with each observations being
perturbed by multiplication by one of the random numbers. For consistency the
forward model was treated as perfect in the mass balance inversion. Figure 3.11
shows the normalized mean error for these tests. The adjoint performed better than
the mass balance inversions, but to a lesser extent than in the previous experiments.
It was expected that neither inversion would improve the a priori since the
observations now had a higher error than the modeled columns but the adjoint
showed a slight improvement over the a priori. The same test was performed with
30% uniform random error and 50% uniform random error in the observations and
in these cases the mass balance performed better than the adjoint. Figure 3.12
shows the absolute difference between the derived emissions and truth. Because
the mass balance inversion averages all observations over the specific grid box for
the entire time period, the random errors in the observations appear to be

smoothed out better than in the adjoint inversion.
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Figure 3.11: The Normalized mean error for the a priori, mass balance, and adjoint
emission inventories for November 15-21 and July 15-21 when adding random
noise to observations. Each simulation assimilated 23,184 observations at a 4x5
resolution (10am each day).
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Figure 3.12: Absolute difference between true inventory and a posteriori
inventories derived from the mass balance (top) and adjoint (bottom) approach. For
November 15-21, 2006 In the true case emissions in pixels above the Ohio Valley,
London, Beijing, and Johannesburg have been doubled. The observations are for
10am November 15-21 and have had random noises of up to 30% and 10% added in

each case.

The error in emissions derived from the adjoint decreased as observations

increased in previous experiments so the two inversions were tested further using

the observations with up to 30% random error. The number of observations

assimilated was varied as following for November: 2 weeks of 10 am assimilations

(46,368 observations), 1 month of 10 am observations (99,360 observations), and 1

week of hourly observations (556,416). For July observations were assimilated for

1 month and 1 week. Figure 3.13 shows the errors derived from each method as a

41



function of observations. For both July and November, the adjoint requires

approximately 1 month of observations to outperform the mass balance.
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Figure 3.13: Normalized mean Error (NME) versus number of observations
assimilated for November, 2006 and July 2006. Observations have random errors of
up to 30% added.

3.1.7 Cloud filter

Clouds impair the satellite retrieval’s ability to represent the NO; column
accurately because they prevent solar radiation from reaching the surface. To
reduce the effect of clouds onto the measurements, observations that contain 50%
or more cloud coverage are eliminated from the data. Therefore, if measurements
are made once a day for a 30 day period, there will be less than 30 observations in
each pixel. Figure 3.14 shows the actual amount of observations that were

assimilated from SCIAMACHY for November, 2006. 460,452 measurements were
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kept, but those that were in the same grid box at the same hour were averaged

together. The result was a total of 22501 observations.

number of hourly averaged observations assimilated from SCIAMACHY (nov, 2006)
Ll

0 2 4 6 8 10 12 14 16 18
number of hourly averaged observations

Figure 3.14: Number of observations assimilated into the inverse models. All co-
located observations within the 4x5 resolution grid box occurring in the same hour
were averaged. Observations with higher than 50% cloud coverage were
eliminated.

The month-long 10am overpass was then repeated using the synthetic observations
that had up to 30% random error added to them. However this time, observations
that corresponded to the SCIAMACHY observations with cloud fractions above 50%
were removed in both simulations. Figure 3.15 shows the results of these
simulations as compared to the month long simulations where all observations were

included.
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and resolving smearing.

Figure 3.15: Absolute difference for a posteriori derived from mass balance
inversions (top and adjoint inversions (bottom). “True” Emissions refer to GEOS-
Chem simulations where surface NOy in pixels over London, Beijing, Johannesburg,
and the Ohio Valley have been doubled. A random error of 30% has been assigned
to observations, which are sampled at 10 am local time every day in November,
2006. The left panels include all observations into the inversion and the right
contains only those with less than a 50% cloud fraction.

The mass balance inversion is almost unaffected by the cloud filter. However, the

cloud filter causes the adjoint inversion to be less effective at recovering emissions

3.2 Pseudo-Observations: EDGAR versus Regional Overwrites

It is unrealistic that true emissions and bottom up emissions would only
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differ at four points so another set of experiments was conducted. Observations at




10 am for everyday between November 15 and 21, 2006 were generated from a
bottom-up inventory that included regional overwrites to the anthropogenic EDGAR
emissions inventory. These overwrites were composed of the EPA/NEI99 for the
US, EMEP for Europe, Streets et. al (2006) for southeast Asia, BRAVO for Mexico, and
CAC for Canada. The observations were then inverted using a model that only had

the global EDGAR inventory.

a priori minus truth

2
A moleculesfem™s x 10

Figure 3.16: Absolute Difference between “true” emissions and a priori emissions.
The a priori emissions use only the EDGAR inventory for anthropogenic NOx
emissions while the true emissions use regional overwrites to the EDGAR inventory.
The time period is November 15-21, 2006.

Figure 3.16 shows the difference between the a priori bottom-up estimate of

emissions and the true values along with the NME. The differences are primarily in
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the Northern Hemisphere. Figure 3.17 shows the results for both a posteriori
estimates when observations are perfect and when observations have random noise
added. When observations are perfect, the two methods have a very similar error.
However, when random noise of up to 30% is used, the mass balance inversion
recovers emissions better than the adjoint inversion. The mass balance method does
not produce much error in the southern hemisphere, where true and perturbed
emissions are the same. The adjoint method shows error in Africa, South America,
and Australia. These areas are caused by noise in the observation, since there is no
difference in emissions in these areas. The temporal averaging that occurs in the
mass balance inversion could be better at cancelling the noise.

Both inversions agree in most regions, except over Europe and parts of Asia.
The mass balance produces similar results as the a priori, showing higher and lower
emissions (with respect to “true emissions”) in the same areas. The adjoint
inversion shows reverse signs in many of these areas.

The observations with up to 30% random noise were again assimilated using
different time periods to test how the number of observations affects each method.
Figure 3.18 shows the normalized mean error for each experiment. The number of
observations has little effect on the mass balance inversions. The adjoint inversions
generally do not recover the emissions as well as the mass balance inversion. The
adjoint inversions do not improve in this case as number of observations increase.
The introduction of noise seems to impair the adjoint method the most, which is
indicated over Europe where areas that had higher emissions than the truth are

now lower.
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Figure 3.17: Absolute Difference between Mass Balance Approach and “truth” (left)
and Absolute Difference between Adjoint Approach and “truth” (right) for perfect
observations (top) and observation that 30% random noise (bottom) for Nov 15-21,
2006. The true emissions use regional overwrites to the EDGAR inventory, while the
model only uses the EDGAR for anthropogenic emissions. Observations from 10am

for each day were used.
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Figure 3.18: Normalized mean Error (NME) versus number of observations for
November, 2006. Observations have up to 30% random noise added.

When observations were eliminated to represent missing observations due
to cloud fraction, the mass balance had a slightly higher error. Figure 3.19 shows
the results of the two methods- with and without the cloud filter. The mass balance
inversion has a much lower error than the adjoint in both instances. The adjoint a
posteriori emissions in both cases are better than the a priori emissions, which has
an NME of 0.2264. The cloud filter improves the performance of the adjoint

inversion in this case.

48



no cloud filter cloud filter
mass balance minus truth

[ j3 jv\.
%\li "\"J N
\1

.

u

g, =

\
NME= |
01412 |/

2 i)
Arolecuestem’ls x 10

Figure 3.19: Absolute difference for a posteriori derived from mass balance
inversions (top and adjoint inversions (bottom). The true emissions use regional
overwrites to the EDGAR inventory, while the model only uses the EDGAR for
anthropogenic emissions. A random error of up to 30% has been assigned to
observations, which are sampled at 10 am local time every day in November, 2006.
The left panels include all observations into the inversion and the right contains
only those with less than a 50% cloud fraction.

3.3 Assimilating Satellite Observations

Observations from the SCIAMACHY satellite instrument for the year 2006
were used for further analysis. Observations from the SCIAMACHY instrument for
July and November of 2006 were inverted using both methods. All observations

with a cloud fraction lower than 50% for the entire month were used. The
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observations were re-gridded from SCIAMACHY resolution of 30 x 60km to 4°x5°.
Figure 3.20 shows the results from July, 2006. The two figures on the left compare

the modeled and observed columns.

e
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Figure 3.20: Results from Assimilating SCTAMACHY columns using both methods for
July 2006. The first column shows the NO; columns and the second column shows
the absolute difference between the a posteriori emissions and the a priori. The
entire month of observations has been assimilated with an observational error of
30% and a perfect forward model. Observations with more than 50% cloud fraction
have been removed.

In July, the observed and modeled NO; agree with each other, with some
exceptions. In Europe there are some higher values observed than predicted in the
model. This enhancement is captured in the mass balance inversion but not in the
adjoint. Both inversions capture the enhanced NO; over Africa but the adjoint

attributes it to two areas rather than several. The adjoint attributes the enhanced

NOz in South America to increased emissions over 2 areas but the mass balance
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attributes the enhancement to emission increases over most of the continent. Over
China, the mass balance shows an increase of emissions over some points and a

decrease in others, while the adjoint only shows an increase.

Modeled NO, Columns- Nov, 2006 a posteriori (MB)- a priori Nov, 2006

Observed NO, Columns- Nov,2006 a posteriori {ADI)- a priori Nov,2006
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Figure 3.21:Results from Assimilating SCIAMACHY columns using both methods for
November 2006. The first column shows the NO; columns and the second column
shows s the absolute difference between the a posteriori emissions and the a priori.
The entire month of observations has been assimilated with an observational error
of 30% and a perfect forward model. Observations with more than 50% cloud
fraction have been removed.

In November, it is expected that smearing will have a more significant role in
the Northern hemisphere. The mass balance and adjoint inversions produce similar
results. Over the Eastern United States, Western Europe, and China, the emissions
from the adjoint inversion have slight differences than in the mass balance
inversion. It was shown in the previous tests that smearing was better resolved by
the adjoint inversion. Therefore this difference could indicate that smearing is

taking place in the mass balance approach.
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Figure 3.22 shows the a posteriori emissions derived from each approach for
November and July. The correlation coefficient for the a posteriori inventories in
November is 0.9529 and in July is 0.8253. There are some differences in the
emissions derived from each approach. Overall though, these methods do appear to

produce similar emissions estimates.

a posteriorimass balance a posterioriadjoint
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Figure 3.22: A Posteriori emissions derived from SCIAMACHY observations for
November, 2006 and July, 2006. The left panels show the results derived from the
mass balance approach while the right show those derived from the adjoint
approach.
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Chapter 4 Conclusions and Future Work

Two approaches have been used for inverting NO2 observations to gain
insight into NOx emissions. The mass balance approach is based on the assumption
of local photochemical steady-state for NOz. The adjoint approach, an iterative
approached based on Bayesian theory, optimizes emissions with the goal of
minimizing the difference between modeled and observed columns. This study
seeks to understand the differences between the two methods. Using both
simulated and satellite-derived observations, inversions from both methods were
explored.

An initial set of error-free synthetic observations was generated to test pixel
smearing, or the influence of non-local NO; in the column due to transport from
surrounding regions. The pseudo-observations differed from “true” observations at
4 points. The mass balance approach, even at a coarse 4x5 resolution, was shown to
display smearing. The error increased during the winter by a factor of
approximately 1.4, possibly due to smearing. The adjoint inversions were able to
resolve the smearing better than the mass balance inversions, having errors that
were an order of magnitude lower. The adjoint approach’s performance improved
when observations went from one hour of observations to one week of hourly
observations, reducing the error by 2 orders of magnitude.

An iterative mass balance approach was tested to see if it could resolve
smearing. Subsequent iterations pushed the a posteriori inventory closer to the top-

down emissions estimate. This did not resolve the smearing.
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Although the adjoint performed better than the mass balance in the previous
tests, random noise affected this type of inversion. For the one-week simulations in
November, the error in the adjoint inversion increased by from 0.017 to 0.13 when
random noise of up to 30% was added to the observations. The normalized mean
error in the mass balance inversion increased to a lesser extent from 0.019 to 0.051.
The mass balance inversions had less noise, probably due to the averaging of
observations over the time domain. Increasing the number of observations
improved the adjoint’s performance. Similar error increases occurred for
simulations in July.

A second set of pseudo-observations were created. In this case emissions
over most of North America were perturbed. When no noise was added to
observations, the adjoint and mass balance performed similarly, differing in results
over Europe and parts of Asia. In week-long simulations, when a random noise of
up to 30% was added, the mass balance recovered the true emissions better, with an
error of 0.14. The error in the adjoint inversion was 0.17.Neither approach was
improved with more observations. Both approaches recovered emissions better
than the a priori, which had an error of 0.21.

If the knowledge from these tests are applied to the inversions of
SCIAMACHY NO; observations, the adjoint would perform better in areas where
smearing is present and areas with low observational error. In July, smearing would
be more present in the Southern Hemisphere and in November, in the Northern
Hemisphere. SCIAMACHY satellite observations have an error of approximately

40% + 1.0 e15. However, if the number of observations assimilated is high, the
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error is reduced. Therefore, it is expected that the adjoint recovered the emissions

better in areas where there were a large number observations and where smearing
was a significant source of error. When inverting SCIAMACHY observations for July
and November, both methods produced similar qualitative results.

At higher resolutions, higher smearing is expected in the mass balance
approach. The adjoint would be useful in these conditions. However, as resolution
increases, there are fewer hourly observations in each grid box. This could cause
higher error in the observations, decreasing the effectiveness of the adjoint
approach. Future work should explore the two methods at higher resolutions.

Overall, both methods were effective at improving the emissions inventory
from the a priori model. The adjoint produced more accurate results in low noise
situations and where smearing was present. The mass balance approach was 20-30

times faster, and seemed to handle noisy measurements better.
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