
 

 
 
 
 
 
 

LEARNING IN NON-STATIONARY ENVIRONMENTS 
 
 
 
 

by 
 
 
 
 

Cameron Dale Hassall 
 
 
 

Submitted in partial fulfilment of the requirements 
for the degree of Master of Science 

 
 

at 
 
 

Dalhousie University 
Halifax, Nova Scotia 

August 2013 
 
 
 
 
 
 
 

© Copyright by Cameron Dale Hassall, 2013  



 

 ii 

TABLE OF CONTENTS 

LIST OF TABLES .............................................................................................................. v

LIST OF FIGURES ........................................................................................................... vi

ABSTRACT ....................................................................................................................... xi

LIST OF ABBREVIATIONS USED ............................................................................... xii

ACKNOWLEDGEMENTS ............................................................................................. xiii

CHAPTER 1: INTRODUCTION ....................................................................................... 1

1.1 REINFORCEMENT LEARNING .......................................................................... 1

1.2 DOPAMINE AND MEDIAL-FRONTAL REWARD PROCESSING ............................ 2

1.3 EXPECTED AND UNEXPECTED UNCERTAINTY ................................................ 5

1.4 PROBABILISTIC REVERSAL LEARNING ........................................................... 7

1.5 NEURAL CORRELATES OF UNCERTAINTY DETECTION .................................... 9

1.6 THE P300 AND THE LC-NE SYSTEM ............................................................. 10

1.7 SUMMARY .................................................................................................... 11

CHAPTER 2: EXPERIMENT 1 ....................................................................................... 13

2.1 INTRODUCTION ............................................................................................. 13

2.2 METHOD ...................................................................................................... 16

2.2.1 Participants ........................................................................................... 16

2.2.2 Apparatus and Procedure ..................................................................... 16

2.2.3 Data collection ..................................................................................... 19

2.2.4 Data analysis ........................................................................................ 20

2.3 RESULTS ...................................................................................................... 24

2.3.1 Accuracy .............................................................................................. 24



 

 iii 

2.3.2 Response Time ..................................................................................... 25

2.3.3 The fERN ............................................................................................. 26

2.3.4 The P300 .............................................................................................. 27

2.4 DISCUSSION ................................................................................................. 28

CHAPTER 3: EXPERIMENT 2 ....................................................................................... 32

3.1 INTRODUCTION ............................................................................................. 32

3.2 METHOD ...................................................................................................... 34

3.2.1 Participants ........................................................................................... 34

3.2.2 Apparatus and Procedure ..................................................................... 34

3.2.3 Data Collection .................................................................................... 37

3.2.4 Data Analysis ....................................................................................... 37

3.3 RESULTS ...................................................................................................... 41

3.3.1 Accuracy .............................................................................................. 41

3.3.2 Response Time ..................................................................................... 43

3.3.3 Environment Ratings ........................................................................... 43

3.3.4 The fERN ............................................................................................. 45

3.3.5 The P300 .............................................................................................. 46

3.4 DISCUSSION ................................................................................................. 47

CHAPTER 4: SIMULATION .......................................................................................... 50

4.1 INTRODUCTION ............................................................................................. 50

4.2 DESIGN ........................................................................................................ 53

4.2.1 Action Selection: Reinforcement Learning ......................................... 54

4.2.2 Uncertainty Detection: ACh and NE ................................................... 56



 

 iv 

4.3 DATA ANALYSIS .......................................................................................... 59

4.3.1 Simulating Experiment 1 ..................................................................... 59

4.3.2 Simulating Experiment 2 ..................................................................... 60

4.4 SIMULATION RESULTS ................................................................................. 61

4.4.1 Behavioural .......................................................................................... 61

4.4.2 ACh and NE ......................................................................................... 61

4.4.3 Prediction Errors .................................................................................. 64

4.4.4 Experiment 2 versus Experiment 1 ...................................................... 65

4.5 DISCUSSION ................................................................................................. 67

CHAPTER 5: GENERAL DISCUSSION ........................................................................ 71

5.1 OVERVIEW OF CURRENT RESULTS ............................................................... 71

5.2 CONNECTION TO CURRENT RESEARCH AND THEORY ................................... 73

5.3 CONCLUSION ................................................................................................ 75

REFERENCES ................................................................................................................. 77

APPENDIX ....................................................................................................................... 86

  



 

 v 

LIST OF TABLES 

Table 2.1. Experiment 1: Behavioural means and standard errors. .................................. 26

Table 2.2. Experiment 1: Means and standard errors for the fERN. ................................ 27

Table 2.3. Experiment 1: Means and standard errors for the P300. .................................. 28

Table 3.1. Experiment 2: Behavioural means and standard errors. .................................. 43

Table 3.2. Experiment 2: Means and standard errors for the fERN. ................................ 46

Table 3.3. Experiment 2: Means and standard errors for the P300. .................................. 47

 

  



 

 vi 

LIST OF FIGURES 

Figure 1.1. Dopaminergic activity encodes a reinforcement-learning prediction 

error. Prior to learning, midbrain dopaminergic activity increases at the time 

of reward. Following learning, dopaminergic activity decreases at the first 

indication that events are better than expected. Image from Schultz, Dayan, 

and Montague, 1997. ................................................................................................... 3

Figure 2.1. Experimental design, with timing details. Over the course of a block 

(20 trials), participants learned that selecting one of the squares resulted in 

more wins, on average, compared to selecting the other coloured square. ............... 19

Figure 2.2. Average medial-frontal response to feedback (a) with scalp 

topographies (b). Context shifts only occurred in late non-stationary blocks. 

The dashed rectangle shows the interval of analysis (200 – 400 ms post 

feedback). .................................................................................................................. 22

Figure 2.3. P300 response to feedback early in learning (a and b) and late in 

learning (c and d) for each environment type. The grand average (all 

conditions pooled) was maximal at Pz. A dashed rectangle indicates the 

region of analysis (300 – 500 ms post feedback). ..................................................... 23

Figure 2.4. P300 scalp topography for the average response to all feedback, 

maximal at Pz. ........................................................................................................... 24

Figure 2.5. Performance Curve. In the non-stationary environment, the optimal 

choice switched on trial 12, on average. Dashed lines are shown at 50% 

(chance) and 80%, for reference. .............................................................................. 25



 

 vii 

Figure 2.6. Behavioural results. (a) Mean performance early and late in a block 

for each environment. (b) Mean response time early and late in a block for 

each environment. ..................................................................................................... 26

Figure 2.7. Mean fERN amplitudes, early and late in learning, for each 

environment. ............................................................................................................. 27

Figure 2.8. P300 amplitudes in response to feedback. When context shifts 

occurred, there was an enhanced P300 response to wins. ......................................... 28

Figure 3.1. Experimental design for (a) blocks and (b) trials, with timing details. 

At the beginning of each block, participants were shown the casino in which 

they were gambling. After 20 trials, they were asked to rate the honesty of 

the current casino. ..................................................................................................... 36

Figure 3.2. Grand average (a) waveforms and (b) scalp topographies in response 

to feedback. Context shifts only occurred late in non-stationary blocks. The 

dashed rectangle shows the interval of analysis (200 – 400 ms post 

feedback). Note that the scales for the scalp topographies are identical (black 

= -4 μV, white = 1 μV). ............................................................................................ 39

Figure 3.3. P300 response to feedback early in learning (a and b) and late in 

learning (c and d) for each environment type. A dashed rectangle shows the 

region of analysis: 300 – 500 ms post feedback. ...................................................... 40

Figure 3.4. P300 scalp topography for the average response to all feedback, 

maximal at Pz. ........................................................................................................... 41



 

 viii 

Figure 3.5. Performance curve in (a) Experiment 1, and (b) the present study. In 

the non-stationary environment, the optimal choice switched on trial 12, on 

average. Dashed lines are shown at 50% (chance) and 80%, for reference. ............. 42

Figure 3.6. Mean accuracies, for each environment, for the current experiment 

and Experiment 1. Adding environment cues improved performance 

regardless of environment type ................................................................................. 42

Figure 3.7. Behavioural results. Mean performance (a) and response time (b) in 

Experiment 1 and (c, d) Experiment 2. ..................................................................... 44

Figure 3.8. Casino ratings (a) over all trials and (b) grouped by environment type. 

Participants were able to discriminate the environments based on the 

feedback they received throughout a block. ............................................................. 44

Figure 3.9. Mean fERN amplitudes, early and late in learning, for each 

environment in (a) Experiment 1, and (b) the present study. In the present 

experiment, the fERN was enhanced over time in the non-stationary 

environment, but reduced in the stationary environment. ......................................... 45

Figure 3.10. P300 amplitudes in response to feedback in (a) Experiment 1, and (b) 

the current experiment. When context shifts occurred, there was an enhanced 

P300 response to wins and losses. ............................................................................ 47

Figure 4.1. Model design. Action selection (right) was made via reinforcement 

learning. Node weights for each option [w1 w2] were used by a softmax 

function (P) to generate a response. Option weights were also used to 

compute the current value of the system at action selection, depending on 

which unit was active (i.e. which option was chosen). A prediction error unit 



 

 ix 

(PE) compared this predicted value with the actual reward value (r) to 

generate a prediction error (δ). Feedback was also used to detect uncertainty 

in the prefrontal cortex (PFC) working memory (left). Here, feedback history 

within a certain context was used to estimate expected uncertainty (γ), which 

was used to determine the likelihood of sticking with the current belief about 

which option was best (λ). If a context shift was detected based on these 

values, then the weights associated with each option were reset. ............................. 56

Figure 4.2. Model performance (b) compared to actual performance in 

Experiment 1 (a). Accuracy was defined as the proportion of times that a 

virtual participant made the optimal response (i.e. made the response most 

likely to result in a win). Note that a context shift occurred around trial 12. 

Dashed lines are shown at accuracies of 80% and 50%. .......................................... 61

Figure 4.3. ACh and NE levels, over time. Following the context shift, ACh and 

NE levels increase to indicate rising expected and unexpected uncertainty, 

respectively. .............................................................................................................. 62

Figure 4.4. Mean values for P*, the model estimate of the probability that the 

current context belief remained the same in the (a) stationary and (b) non-

stationary environment. For the sake of this illustration, µ=1 was assumed to 

be the correct context in both the stationary environment, and in the non-

stationary environment prior to the context switch. If P*(µ=1) < P*(µ=2) 

then a context update occurred. ................................................................................ 63



 

 x 

Figure 4.5. Mean number of context shift detections ("context updates") for each 

trial in the (a) stationary and (b) non-stationary environment. A context shift 

occurred on trial 12, on average. ............................................................................... 64

Figure 4.6. Model prediction error means for (a) all trials, and (b) grouped by 

early/late in learning. Prediction errors were enhanced in the non-stationary 

environment, reflecting unexpected losses. The y-axis is reversed here, 

mirroring the ERP convention for plotting the fERN. .............................................. 64

Figure 4.7. Model performance when NE was modulated by environment (b) 

compared to actual performance in Experiment 2 (a). Overall NE levels were 

reduced in the stationary environment and enhanced in the non-stationary 

environment. Dashed lines are shown at 80% and 50% accuracy. ........................... 65

Figure 4.8. Total number of context updates in the (a) stationary environment, 

where NE was reduced, and (b) non-stationary environment, where NE was 

enhanced. .................................................................................................................. 66

Figure 4.9. Overall performance in (a) the stationary environment and (b) the 

non-stationary environment. Compared here are the reinforcement learning 

(RL) model alone, the RL model augmented by uncertainty detection 

(RL+UD), and the augmented model when overall neurotransmitter levels 

were modulated (RL+UD*). ..................................................................................... 66

Figure 4.10. Simulated prediction errors (fERNs) for Experiment 1 and 

Experiment 2 (a). An arrow highlights the difference: a positive prediction 

error later in the stationary blocks in the Experiment 2 simulation. Compare 

this with the actual fERN amplitudes measured in Experiments 1 and 2 (b). .......... 67



 

 xi 

ABSTRACT 

Real-world decision making is challenging due, in part, to changes in the 

underlying reward structure: the best option last week may be less rewarding today. 

Determining the best response is even more challenging when feedback validity is low. 

Presented here are the results of two experiments designed to determine the degree to 

which midbrain reward processing is responsible for detecting reward contingency 

changes when feedback validity is low. These results suggest that while midbrain reward 

systems may be involved in detecting unexpected uncertainty in non-stationary 

environments, other systems are likely involved when feedback validity is low – namely, 

the locus-coeruleus-norepinephrine system. Finally, a computational model that combines 

these systems is described and tested. Taken together, these results downplay the role of 

the midbrain reward system when feedback validity is low, and highlight the importance 

of the locus-coeruleus-norepinephrine system in detecting reward contingency changes.  
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CHAPTER 1: INTRODUCTION 

In order to maximize their utility, value-driven decision makers must first learn 

about their world, and then optimally exploit this information by selecting those actions 

that are most likely to lead to a reward. However, the world is an uncertain place. With 

that said, we have evolved systems to adapt to varying levels and types of uncertainty in 

the world around us. Successfully detecting that something about the world is different is 

important in uncertain environments, since the most rewarding action may change. The 

neural mechanisms behind the detection of and adaptation to uncertainty remain unclear 

due, in part, to the different forms of uncertainty that have been identified. However, 

before this issue can be properly addressed, a brief review of reinforcement learning (RL) 

theory and mechanisms is warranted. 

1.1 REINFORCEMENT LEARNING 

Detecting shifts in reward payouts is an important characteristic of RL models. 

Here, RL refers to a class of models through which optimal actions may be learned: using 

feedback to learn to do the right thing at the right time. According to Sutton and Barto 

(1998) these models map situations to actions – learning what to do in a given situation – 

in order to maximize long-term rewards. An essential component of RL models, and one 

relevant to uncertainty detection, is the prediction error. A prediction error is a 

comparison between expected and actual outcomes. An unexpected reward or an 

unexpected cue that predicts a reward will elicit a positive prediction error. Likewise, an 

unexpected punishment, or a lack of reward when one is expected, will elicit a negative 

prediction error. For example, under RL theory, a positive prediction error is generated 

when a wandering rat encounters unexpected food. Over time, the rat may learn that food 
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can always be found at the same location. Thus, on subsequent explorations, predictive 

cues (e.g. familiar junctions in a maze) may elicit positive prediction errors, while no 

prediction error is generated when – as expected – the food is actually located. In RL 

models, prediction errors are used to alter the strength of the associations between 

situations and actions such that rewarded actions, but not punished actions, are more 

likely to be repeated.  

Implicit in the calculation of a prediction error is a representation of uncertainty, 

since expected rewards and punishments do not lead to prediction errors, and thus do not 

change behaviour. However, as others have pointed out (e.g. Alexander & Brown, 2011; 

Payzan-LeNestour & Bossaerts, 2011), the lack of an explicit representation of 

uncertainty in RL models (i.e. model-free RL) may be a limiting factor when modelling 

human behavioural and neural data, since humans are clearly able to detect and adapt to 

different forms of uncertainty in appropriate ways (see Sections 1.4 and 1.5 for 

examples).  

1.2 DOPAMINE AND MEDIAL-FRONTAL REWARD PROCESSING 

Thorndike’s Law of Effect (1911) states that an action that leads to a reward 

becomes connected to the situation that the action arose from. While Thorndike’s Law of 

Effect describes the goal of RL, and RL itself describes the computations behind how 

actions and situations become connected, the neural mechanisms behind a RL system in 

humans (if one exists) remain unclear. One popular view is that dopamine (DA) signals 

that events are better or worse than expected (a RL prediction error: Montague, Dayan, & 

Sejnowski, 1996). While the exact role of DA is controversial (see Beeler, 2012, for a 

review), Schultz, Dayan, and Montague (1997) showed that rather than signalling all 



 

 3 

positive outcomes, dopaminergic activity instead marks when outcomes are unexpected. 

They did this by observing that monkey dopaminergic neurons were activated by 

rewarding stimuli (in their case, a drop of juice) before, but not after learning that a tone 

predicted the reward. Instead, with learning, dopaminergic activity shifted earlier in time 

to the first predictor that a reward was forthcoming, i.e. the tone. Furthermore, 

dopaminergic activity at the expected time of reward following the tone decreased if the 

predicted reward was withheld (i.e. a negative prediction error: Figure 1.1). 

 

Figure 1.1. Dopaminergic activity encodes a reinforcement-learning prediction error. 
Prior to learning, midbrain dopaminergic activity increases at the time of reward. 
Following learning, dopaminergic activity decreases at the first indication that events are 
better than expected. Image from Schultz, Dayan, and Montague, 1997.  
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While Schultz et al. (1997) studied reward-related dopaminergic activity in 

monkeys, it is possible to evaluate high-level reward processing in humans by examining 

electroencephalographic (EEG) recordings. Indeed, the high temporal resolution of EEG 

makes it particularly suited to measuring the fast processing of rewards and punishments 

that occurs in a range of learning tasks. In particular, there is a medial-frontal negative 

deflection in the event-related potential (ERP) – averaged EEG in response to a particular 

event – when humans make errors. This deflection, termed the error-related-negativity 

(ERN), is thought to be generated in anterior cingulate cortex (ACC: Dehaene, Posner, & 

Tucker, 1994; Holroyd, Yeung, Nystrom, Mars, Coles, & Cohen, 2004). In 2002, 

Holroyd and Coles linked what was known about midbrain DA activity – namely, that it 

encodes a RL prediction error – with the observation that the ERN also appears to be 

sensitive to whether ongoing events are better or worse than expected. Holroyd and Coles 

(2002) proposed that the ERN is elicited when midbrain DA conveys a RL prediction 

error to ACC. Furthermore, the role of ACC has recently been interpreted as a region 

devoted not only to learning, but to predicting the most likely outcomes of actions 

(Alexander & Brown, 2011), making it a good candidate region for uncertainty detection. 

In particular, Alexander and Brown (2011) modelled activity in medial prefrontal cortex 

(mPFC), including ACC, under the assumption that these areas detect and signal 

surprising outcomes. Thus, both neuroimaging and modelling evidence (Holroyd & 

Coles, 2002; Alexander & Brown, 2011) suggest that ACC may be involved in detecting 

unexpected uncertainty. 

Two types of ERN have been identified: the response ERN (rERN) and the 

feedback ERN (fERN). The rERN occurs when participants make mistakes in speeded 
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response-time tasks (e.g. Gehring, Goss, Coles, Meyer, & Donchin, 1993), and is 

generated at the time an erroneous response is made. Specifically, the rERN is thought to 

reflect evaluation of an efference copy of the motor command (Allain, Hasbroucq, Burle, 

Grapperon, & Vidal, 2004). The fERN, in contrast, is generated upon receiving external 

feedback indicating an error (additionally, external feedback must be the first indicator 

that an error has occurred). For example, Miltner, Braun, and Coles (1997) had 

participants estimate the length of one second and, sometime after each response, 

provided feedback to indicate either a correct or incorrect estimation. Importantly, 

participants were unaware they had committed an error until the feedback was received. 

Miltner et al. (1997) observed that the ERP response to correct feedback differed from 

the ERP response to incorrect feedback. The difference was maximal over medial-frontal 

cortex, and was localized to ACC. In summary, the difference between the rERN and the 

fERN is, arguably, the timing of the information that signals whether events are better or 

worse than expected. 

1.3 EXPECTED AND UNEXPECTED UNCERTAINTY 

Not all uncertainty is the same. Yu and Dayan (2005) distinguished between 

expected and unexpected uncertainty (also see Bach & Dolan, 2012 or Bland & 

Schaeffer, 2012, for recent reviews). Expected uncertainty – the most commonly studied 

form – arises when actions are sometimes (but not always) rewarded. Expected 

uncertainty is usually expressed as feedback validity: the likelihood of receiving specific 

feedback for an action. For example, the best thing to do when making a decision about 

whether or not to wear a raincoat is to check the weather forecast. Weather forecasts are 

not always correct, nor do we expect them to be. A keen observer of weather forecasts 
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may even develop a sense of the accuracy of these predictions. If the forecast accuracy is 

known to be 90% (the feedback validity), then it is not unexpected when one day out of 

ten the forecast is incorrect. In fact, it would be unusual for the weather forecast to be 

correct 100% of the time. The particular day on which the forecast will fail is unknown, 

but it fails with a known or expected uncertainty.  

In contrast, unexpected uncertainty is characterized by a shift in the underlying 

rule structure determining which actions are most likely to be rewarded. If the weather 

forecasts mentioned above were to suddenly be highly inaccurate for several days in a 

row, perhaps due to an equipment malfunction, users of the forecast would experience 

unexpected uncertainty. In this new environment, the weather forecast may no longer be 

the best predictor compared to looking out the window, or even flipping a coin. Thus, 

actions that were optimal in the past may become suboptimal in an environment with 

unexpected uncertainty (a non-stationary environment), requiring a decision maker to 

seek out new information about the world. In a stationary environment, on the other hand, 

optimal actions remain stable over time. Complicating matters slightly, expected 

uncertainty and unexpected uncertainty interact with one another. In environments with 

both forms of uncertainty, a lack of reward may or may not signal a shift in the 

underlying reward structure. If expected uncertainty is high (i.e. rewards are seldom 

expected) then it can be very difficult for decision makers to detect and adapt to 

unexpected uncertainty (Behrens, Woolrich, Walton, & Rushworth, 2007; Bland and 

Schaefer, 2011). 

Consider, for example, the challenge of determining which of two slot machines 

is most likely to result in a win when played. A highly rewarding slot machine may pay 
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out 50% of the time, while another slot machine may pay out only 30% of the time. If the 

better slot machine happens to lose, as it will about half the time, an optimal player 

should not change his or her belief that the current choice is best. Likewise, if playing the 

worse slot machine results in an occasional win, an optimal player should not mistake it 

for the better option. Thus, single plays are not that informative when unexpected 

uncertainty is high, and several plays are required in order to estimate the likelihood of 

each option winning. With enough examples, however, an astute player should notice that 

one slot machine is better. Over time, an optimal player learns to select the best slot 

machine, and comes to expect a reward about half the time (the expected uncertainty). 

Since the expected uncertainty of the better choice is only 50%, compared to 30% for the 

worse choice, it would be difficult for a player in this example to determine that the win 

probabilities of the two slot machines had reversed. In fact, several plays would likely be 

required in order to detect a reversal, i.e. to notice that something had changed. 

1.4 PROBABILISTIC REVERSAL LEARNING 

Human performance in non-stationary environments is usually studied using 

probabilistic reversal learning, two examples of which were given in the previous section. 

In these learning tasks, a previously rewarded response will begin to be punished, 

requiring participants to inhibit that response in favour of a new choice (Rolls, Hornak, 

Wade, & McGrath, 1997; Swainson, Rogers, Sahakian, Summers, Polkey, & Robbins, 

2000; Cools, Clark, Owen, & Robbins, 2002; Behrens et al., 2007; Bland & Schaeffer, 

2011). By far, the bulk of the work on probabilistic reversal learning has focused on 

pharmacological variables (e.g. Bari, Theobald, Caprioli, Mar, Aidoo-Micah, Dalley, & 

Robbins, 2010) and/or brain damage or dysfunction (e.g. Fellows & Farah, 2003; Waltz 



 

 8 

& Gold, 2007; Adleman, Kayser, Dickstein, Blair, Pine, & Leibenluft, 2011). For 

example, humans with orbitofrontal cortex (OFC) lesions tend to perseverate in their 

responses in probabilistic reversal tasks (Hornak, O’Doherty, Bramham, Rolls, Morris, 

Bullock, & Polkey, 2004). In particular, Hornak et al. (2004) had participants learn which 

of two fractal images was more likely to result in a reward when selected (70% versus 

40%). Participants with OFC lesions tended to stick to previously rewarded responses, 

even after a reversal, reducing their overall performance relative to controls. Studies like 

these, as well as neuroimaging work with healthy participants (Cools et al., 2002), have 

implicated both OFC and ACC (Paulus, Hozack, Frank, & Brown, 2002) in detecting and 

adapting to changes in reward probabilities.  

Two issues arise from existing research on probabilistic reversal learning. First, 

while feedback validity may be manipulated, it is seldom reduced below 70% (70%: 

O’Doherty, Critchley, Deichmann, & Dolan, 2003; 70%: Hornak et al., 2004; 75% or 80 

%: Behrens et al., 2007; 80%: Chase et al., 2010; 83.3% or 73.3%: Bland and Schaefer, 

2011). Thus, the degree to which OFC and ACC are involved in detecting probability 

shifts in non-stationary environments when feedback validity is very low (e.g. below 

70%) is unclear.  

Furthermore, in most experiments, reversals may occur at any time (O’Doherty et 

al., 2003; Hornak et al., 2004; Chase et al., 2010), although they may occur more or less 

frequently, depending on the research question (Behrens et al., 2007; Bland and Schaefer, 

2011). In particular, while experimenters may define certain blocks as stationary or non-

stationary, participants are typically told that a reversal may occur at any time. The 

implication of this is that, from the perspective of participants, most experimental tasks 
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for studying probabilistic reversal learning occur in non-stationary environments, albeit 

with periods of greater or lesser unexpected uncertainty. This issue – participants’ 

expectations about when reversals may occur – should be considered when making any 

stationary/non-stationary comparisons, especially given recent work highlighting the role 

of cognitive control in uncertainty detection (Mushtaq, Bland, & Schaeffer, 2011). 

1.5 NEURAL CORRELATES OF UNCERTAINTY DETECTION 

To investigate the difference between expected and unexpected uncertainty, Yu 

and Dayan (2005) modelled probabilistic reversal learning by simulating levels of two 

neurotransmitters: acetylcholine (ACh) and norepinephrine (NE). According to Yu and 

Dayan (2005), ACh levels signal expected uncertainty (Sarter & Bruno, 1997), and NE 

levels signal unexpected uncertainty (Bouret and Sara, 2005; Doya, 2008). For example, 

in a cueing task, ACh levels rise and fall depending on the likelihood of a cue being valid 

(Sarter & Parikh, 2005). Specifically, ACh levels are enhanced when cue validity is low, 

and reduced when cue validity is high. Bouret and Sara (2005) reviewed evidence from 

recordings in rat and monkey locus coeruleus (LC), the main source of NE in the brain. 

These electrophysiological results suggest that LC activation occurs when ongoing 

behaviour is interrupted due to new information about the environment, such as when a 

previously rewarded behaviour is no longer rewarding. Thus, tonic ACh activity appears 

to be linked to expected uncertainty, while phasic NE activity appears to signal the 

detection of unexpected uncertainty (Doya, 2008). One possible benefit of ACh and NE 

modulation in response to uncertainty may be to allocate attention in optimal ways, e.g. 

in a target detection task (Avery, Nitz, Chiba, & Krichmar, 2012). Another possible 
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benefit is that the successful detection of context shifts may improve performance in a 

learning task (e.g. Hornak et al., 2004). 

1.6 THE P300 AND THE LC-NE SYSTEM 

ERP methodology provides a means for indirectly measuring the output of the 

LC-NE system in humans. The P300 is a positive-deflection in the ERP that typically 

peaks 300-500 ms post stimulus (Sutton, Braren, Zubin, & John, 1965; Polich, 2007). 

Although it has been linked to several different cognitive functions, perhaps the most 

influential account of the P300 is the context-updating hypothesis (Donchin, 1981; 

Donchin & Coles, 1988). Based on early observations that the P300 is sensitive to 

stimulus frequency (i.e. it is enhanced by rare events), the idea behind context updating is 

that new information sometimes requires an update to one’s internal model of the world. 

The amplitude of the P300 is thought to reflect the degree to which the internal 

representation changes. In other words, the P300 is enhanced under uncertain conditions 

(Polich, 1990). Consistent with this interpretation, it has been suggested that the 

amplitude of the P300 is sensitive to the extent of the locus coeruleus-norepinephrine 

(LC-NE) system’s modulation of information processing (Nieuwenhuis, Aston-Jones, & 

Cohen, 2005). In particular, the role of the LC-NE system is believed to involve the 

outcome of internal decision-making processes regarding task-relevant stimuli (such as 

rewards and punishments). This is based on earlier observations that LC neurons in 

monkeys respond exclusively to target stimuli in a visual discrimination task, even after a 

reversal occurs, but before behavioural adjustment occurs (Aston-Jones, Rajkowski, & 

Kubiak, 1997). 
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1.7 SUMMARY 

The exact neural mechanisms behind how humans deal with unexpected 

uncertainty remain unclear. Although there is evidence implicating a medial-frontal RL 

system in uncertainty detection, methodological issues make it difficult to determine its 

exact role. This thesis consists of three experiments designed to determine the extent to 

which medial-frontal reward processing is used to detect and adapt to unexpected 

uncertainty. The goal of Experiment 1 was to show that low feedback validity reduces the 

impact of unexpected uncertainty on the fERN. The results of Experiment 1 supported 

this hypothesis: unlike previous work using high-validity feedback (Bland and Schaeffer, 

2011) the magnitude of the fERN was identical in both stationary and non-stationary 

environments, even though participants were able to detect context shifts when they 

occurred. This suggests that while medial-frontal reward processing may play a role in 

detecting unexpected uncertainty, it is not the only system involved. This assertion was 

supported by the observation that while there was no fERN difference between the 

stationary and non-stationary environments in Experiment 1, there was a feedback-locked 

P300 enhancement in the non-stationary environments. 

In Experiment 1, as with most other experiments designed to compare stationary 

and non-stationary environments, participants were given no cues as to the identity 

(stationary or non-stationary) of the environment, other than the trial-to-trial feedback 

that they received. In order to further distinguish between stationary and non-stationary 

environments, Experiment 2 used environmental cues to indicate to participants that a 

context shift could or could not occur in the near future. Otherwise, Experiment 2 used 

exactly the same task as Experiment 1. As predicted, participants performed better in 
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Experiment 2 compared to Experiment 1, and also displayed enhanced fERN and P300 

components in non-stationary environments. Comparisons between Experiment 2 and 

Experiment 1 suggest that a system other than medial-frontal reward processing is at least 

partially responsible for detecting unexpected uncertainty.  

Finally, in Chapter Four, the behavioural and EEG data observed in Experiments 

1 and 2 were simulated. The model combined a RL component, which generated 

prediction errors and selected actions, with an uncertainty detection component 

developed by Yu and Dayan (2005). The modelling results suggest that while a RL 

system plays a strong role in learning in non-stationary environments, it is likely that this 

system is augmented by an ACh-NE system that explicitly computes various forms of 

uncertainty.  
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CHAPTER 2: EXPERIMENT 1 

2.1 INTRODUCTION 

Our choices are informed by the past; a history of rewards and punishments often 

drives our actions. Thus, the validity of those rewards and punishments is of critical 

importance for learning systems. When even the best decisions often result in a loss, 

learning is difficult. Feedback validity describes the degree to which rewards and 

punishments can be trusted. When feedback validity is high, choosing the best option 

almost always results in a reward. Likewise, a poor option almost always results in a lack 

of reward. When feedback validity is low, however, it is difficult to know if one’s current 

actions are optimal.  

Besides feedback validity (i.e. expected uncertainty), unexpected uncertainty also 

impacts learning. The implication of unexpected uncertainty – occasional shifts in the 

underlying rule structure of a task – is that an optimal response in one instance may no 

longer be so in the next. Bland and Schaefer (2011) recently used EEG to investigate the 

interaction between expected uncertainty (which they called feedback validity) and 

unexpected uncertainty. To do this they had participants learn several stimulus-response-

outcome (SRO) rules. SRO rules link an outcome to an action made in a certain context 

(de Witt & Dickinson, 2009). Following a correct response, a reward was given with a 

certain likelihood (the feedback validity), and withheld some proportion of the time (the 

expected uncertainty). Likewise, incorrect responses also lead to a reward with some 

small probability. Every so often, the SRO rules would switch – the previously rewarded 

response was now punished, and vice-versa. Bland and Schaefer (2011) manipulated both 

expected and unexpected uncertainty across several blocks. In some blocks, the SRO 
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rules changed frequently (a non-stationary environment), and in some they remained 

stable (a stationary environment). They observed a modulation of the fERN, an ERP 

component sensitive to rewards and punishments (Miltner et al., 1997), which depended 

on unexpected uncertainty. In particular, the amplitude of the fERN was enhanced during 

times when the SRO rules were shifting compared to when they were stable. In addition, 

they noted that performance (i.e. how often people made the optimal response) suffered 

when feedback validity was low (i.e. when expected uncertainty was high). Bland and 

Schaefer (2011) also analyzed the P300 in response to feedback, and noted an enhanced 

P300 during times of unexpected uncertainty. 

Several issues arose in the Bland and Schaefer (2011) study. One issue was that, 

for optimal responses, high feedback validity was defined as times when the probability 

of the optimal choice winning was 83.3%, i.e. p(win) = 83.3%; low feedback validity was 

defined as p(win) = 73.3%. This meant that even in the low feedback validity condition, 

correct responses still resulted in a reward 73.3% of the time. Likewise, for incorrect 

responses, p(loss) = 83.3% (high validity) or 73.3% (low validity). A second minor issue 

was that, based on these probabilities, punishments would be much less frequent than 

rewards. This could cause the P300, an ERP component sensitive to rare events, to 

contaminate the fERN by deflecting it in the positive direction (Falkenstein, 2004; 

Holroyd & Krigolson, 2007). In addition, for their P300 analysis, Bland and Schaefer 

(2011) grouped together both win and loss feedback responses. Thus, it was not clear if 

the enhanced P300 was due to the response to wins, losses, or both. Finally, Bland and 

Schaefer (2011) grouped all ERP responses within each block, which is problematic since 

the amplitude of the fERN is known to change over time (i.e. with learning: Krigolson, 
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Pierce, Holroyd, & Tanaka, 2009). In order to claim that any observed effect on the fERN 

amplitude is due to a difference in uncertainty, it is therefore advisable to track the fERN 

amplitude within a block (e.g. early and late within a block).  Given these issues, it is not 

clear if the fERN is enhanced in non-stationary environments compared to stationary 

environments when feedback validity is greatly reduced (i.e. below 70%). Reducing 

feedback validity should also result in fewer wins compared to losses, mitigating the 

contamination of the fERN by the P300. 

The goal of this experiment was to extend Bland and Schaefer’s (2011) work, 

employing feedback validity below what they considered low. To do this, EEG were 

recorded while participants played a gambling game in which selecting one of two 

coloured squares resulted in either a win or a loss. Importantly, selecting one of the 

coloured squares was more likely to result in a win compared to selecting the other 

coloured square. Occasionally, and without warning, a context shift would occur (i.e. the 

colours on the squares would switch), requiring participants to adapt their behaviour in 

order to maximize their overall wins. Recall that the fERN is thought to index a RL 

prediction error – the difference between expected and actual rewards (Holroyd & Coles, 

2002). Based on this definition, and on other work on the fERN (Holroyd, Larsen, & 

Cohen, 2004; Amiez, Joseph, & Procyk, 2005; Hajcak, Moser, Holroyd, & Simons, 2006; 

Holroyd, Hajcak, & Larsen, 2006), RL theory would predict that the fERN should be 

enhanced in non-stationary environments following a context shift, replicating Bland and 

Schaefer's (2011) results. However, given that feedback validity here was greatly 

reduced, making it difficult to tell when a context shift occurred, it was predicted that 
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there would be little or no difference in the fERN between the stationary environment and 

the non-stationary environment.  

Unlike the fERN, which signals that feedback is different than expected, the P300 

marks a context update – the modification of an internal model of the environment 

(Donchin & Coles, 1988). Thus, it was predicted that the P300 response to both wins and 

losses would be enhanced in the non-stationary environment following a context shift, 

since in this environment unexpected losses signalled that a context shift had occurred, 

and wins signalled that the correct context had been redetermined. Implicit in this 

prediction is the assumption that participants would be able to detect the context shifts in 

the non-stationary environment when they occurred and adapt their behaviour 

accordingly, despite reduced feedback validity. 

2.2 METHOD 

2.2.1 Participants 
Twenty university-aged participants (4 male, mean age: 20+/- 0.4) with no known 

neurological impairments and with normal or corrected-to-normal vision took part in the 

experiment. All of the participants were volunteers who were recruited through an online 

signup system, and they all received two credit points in an undergraduate psychology 

course for their participation. The participants provided informed consent approved by 

the Health Sciences Research Ethics Board at Dalhousie University. 

2.2.2 Apparatus and Procedure 
Participants were seated 75 cm in front of a computer display and used a Logitech 

USB game controller to perform a gambling task (written in MATLAB [Version 7.14, 

Mathworks, Natick, USA] using the Psychophysics Toolbox Extension, Brainard, 1997). 
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Participants received both verbal and written instructions. We encouraged participants to 

minimize head and eye movements, and to maintain fixation on the centre of the display 

throughout the experiment. Participants were told that the goal of the task was to win as 

many points as possible by maximizing the number of wins they received (two points 

each) and minimizing their losses (minus one point each).  

The gambling task was a two-armed bandit (Sutton and Barto, 1998). On each 

trial, participants chose between two coloured squares, which represented slot machines. 

Square colours were chosen randomly at the beginning of each block. Each choice 

resulted in either a win or a loss. Participants were told that choosing one of the coloured 

squares was more likely to result in a win compared to choosing the other coloured 

square. Unknown to participants, choosing the higher probability square initially resulted 

in a win with probability p(win) = 0.6, and choosing the lower probability square resulted 

in a win with p(win) = 0.1. Similar to the task used by Miltner et al. (1997), these 

parameters were adjusted throughout the experiment in order to balance the overall 

number of wins and losses. Specifically, if the overall ratio of one feedback type to the 

other (either wins:losses or losses:wins) exceeded 3:2, then p(win) was adjusted to make 

the task either easier or more challenging by increasing/decreasing the higher p(win) by 

5%, and decreasing/increasing the lower p(win) by 2.5%.  

In half of the blocks, chosen at random, the p(win) values of the squares would 

swap partway through the block. Within these blocks – called non-stationary blocks – the 

probability swap, or context shift, occurred randomly between trials 11 and 20. The exact 

switch trial was chosen from a type of folded normal distribution, SD = 1, centred on trial 

12, such that a switch was never allowed to occur on trials 1-10. 
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Participants were given the following verbal and written instructions: 

In this experiment, you will be playing several slot machine games. 
During each game, you will pull the arm on one of two coloured slot 
machines. One of the coloured slot machines is better - selecting it will 
result in more wins and fewer losses, in the long run. Your goal in this 
task is maximize the number of points you receive over 24 games. 
Sometimes, which slot machine is best will change. If this happens, you 
should change your response in order to maximize the number of wins you 
receive. Try to keep your eyes on the + in the centre of the screen 
throughout the experiment. Wait for the + to change colour before 
responding. Click the left gamepad button to select the left slot machine. 
Click the right gamepad button to select the right slot machine. Press 
LEFT or RIGHT to see a summary. 

Participants were then shown a summary as follows: 

- When the + changes colour, choose a slot machine 
- One of the coloured slot machines is the better choice 
- Sometimes, which slot machine is best may change 
- Your goal is maximize your total number of points 
- Press LEFT or RIGHT to begin 

Each trial began with the presentation of a white 1.1 cm central fixation cross 

subtending 0.84 degrees of visual angle for 400-600 ms. Next, two coloured squares 

appeared, each 2.8 cm (2.14 degrees) across, equidistant to the left and right of the 

fixation cross. The squares were 11.3 cm (8.62 degrees) apart centre-to-centre. After 

another 400-600 ms, the fixation cross changed colour to light gray to cue participants to 

choose a square. Participants made their selection by pressing the left or right button on 

the gamepad with the index finger of their left or right hand, respectively. If participants 

responded too early (i.e. before the “go” cue) or too late (after 2000 ms) the trial resulted 

in a loss so that all valid responses occurred within a 0-2000 ms window following the go 

cue. 

Following a valid response, the squares were occluded, leaving only a light gray 

fixation cross on the display for 400-600 ms. Next, participants were shown feedback 
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indicating the outcome of the trial (“WIN” or “LOSE”) for 1000 ms. Wins resulted in a 

gain of two points, while losses resulted in a loss of one point. Participants were shown 

their total score at the end of each block. See Figure 2.1 for an overview of the 

experimental design, with timing details. 

 

Figure 2.1. Experimental design, with timing details. Over the course of a block (20 
trials), participants learned that selecting one of the squares resulted in more wins, on 
average, compared to selecting the other coloured square. 

2.2.3 Data collection 
The experimental program recorded participant responses and response times. The 

EEG was recorded from 16 electrode locations using Brain Vision Recorder software 

(Version 1.20, Brain Products, GmbH, Munich, Germany).  The electrodes were mounted 
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in a fitted cap with a standard 10-20 layout and were recorded with an average reference 

built into the amplifier (see Figure A1 in the Appendix for the exact electrode 

configuration). The vertical electrooculogram was recorded from an electrode placed 

above the right eye. Electrode impedances were kept below 20 kΩ. The EEG data were 

sampled at 1000 Hz and amplified (V-Amp, Brainproducts, GmbH, Munich, Germany). 

2.2.4 Data analysis 
For each trial (1-20), accuracy, defined as the proportion of times across all 

blocks that the option most likely to result in a win was chosen, was computed for each 

condition (stationary/non-stationary) for each participant. Means and standard errors of 

accuracies and response times were also computed for each condition and participant 

both early (trials 1-10) and late (trials 11-20) in learning, and were compared using a 2 

(environment: stationary, non-stationary) by 2 (learning phase: early, late) repeated-

measures analysis of variance (ANOVA). Means and standard deviations of adjusted 

p(win) values were computed, and the total number of wins and losses were compared 

using a paired-samples t-test. An alpha level of .05 was assumed for all statistical tests, 

and all error measures represented one standard error. 

EEG data were filtered through a (0.1 Hz – 25 Hz pass band) phase shift-free 

Butterworth filter and rereferenced to the average of the two mastoid channels. Next, 

ocular artifacts were corrected using the algorithm described by Gratton, Coles, and 

Donchin (1983). Subsequent to this, all trials were baseline corrected using a 200 ms 

epoch prior to stimulus onset. Finally, trials in which the change in voltage in any 

channel exceeded 10 µV per sampling point or the change in voltage across the epoch 

was greater than 100 µV were discarded. In total, 2% of the data were discarded. 
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In order to evaluate participant responses to visual feedback (i.e. when the word 

“WIN” or “LOSE” was displayed), 800 ms epochs of data (from 200 ms before feedback 

onset to 600 ms after feedback onset) were extracted from the continuous EEG for each 

trial, channel, and participant, for all feedback presentations. These epochs were grouped 

based on their feedback type (win or loss), time within a block (early: trials 1-10 or late: 

trials 11-20), and environment type (stationary or non-stationary). ERPs were created by 

averaging within these groupings for each participant (early win, early loss, late win, late 

loss). Two grand average waveforms were also created by averaging over either all wins 

or all losses, in order to determine likely scalp locations and timing windows for analysis. 

Finally, all wins and losses were pooled into a third grand average, i.e. the average 

response to feedback, regardless of valence. 

 To analyze the fERN, difference waves were created by subtracting the average 

waveform for win trials from the average waveform for loss trials, early and late in 

learning, for each environment type. This produced four difference waves for each 

participant: early stationary, early non-stationary, late stationary, and late non-stationary 

(see Figure 2.2). A grand difference waveform was also created by subtracting the 

average for all wins from the average for all losses. Based on the peak of the grand 

difference wave (Appendix, Figure A2), and in line with previous work (Holroyd & 

Coles, 2002; Krigolson & Holroyd, 2007; Krigolson et al., 2008), the fERN was defined 

as the maximum negative deflection of the difference waveform 200–400 ms post 

feedback at electrode site FCz, where the grand difference wave was maximal (i.e. the 

greatest difference). 
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Figure 2.2. Average medial-frontal response to feedback (a) with scalp topographies (b). 
Context shifts only occurred in late non-stationary blocks. The dashed rectangle shows 
the interval of analysis (200 – 400 ms post feedback). 
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Based on an observation of the average combined response to all wins and losses 

at parietal electrode sites (Appendix, Figure A3), the P300 was defined as the average 

voltage 300-500 ms post feedback. In line with previous work, the analysis was done at 

electrode site Pz because this is where the P300 of the average of all wins and losses was 

maximal (Polich & Margala, 1997; Nieuwenhuis et al., 2005; Wu & Zhou, 2009). See 

Figure 2.4 for the P300 scalp topography. A P300 was defined for each feedback type 

(win/loss), learning phase (early/late), and environment (stationary/non-stationary). 

Figure 2.3 shows the average waveforms for these conditions. 

 

Figure 2.3. P300 response to feedback early in learning (a and b) and late in learning (c 
and d) for each environment type. The grand average (all conditions pooled) was 
maximal at Pz. A dashed rectangle indicates the region of analysis (300 – 500 ms post 
feedback). 
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Figure 2.4. P300 scalp topography for the average response to all feedback, maximal at 
Pz. 

The fERN peaks were compared using a 2 (environment: stationary, non-

stationary) by 2 (learning phase: early, late) repeated-measures ANOVA. P300 peaks 

were compared using a 2 (environment: stationary, non-stationary) by 2 (learning phase: 

early, late) by 2 (feedback: win, loss) repeated-measures ANOVA. For the P300 

ANOVA, only significant effects were reported. As with the behavioural data, an alpha 

level of .05 was assumed for all statistical tests, and all error measures represented one 

standard error. 

2.3 RESULTS 

2.3.1 Accuracy 
Mean accuracies with standard errors are presented in Table 2.1. There was an 

effect of time (F(1,19) = 9.536, p = .006): mean accuracies increased later in a block 

compared to earlier in a block as participants learned the correct response. Accuracies 
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were also worse in the non-stationary environment (F(1,19) = 28.156, p < .001) 

compared to the stationary environment. Finally, there was an interaction between time 

and environment (F(1,19) = 24.396, p < .001): accuracies became worse in the non-

stationary environment, following a context shift, but better in the stationary environment 

(See Figure 2.6a). The mean adjusted p(win) values were .67 +/- .01 and .14 +/- .01. Due 

to these adjustments to the p(win) values, there was no difference in the total number of 

wins and losses t(19) = 0.3951, p = .3486. 

 

Figure 2.5. Performance Curve. In the non-stationary environment, the optimal choice 
switched on trial 12, on average. Dashed lines are shown at 50% (chance) and 80%, for 
reference. 

2.3.2 Response Time 
Mean response times with standard errors are presented in Table 2.1. There was a 

significant effect of time (F(1,19) = 11.240, p = .016): participants were slower to 

respond in the second half of a block. There was no effect of environment (F(1,19) = 

1.552, p = .228) and no time/environment interaction (F(1,19) = 2.566, p = .126. See 

Figure 2.6b.  
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Table 2.1. Experiment 1: Behavioural means and standard errors. 

Variable Environment 

Early Late 

Mean SE Mean SE 

Accuracy (%) Stationary 70 2 77 3 

Non-Stationary 70 2 53 0.7 

Response Time (ms) Stationary 447 32 473 36 

Non-Stationary 444 31 458 35 
 

 

Figure 2.6. Behavioural results. (a) Mean performance early and late in a block for each 
environment. (b) Mean response time early and late in a block for each environment. 

2.3.3 The fERN 
 An analysis of difference waves (losses minus wins) locked to the onset of 

feedback revealed ERP components with latencies and scalp distributions (maximal at 

FCz) consistent with a fERN, both early and late in learning, and for each environment 

type (see Figure 2.2). 

A repeated-measures ANOVA of the fERN peaks revealed a main effect of time 

(F(1,19) = 7.967, p = .011): the fERN was enhanced later in a block compared to earlier 



 

 27 

in a block. There was no effect of environment (F(1,19) = 0.241, p = .629) and no 

time/environment interaction (F(1,19) = 1.011, p = .327). See Figure 2.7 and Table 2.2. 

 

Figure 2.7. Mean fERN amplitudes, early and late in learning, for each environment. 

Table 2.2. Experiment 1: Means and standard errors for the fERN. 

Environment 

Early Late 

Mean SE Mean SE 

Stationary (μV) -4.3 0.5 -4.9 0.6 

Non-Stationary (μV) -4.1 0.5 -5.6 0.6 
 

2.3.4 The P300 
An analysis of mean amplitude in the P300 time range (300 – 500 ms) at a 

posterior electrode site (Pz) revealed interactions between time and environment (F(1,19) 

= 7.173, p = .015) and between feedback and environment (F(1,19) = 5.922, p = .025). 

As shown in Figure 2.8, the P300 was enhanced later in learning for non-stationary 

blocks compared to stationary blocks. Furthermore, the P300 for win trials was enhanced 
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relative to loss trials in the non-stationary blocks, but not the stationary blocks. See Table 

2.3 for exact P300 amplitudes. 

 

Figure 2.8. P300 amplitudes in response to feedback. When context shifts occurred, there 
was an enhanced P300 response to wins. 

Table 2.3. Experiment 1: Means and standard errors for the P300. 

Feedback Type Environment 

Early Late 

Mean SE Mean SE 

Win (μV) Stationary 9.5 1.0 8.8 1.1 

Non-Stationary 9.3 1.0 10.8 1.3 

Loss (μV) Stationary 8.9 1.1 8.9 1.2 

Non-Stationary 8.1 1.1 8.5 1.1 
 

2.4 DISCUSSION 
The goal of this experiment was to determine whether or not low feedback 

validity (high expected uncertainty) during learning leads to an enhancement of RL 

prediction errors generated within medial-frontal cortex. Participants in this study were 

able to learn optimal responses in a simple gambling game in which the optimal response 
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could change. Two different ERP responses to feedback were measured and analyzed: the 

P300 and the fERN. 

As predicted, using reduced feedback validity resulted in a failure to reproduce 

Bland and Schaefer’s (2011) observation of an enhanced fERN following context shifts. 

Thus, even though participants here were able to learn optimal responses, they did not 

show an enhanced fERN in the non-stationary environment relative to the stationary 

environment. However, there was a main effect of time such that the fERN was enhanced 

later in each block, regardless of environment. In the non-stationary environment, this is 

unsurprising since the context shifts that occurred later in a block were characterized by 

unexpected losses, and should therefore have elicited a larger prediction error relative to 

earlier in a block. That an enhanced fERN was mirrored in the stationary environment, as 

predicted, may be surprising to some given that the fERN is typically reduced with 

learning (Krigolson et al., 2008). More specifically, as feedback became expected – as 

the wins and losses became less surprising – there should have been less of a prediction 

error later in learning (Sutton & Barto, 1998). Thus, assuming that the fERN is a RL 

prediction error (Holroyd & Coles, 2002), the fERN should have diminished over time in 

the stationary environment, but not the non-stationary environment.  

One possible explanation for this surprising fERN result is that due to the high 

expected uncertainty in this task, participants were prone to falsely detecting context 

shifts in the stationary environment. If this were the case here, then one would expect the 

fERN in the stationary environment to resemble the fERN in the non-stationary 

environment (which it did). Thus, not only did the fERN in the non-stationary 

environment fail to decrease with learning, as predicted, but it also closely matched the 
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fERN in the non-stationary environment, making any comparison between these 

quantities problematic in this design, as well as many others (O’Doherty et al., 2003; 

Hornak et al., 2004; Behrens et al., 2007; Chase et al., 2010; Bland and Schaefer, 2011).  

This hypothesis – that low feedback validity made stationary environments more 

like non-stationary environments – is consistent with the response time data: participants 

were slower to respond later in a block compared to earlier, in both environments. This 

slowing of response times suggests that participants came to deliberate over their 

responses in both environments, i.e. that even in the stationary environment they were 

unsure about which response was optimal later in a block.  

As the performance curve for this task showed, however, participants were able to 

detect and adapt to the change in outcome probabilities. Thus, while midbrain reward 

processing as indexed by the fERN may be important for action selection, and may also 

contribute to uncertainty detection in general, there is most likely some other mechanism 

helping to detect unexpected uncertainty. A clue about this other mechanism may be that, 

while there was no fERN difference between environments, there was a P300 difference. 

Specifically, the P300 in response to wins (but not losses) was enhanced in the non-

stationary environment following context shifts. A context-updating interpretation 

(Donchin, 1981; Donchin & Coles, 1988) of this enhancement would suggest that 

feedback following a context shift was used to both signal that a change had occurred (in 

the case of losses), and that the new context had been determined (in the case of wins). 

Consistent with this suggestion, the P300 enhancement could also reflect an increase in 

phasic NE in response to the detection of context shifts in the non-stationary environment 

(Nieuwenhuis et al., 2005). 
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It is unclear why the P300 to losses would not also be enhanced in the non-

stationary environment following a context shift, especially given that a sequence of 

losses should signal the shift itself. One speculation is that, for some reason, losses were 

less salient compared to wins in this task. A possible explanation for this is that just as 

stationary environments became more like non-stationary environments, participants 

tended to confuse non-stationary environments for stationary environments. That is, 

participants may have confused the actual context shifts in non-stationary environments 

for the random feedback variations that occurred in stationary environments. If this was 

the case here, then it is reasonable to suggest that participants may have tended to ignore 

(initially) the losses that signalled a context shift, and instead focus more on wins, i.e. 

that wins were more salient because they were more informative (Nieuwenhuis et al., 

2005). 

In conclusion, the results presented here suggest that when feedback validity is 

low, midbrain reward processing may not be solely responsible for detecting context 

shifts. In particular, uncertainty about the identity of the environment may make the 

accurate detection of context shifts challenging. Experiment 2 will attempt to validate this 

claim by providing cues to participants as to which environment they are in. 
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CHAPTER 3: EXPERIMENT 2 

3.1 INTRODUCTION 

 The results from Experiment 1 suggest that low feedback validity impacts 

midbrain reward processing such that the fERN in stationary environments closely 

resembles the fERN in non-stationary environments. This surprising outcome may have 

been due to participant difficulty in detecting context shifts when they occurred in the 

non-stationary environment, or to mistakenly believing that context shifts had occurred in 

the stationary environment (i.e. mistaking expected uncertainty for unexpected 

uncertainty). Put another way: when a context shift can occur at any time (in any block of 

an experiment), then one could argue that the entire experiment is a non-stationary 

environment. This could pose serious challenges to any attempt to make stationary/non-

stationary comparisons within such a design, yet to date this is precisely what most 

research on unexpected uncertainty has done (Yu & Dayan, 2005; Behrens et al., 2007; 

Chase et al., 2010; Bland & Schaefer, 2011), and it was what was done in Experiment 1. 

Thus, in order to fully investigate the neural basis of learning in non-stationary 

environments, one should contrast a known non-stationary environment with a known 

stationary environment, i.e. environments in which participants are aware that a context 

shift either could or could not occur. The reasoning behind this claim is based on the idea 

of NE modulation in the ACh-NE system of uncertainty detection (Yu and Dayan, 2005; 

Bouret and Sara, 2005). NE, according to Yu and Dayan (2005), indexes unexpected 

uncertainty. In other words, NE increases at times when the current belief about the 

environment (e.g. which option is best) is in doubt, and decreases when that belief is firm 

– an inverse measure of confidence. Thus, in Yu and Dayan's (2005) model, context 
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updates are more likely when NE levels are raised (confidence is low) and less likely 

when NE levels are lowered (confidence is high). This modelling result is also seen in the 

laboratory. For example, monkeys whose overall level of NE is increased through 

pharmacological intervention are more likely to switch their response strategy compared 

to controls (Steere & Arnsten, 1997). Specifically, Steere and Arnsten (1997) observed 

that monkeys injected with guanfacine, which increases the firing rate of LC neurons and 

raises NE levels, were more likely than controls to detect reward contingency reversals in 

a reward-based learning task (also see Devauges & Sara, 1990). Thus, increasing NE via 

the LC-NE system may increase performance in uncertain environments by improving 

reward reversal detection. The idea that NE modulation may play a role in different 

environments will be explored further in Chapter Four, in which human performance in 

the present experiment and in Experiment 1 will be simulated. 

 The goal of this experiment was therefore to examine learning in known 

stationary and non-stationary environments. To do this, participants played the same 

gambling game as in Experiment 1, with cues added at the beginning of each block that 

indicated whether a block was stationary or non-stationary. Similar to how experienced 

sailors know that the weather is more unpredictable at certain times of the year, 

participants here could learn to identify those blocks in which a reward reversal could 

occur. It was predicted that the addition of environmental cues would not only lead to an 

overall improvement in performance (in both environments), but also an observed 

difference in medial-frontal reward processing in each environment, as indexed by the 

fERN. Specifically, it was hypothesized that the fERN would be enhanced later in a block 

in the non-stationary environment (i.e. after the context shift occurred, when losses were 
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unexpected), and reduced later in a block in the stationary environment (as losses became 

expected). This prediction was based on previous work implicating ACC in uncertainty 

detection (Behrens et al., 2007; Chase et al., 2010; Bland & Schaefer, 2011). Finally, 

based on the context-updating hypothesis (Donchin & Coles, 1988) and on previous work 

on uncertainty (Bland & Schaeffer, 2011), it was predicted that the P300 would be 

enhanced for both wins and losses later in a non-stationary block, as these events 

provided the information that a context shift had occurred, and that the correct context 

had been relearned.   

3.2 METHOD 

3.2.1 Participants 

Twenty university-aged participants (9 male, mean age: 21+/- 0.6) with no known 

neurological impairments and with normal or corrected-to-normal vision took part in the 

experiment. None of the participants had been tested in Experiment 1. All of the 

participants were volunteers who received credit in an undergraduate course for their 

participation. The participants provided informed consent approved by the Health 

Sciences Research Ethics Board at Dalhousie University. 

3.2.2 Apparatus and Procedure 

The apparatus and procedure here were identical to Experiment 1, except that 

prior to each block the participants were shown a cue to indicate the environment they 

were in. Participants were told that they would be playing a gambling game in two 

different casinos – a dishonest casino, in which the best choice could change partway 

through a block, and an honest casino, in which the best choice never changed. The 
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environmental cue consisted of a picture and name unique to that casino. The exact 

picture and name for each casino type (honest/dishonest) was randomized between 

participants. 

Since participants were not told which casino was the dishonest one, a way to 

determine if they knew which casino was which was needed. At the end of each block, 

participants were asked to rate, with a button press, the honesty of the casino they had 

just played in on a scale from 1 (dishonest) to 5 (honest). Similar to Experiment 1, 

participants were given the following verbal and written instructions (differences from 

Experiment 1 have been italicized here): 

In this experiment, you will be playing several slot machine games. 
During each game, you will pull the arm on one of two coloured slot 
machines. One of the coloured slot machines is better - selecting it will 
result in more wins and fewer losses, in the long run. Your goal in this 
task is maximize the number of points you receive over 24 games. You 
will be playing this game in one of two casinos. You will be shown a 
picture of the casino you are playing in before each set of 20 trials. One of 
the casinos is dishonest, and may switch which coloured slot machine is 
the better choice partway through a game. The other casino is honest, and 
never switches the payouts within a game. At the end of several of the 
games, you will be asked to rate the casino you just finished playing in. 
The rating scale goes from 1 (dishonest) to 5 (honest). You will indicate 
your rating by pressing one of buttons 1-5. Try to keep your eyes on the + 
in the centre of the screen throughout the experiment. Wait for the + to 
change colour before responding. Click the left gamepad button to select 
the left slot machine. Click the right gamepad button to select the right slot 
machine. Press LEFT or RIGHT to see a summary. 

Participants were also shown the following summary (difference from Experiment 1 

italicized): 

- When the + changes colour, choose a slot machine 
- One of the coloured slot machines is the better choice 
- In one of the casinos, which slot machine is best may change multiple 
times 
- Your goal is maximize your total number of points 
- Press LEFT or RIGHT to begin' - Press LEFT or RIGHT to begin 
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See Figure 3.1 for an overview of the present experiment. 

 

Figure 3.1. Experimental design for (a) blocks and (b) trials, with timing details. At the 
beginning of each block, participants were shown the casino in which they were 
gambling. After 20 trials, they were asked to rate the honesty of the current casino. 
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3.2.3 Data Collection 

The experimental program recorded participant responses (slot machine selections 

and casino ratings) and response times. The EEG was recorded from 64 electrode 

locations using Brain Vision Recorder software (Version 1.20, Brain Products, GmbH, 

Munich, Germany).  The electrodes were mounted in a fitted cap with a standard 10-20 

layout and were recorded with an average reference built into the amplifier (see Figure 

A4 in the Appendix for the exact electrode configuration). The vertical and horizontal 

electrooculograms were recorded from electrodes placed above and below the right eye, 

and on the outer canthi of the left and right eyes. Electrode impedances were kept below 

20 kΩ and the EEG data were sampled at 1000 Hz and amplified (Quick Amp, 

Brainproducts, GmbH, Munich, Germany). 

3.2.4 Data Analysis 

Behavioural data were analyzed as in Experiment 1. Additionally, means and 

standard errors of casino ratings were computed for each trial, and mean casino ratings 

for each environment (stationary/non-stationary) were computed for each participant and 

compared using a paired-samples t-test in order to determine if participants were aware of 

which casino was the dishonest casino (i.e. the non-stationary environment). Finally, 

mean performance in Experiment 1 was compared to mean performance in Experiment 2 

using a 2 (environment: stationary, non-stationary) by 2 (Experiment: One, Two) mixed 

ANOVA. An alpha level of .05 was assumed for all statistical tests, and all error 

measures represent one standard error. 
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EEG data were also analyzed and epoched as in Experiment 1. In total, 3% of the 

data were discarded after artifact rejection. Previous research (fERN: Holroyd & Coles, 

2002; Krigolson & Holroyd, 2007; Krigolson et al., 2008 and P300: Polich & Margala, 

1997; Nieuwenhuis et al., 2005; Wu & Zhou, 2009), and an examination of the grand 

average waveforms for both frontal and parietal responses (Appendix, Figures A5 and 

A6) suggested that the same analyses windows would be appropriate here as in 

Experiment 1. In particular, as in Experiment 1, the difference wave (losses – wins) of the 

grand average response to feedback in the ERN time range (200 – 400 ms post feedback) 

was maximal at FCz (see Figure 3.2). Finally, the overall average (all wins and losses 

combined) was maximal in the P300 time range (300 -500 ms post feedback) at electrode 

site Pz (See Figures 3.3 and 3.4). 
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Figure 3.2. Grand average (a) waveforms and (b) scalp topographies in response to 
feedback. Context shifts only occurred late in non-stationary blocks. The dashed 
rectangle shows the interval of analysis (200 – 400 ms post feedback). Note that the 
scales for the scalp topographies are identical (black = -4 μV, white = 1 μV). 
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Figure 3.3. P300 response to feedback early in learning (a and b) and late in learning (c 
and d) for each environment type. A dashed rectangle shows the region of analysis: 300 – 
500 ms post feedback. 
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Figure 3.4. P300 scalp topography for the average response to all feedback, maximal at 
Pz. 

3.3 RESULTS 

3.3.1 Accuracy 

The mean accuracies are presented in Table 3.1. There was a significant effect of 

environment (F(1,19) = 51.879, p < .001). Performance was worse in the non-stationary 

environment compared to the stationary environment. There was also a significant 

interaction between time and environment (F(1,19) = 106.463, p < .001): accuracies 

became worse in the non-stationary environment, but better in the stationary environment 

(See Figure 3.6c). The mean adjusted p(win) values were .63 +/- .01 and .12 +/- .004. As 

in Experiment 1, due to these adjustments to the p(win) values, there was no difference in 

the total number of wins and losses, t(19) = 0.4451, p = .6612. Finally, there was a 

significant main effect of both environment (F(1,38) = 76.72, p < .001) and Experiment 
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(F(1,38) = 19.13, p < .001): performance was better in the present experiment, regardless 

of environment type (Figures 3.5 and 3.6) 

 

Figure 3.5. Performance curve in (a) Experiment 1, and (b) the present study. In the non-
stationary environment, the optimal choice switched on trial 12, on average. Dashed lines 
are shown at 50% (chance) and 80%, for reference. 

 

Figure 3.6. Mean accuracies, for each environment, for the current experiment and 
Experiment 1. Adding environment cues improved performance regardless of 
environment type 
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3.3.2 Response Time 

Mean response times are presented in Table 3.1. There was no significant effect 

of time (F(1,19) = 0.220, p = .540). There was also no significant effect of environment 

(F(1,19) = 0.389, p = .228) and no significant time/environment interaction (F(1,19) = 

0.155, p = ..699. See Figure 3.6d. 

Table 3.1. Experiment 2: Behavioural means and standard errors. 

Variable Environment 

Early Late 

Mean SE Mean SE 

Accuracy (%) Stationary 80 1.8 89 0.2 

Non-Stationary 75 1.8 61 2.5 

Response Time (ms) Stationary 373 25.7 377 26.4 

Non-Stationary 372 23.9 373 28.4 

3.3.3 Environment Ratings 

See Figure 3.7b. Mean ratings for each trial suggested that participants were able 

to distinguish the casinos from trial one. Participants rated the non-stationary casino 

significantly lower (more dishonest) than the stationary casino, t(1,19) = 7.88, p < .001 

(Figure 3.7a). 
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Figure 3.7. Behavioural results. Mean performance (a) and response time (b) in 
Experiment 1 and (c, d) Experiment 2. 

 

Figure 3.8. Casino ratings (a) over all trials and (b) grouped by environment type. 
Participants were able to discriminate the environments based on the feedback they 
received throughout a block. 
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3.3.4 The fERN 

 An analysis of difference waves (losses minus wins) locked to the onset of 

feedback revealed ERP components with latencies and scalp distributions (maximal at 

FCz) consistent with a fERN, both early and late in learning, and for each environment 

type (see Figure 3.2). 

There was a main effect of environment on the magnitude of the fERN (F(1,19) = 

6.145, p = .023) and a significant time/environment interaction (F(1,19) = 7.489, p = 

.013). The fERN was greater in the stationary environment compared to the non-

stationary environment. Furthermore, the fERN increased later in a block in the non-

stationary environment, but decreased later in a block in the stationary environment. 

There was no main effect of time (F(1,19) = 0.004, p = .949). See Figure 3.8 and Table 

3.2. 

 

Figure 3.9. Mean fERN amplitudes, early and late in learning, for each environment in 
(a) Experiment 1, and (b) the present study. In the present experiment, the fERN was 
enhanced over time in the non-stationary environment, but reduced in the stationary 
environment.  
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Table 3.2. Experiment 2: Means and standard errors for the fERN. 

Environment 

Early Late 

Mean SE Mean SE 

Stationary (μV) -4.4 0.6 -3.1 0.6 

Non-Stationary (μV) -4.7 0.6 -5.6 0.6 
 

3.3.5 The P300 

There was an interaction between time and environment (F(1,19) = 19.583, p < 

.001) on P300 amplitude: the P300 was enhanced later for non-stationary, but not 

stationary, environments. There was also an interaction between feedback and 

environment (F(1,19) = 13.401, p = .002): wins elicited a larger P300 than losses in the 

non-stationary, but not stationary, environments. Additionally, there were main effects of 

time (F(1,19) = 8.027, p = .01) and environment (F(1,19) = 26.999, p > .001). As in 

Experiment 1, later blocks elicited a larger P300, and the P300 was enhanced for non-

stationary environments compared to stationary environments (Figure 3.10 and Table 

3.3).   
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Figure 3.10. P300 amplitudes in response to feedback in (a) Experiment 1, and (b) the 
current experiment. When context shifts occurred, there was an enhanced P300 response 
to wins and losses. 

Table 3.3. Experiment 2: Means and standard errors for the P300. 

Feedback Type Environment 

Early Late 

Mean SD Mean SD 

Win (μV) Stationary 11.4 0.9 10.4 1.1 

Non-Stationary 12.1 1.2 14.9 1.2 

Loss (μV) Stationary 11.6 0.9 11.4 1.0 

Non-Stationary 11.1 1.2 13.0 1.0 
 

3.4 DISCUSSION 

 The goal of this study was to try to determine the effect of cues on learning under 

uncertainty. Participants learned, over 20 trials, which of two slot machines was more 

likely to lead to a win when selected. Prior to each block, participants were shown a cue 

indicating that the casino they were playing in was either non-stationary (the best 

response could change) or stationary (the best response never changed). The behavioural 
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data indicated that participants were able to discern which casino was the non-stationary 

casino, and were also able to determine the optimal response in both environments. 

 The hypothesis regarding the fERN was supported. The fERN is thought to reflect 

a RL prediction error (Holroyd and Coles, 2002). Therefore, unexpected wins and losses 

should elicit larger prediction errors compared to expected wins and losses. In the known 

stationary environment, with learning, the fERN diminished as wins and losses became 

more expected. In the known non-stationary environment, the fERN was enhanced later 

in a block – the losses (and wins, eventually) experienced following a context shift were 

unexpected, and therefore resulted in a greater prediction error. 

 As with the fERN results, an environment-dependent difference in the amplitude 

of the P300 component was also observed. The feedback-locked P300 for both wins and 

losses was enhanced later in non-stationary blocks compared to stationary blocks. This is 

consistent with the context-updating account of the P300 (Donchin, 1981; Donchin & 

Coles, 1988), which holds that a P300 is observed whenever new information causes an 

update to one’s internal model of the world. This includes information about the 

probabilistic structure of a task (Donchin & Coles, 1988).  In order to maximize their 

rewards, participants here had to detect and adapt to probabilistic reversals. Presumably, 

the observed P300 enhancement marks this detection. 

 Consistent with a context-updating account is the explanation by Nieuwenhuis et 

al. (2005) that the P300 is modulated by phasic activity of the LC-NE system. 

Nieuwenhuis et al. (2005) proposed that the LC regulates exploratory behaviour in 

humans, i.e. breaking away from one behaviour in favour of another, through the release 

of NE. The change from one mode of control (automatic) to another (exploratory) is 
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marked by an increase in the P300. Thus, phasic NE and the P300 serve as a “neural 

interrupt signal” (Dayan & Yu, 2006; Doya, 2008), breaking away from previously 

rewarding behaviour so that new actions may be explored. In Chapter Four, the idea of 

NE modulation will be investigated further by modelling the human behavioural and 

EEG results presented here and in Experiment 1.  
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CHAPTER 4: SIMULATION 

4.1 INTRODUCTION 

Simulations of human behaviour have provided insight into the mechanisms 

behind how we learn and how we adapt to uncertain environments. One of the major 

benefits of computational modelling as a research tool is that it forces us to be explicit 

about not only the mechanisms, but also the exact computations, behind cognitive 

theories. Furthermore, modelling helps us to explain existing results and to make 

predictions for new experiments.  

One explanation for how we detect uncertainty in the world is via Bayesian 

inference. In this view, new evidence is observed (e.g. wins and losses), and beliefs about 

outcomes are updated (e.g., that a win is 80% likely). Under unexpected uncertainty, 

outcome probabilities can change, and there may be a performance benefit to detecting 

these changes. Yu and Dayan’s (2005) model of uncertainty detection estimated both 

expected and unexpected uncertainty over time and used these quantities to determine the 

likelihood that a probability change, or context shift, had occurred (also see Payzan-

LeNestour & Bossaerts, 2011). In particular, Yu and Dayan (2005) hypothesized that 

expected uncertainty and unexpected uncertainty are tracked, over time, via the 

neurotransmitters acetylcholine (ACh) and norepinephrine (NE), respectively (also see: 

Doya, 2008). ACh seems to be specifically modulated in tasks that manipulate expected 

uncertainty (e.g. Sarter & Bruno, 1997). Likewise, NE seems to be specifically 

modulated in tasks involving unexpected uncertainty (e.g. Bouret and Sara, 2005). Based 

on evidence implicating different roles for ACh and NE in dealing with uncertainty, Yu 

and Dayan (2005) described an ACh-NE system for explicit uncertainty detection. 
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In contrast, another type of model has uncertainty detection implicitly built in: 

reinforcement learning (RL: Sutton & Barto, 1998). In RL models, rewards and 

punishments are used to strengthen (or weaken) associations between situations and 

actions. An action that previously lead to a reward is more likely to be repeated because 

the association between it and a given situation is stronger relative to the association 

between it and other possible actions. The strength of these associations, or connections, 

can be interpreted as a belief that taking a particular action will lead to a particular 

outcome – in other words, association strength may describe expected uncertainty. 

Unexpected uncertainty, however – the likelihood of a context shift from one reward rule 

to another – is not explicitly captured by RL models. Instead, standard RL models use all 

rewards and punishments to modify the weights associated with actions, including 

feedback signalling a context switch – for example, a series of losses. While unexpected 

uncertainty is not computed separately from expected uncertainty in RL models, if 

enough punishments are received for taking a certain action, then that action will be less 

likely to be repeated in the future. Thus, the preferred action may change within RL 

models, achieving the (presumed) goal of unexpected uncertainty detection in action 

selection. Taking this notion even further, others (Alexander and Brown, 2011) have 

augmented RL models with explicit uncertainty detection, e.g. by modulating learning 

rate based on the current level of uncertainty. 

In summary, there are two possible models to account for uncertainty detection. 

Explicit models of uncertainty detection (Yu & Dayan, 2005; Payzan-LeNestour & 

Bossaerts, 2011) compute separate values for unexpected and expected uncertainty. RL 

models, in contrast, combine all uncertainties into a set of weights used to guide actions. 
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Systems implementing these two models are hypothesized to exist within humans 

(Holroyd & Coles, 2002; Yu & Dayan, 2005), which raises questions about both 

redundancy and interaction. While early work on unexpected uncertainty (Yu & Dayan, 

2005) did not address the role of uncertainty detection in action selection, recent models 

(Payzan-LeNestour & Bossaerts, 2011) have begun to compare the actions predicted by 

different uncertainty detection models with the actions predicted by RL-only models. In 

particular, Payzan-LeNestour & Bossaerts (2011) modelled human responses in a 6-

armed bandit task (determining which of 6 options was most likely to yield a reward) and 

found that, in some cases, the output of a Bayesian model matched human responses 

more closely than a RL model. The Payzan-LeNestour & Bossaerts (2011) model 

included representations for both expected and unexpected uncertainty but, unlike the Yu 

and Dayan (2005) model, included an action selection component (softmax: Equation 

4.1). While a Bayesian model seemed to produce the best fit for their human participants' 

responses, Payzan-LeNestour & Bossaerts (2011) also noted that responses became less 

Bayesian under increasing levels of uncertainty. 

Less work has been done to model human data by combining a RL model with a 

Bayesian component for detecting context shifts. Yu and Dayan’s (2005) model included 

no component for action selection (they modelled cue validity), and Payzan-LeNestour 

and Bossaerts (2011) were interested in comparing a Bayesian learner to a RL model 

alone. Also, although they did not include an explicit Bayesian component, Alexander 

and Brown (2011) simulated ACC activity with a RL model in which the learning rate of 

the model was adjusted based on the current level of surprise. Thus, unlike Yu and 

Dayan's (2005) model, recent RL models (Alexander & Brown, 2011; Payzan-LeNestour 
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& Bossaerts, 2011) do not explicitly detect context shifts. The goal of this experiment, 

therefore, was to model the human behavioural and EEG data observed in Experiments 1 

and 2 by combining a standard RL model (e.g. Sutton & Barto, 1998) with Yu and 

Dayan’s (2005) model for detecting expected and unexpected uncertainty. A combined 

model offered two advantages over a standard RL model alone. First, a combined model 

was able to better account for the human performance in Experiments 1 and 2 compared 

to a model without the ability to detect environmental uncertainty. Second, the model was 

able to account for the observed differences between Experiments 1 and 2. Specifically, 

the performance advantage observed in Experiment 2 compared to Experiment 1 may be 

due, in part, to improved detection of context shifts (more hits, and fewer false alarms). 

This was tested in the simulation by raising the overall level of NE in the non-stationary 

environment, and lowering NE in the stationary environment. Finally, The prediction 

errors generated by the RL component of the model mirrored the fERN measured in 

Experiments 1 and 2. 

4.2 DESIGN 

The current model was written in MATLAB by adapting the same experimental 

code that was used in Experiments 1 and 2.  Twenty virtual subjects were created, and 

each subject performed the same number of trials and blocks as the human participants in 

Experiments 1 and 2 (24 blocks of 12 trials each). The model incorporated two modules: 

one for action selection, and one for uncertainty detection. See Figure 4.1 for an overview 

of the model. 
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4.2.1 Action Selection: Reinforcement Learning 

The model used RL to make decisions in the gambling task. The specifics of the 

model were based on earlier work by Holroyd and Coles (2002, 2008) as well as general 

guidelines described by Sutton and Barto (1998). In particular, the model used rewards to 

guide its actions such that previously rewarded actions were more likely to reoccur. 

Action selection was based on the relative strength, or weights, of two nodes,

, where w1 and w2 are the weights associated with selecting Option 1 and Option 

2, respectively. 

Similar to the Holroyd and Coles (2008) model, the weights were each initialized 

to small random values between 0 and 0.01 at the beginning of each block. A softmax 

activation function was used to determine the probability of selecting each action, i: 

      (4.1) 

Thus, the softmax function converted weights into action probabilities (Sutton & Barto, 

1998) - the likelihood of taking each action. The parameter τ was the temperature, and 

described the degree to which options with lower weights are explored. In general, a 

higher temperature results in more exploration, and a lower temperature biases action 

selection toward heavily weighted options. At action selection, a value layer became 

active to describe which option was selected  such that vi = 1 if option i was 

selected. This allowed a prediction to be generated regarding the total value ( ) of the 

system (e.g. if a reward was forthcoming) according to . 

 Following each action, the model received feedback with probabilities similar to 

what human participants experienced – namely, that selecting the better option resulted in 

a win 60% of the time, and selecting the worse option resulted in a win only 10% of the 
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time. Following feedback, a prediction error was computed by comparing the actual 

reward received, r, with the predicted value of the system: 

       (4.2) 

The prediction error on trial t ( ) was used to update the weights according to: 

      (4.3) 

In other words, only the weight of the currently active unit was updated, e.g.  if 

Option 1 was selected and  if Option 2 was selected. Here, the parameter α 

represents the learning rate: the degree to which prediction errors alter the weights. The 

learning rate and temperature parameters were each set to 0.01, which yielded a 

performance curve that was similar to what was seen in Experiments 1 and 2.  
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Figure 4.1. Model design. Action selection (right) was made via reinforcement learning. 
Node weights for each option [w1 w2] were used by a softmax function (P) to generate a 
response. Option weights were also used to compute the current value of the system at 
action selection, depending on which unit was active (i.e. which option was chosen). A 
prediction error unit (PE) compared this predicted value with the actual reward value (r) 
to generate a prediction error (δ). Feedback was also used to detect uncertainty in the 
prefrontal cortex (PFC) working memory (left). Here, feedback history within a certain 
context was used to estimate expected uncertainty (γ), which was used to determine the 
likelihood of sticking with the current belief about which option was best (λ). If a context 
shift was detected based on these values, then the weights associated with each option 
were reset. 

4.2.2 Uncertainty Detection: ACh and NE 

The model also used feedback to estimate both expected and unexpected 

uncertainty, based on work by Yu and Dayan (2005). Using a history of rewards and 

punishments, the model computed, on a trial-to-trial basis, the likelihood that the belief 

about the current context (i.e. which option was best) was correct. Each win and loss 

either confirmed or disconfirmed this belief. If enough disconfirming information was 
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received, the model switched its belief to the alternative hypothesis that the other option 

was better. 

Besides requiring a decision (i.e. which option to select), the task that was 

modelled here differed from that of Yu and Dayan’s (2005) in an important way. In the 

present task there were only two competing hypotheses (that either Option 1 or Option 2 

was best), unlike Yu and Dayan’s (2005) task, to determine which of several cues was 

most likely to predict the appearance of a stimulus. Yu and Dayan’s (2005) model did not 

assess each hypothesis simultaneously due to the complexity of such a computation, but it 

was not unreasonable for the current model to do so. Specifically, Yu and Dayan (2005) 

considered two competing hypotheses: that the best-known context (belief about which of 

several cues was valid) was either correct or incorrect. The alternative hypothesis for 

their model always involved all other possibilities. When a context shift was detected, the 

Yu and Dayan (2005) model’s current hypothesis switched randomly to one of the other 

possible cues. In the present model, however, there was only ever one other choice, so the 

current hypothesis could only ever switch from one option to the other. 

The present model used information from the environment - in this case, feedback 

- to compute, for each trial, the likelihood of two competing hypotheses: that a belief 

about the current context (i.e. the environment) was either correct or incorrect. Since this 

task involved only two options, the competing hypotheses were that either Option 1 was 

best (µt = 1) or that Option 2 was best (µt = 2). Here, µt refers to the current hypothesis on 

trial t. On every trial where the best-known option was chosen (i.e. an exploitation trial) 

the following estimate of expected uncertainty was computed: 

   (4.4) 
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The current context was defined as those trials over which the current belief was held (i.e. 

since the last context shift). According to Yu and Dayan (2005), this quantity is the 

inverse of the current level of ACh, i.e. . 

Next, the quantity from Equation 4.4 was used to compute the strength of the 

current belief – an estimate of how likely the current belief was to be true. This was done 

according to: 

      (4.5) 

The tuning parameter Φ was used to bias the model’s current belief, making it more or 

less certain that the current belief was correct (see section 4.3.2). Here, P* is an estimate 

of the likelihood of each hypothesis – in this case, each option. Specifically, 

  (4.6) 

  (4.7) 

The parameter β is the probability of sticking with the current hypothesis, and was set to 

0.9 in the simulation, reflecting that for the most part we expect contexts to remain the 

same (Yu & Dayan. 2005). The factor of 0.5 in Equation 4.7 represents an estimate of the 

validity of the alternative option. In this particular task, the alternative option actually had 

a validity characterized by p(win) = 0.1 and p(loss) = 0.9, but this was assumed to be 

unknown to the model.  

Thus, following wins on exploitation trials (trials for which the best known option 

was selected) the model’s estimate of the likelihood of the current hypothesis ( ) 

increased, while its estimate of unexpected uncertainty ( ) decreased. 

Conversely, following exploitation losses – losses in which the best-known option was 

selected – belief in the current hypothesis decreased, the estimate of unexpected 
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uncertainty (NE) increased, and a decision had to be made: whether to stick to the current 

hypothesis, or abandon it for the alternative option. Similar to Yu and Dayan’s (2005) 

model, this involved comparing  to , which they hypothesized 

happens in prefrontal working memory (PFC node in Figure 4.1). If

, then no context shift was detected and the current belief was held. 

If , then the current belief ( ) was abandoned for the 

alternative belief ( ). Following context updates, the weights were reset to random 

values between 0 and 0.01, and the context probability estimate ( ) was set to 0, as at 

the beginning of each block. 

4.3 DATA ANALYSIS 

4.3.1 Simulating Experiment 1 

In order to assess the benefit of explicit uncertainty detection in a RL model, 

mean accuracies were computed for 20 simulated participants for each environment type 

(stationary/non-stationary) using both a RL model alone, and a RL model augmented by 

uncertainty detection (RL+UD). All other measurements taken when simulating 

Experiment 1 were done on the combined RL+UD model. As in Experiment 1, accuracy 

was defined as the proportion of times that the optimal response was chosen.  In order to 

examine the overall performance curve, mean accuracy was also computed for each trial 

and environment type (stationary/non-stationary) across all participants. Note that error 

bars on all plots represent one standard error. 

To determine the possible effect of ACh and NE levels on performance, mean 

simulated levels of these neurotransmitters were computed for each trial and environment 



 

 60 

type. Furthermore, mean P* was computed for each trial, environment, and hypothesis 

(i.e. that either one option or the other was best). Recall that P* is the probability that a 

particular guess about the environment (e.g. which response is optimal) is correct. It was 

assumed here, without loss of generality, that Option 1 was optimal, and that in the non-

stationary environment Option 2 became optimal following the context shift. In order to 

illustrate the number of context updates that occurred – the number of times a context 

shift was detected – the total mean numbers of context shifts were computed, by trial, for 

each environment. 

To simulate the neural data from Experiment 1 (specifically, the fERN) mean 

prediction errors (δ) were computed for each trial and environment type. Similar to the 

analysis done in Experiment 1, means and standard errors were computed both early 

(trials 1-10) and late (trials 11-20) in a block, for each environment type. 

4.3.2 Simulating Experiment 2 

To simulate the results from Experiment 2 – i.e. the effect of environmental cues 

– the overall level of NE was lowered in the non-stationary environment and raised in the 

stationary environment. This was done by modulating Φ in Equation 4.5, e.g. raising , 

thereby lowering NE, making context shift detections less likely. The resulting mean 

accuracies for each trial and environment type were computed, as well as overall mean 

accuracies for each environment type. To illustrate the effect that NE modulation had on 

uncertainty detection, mean total numbers of context updates (i.e. context shift 

detections) were computed, for each trial and environment type.   
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4.4 SIMULATION RESULTS  

4.4.1 Behavioural 

Model performance is shown in Figure 4.2b, which can be compared to human 

performance for Experiment 1 in Figure 4.2a. The model was able to detect and adapt to 

the context shifts that occurred around trial 12 in the non-stationary environment, 

although it was never able to fully recover within 20 trials. For later comparison, a 

version of the model without any uncertainty detection was run (RL alone: Figure 4.9). 

 

Figure 4.2. Model performance (b) compared to actual performance in Experiment 1 (a). 
Accuracy was defined as the proportion of times that a virtual participant made the 
optimal response (i.e. made the response most likely to result in a win). Note that a 
context shift occurred around trial 12. Dashed lines are shown at accuracies of 80% and 
50%. 

4.4.2 ACh and NE 

In the stationary environment, as the model was exposed to the expected 

uncertainty of selecting the best option, the parameter γ came to reflect the probability of 

the best option winning. In the non-stationary environment, however, ACh levels 

increased following a context shift (~ trial 12) as more and more losses were detected, 
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then settled down as the context was updated to reflect the shift (Figure 4.3a). Likewise, 

NE (1-λ) decreased as the belief that the current context was the correct one increased. In 

the non-stationary environment, following a context shift, NE levels increased to indicate 

doubt in the current context belief (Figure 4.3b). These values (γ and λ) were used to 

determine P*, the likelihood that a context update occurred (see Equation 4.5). A context 

shift was accompanied by a decrease in the likelihood of the current hypothesis being 

true, and an increase in the likelihood of the alternative hypothesis (Figure 4.4b). If these 

values changed enough, then a context update was triggered, and the RL weights were 

reset, as described in Section 4.2.2. 

 

Figure 4.3. ACh and NE levels, over time. Following the context shift, ACh and NE 
levels increase to indicate rising expected and unexpected uncertainty, respectively. 
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Figure 4.4. Mean values for P*, the model estimate of the probability that the current 
context belief remained the same in the (a) stationary and (b) non-stationary environment. 
For the sake of this illustration, µ=1 was assumed to be the correct context in both the 
stationary environment, and in the non-stationary environment prior to the context 
switch. If P*(µ=1) < P*(µ=2) then a context update occurred. 

The model correctly identified more context shifts in the non-stationary compared 

to the stationary environment (Figure 4.5b versus 4.5a). There were many false alarms 

(detecting a context shift when none existed) in both the stationary environment and the 

non-stationary environment in trials 1-10, before the levels of expected and unexpected 

uncertainty could stabilize.  
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Figure 4.5. Mean number of context shift detections ("context updates") for each trial in 
the (a) stationary and (b) non-stationary environment. A context shift occurred on trial 
12, on average. 

4.4.3 Prediction Errors 

 The RL portion of the model generated prediction errors, shown in Figure 4.6. 

Later in learning, there was an enhanced prediction error, indicating that events were 

worse than anticipated.  

 

Figure 4.6. Model prediction error means for (a) all trials, and (b) grouped by early/late 
in learning. Prediction errors were enhanced in the non-stationary environment, reflecting 
unexpected losses. The y-axis is reversed here, mirroring the ERP convention for plotting 
the fERN. 
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4.4.4 Experiment 2 versus Experiment 1 

Reducing overall levels of NE in the stationary environment, and raising overall 

levels of NE in the non-stationary environment resulted in a performance increase 

relative to no NE intervention (Experiment 2: Figure 4.7).  

 

Figure 4.7. Model performance when NE was modulated by environment (b) compared 
to actual performance in Experiment 2 (a). Overall NE levels were reduced in the 
stationary environment and enhanced in the non-stationary environment. Dashed lines are 
shown at 80% and 50% accuracy. 

The enhanced performance when NE levels were modulated based on the 

environment was due to an improved ability to detect context shifts. In particular, there 

were fewer false alarms in the stationary environment, and more hits (correct detections 

of context shifts) in the non-stationary environment (Experiment 2: Figure 4.8, compared 

to Figure 4.5). 
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Figure 4.8. Total number of context updates in the (a) stationary environment, where NE 
was reduced, and (b) non-stationary environment, where NE was enhanced. 

Finally, in order to assess the benefit of including uncertainty detection in the 

model, averages and standard deviations were computed for the RL model alone, the RL 

model with uncertainty detection added (RL+UD), and the augmented model with NE 

modulation (RL+UD*). See Figure 4.9. 

 

Figure 4.9. Overall performance in (a) the stationary environment and (b) the non-
stationary environment. Compared here are the reinforcement learning (RL) model alone, 
the RL model augmented by uncertainty detection (RL+UD), and the augmented model 
when overall neurotransmitter levels were modulated (RL+UD*). 
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Figure 4.10. Simulated prediction errors (fERNs) for Experiment 1 and Experiment 2 (a). 
An arrow highlights the difference: a positive prediction error later in the stationary 
blocks in the Experiment 2 simulation. Compare this with the actual fERN amplitudes 
measured in Experiments 1 and 2 (b). 

4.5 DISCUSSION 

The goal of this experiment was to simulate human behavioural and neural data 

for a two-armed bandit task played in a stationary environment and a non-stationary 

environment. Each bandit selection lead to a reward with differing probabilities; these 

probabilities could swap in the non-stationary environment, but not the stationary 

environment. The results presented here suggest that an ACh-NE system for uncertainty 

detection can improve the performance of a RL model in non-stationary environments, 

but hinder performance in stationary environments. However, with appropriate 
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modulation of overall NE levels, performance in both stationary and non-stationary 

environments can be improved over and above a RL model alone. 

In particular, the ACh-NE system of uncertainty detection modelled here kept an 

ongoing record of past wins and losses, which it used to infer the probability that the 

reward probabilities had switched (that a context shift had occurred). By informing the 

RL component of this shift, the model was able to adapt more quickly than it did with a 

RL model alone. This, of course, improved performance in the non-stationary 

environment, but not the stationary environment, since context shifts only occurred in the 

non-stationary environment. In fact, as shown here, any context updates that did occur in 

the stationary environment could only hurt performance. Thus, without proper 

modulation of NE levels, adding explicit uncertainty detection to a RL model may 

improve performance in a non-stationary environment, but not a stationary environment. 

These simulations also offer one possible explanation for the observed difference 

in behavioural results between Experiment 1 and Experiment 2. In particular, participants 

performed better in Experiment 2, in which they were presented with cues about the 

identity of the current environment, compared to Experiment 1, in which no cues were 

given. Here, it was proposed that the non-stationary environmental cue elevated overall 

NE levels in an ACh-NE uncertainty detection system, while the stationary 

environmental cue lowered NE levels. The effect of this modulation was that random 

feedback fluctuations in the stationary environment were less likely to be mistaken for 

context shifts, and actual context shifts in the non-stationary environment were more 

likely to be correctly detected.  
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 The model presented here was also able to generate prediction errors, which 

according to Holroyd and Coles (2002) are reflected by the fERN in human ERP studies. 

While the prediction errors generated by the model nicely mirrored the results in 

Experiment 2, they were somewhat incongruent with the results from Experiment 1. In 

particular, the model predicted that the fERN should be the same between environments 

initially, and then decrease with learning in the stationary environment (as feedback 

became predictable) and increase in the non-stationary environment (following context 

shifts). However, in Experiment 1 the fERN increased in magnitude in both the stationary 

environment and the non-stationary environment. Thus, while the model produced results 

in line with previous research (e.g. Krigolson et al., 2008), the fERN results observed in 

Experiment 1 remain somewhat unexplained other than the speculations offered in 

Section 2.4, i.e. that participants treated the stationary environment as a non-stationary 

environment. Consistent with this explanation, examining Figure 4.10 suggests that one 

difference that NE modulation made was that, due to the improved performance in this 

condition, there was a positive overall prediction error (i.e. things were better than 

expected). In the Experiment 1 simulation, in contrast, the prediction error was more 

negative from the additional errors that were made due to mistakenly believing that a 

context shift had occurred. While this difference may not totally account for the fERN 

difference between Experiment 1 and Experiment 2, it seems like a reasonable starting 

point. 

In conclusion, there is convincing evidence that the ACh-NE system is 

responsible for the context updates that occur when unexpected shifts in feedback rules 

are detected (Bouret and Sara, 2005; Yu & Dayan, 2005; Doya, 2008). This information 
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can be used to improve the performance of a RL model in non-stationary environments, 

at the expense of performance in stationary environments. Cue-driven modulation of NE 

(enhancement of NE in non-stationary environment and reduction of NE in stationary 

environments) may lead to further improvements, and could explain the observed 

performance benefit in Experiment 2 over Experiment 1.  
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CHAPTER 5: GENERAL DISCUSSION 

Chapters Two and Three reported the behavioural and ERP results of two 

experiments designed to determine the degree to which medial-frontal RL plays a role in 

adapting to non-stationary environments – environments in which the optimal response 

may change. These experiments were motivated by the lack of research on this topic, and 

by the open issues that were identified in the work that does exist (e.g. Bland and 

Schaefer, 2011). While most work on non-stationary environments thus far has focused 

on tasks with high feedback validity (Yu & Dayan, 2005; Behrens et al., 2007; Chase et 

al., 2010; Bland & Schaefer, 2011), little has been said about detecting context shifts 

when feedback validity is low. Thus, to adequately describe the role of the medial-frontal 

cortex in adapting to non-stationary environments, it was necessary to test medial-frontal 

activity when there was little chance of a reward (Experiment 1). To further distinguish 

between human performance in stationary and non-stationary environments, Experiment 

2 provided participants with cues such that the identity of the current environment 

(stationary or non-stationary) could be known. Finally, in Chapter Four, both behavioural 

and neural data were simulated for the tasks described in Experiments 1 and 2 using a 

model that combined RL with an ACh-NE model of uncertainty detection (Yu & Dayan, 

2005). This chapter will summarize the results of Chapters Two, Three, and Four, as well 

as the contributions that these findings make to the study of learning in non-stationary 

environments. 

5.1 OVERVIEW OF CURRENT RESULTS 

The task used in both Experiments 1 and 2 was a two-armed bandit in which 

participants had to learn, over 20 trials, which of two coloured squares was most likely to 
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lead to a reward when selected. This was repeated over several blocks, with new colours 

selected randomly at the beginning of each block. Importantly, in half of the blocks, 

outcome probabilities would switch partway through, requiring participants to detect this 

change and adapt their responses. In Experiment 1, participants were given no indication 

as to which type of environment (stationary or non-stationary) they were in, other than 

the trial-to-trial feedback they received. In contrast, Experiment 2 provided participants 

with unique cues as to the nature of each environment (i.e. the two-armed bandit was 

played in two different casinos – one honest, and one dishonest.) 

In Experiment 1 there was no difference in medial-frontal reward processing, as 

indexed by the fERN component of the ERP, between the stationary environment and the 

non-stationary environment. There was, however, an enhanced P300 component in 

response to wins during/following context shifts. Also, participant responses slowed over 

time in both environments as participants grew uniformly unsure about their responses. 

Adding environmental cues in Experiment 2 resulted in an increase in the magnitude of 

the fERN over time in the non-stationary environment, and a decrease over time in the 

stationary environment. Thus, in this case, the RL processes underlying the fERN 

appeared to play a role in detecting and adapting to unexpected uncertainty. Furthermore, 

unlike in Experiment 1, participant responses did not slow down over time. Finally, the 

Experiment 2 P300 in response to both wins and losses was enhanced in the non-

stationary environment, but not in the stationary environment. 

The contrasting results of Experiments 1 and 2 suggest that while midbrain 

reward processing may play a role in detecting and adapting to unexpected uncertainty, it 

cannot be the whole story. Both Experiments saw an increase in the feedback-locked 
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P300, though – a result that was explored more with a simulation in Chapter Four. In 

particular, changes in feedback following a context shift triggered an increase in 

simulated phasic NE levels which, according to the simulation, may be used to improve 

the performance of a RL model. Furthermore, the simulated results for Experiment 2 

suggest that the effect of the non-stationary environmental cue may have been to raise 

overall NE levels, making reversal detections more likely, while the stationary cue may 

have lowered overall NE levels, making reversal detections less likely. When NE was 

altered in this way in the simulation, there was a performance improvement in the cued 

task over the uncued task, another observed contrast between Experiments 1 and 2. 

Additionally, the fERN differences between the stationary and non-stationary 

environments in Experiment 2 were adequately captured by the prediction errors 

generated by the simulation. Furthermore, the simulation also offered a plausible 

explanation for the surprising fERN results seen in Experiment 1. In particular, the 

enhanced fERN observed later in stationary blocks in Experiment 1 may have been due to 

the performance cost associated with mistaking random feedback fluctuations for context 

shifts requiring behavioural adaptation.  

5.2 CONNECTION TO CURRENT RESEARCH AND THEORY 

The most popular theories about detecting unexpected uncertainty involve 

Bayesian inference (Yu & Dayan, 2005; Rushworth & Behrens, 2008). Yu and Dayan 

(2005) linked a Bayesian approach with neurotransmitter modulation (NE for unexpected 

uncertainty, ACh for expected uncertainty). Several studies have also linked P300 

enhancement with phasic increases in NE via the LC-NE system (see Nieuwenhuis et al., 

2005, for a review). Given these theories on NE and unexpected uncertainty (Doya, 
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2008), it is not surprising that an increase in the P300 was observed in response to 

feedback following the context shifts in Experiments 1 and 2. Surprisingly, however, 

while this effect was observed for both wins and losses in Experiment 2, it was only 

observed for wins in Experiment 1, while in both Experiments 1 and 2 the P300 for wins 

was enhanced relative to the P300 for losses. The P300 is not typically sensitive to 

reward valence (Yeung & Sanfey, 2004; Holroyd et al., 2004), although it is sensitive to 

reward magnitude (Yeung & Sanfey, 2004), so this difference likely has more to do with 

saliency and/or context updating than valence. As speculated earlier, while no particular 

loss feedback following a context shift necessarily signalled a context update, there is 

reason to believe that a win following several losses would be highly salient, and thus 

elicit a larger P300 (Nieuwenhuis et al., 2005).  

The fERN in Experiment 1 was not enhanced in the non-stationary environment, 

contrary to what others have found (Bland & Schaeffer, 2011). It is argued here that this 

is due to the low feedback validity that was used in the present work. In particular, 

participants may have mistaken losses signalling a context shift for losses due to expected 

uncertainty, i.e. that selecting the best option should often result in a loss. The implication 

of this result is that while medial-frontal cortex may play a role in detecting unexpected 

uncertainty, other systems are likely at work as well – in particular, the LC-NE system, as 

indexed by the P300. In Experiment 2, in contrast, the fERN became enhanced in the 

non-stationary environment only. This is consistent with both existing EEG (Chase et al., 

2010; Bland & Schaeffer, 2011) and MRI work (Behrens et al., 2007). 

According to Yu and Dayan’s (2005) model, NE and ACh levels interact, so more 

work could be done manipulating both expected and unexpected uncertainty in a 
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paradigm similar to what was used here. As the results presented here indicate, the level 

of feedback validity that is used in experiments on uncertainty may greatly impact the 

degree to which medial-frontal reward processing is recruited for uncertainty detection. 

Furthermore, one unexplored issue here (and elsewhere) is how the feedback validity of 

competing options may interact. In Experiments 1 and 2, the less optimal choice always 

had a feedback validity characterized by p(win) = 0.1. Technically speaking, this 

describes a highly valid feedback situation (i.e., the outcome of choosing this option 

could be known with 90% accuracy). While the outcome probabilities in the present work 

were chosen via pilot testing in order to equalize the total number of win and loss trials, 

manipulation of the win likelihoods of each option (or several options) may yield 

similarly fruitful results to what was found here. 

5.3 CONCLUSION 

When feedback cannot be completely trusted – when a lack of reward doesn’t 

necessarily mean that a wrong choice was made – then learning becomes challenging. 

This challenge is compounded when the best option may change over time. Just as 

different forms of uncertainty have been identified (Bland & Schaefer, 2012), different 

mechanisms have been uncovered behind how uncertainty is detected and dealt with 

(Payzan-LeNestour & Bossaerts, 2011). The topic of the present work was unexpected 

uncertainty – shifts in the underlying probabilities determining which action is optimal. 

The goal here was to investigate the role of two possible mechanisms behind detecting 

and adapting to unexpected uncertainty: midbrain reward processing, as indexed by the 

fERN, and the LC-NE system, as indexed by the P300.  
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By reducing feedback validity, a non-stationary environment was created 

(Experiment 1) where the LC-NE system appeared to play more of role in detecting and 

responding to unexpected uncertainty compared to the midbrain RL system. This 

suggests two separate systems for unexpected uncertainty detection: a model-free RL 

system, located in the midbrain, and some other system (possibly Bayesian: Payzan-

LeNestour & Bossaerts, 2011; Wilson & Niv, 2012), related to LC-NE functioning. In 

Experiment 2, a stationary and a non-stationary environment were created where, despite 

low feedback validity, both midbrain reward processing and the LC-NE system appeared 

to be engaged for uncertainty detection. Finally, behavioural and neural data were 

simulated to show that it is possible to explain the difference between stationary and non-

stationary performance through modulation of NE. In particular, NE may be enhanced in 

non-stationary environments, facilitating the correct detection of context shifts, and 

reduced in stationary environments, leading to fewer false context shift detections. Taken 

together, these results tend to downplay (but not exclude) the role of medial-frontal 

reward processing in unexpected uncertainty detection, and highlight the role of the LC-

NE system  
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APPENDIX 

 

Figure A1: Electrode layout for Experiment 1. 
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Figure A2. Grand average difference waveform (losses – wins) at electrode site FCz for 
Experiment 1. Dashed lines indicate one standard error. 

 

Figure A3. Grand average response to all wins at electrode site Pz for Experiment 1. 
Dashed lines indicate one standard error. 
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Figure A4: Electrode layout for Experiment 2. 
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Figure A5. Grand average difference waveform (losses – wins) at electrode site FCz for 
Experiment 2. Dashed lines shows indicate one standard error. 

 

Figure A6. Grand average response to all wins at electrode site Pz for Experiment 2. 
Dashed lines indicate one standard error. 
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